
SUM-PRODUCT PHENOMENA: p-ADIC CASE.
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Abstract. The sum-product phenomena over a finite extension K of Qp is explored. The main feature of
the results is the fact that the implied constants are independent p.

1. Introduction

1.1. Bounded generation phenomena and the general approach towards proving them. Let R
be a unital commutative ring. Given two subsets A and B of R, we define the sum set

A+B := {a+ b| a ∈ A, b ∈ B},
the difference set

A−B := {a− b| a ∈ A, b ∈ B},
and the product set

A ·B := {ab| a ∈ A, b ∈ B}.
We also define the l-fold sum set and the l-fold product set of a subset A of R:

(1)


l A := {a1 + · · ·+ al| ai ∈ A} and


l A := {a1 · · · al| ai ∈ A}.
Starting with a subset A of the ring R, the subring generated by A is denoted by 〈A〉; that means 〈A〉 is
the smallest subset of R which contains A and 〈A〉 · 〈A〉 ⊆ 〈A〉 and 〈A〉 − 〈A〉 = 〈A〉. In order to have a
measurement on how fast A generates the subring 〈A〉, we define

(2) 〈A〉l :=


l


l A−


l


l A;

and so, if 0, 1 ∈ A, then 〈A〉 =
∞

l=1〈A〉l.

The remarkable sum-product phenomenon in a finite field, proved by Bourgain, Katz, and Tao [BKT04] (see
Lemma 43), implies that: for any ε > 0 there is a positive integer C such that for a subset A of a finite
field f, if log |A| ≥ ε log |f| and 0, 1 ∈ A, then 〈A〉C = 〈A〉. Based on this result, Helfgott [Hel05] proved
a product theorem in SL2(fp) where fp is the finite field of prime order p; this result implies that for any
ε > 0 there is a positive integer C such that, for any symmetric generating set A of SL2(fp) of cardinality
at least | SL2(fp)|ε, we have


C A = SL2(fp). One can view these results as examples of bounded generation

phenomena. Later the product theorem had been extended to all the finite simple groups of Lie type
(see [Hel11] for SL3(fq) case and either [BGT11] or [PS16] for the general case); and this product theorem
implies a bounded generation result for such groups. Within the proof of the mentioned sum-product result
for finite fields, the vector space structure of such fields had been used and it was proved that for any ε > 0
there is a positive integer C such that, for any subset A of a finite field f, if log |A| ≥ ε log |f|, then there
are α1, . . . ,αC ∈ f such that α1A + · · · + αCA = f; this result can be viewed as yet another example of
bounded generation phenomena. Based on these examples, one can philosophize and vaguely formulate a
näıve bounded generation phenomenon that says: if a finite algebraic structure A is rich enough, then any
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generic subset A of A of cardinality at least |A|ε generates A in C steps, where C only depends on ε. There
is, however, one algebraic obstruction to the proposed bounded generation phenomenon: having a bounded
generation for A passes to all of its factors; that means if π : A → π(A) is a surjective homomorphism of A and
A generates A in C steps, then π(A) can be generated by π(A) in C steps as well. So one would need to have
log |π(A)| ≥ ε′ log |π(A)| for some ε′ > 0 independent of π. Notice that this obstruction does not show up in
a finite field f or SL2(fp) as they do not have a lot of factors. One can see the subtlety of this issue already in
the ring Z/pnZ. This ring has n factors: for any 1 ≤ i ≤ n, let πpi : Z/pnZ → Z/piZ be the natural quotient
map. And so for a subset A of Z/pnZ that contains 0, 1 and satisfies log |A| ≥ ε log |Z/pnZ|, one cannot
expect to get 〈A〉C = Z/pnZ for a constant C which depends only on ε unless log |πpi(A)| ≥ ε′ log |Z/piZ|
for any 1 ≤ i ≤ n and some ε′ := ε′(ε) > 0. By fixing p and varying n, we get the following p-adic
interpretation of the above mentioned case: for a subset A of the ring Zp of p-adic integers and a number
0 < δ < 1, let Nδ(A) be the smallest positive integer n such that there are balls B1, . . . , Bn of radius δ (with
respect to the standard metric on Zp) such that A ⊆ B1 ∪ · · · ∪Bn. Notice that Np−i(A) = |πpi(A)| as any
ball of radius p−i is an additive coset of piZp in Zp; and so log |πpi(A)| ≥ ε′ log |πpi(Zp)| is equivalent to

logNp−i(A)/ log(pi) ≥ ε′. On the other hand, let us recall that the lower box dimension of a subset A of
a metric space is defined to be lim infδ→0+ logNδ(A)/ log(1/δ); since for us the analysis in a given scale δ
is important, we call logNδ(A)/ log(1/δ) the box dimension of A at the scale δ. Therefore, for a subset A
of Zp with lower box dimension ε > 0, we have that, if n is a large enough integer depending on ε, then
the box dimension logNpn(A)/ log(pn) of A at the scale p−n is at least ε/2. Now using a regularization
argument (see [Bou08, Section 4] or Lemma 38), one can find a subset A′ of (A − A) ∩ pn0Zp such that
logNp−n(A′)/ log(pn−n0) ≥ ε/4 for any n ≥ n0(ε). So after rescaling A′ one can apply the proposed
bounded generation and get that 〈A〉C contains a Zp-segment of size L where both C and L depend only
on the lower box dimension ε. This type of bounded generation seems to be the right property to look for
in various cases; that means if A is a subset with lower box dimension ε of an algebraic structure A which
is rich enough, then A generates a large substructure B of A in C steps, where both the largeness of B and
the positive integer C are supposed to depend only on ε. For instance Bourgain’s proof (see [Bou03]) of the
Katz-Tao discretized ring conjecture (see [KT01]) implies this phenomenon for the ring R.

To prove a bounded generation result, using in part tools from additive combinatorics (for instance see the
influential article [Gow98] and the nice book on this subject [TV06]; the method of the proof of the main
theorem of [EM03] has been used in the subsequence articles on this subject, too), one often proves the
weighted version; that means one starts with the probability counting measure PA on the set A and then

consider the push-forward of PA × · · ·× PA under the map fC :
Θ(CΘ(1))

i=1 A → A, where fC is given by the

C step generation in A by its algebraic operations. For instance, when A = G is a group, fC :
2C

i=1 G → G,

fC(g1, . . . , g2C) := g1g
−1
2 · · · g2C−1g

−1
2C and we start with a set that contains the identity element; when

A = R is a ring, fC :
C

i=1

C
j=1 R × R → R, fC(aij , bij) :=

C
i=1

C
j=1 aij −

C
i=1

C
j=1 bij and we start

with a set that contains the zero and the identity elements. In this setting, the näıve bounded generation

implies that the support of µ
[C]A
A := fC(PA × · · ·× PA) is the entire A. In the weighted version, one would

like to show that µ
[C]A
A is close to the equidistribution on A; that means µ

[C]A
A is close to the probability

counting measure on A for some positive integer C which only depends on the box dimension of A. To get

such a result, one often imposes additional assumptions on the set A and proves that µ
[O(1)]
A is substantially

more distributed compared to PA for some positive integer O(1) which only depends on A.

There are many ways to quantify how well a probability measure µ is distributed. One way is to use Fourier
analysis; for instance in the abelian setting, an upper bound on the values of the Fourier transform µ of
µ gives us a way to say how well µ is distributed. This means one needs to get some cancellations in
certain exponential sums (for instance see [Cha02, Bou08, Bou05], the appendix of [BG09]). In a metric (not
necessarily abelian) setting, this can be interpreted as saying that one needs to get an upper bound on µ ∗ f
where f is a function which lives in a scale δ (this roughly means f is almost constant in balls of radius δ2 and
almost orthogonal to the characteristic functions of balls of radius δ1/2) (for instance see [BG12, BISG17]).
Another way of measuring how well a measure µ is distributed is using its entropy H(µ) (for instance
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see [Rud90, Joh92, LMP99]). In this note following a work of Lindenstrauss and Varjú, we use the entropy
approach to get the desired bounded generation result, which will be explained in the next section.

It should be pointed out that bounded generation results in rings, such as finite fields fq, R, or Zp, have
been playing an indispensable role in proving bounded generation results in groups (for instance see [Hel05,
Hel11, BGT11, PS16] for the case of finite simple groups of Lie type, [BG08, BG12, dS15] for the case of
compact simple Lie groups, and [BG09] for the case of SLn(Zp)). Using the results of this note, first a
bounded generation result for semisimple p-adic analytic groups is proved in [SG17] and then in [SG] this
result is extended to the case of perfect p-adic analytic groups with abelian unipotent radical. Furthermore
these results are uniform on the prime p; in the sense that the implied constants do not depend on p. Using
such bounded generation results, the p-adic case of super-approximation property is proved (we refer the
interested reader to the mentioned articles for the precise formulation of these results).

1.2. Main results. One of the main results of this note is the following bounded generation result for a
characteristic zero non-Archimedean local field K; the importance of this result is on the fact that the
implied constants are independent of the characteristic of the residue field of K.

Theorem 1. Suppose 0 < ε ≪ 1, d is a positive integer, and N ≫d,ε 1 is a positive integer. Then there are
0 < δ := δ(ε, d), and positive integer C := C(ε, d), such that for any finite extension K of Qp with degree
[K : Qp] ≤ d the following holds: let O be the ring of integers of K, and p be a uniformizing element of K.
Suppose A ⊆ O such that

|πpN (A)| ≥ |πp(O)|Nε,

where πpN : O → O/pNO is the canonical quotient map. Then there are positive integers N1 and N2, a ∈ O,
and a subfield K0 of K with ring of integers O0 such that

⌊Nδ⌋+N1 ≤ N2 ≤ NC, (Scale and thickness)(3)

πpN2 (O0a) ⊆ πpN2 (〈A〉C), vp(a) = N1, (Bounded generation)

|πp(O0)| ≥ |πp(O)|ε/4. (Box dimension control)

where 〈A〉C is defined as in (2).

As there are many parameters in Theorem 1, the reader might find the following rough description of the
parameters useful.

Think about ε as a lower bound for the box dimension of A at scale |pN |: recall that the smallest number
of balls of radius δ which cover A is denoted by Nδ(A); and so N|pN | = |πpN (A)| and we have

logN|pN |(A)/ log(1/|pN |) ≥ ε.

Then Theorem 1 provides us a large subring of integers O0 and a lower bound C for the number of steps
needed in order to get an O0 segment of length |pN1 | at the scale |pN2 |; of course the significance of this
statement is on the fact that the length |pN1 | is much larger than the scale |pN2 |. For instance the inequality
in (3) implies that the box dimension of pN1O0 at scale |pN2 | is at least εδ/4C as one can see in the following
equation:

(4)
logN|pN2 |(p

N1O0)

log(1/|pN2 |) =
logp |πpN2−N1 (O0)|

N2[f : fp]
≥

(N2 −N1) logp |πp(O0)|
e(p/p)N2f(p/p)

=
(N2 −N1) logp |πp(O0)|

N2 logp(πp(O))
≥ εδ

4C
,

where e(p/p) is the ramification index and f(p/p) is the residue degree of p in the extension K/Qp (see [Ser79,
Page 14]). So δ measures the thickness of the attained O0-segment.

It should be pointed out that in [BG09, Proposition 3.3], a weaker form of Theorem 1 is proved where it is
assumed that the extension K/Qp is not widely ramified and the characteristic of its residue field is a fixed
prime; that means the implied constants depend on the characteristic of the residue field as well.
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As in the proof of [BG09, Proposition 3.1], using induction on the rank, one can extend Theorem 1 from the
rank 1 case to the rank d0, where d0 is a fixed positive integer.

Corollary 2. For any 0 < ε ≪ 1 and positive integers d0 and d, there are 0 < δ := δ(ε, d0, d), and
positive integer C := C(ε, d0, d), such that for any finite extension K of Qp with degree [K : Qp] ≤ d
the following holds: let O be the ring of integers of K, and p be a uniformizing element of K. Suppose
A ⊆ Od0 := O × · · ·×O such that

|πpN (A)| ≥ |f|Nε,

where f is the residue field of K. Then

πpN2 (p
N1Zx) ⊆ πpN2 (〈A〉C),

for some x ∈ Od0 \ pOd0 , and integers N1 and N2 such that

⌊Nδ⌋+N1 ≤ N2 ≤ NC.

Another important corollary of Theorem 1 is its global version; this is a generalization of [Bou08, Corollary,
Part I.1] where the case of k = Q (and d0 = 1) is proved.

