LECTURE 4.

ALIREZA SALEHI GOLSEFIDY

We started with recalling the definitions of (left) zero-divisor, integral domain, division ring and field.
Example 1. (1) If $a \in U(R)$, then a is not a zero-divisor.
(2) If R is a division ring, then it has no (left) zero-divisor. In particular, any field is an integral domain.
(3) \mathbb{Z} is an integral domain which is not a field.
(4) $2 \mathbb{Z}$ is NOT an integral domain (though it has no zero-divisor) (no unity!).
(5) $\mathbb{Z} / n \mathbb{Z}$ is an integral domain if and only if n is prime.

Lemma 2. Assume that R is a ring with no left zero-divisors. If $a \neq 0$ and $a x=a y$, then $x=y$.
Proof.

$$
\begin{aligned}
a x=a y & \Rightarrow a x-a y=0 \\
& \Rightarrow a(x-y)=0 \\
& \Rightarrow x-y=0 \text { since } a \text { is not a left zero-divisor. } \\
& \Rightarrow x=y
\end{aligned}
$$

Lemma 3. If R is a finite integral domain, then it is a field.
Proof. Let a be a non-zero element of R. Let $l_{a}: R \rightarrow R, l_{a}(x):=a x$. Then by Lemma 2 we have that l_{a} is injective (a.k.a. one-to-one). Since R is finite and l_{a} is injective, it is also surjective (a.k.a. onto). In particular, 1 is in the image of l_{a}, i.e. a is invertible. Hence $U(R)=R \backslash\{0\}$. On the other hand, R is commutative, which completes the proof.

One of the important subrings of a unital ring is $S=\left\{n 1_{R} \mid n \in \mathbb{Z}\right\}$. Let us define the characteristic of a ring and see its connection with this subring.
Definition 4. The smallest positive integer n is called the characteristic of a ring R if $n x=0$ for any $x \in R$. If there is no such positive integer, we say that the characteristic of R is 0 .

Lemma 5. (1) If $\operatorname{char}(R)=n \neq 0$, then $\operatorname{char}(R)=\operatorname{ord}(1)$ (here ord is the additive order.).
(2) If $\operatorname{ord}(1)$ is finite, then $\operatorname{char}(R)=\operatorname{ord}(1)$.

Proof. 1. By the definition $n 1=0$. Thus $\operatorname{ord}(1) \leq n$. On the other hand, for any $x \in R$ we have

$$
\begin{equation*}
\operatorname{ord}(1) x=(\operatorname{ord}(1) 1) \cdot x=0 \cdot x=0 . \tag{1}
\end{equation*}
$$

Therefore $\operatorname{ord}(1) \geq n$. Hence $\operatorname{ord}(1)=n$.
2. By the definition of characteristic, $\operatorname{char}(R) \geq \operatorname{ord}(1)$ and by Equation(1), we have $\operatorname{ord}(1) \geq \operatorname{char}(R)$.

Mathematics Dept, University of California, San Diego, CA 92093-0112
E-mail address: asalehigolsefidy@ucsd.edu

Date: 1/18/2012.

