SPECTRAL INDEPENDENCE

ALIREZA S GOLSEFIDY, KEIVAN MALLAHI-KARAI, AND AMIR MOHAMMADI

ABSTRACT. We prove the spectral gap property for random walks on the product of two non-locally
isomorphic analytic real or p-adic compact groups with simple Lie algebras, under the necessary
condition that the marginals posses a spectral gap. Furthermore, we give additional control on
the spectral gap depending on certain specific properties of the given groups and marginals; in
particular, we prove some new cases of the super-approximation conjecture.

One ingredient of the proof is a local Ulam stability result which is introduced and proved in
this paper. This result characterizes partially defined almost homomorphisms between two analytic
compact groups with simple Lie algebras.
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1. INTRODUCTION

Let G be a compact group, and let ;1 be a Borel symmetric probability measure on GG. An /(-step
random walk with respect to p is

X0 .= X, ... X,

where X7, Xo,... is a sequence of independent random variables with probability law . If the
group generated by the support of u is dense in GG, then for every continuous function f,

lim E[f(X )] = /G f(z) dme(a),
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where m¢ is the probability Haar measure of G. The rate of convergence is governed by the
operator norm A(u) of the convolution operator

T, 13(G.me) — LA(Goma),  (Tu(f)(x) = / f(g7 ) du(g),

where L2(G,m¢) is the orthogonal complement of constant functions. We say u has the spectral
gap property if A(u) < 1. Likewise, a symmetric random variable X with values in G is said to
have the spectral gap property if its probability law has spectral gap.

In this work, we will investigate the spectral gap property of a pair (X,Y’) of random variables
on G x Gy where G;’s are compact groups. It is clear that if (X, Y") has the spectral gap property,
then both X and Y must have this property. Motivated by this, we will say G; and G, are
spectrally independent if this necessary condition is also sufficient. The main result of this paper
shows that G; and G5 are spectrally independent for a wide class of compact groups.

Theorem A. Fori = 1,2, let F; be the field of real R or p-adic Q, numbers. Let G; be an F;-
almost simple group, and let G; be an open compact subgroup of G;(F;). Assume that G and Gy
are not locally isomorphic. Then Gy and Gy are spectrally independent.

Note that if G; and G5 are spectrally independent, then they should be algebraically independent,
that means that they have no common nontrivial topological quotients. Indeed, if ¢; : G; — H is
a common nontrivial quotient, then K = {(g1,¢92) € G1 X Gy : ¢1(91) = ¢2(g2)} carries a measure
with marginals m¢, and mg,, however, K is a proper closed subgroup of G; x G5. It is also worth
noting that in Appendix C, we provide examples of algebraically independent groups which are
not spectrally independent.

One of the key ingredients in the proof of Theorem A is Theorem 3, which is a local stability
theorem developed in this paper and is of independent interest. Roughly speaking, this stability
result states that a partial approximate homomorphism, see Definition 1, between G; and G5 as
in Theorem A is close to an isogeny between G; and Go. Stability theorems in this vein have
a long history, indeed Grove, Karcher, Ruh [14, Theorem 4.3] studied approximate homomor-
phisms between compact Lie groups; later Kazhdan [16] studied approximate homomorphisms
from amenable groups to unitary operators on a Hilbert space. One of the main novelties of our
result is that we only require the approximate homomorphism to be defined on a neighborhood of
the identity rather than the entire group; this generalization requires new techniques as the aver-
aging techniques, used in aforementioned results, can no longer be applied. We refer the reader to
Theorem 3 for the precise statement, here we only state two special cases of that theorem.

In the following, 1, denotes the ball of radius p in G with respect to the operator norm. Also,
for any prime p and any positive integer k, we let SL,(Z,)[k] denote the kernel of the reduction
mod p* from SL,,(Z,) to SL,(Z/p"Z).

Theorem B. (1) (Real Case) Let G; = SU(n;) for n; > 2. Then there exist mg > 1 and
0 < ¢ < 1, depending only on ny and ns, such that for every m > mqom/, the following

holds. For p < 1/2, suppose f : 1,(,1) — G5 is a map which satisfies

Fla ) et and  flgg2)(F(91)f(g2)) " € 15

whenever these expressions are defined. Assume further that the p™ neighborhood of Tm( f)
contains the p™ neighborhood of the identity in Gy. Then ny = ny = n and there is an
isomorphism U : SU(n) — SU(n) so that

f()¥(g)™" € 1yem for all g € 1;172.
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(2) (p-adic Case) Let ny,ny > 2 be two integers. There exist mg > 1 and 0 < ¢ < 1, depending
only on ny and ng, so that for every m > mom’ the following holds. Let k € Z". Suppose

[+ SLn, (Zp)[k]/ SLn, (Zp)[km] — SLn, (Zy) /[ SLiny (Zp)[km]
1 a group homomorphism such that
SLiny (Zp) (k'] / SLin, (Zy) [km] € Tm(f).
Then ny = ny = n and there is an isomorphism ¥ : SL,,(Q,) — SL,(Q,) so that
f(gSL,(Z,)[km]) = ¥(g) (mod p*™) for all g € SL,,(Z,)[k].

In the next section, we will present more precise statements of results of this work, including
Theorems A and B. We will also state a global version, Theorem 2, of Theorem A where we obtain
spectral gap which is uniform across all places.

2. STATEMENT OF RESULTS

Recall that for a symmetric Borel probability measure p on a compact group G, the contraction
factor A\(u) of p is the operator norm of the convolution operator

T, : L2(Gyme) — L2(Gima),  (Tu(f)() = / f(g7 ) du(g),

where L2(G, m¢) is the orthogonal complement of constant functions. Given a symmetric random
variable X with values in G and probability law pu, we define

L(X;G) == —log(A(n))-
When G is clear from the context, we often denote £(X; G) by L£(X).

Theorem 1. Fori = 1,2, let F; be the field of real R or p-adic Q, numbers. Let G; be an Fj-almost
simple group and let G; be an open compact subgroup of G;(F;). Suppose G and Gy are not locally
isomorphic and X = (X1, Xs) is a G X Ge-valued random variable with a Borel probability law.
Then the marginal bounds min (L(X1), L(X2)) > ¢o > 0 imply

E(X) > ¢0,G1,Go L.
In particular, G7 and Gy are spectrally independent.

Recall that the super-approximation conjecture states that for a finite symmetric subset 2 of
GL,(Z[1/q]), the connected component of the Zariski closure of the group I' = (2) is perfect if
and only if the family of Cayley graphs {Cay(m,,(I'), 7,,(Q2)} forms a family of expanders as m
ranges over the set of positive integers with ged(gy,m) = 1. Our next theorem proves a special
case of the super-approximation conjecture.

Expander graphs are roughly highly connected sparse graphs that have arbitrarily large number
of vertices. The first explicit construction of expander graphs was done by Margulis [21] using
Kazhdan’s property (T). Later, the most optimal expanders, known as Ramanujan graphs, were
constructed by Lubotzky, Phillips, and Sarnak [18], and independently by Margulis [22]. The
reader can see more on expanders and their connections with the spectral gap property in [19].

In the past two decades, there has been a lot of progress on the super-approximation conjecture
starting with the seminal work of Bourgain and Gamburd [2]. We refer the reader to the following
articles to see the more recent results on this conjecture [3, 27, 4, 11, 24, 25, 15].

It is worth pointing out that in [15], the super-approximation conjecture is proved if ) consists
of integral matrices and the Zariski closure of I' is Q-almost simple. By refining the tools developed
for the proof of Theorem 1, we provide an affirmative answer to the super-approximation conjecture
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with no integrality assumption in the case where the Zariski closure is absolutely almost simple
and moduli have at most two distinct prime factors.

Theorem 2. Let G be an absolutely almost simple Q-algebraic group. Let Q@ C G(Q) be a finite
symmetric subset such that the group T' = (Q) is Zariski dense in G. Denote by Vi the set of all
places v of Q such that T is a bounded subset of G(Q,). For distinct vy,vs € Vi, let 'y, ., denote
the closure of I in G(Q,,) x G(Q,,). Then

inf L£(X;T,,.,) >0,

v1F#ve VD

where X is a random variable with the uniform distribution on Q.

As it was explained in the introduction, one of the main ingredients in the proof of Theorem 1
is a classification of partial almost homomorphisms between two compact analytic groups. To
formulate our result, we need a few definitions and notation.

For a metric compact group GG and g € G, we let g, denote the p-neighborhood of g.

Definition 1. Suppose G; and G5 are two compact groups equipped with bi-invariant metrics
compatible with their topology. Let § > 0 and S be a symmetric subset of G; containing the
identity element 1. A function f : S — G is called an S-partial, 6-approzimate homomorphism
if the following three properties are satisfied

(1) fA) =1,
(2) flg™!) € (f(g)™")s for every g € S, and
(3) for all g1, g2 € S with g1g2 € S, we have f(g192) € (f(gl)f(92>)5-

We will refer to a 121)—partial d-approximate homomorphism simply as p-partial, d-approrimate

homomorphism.

Let G C (SLy)g be a Zariski connected, absolutely almost simple Q-algebraic subgroup. Let ¥
be the set of places v of Q where G(Q,) contains a compact open subgroup; note that ¥¢g equals
the set of all places if G(R) is compact, and equals the set of all finite places otherwise. We say a
family

{GV Ve E((;}

of compact groups is a coherent family attached to G if the following holds: G, C G(Q,) is a
compact open and G, = G(Q,) N SLy(Z,) for all but finitely many places v.
In the sequel, we let p, = v if v is non-Archimedean and p, = 2 if v = oc.

Theorem 3. Let vy and vy be two (possibly equal) places of Q, and let F; :== Q,,. Let G; C (SLy,)r,
be a Zariski connected, F;-almost simple subgroup, and let G; C G;(F;) be a compact open subgroup.
If F; = R, we assume that G; is given by an R-embedding in (SL,,)r such that G;(R) C SO, (R).
If F; = Q,, then we assume that G; C SL,,(Z,). In both cases, we consider the metric induced by
the operator norm.
Then there is a positive number ¢ = ¢(dim Gy, dim Gy) such that for every m >g, ¢, m' and
positive number p <Lq, ¢, 1 the following holds:

If 1,()1) — G 1s a p-partial, p™-approximate homomorphism which satisfies
15)2), C (Im(f))m (Large image),

m

then Fy = F, = F, Lie(Gy)(F) ~ Lie(Gy)(F), and f is near an isogeny in the following sense:
There is an F-central isogeny V : Gy — Go where Gy is the simply-connected cover of G so that

f(9) € U(G)pem  for every g € 111,
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where ¢ is the unique lift of g under the covering map from Gy to Gy which belongs to the image
of 4p-neighborhood of 0 under the exponential map.

Moreover, if F = {G,} is a coherent family attached to a Q-group G, then there exist k := kg
and mr, pr > 0 so that the following holds. For all distinct vy, v5 and p < pr-min{p, ", p, "}, there

s no p-partial, p"F -approximate homomorphism f : 121) — Gy, which satisfies 15)2) C (Im(f))pmr-

2.1. Outline of the arguments. We start with outlining the proof of Theorem 1. The proof will
be carried out in several steps and relies heavily on the results of [20].

Step 1. The first step of the proof is to reduce proof of the spectral gap property of the random
walk by pu, the probability law of X, to the study of functions which live at small scales. This is
done using the notion of locally random group and the Littlewood-Paley theory for these groups,
which was developed in [20]. In particular, we showed in [20, Theorem 2.10, Theorem 9.3] that
if for every n < 1y <¢,.¢, 1 and every function f that lives at scale n, we have the polynomial
contraction

(1) H,u(g) * flla < 0 fll2 for some integer ¢ < C'log(1/7),

then for every function g € L?*(G; x G) which is orthogonal to an exceptional finite dimensional
subspace Hy, we have || * glla < 27¢C||g|l2 — spectral gap for the space orthogonal to the
exceptional subspace. We refer the reader to Definition 3 for the definition of functions living at
scale 7.

Step 2. To obtain (1), we discretize the groups G and Gy at scale n°1) and use the spectral
gap of the marginals of i to find a coupling o of the Haar measures m¢, and mg, which is close to
' at scale n°M). The aforementioned coupling is constructed using the transportation problem,
see §3.7. This reduces the proof of (1) to showing that for all f that live at scale ), we have

(2) 16 5 flla < n°| ]l for some ny depending only on dim G; and dim Gj.

Step 3. In this step, we use the mixing inequality [20, Theorem 2.6] and the multiscale Bourgain-
Gamburd proved in [20, Theorem 2.12] to show that the failure of (2) yields a partial approximate
homomorphism between G; and G, in the sense of Definition 1.

Step 4. This step relies on Theorem 3, which is of independent interest. Indeed by loc. cit.
we conclude that such partial approximate homomorphisms exists only if G; and G5 are locally
isomorphic. This concludes the proof of Theorem 1.

Let us now briefly outline the proof of Theorems 3. The proof relies on the Baker-Campbell-
Hausdorff formula and bounded generation properties of simple Lie groups at small scales, see
Proposition 39. Our argument also relies on the effective version of Nullstellensatz in the form of
Lojaswicz inequality (real case) and the work of Greenberg (p-adic case). The details occupy §4
in the paper.

We end this outline by discussing the proof of Theorem 2. As alluded to before, the proof relies
on Theorem 1. Indeed, our proof of Theorem 1 yields estimates on the implied constants in terms of
group theoretic properties of the groups GGy and G5 in loc. cit. In the case considered in Theorem 2,
these estimates depend only on the set 2 — this deduction relies on strong approximation theorem.
This uniformity reduces the proof to the analysis of the exceptional representation Hy appearing
in Step 1. In [20, Theorem 9.3] we showed that this representation has dimension bounded by
(DD ). We use this fact and results in [24, 25] to adapt the above general outline and study
functions in Hg, thus completing the proof of Theorem 2.

3. PRELIMINARIES AND NOTATION

In this section, we will set some notation needed for the paper and recall a number of basic facts
that we will refer to in the sequel.
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3.1. Analysis on compact groups. Let G be a compact (separable) topological group. As it
is well known, G can be equipped with a bi-invariant metric that induces the topology of G. All
measures on G in this paper will be assumed to be finite measures; thus they are automatically
Radon measures. We let m¢ denote the unique bi-invariant probability Haar measure on G. For
any Borel subset A C G, the Haar measure of A is denoted by mg(A) or |A|. The cardinality of a
finite set A will be denoted by #A.

For a Borel measurable function f: G — (C the integral of f with respect to the Haar measure
is denoted, interchangeably, by [, f or [, f(y) dy. We denote by LP(G) the space LP(G,m¢). For

f € LP(G), we write
11 = ([ 17@P az)""

We also denote by C(G) the Banach space of complex-valued continuous functions f : G — C,
equipped with the supremum norm. For f, g € L'(G) the convolution f x g is defined by

(3) (f*g)(x /f g(y~'z) dy.

It is a fact that (L'(G), +, *) is a Banach algebra and if f € L!(G) is a class function, then f is in
the center of this Banach algebra.
For Borel measures p and v on G, the convolution p * v is the unique Borel measure on G such

that for all f € C(G),
/fdp*z/ //fxyd,u ) dv(y).

For a Borel measure p on G and f € L'(G), the convolution p * f is defined by
(4) s £)) = [ 10712 duty).

The following special cases of Young’s inequality will be freely used in this paper: for f,g € L*(G)
and probability measure p,

() 1f#gllz < fll gl I = gllee < fll2 Tlgllzs llie fllz < [1fl2-

Let G be a compact Hausdorff second countable topological group. When 7 is a Hilbert space
and T : 7 — 5 is a bounded linear operator, we define the operator norm of 7" by

|T|
IT|lop ;== sup ——.
ve\{0} o]l

When 47 is finite-dimensional, the Hilbert-Schmidt norm of T is defined by
IT|lass = (Te(TT™))"2,

where T™ denotes the conjugate transpose of the operator T'. Note that when S and T are linear
operators on a finite-dimensional Hilbert space 7, the following inequality holds

ITSlus < [T [lop||Sms-

3.2. The Peter-Weyl theorem. The set of equivalence classes of irreducible unitary represen-
tations of GG is called the unitary dual of G and is denoted by G.

The group G acts on L*(G) via (g f)(z) = f(g~'z), preserving the L?*-norm. Hence, it defines
a unitary representation of G on L?(G), the regular representation of G.

Let us enumerate a number of well known facts about unitary representations of G. It is well
known that every m € G is of finite dimension, and that every unitary representation of G can be
decomposed as an orthogonal direct sum of 7 € G. A function f € L*(Q) is called G-finite if there
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exists a finite-dimensional G-invariant subspace of L?(G) containing f. It is clear that G-finite
functions form a subspace of L?*(G). We will denote this subspace by £(G). It follows from the
classical theorem of Peter-Weyl that £(G) C C(G) and that £(G) is dense in L*(G).

For 7 € G and f € L'(G), the Fourier coefficient f(r) is defined by
flm) = /Gf(g)ﬂ(g)* du(g).

One can show that for f,g € L'(G) and 7 € G, we have

—

frg(m) = g(m)f(m).
Parseval’s theorem states that for all f € L*(G) the following identity holds:

IF15 = dim || () s.

el

3.3. Spectral Gap. Let p be a Borel probability measure on G and (X;);>1 be a sequence of
independent G-valued random variables with probability law p. An ¢-step random walk on G with
respect to p is given by the random variable

X0 =X, X,
Let us note that the law of X is given by the ¢-fold convolution u® of x. Assume that p is
symmetric and that the subgroup generated by the support of p is dense in G. Consider the
averaging operator
T, I3(G) > IA(G), Tu(f)=pxf,
where L3(G) :={g € L*(G) | [ f =0}.
Definition 2. We say that p has the spectral gap property if
A G) = [ Tullop < 1.
More generally, for a subrepresentation (m,H,) of L(G), we let
A M) = 1 Tulstrllop  and L Hr) := —log A(p; Hr).

3.4. Metric and Rényi entropy. In this subsection, we will collect a number of definitions from
additive combinatorics and [20] that will be needed later. Let G be as above, and let d denote
a bi-invariant metric on G. The ball of radius n > 0 centered at x € G is denoted by x,. The
n-neighborhood of a set A, denoted by A,, is the union of all z,, with x € A.

A subset A C G is said to be n-separated if the distance between every two points in A is at
least n. An n-cover for A is a collection of balls of radius 7 with centers in A whose union covers A.
Recall that the minimum size of an n-cover of A (which is finite by compactness of G) is denoted
by N;(A). The value

h(A;n) = log N, (A)
is called the metric entropy of A at scale 7.

The characteristic function of a set A is denoted by 14. For n > 0, we write P, = |111—7;" Note that
P, belongs to the center of the Banach algebra L'(G). For f € L'(G) (1 a probability measure on
G, respectively) we write f, (p,, respectively) instead of f % P, (i * P,, respectively).

The Rényi entropy of a G-valued Borel random variable X at scale n > 0 is defined by

Hy(X5m) = log(1/[1,]) — log || y]13,
where 1 is the probability law of X. As Hy(X;n) depends only on the law p of X, we will sometimes

write Hy(u;n) instead of Ha(X;n).
Let us also recall [20, Definition 8.7]:



8 ALIREZA S GOLSEFIDY, KEIVAN MALLAHI-KARAI, AND AMIR MOHAMMADI

Definition 3. We say f € L*(G) lives at scale n (with parameter 0 < a < 1) if

e (Averaging to zero) || foiall2 < nt/ 0| £lo-
e (Almost invariant) ||f77a2 — flla < 2| fl2-

3.5. Local randomness and the dimension condition. In this subsection, we will recall the
definitions of local randomness and the dimension condition from [20].

Definition 4. Let G be a compact group equipped with a compatible metric d. We say (G, d)
satisfies a dimension condition DC(CY, dp) if there exist C; > 1 and dy > 0 such that for all
n € (0,1) the following bounds hold.

1
(DC) o < [1,] < Cu™.
Cy
If the investigation involves two groups G; and Gs, we will distinguish their corresponding
constants by an additional subscript, e.g., C; and Cs.

Definition 5. Suppose G is a compact group and d is a compatible bi-invariant metric on G. For
parameters Cy > 1 and L > 1, we say (G, d) is L-locally random with coefficient Cy if for every
irreducible unitary representation 7 of G and all z,y € G the following inequality holds:

(6) I7(@) = 7 (@) llop < Co(dimm)"d(w,y).

We say a compact group G is locally random if (G, d) is L-locally random with coefficient Cy for
some bi-invariant metric d on G, and some values of L and Cj,.

3.6. Standard metrics on analytic Lie groups. We will be primarily interested in compact
analytic real and p-adic Lie groups with simple Lie algebras. Let G be such a group, a bi-invariant
metric d on G will be said to be standard if diam(G) < 1 and the following properties are satisfied:

(1) If G is a compact real Lie group, let dy be the metric induced from the Killing form. We
assume there is ¢; > 1 so that

¢;tdo(g,1) < d(g,1) < cado(g,1) forall g€ G

For instance, if G C SO,(R), the metric induced by the operator norm satisfies the above
property.

(2) In the p-adic case, we assume G C SL,(Z,) and take d to be the metric induced from the
operator norm on SL,(Z,). Note that in this case:
(a) 1, is a subgroup for every 0 < n < 1, and
(b) the condition DC(C, dy) holds for some positive constants C' and dy = dim G.

Lemma 4. Both of the following hold.

(1) Let G be a real and p-adic Lie groups with simple Lie algebra, then G is L-locally random
with coefficient Cy.

(2) Let G be an absolutely almost simple simply connected Q-algebraic group. Let T' C G(Q)
be a finitely generated Zariski dense subgroup in G. Denote by Vi the set of all places v
of Q such that ' is a bounded subset of G(Q,). For distinct vi,vy € Vi, let T, ,, denote
the closure of I' in G(Q,,) x G(Q,,), and assume that T, ,, =T, xT',,. Then T, ,, is
L-locally random with coefficient Cy where L and Cy depend only on I'.