Corollary 3. For any 0 < ε ≪ 1 and positive integers d and d0, there are 0 < δ := δ(ε, d, d0), and positive
integer C := C(ε, d, d0), such that for any finite extension k of Q of degree at most d the following holds:

Let Ok be the ring of integers of k, and p be a non-zero prime ideal of Ok. Suppose A ⊆ Od0

k := Ok× · · ·×Ok

such that

|πpN (A)| ≥ |Ok/p|Nε.

Then

πpN2 ({ix| i ∈ Z ∩ pN1}) ⊆ πpN2 (〈A〉C),
for some x ∈ Od0

k \ pdOd0

k , and integers N1 and N2 such that

⌊Nδ⌋+N1 ≤ N2 ≤ NC.

Proof. For any p, let kp be the completion of k with respect to the p-adic topology. Let Op be the ring
of integers of kp, and p be a uniformizing element of Op. Then it is well-known that pOp = 〈p〉 and the
embedding of Ok into Op induces an isomorphism between πpN (Ok) and πpN (Op). Now we get the desired
result by Corollary 2. □

It is not clear to the author whether the implied constants in Theorem 1 should depend on the degree or
not. In this note the degree is used in a crucial way to analyze subrings of O. But the implied constants in
many results proved here are independent of K as it will be explained in Section 1.4. Here is one such result.

Theorem 4. For any positive integer t, positive numbers 0 < ε1 ≪ ε2 ≪t 1, 0 < δ ≪ε1 1, any positive
integer C ≫ε1 1, and any finite extension K of Qp with large, depending on ε1, residue field f the following
holds: let O be the ring of integers of K, and p be a uniformizing element of K. Suppose A ⊆ πpN (O) such
that

(a) |πpi(A)| ≥ |f|iε1 for any Nδ ≤ i ≤ N .
(b) 0, 1 ∈ A and there are a1, a2 ∈ A such that a1 − a2 ∈ πpN (pO \ p2O).

Then either

πpN (p⌈ε2N⌉O) ⊆ 〈A〉C ,
or

πp⌊tε′N⌋(〈A〉C ∩ πpN (p⌈ε
′N⌉O)) is a ring, and 〈A〉C ∩ p⌈ε

′N⌉O \ p⌈ε
′N⌉+1O ∕= ∅

for some ε′ in [ε
m(ε1)
2 , ε2].
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The subtlety in Theorem 1 is that A might be in a smaller field. Or even if the field generated by A is the
entire K, still in certain scales A might be seen as a subring of a smaller field. Condition (b) in Theorem 4
guarantees that at least the ramification index of the field generated by A is the same as K and it can be
detected even in the large scale |p|.

Question 5. Does Theorem 1 hold with no restriction on K? If not, what is the least information needed
on K?

1.3. A bounded generation conjecture for the quotients of ring of integers of a number field. As
it was pointed out in Section 1.1, Theorem 1 was used in [SG17] to deduce a bounded generation statement for
semisimple p-adic analytic groups, and then it was extended to perfect groups with abelian unipotent groups
in [SG]; and ultimately these results were utilized to prove the p-adic case of super-approximation. If the
following bounded generation for number fields holds, then one might be able to prove super-approximation
for semisimple groups (or at least absolutely almost simple groups).

Conjecture 6. Suppose 0 < ε ≪ 1, d is a positive integer, and N0 ≫d,ε 1 is a positive integer. Then there
are 0 < δ := δ(ε, d), and positive integer C := C(ε, d) such that for any number field k of degree at most d the
following holds: let O be the ring of integers of k. Suppose a is an ideal of O such that N(a) := |O/a| ≥ N0;
and suppose A ⊆ O such that

|πa(A)| ≥ |πa(O)|ε.
Then there are an ideal a2 of O and a1 ∈ O such that

aC ⊆ a2, N(a2 : a1) ≥ N(a)δ where (a2 : a1) = {x ∈ O| xa1 ∈ a2}, and

πa2(Za1) ⊆ πa2(〈A〉C).

1.4. A detailed outline of proofs of Theorems 1 and 4; and some of the auxiliary results. In this
section a detailed outline of the arguments is given. Here are some of my reasons to include this admittedly
long overview (1) many of the statements are fairly technical; but lots of ideas in their proofs can be useful
for other problems as well. Having an overview which includes the main ideas of the auxiliary results can
help readers to focus on the parts of the note that they find suitable for their purposes; (2) this can help
to highlight the needed new ideas introduced here and put them in the perspective of some of the previous
related works; (3) this should help the reader to get a more coherent picture of otherwise locally disconnected
note.

Before we get to the main goal of this section, we start with recalling the setting and some of the basic
properties of the ring O of integers of a finite extension K of Qp.

We let p be a uniformizing element of O, and f be the residue field (that means f := O/pO). For x ∈ O, we
let v(x) be its p-adic valuation; that means v(x) is a non-negative integer such that x ∈ pv(x)O \ pv(x)+1O.
For x ∈ O, we let |x| := (1/|f|)v(x). It is well-known that d(x, y) := |x − y| defines a metric on O and the
ball of radius |pn| centered at 0 is pnO. On the algebraic side, {piO}∞i=0 is a filtration of O; that means it
is a family of ideals of O and piO · pjO ⊆ pi+iO. A common technique to study an algebra with a filtration
is making use of the associated graded algebra. In our setting this means, we define gri,p(O) := piO/pi+1O
for any non-negative integer i, and let grp(O) :=

∞
i=0 gri,p(O). As gri,p(O) are abelian groups so is

grp(O). It is well-known that grp(O) is a graded algebra with respect to the following multiplication:

(xi + pi+1O)(xj + pj+1O) := xixj + pi+j+1O, for any xi + pi+1O ∈ gri,p(O) and xj + pj+1O ∈ grj,p(O).
In fact, it is well-known that grp(O) is isomorphic to the ring of polynomials f[t] with coefficients in the
residue field f. Based on this fact and the completeness of O, we get the following description of its elements:
suppose Ω is a subset of O such that the quotient map πp : O → f induces a bijection from Ω to the set f×

of non-zero elements of f. Then for any X ∈ O there are unique Xi ∈ Ω ∪ {0} such that

(5) X = X0 + pX1 + p2X2 + · · · .
We call Xi the i-th p-adic digit with respect to Ω, and sometimes denote it by Di,Ω(X) or simply Di(X)
(these digits depend on the choice of Ω, but Ω will be fixed at the beginning of any proof). For instance when
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O = Zp and Ω := {1, . . . , p − 1}, Equation (5) gives us the usual p-base description of the p-adic integers.
(At some point we will be working with a different set of digits, but for now a reader can think about O = Zp

and Ω = {1, . . . , p− 1} in order to get a more concrete understanding of the setting). Let us notice that for
any non-negative integer n and X,Y ∈ O we have that πpn(X) = πpn(Y ) if and only if Di(X) = Di(Y ) for
any 0 ≤ i ≤ n − 1. So for 0 ≤ i ≤ n − 1, we can and will talk about the i-th p-adic digit Di(πpn(X)) with
respect to Ω of an element πpn(X) of O/pnO. Hence for any x ∈ O/pnO we have

x = D0(x) +D1(x)p+ · · ·+Dn−1(x)p
n−1 + pnO.

Step 1. Describing subrings of the ring of integers O.

Starting with a subset A of O, Theorems 1 and 4 are claiming certain bounded generation phenomena within
the ring R generated by A in certain scales. So it is only reasonable to start with a description of subrings
of O in a given scale.

Theorem 7. Let O be the ring of integers of a finite extension K of Qp. Let p be a uniformizing element
of O, and f := O/pO be the residue field of K. Suppose R is a closed subring of O which contains 1. Let
C be an integer which is at least 3. Suppose F is an integer and F ≫C [K : Qp]. Then there are integers a
and b, and a subfield K0 of K such that

(6) b− a ≫C,[K:Qp] F, and F ≥ b ≥ Ca,

(7) πpb(O0 ∩ paO) = πpb(R ∩ paO), and πpb(R) ⊆ πpb(O0)

where O0 is the ring of integers of K0 and πy : O → O/yO is the natural quotient map for any y ∈ O \ {0}.

Theorem 7 essentially says that, if we can only compute the first F -digits of the elements of the subring R,
then we can find a large segment (proportional with F ) of digits where R is the same as ring of integers of
a closed subfield.

To prove Theorem 7, first we use the above mentioned philosophy, and prove the graded version (see Proposi-
tion 12). Proof of Proposition 12 is combinatorial in nature. Along the way a result for numerical semigroups
is proved that might be of independent interest (see Proposition 13).

In general going to a graded structure we might lose a lot of information about the original ring. For instance,
starting with a wildly ramified Galois extension K/Qp there are non-trivial elements σ ∈ Gal(K/Qp) such
that σ(a) ≡ a (mod p) for any a ∈ O. This means σ induces the trivial automorphism of grp(O). So we can
get subrings of O that give us the same graded subrings of grp(O).

Proof of Theorem 7 is a bit delicate which relies on rather well-known techniques from algebraic number
theory; for instance a generalization of Hensel’s lemma, Krasner’s lemma, and basic facts about local fields.
Along the way we get that if a closed subring R of O have the same graded ring as ring of integers O0 of a
closed subfield, then R is the ring of integers of a closed subfield (see Proposition 19 and Step 1 of proof of
Proposition 44).

A reader who is interested in the new techniques related to sum-product results can skip the proof of these
statements. These results are used only towards the end of the note in the proof of Theorem 1. But
readers should familiarize themselves with the notation and basic properties introduced in Lemma 16 and
Corollary 17.

Step 2. Using conditional entropy to get a Scalar-Sum expansion. Starting with two subsets A and B of
πpN (O), we would like to get a lower bound on |A + B|. As it was explained earlier, one often proves a
weighted version: let PA and PB be the probability counting measures on A and B, respectively. Then
A + B is the support of the additive convolution PA ∗ PB of PA and PB . So if we show this new measure
is more distributed than the initial measures, we should get a desired expansion on their supports. In this
note, following [LV], we use entropy to quantify how well a measure is distributed. Let X and Y be random
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variables with respect to the distribution laws PA and PB , respectively. Then it is well-known that

log |A+B| ≥ H(X + Y )

where H(•) is the (Shanon) entropy of the given random-variable (see Definition 23 and Lemma 24 for the
definition and some of the basic properties of entropy). As it was explained above, a random variable Z with
values in πpN (O) can be given in terms of its p-adic digits with respect to Ω. So we get random variables
Di(Z) with values in Ω ∪ {0} for any 0 ≤ i ≤ N − 1; and we have

(8) H(Z) = H(D0(Z), . . . , DN−1(Z)).

By (8) and a basic property of conditional entropy (see Lemma 24), we get

(9) H(Z) = H(D0(Z)) +H(D1(Z)|D0(Z)) + · · ·+H(DN−1(Z)|D0(Z), . . . , DN−2(Z)).

Now we observe that the carry over method for addition works in O as well; this means for X,Y ∈ O, to
determine the m-th p-adic digit Dm(X + Y ) of X + Y , we should add the m-th digits Dm(X) and Dm(Y )
of X and Y , and add the carry over fΩ(D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y )) from the addition of
the first m− 1 digits. Moreover, since πp induces a bijection between Ω ∪ {0} and f, to find Dm(X + Y ) it
is necessary and sufficient to find

(10) πp(Dm(X)) + πp(Dm(Y )) + πp(fΩ(D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y ))).

In particular, the first m-th p-adic digits with respect to Ω of X + Y are uniquely determined by the first m
p-adic digits with respect to Ω of X and Y . Therefore for any 0 ≤ m ≤ N − 1 we have

(11) H(Dm(X + Y )|D0(X + Y ), . . . , Dm−1(X + Y ))

≥H(Dm(X + Y )|D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y ))

=H(πp(Dm(X)) + πp(Dm(Y )) + πp(fΩ(D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y )))

|D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y ))

=H(πp(Dm(X)) + πp(Dm(Y ))|D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y )).

Based on (9) and (11), in order to get a lower bound on H(X + Y ), one needs to get a lower bound on
H(X + Y ) where X and Y are two random-variables with values in the residue field f. This is the line of
thought in [LV] where they deal with the case of Z/2NZ; and so f = Z/2Z. In that case, any distribution
on f = Z/2Z can be characterized by one value, say the probability of hitting 1. Based on this and using
calculus of single variable functions a desired lower bound for H(X + Y ) is attained in [LV].

When the order of the residue field can be arbitrarily large, our method should have some implications for
finite fields as well. In [BKT04, Lemma 2.1] in order to prove a sum-product result for finite fields, first a
scalar-sum expansion is proved; to be precise it is showed that in average the size of |A + αB| is at least
min{|A||B|/2, |f|/10}, where α is a random-variable with respect to the counting probability measure on f×.
So it seems the following question to be the right property to seek.

