Affine algebraic groups: def, morphism, ker, image.

Def: An algebraic set
$$G \subseteq k^n$$
 is called an affine algebraic group
 $If g \mapsto g^{\pm}$ and $(g_{\pm}, g_{\pm}) \mapsto g_{\pm}g_{\pm}$ give two morphisms (of
algebraic sets) $i: G \to G$ and $m: G \times G \to G$, respectively.
Lemma If G is an affine algebraic group, then $k [G]$ is
a Hopf algebra.
Pf: Let $i^{*}: k [G] \to k [G]$ and $m^{*}: k [G] \to k [G \times G] \propto$
 $k [G] \otimes k [G]$ and
 $e^{*}: k [G] \to k$ be the associated k-alg. homomorphism.
Since (G, e, i, m) is a group, one can check all the Hopf
assumptions of $k [G]$.
Corollary. Any affine alg. group $G \subseteq k^n$ defines a functor
from k-algebras to groups
 $A \mapsto G(A) := Hom_{k-alg}(k [G], A),$
and $G(k) \simeq G$.
Pf. Let G be an affine algebraic group. Then

(1) There is a unique irreducible component G° of G which contains e. G' is a closed, normal subgroup of finite-index in G. 2) Cosets of G° are connected components of G. 3) If H is a closed subgroup of finite-index in G, then G'CH. Pf. (1) Suppose X and Y are irreducible components of G which contain e. $X \subseteq G$ irredu. comp. $\Rightarrow \overline{X}$ is irre $\Rightarrow \overline{X} = X$ is affine and irre. Similarly Y is affine and imeduable. So XXY is irreducible. $\implies m(X \times Y) = X \cdot Y$ is irreducible. => X.Y is irreducible. $\begin{array}{c} \Rightarrow \quad X \subseteq \overline{X \cdot Y} \\ T \subseteq \overline{X \cdot Y} \\ \hline X \cdot \overline{Y} : irred. \end{array} \begin{array}{c} X = Y = \overline{X \cdot Y} \\ \hline X \cdot \overline{Y} : irred. \end{array} \begin{array}{c} X = Y = \overline{X \cdot Y} \\ \hline x \cdot \overline{Y} : irred. \end{array} \begin{array}{c} X = Y = \overline{X \cdot Y} \\ \hline x \cdot \overline{Y} : irred. \end{array} \begin{array}{c} X = Y = \overline{X \cdot Y} \\ \hline x \cdot \overline{Y} : irred. \end{array} \begin{array}{c} X = Y = \overline{X \cdot Y} \\ \hline x \cdot \overline{Y} : irred. \end{array}$ which contains e. $\textcircled{b} \quad \textcircled{a} = \overrightarrow{a}$ \bigcirc G° is a semigp. • $i(G^{\circ})$ is irreducible $j \Rightarrow i(G^{\circ}) \subseteq G^{\circ} \Rightarrow G^{\circ} \subseteq i(G^{\circ})$ J eei(G) $\tilde{\psi}$ $\tilde{\psi}$ $\tilde{\psi}$ => G° is a subgroup.

AlgebraicGroups Page 2

$$c_{g}: G \rightarrow G, c_{g}(\alpha) = g \times g^{\pm} \text{ is a morphism (of algeb. sets)}$$

⇒ $c_{g}(G^{\circ})$ is irred $g \Rightarrow c_{g}(G^{\circ}) \subseteq G^{\circ}$ $g \Rightarrow$
 $e \in G(G^{\circ})$
 $Similarly \quad c_{g\pm}(G^{\circ}) \subseteq G^{\circ}$
 $c_{g}(G^{\circ}) = G^{\circ} \Rightarrow G^{\circ}$ is a normal subgp of G.
 $G = \bigcup g G^{\circ}$ and $g \Rightarrow G = \coprod g G^{\circ}$ is irredu.
 $G = \bigcup g G^{\circ}$ is irredu.
 $G = \bigcup g G^{\circ}$ is irredu.
 $G = G \times \coprod g_{i} G^{\circ} \Rightarrow G^{\circ}$ is open.
 $g_{i} \notin G^{\circ}$
 $\Rightarrow G^{\circ}$ is open and closed $g \Rightarrow G^{\circ}$ is a connected comp.
 G° is irreducible $f = G^{\circ}$.
And $g G^{\circ}$ are disjoint. So $g_{g_{i}} G^{\circ} g$ are connected comp.
 $c_{f} G \cdot$
 $G = G + H^{\circ} G = H^{\circ} G = H^{\circ}$ is open and closed
 $f = G^{\circ}$.
 $G = G^{\circ} = G^{\circ} = H^{\circ} G^{\circ} = G^{\circ} = G^{\circ}$ is open and closed
 $f = G^{\circ}$.
 $G = G^{\circ} = G^{\circ} = G^{\circ} = G^{\circ} = G^{\circ}$ is open and closed
 $f = G^{\circ} = G^{\circ} = G^{\circ} = G^{\circ} = G^{\circ}$.
 $G = G = G^{\circ} =$