Proof. Part (1) is proved in [20, Section 5.

We now turn to the proof of part (2). In view of [20, Lemma 5.2] and the fact that I',, ,, =
Iy, xI'y,. It suffices to prove that I', is L'-locally random with coefficient C, where L’ and Cj
depend only on T for all v € Vi To see this, let I' denote the closure of T' in [Lev., G(Zy), where
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Vg = Vi \ {oo}. Then by [25, Proposition 19], for all but finitely many representations p of I', we
have

((p) < dim(p)"

where A depends only on I" and ¢(p) denotes the smallest integer k so that p factors through k-th
congruence quotient of I'.

Let now C' denote the maximum of levels of the finitely many exceptional representations (in the
above sense); then I',, is (C, A)-metric quasi random in sense of [20, Definition 5.7]. This and [20,
Proposition 5.9] finish the proof. O

3.7. The transportation problem and coupling of measures. Recall that a coupling of
probability measures p; and po defined on probability spaces (1, %y, pu1) and (Qa, Bs, o) is a
probability measure p on the product probability space (1 X 5, % ® HB>) such that

pri(p) = i

holds for ¢ = 1,2. The set of all couplings of the probability measures p; and us is denoted by
E (11, 112). A simple example of coupling of two measures p; and ps is the product measure g & ps.
There are, however, many more examples. For instance, when €2, and €2, are finite sets, respectively
of cardinality n; and ns elements, then & (pu1, i2) is a convex set of dimension (ny —1)(ng — 1) + 1.
When the probability spaces (2;, {25 are finite, the question of determining the couplings has been
of interest in operation research. In the special case that €2; and {2, have the same cardinality,
couplings of uy and ps correspond to doubly stochastic matrices. It is a well-known theorem that
every doubly stochastic matrix can be expressed as a convex combination of permutation matrices.
We will use a less well-known generalization of this result, which is established in [17].

Proposition 5. Let Y] and Y; be two finite sets with |Y;| = N; > 1,4 =1,2. Let i be a probability
measure on Y, X Yo which satisfies the following: there exists some A > 2 so that

(7) }mﬂ(y) — N% < (N1+2)A forally € Y; andi=1,2,

where m; denotes the projection onto the i-th coordinate. Then there exists a coupling v of the
uniform measures on'Y; so that

|y y2) — (Y1, 92)| < e

We begin by fixing some notation. Let T'(Y7, Ys) denote the set of spanning trees of the complete
bipartite graph Ky, y,. Given probability measures o; on Y;, for « = 1,2, and a spanning tree
7 € T(Y1,Ys), define

Mg o YixYo =R by Mg (y1,52) = 01 (Y]) — 02(Y5)

01,02 o

where Y/ C Y; and Y/ UYJ is the connected component of 7\ 777z that contains y;; as usual, 717z

denotes the edge connecting y; to ys. Put
(8) T (01,09) :={r € T(V1,Y2) : M, ,, > O}.

01,02 —

The proof of Proposition 5 is based on the following.
Theorem 6 ( [17]). Let 0 € €(01,02). Then o belongs to the convex hull of
{M], 5, 7€ T(01,09)}

Proof of Proposition 5. Let us denote the uniform measure on Y; by my,, and write fi; = m;(f2) for
1 =1,2. We first show the following:

(9) 9(/11,/12) - g(mYNmYz)'
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To see (9), let 7 € F (fu1, fiz). Then

T

Mmyl My, (y17 yQ) My, (Y ) My, (Y/)
= M7 (1, y2) + (my (YY) — (YY) — (my, (Ys) — fi2(Y3))

Since M7, - (y1,92) > 0, we conclude from the above and (7) that

T |Y{| Y5 1 1 1
(10) MmYI’mY2 (y17y2) Z _(le\lfg)A - (N1]\2/2)A 2 _(N1N2)A*1 (Fl + N_Q) > — NNy

where in the last inequality we used A > 2.
On the other hand, if M” (y1,y2) < 0, then

My My,

T D 1 N 1 R B
my; , My, (y17y2) - N Ny — NiNy*

This and (10), imply that M (y1,y2) > 0 as was claimed in (9).

My, My,

Recall now that g € %(ul,,uz) by Theorem 6, thus, there exists {c¢, € [0,1] : 7 € T (i1, fi2) },
with > ¢; =1 so that
'EL = Z M.Z‘—luu'Q

TET (ji1,f2)

Define 7 := 3" 7, i) € .MmY1 my,: we will show that the proposition holds with 7. In view of (9),

v € € (my,, my,). Moreover, since Z ¢, = 1, we have

(Y1, y2) — D(y1,92)| < max | Mo my, W y2) — M7, G (51, 2))|

< |my, (Y)) — (YY) + |[my, (V) — i (Y5)]
1 1 1 1
< (N1Ng)A-1 <F1 + E) < NI Ng)A— T

The proof is complete. [

4. APPROXIMATE HOMOMORPHISMS

The main goal of this section is to prove Theorem 3, in which we investigate partial approz-
1mmate homomorphisms between open compact subgroups of almost simple analytic groups, see
Definition 1.

A Gi-partial d-approximate homomorphism is simply called a d-approximate homomorphism.
Approximate homomorphisms have been studied extensively. In [16], Kazhdan used cohomological
methods to show that approximate homomorphisms from an amenable group to U, (C) are close
to group homomorphisms. His argument is based on defining an averaging operator on the space
of cocycles and proving that this operator is a contraction. These arguments do not appear to
work when the domain of f is not a group or when the target is a p-adic group. In [14], authors
used a similar approach to prove that approximate homomorphisms between Lie groups are close
to homomorphisms.

In [9, 8], Farah, using more combinatorial techniques, proved a similar result for approximate
homomorphisms from finite groups of product form.

Our arguments here are different from these works. We rely on local analysis and passing to an
infinitesimal setting, we also appeal to effective Nullstellensatz and the Lojasiewicz inequality.

It will be more convenient to treat the cases where F, = Q, and F, = R, separately.
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4.1. Target is p-adic analytic. In order to simplify the notation in this section, we will write d;
for dy; and ds for dyo, also, we will write C; for C';; and Cy for Cio. Without loss of generality we
will assume C; > 2; note also that d; > 3.

In this section, we assume that F, = Q,. Note that in this case, 1
(G5. Therefore,

(2)

om is a normal subgroup of

Fo1l)— Ga/150, Flor) = [f(g0)] = F(g1)pm
has the following properties: for every ¢1,¢; € 121) if g197 € 1,()1), then

Flag) = Flg)f(g) and  flgrh) = Flg) ™"

Lemma 7. Suppose that F1 = R, F, = Q,, and p < 1/3. Then there is no p-partial p™ almost

homomorphism from 15)1) into G so that 1'(02, C (f(lf)l)))pm so long as m >>q, 4, M.

Proof. Assume contrary to the claim that f : 1,()1) — (5 is a p-partial, p™-almost homomorphism
which satisfies 1;2")1/ C (f(lgl)))pm. Define f as above.

Since 7 = R, log : 1571) — g1 is a convergent series, and || log ¢1|| < 2||g1 — I||. We also note that
(11) Jlexp(z) — I < 3l

for every x € gy with ||z < 1.
Let r := \Gg/lgﬂ, and for g; € 1) let 2 := bngl. Then ||z|| < p/(3r) and for every integer

p/6’
0 < j <r we have exp(jr) = exp(x)’ € 1;1). Hence
(12) Flar) = Flexp(a))” = [1?).

As f preserves multiplication, (12) and (DC) imply that
’Im ﬂ < eh(lg);ﬂ/ﬁ) < 0126d01

where h(lgl); p/6) denotes the metric entropy of 1,(,1) at scale p/6.
By our assumption, 1;3)1, / 1532 C Im f, which implies that Cop(™~™doz < C26%1. This is a
contradiction for m >4, 4, m' as C; depends only on d;. O

In view of Lemma 7, we will assume F; = Q, in the remaining parts of §4.1. In particular, 121)

is a pro-g group, and 1,()2) / 1,()%2 is a finite p-group which is in the image of the group homomorphism
f. This implies that p = ¢. In this case, all the balls centered at the identity 1) are congruence
subgroups of G;. The ball of radius p~* centered at the identity 1 is

(13) Gix :={9€Gilg=1 (modp")}.

The following theorem applied with ¢ = f implies Theorem 3 in this case.
Theorem 8. Let Gy and Gy be almost Q,-simple groups. Suppose G; C GL,,(Z,) are open compact
subgroups of G;(Q,) fori=1,2. Then there is 0 < c3 < 1 and a positive integer mgy both depending

only on dim Gy and dim Gy such that the following holds:
If ko >, 6, 1 and m > mom/, and

¢ Gy = G2/Gaom

is a group homomorphism, satisfying that G ym'/Gakrem € Im(p), then there is a group homo-
morphism m : G, — G2 so that

p=m (mod pLC?’kOmJ)
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and dm induces an isomorphism between Lie(G;)(Q,) and Lie(G2)(Q,). Moreover if G = G ®g Qp
where G is an absolutely almost simple Q-group, then the constant ko depends only on G.

Proof. Let my > 1 be a constant which will be explicated at the end of the argument.

Let g, := gl,, (Z,) N Lie(G;)(Qp) be the Lie Z,-algebra of G;. We start by recalling properties of
finite logarithmic functions from [24, Lemma 34]. We can and will assume that kg is large enough
such that for every integer n > ko,

exp: p"gi = G;n and log: G, — p'gi

are well-defined and inverse of each other; in particular, || exp(z)—I|| = ||z|| and || log g|| = ||g—1||-
For every integers [ > ko and n € [l, 2l — k|, the function
p" n—l p" g— 1) n—l
Ul Gig/Gin — /0" 0, V) (9Gin) = PO

is a well-defined bijective G;-equivariant function, where G; acts by conjugation on G;,;/G;, and
on g;/p"'g; via the adjoint representation. Notice that we further have

n log g -
Vi (9Gin) = = 1=+ p ‘g

LU > ko, ne|l,20 = ko), and n' € [I',2l' — ko], then

n//

(14) W2 (9 91Gim) = T (9Gin), W2 (9G] + 9™ g

where n” := min(n + ', n' +1).
By [25, Lemma 39], the Frattini subgroup ®(G,,) of G, is G, 41 for every integer n > k.
Hence for every positive integer [ < ko(m — 1), we have

(15) G2 jgm'+1/ G2.kom C P(G1ko+1) € Ga141/ G2 kgm-
In view of (15), ¢ induces a group homomorphism
Pln - Gu/Gl,n — G2,17k0+1/G2,n7k0+1> Spl,n(glGl,n) = 80(91) (mod G2,n7k0+1)>

where kg <1 <n < ko(m —1).
Using the finite logarithmic maps, for integers ko < [ < n <2l —2kg + 1 < ko(m — 1), there is
an additive group homomorphism 6;,, such that the following is a commuting diagram:

Gri/Grn =" Gy kos1/Gop kot
(16) | |
g1/0" "' — g2/P" ' go.
By (14) and (16), we deduce that

O21—ko+1,14n—ko+1 91/]97%191 — gz/pTHQQ

is a Lie ring homomorphism for integers ko <1 <n <2l —2kg+1and l+n—ko+1 < ko(m —1).
We get a Lie ring homomorphism 6,, := 6;,, ,,. such that the following is a commuting diagram

Plm,n
Lilm Lnm 2,lm—ko+1 2,nm—ko+1
Gro /Grn 25 G G
pm nm—kg+1
(17) |wi [

p— 677L —
g1/p"m g ———— go/p" I g,
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where
ko 2/<:0 -2
2|3 3
Notice that nm— m >k(m—4)-%
Let {egi), .. } be a Z,-basis of g;, and suppose cglk)s € Z, are the corresponding structural

constants. That 1s
d;
( )] = Z c§256gi)_

W—kzojtl, and  ny,, = ko(m —1) — 2.

Then a Z, linear map T : g1 — gg,T<6§~1)) = Zfz 1 xjseg) is a Lie ring homomorphism if and
only if T([ ,gl)}) = [T(e§1)),T(e§€1))] for every 1 < j,k < dy. This is equivalent to having the
following equatlonsz
da
2 1
(18) S i, = Y
1<i1,i2<d2 =1
for every integers 1 < j, k < d; and 1 <r < ds.
Let V be the Z,-affine scheme given by equations in (18). By the main theorem of [13], there

are positive integers Cy (V') and ¢4(V') such that for every point in X € V(Z,/p"Z,) there is a point
x € V(Z,) such that

n—cq(V)
x =X (mod p @ ).
A close examination of the argument in [13] yields the following: C4(V') depends only on the
number of variables and the degree of the defining equations; hence C4(V') only depends on dim G

and dim Gy. The constant c4(V') could depend on the defining equations of V' viz. the complexity

(@)

of rational numbers ¢ In particular, if G = G ®q Q, where G is an absolutely almost simple

jks* N
Q-group, then the constant c¢4(V) depends only on G.

Note that the map 6, in (17) is a point in V(Z,/p"~'mZ,). Applying the above with X = 6,,,
there exists a Lie ring homomorphism 6 : g; — g such that

(19) 0 =06, (mod plskml
where ¢ := (8C4(V))™! so long as k;o is large enough so that
mo—lm > (m—4) — 8 > Bm > 2 (V).

In view of the above discussion thus, if G = G ®q Q, where G is an absolutely almost simple
Q-group, then the constant ky depends only on G — recall that m > mom’ > 1.

Note that for ky > 2, p*°g, is a powerful Lie ring. Hence by the Baker-Campbell-Hausdorff for-
mula (see [7, Chapter 9.4]), 7 : G1 5, — Gaoky, 7(91) = exp(f(log(g1))) is a group homomorphism.
Moreover, by the definition the following is a commuting diagram

s
Gl,ko — GQ,]{Q

(20) llog llog

progr —— pog,.
Using the fact that log is Gj-equivariant function, where G; acts on G, y, by conjugation and on
p™g; via the adjoint action, by (17), (19), and (20), we deduce that for every T € go/pls*omlg,
which is in the image of

lm —kq+1+4[chkom]

(21) L o
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and every g € G ,, the following holds:

(22) Ad(p(9))(@) = Ad(w(9))(@).
Note also that, applying (15) with £ = £,,, we conclude p*™ g, /pleskomlg, is contained in the image
of the map in (21). Therefore, by (22),

Ad(p(9)) = Ad(n(g))  (mod pleshoml=hom)

where Ad(¢(g)) and Ad(w(g)) are written in matrix form with respect to a Z,-basis of g. Since
G2 is an almost simple Q,-group, choosing ky large enough we deduce that

p(g) =m(g) (mod pleskom)=kom’ ko),

The claim follows with ¢3 = ¢/2 so long as m > mem' > 8m’/c}. O
4.2. Target is a Lie group. In this section, we assume that F;, = R.

Let pp :=2if F; =R, and py :=p if F; = Q,. We will also use the condition (DC); recall that
in order to simplify the notation in this section we will write d; for dy; and dy for dy,, also, we will
write C for C; and Cy for C5. Without loss of generality we will assume C; > 2; note also that
d; > 3.

Lemma 9. In the setting of Theorem 3, suppose I, = R. If m > dy and log, (1/p) >>q, 1. Then
there is g1 € 15 such that d(g,, 1) > p? and d(f(g;),1®)) < ph/(dz).
Proof. Let {hy,...,h} be a set of maximal p-separated points in 15;1). Hence | > p~#%/2. The
group G can be covered by < Cyp/~%-many balls of radius p’ := Cyp®/(%) (recall that Cy > 2).
Note that
CQp/_d2 — Cl—dz —d1/2 < p—d1/2 <l
Hence there are i # j such that d(f(hs), f(h;)) < p'. Let g1 := h;h;'. Then d(g1, 1) > p?, and
d(f(g1), 1) <d(f(hi) f(h; 1), 1®) + p
<d(f () f(hy) ™" 1®)) 4 2p™
Spl + 2,0m — C2pd1/(2d2) + 2pm
<ph/(4dz)
The claim follows. O

In the next lemma we will use the constants C' and ¢ appearing in Proposition 39. We note that
these two constants depend only on GifG=G ®g Q,, see Proposition 39.

Lemma 10. Let C' and c be as in Proposition 39. In the setting of Theorem 3, suppose m >4, 1
and assume p < ¢ and log, (1/p) >q, 1. Then

rale) < 1(2/(8@

Proof. By Lemma 9, there is hg € 15" such that d(ho,1M) > p? and d(f(ho),1?) < ph/(d2),

Then by Proposition 39, applied with G1, we obtain that the following holds:

(23) {(g1,5[ho, a1]91_,,17) e (gdg,p[hoaadf]g(gpﬂ @ € Lojng—11p¢ } 2 Lezjng—r2p2¢,

for some g, , € 1;1) where c is as in Proposition 39.
Recall that p < ¢?; thus

(24) C2||h I||2 2C > C2p4+20 Z p5+20 Z p7C.
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Since f is p™-almost homomorphism,

(25) d(f((gl,p[ho, al]gi;) e (gd%p[ho, ad%]g;%p))’ 1(2)) <

d((f(ng)[f(ho), f(CLl)]f(gl,p)_l) (f(gd%p)[f(ho)a f(ad%)]f(gdf,p)_l)a 1(2)) + 9dip™.

Since d(hh',1?)) < d(h,1®) 4 d(h',1?) and d(hh'h~',1@) = d(W,1?)) for every h,h’ € Gy, by
(25) we obtain the following upper bound:

(26) d(f((gl,p[h07 @1]9f,,1,) “+ (a2 p[ho, ad%]gd}{p)» 1(2)> < df max d([f (ho), f(a;)],1%)) + 9d3p™.

Note also that d([h, h'],1?®) < d(h,1®) +d(Wh'h~,1®) < 2d(h,1?) for all h, k' € G;. There-
fore, using (26), we deduce the following

27)  d{ f((g1plho; arlgr,) - (9az plhos agzlgg' ) ) 1% ) < 2dph U 4 9atp™ < ph/(0),
P P 1P 147dy,p
By (23), (24), and (27), the claim follows. O

Lemma 11. Let the notation be as above. If m >

there exists some g, € 1;17)0 so that

C—
a d21)d1 +m'+1 and ]'ngo(]-/p) >4 1, then

(7C—1)d ,
d(f(g),1®) > p @ T

Proof. Let us write b = (70;_%1
2

f(lﬁ)l%) C 12?,). Fix a set {ay,...,ax} of coset representatives for 1,()1)/11(017)0 where k < C2p1=7d1,

Recall also our assumption that
1), € (Im(f)pn = FAD) .
(2)

Consequently, for every h € 1pm,, there exists some 1 < i < k and some ¢ € 15,17)0 so that

d(h, f(a;g')) < p™. Since f is p™-almost homomorphism, we have d(f(a;q’), f(a;)f(g")) < p™.
Therefore,

d(h, f(a:;)) < d(h, f(aig)) + d(f(aig), f(ai) f(9) + d(f(ai) f(g), fa:)) < 3p"
we used d(f(g"),1®) < p* and m > b. We thus conclude that

(28) 12, {f (@), -, flar) s
In view of (DC), one gets

{f<a1)7 . ,f(ak>}3pb S C12p(1—7c)d1 . 02(3pb)d2 — 3d2 611202p(1—7c)d1+bd2 S 3d201202p(m/+1)d2.

This contradicts (28), if p? < 37%C;2C5 2 O

+m/+1. We prove the lemma by contradiction. Thus, assume that

Corollary 12. In the setting of Theorem 3, we cannot have Fy = Q, and Fy = R if m >4, 4, c M’
and log,(1/p) >a, 4, 1.

Proof. Suppose to the contrary that there is such an approximate homomorphism. By Lemma 10
and Lemma 11, there exists g; € 15)17)C such that

(29) P < d(f(g1),1?) < p™.

where by = T U0 4/ 1 and by = &
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Since Fy = R, assuming p® < 1/10, for all 0 < k < 3p"7% we have

1
d(f(g1)" 1) > Skp™;
therefore, for some 0 < k < 3p”7% we have
(30) d(f(g)",1?) > 2p™.
1)

Let m be large enough so that 3p%27%1p™ < pP2. Since F; = Q,, we have g} € 1p7c, and

d(f(gr),1?) > d(f(g1)*,1®) — (k= 1)p™
(31) Z 2pb2 _ Spbszlpm > pr

where we used (30) and 3p?2~%1pm < pb2.
However, since g¥ € 15)17)0, Lemma 10 implies that d(f(g¥), 1®) < p’2. This contradicts (31) and
finishes the proof. ([l

The case where F; = F, = R. There are certain similarities between this case and the case
where Fy = F, = Q,. However, since in this case there is no reduction mod p map, the argument
is more involved.

The following lemmas can be viewed as the Archimedean analogue of (15). We start with finding
a large subset, see also Lemma 11.

Lemma 13. In the setting of Theorem 3, suppose Iy = Fy = R. Then there is0 < ' .= "(G2) < 1
such that for every positive integer k the following holds

2 1
]'((zllgcflpkm/ g f(lék)*lpk)ﬁpm'
Proof. We proceed by the induction on k. The base of induction & = 1 is part of the assumption.
By Proposition 65, we have
(32) 1@ c1®, 1? ).

C//kpm/+k:m/ = pm’7 c//kflpkm/

2)

k1 there are

By the hypothesis and the induction hypothesis, for every h' € 122, and ¢ € 1£
h € 1;1) and g € 1;)—1,01@ such that

(33) f(h) € Wy, and  f(g) € ggm-

By (33), as part of the Solovay-Kitaev theorem (see the following claim) for 0 < p < 1,
(34) [F(h), F(g)] € [, g logem) € [, '] jomr.

Since f is a p™-approximate homomorphism,

(35) f(lh, g]) € [f(h), F(9)]5pm-

By (35) and (34), we obtain that the following holds

(36) 7, ') € F([h: gD)spmapom—r C F([R, g))6om-

By (32) and (36), we deduce that

(37) 10 s € S, 150 gpm.