Question 8. Let f be a finite field. Suppose X, Y , α, and Zf are random variables with values in f; α is

distributed with respect to the probability counting measure on the set f× of non-zero elements of f, and Zf is
distributed with respect to the counting probability measure on f. Is there a (fixed universal) positive number
c such that

H(X + αY |α) ≥ min{H(X) +H(Y ), H(Zf)}− c?

It is worth pointing out that we know H(Zf) is log |f| and Zf has the maximum entropy among all the

random variables with values in f; in particular H(X + αY |α) ≤ H(Zf) (in the setting of Question 8). For

now, we do not know the answer to Question 8 for arbitrary random variables X and Y ; but Lemma 28
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implies an affirmative answer to this question when X and Y are distributed according to the probability
counting measures PA and PB , respectively. More precisely, Proposition 27 states

(12) H(X + αY |α) ≥ − log


1

|A||B|
+

1

|f|


≥ min{log |A|+ log |B|, log |f|}− log 2

where A and B are subsets of f, and X and Y are distributed according to the probability counting measures
PA and PB , respectively.

In order to be able to use (12) in the p-adic setting via (9) and (11), we need to start with regular subsets A
and B of πpN (O) (see Definition 21). Basically a subset A of πpN (O) is an (m0, . . . ,mN−1)-regular subset, if
for a random-variable X according to the probability counting measure on A and a given first i p-adic digits
w0, . . . , wi−1 of an element of A, the conditional distribution

P (Di(X)|D0(X) = w0, . . . , Di−1(X) = wi−1)

is the probability counting measure on a set of cardinality mi. So for an (m0, . . . ,mN−1)-regular subset A,
an (l0, . . . , lN−1)-regular subset B, a random-variable X according to the probability counting measure PA,
and a random-variable Y according to the probability counting measure PB , we have

H(X + αY |α) ≥
N−1

i=0

H(πp(Di(X)) + πp(α)πp(Di(Y ))|α, Dj(X), Dj(Y ) for 0 ≤ j ≤ i− 1)

≥
N−1

i=0

− log


1

mili
+

1

|f|


,

where α is a random-variable according to the probability counting measure on πpN (Ω). And this implies

(13) max
w∈Ω

|A+ πpN (w)B| ≥
N−1

i=0


1

mili
+

1

|f|

−1

,

which is our desired Scalar-Sum expansion (see Proposition 20). Roughly this inequality says that, if we do
not get a meaningful Scalar-Sum expansion, the reason is that at any level i either both logmi and log li are
close to log |f| or both logmi and log li are close to 0.

Step 3. Following Lindenstrauss-Varjú’s treatment to get a Scalar-Sum-Product expansion for a regular set.
In this step, we prove that for some a ∈ A−A and w ∈ Ω the set A+ πpN (w)aA is significantly larger than
A where A is a regular subset of πpN (O) with three other conditions. The key observation behind this step
is the fact that, if A is an (m0, . . . ,mN−1)-regular subset of πpN (O), then, for any x ∈ O, πpN (x)A is a
(1, . . . , 1,m0, . . . ,mN−1−v(x))-regular subset where v(x) is the p-adic valuation of x. This implies that, for
any i ∈ B := {j ∈ [0, N−1]| mj > 1}, there is a ∈ A−A such that aA is a (1, . . . , 1,m0, . . . ,mN−1−i)-regular
subset. Let T := {j ∈ [0, N − 1]| logmj/ log |f| ≥ 1/2}. Now applying the Scalar-Sum expansion proved in
the second step (see the inequality in (13)) for the regular sets A and aA for any a ∈ A − A, we get that
either |A+πpN (w)aA| is significantly larger than |A| for some w ∈ Ω and a ∈ A−A, or T is almost invariant
under the shifts by elements of B. Then assuming that A has at least box dimension ε for any scale smaller

than (1/|f|)O(ε4N) and 0, 1 ∈ B, we deduce that a shift of B has Schnirlmann density (see Definition 31) at
least ε; and then by a theorem of Mann (see Theorem 32) we reach to a contradiction.

Let us emphasis that the key point of the argument is where we say the set T of indexes where mi is at least
|f| is almost invariant under shifts by integers j such that mj > 1 (see Lemma 34); and we deduce this

claim using the inequality in (13) for the regular sets A and aA for suitable a ∈ A−A.

Another remark is that the crucial condition m1 > 1 is why we get a result with no dependence on K.

Step 4. Proving a Scalar-Sum-Product expansion: removing the regularity assumption. Finally at this step
we get a satisfactory expansion result:
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Theorem 9 (Scalar-Sum-Product expansion). For any ε > 0, 0 < δ ≪ ε5, and any finite extension K of
Qp with large, depending on ε, residue field f the following holds:

Let O be the ring of integers of K, and p be a uniformizing element of K. Let Ω ⊆ O, and suppose πp

induces a bijection between Ω ⊆ O and f×. Suppose A ⊆ πpN (O) such that

(a) |A| ≤ |f|N(1−ε),
(b) |πpi(A)| ≥ |f|iε for any Nδ ≤ i ≤ N .
(c) there are a01, a02, a11, a12 ∈ A such that a01 − a02 ∈ πpN (O \ pO), a11 − a12 ∈ πpN (pO \ p2O).

Then

max
ω∈Ω

|〈A〉6 + πpN (ω)〈A〉6| ≥ |A||f|Nδ.

Condition (a) allows us to have enough space to expand. Condition (b) says that the box dimension of
the lift π−1

pN (A) ⊆ O of A at any scale smaller than (1/|f|)Nδ is at least ε. This is a rather (needed)

technical assumption which will be eventually removed; but removing this condition results to having a
weaker conclusion, which has a meaning only in O and not in πpN (O). Condition (c) tells us something
about the valuation of elements of A − A: it is equivalent to say that there are a0, a1 ∈ A − A such that
v(a0) = 0 and v(a1) = 1. As before this crucial condition helps us get a result that works with no dependency
on the field K.

The key idea is a regularization process that has been used in most of the previous works related to either
a sum-product or a product result in a multi-scaled space (for instance see [BG09, Bou03, Bou08] or [SG17,
Section 2.2]). In this process, we construct a rooted regular tree with N levels; the vertices in the i-th row
are elements of πpi(O), and the parent of πpi(x) is πpi−1(x) for 1 ≤ i ≤ N . We view A as a subset of the
vertices at the N -th level, and consider the rooted sub-tree induced by A. Through this process, each time
we choose a subset Ai of A such that first |Ai| ≥ |A|/(log |f|)i and second the last i-th levels of the rooted
sub-tree induced by Ai are regular; that means there are equal number of paths from any vertex at the
(N − i)-th level to the N -th level. After obtaining this regular large subset and changing it a little bit, we
apply the Scalar-Sum-Product expansion for regular sets and deduce the desired result.

Step 5. Proving a bounded generation result. At this step we prove:

Theorem 10. For any 0 < ε1 ≪ ε2 ≪ 1, a positive integer m, 0 < δ ≪m,ε1 1, positive integers 1 ≪m,ε1 C
(number of needed sum-product) and 1 ≪ε1 k (number of needed scalars) and any finite extension K of Qp

with large, depending on ε1, residue field f the following holds:

Let O be the ring of integers of K, and p be a uniformizing element of K. Let Ω ⊆ O, and suppose πp

induces a bijection between Ω ⊆ O and f×. Suppose A ⊆ πpN (O) such that

(a) |πpi(A)| ≥ |f|iε1 for any Nδ ≤ i ≤ N .
(b) there are a01, a02, a11, a12 ∈ A such that ai1 − ai2 ∈ πpN (piO \ pi+1O).

Then

(14) πpN (p⌈ε
m
2 N⌉O) ⊆ 〈A〉C + πpN (ω1)〈A〉C + · · ·+ πpN (ωk)〈A〉C ,

for some ωi ∈


k(Ω ∪ {1}).

The conditions (a) and (b) are similar to the technical conditions (b) and (c) of Theorem 9. As here we
are seeking a bounded generation result and not an expansion result, no upper bound on |A| is needed (see
condition (a) of Theorem 9).

A quick explanation of the parameters involved in Theorem 10: ε1 gives us a lower bound for the box
dimension of π−1

pN (A) at scales smaller than (1/|f|)Nδ; so a smaller δ imposes more conditions on A; the

thickness of the O-segment generated in C steps sum-product and k steps scalar-sum is roughly (1/|f|)εm2 N ;
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so for a smaller ε2 and a larger m we get a thicker O-segment. An important point to raise is that the
number k of the needed scalar-sum steps is independent of m. This is crucial when we want to get a bounded
generation result using only sum and product.

To prove Theorem 10, first we show the case of m = 1 (see Proposition 39). To show this case, we use
the Scalar-Sum-Product expansion result, Theorem 9, repeatedly to get a subset of πp(O) with arbitrarily
large box dimension; that means to get a subset A′ such that |A′| ≥ |πp(O)|1−δ for a small fixed positive
number δ. Then we get the desired bounded generation result using Fourier analysis. This is a common
feature of most of the proofs on this type of results; for instance this part of a bounded generation result in
groups is usually done by proving a kind of mixing property (see Sarnak-Xue [SX91] and Gower’s notion of
quasi-randomness [Gow08]).

In the second step, we appeal to the associated graded algebra grp(O) :=
∞

i=0 p
iO/pi+1O (as we have

pointed out earlier this algebra is isomorphic to f[t]) in order to gain more information on 〈A〉C for some

integer C := C(ε). To be more precise, to any subset A of O and any non-negative integer i, we associate

the i-th grade gri,p( A;O) := (( A∩ piO) + pi+1O)/pi+1O of A (and of course this can be done for any subset
A of πpN (O) as well). And for A ⊆ πpN (O) we let J(A) := {i ∈ [0, N − 1]| gri(A) ∕= 0}. Notice that

J(A) = {v(x)| πpN (x) ∈ A} ∩ [0, N − 1]

where v the is p-adic valuation, and condition (b) of Theorem 10 is equivalent to saying 0, 1 are in J(A−A).
Let us also observe that the graded algebra structure of grp(O) implies J(A1A2) ⊇ J(A1) + J(A2) for any
two subsets A1 and A2 of O. Having these in mind, using Lemma 33 (which is based on the Mann theorem
on sets with positive Schnirlmann density) we deduce that J(〈A〉3⌈1/ε1⌉) ⊇ (⌈1/ε1⌉δN,N) ∩ Z if A satisfies
properties (a) and (b) of Theorem 10.

Finally to prove Theorem 10, we use the m = 1 case for the parameters εnew1 := ε1, ε
new
2 := ε2, N

new :=

⌊εm−1
2 N⌋, and Anew := πpNnew (A), in order to get a scalar-sum-product set A such that πpNnew ( A) contains

π
p⌊εm−1

2 N⌋(p
⌈εm2 N⌉O). Now using the sum-product set 〈A〉3⌈1/ε1⌉ we shift A at most 1/ε2 many times and

add them in order to fill out the entire O-segment πpN (p⌈ε
m
2 ⌉O) without introducing a new scaling parameter.

This is crucial as later we need to get rid of the used scalars; and each time we reduce the number of
used scalars, it comes with a cost on the thickness of O-segment. So we need to start with a thick enough
O-segment at the beginning of the process.

Step 6. A multi-scaled version of the Bourgain-Katz-Tao argument and proof of Theorem 4 (see [BKT04,
Proofs of Lemma 4.2 and Theorem 4.3]). Roughly the following steps were employed in [BKT04] to prove
a bounded generation result in a finite field f (see [EM03] where a similar approach is used to prove Erdös-
Volkmann’s ring conjecture):

(a) (Scalar-Sum bounded generation) There is a linear function l : fk → f, l(x1, . . . , xk) :=
k

i=1 αixi

such that l(Ak) = f (here the number k of the needed scalars depends on log |A|/ log |f|);
(b) (Reducing the number of involved scalars) We have either (injectivity) l is injective on A× · · ·×A

or (reduction) there is a linear function l′ : fk−1 → f with one less variable such that l′(〈A〉k−1
2 ) = f;

(c) (Analyzing the injectivity case) If a linear function l : fk → f is injective on Ak and l(Ak) = f, then
A is a subfield of f.

(Here A is a subset of f with cardinality at least |f|ε and 0, 1 ∈ A. See Lemma 43 for the details and the
precise statement.) For the purposes of this note, we need a multi-scaled version of these steps. That means
we will be needing the injectivity of a linear map on a large neighborhood of a given set in order to be able
to deduce existence of some algebraic structure on it. In the algebraic language the difficulty arises as we
have lots of nilpotent elements in πpN (O), but in a field f any non-zero element is invertible. Here we briefly
explain how we overcome this difficulty.
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Choice of the set of digits Ω∪ {0}. So far we have been working with an arbitrary set Ω of representatives in
O of the non-zero elements of the residue field; and the needed scalars for the scalar-sum-product bounded
generation were picked from


C Ω∪{1}. At this step in order to have a slightly neater version of the process,

we assume that Ω is a subgroup of the group of units of O; using the Hensel lemma we know that there is
a subgroup Ω of the group of units of O such that πp : Ω → f× is a group isomorphism. So we can and will
assume


C Ω ∪ {1} = Ω for any positive integer C, and more importantly the inverse of an element of Ω is

again in Ω.

