MATRIX COEFFICIENTS, COUNTING AND PRIMES FOR

ORBITS OF GEOMETRICALLY FINITE GROUPS
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ABSTRACT. Let G := SO(n,1)° and ' < G be a geometrically finite
Zariski dense subgroup with critical exponent ¢ bigger than (n — 1)/2.
Under a spectral gap hypothesis on L*(I'\G), which is always satisfied
when 6 > (n —1)/2 for n = 2,3 and when § > n — 2 for n > 4, we
obtain an effective archimedean counting result for a discrete orbit of I'
in a homogeneous space H\G where H is the trivial group, a symmetric
subgroup or a horospherical subgroup. More precisely, we show that for
any effectively well-rounded family {Br C H\G} of compact subsets,
there exists 7 > 0 such that

#[e]l N Br = M(Br) + O(M(Br)'™")

for an explicit measure M on H\G which depends on I'. We also apply
the affine sieve and describe the distribution of almost primes on orbits
of I in arithmetic settings.

One of key ingredients in our approach is an effective asymptotic for-
mula for the matrix coefficients of L?(I'\G) that we prove by combining
methods from spectral analysis, harmonic analysis and ergodic theory.
We also prove exponential mixing of the frame flows with respect to the
Bowen-Margulis-Sullivan measure.
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1. INTRODUCTION

Let n > 2 and let G be the identity component of the special orthogonal
group SO(n,1). As well known, G can be considered as the group of orienta-
tion preserving isometries of the hyperbolic space H™. A discrete subgroup I
of G is called geometrically finite if the unit neighborhood of its convex core!
has finite Riemannian volume. As any discrete subgroup admitting a finite
sided polyhedron as a fundamental domain in H" is geometrically finite, this
class of discrete subgroups provides a natural generalization of lattices in G.
In particular, for n = 2, a discrete subgroup of G is geometrically finite if
and only if it is finitely generated.

In the whole introduction, let I' be a torsion-free geometrically finite,
Zariski dense, discrete subgroup of G. We denote by ¢ the critical exponent
of I'. Note that any discrete subgroup of G with 6 > (n — 2) is Zariski
dense in G. The main aim of this paper is to obtain effective counting
results for discrete orbits of I' in H\G, where H is the trivial group, a
symmetric subgroup or a horospherical subgroup of GG, and to discuss their
applications in the affine sieve on I-orbits in an arithmetic setting. Our
results are formulated under a suitable spectral gap hypothesis for L?(T'\G)
(see Def. 1.1 and 1.3). This hypothesis on I' is known to be true if the
critical exponent 9§ is strictly bigger than n — 2. Though we believe that the
condition & > (n — 1)/2 should be sufficient to guarantee this hypothesis, it
is not yet known in general (see 1.2).

For T' lattices, i.e., when § = n — 1, both the effective counting and
applications to an affine sieve have been extensively studied (see [16], [17],
[4], [44], [21], [42],[48], [20], etc. as well as survey articles [51], [49] [36], [37]).
Hence our main focus is when I' is of infinite co-volume in G.

1.1. Effective asymptotic of Matrix coefficients for L?(T'\G). We be-
gin by describing an effective asymptotic result on the matrix coefficients for
L?(I'\G), which is a key ingredient in our approach as well as of independent
interest. When I is not a lattice, a well-known theorem of Howe and Moore
[27] implies that for any ¥y, Uy € L2(T'\G), the matrix coefficient

(a¥y, Uy) = /F\G V1(ga)¥a(g)dyg

decays to zero as a € G tends to infinity (here dg is a G-invariant measure
on I'\G). Describing the precise asymptotic is much more involved. Fix a
Cartan decomposition G = K AK where K is a maximal compact subgroup
and A is a one-parameter subgroup of diagonalizable elements. Let M de-
note the centralizer of A in K. The quotient spaces G/K and G/M can
be respectively identified with H” and its unit tangent bundle T*(H"), and

IThe convez core Cr C T\H" of T is the image of the minimal convex subset of H"
which contains all geodesics connecting any two points in the limit set of T'.



EFFECTIVE COUNTING 3

we parameterize elements of A = {a; : t € R} so that the right translation
action of a; in G/M corresponds to the geodesic flow on T!(H") for time .

We let {m, : 2 € H"} and {v, : © € H"} be I'-invariant conformal densi-
ties of dimensions (n — 1) and § respectively, unique up to scalings. Each v,
is a finite measure on the limit set of I', called the Patterson-Sullivan mea-
sure viewed from z. Let mBMS mBR mBR« and mHaar denote, respectively,
the Bowen-Margulis-Sullivan measure, the Burger-Roblin measures for the
expanding and the contracting horospherical foliations, and the Liouville-
measure on the unit tangent bundle T*(I'\H"), all defined with respect to
the fixed pair of {m,} and {v;} (see Def. 2.1). Using the identification
THT\H") = I'\G/M, we may extend these measures to right M-invariant
measures on I'\G, which we will denote by the same notation and call them
the BMS, the BR, the BR,, the Haar measures for simplicity. We note that
for 6 < n — 1, only the BMS measure has finite mass [52].

In order to formulate a notion of a spectral gap for L?(T'\G), denote
by G and M the unitary dual of G and M respectively. A representation
(m,H) € G is called tempered if for any K-finite v € H, the associated
matrix coefficient function g — (7 (g)v,v) belongs to L?T¢(G) for any € > 0;
non-tempered otherwise. The non-tempered part of G consists of the trivial
representation, and complementary series representations U(v,s — n + 1)
parameterized by v € M and s € I,,, where I, C (TLT_I, n — 1) is an interval
depending on v. This was obtained by Hirai [26] (see also [30, Prop. 49, 50]).
Moreover U (v, s —n+1) is spherical (i.e., has a non-zero K-invariant vector)
if and only if v is the trivial representation 1; see discussion in section 3.2.

By the works of Lax-Phillips [40], Patterson [54] and Sullivan [62], if
§ > "L U(1,6 — n+ 1) occurs as a subrepresentation of L*(I'\G) with
multiplicity one, and L?(T'\G) possesses spherical spectral gap, meaning
that there exists 251 < s < § such that L*(I'\G) does not weakly contain’
any spherical complementary series representation U(1,s—n+1), s € (sp,d).
The following notion of a spectral gap concerns both the spherical and non-
spherical parts of L2(T'\G).

Definition 1.1. We say that L?(I'\G) has a strong spectral gap if
(1) L?(I'\G) does not contain any U(v, 8 —n + 1) with v # 1;

(2) there exist 251 < so(I') < & such that L*(I'\G) does not weakly
contain any U (v, s —n + 1) with s € (so(I"),8) and v € M.

For § < %‘1, the Laplacian spectrum of L?(T'\H") is continuous [40]; this
implies that there is no spectral gap for L?(T'\G).

2for two unitary representations m and 7’ of G, 7 is said to be weakly contained in 7’
(or 7" weakly contains 7) if every diagonal matrix coefficient of m can be approximated,
uniformly on compact subsets, by convex combinations of diagonal matrix coefficients of

/
.
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Conjecture 1.2 (Spectral gap conjecture). IfT' is a geometrically finite and
Zariski dense subgroup of G with 6 > ”Tfl, L?(I'\G) has a strong spectral

gap.
If 6 > (n—1)/2 for n = 2,3, or if § > (n — 2) for n > 4, then L*(T\G)
has a strong spectral gap (Theorem 3.27).

Our main theorems are proved under the following slightly weaker spectral
gap property assumption:
Definition 1.3. We say that L?(I'\G) has a spectral gap if there exist %51 <
so = so(I") < 6 and ng = no(I') € N such that
(1) the multiplicity of U(v,§ —n + 1) contained in L?(I'\G) is at most
dim(v)™ for any v € M;
(2) L*(I'\G) does not weakly contain any U(v, s —n+1) with s € (s, d)
and v € M.
The pair (so(I'), no(I")) will be referred to as the spectral gap data for I'.

In the rest of the introduction, we impose the following hypothesis on I':
L*(I'\G) has a spectral gap.

Theorem 1.4. There exist o > 0 and £ € N (depending only on the spectral
gap data forI') such that for any real-valued ¥1, Uy € CX(T'\G), ast — oo,

10 wa(gan) Ba(g)dm™ (o)
NG

where Sy(V;) denotes the (-th L?-Sobolev norm of ¥; for each i =1,2.

Remark 1.5. We remark that if either ¥ or ¥y is K-invariant, then The-
orem 1.4 holds for any Zariski dense I' with § > ”7_1 (without the spectral
gap hypothesis), as the spherical spectral gap of L?(I'\G) is sufficient to
study the matrix coefficients associated to spherical vectors.

Let ’Hj; denote the sum of of all complementary series representations of
parameter § contained in L?(I'\G), and let Ps denote the projection operator
from L?(T\G) to 7-[2;. By the spectral gap hypothesis on L?(T'\G), the
main work in the proof of Theorem 1.4 is to understand the asymptotic of
(a;Ps(Vy), Ps(U2)) as t — oo. Building up on the work of Harish-Chandra
on the asymptotic behavior of the Eisenstein integrals (cf. [65], [66]), we first
obtain an asymptotic formula for (a;v,w) for all K-finite vectors v, w € H;
(Theorem 3.23). This extension alone does not give the formula of the
leading term of (a;Ps(W¥1), Ps(¥2)) in terms of functions ¥; and We; however,
an ergodic theorem of Roblin [56] and Winter [67] enables us to identify the
main term as given in Theorem 1.4.



EFFECTIVE COUNTING 5

1.2. Exponential mixing of frame flows. Via the identification of the
space '\G with the frame bundle over the hyperbolic manifold T'\H", the
right translation action of a; on I'\G corresponds to the frame flow for time ¢.
The BMS measure mBMS on T'\G is known to be mixing for the frame flows
([18], [67]). We deduce the following exponential mixing from Theorem 1.4:
for a compact subset €2 of I'\G, we denote by C*°(2) the set of all smooth
functions on I'\G with support contained in €.

Theorem 1.6. There exist 79 > 0 and ¢ € N such that for any compact
subset Q C T\G, and for any V1, ¥y € C*°(Q), as t — oo,

/ W, (gar) Ua(g)dmPMS (g)
NG

mBMS(\I/l) i mBMS(\I’Q)

= [ BMS| + O(Sy(W1)Sp(Wa)e ™)

where the implied constant depends only on Q.

For I" convex co-compact, Theorem 1.6 for V1 and ¥y M-invariant func-
tions holds for any § > 0 by Stoyanov [61], based on the approach developed
by Dolgopyat [14]; however when I' has cusps, this theorem seems to be new
even for n = 2.

1.3. Effective equidistribution of orthogonal translates of an H-
orbit. When H is a horospherical subgroup or a symmetric subgroup of
G, we can relate the asymptotic distribution of orthogonal translates of a
closed orbit I'\T'H to the matrix coefficients of L?(I'\G). We fix a gener-
alized Cartan decomposition G = HAK. We parameterize A = {a;} as in
section 1.1, and for H horospherical, we will assume that H is the expanding
horospherical subgroup for a;, that is, H = {g € G : ayga_y — e as t — 00}.
Let u%aar and ,uzs be respectively the H-invariant measure on I'\I'H de-
fined with respect to {m,} and the skinning measure on I'\I'H defined with
respect to {v}, introduced in [52] (cf. (4.2)).

Theorem 1.7. Suppose that T\T'H is closed and that |u5| < oo. There
exist ng > 0 and ¢ € N such that for any compact subset Q C T'\G, any
U e C®(Q) and any bounded ¢ € C*°(I'N H\H), as t — oo,

0 [ W(ha) o)
hel\I'H

= Muﬁs(@mm(% + O(S(T) - Sy(¢)e ™)

with the implied constant depending only on 2.
For H horospherical, |15 < oo is automatic for T\T'H closed. For H
symmetric (and hence locally isomorphic to SO(k, 1) x SO(n — k)), the cri-

terion for the finiteness of ub? has been obtained in [52] (see Prop. 4.15);
in particular, |uE| < oo provided § > n — k.
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Letting Y := {h € (' N H)\H : ha; € Q for some t > 0}, note that

[ wtanoma = | wihasmau
Yo

since W is supported in ). In the case when ,LLEIS is compactly supported, Yq
turns out to be a compact subset and in this case, the so-called thickening
method ([17], [29]) is sufficient to deduce Theorem 1.7 from Theorem 1.4,
using the wave front property introduced in [17] (see [4] for the effective
version). The case of M%S not compactly supported is much more intricate
to be dealt with. Though we obtain a thick-thin decomposition of Yq with
the thick part being compact and control both the Haar measure and the
skinning measure of the thin part (Theorem 4.16), the usual method of
thickening the thick part does not suffice, as the error term coming from
the thin part overtakes the leading term. The main reason for this phe-
nomenon is because we are taking the integral with respect to p,%aar as well
as multiplying the weight factor ("2~ in the left hand side of Theorem
1.7, whereas the finiteness assumption is made on the skinning measure ,uzs.
However we are able to proceed by comparing the two measures (at)*ugs
and (at)«pu% via the the transversal intersections of the orbits I'\I'Ha,
with the weak-stable horospherical foliations (see the proof of Theorem 6.9
for more details).

In the special case of n = 2,3 and H horospherical, Theorem 1.7 was
proved in [35], [34] and [41] by a different method.

1.4. Effective counting for a discrete I'-orbit in H\G. In this subsec-
tion, we let H be the trivial group, a horospherical subgroup or a symmetric
subgroup, and assume that the orbit [e]|I" is discrete in H\G. Theorems 1.4
and 1.7 are key ingredients in understanding the asymptotic of the number
#([e]l' N Br) for a given family {Br C H\G} of growing compact subsets,
as observed in [16].

We will first describe a Borel measure M\ g = ME\G on H\G, depend-
ing on I', which turns out to describe the distribution of [e]I". Let o € H" be
the point fixed by K, Xy € T*(H") the vector fixed by M, X, Xy € o(H)
the forward and the backward endpoints of X by the geodesic flow, respec-
tively and v, the Patterson-Sullivan measure on 9(H") supported on the

limit set of I, viewed from o. Let dm denote the probability Haar measure
of M.

Definition 1.8. For H the trivial subgroup {e}, define a Borel measure
Mg = ML on G as follows: for ¢ € C.(G),

Mc () =

] Y(kragmbks)e®tdvy(ky X )dtdmdyy(ky ' X).
(K/M)xATxMx(M\K)
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Definition 1.9. For H horospherical or symmetric, we have either G =
HATK or G= HATK UHA™ K (as a disjoint union except for the identity
element) where A* = {ax; : t > 0}.

Define a Borel measure Mg = Ml;I\G on H\G as follows: for ¢ €
Ce(H\G),

Mm\a(¥) =
% S srrw sy Y([elasmk) e dtdmdv, (k' X) if G = HATK

> |Li§hfs|\ St enrw ar i) Y([Elazemk) e’ dtdmdu, (k™ X ) otherwise,

where ut, H7_ is the skinning measure on I' N H\ H in the negative direction,
as defined in (6.15).

Definition 1.10. For a family {Br C H\G} of compact subsets with
Mg (Br) tending to infinity as T" — oo, we say that {Br} is effectively
well-rounded with respect to ' if there exists p > 0 such that for all small
€ > 0 and large T' > 1:

Mua(Bf — Br) = O(e" - My\a(Br))

where Bf._ = GBrG. and By, = Ny, gec.1Brgz if H = {e}; and By, =
BrG. and B = Ngea Brg if H is horospherical or symmetric. Here G
denotes a Sym}netric e-neighborhood of e in G with respect to a left invariant
Riemannian metric on G.

Since any two left-invariant Riemannian metrics on G are Lipschitz equiv-
alent to each other, the above definition is independent of the choice of a
Riemannian metric used in the definition of G..

See Propositions 7.11, 7.15 and 7.17 for examples of effectively well-
rounded families. For instance, if G acts linearly from the right on a finite
dimensional linear space V' and H is the stabilizer of wy € V', then the family
of norm balls Br :={Hg € H\G : ||lwog| < T'} is effectively well-rounded.

If ' is a lattice in G, then M\ is essentially the leading term of the
invariant measure in H\G and hence the definition 1.10 is equivalent to
the one given in [4], which is an effective version of the well-roundedness
condition given in [17]. Under the additional assumption that H N T is a
lattice in H, it is known that if {Br} is effectively well-rounded, then

#([e]T N Br) = Vol(Br) + O(Vol(Br)' ) (1.11)

for some 79 > 0, where Vol is computed with respect to a suitably normalized
invariant measure on H\G (cf. [16], [17], [44], [20], [4]).

We present a generalization of (1.11). In the next two theorems 1.12 and
1.14, we let {I'y : d € I} be a family of subgroups of I" of finite index such
that Ty N H =T N H. We assume that {I'y : d € I'} has a uniform spectral
gap in the sense that sup, so(I'q) < d and supyno(I'y) < oco.
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For our intended application to the affine sieve, we formulate our effective
results uniformly for all I';’s.

Theorem 1.12. Let H be the trivial group, a horospherical subgroup or a
symmetric subgroup. When H is symmetric, we also assume that |,u1;,S| < 00.
If {Br} is effectively well-rounded with respect to T, then there exists ng > 0
such that for any d € I and for any vo € T,

#([e]Cano N Br) = mrgMma(Br) + O(Mpg(Br)'™™)

where Mg = M%\G and the implied constant is independent of I'y and
v €.