Claim. Suppose g,h € SU(n), |lg — I|| < r and ||h — I|| <. Then ||[g,h] — I|| < 2rr.
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Proof of Claim. Suppose z,y € M,,(C) such that ||z|| = |ly|| <1and g =1+ rz and h =1 +1'y.
Then

g, h] — I|| =|lghg *h™" = I|| = ||(gh — hg)g~"h7"|
=[|(I +rz)(I+r'y) — (I +7"y)(I +rz)|
=rr’||zy — ya| < 2.

The claim follows.
By the above claim, 1;),0“1 ) [15,1), 1;}3—1#@]' This and (37) imply that 162) C f(lgc)pkﬂ)gpm,

//kp(k+1)m’

which finishes the proof. (|

In order to study the image of the restriction of f to a small ball, we will be using the n-th roots
of elements of a compact group. In the next lemma, we recall some basic properties of taking the
n-th roots.

For g € 1,/3 in a compact Lie group and positive integer n, we let

1
gl/” ‘= exp (— log g) ;
n

recall from the discussion leading to (11), that exp and log are well-defined on the considered
neighborhoods.

Lemma 14. In the above setting and n € N, the following statements hold.

(1) 1, C 1,/" C Loy for every n < 1/3.
(2) (g4™)m C ()™ C (9189 for every 0 < n < 1/3 and ||g — I|| < 1 where the implied
constants are universal.

Proof. For g € 1,,, g" € 1,,, and so g € 1,17/n.

For g € 1717/", we have that ¢g" € 1,, and so ||logg"|| < 2. Hence ||+logg"|| < 2n/n, which
implies

1 1
lo = 1= llexp (3 logg" ) ~ 11 <311 o] < on/r.

The first set of inclusions follows.

To show the second claim, we use the Baker-Campbell-Hausdorff formula. We give an extended
discussion on this around (52). For now, we just mention that for z,y in a ball of radius 1/6 in
the Lie algebra g,

r#y := log(exp(x) exp(y)) € g,

and

(38) lz#ty — = —yll < Cllzllllyll,

where C is a fixed universal constant (see 56).
Suppose h € (g,)"/". Then log h = 1(2#y) where z :=log g and y € 0,. Let z := log(hg™"/").
Then, we have

(39) () = loa((hg™/")g"") = 2#(x/m).

By (38) and (39), we deduce that

1 1 T C
S < ||= <= .
(10) Jell = = (Cllell + Dllyll < 11> (a#ty) = = = 2l < =] ]
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1 +C_’||x||
2l < (— Il <
n—Cllz]

Hence if ||z]| < 1/(20),

m—1"

which implies that hg=/" € 14, /.
On the other hand, for every h € 1,,,, we have
(g""h)™ = g""h- - g h = (g""hg™ ") (g hg ™) - (9" hg Mg € gy
and so (g™),/n C (g,)"/™. O
The next lemma extends the result of Lemma 10 to smaller balls. Essentially, we show that

f (L(nl)) C 12 for small values of 7 with the property that a/r is bounded by p~9¢:(}),

Lemma 15. In the setting of Theorem 3, suppose Fy = R. If m >4, 1 and C := C(Gy) is as in
Proposition 39, see Lemma 10, then for every 4p"“T™ < r < p™@ /3 the following holds

1 (2)
f<11(” )) - 1sp(r)

where s,(r) = 6(2p/(d2) p=TCp 4 pm).

Proof. Let C = C(G4) be as in Lemma 10; let ro := p¢ and ag := p?/®%), Then

(41) Fawy 1@,

For every positive integer k£ and g € 11%)/1@’ gk € 1%). Hence using (41) and the fact that f is
p™-approximate homomorphism, we deduce

2

(42) Flo)* € F(g"pm S 124 m

Assuming that ag + kp™ < 1/3, by (42) and part (1) of Lemma 14, we obtain the following
(2) 1/k (2

(@3 Flg) € (12 12

For every 4p™ < ¢ < 1/3, let k be an integer such that (k+1)"! <& < k™. Then ag+kp™ < 1/3,
and by (43), we have

1 1) (2) (2)
(44> f(17(”0)5) C f(lm/k) c 16(‘%0+p7n) c 16(2aoe+pm)'
Therefore, for every 4p"“+m < r < p7@ /3, we get
1 (2
F) € 1

(2a0p=7Cr+pm)
which finishes the proof. 0

Lemma 16. In the setting of Theorem 3, suppose Fy = F5 = R. Then there is 0 < ¢ := ¢(G) < 1
such that for every positive integer TC' < k < 'm/3 the following holds
(2) (1)
(45) 1é7fkpk+7c'm’ - f(lpkfl)lskpm'
so long as 0 < p < 1 is small enough depending on G .

Proof. We will use the following two facts. First,
(46) f(g") € (f(g)")npm

if g and n are so that f(g') is defined for all 1 <1 < n. Second, the following consequence of the
first part of Lemma 14:

(47) 10 C (1

n \n
kafl/n) g (1l(7k)) .
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Let C be as in Lemma 15. Then, by Lemma 15, (f(lﬁ)_l)lgkpm)l/n is defined for all 7C < k <
m/3. Thus, we will assume throughout that 7C' < k < m/3.

Suppose that 15 C f(lﬁ),l)lgkpm for some py < 1/3. Then, for n > max{6/p, 18}, we have

(1(2))pk/n Q(l,(i))l/n by part 1 of Lemma 14
Q(f(lf)?_lhgkpm)l/n
Q(f(lﬁ_l)l/n)wxlskpm/n by part 2 of Lemma 14
Q(f((li,?)n)l/n)lsxwkpm/n by (47)
g(((f<1gg))n)npm)1/n)18><18kpm/n by (46)
gf(li,}c)>18pm+18>< 18kp™ /n by part 2 of Lemma 14
gf(lijc)>18(k+1)pm since n > 18.

Hence, if we assume p < 1/3 and put n = [6/p], then applying the above, repeatedly, we conclude

that, 122) C f(lﬁl,l)lgkopm for some k¢ € N implies

(48) 1(2) Yk—ko g f(lﬁjc)—l)18k‘pm

Py (P/7
for all k > k.
Applying Lemma 13 with 7C, we deduce that (48) holds for k = kg = 7C, p < 277¢ and
Pry = "TC71pTC™ Therefore for all 7C < k < m/3, we have

2 1
1£//)7C—17—k+7cpk+7c'mlf7c g f(lﬁk)_l)18kpm’
and the claim follows. OJ
For every positive integer k, let
lo exp(pFx
Or : 0,020 = g2, O(z) := il pi)(p )))

By the definition, we have
(49) exp(p“0u(2)) = f(exp(p*x))

for every x € 0,5.
Lemma 15 implies that 6 is approximately Lipschitz.

Lemma 17. In the above setting, for x € 0,2, p < 1, and 7C' < k < m, we have

(50) 168 (2)Il < p~" ]| + p™ 7"
In particular, if p << 1 and 7C < k < m, then
(51) 16k (x) ]| < p~"¢

Jor all x € 0,,.

Proof. Since exp(pFz) € 15)}3”90“, by Lemma 15 we have

exp(p"0x(w)) = f(exp(p*x)) € 1) vy

Hence ||p*0x ()| < pF~7C||z| + p™, as we claimed in (50).
The claim in (51) follows from (50). O
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To understand further properties of 65, we start by recalling some of the consequences of the
Baker-Campbell-Hausdorff-Dynkin and the Zassenhaus formulas.
For z,y € g; with |z]] [lyll < 12, put
a#ty = log(exp(z) exp(y)).
By the Baker-Campbell-Hausdorff-Dynkin formula, we have

0 k-1
(52) Ty = Z & Z % ! Zmn(T,Y),

%
k=1 k my,n;>0,m;+n;>0 (Zi:1(mi +n;)) Hizl(mi!ni!)

where m := (my,...,my), n:= (ng,...,nx), and
Zmn(T,y) =2, .., 2, Y, .Yy Ty LY, Y
— ——
mi ni mg Nk

is a long commutator. Let us observe that for every m, n, x and y we have
(53) 1 Zunn (2, y) || < 2=t ol il

Suppose x,y € g; and |[v]] < n|z| for some 0 < n < 1. Using the multi-linearity of long
commutators and (53), we deduce that

(54) 1 Zenm(@ +0,y) = Zunn(z,y)|| < 2ty gjimi g e,
We show this by induction on ||m|; + ||n||;. Here is the induction step:

[Zmn(z +0,9)=Zma(z,y)|| = [[ad(z + 0)(Zm-ein(z + 0,y)) = ad(2)(Zm—cn(2,9))]
<2n[|2|[l[ Zm-e1n(z + v, 9)|| + 2/ ][ Zm—e1 n(z + v, Y) = Zm—cin(2,9)|
<glmltinag |l y) Iyl
§2||m||1+\|n||1+1,7HxHHm||1Hy’

By (54) and (52), we obtain the following perturbation estimate: for every x,y,v € g; with
[oll < nllzll, ], ]yl < 1, and 0 < < 1,

|Hm||1 |||nH1 ollmlli+n] ’Hmlll Inl[x

||

[R0S

o0

1 glbnlla-+ 1 | g [
le+opy -yl < (37 D )

k=1 mg,n;>0,m;+n; >0 (HmHl + HnH )Hz 1<ml'nz')

(55) <§: (AlzllF+2lyl 1)k ) — 2log((2 — A1,

k=1

Next we note that by (52) and an argument similar to (55), for every 0 < n < 1 and ||z||, ||yl < 1
the following holds

(56) (nx)#(ny) = n(x +y) +n’°z, for some z := z(x,y) € g; with ||z]| < ||lz]|[y]|.
By (55) and (56), for ||z|| < |ly]| <1 and 0 < n < 1, we obtain the following upper bound,
1((nz + ny)#(—nx)#(—ny) || =ll(ny + n*z(n(z + y), —nz))#(—ny)|
=\ (ny + n*2)#(—ny) — (ny)#(—ny)||
(57) <log(2 — e“MWh =1y < 2|yl

where C' is a universal constant and the last inequality holds as lim,_,o+ In(2 — €)' /s = 1. By
(57), we deduce that for [|z||,|ly]| < 1 and 0 < n < 1, there is 2’ := 2/(z,y) € g; such that
12l < max{|[z]|, [[y]|} and

(58) exp(n(z + y)) = exp(nz) exp(ny) exp(n°2’).
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Lemma 18. In the above setting for x,y € 0,4, p < 1, and C < k < m, we have
164 (x +y) — (Or(2) + Oi(y)) | < P

Proof. We start with the following computation of 0 (z +vy). By the definition of 0y, (49), we have

exp(p Ok (z + ) =f(exp(p*(z +y))) = f(exp(p*z) exp(p*y) exp(p**2')) (by (58))
=f(exp(p*x)) f (exp(p™y)) f (exp(p**2")) exp(w) (for some [lw| < p™)
= exp ("0 () exp(p°Ok(y)) exp(p?O1(2")) exp(w)

(59) = exp ( ("0 () (0 00 (1) # (5™ 0 ()
By (59), we obtain the following
(60) PrOk(x +y) = (p"0k(2)# (0" 0k (y)) #(p™ 0ok () w0

By (51) and (56), we deduce the following

(0" () # (" 0k (y)) =(* 7 (0™ 1 (2)))# (0" (™ Ok (v)))
(61) =p" (0 () + O(y)) + p™ 12,

for some z € gy with [|z| < p"C|0k(2)||||0x(v)||. By (61) and (56), we obtain that the following
holds

(01 () # (0" 0k () # (0™ 021 (2') =(p" Ok () + Ok(y)) + P 2)#(p* O (2"))
=(0" (O (x) + Ok(y)) + P H%) + (p™ a1 (2)) + p** 17
(62) =p"(Ok(x) + Ok(y)) + p”“ MO+ 7 4 pM 00 (2)).

By (62), (56), and (60), we deduce the following
16 (2 +y) — (On(2) + Ox(m))]| < P,
and the claim follows. 0
Using Lemma 18 and Lemma 17, we can show that 6, almost preserves scaler multiplication.
Lemma 19. In the above setting, for v € 0,2, p <1, =1 <t <1, and C < k < m/2, we have
164 (tx) — 10x(2)]| < p2 €.

Proof. There is a rational number r/s such that [t — Z| < p¥/? and |r|,|s| < p~"/2. By Lemma 18,
we have |[s0;,(2) — O (z)|| < spF~14¢, which implies

e () - ]

Similarly, we have

o () ()] e

Combining (63) and (64), we conclude that

(65) Hek(fx) — fHIC(JJ")H < rpfTHC « psT1C
$ s
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Now Lemma 18 and Lemma 17, imply that
Hek(m) - 914(:75) H <<H9k (t:zc — fx) H | phmlc
s

(66) <<p§—140‘
Note also that ||(t — Z)0k(z)|| < p~ ™t — ] < p2 =7 Therefore, by (65) and (66), we have
16k () — t0(2)]| < p= 4,
as it was claimed. O

Corollary 20. In the above setting, suppose p < 1 and C < k < m/2. Then there is a linear
function 0 : g1 — g such that for every x € 0,2 we have

16(2) — Gp(z)|| < p2 €.

Proof. Suppose {ej,...,eq } is an orthonormal basis of g;. Let 0, - g1 — @o be the linear map
defined by 0 (e;) := (p/2)10k((p/2)e;) for every i.
For every x := Zf;l tie; € 0,/2, we have

16k () — O ()] :Hek(ztiei) - 5k(ztiei)|!

dy
2t;
SR PIUAEEA(OR (by Lemme 18)
=1

di
<<pk—14C + Z
i=1

<pr e (by Lemma 19),

(S 0/265) = 2000120

as we claimed in the corollary. O

Our next task is to show that 69, almost preserves Lie algebra commutators. This will be done
in two steps: first we show that Oox ([, y]) is close to [0x(z), 0k(y)], Lemma 21, then we show that
f5r, and 6, are close to each other, Lemma 22.

Let us begin with the following consequence of the Baker-Campbell-Hausdorff-Dynkin formula,
see (52). For every 0 <n < 1 and ||z||, ||y|| < 1, we have

0’ 3

(67) (1) #(ny) = n(a +y) + Tloso] + 35 ([ )] = [y: o, 9]]) + ',

for some z; := z4(x,y) € g; with ||z4| < max{||z|®||yll, |lz|*|lylI* |z|lly|*}. By (67), we obtain
the following
2 3

() (ny) (=)t (=) = (nle +9) + Tlaroy) + 35l o,9]) = [y o] ) + 720
#( =@ +y) + Tlooy) = L ([l = .ol ) +0'24)
(68) =0z, y] + 1z,

for some 24 := 24(x,y) € g with ||z5]] < max{||z|* [y, [l=l[ly[*}-
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Lemma 21. In the above setting for x,y € 0,16, p < 1, and C' < k < m, we have

102 ([, ) — [0k(2), 0u(v)]]| < p*F 1€
The implied constants are absolute.

Proof. Again using the definition of 6y, (49), we have

oxp(p* 0o ([, y])) = (exp(p™* [z, y])) (by (49))

= (exp (log([exp(pa), exp(p"y)]) — o) ) (by (69))
=f(fexp(p*x), exp(p*y)Ju) (for some ' € 15/,
=[f(exp(p*a)), f(exp(py)]f (u)u/ (for some w' € 15),..))
=[exp(p’“9k( ), exp(p* 01 (y))] f (')’ (by (49))

(69) = exp(p** [O(), O (y)] + p™* 2125 f ()" (by (51) and (68))

Moreover, by Lemma 15, we have

(70) fuHw' e 1(02()p3k,70+pm).

By (69) and (70), we obtain the following

(71) Oar ([, y]) = [0k (@), On ()] + p* 212",

for some 2" € go with ||2”|| < 1. The claim follows.
We now show that 6y (z) and 6, (x) are close to each other.
Lemma 22. In the above setting for x € 0,2, p < 1, and C < k < m/3, we have
1621 (x) — O ()| < p*7.
Proof. Let £ := |p~*|. By (49), we exp(p®*0or(z)) = f(exp(p?*1)), and so
exp(£p™ 0 (x)) =(f(exp(p™ )"

(72) =f(exp(£p*z))u (for some u € 1%2,1)
Now note that ||[(p?*z — p*x|| < p**, therefore,
(73) exp(£p*x) = exp(p™x )/
for some u' € 1(01()/)%). By (72) and (73), we deduce the following

exp(Lp* 0oy (2)) =f (exp(p*z)) f(u')w” (for some w" € 1%21)/)7”).
(74) = exp(p*0i(z))w (for some w € 1(02()p2k,70+pm,k)),

where in the last equality we used Lemma 15 and the definition of 6 in (49).
In view of (74), we have

(75) 1607 021 () — p Or(@)l| < P77 + p™ 7.
Recall now that ¢ := [p~*| and ||0(z)|| < p~7¢, see (51). Therefore,
p p
1% Oar. () — p*Oar(2)]| < p?*77.
This and (75) imply that ||p*0ax(z) — p"0k(z)|| < p*77¢ + p™~*. In consequence, we deduce
1621 () — O ()| < P77+ p 2 < phTE

where we used k < m/3.

23
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The proof is complete. O
Corollary 23. In the above setting, for x,y € 0,16, p < 1, and C < k <m/3, we have

1621 ([, y]) — [Ook (), Oar(y)] || < p"1C.

Proof. In view of Lemma 22, 0y;,(e) = 0)(e) + z, where ||z,|| < p*~7¢ for @ = z,y.
The claim thus follows using Lemma 21 and (51). O

Corollary 24. In the above setting, suppose p < 1, C <k <m/3, x,y € 0,16 and Ooy, - g1 — 02
1s the linear map as in Corollary 20. Then

162x(@) — B ()| < 74 and ||fan ([, y]) — B (). B ()]} < 0721

Proof. The first claim is proved in Corollary 20.
The second claim follows from the first claim, Corollary 23, and (51). O

Similar to the p-adic case, we consider the set of Lie algebra homomorphisms from g; to go
which can be viewed as an affine variety as follows: Let {elZ b Z) ..} be an orthonormal basis of

gi, and suppose o

ns € R are the corresponding structural constants That is,

doi
-5

Then a linear map 7" : g1 — g2, T(eg-l)) = Zgg 1 :cjseg ) is a Lie ring homomorphism if and only if

T([egl), e,(cl)]) = [T(egl)), T(e,(:))] for every 1 < j,k < d;. This is equivalent to having the following
equations on Matg, x4,(C):

(76) Fiwr(x) := Z cgfgﬂxﬁlxkh — cﬁ)r'v” =0

1<it iz <ds i=1

for every integers 1 < j, k < d; and 1 <r < ds.
Let V' be the real affine variety given by equations in (76). Note that V(R) is non-empty as it
contains the zero vector. Suppose

9% (1) Z ajse

Put a = (a;). In view of Corollary 24, for every 1 < j < d;, we have

He (16 J >H<<H9 (16 J >H+pk MO < pTe

where we used (51) in the last inequality. Therefore,
(77) lall <4, p77¢
Moreover, by Corollary 24, we have

(78) | Fiwr(2)] <, P72
Lemma 25. In the above setting, for m’ <4, k <m/3 and 0 < p <, ¢, 1, there is a Lie algebra
isomorphism 6 : gy — go with the following properties:

(1) 118 = Fallop < 72 i

(2) For every x € gy with ||z| < p/2, |0(z) — O ()] < p*/2.



SPECTRAL INDEPENDENCE 25

Proof. Let V' be the variety which was defined above. Note that V(R) # (), indeed 0 € V(R).
By [26, Theorem 7], which is a quantitative version of Lojasiewicz inequality, there are positive
numbers C := C(V) and D := D(dy,d,) such that for every x € R%"% with dist(x, V(R)) < 1 we
have

(79) dist(x, V(R)) < 51;1135{\fj,k,r(X)|} (1 [IxI)”.

Using (78), (77), and (79), there is a € V(R) such that
(80) Ha o aH < kafQICprCD < ka/4

so long as max{1,21C + 8CD} < k/8 and Cp < 1.
Since a € V(R), it induces a Lie algebra homomorphism 6 : g;(R) — g2(R); moreover, (80)
implies the following upper bound estimate:

(81) 16— Gaillop < p*/2.

In view of (81), for every & € 0,5, we have ||8(x) — Og(z)|| < p*2||z|| < p'*2. Hence, using
Corollary 24, we deduce the following

(82) 10(x) = an)| < p" M 4 p'*5 < P2,
so long as k > 28C' + 1 and p is small enough.

We now combine the facts that image of 6y, is large, see Lemma 16, and that § is linear with (82)

to show that 8 is surjective. More precisely, we will show that for every 0 < gy < 0.01 and p*° < 1,

we have
(9(91))pk/3 2 0p250k+7cm/+6.
To that end, let us first recall from (11) that for every g € 1&?3 and every = € g; with ||z|| < 1/3
we have

83) VMg =19 < |[lloggl <¥llg — 17, and V| < [Jexpx — 19 <V,
where O/ = 3. Increasing ¥, if necessary, we further assume that log(g,) C (logg)y., for every

g e 196 and r < 1/3. Recall also the parameter 0 < ¢ < 1 from Lemma 16. Fix some 0 < gy < 0.01.
Choose p small enough so that

(84) P <min{0.1,6 ", ¢}.
Let ¢ = 2k + 3; then b/'p*~" < 1p? 1. Thus, Lemma 16 implies
2
(85) 1[(37)_%7%, C F(exp(Oyp-1)) 1 ggpm-
Combining (83) and (85) implies that
(86) Ob/—lé7—2p£+70m’ g log(f(eXp<Ob’p‘*1))186pm) g (lOg f(exp<oép2k+l)))18b/£pm'

We also recall from (49) that exp(p**6a,(z)) = f(exp(p*x)) for every x € 0,/5. Altogether, we
conclude that

(87) 0p—1 ET—Lpt+TCm! =2k C (Im(fax)) 18b/¢pm—2k -

We now use (87) to complete the proof of (3). Recall from (84) that p* < min{0.1,5!, ¢}, and
also recall that ¢ = 2k 4+ 3. Hence

(88) b/—lé7—€p£+70m/p—2k _ b/—lé7—lp70m’+3 > p250k+70m/+6

I

where we also used 3¢y < 1.
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Combining (82), (87), and (88), we conclude that

-~

(50) GERI =T p—
Since g9 < 0.01, (89) implies that dim g(gl) > dimgs so long as k > m’. This establishes
part (3) and also shows that 6 is surjective.