The main dichotomy. To explain this part, we introduce the symbol BG(A; ε, k, C); for a subset A of πpN (O),
a positive number ε, and positive integers k, C, we say BG(A; ε, k, C) holds if

(15) πpN (p⌈εN⌉O) ⊆ 〈A〉C + πpN (α1)〈A〉C + · · ·+ πpN (αk)〈A〉C
for some α1, . . . ,αk ∈ Ω. So roughly BG(A; ε, k, C) is a compact way of saying that an O-segment, whose
box dimension at scale |pN | is at least 1− ε, can be generated by A in C steps sum-product, and k+1 steps
scalar-sum with scalars in Ω. Let us observe that for 0 < ε1 ≪ ε2 ≪ 1 and a positive integer m (under
certain conditions on the set A), by Theorem 10, BG(A; εm2 , k(ε1), C(ε1,m)) holds. This will be serving us
as the initial seed of a process similar to the explained Bourgain-Katz-Tao argument.

Assuming BG(A; ε, k, C) holds, for any δ0 > 0, we prove (see Claim 1 in the proof of Lemma 42) that either

(a) (δ0-injectivity) for any x,x′ ∈ 〈A〉k+1
2C , l(x) = l(x0) implies x−x′ ∈ πpN (p⌊δ0N⌋), where l(x0, . . . , xk) =

x0 + πpN (α1)x1 + · · ·+ πpN (αk)xk and αi’s satisfy (15), or
(b) (Reduction) BG(A; ε+ δ0, k − 1, 8C) holds.

Analyzing the case where the reduction fails. Suppose δ0 > ε, BG(A; ε, k, C) holds for the sequence α1, . . . ,αk

of scales in Ω, and we have the δ0-injectivity for 〈A〉2C and l(x0, . . . , xk) := x0+πpN (α1)x1+ · · ·+πpN (αk)xk;
then we prove (see Lemma 42) that

(16) πp⌊δ0N⌋


〈A〉C ∩ πpN (p⌈εN⌉O)



is a subring of πp⌊δ0N⌋(O).

Gaining an algebraic structure without using scalars. We use the conclusion of Theorem 10 as the initial
seed for using the main dichotomy. That means BG(A; εm2 , k(ε1), C(ε1,m)) holds for 0 < ε1 ≪ ε2 ≪ 1 and a
positive integer m (under certain assumptions on A). Then using the main dichotomy we reduce the number
of needed scalars. But each time the main dichotomy is used, assuming the reduction occurs, the number
of needed scalars is reduced in the cost of getting a smaller O-segment. So the next time we should pick a
larger scale δ0 for using the main dichotomy. This shows how important it is to know that the number k of
needed scalars only depends on ε1 and it is independent of m. Now by choosing m large enough depending
only on ε1 and choosing the scalars carefully, we get (see the proof of Lemma 42) that

πp⌊tε′N⌋


〈A〉C′ ∩ πpN (p⌈ε

′N⌉O)


is a ring for some εm2 ≤ ε′ ≤ ε2 and C ′ := C ′(ε1) (where t is a given fixed integer).

Controlling the gap of indexes of non-zero grades, and finishing the proof of Theorem 4. Another application
of the associated graded algebra and Mann’s theorem as in Step 4 helps us finish the proof of Theorem 4.

Step 7. Proof of Theorem 1. The main shortcoming of Theorem 4 is on the assumption that there is an
element a ∈ A− A whose p-adic valuation is 1. In fact, the set A might be in a smaller field, or the ring R
generated by A might behave as the ring of integers of different subfields in different scales.

Having a description of closed subrings of O in hand, using a corollary of Theorem 10, we follow scheme of
Bourgain’s proof in [BG09, Section A.5]. It is worth repeating that Bourgain had assumed p is a fixed prime
and K/Qp is not widely ramified; and both of these assumptions were utilized for understanding structure
of certain subrings of O.
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Assuming the ring R generated by A is O. Our starting point is where there is no complication on the ring
R. The following is an immediate corollary of Theorem 10, which is a uniform version (in the sense that the
implied constants do not depend on the field K) of [BG09, Corollary A.1].

Corollary 11. For any 0 < ε1 ≪ ε2 ≪ 1, 0 < δ ≪ε1 1, and positive integer 1 ≪ε1 C, and any finite
extension K of Qp with large, depending on ε1, residue field f the following holds:

Let O be the ring of integers of K, and p be a uniformizing element of K. Suppose A ⊆ πpN (O) such that

(a) |πpi(A)| ≥ |f|iε1 for any Nδ ≤ i ≤ N .
(b) πpe′ (A) = πpe′ (O), where e′ = 1 if K is an unramified extension, and e′ = 2 otherwise.

Then

πpN (p⌈ε2N⌉O) ⊆


C1


C2

A−


C1


C2

A,

for some integers C1, C2 ≤ C.

Assuming the first N grades of R with respect to powers of p have equal cardinality. In Proposition 44, we
consider the case where |gr0,p(R;O)| = · · · = |grN−1,p(R;O)|. Using the description of closed subrings of
O, we deduce that πpN−4(R) = πpN−4(O0) where O0 is the ring of integers of a closed subfield if N is large
compared to the degree of the field extension K/Qp. Then we use Corollary 11 to get the desired bounded
generation. For small N , Bourgain-Katz-Tao’s sum-product result for finite fields is used.

Bourgain’s technique of detecting mutations. In Lemma 45, under the assumption that the box dimension
of A is at least ε at the scale |pi| for any integer i in [0, N − 1], we prove a bounded generation result. It is
clear that the cardinality of the grades gri,p(R;O) of the ring R generated by A with respect to powers of p
is a non-decreasing sequence; and it has at most [K : Qp] many jumps. So at least one of the ranges where
equality of grades occurs is large. And one would hope to zoom in this portion and use the previous step.
However there are two important issues: (1) we need to rescale a subset of A in order to zoom in to the equal
grade portion; and this changes the ring; (2) it is not clear why we can get any element at the particular
grade where the mutation occurred only in a bounded number of steps. For these reasons, we recursively
define a sequence of quadruples (Ai, Ri, ni, Ci) where Ri is the ring generated by Ai; the first ni grades of
Ri have the same cardinality; in Ci steps Ai generates a large ideal of Ri at the scale |pni |; πp(Ai) = πp(Ri);
and |πp(Ri)| is getting larger (see Step 0 of the proof of Lemma 45). Having this sequence, we get the needed
bounded generation result.

Finishing proof of Theorem 1. For small residue fields, we use Bourgain’s result. We notice that Bourgain
had assumed that p is a fixed large prime; but in the proof the largeness of p is only used to ensure the
extension K/Qp is not widely ramified. This, in turn, is only used to understand closed subrings of O.
So results of Section 2 of this note automatically extends Bourgain’s result to any fixed prime p. For large
residue fields, another application of the regularization technique gives us a set where we can use the previous
step and deduce the desired result.

1.5. Notation. In this note, K is a finite extension of Qp, O is its ring of integers, p|p is a uniformizing
element, f := O/〈p〉 is its residue field, and e is the ramification index of K over Qp, i.e. 〈p〉 = 〈pe〉. For any
ring R and a ∈ R, πa : R → R/〈a〉 is the canonical quotient map πa(x) := x+ 〈a〉.

We use the usual Vinogradov notation: x ≫ y means that there is a universal positive constant c such that
x ≥ cy, and x ≫z1,z2 y means that there is a positive function c(z1, z2) of z such that x ≥ c(z1, z2)y.

For a subset A of a ring R and a positive integer C, let


C A := {
C

i=1 ai| ai ∈ A},


C A := {
C

i=1 ai| ai ∈
A}, and 〈A〉C := {

C
i=1

C
j=1 aij −

C
i=1

C
j=1 a

′
ij | aij , a′ij ∈ A}; and 〈A〉 is the subring generated by A.
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2. Structure of subrings

In this section we describe structure of subrings of the ring O of integers of a finite extension K of Qp

(see Theorem 7). To do so first graded subrings of the ring of polynomials over a finite field are described
(see Proposition 12). Along the way a result for semigroups of non-negative integers is proved that is of
independent interest (see Proposition 13). It should be said that Theorem 7 will be used only towards the
end of the article in the proof of Theorem 1. But the technique of assigning a graded set to a subset of O
in order to understand the shape of this set in various scales is well illustrated in this section. One can take
Theorem 7 as a blackbox and skip this section; but the basic properties proved and notation introduced in
Lemma 16 and Corollary 17 should be reviewed.

2.1. Structure of graded subrings of the ring of polynomials over a finite field. The main goal of
this section is to prove the following proposition.

Proposition 12. Let f be a finite field, and S :=
∞

i=0 Sit
i be a graded subring of the ring of polynomials

f[t] over the field f; that means Si is an additive subgroup of f and SiSj ⊆ Si+j, for any i, j; in particular S0

is a subfield of f. Suppose

(17) [f : S0] := d and Sm ∕= 0.

For any integer C ≥ 3 and any integer F ≫C,m,d 1, there are integers r, a, and b, an element λ ∈ f, and a
subfield f0 of f such that r|m, S0 ⊆ f0,

b− a ≫C,d,m F, and b ≥ Ca,(18)

πtbm(S ∩ tamf[t]) = πtbm(tamf0[λt
r])(19)

where πtk : f[t] → f[t]/tkf[t] is the canonical quotient map and f0[λt
r] :=

∞
i=0 f0(λt

r)i.
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Proposition 12 has an immediate implication for numerical semigroups that is of independent interest.

Proposition 13. Let J be a subsemigroup of non-negative integers. Suppose the greatest
common divisor of elements of J is one (such a semigroup is called a numerical semigroup).
Let m := min J \ {0} (it is called the multiplicity of J), and let F := maxZ \ J (it is called
the Frobenius number of J). Suppose C ≥ 3 and F ≫C,m 1. Then there are integers a, b,
and d, such that d|m, d > 1,

b− a ≫C,m F , and b ≥ Ca,(20)

J ∩ [a, b) = dZ ∩ [a, b).(21)

Proof. Let S :=


j∈J f(tj). Since J is a subsemigroup of non-negative integers, S is a

graded subring of f[t]. Since S0 = f, by Proposition 12, there are integers d := r, a′, and b′

such that d|m

(22) b′ − a′ ≫C,m F, b′ ≥ Ca′, and πtb′m(S ∩ ta
′mf[t]) = πtb′m(ta

′mf[td]).

Since πtb′m(S ∩ ta
′mf[t]) = πtb′m(⊕j∈J∩[a′m,b′m)f(t

j)), by (22) we deduce that

J ∩ [a′m, b′m) = dZ ∩ [a′m, b′m);

and the claim follows. □
The following picture shows us a numerical semigroup J with the multiplicity m(J) = 6
and the Frobenius number F (J) = 133. We can see that the set of non-negative integers
can be covered with at most m(J) windows with different patterns. And one of the large
windows is going to have a regular strip pattern.

138139140141142143

132133134135136137

126127128129130131

120121122123124125

114115116117118119

108109110111112113

102103104105106107

96 97 98 99100101

90 91 92 93 94 95

84 85 86 87 88 89

78 79 80 81 82 83

72 73 74 75 76 77

66 67 68 69 70 71

60 61 62 63 64 65

54 55 56 57 58 59

48 49 50 51 52 53

42 43 44 45 46 47

36 37 38 39 40 41

30 31 32 33 34 35

24 25 26 27 28 29

18 19 20 21 22 23

12 13 14 15 16 17

6 7 8 9 10 11

0 1 2 3 4 5

Large window where
exactly multiples of

d = 2 can be seen.

To prove Proposition 12, we start with the following combinatorial lemma.

Lemma 14. Suppose {di}∞i=0 is a sequence of non-negative integers with the following properties.

(A1) For a positive integer d we have 0 ≤ di ≤ d for any i.
(A2) If di ∕= 0, then for any non-negative integer j we have dj ≤ di+j.
(A3) For some positive integer m, dm is not zero; and d0 is not zero.

Then for any integers C ≥ 2 and F ≥ Cmd+1 there are integers a, b, and x0, . . . , xm−1 such that

(C1) (m-periodic) For any i ∈ [am, bm), di = xri where ri is the remainder of i divided by m.
(C2) (Length of periodicity) b ≥ Ca, and b ≥ C−md−1F .