See Corollaries 7.16 and 7.18 where we have applied Theorem 1.12 to
sectors and norm balls.

Remark 1.13. Theorem 1.12 can be used to provide an effective version
of circle-counting theorems studied in [35], [41], [53] and [50] (as well as its
higher dimensional analogues for sphere packings discussed in [51]).

We also formulate our counting statements for bisectors in the HAK
decomposition, motivated by recent applications in [8] and [9]. Let 7 €
CP(H) and 7 € C*(K), and define £7'™ € C*°(G) as follows: for g =
hak € HAYK,

PR =@ [ ntmnin R m)

where x A% denotes the characteristic function of A} = {a;: 0 <t < logT}
and dgnps is the probability Haar measure of H N M. Since hak = h'ak’

implies that A = h'm and k = m™1k’ for some m € H N M, & is well-
defined.

Theorem 1.14. There exist ng > 0 and £ € N such that for any compact
subset Hy of H which injects to T\G, any 11 € C*(Hy), 72 € C*°(K), any
Y€l and any d € 1,

~PS *
T1,T2 K (Tl) Vo (7_2) ) 5—
’ = T°+0(S S o7
Z ’ST (7) 5. [F . Pd] ) |mBMS\ + ( 5(7—1) 5(7—2) )

v€lavo
where V3(12) = [ [y T2(mk)dmdve (k™1 X)) and fiYP is the skinning mea-
sure on H with respect to I' and the implied constant depends only on I' and
Hy.

Theorem 1.14 also holds when 7 and 75 are characteristic functions of
the so-called admissible subsets (see Corollary 7.21 and Proposition 7.11).

We remark that unless H = K, Corollary 7.16, which is a special case of
Theorem 1.12 for sectors in H\G, does not follow from Theorem 1.14, as
the latter deals only with compactly supported functions 7. For H = K,
Theorem 1.14 was earlier shown in [7] and [64] for n = 2,3 respectively.
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Remark 1.15. Non-effective versions of Theorems 1.7, 1.12, and 1.14 were
obtained in [52] for a more general class of discrete groups, that is, any
non-elementary discrete subgroup admitting finite BMS-measure.

1.5. Application to Affine sieve. One of the main applications of Theo-
rem 1.12 can be found in connection with Diophantine problems on orbits
of I'. Let G be a Q-form of G, that is, G is a connected algebraic group
defined over Q such that G = G(R)°. Let G act on an affine space V
via a Q-rational representation in a way that G(Z) preserves V(Z). Fix a
non-zero vector wg € V(Z) and denote by H its stabilizer subgroup and set
H = H(R). We consider one of the following situations: (1) H is a symmet-
ric subgroup of G or the trivial subgroup; (2) woG U {0} is Zariski closed
and H is a compact extension of a horospherical subgroup of G.

In the case (1), woG is automatically Zariski closed by [23]. Set W :=
woG and woG U {0} respectively for (1) and (2).

Let ' be a geometrically finite and Zariski dense subgroup of G with
o > "T_l, which is contained in G(Z). If H is symmetric, we assume that
gt | < oo.

For a positive integer d, we denote by I'y the congruence subgroup of I'
which consists of v € T" such that v = e mod d. For the next two theorems
1.16 and 1.17 we assume that there exists a finite set S of primes that
the family {I'y : d is square-free with no prime factors in S} has a uniform
spectral gap. This property always holds if 6 > (n — 1)/2 for n = 2,3 and
if § > n — 2 for n > 4 via the recent works of Bourgain,Gamburd, Sarnak
([6], [5]) and Salehi-Golsefidy and Varju [58] together with the classification
of the unitary dual of G (see Theorem 8.2).

Let F' € Q[W] be an integer-valued polynomial on the orbit woI'. Salehi-
Golsefidy and Sarnak [57], generalizing [6], showed that for some R > 1, the
set of x € wpl" with F'(x) having at most R prime factors is Zariski dense in
woG. The following are quantitative versions: Letting F' = F{F5--- F,. be a
factorization into irreducible polynomials in Q[W], assume that all F}’s are
irreducible in C[W] and integral on wol'. Let {Br C woG : T > 1} be an
effectively well-rounded family of subsets with respect to I'.

Theorem 1.16 (Upper bound for primes). For all T > 1,

. . . My, G(BT)
x € wol'N By : F;(x) is prime for j =1,--- . r} K 0 .
{ 0 T ]( ) f J } (10ng0G(BT))T
Theorem 1.17 (Lower bound for almost primes). Assume further that
maxep, ||z € Muw,a(Br)? for some B > 0, where || - || is any norm
on V. Then there exists R = R(F,wol',3) > 1 such that for all T > 1,
M’woG(BT)

{x € woI' N Br : F(x) has at most R prime factors} >

(log Muyc(Br))"™
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Observe that these theorems provide a description of the asymptotic dis-
tribution of almost prime vectors, as By can be taken arbitrarily.

Remark 1.18. In both theorems above, if all By are K-invariant subsets,
our hypothesis on the uniform spectral gap for the family {I';} can be dis-
posed again, as the uniform spherical spectral gap property proved in [58]
and [6] is sufficient in this case.

For instance, Theorems 1.16 and 1.17 can be applied to the norm balls
Br = {x € woG : ||x|| < T} and in this case M,c(Br) < T%* where X
denotes the log of the largest eigenvalue of a; on the R-span of woG.

In order to present a concrete example, we consider an integral quadratic

form Q(x1,- -+ ,xn41) of signature (n,1) and for an integer s € Z, denote by
Wq.s the affine quadric given by
{x:Q(x) = s}.

As well-known, W s is a one-sheeted hyperboloid if s > 0, a two-sheeted
hyperboloid if s < 0 and a cone if s = 0. We will assume that Q(x) = s
has a non-zero integral solution, so pick wg € Wg(Z). If s # 0, the
stabilizer subgroup G, is symmetric; more precisely, locally isomorphic to
SO(n —1,1) (if s > 0) or SO(n) (if s < 0) and if s = 0, Gy, is a compact
extension of a horospherical subgroup. By the remark following Theorem
1.7, the skinning measure ugio is finite if n > 3. For n = 2 and s > 0, Gy, is

a one-dimensional subgroup consisting of diagonalizable elements, and ,u,gio

is infinite only when the geodesic in H? stabilized by G, is divergent and
goes into a cusp of a fundamental domain of I' in H?; in this case, we call
wp externally I'-parabolic, following [52]. Therefore the following are special
cases of Theorems 1.16 and 1.17:

Corollary 1.19. Let I' be a geometrically finite and Zariski dense subgroup
of SOQ(Z) with 6 > ”T_l In the case whenn = 2 and s > 0, we additionally
assume that wy is not externally I'-parabolic. Fizxing a K-invariant norm
|- || on R*™Y, we have, for any 1 <r <n+1,

(1) {x e wol': ||x]| <T, xj is prime for all j =1,--- 1} < %;
(2) for some R > 1,
0
{x €wl': ||x|| <T, x1---x, has at most R prime factors} > (g7

The upper bound in (1) is sharp up to a multiplicative constant. The lower
bound in (2) can also be stated for admissible sectors under the uniform
spectral gap hypothesis (cf. Corollary 7.18). Corollary 1.19 was previously
obtained in cases when n = 2,3 and s < 0 ([5], [33], [35],[34], [41]).

To explain how Theorems 1.16 and 1.17 follow from Theorem 1.12, let
Fyo(d) = {y € T : woy = wp mod (d)} for each square-free integer d.
Then Stabr,, (4)(wo) = Stabp(wo) and the family {I'y,(d)} admits a uni-
form spectral gap property as I'y < I'y,(d). Hence Theorem 1.12 holds
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for the congruence family {I'y,(d) : d is square-free, with no small primes},
providing a key axiomatic condition in executing the combinatorial sieve
(see [28, 6.1-6.4], [25, Theorem 7.4], as well as [6, Sec. 3]). When an ex-
plicit uniform spectral gap for {I'z} is known (e.g., [19], [43]), the number
R(F,wol") can also be explicitly computed in principle.

The paper is organized as follows. In section 2, we recall the ergodic
result of Roblin which gives the leading term of the matrix coefficients for
L*(T\G). In section 3, we obtain an effective asymptotic expansion for
the matrix coefficients of the complementary series representations of G
(Theorem 3.23) as well as for those of L*(T'\G), proving Theorem 1.4. In
section 4, we study the reduction theory for the non-wandering component of
I'"\I"Ha;, describing its thick-thin decomposition; this is needed as I'\I'H has
infinite Haar-volume in general. We will see that the non-trivial dynamics of
I"\I'Ha; as t — oo can be seen only within a subset of finite PS-measure. In
section 5, for ¢ compactly supported, we prove Theorem 1.7 using Theorem
1.4 via thickening. For a general bounded ¢, Theorem 1.7 is obtained via
a careful study of the transversal intersections in section 6. Theorem 1.6
is also proved in section 6. Counting theorems 1.12 and 1.14 are proved in
section 7 and Sieve theorems 1.16 and 1.17 are proved in the final section 8.

2. MATRIX COEFFICIENTS IN L?(I'\G) BY ERGODIC METHODS

Throughout the paper, let G be SO(n,1)° = Isom™ (H") for n > 2, i.e.,
the group of orientation preserving isometries of (H",d), and I' < G be a
non-elementary torsion-free geometrically finite group. Let 9(H") denote
the geometric boundary of H". Let A(I') C O(H"™) denote the limit set of T,
and 0 the critical exponent of I', which is known to be equal to the Hausdorff
dimension of A(T") [63].

A family of measures {u, : * € H"} is called a I'-invariant conformal
density of dimension §, > 0 on O(H"), if each p, is a non-zero finite Borel
measure on J(H") satisfying for any z,y € H", £ € 9(H") and v € T,

Vilbr = Uy and %(5) = eféuﬁg(y,x%
Mz
where v, 1z (F) = pz (v~ (F)) for any Borel subset F' of 9(H"). Here B¢(y, )
denotes the Busemann function: f¢(y, x) = limy—o0 d(&, y) — d(&:, x) where
& is a geodesic ray tending to £ as t — oo.

We denote by {v,} the Patterson-Sullivan density, i.e., a I'-invariant con-
formal density of dimension § and by {m, : x € H"} a Lebesgue density,
i.e., a G-invariant conformal density on the boundary 9(H") of dimension
(n —1). Both densities are determined unique up to scalar multiples.

Denote by {G' : t € R} the geodesic flow on TY(H"). For u € T!(H"),
we denote by u* € O(H") the forward and the backward endpoints of the
geodesic determined by wu, i.e., ut = limy 1o G*(u). Fixing o € H", the
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map
u (uhu”, s = B, (o, m(u)))
is a homeomorphism between T!(H") with
(O(H") x O(H") — {(&,&) - £ € O(H")}) x R.
BMS BR mBR* ﬁlHaar

Using this homeomorphism, we define measures m
on T (H") as follows ([11], [45], [63], [12], [56]):

,m

Definition 2.1. Set
( ) deMS( ) _ 65/3)“+ (o,m(w)) 66,8“_ (o,m(u)) dl/o(qu)dVo(ui)dS;
( ) ( ) — e(nfl)ﬁu-‘r (0,m(w)) e‘sﬁu— (0,m(u)) dmo(u+)dyo(u7)d3;
( ) BR*( ) — 98,4+ (0m(w)) o(n—1)8,— (o,m(u)) duo(qu)dmo(u’)ds;
( ) Haar( ) _ e(nfl),Bu_‘_(o,ﬂ(u)) e(nfl),Bu_ (o,m(w)) dmo(qu)dmo(u*)ds.

The conformal properties of {v,} and {m,} imply that these definitions
are independent of the choice of o € H". We will extend these measures to
G; these extensions depend on the choice of o € H” and X € TL(H"). Let
K := Stabg (o) and M := Stabg(Xp), so that H® ~ G/K and T'(H") ~
G/M. Let A = {a; : t € R} be the one-parameter subgroup of diagonalizable
elements in the centralizer of M in G such that G'(Xo) = [M]a; = [a;M].

Using the identification T!(H") with G /M, we lift the above measures to
G, which will be denoted by the same notation by abuse of notation, so that
they are all invariant under M from the right.

These measures are all left I'-invariant, and hence induce locally finite
Borel measures on I'\G, which we denote by mPMS (the BMS-measure), mBR
(the BR-measure), mBR (the BR, measure), m"%" (the Haar measure) by
abuse of notation.

Let NT and N~ denote the expanding and the contracting horospherical
subgroups, i.e.,

Nt ={g€G:aga_y — e ast — Foo}.

For g € G, define
g = (gM)* € o(H").

We note that mBMS, mBR and mBR+ are invariant under A, N and
N~ respectively and their supports are given respectively by {g € T'\G :
g g7 e A} {ge\G:g9 € Al")} and {g e I'\G : g € A(T')}. The
measure m2?" is invariant under both Nt and N, and hence under G, as
Nt and N~ generate G topologically. That is, mH2 is a Haar measure of
G.

We consider the action of G on L?(T'\G,m!#¥) by right translations,
which gives rise to the unitary action for the inner product:

(1, Ty) = /F OB ).
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Theorem 2.2. Let T be Zariski dense. For any functions W1, ¥y € C.(T'\G),

BR BR
. —1-68)t . m (\111) -m *(\I/Q)
1thm (™ ) (a Wy, W) = [ BVES|

Proof. Roblin [56] proved this for M-invariant functions ¥; and Wy. His
proof is based on the mixing of the geodesic flow on T!(T'\H") = T'\G/M.
For T’ Zariski dense, the mixing of mPMS was extended to the frame flow
on I'\G, by [67]. Based on this, the proof given in [56] can be repeated
verbatim to prove the claim (cf. [67]). O

3. ASYMPTOTIC EXPANSION OF MATRIX COEFFICIENTS

3.1. Unitary dual of G. Let G = SO(n,1)° for n > 2 and K a maximal
compact subgroup of G. Denoting by g and £ the Lie algebras of G and K
respectively, let g = € @& p be the corresponding Cartan decomposition of g.
Let A = exp(a) where a is a maximal abelian subspace of p and let M be
the centralizer of A in K.

Define the symmetric bi-linear form (-,-) on g by

1
2(n—1)
where B(X,Y) = Tr(adXadY') denotes the Killing form for g. The reason
for this normalization is so that the Riemannian metric on G/K ~ H"
induced by (-, ) has constant curvature —1.

Let {X;} be a basis for gc over C; put g;; = (X;, X;) and let g”/ be the
(i,7) entry of the inverse matrix of (g;;). The element

C = Z ginin
is called the Casimir element of g¢ (with respect to (-,-)). It is well-known
that this definition is independent of the choice of a basis and that C lies in
the center of the universal enveloping algebra U(gc) of gc.

Denote by G the unitary dual, i.e., the set of equivalence classes of irre-
ducible unitary representations of GG. A representation 7 € G is said to be
tempered if for any K-finite vectors v1,vs of m, the matrix coefficient func-
tion g — (m(g)v1,ve) belongs to L2T¢(G) for any € > 0. We describe the
non-tempered part of G in the next subsection.

(X,Y) = B(X,Y) (3.1)

3.2. Standard representations and complementary series. Let a de-
note the simple relative root for (g,a). The root subspace n of « has di-
mension n — 1 and hence p, the half-sum of all positive roots of (g, a) with
multiplicities, is given by ”5104. Set N = expn. By the Iwasawa decompo-
sition, every element g € G can be written uniquely as g = kan with k& € K,
a € Aandn e N. We write k(g) = k, exp H(g) = a and n(g) = n.

For any g € G and k € K, we let k4(k) = r(gk), and H,(k) = H(gk) so
that

gk = rg(k) exp(Hg(k))n(gk).
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Given a complex valued linear function A on a, we define a G-representation
U* on L*(K) by the prescription: for ¢ € L*(K) and g € G,

UMNg)g = el "2 1) g0 5 - (3.2)

This is called a standard representation of G (cf. [65, Sec. 5.5]). Observe
that the restriction of U* to K coincides with the left regular representation
of K on L*(K): UMk1)f(k) = f(k;'k). If R denotes the right regular rep-
resentation of K on L2(K), then R(m)U*(g) = U*(g)R(m) for all m € M.
In particular each M-invariant subspace of L?(K) for the right translation
action is a G-invariant subspace of U™.

Following [65], for any v € M, we let Q(v)L?*(K) denote the isotypic
R(M) submodule of L?(K) of type v. Choosing a finite dimensional vector
space, say, V on which M acts irreducibly via v, it is shown in [65] that
the v-isotypic space Q(v)L?(K) can be written as a sum of dim(v) copies
of Uy, (\) where

for each m € M,
Up(A) = {f € LAV ¢y = w(m) f(k), for almost all k € K }

If X e (%1 + zR)a then U, () is unitary with respect to the inner product
(f1,f2) = [5(f1(k), f2(k))vdE, and called a unitary principal series repre-
sentation. These representatlons are tempered. A representation U, (\) with
A ¢ (”T_l +iR)« is called a complementary series representation if it is uni-
tarizable. For A\ = ra, we will often omit « for simplicity. For n = 2, the
complementary series representations of G = SO(2,1)° are U;(s — 1) with
1/2 < s < 1; in particular they are all spherical. For n > 3, a representa-
tion v € M is specified by its highest weight, which can be regarded as a
sequence of "Tfl integers with ji > jo > -+ > [jn—1)/2| if n is odd, and as
a sequence of ”Tﬁ integers with j1 > j2 > -++ > jp_2)/2 = 0 if n is even.
In both cases, let £ = £(v) be the largest index such that j, # 0 and put
{(v) = 0 if v is the trivial representation. Then the complementary series
representations are precisely Uy, (s —n +1), s € I, := (%5, (n — 1) — £), u
to equivalence.