Furthermore, since g; is a simple Lie algebra and 0 is not the zero morphism, 0 is injective.
Altogether, we conclude that 6 is an isomorphism and the proof is complete. 0

Proof of Theorem 3. In view of Lemma 7, Theorem 8, and Corollary 12, we may assume F; =
F, =R.

Let 6 be as in Lemma 25. By [23, Theorem 10|, there is a group homomorphism ¥ : G; — G»
where G is the simply-connected cover of G; such that the following is a commuting diagram

51L>G2

(90) [ o

g1 — 2.

Let ¢ : G; — G be the covering map. Since the kernel of ¢ is a finite central subgroup, ¢ induces
a homeomorphism from 1(01) to 11 Hence we will view ¥ as a function on 1) as well.
Gy (1) Og, (1) Oc, (1)

Note that by (90), for every x € g; and g € G, we have

(91) 0(Ad(g)(x)) = Ad(T(9))(0(x))-

We will show that the theorem holds with this W. In view of the definition of 6y, see (49), for

1)
p/6’

exp (0™ Ad(f(9))(02r(x))) =

every v € 0,6 and g € 1, we have

f(g) exp(p™bar(2)) f(g) "
f(9)f(exp(p™x)) f(g)~"

:f(gexp p*r)g " u (where u € 1§i)m)
S el Al )
(92) —exp(p 2’fe2k<Ad< @)

21/)6 the following holds

(93) I Ad(f(9))(O2r(2)) — bar(Ad(g) (2))]| < p"™ 2 < p*7.
Moreover, by part (2) of Lemma 25, we have

I Ad(£(9)) (021 () — Ad(f(9))(0(2))]| < p*'* and
162 (Ad(g) () — B(Ad(g) ()| < p*"*.

Altogether, (91), (94), and (93), imply

By (92), we deduce that for every € 0,/6 and g € 1

(94)

~

I Ad((9))(B(x)) — Ad(f(9))(@(2))]| <[0(Ad(g)(x)) — Ad(f(9))(Bar(2))]| + p*/°
<[[621(Ad(g) () — Ad(f(9))(Gar())]| + 20"/
(95) <3pk/3.
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Now using (95), we deduce that || Ad(¥(g)) — Ad(f(9))]lop < p*/* for every g € 121/)6. Finally,

using the fact that Ad induces a homeomorphism on Og,(1)-neighborhood of 1), we get

1% (g) — f(9)llop < p*/*.
This establishes the theorem for F; = F, = R, and completes the proof. 0

5. DISCRETIZATION AND COUPLINGS

The objective of this section is to show that, under mild conditions on the groups G; and Ga,
one may reduce the question of spectral independence of G; and G35 to the case of measures on
(G1 X G5 whose marginals are Haar measures m; and ms.

We begin with the following definition.

Definition 6. Let (G,d) be a compact metric group, and let 0 < 6 < 1. We say (G,d) is
d-discretizable if the there exists a partition {X;} of G satisfying the following two properties:
(1) X, is a Borel set for all 4, and | X;| = |X| for all 7 and j.
(2) diam(X;) < ¢ and X; contains a ball of radius ¢ for all i.
We refer to a partition {X;} satisfying (1) and (2) above as a d-discretization of (G, d).

Note that in this section X;’s denote a partition for G unlike in the rest of the paper where
generally X, Xy and X denote random variables.

As we have done so throughout the paper, we often drop d from the notation and simply write
G is 0-discretizable.

An important class of examples is provided by the following proposition.

Proposition 26. Suppose G is a compact analytic (real or p-adic) Lie group, equipped with a
standard bi-invariant metric, see §3.6. Then G is §-discretizable for all 0 < § < 6y where g is 1
in the p-adic case and depends only on the dimension of G in the real case.

Proof. In the real case, the claim follows from [10, Theorem 2|. Suppose G is a compact p-adic
analytic group, recall from §3.6 that 15 is a subgroup for all § > 0. Let X;’s be the cosets of the
subgroup 15. Then X;’s form a partition of GG that satisfy the desired conditions. 0

Let G be a é-discretizable group, and let {X;} be a d-discretization of G. Then |X;| > 0 for all
i. If we further assume that 2-n% < [1,| < Cin® for n = 6,62, then
o n
(96) Cre* < | Xy < Cpo%,  for all i
The following is the main result of this section.

Theorem 27. Let Gy and G5 be two compact groups. Suppose there are constants Cy, Cy, L,

do1, doa, and p < m so that the following properties are satisfied.

e G; is L-locally random with coefficient Cy for i = 1,2, see (6).
e For alln=p’, j €N, the group G; satisfies

1
(97) F'rzdm’ < |1, < Ci®i, fori=1,2.
1

e Fori=1,2, G; is §-discretizable for all § = p/ with sufficiently large j € N.
Let i be a symmetric Borel probability measure on G X Gy satisfying
(98) max{A(mp; G1), N(mopu; G1)} =2 A < 1

where m; denotes the projection onto the i-th factor fori=1,2.
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Then, there exists a symmetric coupling v° of my and my so that the following holds. Let C' > 0
and f € L*(Gy x Go,my x my) satisfy that | P, f — flla < p%||flla. Then

|1 5 f =P fl|, < 6% ]l
so long as € > log,(p/C4), see (101) for the dependence of the implied constant.

The proof will occupy the rest of this section and will be completed in several steps. Let us
begin with the following lemma.

Lemma 28. Let H be a compact group; assume that for some 0 < n < 1 and constants C; and
dy, we have

(99) Crin™ < [1,] < Cunp®.

Let o be a symmetric Borel probability measure on H and assume that \(o; H) < 1. Then
1/2
00(X) = [XI| £ Moz H) (IXI/11,1) < Alos HYCy o2 X172

Proof. First note that the second estimate in the above upper bound is a direct consequence of (99)
and the first inequality.

We now show the first inequality. Recall that 0,(X) = o * P,(X) = (I,(F,), 1x). Similarly, we
have |X| = (T,(1g),1x) (where we also used the invariance of the constant function). Thus,

|o(X) = [ X[ = {To(Fy = 1), 1x)
< 76 (P = 1a)ll2ll2xl2
(100) < Moy H)||Py = Lal|2| X [V2

Therefore, we need to compute || P, — 1y||2. By the definition we have

12~ Ll = [ 1P, = 1Pa

:/ ||+—1y2dh+/ dh
K H\1,

1—|1
= (L O g | = ol

This and (100) imply that

3 1/2
o0(X) = [X]| < Aoy H) (52 px 2

1]
and complete the proof. O
We now begin the proof of the theorem.

Proof of Theorem 27. As was mentioned before, the proof will be completed in some steps.
Let C be an integer > max{L(C + dy;) + C + 1, .-+ 1}, and let § = pC. Let

(101) (> —(2C% +0.5)log, Oy + max{d01, do2 }(0.5 + 4C?) log,, p.
Then for : = 1,2, we have
(102) )\<7Tz,u(é) G) < )\f < 0—0.5—262p(0.5+4é2)d0i

Apply Lemma 28, with n = p, H = G; and 0 = m;pu9 for i = 1,2. Then (102) and (97) imply

[ (¥:) = [¥i]| < O30 oot /2.yl 2

(103) < O piC 2
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for any Borel subset Y; C G;.

The definition of v”. Recall that by our assumption GG; and G, are d-discretizable. For i = 1,2,
let {X}:1 < j < N;} be a d-discretization of G;. In view of (97) (with n = 4,6%) and (96), we
have

(104) Crle%hi < 1/N; < C16% fori=1,2.
Let Z; ={1,...,N;} for i = 1,2, and define i on Z; x Zy by
G, k) = ui) (X x X7).
Then for all 1 < 7 < Ny, we have
[mi(f) — 3| = | (X] x Ga) — |X] x Gy
= mpf (X)) = 1X1] < o2
(105) < (1/N1Np)©

where the second to the last inequality follows from (103) and the last inequality follows from (104).
Similarly, for all 1 < k < Ny, we have |mofi(k) — NL2| < (1/NyNo)C.
Altogether, the conditions of Proposition 5 are satisfied for i with A = C. Therefore, by that
proposition, there exist {c;, € [0,1] : 1 < j < Ny, 1 <k < Ny} so that all the following hold.
(1) For every 1 < j < Ny, we have .02 ¢, = N%
(2) For every 1 < k < N, we have Zjvzll Cik = NLQ
(3) Forall 1 <j < Ny and all 1 <k < N, we have

X ’1/2

(106) 1 (X5 > X7) = el < (1/NiN2)“
Let v be the probability measure on G; x G5 defined using the density
NN, Z Cj,klx;xxgé
4.k

note that v depends on p. Abusing the notation, we also refer to the density of v by v.
Bulk of the proof is to show that v satisfies the claim in the theorem, (possibly) except for being
symmetric; the proof will then be completed by symmetrizing v.

Sublemma. The measure v is a coupling of my and ms.

Proof of the Sublemma. Since v is absolutely continuous with respect to m; x mso, with density
NN, ij Cj,klxlxx,37 it suffices to show that for i = 1,2, we have
’ J

/ N1 N,y ZCJ k:lX1><X2(gl g2)dm; = 1.

7.k

We prove this claim for ¢ = 1, the other case is proved similarly. Recall that | X j1| = 1/N; and that
Z;Vll ¢jr = 5 for all k. Thus we have

N1 Ny E :Cj,lelxX2(91792>dm1(gl) = N1 N, § ¢kl X5 11x2 (92)
Ie -
1 g,k

:NQZC]k].XQ gg NQZ].XZ gg chk—z:].)@ gg
7,k

where in the last equality we used the fact that {X?} is a partition of Gj. O
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Recall that f € L3(Gy x Go,m; X my) and satisfies || f — f,|l2 < pC|| f]l2 where f, = P, x f.

Sublemma. We have
(107) i@ f = v flly < lm? # fo = v Lol + 3071 F N2
Proof of the Sublemma. Indeed, by Young’s inequality, we have

1 f = fll, < UF = Foll2 < o112

11 5 fo = 1 5 foll = 16 % Ppox (F = f)ll, < IF = Fill2 < 09U £

[ 5 fo = v fll, <= Foll2 < 29Ul

Now (107) follows from these estimates and the triangle inequality. O

In view of (107), thus we need to bound H,ug) * f, — v * prg' This will be done using the
Parseval’s theorem. Let us begin with the following which is a consequence of the fact that G
and (G5 are locally random groups, together with the fact that diam(X;) <§=p°.

Sublemma. Let o be a Borel probability measure on G = G1 x Gy. Let ¢ € @, and for all
1<j< Ny and1 <k <Ny, let gjp € X} x X7, Then

o(p) — ZU(X; X X;f)@(gj,k)Hop < 2C(dim ¢)"6.

Jk

Proof of the Sublemma. Since {X] x X[} is a partition of G with Borel sets, we have

o) = [elio) =3 [ eloiat)

= Z(/XIXXQ — o(gjx)do(g) + o(X] X Xff)“’(gj”“))

Recall that G; and Gy are L-locally random with coefficient Cj, thus, G is L-locally random
with coefficient 2Cy, [20, Lemma 5.2]. In consequence, for all g € X jl x X%, we have

lo(9) = ©(g5k) lop < 2Co dim(p)"d(g, gjx) < 2Co dim(p)*4,

where we used diam (X} x X}) < 4.
Altogether, we conclude that

5(p) = Y _a(X) x X2)e(g1) op—z/1 2C, dim () ddo(g) = 2C, dim(p)*s

]k ><X2

where we used the fact that {le x X?} is a Borel partition of G and o(G) = 1. U
Applying the above with ¢ = v and ,uf;, we conclude the following

(109a) v(p) — Z ¢k (950 |y < 2Co(dimp)*™s,  and

(109b) e ZM V(X x XD)e(g58)]],, < 2C0(dim )*6

for all ¢ € G, where we also used the fact that v(X] x X}) = cjp.
We now combine (109a), (109b), and (106) with Parseval’s theorem to deduce the following
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Sublemma. We have
(110) 1157 5 £, = v foll, < 301 f 2

Proof of the Sublemma. The argument is similar to arguments in [20, §6], and as was mentioned
before, is based on Parseval’s theorem:

1605 £, — v )P = S dim ]| 47 (0) — () ()|

el

where G = G X Gs.
Let us write dy = do; + dog, see (97). Let D = [4C%p=2¢~7 this choice will be justified later in
the proof. We separate the above sum into > ;. o<p and >y, o~ p- Using the notation in [20, §6],

the first sum will be denoted by L(u,(f) * f, —v* f,; D) and second sum by H(,u * fo—vx [, D).
First note that in view of [20, Lemma 6.1}, we have

H((4 = v) # £, D) = H((u® = v) % f % P, D) < = H((1") = v) = f; D) H(P,: D)

D
4
< — 0 _ 2 P 2 < 2
> DH’M” v) x flallBpllz < DIL,] If112
(111) < 518

where we used Young’s in equality in the second line and (97) with = p in the last line.
We now investigate

—

. / A A 2
L * f,—v f D)= Y dime|| (b (0) — 2(0)) /(@) s
@Eé,dimapgD
) - . A 2 - . 2 A 2 )
First note that || (uy” () = 2(9)) f () |lys < b’ (©) = 2(9) |2, /o (9) |55+ Moreover, by the triangle
inequality, we have

—

115 () = #(9)],, < Hu Zup x XD)e(gie)l,, + [17(0) = Y cinelgin)ll,,
i,k

+ ||Z up X Xk: — Gy, k)sp(g]}k)Hop

Hence, using (109a), (109b), and (106), we have

—

157 (p) = ()|, < ACo(dim )"5 + Ny No(1 ININ)CY < ACy(dim ) "6 + (C26%)C2

where dy = dp; + do2 and we used (104) for the last inequality. From this we conclude that

D) .
L(Mﬁf) * fp—vx fp; D) < <4CODL5 + (Clzédo)c_2> Z dim‘ﬁ”fp(‘ﬁ)”f{s

(112) pe@,dim <D
N 2
< (4CoD*6 + (C26%)°2) | £

Recall that D = [4C;p~26~%7 then 4% < p2¢. Since C' > L(C+dy)+C+1, and p <

1
Dp Dodo 4Co(5Cl)L’
we get

4CyDY§ < 4C,(4Cp~ % + 1)Lpé < p%:
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moreover, since do(C'— 1) > 1 we have (C26%)¢~2 < pC. Thus, (111) and (112) imply that

[ % £ — v foll, < 3p°
as we claimed. O

We are now in the position to complete the proof of Theorem 27. First note that in view of (107)
and (110) we have

| 5 f = v f|, < 60511 £ 2
As was mentioned before, ¥ need not be symmetric. Define v = % to be the symmetrization
of v where h(g) = h(g™") for any h € L*(G,m1 X my).
Recall that ||A|y = ||| for all b € L2(G,my x my). Since p is symmetric, we have

|1 5 f =7 fll, = ([0 5 f=v fY ], = [ 5 f = v fll, <6051 Flla = 601 f -
Altogether, and using the facts that p < 0.01, we get that

|1 5 f = w2 |, < 60 fll2 < 07708 fla-
The proof is complete. ]

6. CONTRACTION OF COUPLINGS AT SMALL SCALES

The main goals of this section are to prove Proposition 29 and Proposition 30, which are crucial
ingredients for the proof of Theorem 1.

In this section we will be working with groups G; and G5 which are L-locally random with
coefficients Cy; and Cog, respectively, and satisfy DC(dp;, C1;). Throughout this section, D, denotes
a constant of the form

Od d L(l)
(113) <2001CO2011012> oy
this means the exponent in the definition of D, does not depend on other parameters introduced
in the various statements throughout this section.

Proposition 29. Suppose Fy and F5 are two local fields of characteristic zero, G; is an almost F;-
simple group, and Lie(Gq)(Fy) and Lie(Gy)(Fz) are not isomorphic. Fori = 1,2, let G; C G;(F;)
be a compact open subgroup. For every § > 0, there exists ny > D1~/% where Dy is a constant as
in (113), and a positive integer m := m(8) such that for every 0 < n < ny and every coupling . of

the probability Haar measures mg, and mg,, we have
Hy(u®*";m) > (doy + doz — 6) log(1/n).

The proof of this proposition will occupy the rest of this section. We will then use this proposition
to prove Proposition 30 below. Before stating Proposition 30, we recall Definition 3: A function
f € L*(G) is said to live at scale n (with parameter 0 < a < 1) if

e (Averaging to zero) || foiall2 < nt/ | £la-
o (Almost invariant) [|f,.2 — fll2 < 02| f1l2-

Proposition 30. In the setting of Proposition 29, there exist a positive integer mqy and a positive
number ¢, depending only on L, do1, and doy such that for every 0 < n < Dy~ ! where Dy is a
constant as in (113), every coupling p of the probability Haar measures mg, and mg,, and every
function f € L*(Gy X Gy) which lives at scale n with a parameter a > 4L(dy; + dps), we have

11" 5 fllz < el fll2-

Proposition 30, whose proof is based on Proposition 29, is a crucial ingredient in the proof of
Theorem 1.
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6.1. Contraction, Rényi entropy, and approximate subgroups. In this section, using the
mixing inequality as in [20, Theorem 2.6] and the multi-scale version of a result of Bourgain and
Gamburd (see [20, Theorem 2.12]), we justify why in the proofs of the aforementioned propositions
one needs to study certain type of approximate subgroups of G; x Gb.

We start by finding a lower bound for the Rényi entropy of every coupling of the Haar measures
me, and mg,.

Lemma 31. Let Gy and G5 be two compact groups and p be a coupling of the Haar measures me,
and mg,. Then for every 0 <n < 1, we have

Hy(pi;m) = max(log(1/[1"]), log(1/[1{])).

Proof. By [20, Lemma 8.2], we have p,(z) = u(z,)/|1,| for every z € Gy x Go. Therefore
(

e < B ) _pGrxn) w1
AN o 1 2, — 1 T 1 2 )"
T T A R E (T U Tt
By symmetry, we have
1 1
(114) [t ]loe < min <—17 —2)
1571857
Since p, is a probability measure, we deduce from (114) that
Hy(p1:m) =1log(1/|1,]) — log [|,3
> 10g(1/111]) + log(1/]12]) — Tog [y
> max(log(1/[1{"]), log(1/|1{])),
as we claimed. O

Lemma 32. Suppose G is an L-locally random group with coefficient Cy which satisfies the di-
mension condition DC(dy, C1). Let 0 < n < (10Cy + C1) 8L, where a is a positive number. Let
0 < p < n and suppose that v is a probability measure on G such that

(115) Ho(w:p) > (do - m> log(1/p).

Then for every function f € L*(G) that lives at scale n, we have
v flla < '/ CEI| £l
Proof. Notice that Cyn'/(®) < 0.1, hence by [20, Theorem 2.6], we have
Vo FI15 <20 () e * Fipsalls + 0w, 15 11 £113
(116) <2 D fllz + 0 |, 15 11 £13 (f lives at scale n).
On the hand, by (115), we obtain

log [|v,[13 <log(1/1,]) — dolog(1/p) + SLalog p log(1/p)
n
1
<l — log(1 fD
<logCy + Ta og(1/n) (because of DC)
1
(117) <7 los(1/m) (as 7 < (10Co + C1) )

By (116) and (117), we deduce
vy + fII5 < (297 @ 4 g/ EED)| 115 < 5 EE9| 15,
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and the claim follows. O

Our general strategy for the proofs of the main propositions is as follows: starting with the
initial entropy provided by Lemma 31, if we can show that each time after doubling the number
of steps in the random walk we can gain vylog(1/n) additional Rényi entropy at scale 7, then in
O(1)-steps we reach to the desired lower bound for the Rényi entropy that is given in Lemma 32.

The following lemma, which follows from [20, Theorem 2.12], is an important tool in carrying
out the above strategy. Roughly speaking, it states that the failure to gain Rényi entropy can
happen only because of algebraic obstructions.

Lemma 33. Suppose G satisfies DC(dy, Cy) and X, X' are independent and identically distributed
random variables with values in G. Then for every positive number ~yy, either

(118) Hy(XX'in) > Ha(X5n) + 0 log(1/n)

or there are H C G and x,y € G such that

(1) (Approximate structure) H is R(1/n)f°-approzimate subgroup.

(2) (Metric entropy) |h(H;n) — Ha(X;n)| < Ryolog(1/n).

(3) (Almost equidistribution) Let Z be a random variable with the uniform distribution over
13, independent of X. Then

P(XZ € (xH),) > 7™ and P(XZ € (Hy),) > n™°.
Moreover,
{h € Hy| P(X € (zh)s,) > (Cy2%0)~ytheom HEY | > i, |
where R is a universal fived number.

Proof. This is an immediate corollary of [20, Theorem 2.12]. !

6.2. Approximate subgroups and approximate homomorphisms. In view of Lemma 33,
we focus on the understanding of almost subgroups H of G; x Gy which satisfy properties given
in Lemma 33. Indeed, we will interpret this approximate structure, as a local approximate group
homomorphism with large image from a large ball in G; to G5. Then we apply Theorem 3 to
complete the proof.

Let us begin with an application of a product result proved in [20, Theorem 2.8].