Remark 15. It is worth mentioning that, if d = 1, then the assumptions (A1) and (A2) are equivalent to
saying that the map i → di is the characteristic function of a subsemigroup of non-negative integers.

Proof of Lemma 14. Since dm ∕= 0 (see (A3)), we have that i → dmi+j is increasing for any non-negative
integer j. And so for non-negative integers j and l the set {i ∈ Z≥0| dim+j = l} is a segment of integers. Since
0 ≤ dmi+j ≤ d, for any j there is a partition Pj := {I0,j , . . . , Id,j} of the set of non-negative integers such
that for any i ∈ Il,j we have dmi+j = l (some of Il,j ’s might be empty). Collecting all the end points of the
intervals Il,j∩[0, F ] (for 0 ≤ l ≤ d and 0 ≤ j ≤ m−1) we get integers 0 =: g0 ≤ g1 ≤ · · · ≤ gmd ≤ gmd+1 := F
such that for any index j and integer i ∈ [gjm, gj+1m) the number di only depends on the remainder of i
divided by m.

Claim 1. There is an integer j ∈ [0,md] such that (g(j + 1) + 1) ≥ C(g(j) + 1) .

Proof of Claim 1. Suppose to the contrary that for any j ∈ [1,md] we have (g(j + 1) + 1) < C(g(j) + 1);
then inductively we get that (g(md+ 1) + 1) < Cj(g(md+ 1− j) + 1) for any integer j ∈ [1,md+ 1]. And
for j = md+ 1, we get that F + 1 < Cmd+1; and this gives us a contradiction.

Claim 2. There is an integer j ∈ [1,md] such that (g(j + 1) + 1) ≥ C(g(j) + 1) and g(j + 1) ≥ C−md−1F .
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Proof of Claim 2. Let j0 be the largest integer in [0,md] such that (g(j0 + 1) + 1) ≥ C(g(j0) + 1) (using
Claim 1 we know that such an integer exists). Since j0 is the largest integer with this property, we have

(g(i+ 1) + 1) < C(g(i) + 1), for any integer i ∈ [j0 + 1,md].

Hence g(md+ 1) + 1 < Cmd−j0(g(j0 + 1) + 1) < Cmd(g(j0 + 1) + 1); and this implies

C−md−1F < C−mdF + C−md − 1 < g(j0 + 1).

Let b := g(j0 + 1) and a := g(j0). Claim 1 and Claim 2 imply that a and b satisfy the conclusion (C2) in
the statement of Lemma 14. For an integer j ∈ [0,m), let xj := dam+j . Since for any integer i ∈ [am, bm)
the number di only depends on the remainder ri of i divided by m, we get that di = xri for any integer
i ∈ [am, bm); and the claim follows. □

Proof of Proposition 12. Since S =
∞

i=0 Sit
i is a graded subring of the ring of polynomials f[t] over a

finite field, we have that S0 is a subfield of f and Si is a S0-vector space for any non-negative integer i .
Let di := dimS0

Si. Next we check that the assumptions (A1), (A2), and (A3) of Lemma 14 hold for the
sequence {di}∞i=0. As Si’s are S0-subspaces of f, we get that dimS0 Si ≤ dimS0 f; and so the the assumption
(A1) of Lemma 14 holds for the sequence {di}∞i=0. Since for non-negative integers i, j we have SiSj ⊆ Si+j ,
we get that the assumption (A2) of Lemma 14 holds for the sequence {di}∞i=0. And because of (17), the
assumption (A3) of Lemma 14 holds for the sequence {di}∞i=0. So by Lemma 14, there are integers a, b,
x0, . . . , xm−1 that satisfy the conclusions (C1) and (C2) of Lemma 14.

Let λ ∈ Sm \ {0} and Si := λ−⌊i/m⌋Si. Then 1 ∈ Sm; and so Si ⊆ SmSi. On the other hand, SmSi ⊆ Si+m

implies that SmSi ⊆ Si+m. For any integer i ∈ [ma,m(b − 1)), we have that dimS0 Si+m = di+m = di =
dimS0 Si. Altogether we get that

(23) Si = Si+m, for any integer i ∈ [am, (b− 1)m).

Let Bi := Sam+i for any integer i ∈ [0,m). And so by (23) we have that for any integer i ∈ [am, bm),
Si = Bri where ri is the remainder of i divided by m. We will identify the set of integers in the interval
[0,m) with Z/mZ, and in the rest of the proof πm(i) := i +mZ will be used instead of ri; that means we
have Bπm(i) = Si for any integer i ∈ [am, bm).

Claim. Let I := {̄i ∈ Z/mZ| Bī ∕= 0}. Then I is a subgroup of Z/mZ.

Proof of Claim. Suppose i, j are two integers in [0,m) and πm(i),πm(j) ∈ I. Then Bπm(i) and Bπm(j) are
non-zero S0-vector spaces. Since (2a+ 1)m < Cam ≤ bm, we have

(24) Sam+i = λ⌊i/m⌋Bπm(i), Sam+j = λ⌊j/m⌋Bπm(j), and S2am+i+j = λ⌊i+j/m⌋Bπm(i+j);

and so the grading equation Sam+iSam+j ⊆ S2am+i+j implies that

(25) 0 ∕= Bπm(i)Bπm(j) ⊆ λ(⌊i+j/m⌋−⌊i/m⌋−⌊j/m⌋)Bπm(i+j) = λ⌊i+j/m⌋Bπm(i+j);

in particular πm(i+ j) = πm(i) + πm(j) ∈ I. And the claim follows.

Suppose r is the positive integer in [0,m) such that I = rZ/mZ; in particular r|m. Let s := m/r. Suppose
η ∈ Br \ {0}, and let Bi := η−iBπm(ri) for any integer i in [0, s). So (25) implies that B0 · Biη

i ⊆ Biη
i for

any integer i in [0, s). Therefore we get

(26) Bi = B0 ·Bi,

for any integer i in [0, s); in particular B0 is a subfield of f, and Bi’s are B0-vector spaces. Another application
of (25) implies that B1η ·Biη

i ⊆ Bi+1η
i+1 for any integer i in [0, s− 1). Therefore we get

(27) B1 ·Bi ⊆ Bi+1,

for any integer i in [0, s− 1). By (26), (27), and the fact that 1 ∈ B1, we deduce that

(28) B0 ⊆ B1 ⊆ · · · ⊆ Bs−1.
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Next we again use (25) to deduce that B1η ·Bs−1η
s−1 ⊆ λB0. Therefore we have

(29) λ−1ηsB1Bs−1 ⊆ B0.

By (28), (29), the fact that 1 ∈ B1, and comparing the dimensions, we get that there is a subfield f0 of f
such that

(30) B0 = B1 = · · · = Bs−1 = f0, and λf×0 = ηsf×0 .

Since B0 = λ−mSam ⊇ S0, we get that f0 is a field extension of S0. By (24), Bi := η−iBπm(ri), (30),

Bi := η−iBπm(ri), and m = rs, we have

bm−1

i=am

Sit
i =

b−1

i=a


B0 ⊕B1ηt

r ⊕ · · ·⊕Bs−1η
s−1tr(s−1)


(λtm)i(31)

=

bs−1

i=as

f0(ηt
r)i.

By (31), we get (19); and since a and b satisfy the conclusions (C1) and (C2) of Lemma 14, we get (18).
And the claim follows. □

2.2. Structure of subrings of the ring O of integers of a finite extension K of Qp. The main goal
of this section is to prove Theorem 7; but before we get to that, let us define certain graded algebras which
are crucial throughout this note. For any η ∈ pO, we get a filtration {ηiO}∞i=0 of O; and then we can define
a corresponding graded algebra: let grη(O) :=

∞
i=0 gri,η(O) where gri,η := πηi+1(ηiO). For any x ∈ O,

there is a unique non-negative integer i such that x ∈ ηiO \ ηi+1O; we denote such non-negative integer by
degη(x), and it is clear that degη(x) = ⌊vp(x)/vp(η)⌋. For any x ∈ O and η ∈ pO, we let lη(x) := πpdegη +1(x)

and lη(x) := πη(η
− degη(x)x) ∈ πη(O) and call lη(x) the η-leading term of x. The following is a useful lemma

that justifies the use of the above terminology for lη(x).

Lemma 16. In the above setting, let φη : grη(O) → πη(O)[t] be the graded map induced by

φη(lη(x)) := lη(x)t
degη x,

where πη(O)[t] is the ring of polynomials over πη(O). Then φη is a graded ring isomorphism.

Proof. Suppose x ∈ gri,η(O); then x = πηi+1(x) for some x ∈ ηiO. And we have φη(x) = πη(η
−ix)ti.

Therefore for x, x′ ∈ gri,η(O), there are x, x′ ∈ ηiO such that πηi(x) = x and πηi(x′) = x′; and

φη(x+ x′) = φη(πηi+1(x+ x′)) = πη(η
−i(x+ x′))ti = πη(η

−ix)ti + πη(η
−ix′)ti = φη(x) + φη(x

′).

Since O is an integral domain, πηi+1(x) → πη(η
−ix) is a bijection from πηi+1(ηiO) to πη(O). Hence φη is an

additive group isomorphism from grη(O) to πη(O)[t].

For x ∈ gri,η(O) and x′ ∈ grj,η(O), we have that x = πηi+1(x) and x′ = πηj+1(x′) for some x ∈ ηiO and

x′ ∈ ηjO; and φη(x) = πη(η
−ix)ti and φη(x

′) = πη(η
−jx′)tj . Then based on the graded structure of grη(O),

we have xx′ = πηi+j+1(xx′); and so φη(xx
′) = πη(xx

′)ti+j = φη(x)φη(x
′). And the claim follows. □

Corollary 17. Suppose x ∈ O\pO; then for any non-negative integers i and k multiplication by xηi induces
a bijection xk + ηk+1O → xkxη

i + ηk+i+1O from grk,η(O) to grk+i,η(O).

Proof. We notice that x is a unit in O; and so πη(x) is a unit in πη(O); and so multiplication by πη(x)
induces a bijection from πη(O) to itself. And by Lemma 16 the claim follows. □

To any subset X of O we associate a graded subset grη(X;O) of grη(O). For a non-negative integer i, we

let gri,η(X;O) := πηi+1(X ∩ ηiO); and we define grη(X;O) :=
∞

i=0 gri,η(X;O).

Lemma 18. In the above setting, suppose R is a subring of O; then grη(R;O) is a subring of grη(O).
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Proof. It is clear. □

Proof of Theorem 7. By Lemma 18, we have that grp(R;O) is a subring of grp(O); and by Lemma 16 there
is a graded algebra isomorphism φ : grp(O) → f[t] where f is the residue field of O. Since 1 is in R, we
have that gr0,p(R;O) := πp(R) is a subfield of f and p ∈ R. The latter implies that gre,p(R;O) ∕= 0 where
e := vp(p) is the ramification index of K over Qp. It is well-known that the degree [K : Qp] of the field
extension K of Qp is equal to the product of its ramification index e and its residue degree [f : fp]. Hence by
Proposition 12 there are a subfield f0 of f which is an extension of gr0,p(R;O), λ ∈ f, and positive integers
r, a, b such that r|e and

(32) b− a ≫C,[K:Qp] F, b ≥ Ca, and


ae≤i<be

φ(gri,p(R;O)) =


ae/r≤j<be/r

f0(λt
r)j .

An immediate consequence of (32) is the existence of certain elements in R which help us pass to smaller

scales within R. By (32), for any integer j in [1, e/r), there is ξj ∈ R such that vp(ξj) = ea+ rj. By letting
ξ0 := pa, we get the same claim for j = 0 as well. For any integer i in [a, b) and integer j in [0, e/r), let
ξi,j := pi−aξj . Hence for any such integers i and j, we have

(33) ξi,j ∈ R and vp(ξi,j) = ei+ rj.

For any integer k in [0, (b− a)e/r), let ξk := p−aξq,r where q is the quotient of rk + ea divided by e and rr
is the remainder of rk + ea divided by e. Therefore for any such k, q, and r by (33) we have

(34) paξk ∈ R and vp(ξk) = −ea+ vp(ξq,r) = −ea+ (eq + rr) = rk.

Another consequences of (32) is the fact that gri,p(R;O) is zero if r ∤ i and i < be; and so for any non-negative
integer i < be we have

(35) R ∩ piO = R ∩ pr⌈i/r⌉O.

And the last immediate consequence of (32) (see Corollary 17) that we mention here is that for any integer
i in [ae, (b− 1)e)

(36) x+ pi+1O → px+ pe+i+1O is a bijection from gri,p(R;O) to gre+i,p(R;O).

By (32) we also deduce that there is a function s : f0 → R ∩ paO such that πp(p
−as(x)) = x for any x ∈ f0.