In particular, the spherical complementary series representations are ex-
hausted by {U1(s—n+1): (n—1)/2<s<n-—1}.

The complementary representation U, (A) contains the minimal K-type,
say, o, with multiplicity one.

The classification of G says that if 7 € G is non-trivial and non-tempered,
then 7 is (equivalent to) the unique irreducible subquotient of the comple-
mentary series representation U, (s —n + 1), s € I,,, containing the K-type
0y, which we will denote by U (v, s —n+1). This classification was obtained
by Hirai [26]; see also [30, Prop. 49 and 50]) and [3].

Note that U(v,s — n + 1) is spherical if and only if U,(s —n + 1) is
spherical if and only if v = 1. For convenience, we will call U(v,s —n + 1)
a complementary series representation of parameter (v, s).
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Observe that the non-spherical complementary series representations exist
only when n > 4. For "T_l <s<n-—1, wewill set Hs :=U(1l,s —n+ 1),
i.e., the spherical complementary series representations of parameter s. Our
normalization of the Casimir element C is so that C acts on H, as the scalar
s(s—n+1).

In order to study the matrix coefficients of complementary series repre-
sentations, we work with the standard representations, which we first relate

with Eisenstein integrals.

3.3. Generalized spherical functions and Eisenstein integrals. Fix a
complex valued linear function X on a, and the standard representation U?.
By the Peter-Weyl theorem, we may decompose the left-regular representa-
tion V = L*(K) as V = &__; V5, where V, = L?(K; o) denotes the isotypic
K-submodule of type o, and V,, ~ d, - 0 where d, denotes the dimension of
0.
Set Qg = 1 +wg = 1 — Y X2 where {X;} is an orthonormal basis of
tc. It belongs to the center of the universal enveloping algebra of ¢c. By
Schur’s lemma, Qg acts on V, by a scalar, say, ¢(o). Since Qi acts as a
skew-adjoint operator, c¢(o) is real. Moreover ¢(o) > 1, see [65, p. 261], and
Q%] = c(o)¥||v|| for any smooth vector v € V. Furthermore it is shown
in [65, Lemma 4.4.2.3] that if ¢ is large enough, then

> d2c(o)f < o0 (3.3)

oek

For o € K and k € K define
Yo (k) = do - Tr(or ()

where Tr is the trace operator.

For any continuous representation W of K, and o € K, the projection
operator from W to the o-isotypic space W (o) is given as follows:

P, = /K Ko (K)W ().

For v € M, we write v C o if v occurs in oy, and we write v C o N T
if v occurs both in o[y and 7|y, We remark that for o € K, given v € M
occurs at most once in oy ([15]; [65, p.41]). For v C o, we denote by P,
the projection operator from V, to the v-isotypic subspace V,(v) ~ d, - v
so that any w € V, can be written as w = ) - P, (w). By the theory of
representations of compact Lie groups, we have for any f € L*(K;0) we

have
(f,Xo) = [f(e).
In the rest of this subsection, we fix o,7 € K. Define an M-module
homomorphism Ty : V, — V; by

To(w) = Z (Pu(w), Pu(Xo))Pu(Xr)-

vCoNnt
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Set E := Homc¢(V,,V;). Then E is a (7, 0)-double representation space,
a left 7 and right o-module. We put

Ey:={T € E:7(m)T =To(m) for all m € M}.
Denote by U2 and U the representations of K obtained by restricting U?*|
to the subspace V, and V; respectively. Define T\ € E by
Ty = / U (m) ToU (m Y dm
M

where dm denotes the probability Haar measure of M. It is easy to check
that T € Eyy.

An integral of the form [, UM (k(ak))TANUX (k1) erH (@) gk is called an
Eisenstein integral.

Clearly, the matrix coefficients of the representation U* are understood
if we understand P,U*(a)P, for all 7,0 € K, which can be proved to be an
Eisenstein integral:

Theorem 3.4. For any a € A, we have

P, UNa)P, = / U (k(ak))T\UN (k)X H(@k) g
K

Proof. For e € K and ¢ € L2(K;e), we write UMk )¢ = Y vce Pk, that
is, ¢r.o = Pu(UMEk™1)¢). In particular, ¢(k) = Y vce Pkw(e) and

B (€) = (Drws Xo) = (U (K1), Pu(Xe))-
Let ¢ € V, and ¢ € V.. For any g € G, we have

(U (s(gk)TOUX (Ko, by = > (UXE1)), Pu(Xo)) (Pu(Xr), U (k(gk)) ')

vCoNT

= > trw(@)Wu(gryo(e): (3.5)

vCoNT
On the other hand, we have

<U)\(a’)907¢> :/ @(/‘&((Zilk)mef()“FQP)H(a_lk)dk
K
= / (k) Dlr(ak)) N @) g
K

= [ (3 oral (S bl ) Tk, (36)

vCo vCT

We now claim that; if v1 # v9, then

/ Ch01 (€)Un(ak) vp (€)M @) gk = 0
K

To see this, first note that M and a commute, and hence H(amk) = H(ak),
and k(amk) = mr(ak). We also note that

Pk, € Vo‘(vl)v and ¢n(ak),v2 € VT(UQ)'
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Now if v1 # v, then by Schur’s orthogonality of matrix coefficients,

/M Phon (MY ar)y g (=), =

/M<U§<m>sok,m,Pm (o)) O ()0 s P (02 b = 0

we get

/‘pk7v1(e)¢,§(¢m)m(€)e>‘(H(ak))dk

K

:/ (/ 90mk,v1(G)W@(H(“mk))dm)dk
M\K JM

_ / eA(H(ak))(/ Pk (mil)wﬁ(ak),vg (m_l)dm)dk =0,
M\K M
implying the claim.
Therefore, it follows from (3.5) and (3.6) that for any ¢ € V, and ¢ € V,
(P-UN@)Pop, ¥) = (UM (a)p, ¥)

/ Z (ka ¢n (gk), ( ) AH( ak))dk

vCoNT

- /K (U ((ak) ToU2 (kL )ip, ) X g

- /K (U ((ak) TAU (V) p, ) H @D g

we have used k(akm) = k(ak)m and H(akm) = H(ak) for the last equality.
It follows that

PTUA(a)sz/ U (s(ak))TAUX (k=) H @) g
K

O

For the special case of 7 = o, this theorem was proved by Harish-Chandra

(see [66, Thm. 6.2.2.4]), where Ty was taken to be Tp(w) = (w, Xo )Xo and
T = [, U (m)ToU2 (m™Y)dm.

Lemma 3.7. For any X\ € C,
252
HT)\H < dU ’ dT
where || Ty|| denotes the operator norm of Ty.

Proof. Since ||x.|| < d2 for any v € M,

ITl*< Y Ixl?< ) d)

vCoNt vCoNT
<L @ () iz
vCo vCT

Since [|Tx[ < [Toll - [lo]l - [I7]] = 7ol the claim follows. O
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3.4. Harish-Chandra’s expansion of Eisenstein integrals. Fix 0,7 €
K. Let E and Fjs to be as in the previous subsection.
Given T € Ey, v € C, and a; € AT, we investigate an Eisenstein integral:

/T(m(atk))Timpg(k—l)e(im—/))(H(atk))dk_
K

We recall the following fundamental result of Harish-Chandra:

Theorem 3.8. (Cf. [66, Theorem 9.1.5.1]) There exists a subset Oy of C,
whose complement is a locally finite set, such that for anyr € Oy there exist
uniquely determined functions c4(r),c_(r) € Homc(En, Ear) such that for
all T € Eyy,

play) /K T(k(agk))To (k1 )elra=rIH(ack) g,
=®(r:ay)er (r)T + O(—r:ap)e_(r)T

where @ is a function on Oy x A" taking values in Home (En, Enr), defined
as in (3.12).

Let us note that, fixing T and a;, the Eisenstein integral on the left hand
side of the above is an entire function of r; see [66, Section 9.1.5].

Much of the difficulties lie in the fact that the above formula holds only for
Os,+ but not for the entire complex plane, as we have no knowledge of which
complementary series representations appear in L?(T'\G). We need to un-
derstand the Eisenstein integral [, 7(k(atk))Tsa—2p0 (k™ 1)elsa=20)H ark) g,
for every s € (%,n —1). We won'’t be able to have as precise as a for-
mula as Theorem 3.8 but will be able to determine a main term with an
exponential error term.

We begin by discussing the definition and properties of the functions ®
and c4.

3.4.1. The function ®. As in [66, page 287], we will recursively define ratio-
nal functions {I'y : £ € Z>¢} which are holomorphic except at a locally finite
subset, say S, . The subset O - in Theorem 3.8 is indeed C —U,¢s, , {£r}.

More precisely, let [ be the Lie algebra of the Cartan subalgebra (=the
centralizer of A). Let H, € [¢ be such that B(H, H,) = a(H) for all H € I¢.

Let X4, € g(jcw‘ be chosen so that [X,,X_,] = H, and [H,X,] =
a(H)X,. In particular, B(X,, X_o) = 1. Write X414 = Yig + Z1, where
Yio € tc and Z4, € pc-

Letting s denote the Casimir element of M, given S € Home(Ens, Enr),
we define f(S) by

f(ST = STo(Qyy), for all T € Eyy.

We now define Ty := ['y(ir — 251)’s in Q(ac) ® Homg(En, Ear) by the
following recursive relation (see [66, p. 286] for the def. of Q(ac)): I'p = I
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and

{0@2ir —n+1) = £(t —n+1) = f}Te =Y ((2ir—n+1)—2(£—25))Te;
i>1
+8 Z(2j—1)T(Ya)U(Y—a)FZ—(2j—1)_8 Z] {T(YaY_a) + 0(YaY_0)} De—gj.

j=21 j=1

The set O, consists of r’s such that {¢(2ir —n+1) —¢({—n+1)— f}
is invertible so that the recursive definition of the I'/’s is meaningful.

Lemma 3.9. Fiz any to > 0 and a compact subset w C Oy . There exist
by, (depending only on ty and w) and Ny > 1 (independent of o, 7 € K ) such
that for any r € w and £ € N,

ITeir — 250 < budlodoets.

Proof. Our proof uses an idea of the proof of [66, Lemmas 9.1.4.3-4]. For

s =1ir — "T_l, and T € Homc (E)yy, Epr), define

A(T) = (-2 +L(2s—n+1)— f)T.

For g, and ¢, which are respectively the highest weights for o and 7, since
qs < d, with implied constant independent of o € K,

max{[|7(Ya)o (Y_o) |, [T(YaY=a)[, o (YaY-0a)|}
<cp- (QUQT + q(27 + qz)dadT < C6d§d?—

for some ¢y, ¢, > 0 independent of ¢ and 7. Hence for some ¢; = ¢;(w), for
all r € w,

ITe(ir = 2501 < £ A - exdidd Y IITeyll (3.10)

j<t
Let Ni be an integer such that ¢2 - [[A; "] - (1 — e7%)~teyd3d3 < Ny for
all £ > 1. Since ||A,!|| < ¢72 as ¢ — oo and the coefficients of f depend

only on the eigenvalues of 2y, for those v € M contained in o, we can take
Ny = Nj(w) so that Ny < c2d2dY2 for some Ny > 1 and ¢z = ca(w) > 1
(independent of o and 7).

Set

, NI
M(to,w) =, max[|[Te(ir = 254) e,

By (3.10) together with the observation that both N; = Nj(w) and
maxy< n, HAZ1 || are bounded by a polynomial in d,, and d, we have M (tg,w) <
bwdéVOdiv‘) for some Ny > 1 and b, > 0.

We shall now show by induction that for all » € w and for all £ > 1,

ITe(ir — 255)|| < M(to,w)e™. (3.11)
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First note that (3.11) holds for all £ < N; by the definition of M (¢g,w). Now
for any N1 > N, suppose (3.11) holds for each ¢ < N. Then

I (ir — 251 < NTHNP (AR lerdid?) Y Ty (ir — 51|

j<N
< NTIN{(1—e7™)M(tg,w) Y elN )Mo
J<N
< M (tg,w)e"™,
finishing the proof. (]
Following Warner (Cf. [66, Theorem 9.1.4.1]), we define
O(r:ag) = et ZI‘g(ir — ”T_l)e_& (3.12)

>0

which converges for all large enough ¢ by Lemma 3.9.

3.4.2. The function cy. Let N~ = exp(n~) be the root subspace corre-
sponding to —«, and dy- denote a Haar measure on N~ normalized so that
In- e 2PtHM) g (n) = 1.

The following is due to Harish-Chandra; see [66, Thm. 9.1.6.1].

Theorem 3.13. For r € Oy, with I(r) < 0, cy(r) is holomorphic and
given by
c+(r)T:/ To(r(n)™ e tratn)Hm) g (n).

The integral [y, e~ (re+PHM gy (n) is absolutely convergent iff J(r) <
0, shown by Gindikin and Karperlevic ([66, Coro.9.1.6.5]).

Corollary 3.14. For any r € Oy, with I(r) < 0, the operator norm
|4 (r)|| is bounded above by [y eSMa=p)Hn) g (n).

Proof. Since the operator norm ||o(k)|| is 1 for any k € K, the claim is
immediate from Theorem 3.13. U

Proposition 3.15. Fiz a compact subset w contained in Oy N{S(r) < 0}.
There exist dy = di(w) and Ny > 1 such that for any r € w, we have

Hci(T)Tiirapr <dj - d7]_\[2d£,\[2.

Proof. By the assumption on w, the integral [y _ e~ (RGmatp)H(n) g (n)
converges uniformly for all 7 € w. Hence the bound for c(7)Tirq—, fol-
lows from Corollary 3.14 together with Lemma 3.7. To get a bound for
c—(r)T—ira—p, we recall that

n—1

(Tt )t/ T(/@(atk))Ta(k:_l)e(im_p)(H(“tk))dk
K

=e O (r s ap)ey (T + e "O(—r : ar)e— (r)T.
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Then e ™ ®(—r : ay) = I[+>_ o4 Fg(—ir—%_l)e_gt, and applying Lemma 3.9
with tg = 1, we get ;

3 ITe(—ir — 251 < bud20ao 370,
>1 >1
Fix to > 0 so that b,d)Y0dN 37, , e/!=0) < 1/2; then tg > log(dyd,). Now
A, = e To®(—r : ay) is invertible and for some Ny and b/,
AT < b (3.16)

Since the map k +— H (a,k) is continuous, we have [, |e(re—r)(Hawk)|qk <
d,, for all r € w, and hence

le— (1) Tira—pl|
., n—1 )
< AFY| - [l ) / T(K(at k) Tira—po (k~1)elraP) H @nh) gy
K
AT e 0@ (r = agy)es (1) Tira—pll
<47 - du (%? |7 (k(atok)) Tira—po (k™1 + HC+(r)Tm_p||) _

Hence the claim on ||c_(r)Tirq—p|| now follows from (3.16), Lemma 3.7 and
the bound for ||c4 () Tira—p|- O

3.5. Asymptotic expansion of the matrix coefficients of the com-
plementary series. Fix a parameter (n —1)/2 < so < (n — 1), and recall
that 2p = (n — 1)a. We apply the results of the previous subsections to the
standard representation U(so—nt1e — frsoa—2p,

The following theorem is a key ingredient of the proof of Theorem 3.30.

Theorem 3.17. There exist ng > 0 and N > 1 such that for any o, 7 € K,
for allt > 2, we have

PTU(SO_n+1)a(at)PG = e(so—n+1)tc+ (rso)T(So_n+1)a+0(déV'd7]_\f€(80—n+1—770)t)’
with the implied constant independent of o, T.

Proof. Set rs := —i(s — p) € C, for all s € C. In particular, J(rs) < 0 for
n—1)/2<s<(n—1).
Fix ¢t > 0, and define F; : C — Ej; by

Fi(s) := P.U P (a)P,.
By Theorem 3.4,

Fy(s) = / 7(k(atk)) Tsq—2p0 (k™) els0m 20 Hlatk) g
K

As was remarked following Theorem 3.8, for each fixed ¢ > 0, the function
F,(s) is analytic on C. Thus in view of Theorem 3.13, we have, whenever
rs € Opr and J(rs) <0,

Fy(s) — el te (1r4)Toq—2, is analytic. (3.18)
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Recall the notation S, -, that is, Oy r = C — U,¢s, , {£r}, and set 5’077 =
{s:ry € S5 }. Define

Gi(s) = Fy(s) — e e, (1) T,

Indeed the map s — Gi(s) is analytic on {s : S(r;) < 0} — Se.r. Since

U, + S, . is countable, we may choose a small circle ' of radlus at

o'\ r'ek
most 1/2 centered at so such that {ry;:s € w'} N ( o ek £ Sor T) = 0.