fields of char. 0 they are the same.
ker (
$$\phi$$
) is again a representable group functor, but the associated
ring is not smooth in general.
Ex. Let k be an alg. closed field of char. p.
• Let ϕ : SL_p(k) \rightarrow GL(M_p(k)),
 $\phi(g)(x) := gxg^{-1}$.
Then $g \in her(\phi) \Leftrightarrow gxg^{-1} = x \forall x \in M_p(k)$
 $\Leftrightarrow g = cI_p$ and $det g = 1$
 $\Leftrightarrow g = cI_p$ and $det g = 1$
 $\Leftrightarrow g = cI_p$ and $cP = 1$.
 $\Leftrightarrow g = cI_p$ and $(c-1)^P = 0$
 $\Leftrightarrow g = I_p$.
So $ker(\phi) = §IS$ (as an affine alg. gp. homomo.)
. For any k-algebra A, ϕ induces
 $\phi_A : SL_p(A) \rightarrow GL(M_p(A))$
 $\varphi(g)(x) = gxg^{-1}$.
Then as above
 $g \in ker \phi_A \iff g = cI_p$ and $c^P = 1$.

So $(\ker \varphi)(A) = \mathbb{P}(A) := \{c \in A \mid c^{\dagger} = 1\}$ as kernel of = Hom (k[t]/p, A) group functors k-alg. which is a non-trivial, representable group functor. What goes wrong ? k[t]/(t-1) = k[t]/((t-1))) is NOT reduced. So the k-points of this group scheme loses lots of information. <u>Remark</u>. We will work with affine alg. gp. homo. and, because of the problems that can arise as above, we get an isomorphism theorem with some additional geometric conditions on ϕ . Lemma ker ϕ is a closed subgroup of G_1 , and so it is an attine algebraic subgp of G1. $\underline{P} \cdot ker \varphi = \varphi^{-1}(e) \cdot \blacksquare$ To understand the image we need the following special case of Chevalley's theorem. Theorem. Let $X \subseteq k^n$ and $Y \subseteq k^m$ be two alg. sets and $\phi: X \rightarrow Y$ is a morphism. Then $\phi(X)$ contains a

non-empty open subset of $\overline{\Phi(X)}$. <u>Pf</u>. Changing Y to $\overline{\Phi(X)}$, we can assume $\Phi(X)$ is dense in Y. Let Xi's be irreducible components of X. So $X = \bigcup_{i=1}^{n} X_{i}$, $\varphi(X) = \bigcup_{i=1}^{n} \varphi(X_{i})$ and $Y_{i} := \overline{\varphi(X_{i})}$ are irreducible algebraic sets. Droping some of, it needed, we can assume Y2's are irreducible components of Y. If $\exists \emptyset \neq O_i \subseteq \Phi(X_i)$ which is open in Y_i , then \exists $\widetilde{\mathcal{O}}_{1} \subset \Upsilon$ open sit. $\widetilde{\mathcal{O}}_{1} \cap \Upsilon_{1} = \mathcal{O}_{1} \Longrightarrow$ $\phi \neq \left(\bigcup_{i \in \mathcal{V}} \bigcup_{j \neq i} Y_{\mathcal{O}}^{\cdot} \right) \cap Y_{i}^{\cdot} =: U_{\mathcal{O}}^{\cdot} \subseteq \mathcal{O}_{i} \subseteq \Phi(X_{i})$ Uz open in Y $\Rightarrow \phi_{\neq} \bigcup \ \bigcup_{i} = \bigcup \left(\bigcup_{i} \cap Y_{i} \right) = \bigcup \left(\bigcup_{i} \cap Y \right) = \bigcup \left(\bigcup_{i} \cap Y \right) = \left(\bigcup_{i} \bigcup_{i} \bigcap_{i} \bigcap_{i} \bigcap_{i} \bigcap_{i} \bigcup_{i} \bigcap_{i} \bigcap$ is open in Y. So we can assume X and Y are irreducible and $\phi(X)$ is dense. So $\phi^*: k[Y] \rightarrow k[X]$ is injective (why?), and k[Y] and k[X] are integral domains.