Claim 1. Let s : f0 → O, s(x) := p−as(x) and r be as in (32). Then πpr ◦ s : f0 → πpr (O) is a ring
embedding.

Proof of Claim 1. For any x ∈ f0, we have πp(s(x)) = x. Hence for any x1, x2 ∈ f0, we have s(x1 + x2) −
s(x1)− s(x2) ∈ pO; this implies that

(37) s(x1 + x2)− s(x1)− s(x2) ∈ R ∩ pea+1O.

Hence by (35) we have

(38) s(x1 + x2)− s(x1)− s(x2) ∈ R ∩ pea+rO.

And so πpr (s(x1 + x2)) = πpr (s(x1)) + πpr (s(x2)).

We also have s(x1)s(x2) ∈ R ∩ p2aO. By (36), there is x′ ∈ R ∩ paO such that

(39) pax′ − s(x1)s(x2) ∈ R ∩ p2ae+1O.

We also have πp(p
−as(x1x2)) = x1x2 = πp(p

−as(x1))πp(p
−as(x2)) = πp(p

−2as(x1)s(x2)). And so by (39)
we get πp(p

−ax′) = πp(p
−as(x1x2)). Hence we get

(40) pas(x1x2)− s(x1)s(x2) ∈ R ∩ p2ea+1O.

By (40) and (35) we have

(41) pas(x1x2)− s(x1)s(x2) ∈ R ∩ p2ae+rO.
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Hence p−as(x1x2)− (p−as(x1))(p
−as(x2)) ∈ prO; and this implies that

(42) πpr (s(x1x2)) = πpr (s(x1))πpr (s(x2));

and the claim follows. QED.

By Hensel’s lemma we know that there is a group embedding θ : f× → O× such that for any x ∈ f we have
x = πp(θ(x)). Next we show that a good approximation of a multiple of θ(f×0 ) can be found in R. This will
help us to get the unramified part of K0.

Claim 2. Suppose a, b are given as in (32) for a constant C which is more than 3[K : Qp]. Then there is

s : f×0 → R ∩ p2aO such that s(x)− p2aθ(x) ∈ pb−2a([f0:fp]−1)O for any x ∈ f×0 .

Proof of Claim 2. Let us fix x0 ∈ f×0 . We notice that θ(x0) is a zero of t|f0|−1−1; and so its (monic) minimal
polynomial Φ(t) over Qp is actually in Zp[t] and πp(Φ(t)) does not have multiple zeros in f. And so by the
Hensel’s lemma, if Φ(y) ∈ plO for some y ∈ O and positive integer l and πp(y) = x0, then y − θ(x0) ∈ plO.
Moreover we notice that d := degΦ is at most the residue index d0 := [f : fp] of K over Qp. Next for integers
k in [0, (b− 2ad0)e/r) we inductively find yk ∈ O such that

(43) πp(yk) = x0, yk − yk−1 ∈ prkO, p2ayk ∈ R, and Φ(yk) ∈ pr(k+1)O,

where r is as in (32). The argument is similar to the proof of Hensel’s lemma but we have to be careful that
every step of estimation is done within the ring R and only in certain scales we have a control on R. We
write the Taylor expansion of Φ(t) at yk,

(44) Φ(yk + t) = Φ(yk) +

d

i=1

Φ(i)(yk)

i!
ti;

and we point out that, since the coefficients of Φ are in Zp, we have that Φ(i)(t)
i! is again in Zp[t]. Therefore,

for any integer i in [1, d], p2a(d−i)Φ
(i)(yk)
i! is in the Zp-algebra generated by p2ayk; and so by the induction

hypothesis

(45) p2a(d−i)Φ
(i)(yk)

i!
∈ R. And in addition yk ∈ O implies that

Φ(i)(yk)

i!
∈ O.

As we mentioned earlier, Φ(t) is a divisor of t|f0|−1 − 1; since t|f0|−1 − 1 does not have multiple zeros in f,
Φ(t) does not have multiple zeros in f. Hence πp(Φ(yk)) = 0 implies that

(46) πp(Φ
′(yk)) ∕= 0.

By (45) and (33), we have

p2adΦ′(yk)ξk+1s(f0) = (p2a(d−1)Φ′(yk))(p
aξk+1)(p

as(f0)) ⊆ R ∩ p2ade+r(k+1)O;

and by (46), we have that

|πp2ade+r(k+1)+1(p2adΦ′(yk)ξk+1s(f0))| = |f0|;
since, by (32), |gr2ade+r(k+1),p(R;O)| = |f0| (notice that k + 1 < (b− 2ad0)e/r), we deduce that

(47) gr2ade+r(k+1),p(R;O) = πp2ade+r(k+1)+1(p2adΦ′(yk)ξk+1s(f0)).

By (45) and (47), there is xk+1 ∈ f0 such that

p2adΦ(yk)− p2adΦ′(yk)ξk+1s(xk+1) ∈ p2ade+r(k+1)+1O,

which implies

(48) Φ(yk) + Φ′(yk)(ξk+1s(xk+1)) ∈ pr(k+1)+1O.

We also notice that by (34) and the induction hypothesis (see the third condition in (43)) we have

(49) p2a(yk + ξk+1s(xk+1)) = p2ayk + (paξk+1)(p
as(xk+1)) ∈ R.
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By (44), (45), (48), and (49) we have

(50) Φ(yk + ξk+1s(xk+1)) = Φ(yk) + Φ′(yk)(ξk+1s(xk+1)) +

d

i=2

Φ(i)(yk)

i!
(ξk+1s(xk+1))

i ∈ pr(k+1)+1O,

and

(51) p2adΦ(yk + ξk+1s(xk+1)) = p2adΦ(yk) +

d

i=1


p2a(d−i)Φ

(i)(yk)

i!


(paξk+1)

i(pas(xk+1))
i ∈ R.

By (50) and (51), we have p2adΦ(yk + ξk+1s(xk+1)) ∈ R ∩ p2ead+r(k+1)+1O; and so by (35) and having
k + 1 < (b− 2ad0)e/r we deduce that p2adΦd(yk + ξk+1s(xk+1)) ∈ R ∩ p2ead+r(k+2)O. Hence we get

(52) Φ(yk + ξk+1s(xk+1)) ∈ pr(k+2)O.

Therefore by (34), (49), and (52) we get that yk+1 := yk + ξk+1s(xk+1) satisfies all the conditions mentioned
in (43).

We notice that πp(yk) = x0 and Φ(yk) ∈ pr(k+1)O imply that

(53) yk − θ(x0) ∈ pr(k+1)O.

Let k0 := (b− 2ad0)e/r − 1 and s(x0) := p2ayk0 . Then by (43) and (53) we have

s(x0) ∈ R, and s(x0)− p2aθ(x0) ∈ p2ae+r(k0+1)O = p2a+(b−2ad0)O;

and the claim follows. QED.

Claim 2 implies that πpb−2a(d0−1)(p2aθ(f×0 )) ⊆ πpb−2a(d0−1)(R). On the other hand, as θ(f×0 ) is a subgroup of

the group O× of units of O, we have that

Zp[θ(f
×
0 )] = {


x∈f×0

cxθ(x)| cx ∈ Zp};

and so we get

(54) πpb−2a(d0−1)(p2aZp[θ(f
×
0 )]) ⊆ πpb−2a(d0−1)(R).

Claim 3. Suppose a, b, r are given as in (32) for a constant C which is more than 3[K : Qp]. And as before

let ξ1 ∈ R ∩ pae+rO \ pae+r+1O. Let b′ := b− 2a([f0 : fp]− 1). Then

πpb′ (R ∩ p4ar
′
O) = πpb′ (par

′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ) ∩ p4ar

′
O),

where O0,u := Zp[θ(f
×
0 )] and r′ := e/r.

Proof of Claim 3. By (54) we have πpb′ (p2aO0,u) ⊆ πpb′ (R). As πpb′ (R) is a ring and πpb′ (ξ1) ∈ πpb′ (R), we
have

(55) πpb′ (p2a(O0,u +O0,u
ξ1 + · · ·+O0,u

ξr
′−1

1 )) ⊆ πpb′ (R).

Let ξi,j := pj+a(r′−i)ξi1 for integers i in [0, r′) and j in [0, b′− ar′); then vp(ξi,j) = ej+ ea(r′− i)+ eai+ ri =

ear′ + ej + ri. Hence for any integer k in [ar′2, b′r′) there is ξk ∈
r′−1

j=0 Zp
ξj1 such that vp(ξk) = rk.

Hence by Corollary 17 and (32) we have that

(56) x+ pl+1O → ξkx+ pl+rk+1O is a bijection from grl,p(R;O) to grl+rk,p(R;O)

if k is an integer in [ar′2, b′r′) and l is an integer in [ae, be− rk).

Let us fix y0 ∈ R ∩ p4ar
′O. Inductively we prove that for any integer m in [4ar′2, b′r′] we have

πprm(y0) ∈ πprm(par
′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 )).

The case of m = 4ar′2 is clear as pr(4ar
′2)O = p4ar

′O.
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By the induction hypothesis, we have that there is

(57) vm ∈ par
′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ) such that y0 − vm ∈ prmO.

Since y0 ∈ p4ar
′O, y0 − vm ∈ prmO ⊆ p4ar

′O (as m ≥ 4ar′2), we deduce that vm ∈ p4ar
′O; in particular

if r′ = 1, then vm ∈ par
′O0,u ∩ p4ar

′O = p4ar
′O0,u (notice that by [Neu99, Chapter II, Proposition 7.12] p

is a uniformizing element of O0,u; see Claim 4, Subclaim (a) for more included details). Therefore in any

case vm ∈ p2a(O0,u + O0,u
ξ1 + · · · + O0,u

ξr
′−1

1 ); and so by (55), there are zm ∈ R and em ∈ O such that

vm = zm + pb
′
em. And so by (57)

(58) y0 − zm ∈ R ∩ prmO.

On the other hand applying (56) for the parameters l = 2ae and k = m− 2ar′ ≥ 4ar′2− 2ar′ ≥ ar′2 we have
that

y0 − zm − ξm−2ar′s(xm) ∈ prm+1O ∩R;

and so by (35)

(59) y0 − zm − ξm−2ar′s(xm) ∈ pr(m+1)O ∩R.

On the other hand, by Claim 2 and (57),

πpb′ (zm + ξm−2ar′s(xm)) = πpb′ (vm) + πpb′ (ξm−2ar′)πpb′ (s(xm))(60)

= πpb′ (vm) + πpb′ (ξm−2ar′)πpb′ (p2aθ(xm))

= πpb′ (vm) + πpb′ (ξm)πpb′ (θ(xm))

∈ πpb′ (par
′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ));

in the last assertion we are using

vp(ξm−2ar′)− vp(ξr
′−1

1 ) ≥ (4ar′2 − 2ar′)r − (r′ − 1)(ae+ r)

> e((3r′ − 1)a− 1) ≥ ear′ = vp(p
ar′).

By (60) there is

(61) vm+1 ∈ par
′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ) such that zm + ξm−2ar′s(xm)− vm+1 ∈ pb

′
O.

By (61) and (59) we have that there is

(62) vm+1 ∈ par
′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ) such that y0 − vm+1 ∈ pr(m+1)O;

and by (55), (62), and the remark made for r′ = 1 case, the claim follows. QED.

Claim 4. Suppose a, b, r are as in (32) for a constant C ≥ 12[K : Qp]. Suppose ξ1 ∈ R∩pae+rO\pae+r+1O.
Then there is ξ ∈ O such that

ξ − ξ1 ∈ p⌊b/2⌋O, and πp⌊b/2⌋(R ∩ p4ar
′
O) = πp⌊b/2⌋(par

′
O0,u[ξ] ∩ p4ar

′
O),

where as before O0,u = Zp[θ(f
×
0 )] and r′ := e/r. Moreover Qp[θ(f

×
0 )][ξ] is a totally ramified extension of

Qp[θ(f
×
0 )] and [Qp[θ(f

×
0 )][ξ] : Qp[θ(f

×
0 )]] = r′.

Proof of Claim 4. We know that vp(ξ
r′) = vp(p

3ar′ ξr′1 ) = 4aer′ + e > vp(p
4ar′). And so by Claim 3, there

are c0, . . . , cr′−1 ∈ O0,u such that

(63) p3ar
′ ξr

′

1 + cr′−1
ξr

′−1
1 + · · ·+ c1ξ1 + c0 ∈ pb

′
O,

where b′ := b−2([f0 : fp]−1)a. Before we continue our analysis, we prove the following well-known subclaim.
(Since its proof is short, we include it for the convenience of reader; see [Neu99, Chapter II, Proposition 7.2]
for a more general statement.)