Observe that the intersection of w’ and the real axis is contained in the
interval ((n — 1)/2,n — 1). Note that there exists 7 > 0 such that for all
seuw,

(n—1)—so+n<R(s) <sp+1-—n. (3.19)

Then G¢(s) is analytic on the disc bounded by w’. Hence by the maximum
principle, we get

|G (s0)|| < max |Gy (s)]]- (3.20)
sew

Since w = {rs : s € W'} C Oy, Theorems 3.4 and 3.8 imply that for all
s € W', we have

Gy(s) = N " e Ty (irg — 252 Yoy (ro) Tea—2p)
>1

T e T yp(—irs — 5 e (re) Tea—2,).
>0

Fixing any tg > 0, by Lemma 3.9, there exists by = by(tp,w) > 0 such
that for all r € w,

o(ir — 52| < by - . . elto. ‘
T n21 b dé\/'o di}fo lto 391
By Proposition 3.15, for all r € w,

les () Toirarpl < dy - d2 - d.

Let t > tg + 1 so that ), e~(l=1) < 2. Then we have for any ¢t > 0
and s € W/,

IS et iy — 25Y)c, (rs) Tonapl
>1
< ,déVo—&-deiVo-i-Nz, S tet°Z€ (t—to)
>0

< (2€t0 b - d{‘\fo-&-Nz -d,]rVO+N2) et

and

1Y " e To(—irs — %51 e (1) Toaapl| < 2bg - dYo N2 - gNotN2 - (3.92)
>0
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We now combine these and the expression for Gy(s), for s € w’ and get for
all t > to + 1,
1G(s0)l
< Qbo(eto + 1)déVO+N2 ~d7].\7°+N2 _maX(e(%(s)fn)t + 679%(3)75)
sew’

<. d(],VO+N2 ,d71_\70+N26(50—("—1)—77)t

where 17 > 0 is as in (3.19) and & > 0 is a constant independent of 0,7 € K.
Since P.UG 4D (q)P, = elom+ Dl (1, VT (5 _pi1ya + Gi(so), this
finishes the proof. O

By Theorem 3.4, Theorem 3.17 implies:

Theorem 3.23. Let (n —1)/2 < so < (n —1). There exist no > 0 and
N > 1 such that for all t > 2 and for any unit vectors v, € V; and v, € V,,

(U0 (@) (vg), vy )
= e(So*nJrl)t(C_i_ (T‘SO)T(SO,nJrl)a(’UU), ’UT> + O(djavdjlrve(so*nJrl*T]O)t)’
with the implied constant independent of o, T,vy, v;.

3.6. Decay of matrix coefficients for L?(I'\G). Let I' < G be a torsion-
free geometrically finite group with § > (n — 1)/2.

By Lax-Phillips [40], Patterson [54] and Sullivan [62], U(1,d—n+1) occurs
as a subrepresentation of L?(I'\G) with multiplicity one, and L?(I'\G) does
not weakly contain any spherical complementary series U(1,s — n + 1) of
parameter s strictly bigger than . In particular, § is the maximum s such
that U(1,s —n + 1) is weakly contained in L?(I'\G).

The following proposition then follows from [60, Prop. 3.5] and Theorem
3.23:

Proposition 3.24. L?(I'\G) does not weakly contain any complementary
series U(v,s —n+ 1) withv € M and s > 6.

Definition 3.25 (Spectral Gap). We say L?>(I'\G) has a spectral gap if the
following two conditions hold:

(1) there exists ng > 1 such that the multiplicity of any complementary
series U(v, 6 —n—+1) of parameter § occurring in L*(T\G) is at most
dim(v)™ for all v € M;

(2) there exists (n —1)/2 < sp < § such that no complementary series
with parameter so < s < 0 is weakly contained in L*(T\G).

We set ng(I') and so(T") to be the infima of all ng and of all sy satisfy-
ing (1) and (2) respectively. The pair (no(T'), so(I")) will be referred as the
spectral gap data for T'.

In other words, the spectral gap property of L?(I'\G) is equivalent to the
following decomposition:

L*T\G) =Hlow (3.26)
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where ’H:g = @,epm()UW,0 —n + 1) with m(v) < dim(v)™, and no
complementary series representation with parameter so(I') < s < § is weakly
contained in W.

We recall the strong spectral gap property from Def. 1.1.

Theorem 3.27. Suppose that 6 > (n —1)/2 for n =2,3 or that § > n —2
forn > 4. Then L?>(I'\G) has a strong spectral gap property.

Proof. By the the classification of the unitary dual G explained in the sub-
section 3.2, any non-spherical complementary series representation is of the
form U(v,s —n + 1) for some v € M — {1} and s € (%, n — 2) (see [26]
and [30]). Together with the aforementioned work of Lax-Phillips on the
spherical complementary series representations occurring in L?(I'\G), this
implies the claim. O

For U € C*(I'\G), ¢ € N and 1 < p < oo, we consider the following
Sobolev norm:

Spe(¥) = XD, (3.28)

where the sum is taken over all monomials X in a fixed basis B of g of order
at most £ and || X (W)||, denotes the LP(I'\G)-norm of X (¥). Since we will
be using Sy most often, we will set Sy = So 4.

For a unitary G-representation space W and a smooth vector w € W,
Sy(w) is defined similarly: Sy(w) = Y || X.wl||2 where the sum is taken over
all monomials X in B of order at most ¢.

Proposition 3.29. Fiz (n —1)/2 < so < (n—1). Let W be a unitary
representation of G which does not weakly contain any complementary series
representation U(v, s — n + 1) with parameter s > sy and v € M. Then for
any € > 0, there exists c. > 0 such that for any smooth vectors wi,wy € W
and for any t > 0, we have

‘<atw17 w2>| < Ce- SKO (w]_) . 860 (U}2) . e(so_n+1+e)t

where £y > 1 depends only on G and K.

Proof. This proposition is proved in [35, Proof of Prop. 5.3] for n = 3 (based
on an earlier idea of [60]), and its proof easily extends to a generaln > 2. O

In the following two theorems, we assume that I' is Zariski dense in G and
that L?(T'\G) has a spectral gap with the spectral gap data (so(T'),n0(T)).

Theorem 3.30. There exist n > 0 (depending only on so(I')), and ¢ € N

(depending only on ng(T')) such that for any real-valued functions W1, ¥y €
C*(I'"\G) as t — 400,

mBR(\Ill) . mBR= (\Ilg)

(10 (g Ty W) = BV

+ O(e_nth(\Ifl)Sg(\Ilg)).
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Proof. As in (3.26), we write
LXT\G) =Hlow

where H(Ts = D eymV)U(v, (0 — n + 1)a) with m(v) < dim(v)™{™) and
no complementary series representation with parameter so(I') < s is weakly
contained in W. For simplicity, set sg := so(I') and ng := no(T). we set
V =} and VI = W. Given U}, Uy € CX(T\G), we write ¥; = U/ + UL,
where ¥, and \I/Zl are the projections of ¥; to Hg and W respectively. Then
by Proposition 3.29, there exist £3 > 1 such that for any € > 0,

(0 U7, U3 ) = O(Sp, (01)S, (Wg)elonH1+0), (3.31)

If 6 = n — 1 and hence if ”HTS = C, it is easy to see that (3.31) finishes the
proof. Now suppose § < n — 1.

For each v € M, the K-representation Uy,(d — n + 1)|x is isomorphic to
the induced representation Ind4;(v) and hence by the Frobenius reciprocity,
the multiplicity of o in U, (s — n + 1)|k is equal to the multiplicity of v in
o|ar, which is denoted by [0 : v]. Therefore as a K-module,

Uv,d —n+1)|g = @aef{mU(U)U
where my (o) < [0 : v].
As a K-module, we write
Hi =@, ym)Uv, (6 —n+ 1)a)
= @veMm(U) (@GGKmU(U)U)
=@, cpgm(o)o
where m(0) < 3, e m()[o : v]. Note that m(o) < diot! for ng =
ng(I‘). .
For each 0 € K, let ©, be an orthonormal basis in the K-isotypic com-
ponent, say, V,, of ”H:g, which is formed by taking the union of orthonormal
bases of each irreducible component of V,. Then #0, < d?0+2,

By Theorem 3.23 and our discussion in section 3.2, there exist no > 0 and
N € N such that for any v, € O, and v, € O, we have for all £ > 1,

(a40g, v7) == c(vg, v7)e0 ™I L O dN eO—nH1=m0)t) (3.32)

where c(vy, v7r) = (¢4 (75)T(5—n+1)aVo, Vr)-
As Ul = Zaek > voco, (¥i,Vs)Vs, we have for each ¢ € R,

(@, ) = Y > (W) (T, vr) - (@, vr)

O',Tek Vo E@a— U EGT

where the convergence follows from the Cauchy-Schwartz inequality.
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Therefore, by (3.32),
<at\11/15 \I]/2>

= Z Z (qjl7va>mc(vo_7v7_) 6(§—n+1)t

U,TEK UoE@n,UTG@T

+ > S dYdN (U, ve) (Ug, v,) OO,

0776K Vo €O,v- €O

Set

E(Wy,y) = Z Z (U1, v5) (Y2, v7)c(Ve, vr)

oreK Vo€O, v €O,
By (3.3), there exists £ > £y (depending only on ng) such that
> aytrot2gNtnot2e(g) ()7t < oo (3.33)
orek
where ¢(o) is as in (3.3). Since for any unit vector v € V,
(@, )] < o) “Su(W),
we now deduce that
(@, W), Wh) = E(Ty, Wp)eP T OIS, (1) Sy (W5)).
Hence, together with (3.31), it implies that there exists n > 0 such that
(W1, Wa) = E(Ty, Up)e® "D 1 OO HI=MES, (1) S, (D).
On the other hand, by Theorem 2.2,

BR BR
. 18y _omP (W) - mP (Ug)
1thm (™ ) (W, W) = [ BVIS|

It follows that the infinite sum £(¥;, ¥2) converges and

mBR(\Ill) X mBR* (\1,2)
|mBMS’

E(V, V) =

This finishes the proof. O

As (a4 W1, V9) = (a4 ¥o, ¥1) for ¥,;’s real-valued, we deduce the following
from Theorem 3.30:

Corollary 3.34. There exist n > 0 and £ € N such that, as t — 400,

mBR* (\Ijl) . mBR(\Ifg)
‘mBMS’

(MOt Ty Ty) = +O0(e7 'Sy (01)S8¢(T2)).
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4. NON-WANDERING COMPONENT OF I'\I'Ha; AS t — o0

4.1. Basic setup. Let H be either a symmetric subgroup or a horospherical
subgroup of G. For the rest of the paper, we will set K, M, A = {a,} in each
case as follows. If H is symmetric, that is, H is equal to the group of o-fixed
points for some involution o of G, up to conjugation and commensurability,
H is SO(k,1)xSO(n—k) for some 1 < k < n—1. Let 0 be a Cartan involution
of G which commutes with o and set K to be the maximal compact subgroup
fixed by 0. Let G = K expp be the Cartan decomposition and write g as a
direct sum of do eigenspaces: g = b @ q where b is the Lie algebra of H and
q is the —1 eigenspace for do. Let a C pNq be a maximal abelian subspace
and set A = expa = {a; = exp(tYp) : t € R} where Yj is a norm one
element in a with respect to the Riemannian metric induced by (,) defined
in (3.1). Let M be the centralizer of A in K.

If H is a horospherical subgroup of G, we let A = {a;} be a one-parameter
subgroup of diagonalizable elements so that H is the expanding horospher-
ical subgroup for a;. Letting M be the maximal compact subgroup in the
centralizer of A, we may assume that the right translation action of a; cor-
responds to the geodesic flow on T*(H") = G/M. Let K be the stabilizer
of the base point of the vector in T*(H") corresponding to M.

In both cases, let 0 € H" and Xy € T(H") be points stabilized by K
and M respectively. Let NT and N~ be the expanding and contracting
horospherical subgroups of G with respect to a;, respectively.

4.2. Measures on gH constructed from conformal densities. Set
P := M AN, which is the stabilizer of Xgr. Via the visual map g — g™, we
have G/P ~ 9(H"). Since G/P ~ K/M, we may consider the visual map
as a map from G to K/M. In both cases, the restriction of the visual map
to H induces a diffeomorphism from H/H N M to its image inside K /M.

Letting {p, : * € G/K} be a I'-invariant conformal density of dimension
d,, we will define an HNM-invariant measure figr on each g € G/H. Setting
H = H/(H N M), first consider the measure on gH:

dfigr(gh) = P+ @M ap, (gh)™).

We denote by iy the H N M-invariant extension of this measure on gH,
that is, for f € C.(gH),

/ F(gh) dftgr(gh) = / i /H  Hahm)dioas(m)diiga ()

where dpnps(m) is the probability Haar measure on H N M.

By the I'-invariant conformality of {p, }, this definition is independent of
o € H" and [igy is invariant under I' and hence if I'\I'gH is closed, figr
induces a locally finite Borel measure piyg on I'\I'gH.

Recall the Lebesgue density {m} of dimension n — 1 and the Patterson-
Sullivan density {v;} of dimension §. We normalize them so that |m,| =
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Vo] = 1. We set

figi™ =g and  figy = Ugm,
and for a closed orbit I'\I'gH , we denote by ugﬁar and ,ugff the measures on

IMT'gH induced by them respectively.

Lemma 4.1. For each g € G, dﬂngIar(gh) = dji¥aar (h) and dh = dji}*@r ()
1s a Haar measure on H.

Proof. As m, is G-invariant, we have
dmo((gh)*) = dmg-1(g) (W+) = €0 057 O, (1),
Since
Br+ (0,971 (0)) + Bigny+ (0, gh) = Bp+ (0,9~ (0)) + B+ (97 (0), h) = By (0, h),

we have
dﬂglgar(gh) — e(nfl)ﬁ(gh)-&-(O,gh)dﬂo((gh)+) — e(nfl)ﬁ}ﬁ (O,h)duo(h+) — dﬂ%aar(h)

proving the first claim. The first claim shows that dfig is left H-invariant.
Since dgnps is an HNM-invariant measure, the product measure dji H(hm)H%Lr =
dii(h)dgna(m) is a Haar measure of H. O

4.3. Let I' be a torsion-free, non-elementary, geometrically finite subgroup
of G. For any given compact subset 2 of I'\G, the goal of the rest of this
section is to describe the set

{h € T\I'H : ha; € Q for some ¢t > 0}.

For H horospherical, this turns out to be a compact subset. For H symmet-
ric, we will obtain a thick-thin decomposition, and give estimates of the size
of thin parts with respect to the measures 5> and pt*® (Theorem 4.16).

An element v € T is called parabolic if there exists a unique fixed point
of v in (H"™), and an element ¢ € A(T") is called a parabolic fixed point if
it is fixed by a parabolic element of I'. Let A,(I") C A(T") denote the set of
all parabolic fixed points of I'. Since I' is geometrically finite, each parabolic
fixed point £ is bounded, i.e., Stabr(§) acts co-compactly on A(I") — {¢}.
Recall the notation g+ = g(Xo)" and g~ = g(Xo) .

Consider the upper half space model for H": H" = {(z,y) : x € R*" !,y €
Rso}. We set R? = {(z,y) : # € R" Ly € Ry}, so that I(R?) =
{(z,0) : x € R*1}. Suppose that oo is a parabolic fixed point for T\
Set I's := Stabp(co) and let IV(oo) be a normal abelian subgroup of I's
which is of finite index; this exists by a theorem of Biberbach. Let L be a
minimal T'oo-invariant subspace in R*~!. By Prop. 2.2.6 in [10], I'(c0) acts
as translations and cocompactly on L. We note that L may not be unique,
but any two such are Euclidean-parallel.

The notation dgy. and || - || denote the Euclidean distance and the Eu-
clidean norm in R™ respectively. Following Bowditch [10], we write for each
7> 0:

C(L,r) :={z e RL UIRY) : deuc(z, L) > r}. (4.2)
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Each C(L,r) is I's-invariant and called a standard parabolic region (or
an extended horoball) associated to £ = cc.

Theorem 4.3. [10, Prop. 4.4] For any €y > 0, there exists ro > 0 such that
for any r > ro,

(1) vC(L,7) = C(L,7) if v € T';

(2) if y €T — T, dpuc(C(L,r),vC(L, 7)) > €.

Corollary 4.4. Suppose that oo is a bounded parabolic fixed point for T.
Then for any sufficiently large r, the natural projection map

Lo\ (C(L,7) NH™) — T\H"
18 injective and proper.

Proof. We fix ¢y > 0, and let 79 > 0 be as in the above theorem 4.3. Let r >
ro, and set Coo = C(L,r) NH" for simplicity. The injectivity is immediate
from Theorem 4.3(2). Since Cy is closed in H", so is yCy for all v € T.
Hence to prove the properness of the map, it is sufficient to show that
if F'is a compact subset of H", then F intersects at most finitely many
distinct 7Coo’s. Now suppose there exists an infinite sequence {~; € I'} such
that 7,Ts’s are all distinct from each other and F N ~;Cy # (. Choosing
yi € FN7;Co, by Theorem 4.3(2), we have d(y;, y;) > € for all i # j, which
contradicts the assumption that F' is compact. O

4.4. H horospherical.

Theorem 4.5. Let H = N be a horospherical subgroup. Suppose that
IN\I'NM is closed in T'\G. For any compact subset Q of T'\G, the set
D\I'NM N QA is relatively compact.

Proof. We may assume without loss of generality that the horosphere NK /K
in G/K ~ H" is based at co. Note that I'sc C NM and that the closedness
of I\I'N M implies that I's\oc\NM — T'\G is a proper map.