Lemma 34. Suppose G and G9 are L-locally random with coefficients Cy; and Coyy, respec-
tively.  Suppose G; satisfies DC(dy;, C1;) for i = 1,2. Then for every 0 < & < 1, there is
v = (e, L,do1,doa) Kpdordyy € Such that for every n that satisfies n° < D3~', where D3 is a
constant as in (113), the following holds. Suppose X := (X1, Xs) is a random variable with values
m G = Gy X Gy such that X; is uniformly distributed in G;. Let Z be a random variable indepen-
dent of X and with uniform distribution over 1s,, C Gy x Gy with respect to the mazimum metric.
Suppose H C G, x € G, and P(XZ € (xH),) > n™ where R is a universal fized number. Then

pr; (H, H,H, " H") 21
fori=1,2 where pr; : G — G s the projection to the i-th component.

Proof. Let v be a constant which will be determined in the proof. Notice that X;Z; is uniformly
distributed in G; where Z; := pr;(Z). Therefore,

(119) | pri(H)y| = [pr;((wH),)| = P(XiZ; € pri((wH)y)) 2 P(XZ € (wH),) = n™.
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From (119), we deduce that
h(pr; (H);n) > log(1/|1{]) — Rylog(1/n) — 2log Cy;

R
>dos (1= 22 ) log(1/1) — 3log Ci

07

(1= )16~ 102

(120) 2(1 - 2f7>h(Gi;n),

07

where the last inequality holds as long as

(121) nRW S (011012)_5

By [20, Theorem 2.8], there is § := d(¢e, L, do;) <4, € such that the following holds: if h(A;n) >
(1= 06)h(Gi;n) and

(122) 0 < (2C01C02C1 Crp) ™"

(where R depends polynomially on L and dy;, i = 1,2) , then A Ay Ay 1A; ) 17(715) We claim

.
1=55 min(d(e, L, do1), (e, L, do2))

satisfies the claim in the lemma so long as 7 is small enough.
Indeed, the above definition implies
(123) v LLdg; E-

Moreover, in view of (123), there exists R’ depending on L, dy; such that if n° < (2C4;Co2C11Ch2) ™ F,
then (121) and (122) both hold. Hence, as it was discussed above, the lemma follows by (120) and
[20, Theorem 2.8]. O

For a symmetric subset H of Gy x Gy containing (1V,1?)) and 1 > 0, set
(124) a1 (H;n) == inf{a € [0,1]| Ig1 € Gy1,d(g1,1V) > 0%, (g1,1?) € ], H,},
and similarly
ax(H;n) = inf{a € [0,1]] 3g2 € G2, d(g2,1%) > ™, (11, o) € [[5 Hy )5
recall that d always denotes our fixed bi-invariant metric on the underlying compact group.
Lemma 35. Suppose G and Gy are two compact groups, ) is a positive number, and H C G1 X G,

is symmetric containing the identity. Then there is f : pr(H,) — G2 which is a pr,(H,)-partial,
n®2U) _gpprozimate homomorphism; that means

(1) f10) =1,

(2) if 91,91 € pri(Hy) and gi1g; € pry(Hy), we have d(f(g:)f(91). f(g191)) < 02", and

(3) for every g € pry(Hy), d(f(g1"), f(g1)7") < n2tm.
Furthermore pry(Hy) C (Im f), aym) -

Proof. For every g, € pry(H,), choose f(g1) € Gy such that (g, f(g1)) € H,. As (11,1®) € H,
we can and will set f(11)) = 1. For every gy, g} € pry(H,) with g, ¢, € pr,(H,),
(1(1)7 f(gl)f(gi)f(glgo_l) S H3 Hn and (1(1)7 f(gl)f(gl_1>> S HQ Hn - H3 Hn‘

Hence d(f(g1)f(91), f(g191)) < 12" and d(f(g7"), f(gr) ") < po2tn).,
For every g, € pry(H),, there is g; € pry(H,) such that (g1, g2) € H,. Hence (11, gof(g1)7}) is

in [], H,. Therefore d(gs, f(g1)) < 72 This completes the proof. O
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By Lemma 35, we get a good approximate homomorphism if a;(H;n) is large for some subset
H of Gy x G5. To get such a bound, inspired by Proposition 33, we consider an n*7-approximate
subgroup of Gy x G5 with an upper bound for its metric entropy, and study «;([ [, H;n) for a fixed
positive integer k£ that will be determined later and depends on the dimensions of G;’s.

Let us recall the dimension condition of G;’s. For every positive number 7 we have

(125) O™ < 1] < Cun™

where C; and dy; are positive numbers.
We also recall the following two facts from [20, §7]. By [20, Lemma 7.1], for every non-empty
subset A of G = GG1 X (9, we have
Ay

(126) (A ) —log (4 )| < log D),

moreover, the same is true for the subsets of G;’s. By [20, Corollary 7.2|, for every non-empty
subset A of G = G x G5 and positive numbers 7 and a, we have

(127) |h(A;n) — h(A; an)| < log(Ds).

where Dy and Dj are constants as in (113).
The following is an upgraded version of Lemma 35, and will be used the sequel.

Lemma 36. Let G; and G5 be two compact groups, R,~v,n > 0, and let H C Gy X Gy be an
n~f-approzimate subgroup. Assume further that for i = 1,2 we have

(128) 182, € pri(I1, H,):

Then there exists an n°*Y-partial n°*-approzimate homomorphism f : 19

2y

— Gy satisfying that
2

17(7@257 C (Im f)10pe

where o = as([[s H;m) is as in (124) and Cs, CY depend only on L, dy, and dgs.

Proof. Apply Lemma 35 with [ [ H, (instead of H), and let f be thus obtained. We may assume,
without loss of generality, that (g, f(g)) € H' = [[, H, for all g € pry(H’). Then since ay(H’ -
H':n) < as(H';n), Lemma 35, applied with H’, implies that

(129) pro(H') C (f (pri(H}))) e

In view of (128), we may restrict f to 1%

nC27
15710)27 — G3. We now show that f also satisfies the last claim in the lemma.

To see this claim, let C' > 1 be a constant which will be explicated later. Let us put
E = (f(l(l) ))n” and Fy = pry(H').

0.17%27

and obtain a 1n“?7-partial 7*2-approximate homo-

morphism f :

Assume first that
(130) h(Er;n™) > (1 — Cy/az)h(G2n™).
We want to apply [20, Theorem 2.8] with n*2 and under the assumption (130). By [20, Theorem

2.8], there exists C" = Op, 4,,(C) so that ¢ = C"y/ay and § = Cy/ay satisfy the conditions in that
theorem. Thus (130) and [20, Theorem 2.8] imply that

(Er)yoa (Er)ye () (Br) i 2 150,

This and the fact that [], 1((3770% C 1% imply that

= ,,702’7

2 1
(131) 1573/7 - (f(lgczm))lmz“z-
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Hence, we assume that (130) fails. Since 1(327 C Ey, see (128), we have
(132) h(E2;n™) = (1 = Coy/az)h(Ga; ™).
We now cover pr, (H,) with < (20)"C7;n~ 7" many sets of the form gléi cpr Where g € pry(H,).

Since gléi ooy © Pry(H, - Hy), we have that f(gx) is defined for all x € 1[()3 - Recall from (129)
that Fy C (f(prl(H,;)))naz. Therefore,

(133)  h(ER2n) < max {h(f(g 1) e0n)i 20°%) } + Corydy log(1/n) + log((20)CF, ).

Note on the other hands that
d(f(g), f(9)f(x)) <n*>,  forevery x € 15} ., .
Thus the failure of (130) implies that
h(f(glffincﬂ); 21°?) < (1 — Cy/ag)h(Ga;n°2),  for all g € pr,(H)).
This and (133) imply
(134) h(Eg; 1) < (a2 — Cv)dylog(1/n) + Cyydy log(1/n) + log(De);
where we used
h(E2; 1) = h(Ey; 21°?) +log(D7) and  h(G2;1™) = agdylog(1/n) +log(Ds),

for constants Dg, D7, and Dg as in (113). Thus, (134) contradicts (132) so long as n is small
enough to account for the additive constants and C' > 3C; max{d;/dz,1}. This and (131) finish
the proof. O

The following two lemmas concern k fold product of approximate subgroups.

Lemma 37. Suppose Gy and Gy are two compact groups, R,v,n > 0, and H C G| x G is an
n~ Y -approzimate subgroup. For a positive integer k, let

HY = pr, ((G1 x {121 N L, H).
Then

R(H;; ) + h(pro(TT, H)im) < h(H;n) + 2k Ry log(1/7) + log(Ds),
where Dg multiplicatively depends on Dy and Ds.

Proof. Notice that |([To, H)2gl > [(H) |l pra(TT, H)yl. Hence

log <|(sz )2n|> > log <%) +1o <|pr2(H—kH)’7|>

1| 1) 1]
Therefore, by (126) and (127), we obtain
(135) (T Loy Hm) +log(Dio) > h(H{";m) + h(pry(TT, H): ),

where D19 multiplicatively depends on D4 and Ds.
Since H is an n~®7-approximate subgroup, there is a symmetric set A of cardinality at most =
such that HH C HA. Therefore, [[,, H is a subset of H [[,, A, which implies that |(][,, H),| <

n~2k®1|H,|. Hence, there exists D1y, so that
(136) h([ 1o H;m) < h(H;n) + 2kRylog(1/n) + log(D11)
By (135) and (136), the claim follows. O
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Lemma 38. Suppose G and Gy are L-locally random with coefficients Cy; and Cyo, respectively.
Suppose G; satisfies the DC(dy;, Cy;). Suppose k > 4 is an integer and 6 > 0. Letn and v Ldoi, Lk 5
be positive numbers, and 17 < Do ™! where Dyy is a constant as in (113). Suppose X and X' are
independent and identically distributed random variables with values in G satisfying the following
properties:

o Hy(XX'sm) < Hy(X;m) +~log(1/n), and
o Hy(X;n) < (doy + do2 — 0) log(1/n).

Then there is an n~ "7 -approzimate subgroup H of Gy x Gy, where R is the universal constant given
m Lemma 33, satisfying both of the following properties

10, o[l ), and A(HYim) < (1= 552 )h(Gin)
where Cy depends only on L,dy, and dys and H,gl) 1s defined as in Lemma 37.

Proof. Welet 0 < n < (10Cy; +10Cpe+Chy —i—C’lg)*l/s be a small constant which will be determined
later. By Lemma 33 and Lemma 34, there is an n~®-approximate subgroup H such that

CQ’Y C pr; (H4 ) C pri(Hk Hn)a

where C5 depends only on dy;’s and L, and in the second containment we used k > 4.
To see the second claim, we have

h(pr(TT, H): 1) h(prs(IT, H): 4n) — log(Ds) = log (L2llfil ) — log(DDy)
(137) >Cdooylog(n) + doz log(1/n) — log(Das3),
where Dy3 is a constant as in (113). By Lemma 37 and (137), we obtain that the following holds

h(H":n) — Cadoyylog(1/n) + dos log(1/n) <h(H;n) + 2kRylog(1/n) + log(DgD3)
<H5(X;n)+ (2k + 1) Rylog(1/n) + log(DgDy3)

< (don + doo = 6) log(1/m) + (2k + 1) Rylog(1/n)

(138) + log(Dngg),
where the second inequality follows from Lemma 33. By (138), we obtain
(139) A(H;m) < (doy — 8) log(1/n) + ((2k + 1) R + Cadoz)10g(1/n) + log(DyDys).

Therefore, we can choose Dy, so that for 7 < D71 and ~ Llodos, L J, we have

5
n(H ) < (1= g ) (i)

as we claimed. O

6.3. Proof of Propositions 29 and 30 modulo a bounded generation result. In this section
we use the following bounded generation result, which is of independent interest, to complete the
proofs of Propositions 29 and 30.

Proposition 39. Suppose F is either R or Q,, G C (GLy,)r is a connected F-almost simple
subgroup, and G is a compact open subgroup of G(F'). When F =R, we assume that G C O,,(R),
and when F' = Q,, we assume that G C GL,(Z,). In either case, we take the metric on G that is
induced by the operator norm on M, (F'). Let py = 2 when F' =R and py = p when F' = Q,. Then
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for every 0 < p < py?, there are gy, . .., g € 1, where d := dim G and positive numbers C' := C(G)
and ¢ := ¢(G) such that the following holds. For h € 1,4 and every 0 < r < c||h — I||p®, we have

{(g1lh, arlgr ") -+ (ga[hs aa2]g' )| @i € 1} 2 Lopeynery,

where [h,a;] = ha;h~ra;'. Moreover, if G = G ®q Q, where G is an absolutely almost simple
Q-group, then the constants C' and ¢ depend only on G.

We postpone the proof of Proposition 39 to §6.4. This proposition is used in the proof of the
following corollary, which in turn will play a crucial role in the proofs of Propositions 29 and 30.

Corollary 40. Let Gy, Gy, X, and X' be as in Lemma 38. Let k = 50d2, and 6 > 0. Suppose 1
and 7y are positive numbers such that v <c(,).dy.1 0, where C(G;)’s are given in Proposition 39,
and 77 < D14~ where Dyy is a constant as in (113). Let H be the approzimate subgroup given in
Lemma 38, applied with k = 50d%, and these 6, n, and v. Let a; == a;([Ig H;n) be as in (124).

Then

)
14 >
(140) Y= T0dy;”

and there is nOdOi’L(g)—appmximate homomorphism
f : 1;1(227 — G2
such that 17(72357 C (Im f)nOdOi»L(‘§>’ where Cy and CY depend only on L, doy and dys.

Proof. We first prove (140); in view of the symmetry, we show this for ¢ = 1. Recall that By the
definition of ay, see (124), there exists h € Gy such that ||h — I|| > n*** and (h,1) € [[,, H. Since

1 c pry ([, H,), by Proposition 39 (applied with p := n®27), we deduce that

nC2v

e)) (1)
1c172CC2’Y+4°‘1 - (H50d(2)1)50d(2)177’
where C':= C(G) is as in Proposition 39 and ¢ is a multiple of ¢(G7) given in the same statement.
Hence, we obtain

(1)

|1 20CHy+4a |
1 c 27 1
h(HéOZzgl§ n) >log (W) — log(Dy)

n

>doy (1 (200 + 4a1)) log(1/1) — log(DsD4)
(141) >(1 = (3CCyy + 4a0) ) (G m);

notice that we can drop log(DsDy) as 7 < Dy4 ! can be chosen small enough. By Lemma 38,
applied with k& = 50d?%,, and (141), we obtain the following inequality:

)
4oy > ——.
30027 —+ 4o > 2d01

Therefore, for v <¢ 4y,,1.« 0, We obtain that

- 5
(8]
1= 10dy,

Recalling 1;10)27 C pr;([1, Hy) and (140) for ay, the remaining assertions follow from Lemma 36. O
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Proof of Proposition 29. Let G = (G X (g, then G is L-locally random with coefficient Cy :=
Co1 + Coz, see [20, Lemma 5.2]. Tt also satisfies DC(dy, C1) where dy := do; + dgz and C := C11C's.
Suppose )
0 <7< (10C, +Cy)~ Y.
Let X be a random variable whose probability law is j. Let X; be a 2-random walk with respect
to p.

Claim. For sufficiently small vy (which will be determined later and will depend linearly on 6) and
for every non-negative integer i at least one of the following holds:

(142a) Hy(Xiy1;m) > Ha(Xi;m) + vlog(1/n),
(142b) Hy(Xi;m) > (do — 6) log(1/n).
Proof of the Claim. Let us assume that (142a) and (142b) fail for some i. Then by Corollary 40,

there exists ¢ depending only on C'(G;) (see Proposition 39), dy;, and L so that if 0 < v < ¢ and
7’ < D1yt where Dy is a constant as in (113), then there is an n°-approximate homomorphism

f : 15716227 — G2

such that 1(20), C (Im f),s, where Cy and C} depend only on L, do; and dgo, and 3 = Oy, 1.(9).
n27 i

Let m be as in Theorem 3 applied with G; and G,. For small enough v, we have 8/(Cyy) > m.
Since GG; and G5 are not locally isomorphic, existence of f contradicts Theorem 3 applied with G,
G5 and p = 1?7 so long as 1" is small enough. The claim follows. OJ

Returning to the proof of the proposition, first note that (142a) can hold at most iyax := [do/7]-
many times. Therefore, there exists some iy < iyax 80 that (142b) holds. The proof is complete. O

Proof of Proposition 30. Fix some integer a > 4Ldy, and let § = I llg = 8L1 5. Let 0 < n <
alog, a

Dl_l/s, where D is as in Proposition 29.
Recall that f € L*(G; x G3) lives at scale 7 if both of the following properties are satisfied

12 = Fllz < 0®2l1fllz - and (| £allz < 0 COY £l

Apply Proposition 29 with 77“2 and 6. In view of Proposition 29, conditions of Lemma 32 are
satisfied for G, v = @™ and p = n**. Hence we have

1) s flla < 09 £l
Now since ||f, — fll2 < 7%?||f|l2, we conclude that

1 5 flle < ™ 5 follz + 020 flle = S * flla + 022 flla < 0/ DY £
This implies the proposition with ¢ = 1/(16La) and my = m. O

6.4. Proof of Proposition 39. In this section we prove Proposition 39. The proof is carried out
in several steps, and among other things it relies on certain quantitative inverse function theorems
that are proved in the appendix. We start with a lemma which is analogous to [25, Lemma 40] for
real numbers.

Lemma 41. In the setting of Proposition 39, suppose {Ad(g1),...,Ad(gm)} is a basis of the R-
subalgebra R[Ad(G)] of End(g), where g := g(R) is the Lie algebra of G. Then there is a positive
number rq depending on g;’s such that for every unit element x of g,

m

M(x) = {37 e Ad(g)(@)] e € (-1, 1]} 20,

=1
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where 0, s the ball of radius ro centered at 0 in g.

Proof. Since G is R-simple, g is a simple G-module. Hence for every unit element x of g, M (z) con-
tains a neighborhood of 0. Let r(x) be the largest positive number such that 0,y € M(x). Suppose
to the contrary that there is a sequence {z;}3°, of unit elements of g such that lim;_,. 7(z;) = 0.
By the compactness of the sphere of radius 1 in g, after passing to a subsequence we can assume
that {x;}:°, converges to x, a unit element of g. For every y € 0,(y), there are ¢; € [—1, 1] such that
Yo Ad(gi)(x) = y. For every € > 0, if n >, 1, then || Ad(g;)(x,) — Ad(g;)(x)|| < e. Therefore,

ly — ZAd(gi)(wn)H < Z sl Ad(g:)(2) — Ad(gi) ()| < me.

Notice that M(z,) is a convex set which intersects every me-neighborhood of points of 0,).
Therefore for n >, ) 1, we have r(x,) > r(z)/2. This contradicts lim; ,. r(z;) = 0, and the
claim follows. O

To formulate the next lemma, we start by recalling that for g € O,,(R) or g € GL,,,(Z,), if
lg —I|| <1 (if p =2, we assume ||g — I|| < 1/2)), then for every |t| < 1 we can define

g" = exp(tlog(g)).
Clearly t — ¢' is an analytic function, and one can see that
(143) [t < llg" = 1]l < I¢.

Lemma 42. In the setting of Proposition 39, suppose {Ad(g1),...,Ad(gm)} is a basis of the R-
subalgebra RIAd(G)] of End(g), where g := g(R) is the Lie algebra of G. Suppose ||g; — I|| < 1 for
everyi. Then there is a positive integer C := C(gy, ..., gm) and a positive number ¢ := (g1, .., gm)
such that for every 0 < t < c we have

M, = {Zm:cl Ad(g})| i € [—1, 1]} 2 Oyc,
i=1

where 0,0 is the ball of radius t€ centered at 0 in R[Ad(G)].

Proof. We view Ad(g!)’s as d*> x 1 column vectors, where d := dim G, and let A(t) be the d*> x m
matrix that have Ad(g!) in its i-th column. Consider f(t) := det(A(t)T A(t)) where A(t)T is the
transpose of A(t). Then f is an analytic function, f(1) # 0, and f(0) = 0. Since f is an analytic

function and non-zero, f(©)(0) # 0 for some positive integer C. As f is an analytic function, for
_ @0y, 0 . _ _c
0 <t < we have Z22¢ < f(t). Since | A(t)]lop = Vd, [(A(t)TA()) " lop <4} tC. Therefore,

for every y in R[Ad(G)], we have

[(a0ma0) A ] < Oyl and A (AW AWG) AW ) = v

This implies the claim with C' = 6/2 if we assume 0 < t < ¢ and ¢ < ¢ is sufficiently small to
account for the implied multiplicative constant above. 0

Lemma 43. In the setting of Proposition 39, for every 0 < p < py* (where py = 2 when F = R
and py = p when F = Q) there are g1 ,,...,9s2, € 1, where d := dimG and positive number
C := C(G) such that for every non-zero element x € g(F') we have

d2

{Zci Ad(gi,)(x)| e € F' [eif < 1} 2 0pCja,

=1
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where 0,c |, is the ball of radius p©||x| centered at 0 in g. Moreover, if F = Q, and G = GC®oQ,

where G 1s an absolutely almost simple Q-group, then the constant C' depends only on G.

Proof. We start with the p-adic case. Let [ := ﬂogp(l/pﬂ' then G[p'] := 1, is the kernel of the
residue map modulo p'. Choose {g1,,...,ga,} C G[p'] such that the Z,-linear span of Ad(gi,)’s
is the Z,-algebra Z,[Ad(G[p'])]. Then L by [25, Proposition 447, there is a positive number C which
depends on G (and depends only on G if G = G ®¢ Q,) such that

d2

(144) Y Z,Ad(gi,) 2 p'Z,[Ad(G[1))]

=1
where G[1] is the ball of radius 1 in G(Q,). By (144), for every = € g we have
(145) ZZ Ad(g;,)(x) D p9'Z,[Ad(G[1))]a.