Subclaim (a). Let K0,u := Qp[θ(f
×
0 )]. Then K0,u is an unramified extension of Qp, its ring of integers is

O0,u := Zp[θ(f
×
0 )], and its residue field is f0; in particular for any c ∈ K×

0,u we have vp(c) ∈ eZ.
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Proof of Subclaim (a). Let O′
0,u be the ring of integers of K0,u, and f′0 be its residue field. Then O0,u :=

Zp[θ(f
×
0 )] ⊆ O′

0,u. And so the f0 ⊆ f′0. Let β be a generator of f×0 . Since θ(β) is integral over Zp, by Hensel’s
lemma we have [Qp[θ(β)] : Qp] = [fp[β] : fp]; this means [K0,u : Qp] = [f0 : fp]. But we know that the degree
[K0,u : Qp] of the field extension K0,u of Qp is equal to the product of its ramification index and its residue
degree. So we conclude that f′0 = f0 and K0,u is an unramified extension of Qp. Since O0,u is a complete
subring of O′

0,u and πp(O0,u) = πp(O′
0,u), we deduce that O′

0,u = O0,u. And the subclaim (a) follows.

Let cr′ := p3ar
′
and f(t) :=

r′

i=0 cit
i ∈ O0,u[t]. Next we will find an upper bound for the p-adic valuation

vp(f
′(ξ1)) of the value of the derivative f ′(t) of f(t) at t = ξ1.

Subclaim (b). In the above setting vp(f
′(ξ1)) ≤ 4er′a.

Proof of Subclaim (b). We have f ′(ξ1) =
r′

i=1 ici
ξi−1
1 . And by Subclaim (a) we have

(64) vp(iciξi−1
1 ) ≡ r(i− 1) (mod e)

for any integer i in [1, r′]. Since 0 ≤ r(i− 1) < e for i ∈ [1, r′], by (64) we have

(65) vp(iciξi−1
1 ) ∕= vp(jcjξj−1

1 )

for distinct integers i and j in [1, r′]. By (65) we deduce that

vp(f
′(ξ1)) = min

1≤i≤r′
vp(iciξi−1

1 ) ≤ vp(r
′p3ar

′ ξr
′−1

1 ) ≤ 4er′a

(to get the last assertion we are assuming a ≥ 3); and the subclaim (b) follows.

By (63) and Subclaim (b), we have that

(66) vp(f(ξ1))− 2vp(f
′(ξ1)) ≥ e(b′ − 4r′a) = e(b− 2([f0 : fp]− 1 + 2r′)a) ≥ e(1− 6[K : Qp]/C)b ≥ eb/2.

Hence by [Lan94, Chapter II, Section 2, Proposition 2] and (66), there is ξ ∈ O such that

(67) f(ξ) = 0, and vp(ξ − ξ1) ≥ vp(f(ξ1)/(f ′(ξ1))2) ≥ eb/2.

Let K0 := K0,u[ξ]. Since f(ξ) = 0 and f(t) ∈ K0,u[t], we have [K0 : K0,u] ≤ deg f = r′. By the second

part of (67) we can deduce that vp(ξ) = vp(ξ1) = ae+ r; and so r ∈ vp(K
×
0 ). This and Subclaim (a) imply

that the ramification index of the field extension K0 over K0,u is at least [rZ : eZ] = r′. Since the index
[K0 : K0,u] of the field extension K0 over K0,u is equal to the product of the ramification index and the
residue index of this field extension, by the above discussion we deduce that

(68) [K0 : K0,u] = r′, K0/K0,u is a totally ramified extension, and f(t) is irreducible in K0,u[t].

Since ξ is integral over O0,u, O0,u is integrally closed, and the degree of ξ over K0,u is r′, we have that

(69) O0,u[ξ] = O0,u +O0,uξ + · · ·+O0,uξ
r′−1.

Hence we have

πp⌊b/2⌋(R ∩ p4ar
′
O) = πp⌊b/2⌋(par

′
(O0,u +O0,u

ξ1 + · · ·+O0,u
ξr

′−1
1 ) ∩ p4ar

′
O) (by Claim 3)

= πp⌊b/2⌋(par
′
(O0,u +O0,uξ + · · ·+O0,uξ

r′−1) ∩ p4ar
′
O). (by (67))

= πp⌊b/2⌋(par
′
O0,u[ξ] ∩ p4ar

′
O) (by (69))

QED.

Claim 5. Suppose a, b, r are as in (32) for a constant C ≥ 12[K : Qp]. Suppose ξ is as in Claim 4, and let
K0,u := Qp[θ(f

×
0 )] and K0 := K0,u[ξ]. Let O0 be the ring of integers of K0. Then

πp⌊b/2⌋(R ∩ p4ar
′
O) = πp⌊b/2⌋(O0 ∩ p4ar

′
O).
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Proof of Claim 5. Suppose x ∈ O0∩p4ar
′O. Then there are c′i ∈ K0,u such that x =

r′−1
i=0 c′iξ

i. By Subclaim

(a) (of Claim 4), we have that vp(K
×
0,u) = eZ. And, by Claim 4, vp(ξ) = ae+ r. Hence we have that

(70) vp(c
′
iξ

i) ≡ ri (mod e).

By (70) and the fact that 0 ≤ ri < e for i ∈ [0, r′ − 1], we deduce that vp(c
′
iξ

i)’s are pairwise distinct; and
therefore

(71) 5er′a ≤ vp(x) = vp

 r′−1

i=0

c′iξ
i

= min

0≤i≤r′−1
{vp(c′i) + i(ae+ r)}.

Hence for any integer i in [0, r′ − 1] we have

vp(c
′
i) ∈ [4er′a− eia− ir,∞) ∩ eZ = [4er′a− eia,∞) ∩ eZ

which implies c′′i := c′i/p
3ar′ ∈ O0,u. Hence by (69) we have

(72) x = p3ar
′
r′−1

i=0

c′′i ξ
i ∈ p3ar

′
O0,u[ξ].

Therefore by (72) and Claim 4, we have πp⌊b/2⌋(x) ∈ πp⌊b/2⌋(par
′O0,u[ξ]∩p4ar

′O) = πp⌊b/2⌋(R∩p4ar
′O). And

so

(73) πp⌊b/2⌋(O0 ∩ p4ar
′
O) ⊆ πp⌊b/2⌋(R ∩ p4ar

′
O).

On the other hand, by Claim 4 we have

(74) πp⌊b/2⌋(R ∩ p4ar
′
O) = πp⌊b/2⌋(par

′
O0,u[ξ] ∩ p4ar

′
O) ⊆ πp⌊b/2⌋(O0 ∩ p4ar

′
O);

and by (73) and (74) claim follows. QED.

Claim 6. Suppose R is a subring of O, and for positive integers a and b we have a ≤ b and πpb(R∩ paO) =
πpb(R ∩ paO0) where O0 is the ring of integers of a subfield K0 of K. Then πpb−a(R) ⊆ πpb−a(O0).

Proof of Claim 6. For any x ∈ R, there is x′ ∈ O0 such that pax − x′ ∈ pbO. And so x − p−ax′ ∈ pb−aO,
which implies p−ax′ ∈ K0 ∩O = O0. Therefore πpb−a(x) ∈ πpb−a(O0); and the claim follows. QED.

Claim 5 and Claim 6 imply the assertion of Theorem 7. □

2.3. Subrings with the same graded structure as the ring O0 of integers of a subfield. The main
goal of this section is to show knowing grp(R;O) = grp(O0;O) and a bit more information is enough to
deduce that R = O0.

Proposition 19. Suppose R is a subring of the ring O of integers of a finite extension K of Qp. Suppose
N is a positive integer which is at least 6[K : Qp]. Suppose O0 is the ring of integers of a closed subfield
K0 of K. If πp6[K:Qp](R) = πp6[K:Qp](O0) and gri,p(R;O) = gri,p(O0;O) for any integer i in [0, N − 1], then

πpN−4(R) = πpN−4(O0).

Proof. Step 1. (Getting the unramified part) First we notice that (32) holds for a = 0 and b = N . Let f0
and f be the residue fields of O0 and O, respectively. Let p be a uniformizing element of O. As before, let
θ : f× → O× be the group embedding such that πp(θ(x)) = x for any x ∈ f×. So by Claim 2 in the proof of
Theorem 7, we have that there is s : f×0 → R such that s(x) − θ(x) ∈ pNO for any x ∈ f×0 (we extend the
domain of s to f by setting s(0) := 0). This implies that πpN (θ(f×0 )) ⊆ πpN (R), and so

(75) πpN (Zp[θ(f
×
0 )]) ⊆ πpN (R).

Notice that K0,u := Qp[θ(f
×
0 )] is a subfield of K0, K0,u is an unramified extension of Qp, and K0 is a totally

ramified extension of K0,u. And the ring O0,u of integers of K0,u is Zp[θ(f
×
0 )].
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Step 2. (Describing elements of R) Suppose p0 be a uniformizing element of O0. Let e0 := vp(p0) and
d0 := e/e0. Since πp6[K:Qp](R) = πp6[K:Qp](O0), there is ξ0 ∈ R such that

(76) ξ0 − p0 ∈ p6[K:Qp]O.

And so we have

πp(s(f0) + s(f0)ξ0 + · · ·+ s(f0)ξd0−1
0 ) = f0 + f0πp(p0) + · · ·+ f0πp(p

d0−1
0 )

= πp(θ(f0) + θ(f0)p0 + · · ·+ θ(f0)p
d0−1
0 )(77)

= πp(O0) = πp(R).

On the other hand, |gri,p(R;O)| = |gri,p(O0;O)| = |πp(O0)| for any integer i in [0, N). So by Corollary 17
and (77), we deduce that

(78) gri,p(R;O) = πpi+1(s(f0)pi + s(f0)piξ0 + · · ·+ s(f0)piξd0−1
0 ).

Since s(f0) ⊆ R, ξ0 ∈ R, and p ∈ R, by (78) we get that

(79) πpN (R) = πpN




N

i=1

d0−1

j=0

s(f0)piξj0



 .

Step 3. (Finding a zero of a degree d0 polynomial close to ξ0) Since ξd0
0 is in R, by (79) there is a monic

polynomial f0(x) :=
d0

i=0 cix
i ∈ O0,u[x] of degree d0 such that

(80) f0(ξ0) ∈ pNO.

As vp(ξ0) = vp(p0) = e0 and vp(O0,u \ {0}) ⊆ eZ, we get that for any integer i in [1, d0]

vp(iciξ
i−1
0 ) ≡ (i− 1)e0 (mod e);

and so vp(iciξ
i−1
0 ) are distinct integers. Hence

(81) vp(f
′
0(ξ0)) = min

1≤i≤d0

vp(iciξ
i−1
0 ) ≤ vp(d0ξ

d0−1
0 ) ≤ vp(d0) + (d0 − 1)e0 < 2e.

By [Lan94, Chapter II, Section 2, Proposition 2], (80), and (81), there is a zero p′0 ∈ O of f0(x) such that

(82) vp(ξ0 − p′0) ≥ vp(f0(ξ0))− 2vp(f
′
0(ξ0)) > (N − 4)e.

Step 4. (Showing that p′0 is in K0) By (76), (80), and f0(x) ∈ O0,u[x], we deduce that

(83) vp(f0(p0)) ≥ 6[K : Qp]e.

By (76), (81), and f0(x) ∈ O0,u[x], we deduce that

(84) vp(f
′
0(p0)) < 2e.

Hence again by [Lan94, Chapter II, Section 2, Proposition 2], (83), and (84), there is a zero p′′0 ∈ O of f0(x)
such that

(85) vp(p0 − p′′0) ≥ vp(f0(p0))− 2vp(f
′
0(p0)) > (6[K : Qp]− 4)e.

By (82) and (85), we have

(86) vp(p
′
0 − p′′0) ≥ (6[K : Qp]− 4)e.

Hence, if p′0 ∕= p′′0 , we get

(6[k : Qp]− 4)e ≤ vp(p
′
0 − p′′0) ≤ vp(f

′
0(p0)) < 2e,

which is a contradiction. Hence p′0 = p′′0 . Let L be the splitting field of f0(x) over K0,u, and let | · | be the
unique extension of | · |p to L. Then for any root β of f0(x) in L that is not equal to p′0, by (84), (85), and
p′0 = p′′0 we have

(87) |β − p′0| ≥ |f ′
0(p

′
0)| > |f|−2e ≥ |f|−(6[K:Qp]−4)e > |p0 − p′0|.
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Hence by Krasner’s lemma (for instance see [Lan94, Chapter II, Section 2, Proposition 3]) we have

p′0 ∈ K0,u[p0] = K0, and vp(p0 − p′0) > (6[K : Qp]− 4)e.