Therefore, if the claim does not hold, there exists a sequence n; € NM
which is unbounded modulo I' such that y;n;a;, — = for some ¢; € R,
v €Iand z € G.

It follows that, passing to a subsequence, n;a¢, (0) — oo and d(n;ae,, y; ) =
0 as i — oo. Therefore v; 'x(0) — oo and hence oo € A(T).

Since the image of the horosphere N (o) in I'\H" = I'\G/K is closed, it
follows that oo is a bounded parabolic fixed point for I' by [13]. Therefore
I'es acts co-compactly on an r neighborhood of a minimal I'o-invariant
subspace L in O(H") — {oo} = R"! for some r > 0. Write n;ay,(0) =
(xi,9:) € R"1 x Rog. Since {n;} is unbounded modulo T',, after passing
to a subsequence if necessary, we have dgyc(z;, L) — oo. It follows that for
any r, (x;,y;) € C(L,r) for all large i. Since n; is unbounded modulo T',
we get n;a;;, = (x;,y;) is unbounded in I'no\C(L, 7). Thus by Corollary 4.4,
n;a;; must be unbounded modulo I', which is a contradiction. O
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4.5. H symmetric. We now consider the case when H is symmetric. Then
H(o) = H/H N K is a totally geodesic submanifold in G(0) = G/K = H".
We denote by 7 the canonical projection from G to G/K = H". We set
S = H(o).

Fixing a compact subset Q of I'\G, define

Hq :={h € H :T\T'ha; € ) for some t > 0}
and set Sq = Hq(0).
Lemma 4.6. Let £ € 9(S). If € ¢ A(T), then there exists a neighborhood U

of € in H™ such that U N Sq = 0.

Proof. Let g be a compact subset of G such that Q = I'\I'Qg. If the claim
does not hold, then there exist h, € H, v, € I' and ¢, > 0 such that
Ynhnae, € Qo and hy,(0) — £. Note that {h,ai(0) : t > 0} denotes the (half)
geodesic emanating from 7(h,,) and orthogonal to S. Since h,,(0) converges
to & € OH", it follows that hpay, (0) — &.

Now since )y is compact, by passing to a subsequence in necessary,
we may assume Yyp,hpa;,, — x. As G acts by isometries on H", we get
v H(z(0)) — &. This implies ¢ € A(T') which is a contradiction. O

Fix a Dirichlet domain D for H NI in S and set
Do =DnN SQ (4.7)
Corollary 4.8. Assume that the orbit I'\T'H is closed in I'\G. There exist

a compact subset Yy of D and a finite subset {£1,...Em} C Ay(T) N A(S)
such that

Dq C Yo U (UL, U(&))
where U(&;) is a neighborhood of & in H™. In particular if A,(T) Na(S) =0,
then Dq 1s relatively compact.

Proof. For each & € 8(S) N A(D), let U(£) be a neighborhood of & in H™.
When ¢ ¢ A(T'), we may assume by Lemma 4.6 that U(¢) N Sq = §. By
the compactness of 9(S) N (D), there exists a finite covering Ui U (&;).
Set Yy := D — UiesU (&), which is a compact subset. Now Do — Yy C
User,e;enmU (&) by the choice of U(&;)’s. On the other hand, by [52, Propo-

sition 5.1], we have A(I') 10D C A,(I'). Hence the claim follows. O

In the rest of this subsection, we fix £ € A,(I') N 9(S), and investigate
Dq NU(E). We consider the upper half space model for H" and assume
that £ = oo. In particular, S is a vertical plane. Let I's, I(o0), L and
C(L,r) be as in the subsection 4.3. Without loss of generality, we assume
0 € L. We consider the orthogonal decomposition R*' = L @ L+ and let
Py :R™ ! — L1 denote the orthogonal projection map.

Lemma 4.9. There exists Ry > 0 such that for any h € Hq, we have
[P (W) < Ro.
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Proof. Let Qg be a compact subset of G such that Q = I'\I'QQy. Then by
Corollary 4.4, and part (1) of Theorem 4.3, there exists Rj, > 0 depending
on {2, such that

if z € C(L, R)) NH", then z & ' (4.10)

Suppose now that h € Hgq, thus hat, (o) € I'Qg for some tg > 0. This, in
view of (4.10) and the definition of C(L, Ry,), implies dgyc(hat, (0), L) < Ry,

As discussed above, {ha; : t > 0} is the geodesic ray emanating from h(0)
and orthogonal to S i.e. a Euclidean semicircle orthogonal to the vertical
plane. Hence there exists some absolute constant sy such that

tlim dpuc(hai(0), L) < dgyc(hag, (0), L) + so < R + so,

which implies || P (RT)| < Ro := R}, + so, as we wanted to show. O
For N > 1, set
Un(00) == {z € R? UA(RY) : ||zl|uc > N}. (4.11)

Let A :=T"(c0) N H and let p be the difference of the rank of I''(c0) and
the rank of A. Suppose p > 1. Let v = (71,...,7p) be a p-tuple of elements
of I such that the subgroup generated by v U A has finite index in I, For
k = (ki, - ,kp) € ZP, we write 7¥ = 7{“ -~7§p. The notation |k| means
the maximum norm of (ki,--- , k).

The following gives a description of cuspidal neighborhoods of Dgq:

Theorem 4.12. There exist co > 1 and a compact subset F of R"™ such
that for all large N > 1,

{ht eR"™ 1 he H,n(h) € Do N Uqn(00)} C Ups nAYEF.
Proof. In [52, Prop. 5.8], it is shown that for some ¢ > 1 and a compact
subset F of R"~1,
{ht € A(T') : h € H,w(h) € DN Ugyn(00)} C UpsnAYSF (4.13)

for all large N > 1. However the only property of h™ € A(T") used in this
proof is the fact that suppe g j+ear) [|[Pre(R7)]l < co. Since this property
holds for the set in concern by Lemma 4.9, the proof of Proposition 5.8 of
[52] can be used. O

4.6. Estimates on the size of thin part. For £ € 9(H"), let Un(&) be
defined to be g(Un(00)) where g € G is such that £ = g(oco) and Uy (o00) is
defined as in (4.11).

Proposition 4.14. Let £ € 3(S)NA,(T) and pe := rank(T'¢) —rank(T¢ N H).
For all N > 1, we have
A3 {h e H :mw(h) € Do NUN(E)} < N70HPe;
plaarfh e H . m(h) € Do NUN(E)} < NHHPe
with the implied constants independent of N.
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Proof. The first claim is shown in [52, Proposition 5.2]. Without loss of
generality, we may assume that £ = co. By replacing § by n — 1 and v, by
m, in the proof of [52, Proposition 5.2], we get

/ e("_l)ﬁh“o’h)dmo(hﬂ - |k|—n+1
hteykF

where the notation v, k and F are as in Theorem 4.12 and f(k) < g(k)
means that the ratio of f(k) and g(k) lies in between two bounded constants
independent of k.

Hence by Proposition 4.12,

[l%aar{h € H: F(h) € Do N UN(OO)} < Z |k|—n+1 < N-nHL4Poe
keZproo [k|>N

O

Recall the notion of the parabolic-corank of I' with respect to H, intro-
duced in [52]:

Pb-coranky (I') :=  max _ (rank(I'¢) —rank(I'¢ N H)).

£eA(T)NA(S)
The following is shown in [52, Thm. 1.14]:

Proposition 4.15. We have
e Pb-coranky(T") = 0 if and only if the support of ME[S s compact;
e Pb-coranky(I") < § if and only if ,LLEIS 18 finite.

It is also shown in [52, Lem. 6.2] that Pb-coranky(I") is bounded above
by n —dim(H/(H N K)). Therefore if H is locally isomorphic to SO(k, 1) x
SO(n — k) and § > n — k, then p£ is finite.

For h € T'\G, we denote by rp, the injectivity radius, that is, the map g —
hg is injective on the set d(g,e) < r,. By Corollary 4.8, (4.13), Proposition
4.14, and by the structure of the support of NE]S obtained in [52], we have
the following:

Theorem 4.16. Suppose that I'\I'H is closed. For any compact subset
Q of T'\G, there exists an open subset Yo C I'\I'H containing the union
supp(ubP)U{h € T\I'H : ha; € Q for some t > 0} and satisfying the follow-
g properties:
(1) if Pb-coranky (I') = 0, Yo is relatively compact;
(2) if Pb-coranky(I") > 1, then the following hold:
(a) Ye:={h € Yo : 1, > €} is relatively compact;
(b) there exist €1, ,&m € Ay(D) N A(S) and ¢; > 0 such that for
all small e >0, Yo — Y, C U2, U, —1(&);
(c) for all small € > 0,

pip (Yo —Yo) < €70 and ™ (Yo — Yo) < "1
for po := Pb-corank (T").
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5. TRANSLATES OF A COMPACT PIECE OF I'\I'H VIA THICKENING

Let I" be a non-elementary geometrically finite subgroup of G. Let H be
either symmetric or horospherical, and let A = {a;}, M, K, N*, o, X be
as in the subsection 4.1.

5.1. Decomposition of measures. Set P := M AN~ , which is the stabi-
lizer of Xar . The measure

dng = & s (O’nO)dmo(nE)

can be seen to be a Haar measure on N~ by a similar argument as in Lemma
4.1. Then for p = ngaym € N~ AM,
dp = dngdtdm

is a right invariant measure on P where dm is the probability Haar measure
of M and dt is the Lebesgue measure on R.
For g € G, consider the measure on gP given by

dvgp(gp) = €dv,((gp)~)dt for t = By -1(0,gp). (5.1)
For ¥ € C.(G), we have:
e () = n)dn dp; .
() /gp /N (gpn)dn dp: (5.2)
PR = / ) /N U (gpn) AR5 (gpm)duyp (9p): (5.3)
ABNS (1) = / ) /N (gpn) diFSy (gpn)dvyp (gp). (5.4)

5.2. Approximations of ¥. We fix a left invariant metric d on G, which
is right H N M-invariant and which descends to the hyperbolic metric on
H" = G/K. For a subset S of G and € > 0, S, denotes the e-neighborhood
ofein S: S ={geS:d(g,e) <e}.

We fix a compact subset © of I'\G. Let r¢ := rq denote the infimum of
the injectivity radius over all z € €. That is, for all x € €, the map g — xg
in injective on the set {g € G : d(g,e) < rqo}.

We fix a function kg € C°(I'\G) such that 0 < kg < 1, ko(z) = 1
for all  in the %-neighborhood of €2 and and rq(x) = 0 for = outside the
ro-neighborhood of (2.

Fix ¥ € C*(Q). For all small € > 0, set

Ut (z) = sup ¥(xg) and V. (z)= inf ¥(zg). (5.5)
g€Ge 9€Ge

For each 0 < e < rq, z € I'\G and g € G, we have
U () < U(zg) < U (x) (5.6)

and
UE () — W(2)] < c16800,1(P)ra(2)
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for some absolute constant ¢; > 0.
For e = Haar, BR, BR, or BMS, we define

% = Saot (W) - m*(supp(1)).
Define for each g € G,
$0(9) = [vg(o)l-
Then ¢¢ is left I'-invariant and right K-invariant, and hence induces a

smooth function in C*°(I'\G)¥ = C°°(H"). Moreover ¢y is an eigenfunction
of the Laplacian with eigenvalue d(n — 1 — ¢) [63].

Lemma 5.7. For a compact subset Q of T'\G,
(1) mPR(Q) < supgeq do(z) - mM* (QK);
(2) mPR(Q) < supgeq ¢o(@) - MM (QK);
(3) mBMS(Q) < sup,cq ¢o(x)? - mM2T (QK).

Proof. The first two claims follow since for any K-invariant function ¢ in
N\G, mBR () = mBR(y) = fF\Gz/J(g)cbo(g)deaar(g). The third one fol-
lows from the smearing argument of Sullivan, see [63, Proof of Prop. 5. O

On the other hand, there exists £ € N such that for all ¥ € C*(),
Soo,1(¥) < S;(¥) [1]. Hence it follows from Lemma 5.7 that there exists
¢ € N such that for all ¥ € C*°(Q), any e = Haar, BR, BR, or BMS, and
any 0 < € < rq,

Y < Soo 1 (V) - m™ (supp(V)) < Se(¥)  and  Sp(TF) < Sy(T) (5.8)

where the implied constants depend only on Q.

5.3. Thickening of a compact piece of yH. For the rest of this section,
fix y € I'\G and Hy C H be a compact subset such that the map h — yh is
injective on Hy. Fix 0 < €9 < rq which is smaller than the injectivity radius
of yHy.

Fix non-negative functions ¥ € C*°(Q) and ¢ € C*°(yHp). Let M' ¢ M
be a smooth cross section for H N M in M and set P’ := M'AN~. As
hp = KW'p' implies h = K'm and p = m~'p’ for m € H N M, it follows that
the product map H x P’ — G is a diffeomorphism onto its image, which is
a Zariski open neighborhood of e. Let dp’ be a smooth measure on P’ such
that dp = dgrprmdp’ for p = mp’. For 0 < € < €, let p. € C°(P!) be a
non-negative function such that [ p.dp’ = 1, and we define ®. € C°(T'\G)
by

(5.9)

B.(g) = ¢(yh)pe(p) if g =yhp € yHoF,
‘ 0 otherwise.

Lemma 5.10. For all0 < e < ey andt > 0,

[ warodg< [ whajewiin < [ e ga)eods.
uve! heHo G
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Proof. For all p € P!, h € Hy and t > 0, yhpa; = yhai(a_ipay) € yha,Pe
and hence

| whenswhin < [ yhpa)suhian
heHy heHg

Integrating against p., we have

/ W(yhar)o(yh)dh

heHy

< / U (yhpar)d(yh)pe(p)dhdp
yhpeyHo P!

— [ wilgenedlo)ds
NG

The other direction is proved similarly. ]

Lemma 5.11. For all 0 < € < €,
mP(D0) = (14 0(€)) iy ().

Proof. Choose g, € G so that y = I'\I'g, and set &(gyh) := ¢(yh) and
D (gyhp) = d(gyh)pe(p) for hp € HoP! and zero otherwise. As 0 < € < €,
we have mPR(®.) = mPR(®,) and ,ugfl((;ﬁ) = ﬂgz(qﬁ) By the definition,
we have

PR (§,) = /

/ &, (gm)dm ePat @9 m=VB=(09) gy, (6F)dmy (g7 )ds
geG/M J M

where s = 3, (0, g). For simplicity, we set g, = y € G by abuse of notation.
For g = yhp € HoP,, as |By+(yh, g)| < d(yh,yhp) = d(e,p) < e, we have
ot W) — 1 4 O(e). Since g+ = (yh)*+, we have

o+ 09 dyy (g7) = (14 0(e))eom* WM dy, (yh) ™) = (1+0(e))dils (yh).
On the other hand, as {m,} is G-invariant,
dmo(g™) = dmyny-1 () (p7) = e OO (7).
Since p~ = ng for p = ngaym, we have

By~ (0,9) + By~ (0, (yh) " (0))

= By ((yh) "' (0),p) + By~ (0, (yh) "} (0))
= Bp-(0,p)

= 8, (0,noar) = By (0.a1) + B, (o.m0)
= —t+ ﬁno— (0,ng).



36 AMIR MOHAMMADI AND HEE OH
As ngagm € P., we have e~ ("Dt =1 4+ O(e) and hence
e V8= (09 g (g7 )dsdm
— o(=1)(B,y(0:9)+8, - (O’(yh)il(o))dmo(pf)dsdm

n—1 _ (o,
= e_("_l)te( g O)dmo(na)dtdm

= e~ (" Dtangdtdm = (1 + O(e))dp.

Since dp = dynn(m)dp’ for p = mp/, for ¢(yh) := meM qz(yhm)deM(m),
we have

AP = 0@ [ [ Sl

= (1+0(6))fiy 1 ().
O

Corollary 5.12. There exists £ € N such that for any ¢ € C*(yHy),
pb8(¢) < Si(¢) where the implied constant depends only on the compact
subset yHy.

Proof. By Lemmas 5.11, 5.7 and (5.8), there exists £ € N such that
Hir (8) < mP (@) < Sel®r) < Si(9)Si(pen) < Si(9).

where the implied constants depending only on ¢y and yHj. O

Theorem 5.13. Suppose that T is Zariski dense in G and that L*(T\G)
has a spectral gap. Then there exist ng > 0 and £ > 1 such that for any
U e C®(Q) and ¢ € C*(yHy), we have

en—1-0)t / W (yhay)p(yh)dh
yheyH

= o M A (6) + ¢ MOS8 (9).

with the implied constant depending on ) and yHy.

Proof. It suffices to prove the claim for ¥ and ¢ non-negative. Let £ > 1 be
bigger than those ¢’s in Theorem 3.30, (5.8) and Corollary 5.12. Let gy > 0
(depending only on the dimension of P’) be such that Sy(pe) = O(e~ %), so
that

Se(Pe) < Se(@)Se(pe) < Se(@)e.

Note that Sp(VE) < S;(¥) and that mBR(UE) = mBR(¥) 4+ O(eABR).
By Lemma 5.10,

@ @) < [ Wgha)oyhdh < (@ v] @),
yheyH
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By Lemma 5.11 and Theorem 3.30, there exists n > 0 such that
e("_l_‘s)tmt\llf, D)

= e (UE)mP () + e O(Se(W)Se(¢)e ™)

= g (0) iy () + O(eAy iy (9)) + e O(Se(¥)Se(d)e ).

