LECTURE 4.

ALIREZA SALEHI GOLSEFIDY

We started with recalling the definitions of (left) zero-divisor, integral domain, division ring and field.

Example 1. (1) If $a \in U(R)$, then a is not a zero-divisor.

- (2) If R is a division ring, then it has no (left) zero-divisor. In particular, any field is an integral domain.
- (3) \mathbb{Z} is an integral domain which is not a field.
- (4) $2\mathbb{Z}$ is NOT an integral domain (though it has no zero-divisor) (no unity!).
- (5) $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is prime.

Lemma 2. Assume that R is a ring with no left zero-divisors. If $a \neq 0$ and ax = ay, then x = y.

Proof.

 $\begin{array}{ll} ax = ay & \Rightarrow \ ax - ay = 0 \\ & \Rightarrow \ a(x - y) = 0 \\ & \Rightarrow \ x - y = 0 \text{ since } a \text{ is not a left zero-divisor.} \\ & \Rightarrow \ x = y \end{array}$

Lemma 3. If R is a finite integral domain, then it is a field.

Proof. Let a be a non-zero element of R. Let $l_a : R \to R$, $l_a(x) := ax$. Then by Lemma 2 we have that l_a is injective (a.k.a. one-to-one). Since R is finite and l_a is injective, it is also surjective (a.k.a. onto). In particular, 1 is in the image of l_a , i.e. a is invertible. Hence $U(R) = R \setminus \{0\}$. On the other hand, R is commutative, which completes the proof.

One of the important subrings of a unital ring is $S = \{n1_R | n \in \mathbb{Z}\}$. Let us define the characteristic of a ring and see its connection with this subring.

Definition 4. The smallest positive integer n is called the characteristic of a ring R if nx = 0 for any $x \in R$. If there is no such positive integer, we say that the characteristic of R is 0.

Lemma 5. (1) If $\operatorname{char}(R) = n \neq 0$, then $\operatorname{char}(R) = \operatorname{ord}(1)$ (here ord is the additive order.). (2) If $\operatorname{ord}(1)$ is finite, then $\operatorname{char}(R) = \operatorname{ord}(1)$.

Proof. 1. By the definition n1 = 0. Thus $ord(1) \le n$. On the other hand, for any $x \in R$ we have (1) $ord(1)x = (ord(1)1) \cdot x = 0 \cdot x = 0.$

Therefore $\operatorname{ord}(1) \ge n$. Hence $\operatorname{ord}(1) = n$.

2. By the definition of characteristic, $char(R) \ge ord(1)$ and by Equation(1), we have $ord(1) \ge char(R)$.

MATHEMATICS DEPT, UNIVERSITY OF CALIFORNIA, SAN DIEGO, CA 92093-0112

 $E\text{-}mail\ address: \texttt{asalehigolsefidy@ucsd.edu}$

Date: 1/18/2012.