On the other hand, g(Q,) is a simple Q,[Ad(G[1])]-module. Hence by [25, Lemma 40], there is a
positive number c (depending only on GifG=G ®g Q) such that

(146) Zy[Ad(G[1])]z 2 p ]| (g N Mg (7))

By (145) and (146), we deduce that

[P e )@)e e Flal <1} 20, ooy,
i=1

and the p-adic case follows.
Suppose {g1,...,gm} is as in Lemma 42. Notice that

{ . c; Ad(g;)| ¢ € [—1,1]} C Oy,

i=1
where 0 is the zero of R[Ad(G)]. Now by Lemma 42, we have
c

{i:ci Ad(gf)] ¢ € [_171]} 2 0 2 %{ i:ci Ad(gi)| ci € [-1, 1}}7

for some positive numbers C'. Combining this and Lemma 41, we have

{Z ciAd(g))(7)] ¢; € [-1, 1]} 2 0roiC | fm>

i=1
where rg is the constant appearing in Lemma 41. The real case follows. 0
Proof of Proposition 39. Note that
ad : Lie(G) — Lie(G)
is an F-isomorphism. This implies that, for every x € Lie(G)(F),
[z llop < [ ad () lop < [|2]lop

where the implied constant depends only on G(F).
Moreover, if G = G ®g Qp, then ad is induced from a Q-isomorphism of Lle(G). Therefore,
in this case the implied constants equal 1 if p is large enough depending only on G — indeed,
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note that (ad)™! is a Q-isomorphism, and so for p large enough (depending only on G) ad is an
isometry.

We also notice that log : 1p0_2 — g is a bi-Lipschitz map where py = 2 if F' = R and py = p if
F = Q,. Indeed if F' = Q,, then log is an isometry between 1,-2 and 0,-2. Thus

[ Ad(h) = If|op > [[log(Ad(h))llop > [l ad(log h)llop > [[10g hllop > [Ih = I]lop,

for all h € 1p52. fG=G ®g Q, and p is large enough, > may be replaced with = in the above.
We conclude that

(147) I(Ad(R) = I) ()]l = ¢[|h — 1]

for a unit vector x € g and positive number ¢ = ¢/(G) which depends only on GifG=G ®q Q.
Recall that 0 < p < py%. Let I := {a € F||a] < 1/4}, and let {g1,,...,9a2,} be given by
Lemma 43. Set

Q:Ix---xI—G, Oty,...,tez) = g1 ,lh, exp(tlx)]gi; o gaz plhs exp(tdzx)]g;’p.
Then d®(0) : F¥ — g is given by

d2

d®(0)(c1,. .., c2) = Y _ ¢; Ad(gi,)(Ad(h) — D)z

i=1

Hence by Lemma 43 and the choice of x, as in (147), we obtain that
C/
(148) o(d2(0)) > —[lh = Ilp°,

where o of a matrix A is given by sup{r € [0,00)| 0, € A0;} and C' is a positive integer which
depends on G. Writing the Taylor expansion of the exponential function, we obtain that in the
p-adic case all the coefficients are p-adic integers and in the real case, for every 1 < j,j5' < d?
and x € I x -+ x I, [|9;7®(x)|| < d°Y. Therefore, by Theorem 56 and Theorem 57, for every
0<r <h—1I|p¢ (where ¢’ = dd=°W), we have

1o C 9(0,).

farllh=1I1lp¢

This implies the claim with ¢ = min{i—;, "} O

7. PROOF OF THEOREM 1

In this section, we will complete the proof of Theorem 1. We begin by recalling [20, Theorem 9.3],
which will be used both in this section and §9 below.

Theorem 44. Suppose G is L-locally random with coefficients Cy which satisfies the dimension
condition DC(C,dy), see (DC). Let u be a symmetric Borel probability measure on G, and the
group generated by the support of p is dense in G. Suppose that there exist C5 > 0, b > 0, and
0 < mno < 1 such that for every n < ny and every function g € L*(G) which lives at scale n there
exists | < C3log(1/n) such that

119 % glla < 719l
Then there is a subrepresentation Hy of L*(G) with dim Hy < QCon()_dO such that
b
E(u; LQ(G> S} Ho) > —.
Cs
In particular, L(u; G) > 0.
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In addition to Theorem 44, the proof also relies on results in [20, §5], as well as Theorem 27 and
Proposition 30 in this paper.

Proof of Theorem 1. The proof will be completed in some steps. We will write F; = Q,,. Recall
that G; is a compact open subgroup of G;(Q,,) where for i = 1,2, G; is Q,,-simple group. Recall
also our notation p, = v if v is non-Archimedean and p,, = 2.

Let X = (X1,X3) be as in the statement, and let p be the probability law of X. Since
min{£(X;), £L(X2)} > ¢ > 0, we have

(149) max{A(m.t; G1), Mo t; Go)} =2 A < 1
where 7; denotes the projection onto the i-th factor.
Reduction to functions living at certain scale. There exist L, Cy, C; and dy; for i = 1,2 so

that if we let pg < 1, then all of the following properties are satisfied:

(G-1) Gj is L-locally random with coefficient Cy for i = 1, 2.
(G-2) For all 1 = pl, j € N, the group G; satisfies

1 .
aﬁdm‘ S |1’EA7’L)| S Clﬁd0i7 for 1 = 1’ 2.

(G-3) For i = 1,2, G; is d-discretizable for all 6 = pé, and all j € N in the p-adic case and
sufficiently large 7 € N in the real case.

See [20, §5] for the first statement, the second assertion holds in view of the choice of pg, and the
third property is satisfied by Proposition 26. We note that L and dy, dps depend only on dim G,
Co depends on G and Gy, and C; depends on max{p,,, p., }

Let m; denote the probability Haar measure on G; for ¢ = 1,2, and let m = m; X my denote the
probability Haar measure on G.

From (G-1) and (G-2), we conclude that G = Gy x G5 is L-locally random with coefficient 2Cy,
see [20, Lemma 5.2]. The group G also satisfies DC(dy, C}) where dy = do; + dog and Cy = C11C's.

Fix some integer a > 4Ldy. Let n = p for some j > jo; the parameter j, will be explicated
later. Recall that f € L*(G,m) lives at scale  if both of the following properties are satisfied

(150) 1z = Fllz < 021 fll2, and [ fusallz < 0/ f]l2-
We claim
Claim 45. There exists { < C'log(1/n) where C' depends on dy;, L so that
(151) 119 5 fll2 <0 £l
where b depends only on L and dyy, doo
Note that in view of Theorem 44, (151) finishes the proof. Thus it remains to prove the claim.
Proof of the Claim. The proof relies on Theorem 27 and Proposition 30 as we now explicate.

Reduction to couplings of Haar measures. Let n = pé for some j > jo. Properties (G-1),
(G-2), (G-3), together with (149) imply that Theorem 27 is applicable with G, Gs, i, and p = ne.
In view of that theorem thus there exists a symmetric coupling ¢ = ¢” of m; and msy so that the
following holds. Let f € L?(G,m) satisfy that || f, — fll2 < p/“9| f|l2; then

(152) |1 f = o5 ]|, < 601D f]l2,
so long as (1 >, 4.1 10g,\(p/Ch), see (101).
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Conclusion of the proof. Let us write 0 = o”. Let jg be large enough so that n < 7y where g is
as in Proposition 30, in particular, 5y = max{p,,, p,, } %@ ¢ Then by Proposition 30, for every
f which lives at scale n we have

(153) o™ s flla < 07| £z

where ¢ and ny depend only on L and dyy, dgo. Without loss of generality, we assume ¢ < 1/(4a).
Let 0 < n; < 2™ be the smallest integer so that

lo™ 5 fll < pM 1 £l

if such exists, otherwise let n; = 2™. Now for all 0 < i < ny, we have p=/%||c@ % f|ly > ||fll2;
hence, using (5), we have

lo® s f, = @5 flla < 11, — flla < 22 fll2 < p1*l0" £z,

where we also used 0@ x f, = (0¥ % f), and the first estimate in (150). Therefore by (152), we
deduce that
11 % 0@ s f — o flly < 6pM A £,
for every i < m;. Using the triangle inequality and (5), we get
ni—1
5™ £ o) flly < 3 [0 4 60 s f B n D
i=0

ni—1

=0

<6n1p" | f].
By (153) and the choice of n;, we have that |6 * f|lo < n°||f||. Hence,

1™ 5 Fllo < 02| fllo.

This implies that (151) holds with b = ¢/2 and ¢ = ¢;n; < Clog(1/n) where C' depends on d;, L,
and a. This completes the proof of the claim, and hence the proof of the theorem. O

8. SPECTRAL INDEPENDENCE AND EXCEPTIONAL REPRESENTATIONS

The objective of this section is to prove Proposition 46, which will be used in the proof of
Theorem 2. To obtain Theorem 2, we apply Theorem 1 to the group I'), ,, where v; € Vr; see
the notation in Theorem 2. Then using Claim 45 in the proof of Theorem 1 and Theorem 44, we
reduce the analysis to the study of exceptional representations of I',, ,, whose dimension is <r
(max{p,,, P, })°Y. The proof of Proposition 46 relies on the results in [24, 25] and Proposition 39
in this paper.

We begin by recalling some of the notation from Theorem 2. Let G be an absolutely almost sim-
ple, connected, simply connected Q-algebraic group. As it was done before, we fix a Q-embedding
G C (SLy)q, for some N. Let © C G(Q) be a finite symmetric subset such that I' = (Q) is Zariski
dense in G. Denote by Vi the set of all places v of Q such that I' is a bounded subset of G(Q,),
and let Vi C V1 denote the subset of finite places.

For distinct vy, v, € Vp, let T, ,,, denote the closure of I" in G(Q,,) X G(Q,,). The following are
our standing assumption in this section:

I', CSLy(Z,,) for all v € Vi, and
Lyw, =1, xI'y,, forall v, € Vrp,

where I', denotes the closure of I" in G(Q, ).
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Let Wr C Vir denote the set of places where G(Q,) N SLy(Z,,) is a hyperspecial subgroup of

G(Qp,) and
Iy = G(Qy,) NSLn(Zy, ).

For every n > 0, let 7, : SLn(Z,,) — SLN(Z/p}Z). For every v € Vi, let
'y, =T, Nker (7?,,7”)
denote the n-th congruence subgroup of I',.

If oo € Vi, we put I'w,, = {1} for all n € N — recall also our convention p., = 2.

Proposition 46. For all D,d > 0, there ezists o = 0(£2,d, D) > 0 so that the following holds. For
i=1,2,letv; € Vp andn; € N. Put G, =T, /T, ., and assume

(154) the number of connected components of Gy x Gy < Dmax{p,,, pu, }*-

Then L(X; Gy x Gg) > o, where X is a random variable with the uniform distribution on €.

The following theorem is a special case of [25, Theorem 24], applied with C = p! for v € Vi,
and will play a key role in the proof of Proposition 46.

Theorem 47. There exist positive numbers E = E(G), Ry = Ri1(Q), and gy = £0(Q), such that
for every 0 < e < e9(), 0 <0 Kqe 1 and Ry >q. 1 the following holds. Let n € N and assume
ne¥log(p,) > log(Ry). Suppose for a finite symmetric subset A C T and some £ > (nlogp,)/d,
we have

PY(A) > p,om,

then there exists a non-negative integer n' < en so that
Wu,n(ru,n’) g HRQ Wu,n(A)-

Let us now return to the proof of Proposition 46. Note that increasing D and d makes the
assumption weaker; therefore throughout the argument, we may assume D, d > 100.

8.1. Both places are finite. We will first consider the case
(155) v, € Vr are finite places.

Let us write G = G X Ga, and put M = max{|G1|,|G2|}. As before, m¢g, and m¢g denote the
uniform measures on G; and G, respectively. To ensure consistency with most of the existing
literature, in this case where G is finite, we deviate from the notation in the rest of the paper and
define the convolution of fi, fo € £*(G) using the counting measure. That is:

fi* fa(x) = Zfl(xy_l)fg(y).

yeG

Reduction to deep levels verses large primes. Since almost every v belongs to Wr, in the
proof of Proposition 46 we may assume that {v1,v5} N Wr # (). Thus, for the rest of the proof we
will assume that max{p,,,p.,, } = p,, > D and that v, € Wr. Note that

(156) Pl < |Gy x G| < Dpfl, < plitt.

vy
In consequence, we will assume for the rest of the argument that
(157) ny <d+ 1.

Recall from Lemma 4 that Iy, ,, is L-locally random with coefficient Cy depending only on I'.
This in particular implies that for every p € GG, we have

(158) dim(p) > cr[G : ker p]°T, for some cr, ar > 0.
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We will assume, for the rest of the argument, that
(159) max{n,ny} > 8d*(d + 1)Ey/(c0(Q)ar),

where d is as in Proposition 46, €y(2) is as in Theorem 47, and Ey = 2C/c with C and c¢ as
in Proposition 39, see (180) below — as it will be explicated later, if (159) fails, Proposition 46
follows from [25, Theorem 1].

Equidistribution of marginals. Let X = (Xj, X5) be as in the statement of Proposition 46,
and let u be the probability law of X. Since (2) = T is Zariski dense in G, which is absolutely
almost simple, we have min{L(X1), £(X3)} > ¢ > 0 where ¢y = ¢(R2), see [24, Theorem 1] and
references therein. Thus

(160) max{A(m.t; G1), Ao ; G2)} < A < 1

where m; denotes the projection onto the i-th factor and A := A\(€2). Thus, there exists F; > 1 so
that for all ¢; > E;log M, we have

(161) 7 —mella < |G

this can be seen, e.g., by applying Lemma 28 with n = 1/M and choosing E; so that \/2M? < 1
for all £; > E;log M.
Let us fix one such £;, and put o := ). The goal now is to show the following

Lemma 48. With the above notation, there exists mo = mo(2) € N so that

2M0)

[0 — mglls < |G|

The argument is similar to the one we used in the proof of Propositions 29 and 30; we now turn
to the details.

Proof. The proof will be completed in some steps. For every integer m > 0, let o,, = o*").

Quasi randomness and its consequences. Recall from (158) that
(162) dim(p) > cr|G : ker p]** for any p € G.

Let p be an irreducible component of ¢?(G). If [G : ker p] < p,,, then G| C ker p. That is: p may
be identified as a representation of G/G; ~ G4 and the claim in the lemma follows from (161).
Therefore, in the proof of the lemma we may restrict to representations p so that

(163 G ke g] > iy > (GG
where in the last inequality we used (156). In view of (162), thus, it suffices to consider
(164) dim p > ¢p|G|or/@+D),

Now if f € (¢*(G)), (the p-isotypic submodule of ¢*(@)) for some p satisfying (164), then
(165) I * flle <o (G2 CEDIGI2 | lal fll2, - for any x € 2(G),

see [20, Lemma 6.1] and references therein, note also that in this proof convolution operator is
defined using the counting measure.
Thus in order to prove the lemma, it suffices to show that

(166) lom, I3 < 1GI7H7

for some 0 < 8 < a := ar/(2d + 2) and some m; = m ().
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Initial entropy and its consequences. In view of (161),

on((g1,92)) < min{m.o(g1), Mo (g2)} < 2M 7
for all m > 0 and all (g1, ¢2) € G. Since o, is a probability measure, we conclude that
(167) lomllz <2M~t  for all m > 0;

see also Lemma 31 with n = 1/|G].
In view of (167), (166) holds unless

(168) |G| > DM* fori=1,2,

where D is as in the statement of proposition. Therefore, for the rest of the argument we will
assume that (168) holds.
Let d be as in the statement of the proposition. For every 0 < € < 1, put

Exc(e) := {(V, n)€ Vir x N:pl < R}/EE},

where E and R; are as in Theorem 47.
Let

(169) e =¢e0(Q)a/(8dE,).
Note that in the proof of Proposition 46, we are allowed to assume
(170) (alog M)/4 > (log Ry)/<".

Since Exc(¢) is a finite set, (170) and (168) imply that we may assume (v, 1), (12, n2) € Exc(e)
for the rest of the proof.
Let 6 and Ry be as in Theorem 47 applied with ¢, and let ms be so that 22 E; > 1/§. Then

(171) 2m2¢) > 2™ Fy log M > (log M) /6.

(*-Flattening lemma. Let K = M" for some x > 0 which will be explicated momentarily.
Assume now that for some m > msy, we have

(172) om * omlla > K |om]|2-

Then, there exists H C G which is symmetric and contains 1, so that all of the following hold:
(H-1) K~ Fllonlly® < [H| < K¥|lomll3?,

(H-2) |H-H - H| < K”|H|, and

(H-3) o * opn(H) > K7F,

where E' is absolute. See, e.g., 20, Theorem 2.12] and references therein.
We will apply the above with k = ar(min{e, §})/(10RyE dim G). This in particular implies

(173) K_E — M—El{ Z M—5a/4 2 p;fni,

where in the last inequality we used (168) and |G;| = p}'.
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Bounded generation and the structure of H. Let ¢ be as in (169), and let A C T be a finite
symmetric lift of H. Then by (H-3) and (173), we have

(174) P A) > KF > pp0m fori=1,2.

Apply Theorem 47 with ¢ and A. Since 7, ,,,(A) = m(H), (174) and Theorem 47 imply that for
i = 1,2, there exists 0 < n < n;e so that if we put H; = HR2 H, then

(175) T (Lvmr) € mi(Hy), fori=1,2.

Recall from (157) that ny < d+ 1. Hence, eny < e(d + 1) < 1, which implies n}| = 0. We also
record for later use that ny < d+ 1 and (159) imply

(176) eng > 2.

A homomorphism from G; into G5. In view of (175) and since nj = 0, we have
(177) Gl = T (H1> and Ty, o (Fyzyné) Q 7T2(H1),

where 0 < nf, < eny.
For every go € Go, put £(g2) := max{¢ > 0: go € ker(m,,¢)}. Define a function s : G; — G2 by

(91,8(91)) € Hi and  £(s(g1)) = min{l(g2) : (91,92) € Hi}.

Define {5 by Im(s(G1)) C myyny(Tue,) but Im(s(G1)) € 7oy my (T po+1). In view of the definition
of s and (177), we have

(178) ls < njy < ens.

Let us also define ks = min{k., £} where

§7°7s

ky = min{f(s(gl)s(gl_l)) "1 € G1}7 and
k! = min{((s(g191)s(g5) " s(g1) ") - g1, 95 € G1}.

Then s induces a homomorphism f : Gy = Go/my, n(Iy, k. ). Recall now that p,, > p,,, n1 < d+1,
and I',, is a hyperspecial subgroup. Thus G;/I',, 1 does not arise as a composition factor of any
subgroup of Go/7y, (I, k). We conclude that f is trivial, and hence

ks < .

Large fibers for H;. Note that

(1,s(g1)s(g: ")) € Hi-Hy  and  (1,s(0191)s(g1) 's(g1) ") € Hy - Hy - H,
for all g1, 9] € Gy. This and ks < 5 < eng, see (178), imply the following:
(179) There exists h € Gy with £(h) < eng so that (1,h) € Hy - Hy - Hy

Apply Proposition 39 with the group I',,, h as in (179), and p = p, " (recall from (176)

that eng > 2). Then by Proposition 39 combined with (179) and (177) (for 1»), there exists Es
(depending on G) so that if we put t = Esensg, then

(180) {(1792) 1g2 € 7TV2,N2(FV2¢>} - H7dimGH1‘
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The conclusion of the proof. Recall now from (177) that Gy = m(H;). This and (180) imply

(181) [rysraime) 7| 2 |Gl (Tu, )] = [G1] G|,

where we also used Hy =[], H.
In view of (H-1) and (H-2), we have

KEHE0Tam0) g 32 > KRBT ] 2 |[Tp gy H

Combining this with (181), we get
[EHRBEQATAmE) |15 12 5 o |Gy Ve
Recall that K = max{|G|, |G2|}* where k = (amin{e,d})/(10R2E dim G). In consequence,
lomlly® > |GL[|Gy| P2 —SREEmE > |G|,

where we also used the choice of ¢, see (169). In particular, (166) holds for o,,. Altogether,

(182) for all m > my either ||, * om|la < Ko ]|z or (166) holds for o,
see (172).

Since K = M* and ||o,,||2 < M~2 for all m, see (167), we conclude from (182) that there
exists mo < my Kq 1 so that (166) holds. The proof is complete. O

8.2. Infinite and finite place. We now investigate Proposition 46 in the case

(183) vi,p € Vr, 1y =00, and 1 is a finite place.
Preliminary reductions. Since almost every v belongs to Wr, in the proof of Proposition 46 we
may assume that 1y € Wr.

Note that (7 is a finite group, we thus equip G with the metric d induced by the admissible
metric on G and the discrete metric on GG;. To be more explicit,

L, ={1W}x1®  forall0<n<Ll

We let m¢, denote the probability Haar measures on G; for ¢ = 1,2, and let m¢ be the product
measure. Then |1,| = \17(72)/](}’1]] for all 0 < n < 1. In particular, we have

(184)

C
do < J1,| < ==,
|G1|0177 —| 77|— ‘Gl‘n

where dy = dim G and C > 2 depends only on dy. This in particular implies that for any 6 > 0
and all 2771 < < 27¢ <|Gy|7?, we have
L
2C"
where dy((, 0) = do + 7 log, |G1|; consequently, do < do(¢,0) < do + 67"
We will use the following notation:

(185) 0(t0) < I1,| < 20, %0

1 1
PO - _— 1@ and P = ——1,.
@ L

Throughout the argument, and whenever necessary, we will assume

0<n< (C’ldo)_OF(l) and Doy > (C’ldo)or(l).
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As it was done in §8.1, let X = (X3, X3) be as in the statement of Proposition 46, and let u be
the probability law of X. Since (Q2) =T is Zariski dense in G, which is absolutely almost simple,
we have min{L£(X1), £L(X3)} > ¢o > 0 where ¢y = ¢(€2), see [1, 24] and references therein. Thus

(186) max{ (7. pt; G1), A(Towf; G2)} < A < 1

where 7; denotes the projection onto the i-th factor and A := \(Q2). Therefore, there exists F; > 1
so that both of the following hold

w1 ()] <G fillz for all 44 > Eylog |Gyl

(187) )
|2t (fo)| < il f2ll2 for all 0 <n < 1 and all ¢; > E;|logn)|

where fi € L3(G1), f2 € L}(Gs), and fo, = fo# P This can be seen, e.g., by applying Lemma 28
with 7 (and in the first case n = |G1|™!) and choosing FE; so that X/2p~2 < 1 for all /; > E;|logn)|.
Recall that by the Peter—Weyl theorem we have

(188) PG = P dim(pr;®pay)pri © paj.
p1,:€G1,p2,;€G2

We will use the following fact in the sequel. Let V3 = @, ;1 dim(1 ® py ;)1 ® py;. Then, V3 is
the natural embedding of L2(G3) in LE(G), thus (186) implies that

(189) L V) > () > 0.