By taking € = e~"/(1+%) and 5y = n/(1 + q¢), we obtain that
en=1-0)t / U (yhar)p(yh)dh
yheyH

=m0 (0) iy (6) + e O(AG iy () + Se(0)Se(9)).
By (5.8) and Corollary 5.12, this proves the theorem. O

We remark that we don’t need to assume yH is closed in the above the-
orem, as ¢ is assumed to be compactly supported.

When H is horospherical or symmetric with Pb-coranky (I') = 0, Theorem
1.7 is a special case of Theorem 5.13 by Theorem 4.5 and Theorem 4.15.

6. DISTRIBUTION OF I'\'Ha; AND TRANSVERSAL INTERSECTIONS

Let T'H, A = {a;}, P = MAN™, etc be as in the last section 5. We set
N = N*. Let {u,} be a I-invariant conformal density of dimension §,, > 0
and let figy and figy be the measures on gH and gN respectively defined
with respect to {u,}.

6.1. Transversal intersections. Fix z € I'\G. Let ¢y > 0 be the injec-
tivity radius at . In particular, the product map P, x N, — I'\G given
by (p,n) — xpn is injective. For any € < ¢y we set B. := P.N,.

For some ¢; > 1, we have NC;1€PCI—IE C B. := P.N. C N (P, for all
€ > 0. Therefore, in the arguments below, we will frequently identify B,
with N P,, up to a fixed Lipschitz constant.

In the next lemma, let ¥ € C®(zB, )™ and ¢ € C(yH)?"™ . For
0 < € < €9, define F € C®(xP) by

vEar) = [ )i aon)
zpN

where UF are as given in (5.5).

Define ¢ € C>°(yH) by

¢ (yh) = sup (yhh') and ¢ (yh) = inf ¢(yhh').  (6.1)
h'€H, h'eH,

Since the metric d on G is assumed to be left G-invariant and right H N
M-invariant, we have mH.m ™' = H, and mN.m~' = N,. Therefore the
functions ¥ and ¢F are H N M-invariant.

The following lemma is analogous to Corollary 2.14 in [52]; however we
are here working in T'\G rather than in T}(I"\H") as opposed to [52]. Let

Pu(t) :=A{p € Pey/(H N M) : supp(¢)as N zpNe, (H N M) # 0}



38 AMIR MOHAMMADI AND HEE OH

Lemma 6.2. For any 0 < € < ¢y, we have

(1)) Y 0 (apao)iiap) < [ Wlyha)o(uh)dsyn(uh)

PEP: () yH
<(4c) S 6b . (@paihi(zp),
pEP.(t)
where ¢ > 0 is an absolute constant, depending only on the injectivity radii

of supp(¢) and supp(¥).

Proof. By considering a smooth partition of unity for the support of ¢, it
suffices to prove the lemma, assuming supp(¢) C yN.P. NyH C yB.. Fix
9,9 € G so that y=Tg and x = T'¢’. Then for H = H/H N M,

/ Wyhan) Sy (o)

= X whe)sh)dings (gt
9

ye(PNgHg=1)\T'

= > / i / ¥ (yhaim) ¢p(yhm) dmdfig g (vgh)
ve(CngHg—\r /791 JHOM

= > / _U(yha)(yh) dfiygm(vgh)
ve(ngHg— )\ 7791

as ¥ and ¢ are H N M-invariant and dm is the probability Haar measure of
HnN M.

Suppose yh € supp(¢) N yH, and write h = nyp, where np € N, and
pn € Pe. As h™ =n; and d(h,n) = O(€), we have that for any v € T

dfiyg i (Ygh)
dﬁvgN (’anh)

Let v € (T NgHg Y)\I'. If yghar = ¢'prinns € ¢'PeyNey, then we claim
that

= 1+0(e). (6.3)

dii
o o) _ ) o
dﬂg’ph,tN(g Dh,tTh,t)

Note that ygha; = ¢'pp ¢np ¢ implies ygnpar = g’phvtnm(a;lphat). Hence
&= (ygnn)t = (¢'phanng)™, and for pj, , = (a; 'pras) € P,
5&(07 79nh) = 5&(07 g/ph,tﬂh,t) + ﬁg(g'ph,tnh,t, g’ph,tnhytpﬁm)
+ Be(9'PhanhtDhy g> 9 PhaTn D) 10—t) = Be (0, g'prann) + O(€) — t,

proving the claim (6.4).
Note that xBe, is the disjoint union Uyep, @pNe,. Since np € Ne, and
vgh = ¢'phia—i(agnpa—s) with agnpa_y € Ne—te,, in view of (6.3) and (6.4),
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we have

ot / Wk 6 09h)

Z d)ce teo ZL‘pa t / xpn d,UJg pN(g pn)

g'p

Zd)ce—tﬁo xpa—t) wce( )

where the both sums are taken over the set of p € P, /(H N M) such that
vgHcar N g'pN,(H N M) # () and ¢ > 0 is an absolute constant.

Summing over v € (I' N gHg ')\I', we obtain one side of the inequality
and the other side follows if one argues similarly using ¥__. O

By a similar argument, we can prove the following: In the following
lemma, let ¢ € C.(yH)I™ and ¢ € C®(z2P,)H ™, and assume that
papN (TpNe,) > 0 for all p € P, so that the function ¥ € C*(zB,,) can be

defined by
1

\IJ rmon) = —————
(zpn) papN (2P Ne,)

b(zp)
for each pn € P Ne,.

Lemma 6.5. There exists ¢ > 1 such that for all small 0 < € < €,

(1 —ce) / . U (yhay)o,, . (yh)dpym (yh) < e %" >~ (ap)(epa_)
Y

PEP:(t)
< (1 +ce) /H ‘I’;’;(yhat)ﬁf);—tm (yh)dpym (yh)
y

Similarly to the definitions of Ay, we define for ¢ € C(yH) and ¢ €
C(zPe,),
ARS = Su01(9) - iy (5upp(9)),  AY = Soo,1 (1) - v (supp())
where v, p is defined as in (5.1).

By a similar argument as in (5.8), we have Ags < Si(¢) and A7, < S(v)
for some ¢ € N.

Lemma 6.6. Let v € C(xP.)1™. For W € C®(xB,)T™ given by
_ 1
U(zpn) = #?;?(IpNeo)w(mp), we have
mBR(U) = v, p(v)  and ASR < AY-
Proof. For g = xpn, we have g~ = (zp)~ and B(gp)- (0, xpn) = Bryp)- (0, zp).
Based on this, the claims follow from the definition. The second claim follows
from mBR(supp(¥)) = v,p(supp(¥))) and Seo 1(¥) ey Soo1 (V). O

In the rest of this section, we assume that

I is Zariski dense and L*(I'\G) has a spectral gap.
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Theorem 6.7. There exist § > 0 and £ € N such that for any 0 < € < €
and any 1 € C®(xP.)) 1™  and ¢ € CX(yH)HE™"™M  we have

_ 1 _
e D wen)o(epass) = ropsvar ()i (6) + € OSH¥)SH(9)),
pEPy(t)
where Py(t) := {p € P.,/(HN M) : supp(¢)a; N apN,(H N M) # 0} and
the implied constant depends only on the injectivity radii of supp(vy) and
supp(¢).

Proof. Define
1
T (2pN,)
Then mPR(UF) = v, p(ypF) by Lemma 6.6.
We take ¢ big enough to satisfy Theorem 5.13, Corollary 5.12 and that
AGR < A < S(9) and ALS < Si(0).
By Theorem 5.13, for some ng > 0,

Sn—1-0)t / VE (yhay) ot o, (yh)dh
yH

= s VO (05, ) + ¢ P OSHTE)Se( 07 ,,))
= mPR (W) b5 (0) + O((e + e ) AGRAES) + e 7™ O(Sy (V) Sy (¢))
= Vep (V) iy (6) + O((e7™" + €)Sp(1h)Se(9)).-

Therefore the claim now follows by applying Lemma 6.5 for duym(yh) =
dh and 0, =n — 1 with 8 =ny/2 and € = e~"Mt/2, 0

UE(apn) = b (zp).

Using Theorem 6.7, we now prove the following theorem, which is analo-
gous to Theorem 5.13 with dh replaced by dugz (yh). Translates of dugﬁar
and duyPIS{ on yH are closely related as their transversals are essentially the
same. More precisely, Theorem 6.7 provides a link between translates of
these two measures.

Theorem 6.8. There exist B > 0 and £ € N such that for any ¥ €
C®(xBe,)T™ and ¢ € O (yH)HTMM

/ | V(yhan)g(yh) iy (yh) = |mBlMS| mPNS (015 (6)+0(e™ 'S (W) Sy(9)).

Proof. Define ¢p € C®(xP.,)1™M by
vlap) = [ Wapn)duSy(apn).
a:pNEO

We apply Theorem 6.7 and Lemma 6.2 for the Patterson-Sullivan density
{pz} and with this ¢. It follows from the definition of ¢ (see (5.4)) that
vep(¥) = mBMS(W) and Ay < Sp(¥) for some ¢ > 1. We take ¢ large
enough to satisfy Theorem 6.7.
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Let 8 be as in Theorem 6.7 and let ¢ = e~ #%. Now by Lemma 6.2, we get
| wlhadstumaun) = 1+ 0@)e™ 3 6E, (apai)i(on),
v PEPy(?)
By Theorem 6.7,
N b, (wpa_ )y (zp)
PEP(t)
= s VP (V) (61, ) + € O(Se(¥)Su(9))
= pmsy Ve (V) 1y () + Ole + €77 (Se()Se(9)).-
Since v,p(1p) = mPMS(¥) and Se(v), Ay, < S¢(¥), this finishes the proof.
O

6.2. Effective equidistribution of I'\I'Ha;. We now extend Theorems
5.13 and 6.8 to bounded functions ¢ € C*°((I' " H)\ H) which are not nec-

essarily compactly supported. Hence the goal is to establish the following:
set I'y:=T'NH.

Theorem 6.9. Suppose that T\I'H is closed and that |ub; S| < co. There
exist 3> 0 and £ > 1 such that for any compact subset Q C T'\G, for any
U e C®(Q) and any bounded ¢ € C*°(I'y\H), we have, as t — 400,

PS
n—l1l— ¢ B
00 [ o0 = G )0 4)51(6)

where the implied constant depends only on Q.

(
)

We first prove the following which is an analogous version of Theorem 6.9
for /LPS

Theorem 6.10. Suppose that T\I'H is closed and that |u5P| < co. There
exist Bop > 0 and £ > 1 such that for any compact subset Q C I'\G, for any
U e C®()HM and for any bounded ¢ € C=((T' N H)\H)*™  we have

pip () )
/her \H @ (har)o(h)dyip (h) = ’nfBMs‘mBMS(‘I’) +O(e LSy (¢)Sy(V)).

Proof. Fix ¢ € N large enough to satisfy Theorem 6.8, Ags < Sy(¢) and
ABMS <« Sy(W). If H is horospherical, set Yo = {h € T\T'HM : ha; €
Q for some t € R}; if H is symmetric, let Y, and Y, be as in Theorem 4.15
and set pg := Pb-coranky (I'). For € > 0, we choose 7. € C*°(Yq) which is an
H N M-invariant smooth approximation of the set Y¢; 0 < 7. < 1, 7(z) =1
for x € Ye and 7.(z) = 0 for x ¢ Y, /9; we refer to [4] for the construction of
such 7.. Let g > 1 be such that Sy(7.) = O(e~%). By the definition of Y,
we may write the integral fheFH\H W (hat)p(h)duty (h) as the sum

/ U(hay) (6 - 7o) () duES (k) + / U(har) (& — ¢ - 72) (W) dyE (h).
T'y\H Yo
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Note that by (3) of Theorem 4.16, we have utd (Yo — V) < €/ and
hence pubP (¢ — ¢ - 7) < AES 9P < Sy(¢)e*Po. Now by Theorem 6.8,

/ U(har) (6 - 72) (W) duES (k)
I\[H

_ M (67 pus

|mBMS| (\Il) + O(E_qle_ﬁtsf(qb)sﬂ(\ll))

@) pus PS ABMS _6—po Y
= [mBMS| ™" (W) + O(Ag° Ay e 70) + O(e e 7 84(¢)Se(V))

PS
B \/:'fBﬁbs)y mPMS () + O((0770 + € %e ™) Sy(9)Se(V)).

On the other hand,

/y U (hat)(¢ — ¢ - 7e) (h)dpyp ()
K So0 1 (U)So0 1 (@)1 (Yo — Ye) < Se(W)Sy(¢p)e” 7.

Hence by combining these two estimates, and taking ¢ = e=? /0=pota0) and
By := e~B0=p0)/(6=Po+ae) e obtain

1 (9) _
[ whanoduin = M mPS() + O S, (6)S(W)).
hel g\ H |m S‘
O

Proof of Theorem 6.9. We will divide the integration region into three dif-
ferent regions: compact part, thin part, intermediate range. The compact
part is the region where we get the main term using Theorem 5.13. The thin
region can be controlled using Theorem 4.16. However there is an interme-
diate range where we need some control. This is in some sense the main
technical difference from the case where I is a lattice. We control the con-
tribution from this range, using results proved in this section in particular by
relating this integral to summation over the “transversal”; see Lemmas 6.2
and 6.5.

We use the notation from the proof of Theorem 6.10. In particular, if
H is horospherical, set Yo = {h € I'\T'HM : ha; € Q for some t € R};
if H is symmetric, let Yo and Y. be as in Theorem 4.15 and set pg :=
Pb-coranky (I'). Let 0 < € < €. Here, we regard Y, as a thick part,
Y., — Y, as an intermediate range and I'yy\ H — Y, as a thin part.

As above we choose 7., € C*°(Y') which is an H N M-invariant smooth
approximation of Y, and recall that ;b3 (Yo —Ye,) < egfp ° by (1) of Propo-
sition 4.14.
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We may write
[ whanetnan
hel g\H
= / U(hat)(¢ - Tey ) (h)dh + / U(hat)(¢p — ¢ - e, ) (h)dh.
FH\H YQ

Then by Theorem 5.13 with 79 > 0 therein and Theorem 4.16, we get the
asymptotic for the thick part:

e<"—1—5>t/ W(hay) (¢ - 7eo ) (h)dh
Lg\H

PS
= ]11:71”73124%)| mBR(\p) + (e 0=po | o= not WYO(S)(6)Sy(T)).  (6.11)

On the other hand, by Theorem 4.16, we have, for T¢, 1= T¢, — ¢y,
| )@= o m))an
Yo

< Sun(0) ( /Y U(ha)To, (h)dh + /

Yo—Yq

\IJ(hat)dh> . (6.12)

Set W(x) := [ Y(@m)dm. Applying Lemma 6 2 for the Haar measure
cl,uHaar = dh and Lemma 6.5 for the PS measure ,u S, and for the function
T := T, with the notation as in the proof of Theorem 6.7, we get the

following estimate of the integral over the intermediate range Y, — Y¢,:

eln—1-0)t / W(hay)Te, (h)dh
Yo
< en=1=0)t / U (hay)Te, (h)dh
Yo

N Y (ap) T L (zpay)

pEPe(t)
< / T (ha) TE,, (h)dulS (h)
\[H
< Sao 1 (D (Yo, — Yep) < So(W)e) ™. (6.13)

Using Theorem 4.16, we also get the following estimate of the integral
over the thin part, which is the complement of Y¢,:

en—1=0)t / U (has)dh < Sy(W)en—1=9)tep—1Hro, (6.14)
Yo—Y¢,



44 AMIR MOHAMMADI AND HEE OH

Therefore by (6.11), (6.12),(6.13), and (6.14),
eln=1-9)t / U(hay)p(h)dh
heTyg\H

PS
- l;fBﬁfsﬂ mPR() + Oeg 7 + ¢ Mreg ™ 4 NI S ()8, (D).
Recalling § > py, take €y and e, by ¢y = e 0t/(6=po+ae) and e?_l_po =
egfpoe(‘s_”“)t. We may assume that €; < €y by taking ¢ and hence ¢, big

enough. Finally, we obtain the claim with 8 := n9(6 — po)/(0 —po + q¢). O

We can also prove an analogue of Theorem 6.9 with a; replaced by a_¢, by
following a similar argument step by step but using Corollary 3.34 in place
of Theorem 3.30. Consider the H N M-invariant measure pb® on I'y\H

induced by the measure ¢*®v~(©Mdy,(h~) on H = H/(H N M):
dpl (hm) = %= dy, (W™ )d g (m). (6.15)

Theorem 6.16. Suppose that |u§}§_| < 00. There exist 8 > 0 and ¢ > 1 such
that for any compact subset Q in I'\G, any ¥ € C*(Q) and any bounded
¢ € C®(Ty\H), we have, as t — +0o0,

(n=1-0)t - (9) g e
T [ B9 = TR () OS5

where the implied constant depends only on ).

6.3. Effective mixing of the BMS measure. In this subsection we prove
an effective mixing for the BMS measure:

Theorem 6.17. There exist § > 0 and £ € N such that for any compact
subset Q C T'\G, and for any ¥, ® € C>*(Q),

/F | Vg0 B()dnPS(g) = P (0)mP(@)+0(e51(0)5(2)

with the implied constant depending only on 2.