Recall a theorem from 200CA \subseteq B integral domains
$$\{ \downarrow \}$$
, $\forall b \in B, \exists_{\downarrow} \in A, \forall$ B : f.g. A - alg. $y: A \rightarrow k, y(a) \neq 0$ k : alg. closed field.can be extended to $\tilde{y}: B \rightarrow k, \tilde{y}(b) \neq 0$ By the above result $\exists a \in k[Y]$ set.for any $y \in Y := Hom_{k-ay}(k[Y], k)$ st. $a(y) \neq 0$ can be extended to $\tilde{y}: k[X] \rightarrow k \cdot 1.e.$ $\tilde{y}: (\phi^*(f)) = f(y)$ for any $f \in k[Y]$. \tilde{y} gives us a point x in X and $\tilde{y}(\phi^*(f)) = \phi^*(f)(x)$ $\Rightarrow \phi^*(f)(x) = f(y) \Rightarrow f(\phi(x)) = f(y) \forall f \in k[Y]$ $\Rightarrow y = \phi(x)$.So $a(y) \neq o \Rightarrow y \in Im \phi$. $f = y = \phi(x)$. $f = y = \phi(x)$. $f = y = \phi(x)$. $f = x = y = f(x)$. $f = y = \phi(x)$. $f = y = \phi(x)$. $f = x = y = f(x)$. $f = y = \phi(x)$. $f = y = \phi(x)$. $f = x = y = f(x)$. $f = y = \phi(x)$. $f = y = f(x)$.<

groups. Then
() Im
$$\Rightarrow := \Rightarrow(G_{1})$$
 is a closed subgp of G_{2} .
(2) $\Rightarrow(G_{1}^{\circ}) = \Rightarrow(G_{1})^{\circ}$
Pf. By Chevalley's theorem, $\Rightarrow(G_{1}^{\circ})$ has a non-empty open O
subset of $\overline{\Rightarrow}(G_{1}^{\circ})$. Since G_{1}° is irreducible, $\Rightarrow(G_{1}^{\circ})$ and
 $\overline{\Rightarrow}(G_{1}^{\circ})$ are irreducible. So any two non-empty open subsets
intersed: $\Rightarrow \forall g \in \overline{\Rightarrow}(G_{1}^{\circ})$, $g \circ \cap \circ \neq \emptyset$
 $\Rightarrow g \in \circ \circ \circ^{-1} \subseteq \Rightarrow(G_{1}^{\circ})$
Hence $\overline{\Rightarrow}(G_{1}^{\circ}) = \Rightarrow(G_{1}^{\circ})$. Therefore $\Rightarrow(G_{1}^{\circ})$ is a closed
irreducible subgroup of G_{2} . And
 $\Rightarrow(G_{1}) = \bigcup_{i=1}^{\circ} \Rightarrow(G_{i}^{\circ}) \text{ if } G_{1} = \bigcup_{i=1}^{\circ} g_{i} \cdot G_{1}^{\circ}$.
Hence $\Rightarrow(G_{1})$ is a closed subgp of G_{2} .
Since $[\textcircled{a}(G_{1}): \textcircled{a}(G_{1}^{\circ})] < \infty$, $\oiint(G_{1}^{\circ})$ is a closed irred.
Subset, $(G_{2}) = (\textcircled{a}(G_{1})) = \textcircled{a}(G_{1}^{\circ}) = \textcircled{a}(G_{1}^{\circ})$.