Finally, note that (154) and the fact that Gs is connected imply that

iyt < |Gyl < Dpfl, < piitt.

In consequence, we will assume for the rest of the argument that
(190) ny <d+1.
In view of (190) and part (1) in Lemma 4, we have: for any nontrivial representation p € Gy
(191) dim(p) > ¢, |G4|or, for some 0 < ¢f, o < 1.

We begin with the following.

Lemma 49. There exists some a = «(Cy, L,dy) > 0 so that the following holds. Assume there
exists E} so that for all 0 < n < |G|~ there exists some { < E}|logn| so that

1 )yll2 < 07,
then Proposition 46 holds for G = G1 X Gs.
Proof. This is essentially proved in [20, §8], we explicate some of the details for the convenience of
the reader. First note that by Lemma 4, there exists (Cy, L) depending only on I" so that G = G x
(5 is L-locally random with coefficient Cjy. Moreover, G satisfies the dimension condition (184).
Therefore, [20, Theorem 2.10] implies that there exists D, depending only on dj, and o/, depending
only on L and Cj, so that the following holds: there is an exceptional representation Hy of G; X G,
with dim Hy < 2C,CP|G1|P so that, if for all n < |G|~ there exists £ < E'|logn| satisfying

1 )llz < 7,
then we have
(192) Ll I3(G) 6 Hy) > ¢,
where ¢ = O/ 1, (/) > 0.

Thus, we may restrict our attention to

V= @(dim(pr; ® paj))pri @ pa 2 Ho
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where the sum is over representations with dim(p;; ® pa ;) < 2CoCP|G1|7P.
By [20, Lemma 8.8], there exists D’ > 1, depending on Cy, L, D, so that if we put § = |G|~"",

(193) 1Ps  f = flla < 6"2[| fl2

for any f € V.
Moreover, in view of (189), we may replace V by V' C V where in the sum above we further
assume that p;,; # 1. Then in view of (191), for all components of V', we have

dim(py ;) > ¢ |Gy [F.

Recall again that there exists (Cp, L) depending only on I' so that G; x Go is L-locally random
with coefficient Cp, see Lemma 4. Thus by [20, Lemma 6.1], for any x € L*(G) and any f € V',

(194) b Fllz <o G2 )X e

We will show the claim in this case holds if & < af/(4D’). Recall that 6 = |G1|~"", and let
¢ < E'|logd| be so that the condition of the lemma holds for this choice of §. Then applying (194)
with x = (u9)s and f € V', we have

16 5 1 < 820 fllo + 16 % Py £l
< 82| flla + |G| 002070 fla < 2890/ 4PY| £l

where we used (193) in the first inequality and (194) in the second.
Now, (195) implies that

(195)

E|log d|L(p; V') > ap|logd|/(8D').
This, together with (192) and (189) finish the proof. O

In view of Lemma 49, thus, Proposition 46 in this case will follow from the following.

Lemma 50. There exists E so that for all 0 < n < |Gy|™, there is some ¢ < E}|logn| with
I )lle <07,

where o 1s as in Lemma 49.

Proof. The proof of the lemma, which will be completed in several steps, is similar to the proof of
Lemma 48. Let E; be as in (187) and let ¢; > E;|logn|. We will show that the claim holds with
some E! = 2™, for some m. Let 0 = (1), and for every nonnegative integer m, let o, = o™,

Let £, Ry and £,(Q2) as in Theorem 47, and Ey = C/c with C and c as in Proposition 39.

Throughout the argument, we will assume p,, > Ri/ 6E, where
(196) £ = 80(9)(1//(8dE2)

We will also assume that n® is smaller than various constants which depend only on dj, as needed.

Initial entropy and the range of 7. Arguing as in the proof of Lemma 31, with ¢ for v and
0 < n < |G| the estimate in (187) implies that

(197) lonlloe < G-
Now (197) implies that if n < |G|~"/*, then
(198) oyl <0~

In particular, (198) implies the lemma with ¢; so long as n < |G1|~/®. For the rest of the
argument, thus, we assume

(199) (G < < |G|
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We also recall that

1 m
(200) aPn x 0 < (0,)%") < O Pymyy % 01
where C7 > 1 depends only on C and dy. This and (197) imply that
(201) (o)l < 1Gi| <7t for all m.

Let § and Ry > 4 be as in Theorem 47 applied with . Apply [20, Theorem 2.8] with ¢ as above
(for € in loc. cit.); replacing § with a smaller constant, if necessary, we assume that § also satisfies
the claim in [20, Theorem 2.8] with this e.

Let mo be so that 22 F; > 1/§. Then

(202) 2m20 > 2™ Fy|logn| > |logn|/é > log |G4] /6.

Flattening lemma. Recall from (185) that in the range (199), G = G x G4 satisfies dimension
condition with 2C and some d’ satisfying dy < d’ < dy+ 1. Thus [20, Theorem 2.12] is applicable
with 2C and d’ for G and all i in this range.

Assume now that for some m > mo, we have

(203) [(om * om)nllz > 0" (Gm)nll2

for some x > 0, which is explicated in (204). Then, by [20, Theorem 2.12] there exists E depending
on (4 and dy, and H C G which is symmetric and contains 1, so that all of the following hold:

(F-1) 5[ (0 )alla® < [Hyl < 0755l (0m)all2
(H-ii) H-H C T - H where T C H - H satisfies #7 < n~ ¢ and
(H-iii) 0y, % 0y (Hsyy) > nPr.
We will apply the above with £ = (amin{e,d})/(10RsEdy). This in particular implies
(204) nEm > néa/(2do) > |G1|_6,
where in the last inequality we used (199).

Bounded generation and the structure of H. Let ¢ be as in (196), and let A C T be a finite
symmetric lift of H. Then by (H-iii) and (204), we have

(205) PET(A) > 0P > |Gy

Apply Theorem 47 with ¢ and A. Since 7, »,(A) = m(H), (205) and Theorem 47 imply that
there exists 0 < n} < nje so that if we put Hy = [[, Hay, then m,, »,(C), ) € m(Hp). Recall
from (157) that ny < d+ 1. Hence, eny < e(d+ 1) < 1, and we conclude n} = 0. Altogether,

(206) m(H) = Gy
Let Y = (ma(Hsy))y, then Y| < |mo(Hs,)|, see (200). Moreover, by (187), we have
| (T2 (V) = [Y]| < Y [V2 <
Using (204), this and (H-iii) imply that
o (Hyy)| > 22 > 0/,

we also used |Y| < |m(H;)| and assume 7 is small.
Since Ry > 4, the above and [20, Theorem 2.8], recall also the choice of §, imply that

(207) mo(Hy) 2 1%,
As it was done in (124), let
/32 = lnf{ﬂ € [07 1” Elg? € G27d(927 1(2)) Z 776: (1(1)792> € H3(H1)U};
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where d denotes our fixed bi-invariant metric on G.
We claim

(208) Ba < 10e.

Let us first assume (208) and complete the proof of the lemma.

Large fibers for H;. In view of (208),

(209) There exists h € Gy with d(1,h) > 7' so that (1,h) € [[5(H1),

Apply Proposition 39 with the group Gy, h as in (209), and p = 7'%. Then by Proposition 39
combined with (209) and (207), there exists Fy depending only on dy (indeed Ey = C'/c) so that

(210) {(1,92) 102 € 17(721325} - H7d0<Hl)77'

The conclusion of the proof. Recall now from (206) that G; = 7 (H;). This and (210) imply
that there exists some ¢, again depending only on dy, so that

(211) ‘HRQ(HWO) th

where we also used H, =[], Ha, and the triangle inequality.
Then using (H-i) and (H-ii), we have

> me, (11%,.) > Oy 'nfedos

nEQE

p ER(+Re(147d0) | (g,), (|52 > BRI TdmG) | /| > ¢

HR2(1+7d0) Ht"]

where ¢| depends only on d.
Combining this with (211), we get

BT | (5, ), |72 = g MEHRETO | (6, 72 > ¢ty

Recall that £ = (amin{e, d})/(10Ry Edy). In consequence,
-2 ! ~—1_Fodoe, 8RoFEdyk 2F>dpe
[(0m)nllz* = c1C1 U =1 .

This and the choice of ¢, see (196), imply that

(212) 1(om)ylla < i~ F2des <o/,
Altogether,
(213) for all m > my either ||o,, * oplla < 77F||om||2 or (212) holds for oy,
see (203).
Since ||(o,)s|l2 < n7! for all m, see (201), we conclude from (213) that there exists my < my <gq
1 so that (212) holds. This completes the proof of the lemma assuming (208). U

Proof of (208). In view of Lemma 35 applied with H;, and using (206) and (207), there exists
f:Gy— Gy with  f1W) =1
so that all the following hold

(214a) d(f(g91)f(91), f(r91)) <™ for all g1, ¢} € G,
(214b) d(f(grh), f(g)™h) < n™ for all g; € Gy, and
(214c) 1 C (Im f),y5

Assume contrary to the claim that 5y > 10e. We will now use a simpler version of the argument
in §4.2 in the case Fy, = R and F; = Q, to get a contradiction.
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Using (214c¢) and 5 > 10g, there exists g; € Gy so that f(g1) € 1,(725) \ 15725)/2. Recall now from [25]
that there exists some C' depending only on dy so that
(1) € TleAhlgr, WIh=" by B € Gy},
This, the bi-invariance of the metric, and the triangle inequality imply that
(215) d(f(g),1®) < C'(p° +0™) <y forall k

where C’ depends only on dy, see the proof of Lemma 10.
Now sing (214a), (214b), and (215), for all 7°/100 < k < n~?/2_ we have

d(f(90)", 1) < d(f(g7), 1?) +e®/2 <92,

However, if we write f(g1) = exp(z) where z € gy satisfies °/2 < ||z]| < 7n°, then there exists some
k in the above range so that

d(f(91)",1%) = d(exp(k2),1%) > 1
This contradiction finishes the proof. 0J

Proof of Proposition 46. We first assume that both v; and v, are finite places.
If we have

(216) max{ni,ny} < 4d*(d + 1)Ey/(g0(Q)ar),

the proposition follows from [25, Theorem 1], with Mj in that theorem equal to %. If (216)

fails on the other hand, the proposition follows from Lemma 48.

Altogether, the proof is complete if 14,5 € Vi p.

The case v, = 0o and v; € Vi follows from the discussion in §8.2, see in particular, Lemma 49
and Lemma 50. O

9. PROOF OF THEOREM 2

We now begin the proof of Theorem 2. As it was mentioned before, the proof relies on Theorem 1,
Theorem 44 and Proposition 46.

Proof of Theorem 2. Recall that we fixed a Q-embedding G C (SLy)g; our constants are allowed
to depend on this embedding.

Step 1: By the strong approximation theorem, there exists a finite index subgroup A C T' so
that

(217) Ap vy =Ny XA, for all v, € Vp,

where A, denotes the closure of A in G(Q,). In view of Proposition 55, it suffices to prove the
theorem for A. Thus, we assume (217) holds for I'.
Step 2: There is a finite set of places Er so that for all v € Er, we have

I C SLx(Z,).
For every finite place v € Er, there exists g, € GLy(Q,) such that
gurg;l g SLN(ZV)

In view of the strong approximation theorem, there exists g € PGLy(Q) so that ¢ € PGLx(Z,)
for all v € Er and g~ 'g, € PGLy(Z,) for every finite place v € Ep. Therefore,

(218) gl'g™* € SLy(Z,) for all non-archimedean places v.
In view of (218), we will assume

(219) I' CSLy(Z,) for all non-archimedean places v.
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for the rest of the argument.
Step 3: If the archimedean place belongs to Vi, i.e., G(R) is compact, fix some g € SLy(R) so
that
gG(R)g~ C SON(R).
In this case, we replace G(R) by ¢gG(R)g~! and we work with the corresponding copy of T" in the
archimedean place. This means, for every non-archimedean place v, we are replacing I's , with

(9, 1)F<>o,l/<g_1a 1) € SON(R) x SLy(Z,).

Note that G(Q,) is unchanged for all non-archimedean places v.

Step 4: Let vy, 15 € Vp. In view of Lemma 4, we have I',, ,, is L-locally random with coefficient
Cy, where the parameters L and Cy depend only on I'.

Let p be the law of X. By Claim 45 in the proof of Theorem 1, applied with G; :=T',, and
Gy :=1,,, we have

(220) 1195 Flla < 0°lLf s

for all functions f which live at scale n < 1y and ¢ < C'log(1/n), where C' and b depend only on
dim G, L, and 1y = max{p,,, p,, } ~9¢W.

In view of (220) and Theorem 44, applied with G = I',, ,,, there exists a subrepresentation
Ho = ,H]/17y270 C L(Q)(FVLW) with

(221a) dim Ho < 15y %Y and
b
(221b) L(X; LTy, 0,) © Ho) > ok

Step 5: We now investigate £(X;Hy). In view of (221a) and [24, Proposition 33|, the represen-
tation Hy of I',, ,, factors through G x G where

Gi = Fl’i/FViyni

and the number of connected components of G x Gg is < 7, OF(I)UO_ OG(D, see §8 for the notation.

In particular, condition (154) of Proposition 46 is satisfied. Hence, by Proposition 46, we have
£(X,H0) > £(X,G1 X GQ) > or > 0.
This and (221b) complete the proof. O

APPENDIX A. PASSING TO AN OPEN SUBGROUP

The main goal of this section is to show how we can study the spectral gap property of an action
on a compact group by passing to an open subgroup and vice versa (see Proposition 55). Along the
way, we review the connection between the spectral gap property and almost invariant functions,
and we also give the connection between L£(Pgq,) and L(Pq,) where ©; and €, generate the same
dense subgroup I' of G.

We start by recalling the concept of almost invariant functions with respect to a given finite
symmetric set. For a compact group G, a finite symmetric subset €2 of G, and a non-zero function
f € L*G), we let

,_ [w-f=[l2
o) =0
We let 6(Q2) := inf{da(f) | f € L*(G)°, || fl]2 = 1} where L?*(G)° is the space of functions in L*(G)
that are orthogonal to the constant functions on G. A function is called e-almost invariant with
respect to Q if 0q(f) < e. It is well-known that £(Pq) > 0 if and only if §(©2) > 0. The next
lemma is a quantitative version of this statement.
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Lemma 51. Suppose G is a compact group and ) is a finite symmetric subset of G. Then
(@7 < £ (Pa) < (@),
where L*(Pq) := min{L(Pq), 1} and the implied constants are fized positive numbers.

Proof. The lemma is proved in [6, Proposition I]. See in particular, parts (4) and (6) in that
proposition, and note that since Pg, is self adjoint, its spectral radius equals its operator norm. [J

In the next lemma, we show how the Lyapunov exponents with respect to two generating sets
are related to each other.

Lemma 52. Suppose G is a compact group and €2y and 25 are two finite symmetric subsets of G
such that (1) = (Qs) is dense in G. Suppose kg is a positive integer such that €y C Hko Qs and
QQ Q Hko Ql. Then
1
7 0(Eh) < 0(Q22) < Kod(€h),
0
and
1

k5162

where L*(Pg,) := min{L(Pq,), 1} and the implied constants are fixed positive numbers.

L*(Pa,)? < L*(Pa,) < kol |2L(Pg,)'?,

Proof. Since Q3 C [, @, for every function f € L*(G)° we have

Hence §(€2s) < kod(€21). By symmetry, we have that 6(21) < kod(€2). This completes proof of the
first set of inequalities.
By Lemma 51 and the first set of inequalities, we obtain that

L*(Pa,) < () < kod () < kolQu|Y2L (Pa, )2
The proof follows by symmetry. O
Lemma 53. Suppose F is a finite group. Then 6(F) > (2|F|~")'/2.
Proof. Suppose f € L*(F)°. Then

Sollz-f=fll5= Y If@y) = f)l

zeF zyel
=Y (f@P +1f®)F = 2Re(f(2)f(v)))
z,yel
(222) =2|If15+21 ) f@) =2 715
zeF
By (222), we obtain that 6z(f) > (2|F|~')"/2, which completes the proof. O

The next lemma is a well-known result which provides us with a generating set with interesting
properties for a subgroup of finite index in a finitely generated group.

Lemma 54. Suppose G is a compact group, I' is a finitely generated dense subgroup of G, and H
15 an open subgroup of G. Suppose () is a finite symmetric generating set of I' which intersects all
the cosets of H in G. Let s : G/H — Q be a section; that means s(xH) € xH for every x € G.

Then Qg = Qpy U ﬁ;{l is a symmetric generating set of I' N H where

Qg = {s(wyw, H) wywy | wy, wy € Q}.
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Moreover for every x € I' M H we have

where lo(x) is the least non-negative integer k such that x € [, Q and Lo, () is defined in a
similar way.

Proof. Since every element of Qg is a product of at most three elements of {2, we have that
lo(x) < 3lg,, (x) for every x in the group generated by Qp. Next by induction on fqo(z), we prove
that (o, (v) < lo(z) for every x € I' N H; this, in particular, implies that Qp generates I' N H.
The base case of lo(z) = 0 is clear. Suppose lo(z) = n for some z € ' H. Then x = w; ... w,
where w;’s are in Q. Let 2/ := w; -+ w,_98(w,_ 1w, H) and w' := s(w,_1w, H)  w,_jw,. Then
w' € Qy, lo(2') <n—1, and x = 2’w’. Since z and w" are in I' N H, so is . Therefore, by the
induction hypothesis, we have lq, (z') < n — 1. Hence (g, (z) = Lo, (2'w') < lo,(2') +1 < n.
This completes the proof. O
Proposition 55. Let G be a compact group and ' be finitely generated dense subgroup of G. Let
H be an open subgroup of G. Then I' ~ G has spectral gap if and only if ' N H ~ H has spectral
gap. More precisely, if I' has a generating set of size n, then I' has a finite symmetric generating
set Q and I'N H has a finite symmetric generating set € such that |Q|, || <, q.m) 1 and

L*(Pa)® <njcm L2 (Par) njaem L7(Pa)'?,
where L£°(-) = min{L(-),1} and L(Pgq) is defined with respect to a random walk in the compact
group H.

Proof. Since H is an open subgroup and I' is a dense subgroup of G, every coset of H has a
representative in I'. Let s : G/H — T be a section such that s(H) = 1. Let Q be a finite symmetric
generating set of I' which contains the image of s as a subset. Let Q0 be as in Lemma 54 with
respect to €2 and section s.

We start with the case that H is a normal subgroup of G.

Claim 1. In the above setting, L*(Pq) > ] GH] L*(Pq,,)* where the implied constant is a fized
positive number.
Proof of Claim 1. If L(Pq,,) = 0, there is nothing to prove. Thus assume that cg := L(Pgq,,) > 0.
We will estimate 6(£2) from below in terms of ¢y, the claim will then follow from Lemma 51.

To that end, suppose f € L?(G) and || f||2 = 1. Let fy denote the projection of f into the space
of H invariant functions L*(G)", then

(223) [Pay, * f = fullz < 27%%||f = fulls,

We include the proof of (223) for completeness. Let us first recall the definition of f: for every
coset T := xH, let f, := flz where 13 is the characteristic function of the coset . Then

(224) f= Z fz and f3’s are pairwise orthogonal
TeG/H
Similarly, since for every T € G/H andy € H, (y- f — f)lz =y - fz — fz, we have
(225) yf=f=> v fi—fe
zeG/H

For every T = zH € G/H, let az = fG fz(2)dz. Then fz — azls is in the space L*(Hz)° of
functions on Hx = xH that are orthogonal to the constant functions; moreover

fo = Z azlz.

TeG/H
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In particular, we have
(226a) A2 = £l + I f = fullz  and
(226D) 1Py * (f — azlz)lls < 27 fz — azls]l2
for every T € G/H. By (224), (225), and (226b), we obtain that
1Pay * f = fulls = 1Pay * (f = fr)ll3 = D 1Py * (fr — azla)ll5 < 27°||f = full3,
zeG/H

where we also used Pq,, * fg = fr in the first equality. As it was claimed in (223).
We will now use (223) to bound ||w - fg — fu/|2, for w € €, in terms on ¢y and dq(f), see (230)
below. Indeed, since 25 is a subset of the three fold product of €2, for every y € Qg we have

(227) ly - f = fll2 < 30a(f).
The estimate (227) implies that
(228) 1Pos « f = fll =1l D_ Pau@)y - f = Fllz < 35a(f).
yeQy
Now (223) and (228) give ||f — full2 < 27 ||f — full2 + 36a(f), which we write as
(229) If = frll2 < 3(1 = 277) " da(f).
By (229) and the definition of dq(f), we conclude that for every w € 2 the following holds
(230) lw - fir = fall2 < (6(1—277) " + 1)da(f)-

We find a lower bound for supg, |w - fg — fu|l2. Indeed, L?(G)¥ can be isometrically identified
with L?(G/H). This way we view fy as an element of L?(G/H). Since f is orthogonal to constant
functions on G, fy is orthogonal to constant functions on G/H. Therefore, by Lemma 53, we
obtain that there is Ty € G/H such that

(231) 176 - fur = fullz > (G - H]7Y)Y?| fullo.
Since the image of s is in 2, (231) and (230) imply
(232) IG H Y 2 fulls < 170 fu = fulla < (6(1 = 27) 7 + 1)da(f).
Moreover, we have
(233) Ifulle > flle = If = fulla =1 = [f = falla > 1= 3(1 —27) " da(f),

where in the last estimate we used (229). Using (233) in (232), we conclude
(2[G < H])2(1 = 3(1 — 270) L60(f)) < (6(1—2) "+ 1)dn(f).