Proof. Using a smooth partition of unity for €2, it suffices to prove the claim
for ® € C.(zBe,) for x € Q, B, = PeyN¢, and €9 > 0 smaller than the
injectivity radius of €.

By Theorem 6.8 with H = N and for each p € P,

/  apna) Dl iy (zpm)
zp

€0
= S ()P (@, ) + € PO(SH (D) S (P Lapi,)
for some § > 0 and £ € N. As

/ U (Blapiv., Vv (wp) = mPMS (@),

0
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we have

/ U (ga;)®(g)dm"3(g)

xBEO

—[ | apne)@apm)dutS apndvan (e
acpEacPEO ar:pNEO

— S ()P (@) + O )SUW) - [ Si(@lup, ().
acP60
Since

So(®lepn,, )dvap(zp) < So(®)mPR (supp @) <o S(®),

xPEO

this finishes the proof. O

7. EFFECTIVE UNIFORM COUNTING

7.1. The case when H is symmetric or horospherical. Let G, H, A =
{a¢ : t € R}, K, etc be as in the section 5. Let I" be a Zariski dense and
geometrically finite group with § > (n — 1)/2. Suppose that [e]I" is discrete
in H\G, equivalently, I'\T'H is closed in T'\G and that |ut?| < co.

In this section, we will obtain effective counting results from Theorem 6.9
with ¢ being the constant function 1 on (I' N H)\H.

Definition 7.1 (Uniform spectral gap). A family of subgroups {I'; < T :
i € I} of finite index is said to have a uniform spectral gap property if
supso(I) <d  and  supng(l;) < oco.
iel iel
where so(T;) and no(T;) are defined as in (1.3).
The pair (sup;cr so(T's), sup;c; no(Ly)) will be referred to as the uniform
spectral gap data for the family {T; : i € I}.

As we need to keep track of the main term when varying I" over its sub-
groups of finite index for our intended applications to affine sieve, we con-
sider the following situation: let I'y < I' be a subgroup of finite index with
I'oNH =TnNH and fix 79 € I'. Throughout this section, we assume
that both I' and Ty have spectral gaps; hence {I',I'¢} is assumed to have
a uniform spectral gap. By Theorem 3.27, this assumption is automatic if
d>(n—-1)/2forn=2,3 and if § > n — 2 for n > 4.

For a family By C H\G of compact subsets, we would like to investigate

#le]Torvo N Br.
Define a function Fr := Fp, on I'o\G by

Pr(g) =Y  xsr(elg)
~EHAM\T

where xp, denotes the characteristic function of Br. Note that
Fr(vo) = #[ellovo N Br.
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Denote by {v;} the Patterson-Sullivan density for I" normalized so that
|vo| = 1. Clearly, {v;} is the unique PS density for I'g with |v,| = 1. Recall
the Lebesgue density {mx} with |m,| = 1.

Therefore if mBMS mBR and mH2ar are the BMS measure, the BR mea-

sure, the Haar measure on G, the corresponding measures m%OMS m?{? and

m?{;‘ar on I'¢\G are naturally induced from them. In particular, for each

e = BMS, BR, Haar, [mg, | = [[": To] - [m®|. Since HNT = H N T, we have

g | = |prs gl and (e | = |y g |-

7.2. Weak-convergence of counting function. Fix ¢y € C°(G). For
k€ K and v € T, define ¥, v, € C2(G) by 4*(g) = (gk) and 1,(g) =
(vg). Also define ¥, ¥, € C*(I'o\G) by

= > ¢(Yg) and T,(g):= > $(19).

~v'€lo v'€lo

For a function f on K, define a function ¢ g f, or simply v * f, on G by

Y * fg) = Y(gk)f(k) dk.

keK

For a subset B C H\G, define a function féﬁ on K by

[ (k) = / eXtdt.
at+€Bk—1N[e] AT

We adopt the notation 'anR = mPR and mB

mBMS means m?MS

R — mBR« helow. Recall that
in the whole section.

Proposition 7.2. There exist f1 > 0 and ¢ > 1 (depending only on the
uniform spectral gap data of T' and Ty) such that for any T > 1,and any
v €T, the pairing (Fr, V) in To\G is given by

|| MBR (1) % fg ) 4+ O(maxg,es, e(0=B1)t -Se(v¥)) if G =HATK

[T -mPYs]
P

5 [“‘71' nBR (W # £ ) + O(maxg,ep, eI - Sy(4h))  otherwise.

T: FO} |mBMS‘

Proof. For the Haar measure din'1%*(g) = dg, we may write dg = p(t)dhdtdk

where g = hask and p(t) = e DI (14+0(e=1I1)) for some a; > 0 (cf. [52]).

PS
Setting kT (Ig) := %, we have x*(Tg) = 0] F r kT (T). We will only
To

prove the claim for the case G = HAT K, as the other case can be deduced
in a similar fashion, based on Theorem 6.16. We apply Theorem 6.9 and
obtain:
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(Fp, 0.)) = / ( / \Ifw(hatk)dh> p(t)dtdk
[e]atkEBT (HQF)\H

) [ gy 0
[elatke€Br
N / O H1=B () dtdk - O(S,(W))
[e]latk€Br

= k1 (Tp) / BB (yF)dtdk + O( max eI Sy (1))
[elatkeBr

at€EB

where $; = min{3, o }.
By the left I'-invariance of m

/ P BR(pE)dtdk = / / PR (P dtdk = mPR (v« fE ).
[e]atkEBT keK atEBTk‘*l
This finishes the proof. O

BR " we have mBR(w’;) = mPR(yF). Hence

7.3. Counting and the measure My g. We denote by Xo € TH(H")
the vector fixed by M. In the rest of this section, we define the measures
dv (k) on K as follows: for f € C(K),

+ _ +
/Kf(k:)duo (k) = /M\K /M f(km)dmdv,(kXg) (7.3)

where dm is the probability Haar measure of M.
Define a measure Mg = Ml;{\G on H\G: for ¢ € C.(H\G),

MH\G(¢) = (7.4)
|mBMS| Jowens i lak)e dtdv, (k1) if G = HATK
> \Zgﬁs‘l Josikeatx P(axik)edtdtdvE(k~1)  otherwise.

Observe that the measure M\ g depends on I' but is independent of the
normalization of the PS-density.

(7.5)

Theorem 7.6. If {By C H\G} is effectively well-rounded with respect to
I’ (see Def. 1.10), then there exists ng > 0 (depending only on a uniform
spectral gap data for I' and Fo) such that for any v € T’

#([e]lor0 N Br) = g Mme(Br) + O(Mpa(Br)' ™)
with the implied constant independent of I'g and vo € T.

Proof. Let ¢ € C°°(G) be an e-smooth approximation of e: 0 < ¢ < 1,
supp(¢€) C G and [9¢°dg = 1. Set B;’E i= BrGe and Br . = Ngee Brg.
Then

(Fpy » V1) < Fr(v) < (Fgy V0 ).

T,e
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Again, we will provide a proof only for the case G = HA'K; the other
case can be done similarly, based on Proposition 7.2. By Proposition 7.2,

for k1 (Tg) := %

(Fy W) = wH(Do)mPR (0 # figs ) + O max o0=Ple),

Yo Te at€EBr

where ¢gp is so that Sp(¢) = O(e"%). For g = a,nk’ € ANK, define
H(g) =7 and k(g) = k.

Now, using the strong wave front property for AN K decomposition [24],
and the definition 1.10, there exists ¢ > 1 such that for any g € G, and
T>>1,

oz (R(K71) < fo,(k(k19)) < frr (w(k71)).

T,ce T,ce

We use the formula for mB® (cf. [52]):
dmB®(ka,n) = e dndrdv; (k)
and deduce
RO (4 fgy )
/ V¢ (kaynk') Tet. (K" e~°" dk! dndrdvy (k)
eK JKAN
) [ [ ey (o) g (b
keK
() / / V() sy (gl DHET g (k)
keK
< (1+0(e) / /w Dfgg, (k Ydgdv, (k)
=(1+0(e ))MH\G(B;,CG) = (1+0(")) Mma(Br) (7.7)

since [¢pdg =1 and k(1) [,y fB,(K™1)dvy (k) = M (Br).
Similarly,

RO fig- ) = (1+ O()) M a(Br).

T,ce
Since maxg,eB, e0=At « MH\G(BT)P” for some 1 > 0,
#(LovoNBr) = ﬁMH\G(BT)JFO(EpMH\G(BT))+O(€_QZMH\G(BT)1_U)-

Hence by taking € = MH\G(BT)*”/(HW) and ng = —pn/(p+q¢), we complete
the proof. O

7.4. Effectively well-rounded families of H\G.
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7.4.1. Sectors. For w C K, we consider the following sector in H\G:
St(w) == [el{ar: 0 <t <logT}w.

In this subsection, we show that the family of sectors {Sr(w) : T' > 1} is
effectively well-rounded provided w is admissible in the following sense:
Definition 7.8. We will call a Borel subset w C K with v, (w™!) > 0
admissible if there exists 0 < p < 1 such that for all small € > 0,

Vo((w_lKE — ﬂkeKew_lk)) <L éP (7.9)
with the implied constant depending only on w.

Lemma 7.10. Letw C K be a Borel subset. Ifv, (w™') >0 and d(w™ X, )N
A(T) =0, then w is admissible.

Proof. As (w™'X;) and A(T') are compact subsets, we can find ¢y > 0
such that the ep-neighborhood of d(w™1X; ) is disjoint from A(T'). Hence
we can find ¢, > 0 such that d(w™!)K, X is disjoint from A(T'); so
vo(d(w H K, Xy ) =0. O
Proposition 7.11. Let K, := maxgep (1) rank (§). If
n— 2+ Ko

2 }7

then any Borel subset w C K such that v, (w™) > 0 and O(w™?) is piece-
wise smooth is admissible.

d > max{n — 2,

Proof. Let s¢ = {& :t € [0,00)} be a geodesic ray emanating from o toward
¢ and let b(&) € H" be the Euclidean ball centered at & whose boundary
is orthogonal to s¢ at &§. Then by Sullivan [63], there exists a I'-invariant
collection of pairwise disjoint horoballs {H¢ : £ € Ap(I")} for which the
following holds: there exists a constant ¢ > 1 such that for any £ € A(T)
and for any t > 0,

o Le 0t €@ TO)KE)=0) < ) (b(£,)) < ce Ot lEnT(0) (k(60)—0)

where k(&) is the rank of £ if & € He for some ' € A,(I") and § otherwise.
Therefore, using 0 < d(&,T'(0)) < t, it follows that for any £ € A(T") and
t>1,

(—26k(EN)E 3 -
vo(b(&)) < {Z_ét HRE) 20

By standard computations in hyperbolic geometry, there exists cg > 1
such that B(& cole™) C b(&) C B(E,coet) where B(E,7) denotes the
Euclidean ball in O(H") of radius r. Hence it follows from (7.12) that if we
set ko 1= maxgey ) rank ('), then for all small € > 0 and § € A(T),

Vo(B(£,€)) < € + X070,

Clearly, this inequality holds for all £ € 9(H"), as the support of v, is
equal to A(T).

(7.12)

otherwise.
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Now if d(w™!) is a piece-wise smooth subset of K, we can cover its e-
neighborhood by O(e!~9%) number of e-balls, where d is the dimension of
K.

Since for any k € K,

vf (B(k,€)) < € -1, (B(k(X{ ), €)) < et 4 2o-rotdar,
where dj; is the dimension of M, we obtain that the v, measure of an

e-neighborhood of d(w™1) is at most of order
€6+d]u—d}(+1 + 625—I€o+dM—dK+1 — 6(5—n+2 4 625—H0—n+2'

Hence w is admissible if § is bigger than both (n — 2) and 230, O

Corollary 7.13. If 6 > n — 2 and rank (§) < ¢ for all £ € Ap(T"), then any
Borel subset w C K such that v, (w™1) > 0 and (w™1) is piece-wise smooth
s admassible.

The following strong wave front property of HAK decomposition is a
crucial ingredient in proving an effective well-roundedness of a given family:

Lemma 7.14 (Strong wave front property). [24, Theorem 4.1] There exists
c > 1 andey > 0 such that for any 0 < € < ¢y and for any g = hask € HATK
with t > 1,

gGe C (the) (atAce) (che)
where Hee = HN Gee and Ace and K. are defined similarly.

Proposition 7.15. Let w C K be an admissible subset. Then the family
{Sr(w) : T > 1} is effectively well-rounded and

PS vy w*l
M (Sr(w)) = B2l (10 - 1),

Proof. We compute
log

S _ |,U}})IS T 5td dv~ k_l
MH\G( T(w)) = [mBMS] e dt i v (K77)
Cw

— |/"‘1;]S"Vo_(w_1) (T6 _ 1)

5 |mBMS|

t=0

By Lemma 7.14, there exists ¢ > 1 such that for all 7' > 1 and ¢ > 0
St(w)Ge C [e]{ay : log(1 — ce) <t < log(1 + ce)TIwi
where wl = wK, . and K, is a ce-neighborhood of e in K. Hence with p > 0
given in (7.9),
PS|.,—((,,+)—1
M a(Sr(w)Ge) < Bl feed ) (1 4 ce)o1°

PSj. € o -1
« MO0 ™ () | o

= (1 4+ O(")) Mg (S7(w)).

Similarly, we can show that
Mma(Ngea.St(w)g) = (1 4+ O(")) M\ (S1(w)).
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Hence the family {Sp(w)} is an effectively well-rounded family for T O

Therefore we deduce from Theorem 7.6:

Corollary 7.16. Let w C K be an admissible subset. Then there ezists
no > 0 (depending only on a uniform spectral gap data for T' and T'g) such
that for any vo € T

#([el0on0 N Sr(w)) = frlre e lrd 4 o(ri-m),
7.4.2. Counting in norm-balls. Let V be a finite dimensional vector space
on which G acts linearly from the right and let wy € V. We assume that
wol' is discrete and that H := Gy, is either a symmetric subgroup or a
horospherical subgroup. We let A = {a;}, K, M be as in section 5.3. Let
A € N be the log of the largest eigenvalue of a; on the R-span of wyG, and
set

(:)t)\ . lim e_Atwo(lit.
t—00
Fixing a norm || - || on V, let By := {v € woG : ||v|| < T'}.

Proposition 7.17. For any admissible w C K, the family {Br N wyA*w}
is effectively well-rounded. In particular, {Br} is effectively well-rounded.
We also compute that for some 0 <n < d/\,

| | _ _
Min(Br nwoA®w) = it [ ui b= a1 - T + o).

Proof. By the definition of A and w(]\, it follows that woak = e’\tw()\k +
O(e*M?) for some A\; < A. Noting that ||woask| < T implies that ert = O(T)
and eMt = O(TM/?), we have

MH\G(BT NwoAtw)

— ity [ / Mty (k)
kew J||woatk||<T

PS|

[ ot —r7.—1
= |mE{—IMS| / / . € dthO (k )
kew JeM<|wk|| T T+O(TA1/*)

= T [k (1) + o)

for some 7 < 6/A. The claim about Mg\ ¢(Br NwoA~w) can be proven
similarly. To show the effective well-roundedness, we first note that by
Lemma 7.14, for some ¢ > 1, we have

(Br NwoATw)Ge C Biyeor N woAtTw]
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Therefore, using the admissibility of w, and with p given in (7.9), we
deduce

Mna((Br Nwod*w)Ge — (Br NwoA w))

< / / edtdv, (k™)
kewd—w J|Jwoatk||<(14ce)T

+/ / tdtdvy (k1)
kewd JT<||woark|<(14ce)T

< €T 4 ((14 ce)T)* — T/
< T < @My (Br Nwodtw).
Similarly we can show that
Mng((Br NwoATw) — Ngea. (Br NwoATw)g) < & Mng(Br NwodTw).

This finishes the proof for the effective well-roundedness of { Br NwoAtTw}.

The claims about {Br NwyA~w} can be shown in a similar fashion. O
Put
— 5|mBMs fKHw kH_é/)‘dV_(k_l) if G=HATK
Swo () =

| | _
> 5- |Z¢Bj1515| fK [|w iAl’“” 5/>‘dV¢(k¢ ) otherwise.
We deduce the following from Proposition 7.17 and Theorem 7.6:

Corollary 7.18. (1) For any admissible w C K, there exists ng > 0
such that for any vo € T,

#{v € wol'gyo NwoAtw : |lv|| < T}

— sty - [ Ik~ ()T - 02w,
(2) There exists ny > 0 (depending only on a uniform spectral gap data
for T and Ty) such that for any vo € T,

#{v e welovy : ||v|| < T} = [1,:711,015100 (F)Tt?/A + O(T5/’\_770).

7.5. The case when H is trivial. In this subsection, we will prove the
following theorem directly from the asymptotic of the matrix coefficient
functions in Theorem 3.30.

Recall from the introduction the following Borel measure Mg = ./\/lg on

G: for ¢ € C.(G),
Ma(¥) = oo Y(krarks)e® dv (ky)dtdy, (k3 ").
kiatkoe KATK

Theorem 7.19. Let 'y < T' be a subgroup of finite index. If {Br C G} is
effectively well-rounded with respect to I' (see Def. 1.10), then there exists
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no > 0 (depending only on a uniform spectral gap data for T' and T'g) such
that for any vo € T

#(Tov0 N Br) = g Ma(Br) + O(Me(Br)'~™)
with the implied constant independent of I'y and vo € T.
Consider the following function on I'g\G x I')\G: for a compact subset

B C G,
)= > xslg'vh)
~v€lo

where x 3 is the characteristic function of B. We set Fr := Fp,, for simplicity.
Observe that Fr(e,v0) = #(LoyoNBr). Let B%E be as in the definition 1.10

and let ¢¢ € C*°(G) and ®° € C*°(I'x\G) be as in the proof of Theorem 7.6.
We then have

(Fp @ ® 1) < Fr(e,7) < (Fg; & @),

Note that for ¥, ¥y € C.(T'0\G)

(Fr, U1 @ W2)p\GxTo\G = / . (U1, 9.V2) 12(ro\q) A (g).
gebr

For a Borel subset B of GG, consider a function fg on K x K given by

mwmga/ eStat,
ar€ky ' Bky T NA+

and define a function on G x G by

(@ ® ) * f) (g, h) = /K Uk k) s )l

We deduce by applying Theorem 1.4 and using the left I'-invariance of
the measures mPR and mBR that for some 7/, n > 0,

<FB7 ‘lle ® Q€_1>FQ\GXF0\G

= [ O gl g
Te 0

:/ </ VWﬁ)l@WMWMWOWﬂM+WWMWM%2
kiatko €B To\G
1

’m?(l)\/[S| kiatko€B
1

’mFM ‘ kiatk2€B

(1 + O(e_”t))mlg(f{(kg\llfyal) PR (ky 1) dtdk: dks

(1 + O(e™)mBR (ko )mBR (k1) dtdk dks.
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Therefore
<FB%7€7 @6 ® Q;O_I>F()\G><F0\G (720)
— 1 (=BRx ~ BR € € (6—n)t qe
s (707 @ M) (1° © ) # fizz ) + O max 07 rett).
Recall

dmPR(ka,n™) = e "dn*drdv; (k)  for ka,nt € KAN*Y;

dmPB® (ka,n™) = e dn~drdv} (k) for ka,n~ € KAN~

and dg = dm? (a,n*k) = drdn*dk.
For x € G, let k() denote the K-component of # in AN*K decomposi-

tion and let H*(z) be uniquely given by the requirement = € e @ NER,
We obtain

(PR @ mPR) (Y @ ¥°) * fg) =

/ O (grky Y (haks) fa(ky, ko)dmP™ (g1)dim PR (hy)dky dky =
KxK JGxG

/ U (k) (ko) fis (k™ (g) ™, w™ ()= (- (0)—H (1)

KxK JGxG

dgdhdv, (ko)dv, (k) =

/ T/Je(g)lbe(h)fza(ff_ (gk_l)_l, R—‘r(hko—l))e(d—n-i-l)(H*(gk‘*l)—H*(thl))
KxK JGxG

dgdhdv; (ko)dvy (k);

first replacing ki with k:fl, substituting ¢ = ka,n € KAN' and h; =

koarono € KAN™ and again substituting a,nk; = ¢ and a,,noks = h.
Therefore, using the strong wave front property for ANTK decomposi-

tions [24] and the assumption that [1¢dg = 1, we have, for some p > 0,

(P @ mP) (0 @ ¥ * fz )

— (14 O(e") /K gl Y (k) (ko)

— (14 0(e) / vt (k)dv; (ko)
kaiky ' €Br

—@roE@) [t wdv; ()
katkoEBT

= (14 0(e")Ma(Br)

with M defined as in Definition 1.8. Since |m?évls\ = |mBEMS| . [ : Ty,
putting the above together, we get

Fr(e,0) = [F}F()]Mg(BT) + O(Me(Br)—m)
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for some 79 > 0 depending only on a uniform spectral gap data of I' and T'y.
This proves Theorem 7.19.

Corollary 7.21. Let wy,ws C K be Borel subsets in K such that w;' and
wa are admissible in the sense of (7.8). Set St(wi,ws) := wifa; : 0 <t <
logT}wa. Then the family {St(wi,ws) : T > 1} is effectively well-rounded
with respect to T, and for some ng > 0,

v (wi) - vy (wy )

F — T6 T6_770
#( 0y N ST(w17w2)) 5 - \mBMS] ] [P . FO] + O( )

with the implied constant independent of I'y and vo € T.

Using Proposition 7.14 for H = K, we can prove the effective well-
roundedness of {S7(wi,ws2) : T > 1} with respect to I' in a similar fashion
to the proof of Proposition 7.15. Hence Corollary 7.21 follows from Theorem
7.19; we refer to Lemma 7.10 and Proposition 7.11 for admissible subsets of
K.

7.6. Counting in bisectors of HATK coordinates. We state a counting
result for bisectors in HATK coordinates.

Let 1 € C2°(H) with its support being injective to I'\G and m» € C*°(K),
and define &7 € C°°(QG) as follows: for g = hak € HATK,

r(o) =g (@) [ mltm)ram k)

where x A denotes the characteristic function of AT = {a;: 0 <t < logT}

for T > 1. Since if hak = KW ak', then h = K'm and k = m 'k’ for some
m € H N M, the above function is well-defined.

Theorem 7.22. Let 'y < T be a subgroup of finite index. There exist ng > 0
(depending only on a uniform spectral gap data for T' and Ty) and £ € N
such that for any vo € T,

~PS *
| (Tl) i 1/0(7'2) S 5
> &rlno) = 5 L O S ) Sulr)
~v€lo
where vi(12) == [p T2(k)dvy (K71).
Proof. Define a function Fp on I'g\G by
Fr(g) =Y &r(vg).
~v€lo
For any ¢ € C2°(G), set ¥ € C°(I'o\G) to be ¥(g) = >_ ¥ (v9) and

then we have:

(Fr, ¥)rp\g = /

Ly ( /h » Tl(h)\Il(hatk)dh> () dkdt.
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As U e C(Ty\G), supp(m) injects to I'o\G and H NT' = H N Ty, we have
pry (1) = g (1) and

/ 1 (h) (hagk)dh — / 1 (h) (hagk)dh.
heH hEF()\F()H

Therefore, by applying Theorem 5.13 to the inner integral, we obtain 1 > 0
and ¢ € N such that

<FT, >F0\G

BMS / / ymp (W) e’ dkdt + O(Se(m1)Sp()T0 1)
keK at€A+

_MZS( 1) - PR (¢ % 1)
© 8- [mBMS|L D T

T + O(Se(1)Se(12)Se(y) T ). (7.23)

Let 7/ * be e-approximations of 7;; 7; jE(a:) are respectively the supremum
and the infimum of 7; in the e-neighborhood of . Then for a suitable £ > 1,
i (" — Tf’_) = O(e-Su(m)), and vy (1377 = 757) = O(e - Se(72))-

Let Fp “* be a function on I'\G defined similarly as Fp, with respect to

+ _

5;2 (hak:) XA?-& " (a) - meM Tf’Jr(hm)T;’Jr(m 1k:)dm.

As before, let ¢ € C*°(G) be an € smooth approximation of e: 0 < )¢ <
1, supp(¢) C Ge and [¢°dg = 1. Let \I’El be defined as in the subsection
7.2 with respect to ¢¢. Lemma 7.14 1mphes that there exists ¢ > 0 such that
for all g € G,

2™ (709) < Fr(v) < F5t (yog)

and hence
(™ W 0) < Pr(n) < (B, 0 ). (7.24)

By a similar computation as in the proof of Theorem 7.6 (cf. [52, proof of
Prop. 7.5]), we have mBR (1€ x 7)) = v¥ (1) + O(€)Se(12).
Therefore, for g, given by S;(¢¢) = O(e™%), we deduce from (7.23) and
(7.24) that, using the left [-invariance of the measure mB%,
0+ [mPMS| [T To] - Fr(v0)

PR (g % 1) - T° + O(Se(71) Se(72) Se ()T )

= fig (11)
= @D (r) Vi (1) T + O(eT? + e 2T Sy(11)Se(72)
= i (1) (12)T° + O(T°7™)Sy(11)Se(72)
for some 79 > 0, by taking e = 7—7/(1+a0), O

Corollary 7.21 as well as its analogues in the HAK decomposition can
be deduced easily from Theorem 7.22 by approximation admissible sets by
smooth functions.
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8. AFFINE SIEVE

In this final section, we prove Theorems 1.16 and 1.17. We begin by
recalling the combinatorial sieve (see [25, Theorem 7.4]).

Let A = {a,} be a sequence of non-negative numbers and let B be a finite
set of primes. For z > 1, let P be the product of primes P = Hp¢B7p<z p.
We set

S(A,P) = Z n.
(n,P)=1
To estimate S(A, P), we need to understand how A is distributed along
arithmetic progressions. For d square-free, define

Ag:={{a, € A:n=0(d)}

and set [Ag| == 3", ) @n-
We will use the following combinatorial sieve:

Theorem 8.1. (A1) Ford square-free with no factors in B, suppose that
|Aal = g(d)X + r4(A)

where g is a function on square-free integers with 0 < g(p) < 1, ¢
is multiplicative outside B, i.e., g(dida) = g(d1)g(d2) if di and dy
are square-free integers with (di,ds) = 1 and (dids, B) = 1, and for
some c¢1 >0, g(p) <1—1/c; for all prime p ¢ B.
(A2) A has level distribution D(X), in the sense that for some e > 0 and
Ce. >0,
> Ira(A)] < Cex'e.
d<D
(A3) A has sieve dimension r in the sense that there exists ca > 0 such
that for all 2 <w < z,

z
—cg < Z g(p)logp — rlog o < co.
(p,B)=1,w<p<z

Then for s > 9r, z = DY/ and X large enough,
X

(log X)"
Let G, GV =C™ T, wg € V(Z), etc., be as in Theorem 1.16. We

consider the spin cover G — G. Noting that the image of G(R) is precisely
G = G(R)°, we replace I' by its preimage under the spin cover. This does
not affect the orbit wol' and all our counting statements hold equally. Set
W = woG (resp. woG U {0}) if woG (resp. woG U {0}) is Zariski closed,
Let F € Q[W] be an integer-valued polynomial on wol' and let F' =
Fy--- F, where F; € Q[W] are all irreducible also in C[I¥/] and integral on
the orbit wpl'. We may assume without loss of generality that ged{F(x) :

r € wol'} = 1, by replacing F by m™'F for m := gcd{F(z) : € wel'}.

S(A, P) <
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Let {Br C woG} be an effectively well-rounded family of subsets with
respect to I'. Set O :=wgl'. Forn € N, d € N, and T > 1, we also set

an(T) :=#{x € ONBr: F(z) =n};
Lyo(d) :={y €T :wyy =wp (d)},

A(T)| =" an(T) = #0 N Br;

AT == an(T) =#{x € ONBr: F(z) =0 (d)}.
n=0(d)

Let Tg:={yel:v=e (d)}.

Theorem 8.2. If § > n — 2, then there exists a finite set S of primes such
that the family {T'q : d is square-free with no factors in S} has a uniform
spectral gap.

Proof. As o > (n—1)/2, by [58] and by the transfer property obtained in [6],
there exists a finite set S of primes such that the family L?(I'y\H") has a
uniform spectral gap where d runs over all square-free integers with no prime
factors in S, that is, there exists s; < & such that L?(I'y\G) does not contain
a spherical complementary series representation of parameter s; < s < §. By
Theorem 3.27 and the classification of G [30], L2(I'4\G) does not contain a
non-spherical complementary series representation of parameter s > (n—2).

It follows that L*(T4\G) = Hs & Wy where Hs = U(1,(0 — n + 1)a)
is the spherical complementary series representation of parameter §; hence
no(ly) = 1 and W, does not weakly contain any complementary series
representation of parameter max(n — 2,s51) < s < 0. So supsp(l'y) <
max(n — 2,s1) < ¢ and supng(I'q) = 1 where d runs over all square-free
integers with no prime factors in S. U

Denote by I'(d) the image of I' under the reduction map G — G(Z/dZ)
and set Oy to be the orbit of wy in (Z/dZ)™ under I'(d); so #04 = [T :
Ty, (d)]. We also set

Or(d):={r€Qy: F(zx)=0 (d)}.

Corollary 8.3. Put My,q(Br) = X. Suppose that for some finite set
S of primes, the family {T'y : d is square-free with no factors in S} has a
uniform spectral gap. Then there exists ng > 0 such that for any square-free
integer d with no factors in S, we have

[Aa(T)| = g(d)X + ra(A)

where g(d) = 2250 and ry(A) = #Op(d) - O(X'~™).
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Proof. Since I'y C T'y, (d), the assumption implies that the family {I",(d) :
d is square-free with no factors in S} has a uniform spectral gap. Therefore,
Theorem 1.12 on #(wel'y,(d)y N Br) implies that for some uniform ¢y > 0,

Aa(T)| = > #(woT'wy (d)y N Br)
YETwe (A)\I', F(woy)=0(d)

_ 1 1—e¢
= > ([F:FTUO @ O 0)) :
V€T wo (A\I', F(woy)=0(d)

Since #Op(d) = #{y € Tw,(d)\I', F(woy) =0 (d)}, the claim follows. [

In the following we verify the sieve axioms (A1), (A2) and (A43) in this set-
up. This step is very similar to [48, sec. 4] as we use the same combinatorial
sieve and the only difference is that we use the variable X = M, ¢ (Br)
instead of T'. This is needed for us, as we are working with very general
sets Br; however if M, q(Br) < T for some a > 0, we could also use the
parameter T

Using a theorem of Matthews, Vaserstein and Weisfeiler [46], and enlarg-
ing S if necessary, the diagonal embedding of I' is dense in Hp¢ SG(]Fp).
The multiplicative property of g on square-free integers with no factors in
S follows from this (see [48, proof of Prop. 4.1]).

Letting W; = {& € W : Fj(x) = 0}, W is an absolutely irreducible affine
variety over Q of dimension dim(W) — 1 and hence by Noether’s theorem,
W is absolutely irreducible over IF,, for all p ¢ S, by enlarging S if necessary.
We may also assume that W (F,) = woG(F,) (possibly after adding {0}) for
all p ¢ S by Lang’s theorem [38]. Using Lang-Weil estimate [39] on #W (F),)
and #W;(F,), we obtain that for p ¢ S,

#OF(p) — ,r,.pdim(W)—l_FO(pdimW—?)/Q) and #Op — pdimW+O(pdimW—1/2).

Hence
glp)=r-p + 0P
for all p ¢ S. This implies Az (cf. [47, Thm 2.7]), as well as the last claim

of Al.
Moreover this together with Corollary 8.3 imply that

r(A,d) < dHmW=1pt=m,
Hence for D < Xmo/(2dmW) anq €0 =10/2,

Z T‘(A, d) < DdimWXI—ng < XI—EO’
d<D

providing (As). Therefore for any z = DVs < xm/@sdimW) anq 5 > 9r,
and for all large X', we have

X

S(A, P) =< Tog X)"°

(8.4)
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Proof of Theorem 1.16. Using arguments in the proof of Corollary 8.3,
we first observe (cf. [48, Lem. 4.3]) that there exists n > 0 such that for
any k € N,
#{r € ONBr: Fj(zr) =k} < X1
Fixing 0 < €; <, it implies that
#{r € ONBr: |Fj(z)] < X} < xlte, (8.5)

Now

#{x € ONBr :all Fj(x) prime} < Z#{x € ONBr:|Fj(z)] < X}
j=1
+#{x € ONBr: |Fj(z)| > X% forall 1 <j <rand all Fj(x) prime}.

Now for z < xM0/@sdimW) gych that P = Hp<zp < X°, we have
{r e ONBr: |Fj(z)| > X forall 1 <j <rand all Fj(z) prime}
C{zeONBr: (Fj(z),P)=1}

and the cardinality of the latter set is S(A, P) according to our definition of
ay’s.
Therefore, we obtain the desired upper bound:

#{x € ON By : all Fj(x) prime} < X177+ 4 (logXX)T < (IO:X)’“‘
Proof of Theorem 1.17. By the assumption, for some 8 > 0,
max ||z]| < Muyyc(Br)® = X7, (8.6)
x€Br
It follows that
max |F ()| < My,q(Br)?deeF) = yfdes(F), (8.7)

TEBT

_ 2s dim W _ _ B-deg(F)2s dim W
Then for z = Xm/ZdmW) and P = [lp<zpgsps B = egn%, we

have

{reONByr: (F(x),P)=1} C
{r € ON By : F(x) has at most R prime factors},

since all prime factors of F'(z) has to be at least the size of z if (F'(x), P) =1
and |F(z)| < X84 if & ¢ Bp. Since S(A,P) = #{z € ON By :

(F(z),P) =1}, we get the desired lower bound W from (8.4).

Remark 8.8. When I' is an arithmetic subgroup of a simply connected
semisimple algebraic Q-group G, and H is a symmetric subgroup, the ana-
logue of Theorem 1.12 has been obtained in [4], assuming that H N T is a
lattice in H. Strictly speaking, [4, Theorem 1.3] is stated only for a fixed
group I'; however it is clear from its proof that the statement also holds
uniformly over its congruence subgroups with the correct main term, as in
Theorem 1.12. Based on this, one can use the combinatorial sieve 8.1 to
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obtain analogues of Theorems 1.16 and 1.17, as it was done for a group
variety in [48]. Theorem 1.17 on lower bound for I' arithmetic was obtained
in [21] further assuming that H NI is co-compact in H.
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