This gives
(234) da(f) = (12(G : H]'/?)7H (1 —27¢%).
Using (234) and the fact that 1 — e~ > £ min{xz, 1} for every positive z, we conclude that
(235) 5(Q) > [G: H]7V2L*(Pgy,).
By (235) and Lemma 51, we deduce that

1
1Q|[G : H]
which completes proof of Claim 1. 0

ﬁ(PQ) > ﬁ.(,PQH>27

Claim 2. In the above setting L*(Pq,) > ﬁﬁ.(PQ)2 where the implied constant is a fizved
number.
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Proof of Claim 2. If L(Pgq) = 0, there is nothing to prove. So without loss of generality, we can
assume that cg := L(Pq) > 0. Let f € L*(H)° with ||f]|3 = 1, and define f : G — C, f(x) :=
f(s(zH) 'z). Notice that

@0 =y X [ FmPangt) = w3 [ 1wk -1

xHeG/H zHeG/H

and
~ 1
(237) /Gf(x)dm = i

> [ Fetwmmamsw) =z X[ ) <o

zHeG/H

where mpy is the probability Haar measure on H. In view of (236) and (237), Lemma 51 implies
that there exists wy € €2 such that

(238) lwo - f = fllz = 6a(f) = 8(2) > L*(Pa).
Next, we want to give an upper bound for 59(]?) in terms of dq,, (f). Note that for every w € Q,
(239) W' (T, w) = s(T) " 'w s(w'T) € Uy,

where as before 7 .= zH € G/H.
For every w € Q2 and y € ¥ = xH, we have

(240)

Let now w € 2, then

(211) o L [ 1) 1))~ f)Fdmate) by (20

zeG/H

e o IS = F1 < b, (1)

7eG/H
By (238) and (241), we obtain that
(242) Sa, (f) > L5(Pq).
By (242) and Lemma 51, we deduce that
(243) L (Pq) < [Qu|"?L(Pa,) < 1QL(Pa,).
This completes the proof of Claim 2. O

Next we consider the case where H is an arbitrary open subgroup. Let N be the normal core of
H in G, i.e., N is the largest normal subgroup of G which is a subgroup of H. Since H is an open
subgroup of G and G is a compact group, N is also an open subgroup of G. Let s : G/N — T be
a section such that s(N) = 1, and Q be a finite symmetric generating set of I" which contains the
image of s as a subset. Let {2y be as in Lemma 54 with respect 2 and the section s. Let

Q= Qv U {s(aN)* |2 € H}.
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Notice that the restriction of s to H/N gives us a section whose image is a subset of Q. Let
Yy be a generating set of ' N which is given by Lemma 54 with respect to {2}, and the section
s: H/N — Q. Then by Claim 1 and Claim 2, we have

1
(244) Q2 L*(Pa)* < L*(Pay) < [Q'2G : NJV2L (Pg)'/?
and
1
(245) L P, )? < L (Pay,) < Q| '?[H : NJV2L* Py, ).

Notice that since s(N) = 1, 1 is in . Therefore for every z € Qy, s(1zN) 11z € Q) as 1,z € QY.
Notice that s(xN) = 1, and so « € Qy for every « € Qy. This means Qy C Q.

Notice that by Lemma 54, o(w) < 3 for every w € ;. There by another application of
Lemma 54, we deduce that for every z € Qf, lo, () < 7. This is the case as x*! is equal to
s(wywa N ) ~Lwiwy for some wy, wy € Oy, and so

loy(z) = Loy (s(wrwoN ) rwrws) < Lo (s(wiwaN)  wiws)
< Lo(s(wiwaN) ™) + Lo (wy) + Lo(wy) < 7.
This means that Q C H7 Q. Hence by Lemma 52, we have

(246)

|Q | (Pay)® < L*(Pay,) < |Qn|"2L* (Pay )

By (244), (245), (246), and the facts that || < Q]2 [Qy] < |Q*, [Qx] < [©2]2, we conclude
(247) QTG NIT'L* (Pa)® < L5(Pay,) < [QPYFIG: NIVELS (Pa) s,
Notice that [G : N] < [G : H]!, hence, the claim follows from (247). O

APPENDIX B. QUANTITATIVE INVERSE FUNCTION THEOREM

In this section, we recall and state a quantitative version of the inverse function theorem. We
start with setting up a few notation. Here F is either R or Q,. For v e Q¢, ||v|| denotes the max
norm, and for v € R%, ||v|| denotes the Euclidean norm. For a positive real number 7 and v € F¢,
v, denotes the closed ball of radius r centered at v. For A € M,, ,(F), we let

o(A) :=sup{r € [0,00)| 0, C A0, }.

For ry € RY, xg € F™, and an analytic function ® : (x¢),, — F™, we view d®(x) as an m-by-n
matrix with entries in F'; the ij-entry of d®(x) is 0;®;(x) where & = (®4,..., D).

Next we state a p-adic analytic inverse function theorem which is essentially given in [25, Lemma
54].
Theorem 56 (Quantitative inverse function theorem: the p-adic case). Suppose ro <1, x € Zy
and ® : (xo)r, — Zy' is an analytic function with the following properties.

(1) There are ¢;; € Z, such that
d(x) = Z(cm(x —x0)%, ..., cim(X — X0)Y),

i

where (x — xo)! = [[j=i(xj — w0;)" for a multi-index i = (i1, ... ,4,) and x = (z1,...,2,)
and xg = (Zo1, - - -, Ton)-

(2) o(d®(xq)) > p~* for some positive integer k.
Then for every integer | > ko + 1 we have
@(Xo)pfkofz g @((X())p—l).
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Proof. See proofs of [25, Lemma 54, Lemma 54’|. O
Now the real case of Theorem 56 will be discussed.

Theorem 57 (Quantitative inverse function theorem: the real case). Suppose ro < 1, x9 € R”
and ® : (Xq)r, — R™ is a C?-function with the following properties.

(1) For every 1 < j,5' <n and x € (X0)r,, [|0;7P(x)| < .

(2) For some positive number oy, o(d®(xg)) > oo.

Then for every 0 <r < maX(Qm‘;O\/a, ro) we have
Do) 9, € B((x0)).

We start with a linear algebra lemma.

Lemma 58. Suppose vi,...,vp,Vi,...,vl, € R™ and let A := [vy---v,] and A" := [v]---V]].
Suppose oy is a positive number and 0 < & < o¢/\/n. Suppose A = K1|D 0,,_,,| K> is a singular
value decomposition of A; that means K; € O, (R), Ky € O,(R), and D = diag(sy, ..., Sm) for

some §1 > -+ > 8, > 0. If 0(A) > g and ||v; — V|| < e for every i, then
o(A) > o(A'L) > 00 — v/,
where L = K" [ 0[’" }
Proof. Since K; and K, are orthogonal,
(248) o(AL)=0(K{'A'L) and o(A)=0(K{'AK;") =0(D) = 5.

By the assumption, all the columns of Y := ¢71(A — A’) have length at most 1. As K; and K,
are orthogonal, all the columns of X := K[ 'YL have length at most \/n. Notice that by the
definition of X, we have K;'A'L = D — eX. By (248), we deduce that o(D — eX) = o(A'L),
where D := diag(sy,. .., Sn). Notice that for every w € R™ we have

I(D —eX) Wl =D (I —eXD™ ') 'wl| < 5,/ [[(1 —eXD™1) " 'w|

(N 1y _ 1
<oy (L (evioy ) )il = o5 Tl
1
249 -t
( ) gg — \/ﬁg
By (249), we deduce that o(D —eX) > 09 — y/ne. and the claim follows. O

Lemma 59. Under the assumptions of Theorem 57, let d®(x¢) = K1[D 0y, p—m] K2 be a singular
value decomposition; that means K; € Op,(R), Ky € O,(R), and D = diag(si, ..., smy) for some

S > o > 5y > 0. LetL::K21{ I

L If [|x = xo[| < min(ro, 3;%==), then the following
holds

o(dP(x)L) > 0¢/2.

Proof. By the mean value theorem, for every 7, j, and k, there is a point x;;, on the segment
connecting xy to x such that

(250) GJCD ( ) 8 (I) XO Z@M Xz]k T — l‘ok).
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By (250), we deduce that for every j the following holds
(251) 10;@(x) — 9;®(x0)l| < Vmnalx = xof| < Vmnaz

By Lemma 58 and (251), the claim follows.

0o

N

O

Proof of Theorem 57. By the singular value decomposition of d®(xg), there are K; € O,,(R)
and Ky € O,(R) and s; > ... > s, > 0 such that d®(xq) = Kl[D Om.n—m) K2 where D :=
).

diag(si,...,sm) is the diagonal matrix with diagonal entries sq,...,S,,. Then s, = o(d®(xo)
Let L:R™ — R" L(v) = K;' (Onvm>' Notice that ||L(v)| = ||v]| for every v € R™ and L can
be represented by the matrix K" [ Oml;n—m ] ; this matrix is denoted by L. Furthermore for every
v we have
(252) | (o) L(¥)|| > or(db(x0))[v]| > ollv]].
Let
(253) U0, = R™ U(v):=D(L(V) +x¢) — P(x0) — dP(x0)L(V).
Suppose ¥ = (Uy,...,¥,,). By the mean value theorem, for every i, there is v; on the segment
connecting v to 0 such that
(254) U, (v) — 0;(0) = VU, (v;) - v.
Notice that VW¥;(w) is the i-th row of d¥(w), and by the chain rule, we have
(255) aW(w) = (dD(L(w) + x0) — dD(x) ) L.
By (251), we have
(256) 10,8(L(w) + x0) — 0,8 (x0)]| < vmmal|L(w)]| = vmma|w.
By (254), (255), and (256), the following holds
(257) [Wi(v) = T:(0)] < (Vallv)(vVmnalv]) = nv/mallv]?*.
Inequality given in (257) implies
(258) [ (v) = (0)]| <mnvalvl*.

Since ¥(0) = 0, by (253), (258), and (252), we obtain
I2(L(v) + x0) = P(x0)| 2| dP(x0) L(V)|| — mnv/a|v]*
>oo[v|l — mnyallv|?
(259) > (0 — mnv/alvi]) Iv]
By (259), if |[v] < 5

f’ we obtain

(260) [R(L(V) +x0) = 2x0)l| = V]

Let 0 <r < 5% f’ and for y € ®(X0)sqr/4, consider the function

fy 10 = R f(v) = [|@(L(v) +x0) — ¥l
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where 0, is the closed ball of radius 7 centered at 0. By (260), if ||v|| = r, then

VA ) ZI(L) +x0) = D(x0)]| — [(x0) ~ ]
> v = (o) - ¥

ogr ogTr oogr
261 Jor_ gor _ ¢ _
(261) SO BB 1(0)

By (261), the minimum of fy occurs at at a critical point vy € 0, of f,. Knowing that V fy(vy) =0,
using the chain rule, we obtain that the following holds

(D(L(vy) +x0) — ¥)" AD(L(vy) + x0)L = 0,

where (®(L(vy)+x0) —y)” is the row matrix form of the vector ®(L(vy)+x¢) —y. By Lemma 59,
o(d®(L(vy) + x9)L) > 0¢/2 > 0. Therefore d®(L(vy) + X)L is injective, which implies that
y = ®(L(vy) + x¢). The claim follows. O

APPENDIX C. THE CASE OF ABELIAN GROUPS

In this appendix we will prove the following.
Theorem 60. The groups Z, and R/Z are not spectrally independent.

We start by a general criterion characterizing when a coupling of the Haar measures on two
compact abelian groups has spectral gap.

Lemma 61. Let G be a compact abelian group, and let p be a symmetric probability measure on

G. Then p does not have spectral gap iff there exists y; € G \ {1} such that ~; converges to the
constant function 1 on G, p-a.e.

Proof. Since G is an abelian group, the spectrum of the convolution operator 7}, consists of 1i(7y)
for v € G. Since p is a symmetric probability measure fi(vy) € [—1,1] for all ¥ € G. Assuming g

does not have spectral gap, we obtain a sequence {7;}52, C G such that |fi(v;)] = 1 and ~,’s are
pairwise distinct. We will show that passing to a subsequence, if necessary, we have

(262) V=1  pae

To see this, write v; = x; + 4y;. Indeed, after passing to a subsequence, which we continue to

denote by {v;}, we have
/Wjd,u: /xjd,u—> €

where € = +1. Since |y;| = 1, we conclude that [|y; — €| du — 0. Thus passing to a further
subsequence, if necessary, we get that v, — €, p-a.e.; this implies (262).

For the converse, note that if 7, — 1, p-a.e., then by Lebesgue’s dominant convergence theorem,
we have [i(7;) — 1; hence p does not have spectral gap. O

Lemma 62. Let (Z,v), (Xi, 1), and (X, o) be probability spaces. Assume that for i = 1,2,
fi: (Z,v) = (X, i) is a measurable map so that fiv = p;. Let § : Z — Xy x Xy be defined by
6(z) = (f1(2), f2(2)). Then

(263) p=0.(v)
1S a coupling of py1 and ps.
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Proof. For © = 1,2, denote the canonical projections from X; x X, onto X; by m;. Then since
m 00 = f; and fi,v = p;, we have

(ﬂ-l)*lu’ = (Trl)* © 5*(V) = /‘L’L fOI' Z = 1a 27
as we claimed. O

For the rest of this section, put Z = {0,1,...,p — 1} and let v denote the product measure
of probability counting measure on {0,1,...,p — 1}. We will apply Lemma 62 with (Z,v) and

(X1, 1) = (R/Z, mpyz) and (X2, ) = (Zy, myz,).
We will also need the following to define the marginals.

Lemma 63. Let foo : Z - R/Z and f, : Z — Z, be defined by

foo{zi}32 <Z xp" ) and fr{zi}2o) Z z;p'.

Then foo v = mprz and f,.v = mg,.

Proof. First, we observe that f., and f, are continuous surjective functions; in particular, they are
measurable functions. We also notice that f, is injective, therefore it is a homeomorphism. As for
foo, note that f!(x + Z) has one element unless z is of the form in which case f!(z + Z) has
two elements. Therefore, there are v-null subset N C Z and mg /Z—null subset Ny C R/Z, so that
foo : Z\ Ny — (R/Z) \N2 is a bijective measurable map whose inverse is also measurable.

To prove the lemma for f.,, it suffices to give a generating set U of the Borel o-algebra of R/Z
such that for every U € U, the sets U \ Nz and f '(U \ N3) have the same measure. The proof
for f, is similar. For i € Ny and 0 < j < p'™' — 1, let

(7 J+1
Uij = (W’ pitl ) +Z.

Notice that U := {U; ; | i € Ng,0 < j < p — 1} generates the Borel o-algebra on R/Z, and

2N U = ({ao} x - x {a;} x H {0,....p— 1}) \ M

k=i+1

where j = ag + a1p+ -+ + a;p* and ay, . .., a; € [0,p — 1]. Therefore, both U; ; and f.'(U; ;) have
measure # Altogether, we deduce that f., is measure-preserving, which means fo v = mg/z.
The f, case is similar. O

We note that for any permutation o : Ny — Ny, the induced map h, : Z — Z is a homeomor-
phism which preserves v. Therefore, combining Lemma 62 and Lemma 63, we have

Corollary 64. Let 0 : Ng — Ny be a permutation, and let §, : Z — R/Z x Z,, be

00(2) = (f(2), fp(ho(2))),

and let jio = 055v. Then p, 1s a coupling of mg,z and mz,. [
Proof of Theorem 60. Let o : Ny — Ny be the permutation fixing 0 and 1 and inverting each block
{29,...,29F1 — 1}, More precisely, all j > 1 and 0 <i <27 — 1 we have o(i + 27) = 27t1 —j — 1.
Let i = p, be as in Corollary 64 applied with this o. Then u is a coupling of the probability Haar
measures on R/Z and Z, supported on

(264) {(XZgzap 3020 vip') € RJZ X gl ya5 = yaini iy, forall j > 1,0 <i <27 —1}.

We will use Lemma 61 to show that u does not have spectral gap, which will finish the proof of
the Theorem as p is a coupling of the probability Haar measures on R/Z and Z,.
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To apply Lemma 61, we construct a family of characters for R/Z and Z,. Let
e:R = C* e(x) =™,
and recall that
]1§/\Z = {exn | n € Z},

where eoon(x + Z) := e(nx) — notice that e, is well-defined as e is Z-invariant.
To describe the dual of Z,, we recall that every element x € @, can be written as a sum of a
rational number r, and a p-adic integer z,. Let

ep: Q, = C*,  ey(x) :=e(ry),

and notice that e, does not depend on the choice of decomposition x = r, + 2, as e is Z-invariant.
Then

Zp = {ep,r | r= I%akaj S Z’}?
where e, : Z, = C*, e, (x) = ¢,(rz).
For j > 1, define aj :=e__ P27 Bj = €pp-2t1) and

We claim that for p-a.e. (x,y) we have v;(x,y) — 1. By (264), we have that if (z,y) is in the
support of p, then there are digits z;,y; € {0,1,...,p — 1} such that z = >"°, z;p~ ) and
y=> oy, where

(265) Yoitl 1 = Tojyg forall j >1and 0 <i < 2.

Then for all j

aj(z) = e 20 (T) = e(i Iipyiiil)
(266) N

271

= e(Z $¢+2jp7(i+1)> = e(z l’i+2jpf(i+1)> + O(pfy).
i=0

=0

Similarly, we have

Bily) = Cpp—2itt (y) = ep (Z yileisz)
=0
2J+1_1 i1
. . » y
— e( Z yip Yt > — e(z Yoit1 i 1P (H—l)) +op ).
=0 i=0
Hence, by (265), (266), and (267), we obtain that

i (2, y) — 1] = |ay(z) — Bi(y)| = O(p™?).

Therefore by Lemma 61, we deduce that p, which is a coupling of the probability Haar measures
of R/Z and Z,, does not have spectral gap property. Thus, R/Z and Z, are not spectrally
independent. O

(267)
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APPENDIX D. COMMUTATOR OF SMALL NEIGHBORHOODS IN COMPACT SEMISIMPLE LIE
GROUPS.

In [12] it is proved that if G is a perfect connected compact group, then every element of G is a
commutator element. More recently in [5], it is proved that the commutator map

V:GxG—= G (g, 9) =1, 92) = 919297 95"

is an open function if G is a compact semisimple Lie group. Here we show the following quantitative
version of their result. For the case of unitary groups, this is part of the Solovay-Kitaev algorithm.

Proposition 65. Suppose G is a compact semisimple Lie group. Suppose G C SO(n), and it is
equipped with the metric induced by the operator norm. Let ¢ : G x G — G, (g1, 92) := g1, go] be
the commutator map. Then there is a positive number ¢’ := ¢"(G) such that for every 0 < py, py < 1

we have P (1, x 1,,) D 1o

p1 p1p2°

Proof. Let g be the Lie algebra of G, and v : g x g — g,¢(x,y) := [z,y]. By [5, Theorem 2.1],

there is a positive number ¢/ such that ¢(0; x 0;) D Oy . Since 1 is bilinear, for every positive
numbers p and p’ we have

(268) w(Op X Op/) 2 0

" pp'

Let ¢(t) := ett’l. Notice that ¢ is an analytic function, ¢(0) = 1, and |¢(t) — 1] < % for every

0<t<l1. Weset

:gxg—g, &(z,y) =explad(y))(z) — z,
and we notice that
{(z,y) =(exp(ad(y)) — id)(z) = ad(y)(¢(ad(y))(z))
(269) =y, p(ad(y))(z)] = ¥ (y, p(ad(y))(z)).

For every 0 < p <gima 1, 0 < p' <1, and y € 0, ¢(ad(y))(0,) 2 0,/2. Therefore by (268) and
(269), we obtain

(270) f(Op X Op/) 2 O% "o

A pp
for every 0 < p < 1 and 0 < p/ <gimg 1. Using the Baker-Campbell-Hausdorff formula, it is

deduced in [5, Proposition 3.1] that there are analytic functions P and @ from a neighborhood O
of (0,0) € g x g to G such that

(271) P(0,0) = Q(0,0) = 1, exp(z +y) = exp(Ad(P(z, y))(x)) exp(Ad(Q(x,y))(y)),
for every (z,y) € O. By (271), we have
(272) exp(—&(x,y)) =[A, B], where

A :=P(z, — exp(ad(y))(x)) exp(x) P(z, — exp(ad(y))(z)) " and
B :=Q(x, — exp(ad(y))(x)) exp(y) P(x, — exp(ad(y))(z)) "
)

For x € 0,, we have || — exp(ad(y))(z)|| = || Ad(exp(y))(z)|| < p. Since P and @ are analytic and
P(0,0) =Q(0,0) =1, for 0 < p < 1 and = € 0, we have

(273) P := P(z,—exp(ad(y))(x)) € 1w, and Q := Q(x,—exp(ad(y))(z)) € Len,,

for some C” := C"(G). By (273), for x € 0, and y € 0,/, we have

(274) Aecly, and B € lycrprop-

By (270), (272), and (274), we deduce that the following holds:

[]-Zpa 140”p+2p'] Q 1%0’1//)/)"
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For every 0 < p <g 1 and p < p” < 1, we have

[1p’ 1p’] 2 [1285” ’ 140"85// +2%/] 2 112:1/0/7/%’
This completes the proof. 0]
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