Step 5. (Arguing why O0 = O0,u[p
′
0]) By Step 4, we know that vp(p0) = vp(p

′
0) and p′0 ∈ K0. Hence p′0 is a

uniformizing element of K0. As K0 is a purely ramified extension of K0,u, we have that O0 = O0,u[p
′
0].

Step 6. (Finishing proof) By (79) (see Step 1), (82) (see Step 3), and Step 5, we have

πpN−4(R) = πpN−4




N

i=1

d0−1

j=0

s(f0)pip′j0



 = πpN−4(O0).

□

3. Scalar-Sum-Product phenomena.

In this section, using conditional (Shannon) entropy we study scalar-sum-product properties of ring of
integers O of a finite extension K of Qp.

3.1. Scalar-Sum inequality for regular sets. The main goal of this section is to prove Proposition 20.

Proposition 20 (Scalar-Sum inequality for regular sets). Let K be a finite extension of Qp, O be its ring
of integers, and f be its residue field. Let Ω ⊆ O be such that πp induces a bijection between Ω and f×p .

Let A and B be (m0, . . . ,mN−1)-regular and (l0, . . . , lN−1)-regular
1. subsets of πpN (O), respectively. Then

max
ω∈Ω

|A+ πpN (ω)B| ≥
N−1

i=0

max


1,


1

mili
+

1

|f|

−1

.

Let us fix a subset Ω ⊆ O× such that πp induces a bijection between Ω and f×. As it was mentioned in
Section 1.4, for any element X ∈ O, there are unique Di,Ω(X) ∈ Ω ∪ {0} such that

X = D0,Ω(X) + pD1,Ω(X) + p2D2,Ω(X) + · · · ;
and we call Di,Ω(X) the i-th p-adic digit with respect to Ω. We fix Ω at the beginning of each given proof
and write Di(X) instead of Di,Ω(X). Again as explained in Section 1.4, we can and will talk about the i-th
p-adic digit of an element X of πpN (O) for any integer i in [0, N − 1]; and we have

X = D0,Ω(X) + pD1,Ω(X) + · · ·+ pN−1DN−1,Ω(X) + pNO.

Definition 21. A subset A of πpN (O) is called an (m0,m1, . . . ,mN−1)-regular subset if for any 0 ≤ n ≤ N−1
and x̄ := pnO + x we have that either x̄ ∕∈ πpn(A) or

|πpn+1(A) ∩ πpn+1(pnO + x)| = mn.

The following Lemma gives us a good way of thinking about regular subsets.

Lemma 22. Let A be an (m0, . . . ,mN−1)-regular subset of πpN (O). Let X be a random variable with respect
to the probability counting measure on A. Then

(a) πpk(X) is a random variable with respect to the probability counting measure on πpk(A); and
(b) for any a ∈ A and any 0 ≤ k ≤ N − 1, the conditional probability measure

P (Dk(X)|D0(X) = D0(a), . . . , Dk−1(X) = Dk−1(a))

is a probability counting measure on a set of size mk.

Proof. Both of the above claims are easy consequences of the fact that A is a regular set. □
1For the definition of a regular set, see Definition 21.
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As explained in Section 1.4 (Step 2), to prove Proposition 20, we work with random variables X and Y that
are distributed according to the probability counting measures on the sets A and B, respectively. And we
use basic properties of (Shannon) entropy and conditional entropy. Here we recall their definitions and basic
properties.

Definition 23. Let X be a random variable on a finite set X .

(a) The (Shannon) entropy H(X) of X is

H(X) :=


x∈X
−P(X = x) logP(X = x),

where P(X = x) is the probability of having X = x.
(b) Suppose Y is another random variable on X . Then the entropy of X conditioned to Y is

H(X|Y ) :=


y∈X
P(Y = y)H(X|Y = y) = −



y∈X
P(Y = y)



x∈X
P(X = x|Y = y) logP(X = x|Y = y),

where X|Y = y is the random variable X conditioned to the random variable Y taking a certain
value y, and P(X = x|Y = y) is the probability of having X = x conditioned to Y = y.

Here are some of the basic properties of entropy that will be used in this note.

Lemma 24. Suppose X is a finite set, and X and Y are random variables with values in X . Then

(a) H(X,Y ) = H(X) +H(Y |X).
(b) H(X) ≥ H(X|Y ).
(c) H(f(X)|X) = 0 where f is a function; and so H(Y |X, f(X)) = H(Y |X).
(d) Let H2(X) := − log


x∈X P(X = x)2; this is called the Rényi entropy. Let H0(X) := log |X|, where

|X| is the size of the support of X. Then

H2(X) ≤ H(X) ≤ H0(X).

(e) H(X|f(Y )) ≥ H(X|Y ) where f is a function.

Proof. These are all well-known facts; for instance for parts (a)-(d) see [CT06, Theorem 2.4.1, Theorem
2.5.1, Theorem 2.6.4, Lemma 2.10.1, Problem 2.1]. Part (e) is a consequence of parts (b) and (c):

H(X|f(Y )) ≥ H(X|f(Y ), Y ) = H(X|Y ).

□

Lemma 25. Suppose O is the ring of integers of a finite extension K of Qp. Let X and Y be two random
variables with values in πpN (O). Suppose Ω is a subset of O such that πp induces a bijection from Ω to the
set f× of non-zero elements of the residue field f. Let α be a random variable with respect to the probability
counting measure on Ω; and α := πpN (α). Then for any integer m in [0, N − 1] we have

H(Dm(X + αY )|α, D0(X + αY ), . . . , Dm−1(X + αY ))

≥ H(πp(Dm(X))+πp(α)πp(Dm(Y ))|πp(α), D0(X), . . . , Dm−1(X), D0(Y ), . . . , Dm−1(Y )),

where Di(Z) := Di,Ω(Z) is the i-th p-adic digit of Z with respect to Ω ∪ {0}.

Proof. For a fixed α, let σm,α : ((Ω ∪ {0})× (Ω ∪ {0}))m → Ω ∪ {0} be the following carry over function:

(88) for any a0, . . . , am−1, b0, . . . , bm−1 ∈ Ω ∪ {0}, σm,α({(ai, bi)}m−1
i=0 ) := Dm

m−1

i=0

aip
i + α

m−1

i=0

bip
i

.

Let Xm−1 :=
m−1

i=0 Di(X)pi and Ym−1 :=
m−1

i=0 Di(Y )pi. Then
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X + αY ≡ (Xm−1 +Dm(X)pm) + α(Ym−1 +Dm(Y )pm) ≡ (Xm−1 + αYm−1) + (Dm(X) + αDm(Y ))pm

≡
m−1

i=0

Di(Xm−1 + αYm−1)p
i + (σm,α({(Di(X), Di(Y ))}m−1

i=0 ) +Dm(X) + αDm(Y ))pm (mod pm+1).

Therefore Dm(X + αY ) is uniquely determined by

πp(σm,α({(Di(X), Di(Y ))}m−1
i=0 ) +Dm(X) + αDm(Y ));

and vice versa. Hence we have

Hm := H(Dm(X + αY )|α, D0(X + αY ), . . . , Dm−1(X + αY ))

= H(πp(σm,α({(Di(X), Di(Y ))}m−1
i=0 ) +Dm(X) + αDm(Y ))|α, D0(X + αY ), . . . , Dm−1(X + αY ))

So by Lemma 24, part (e), and the fact that the first m − 1 p-adic digits of X + αY are determined by
{(Di(X), Di(Y )}m−1

i=0 and α, we have

Hm ≥ H(πp(σm,α({(Di(X), Di(Y ))}m−1
i=0 ) +Dm(X) + αDm(Y ))|α, {(Di(X), Di(Y )}m−1

i=0 ).

And since for a given α and {(Di(X), Di(Y )}m−1
i=0 , πp(σm,α({(Di(X), Di(Y ))}m−1

i=0 ) +Dm(X) + αDm(Y )) is
uniquely determined by πp(Dm(X) + αDm(Y )) and vice versa, we have

Hm ≥ H(πp(Dm(X) + αDm(Y ))|α, {(Di(X), Di(Y )}m−1
i=0 ).

And since πp induces a bijection between Ω ∪ {0} and f, the claim follows. □

Corollary 26. Suppose O is the ring of integers of a finite extension K of Qp. Let X and Y be two random
variables with values in πpN (O). Suppose Ω is a subset of O such that πp induces a bijection from Ω to the
set f× of non-zero elements of the residue field f. Let α be a random variable with respect to the probability
counting measure on Ω; and α := πpN (α). Then

H(X + αY |α) ≥
N−1

m=0

Hm,

where Hm := H(πp(Dm(X)) + πp(α)πp(Dm(Y ))|πp(α), {(Di(X), Di(Y )}m−1
i=0 ).

Proof. Since X + αY is uniquely determined by its first N − 1 p-adic digits and vice versa, we have

H(X + αY |α) = H({Di(X + αY )}N−1
i=0 |α).

And so by Lemma 24, part (a), we have

(89) H(X + αY |α) =
N−1

m=0

Hm,

where Hm := H(Dm(X + αY )|α, {Di(X + αY )}m−1
i=0 ). Therefore by (89) and Lemma 25 we get

H(X + αY |α) ≥ H(πp(Dm(X)) + πp(α)πp(Dm(Y ))|πp(α), {(Di(X), Di(Y )}m−1
i=0 );

and the claim follows. □

Based on Corollary 26, we see the need of having a lower bound for the entropy of a linear combination of
two random variables with values in the residue field f. As it was pointed out in Section 1.4 (see Question 8),
at this point we do not know the answer to this question for arbitrary random variables. The following
proposition partially answers this question.
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Proposition 27. Let A and B be two non-empty subsets of a finite field f. Suppose X and Y are two
random variables with values in f with respect to the probability counting measures on A and B, respectively.
Suppose α is a uniform random variable with values in f×. Then

H(X + αY |α) ≥ − log


1

|A||B|
+

1

|f|


≥ min{H(X) +H(Y ), log |f|}− log 2.

To prove Proposition 27, we start with a Lemma that helps us control an average of the Rényi entropies
H2(X + cY ) as c varies in f×.

Lemma 28. Let A,B be two non-empty subsets of a finite field f. Let PA and PB be the probability counting

measures on A and B, respectively. For two functions f, g : f → C, let f ∗ g(x) :=


y∈f f(y)g(x− y) be the
convolution of f and g. Then

1

|f×|


c∈f×

PA ∗ cPB
2
2 ≤ min


1,

1

|A||B|
+

1

|f|


,

where cPB is the push-forward of PB under the multiplication by c.

Proof. Let us recall that for any two subsets U and V of f, the additive energy of U and V is

E(U, V ) = |{(x1, y1, x2, y2) ∈ U × V × U × V | x1 + y1 = x2 + y2}|,

and we have

E(X,Y ) = 1X ∗ 1Y 22.
where 1X is the characteristic function of the set X. Hence we get

1

|f×|


α∈f×

PA ∗ αPB
2
2 =

1

|f×||A|2|B|2


α∈f×

1A ∗ 1αB
2
2 =

1

|f×||A|2|B|2


α∈f×

E(A,αB)

=
1

|f×||A|2|B|2


α∈f×

|{(a1, b1, a2, b2) ∈ A×B ×A×B| a1 + αb1 = a2 + αb2}|

=
1

|f×||A|2|B|2


α∈f×

|{(a1, b1, a2, b2) ∈ A×B ×A×B| a1 = a2, a1 + αb1 = a2 + αb2}|

+
1

|f×||A|2|B|2


α∈f×

|{(a1, b1, a2, b2) ∈ A×B ×A×B| a1 ∕= a2, a1 + αb1 = a2 + αb2}|

=
1

|A||B|

+
1

|f×||A|2|B|2


α∈f×

{(a1, b1, a2, b2) ∈ A×B ×A×B| a1 ∕= a2, b1 ∕= b2,α =
a1 − a2
b2 − b1

}|

=
1

|A||B|
+

|(A2 \∆(A))× (B
2 \∆(B))|

|f×||A|2|B|2
, where ∆(X) := {(x, x)|x ∈ X},

=
1

|A||B|
+

(|A|− 1)(|B|− 1)

|f×||A||B|
≤ min


1,

1

|A||B|
+

1

|f|


.

□

Proof of Proposition 27. Step 1. (Entropy ≥ Rényi entropy) Using Lemma 24, part (d), we have

(90) H(X + αY |α) = 1

|f×|


c∈f×

H(X + cY ) ≥ 1

|f×|


c∈f×

H2(X + cY ) = − 1

|f×|


c∈f×

log PA ∗ cPB
2
2.
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Step 2. (Convexity of − log) By the convexity of − log function and Jensen’s inequality, we have

(91) − log



 1

|f×|


c∈f×

PA ∗ cPB
2
2



 ≤ − 1

|f×|


c∈f×

log PA ∗ cPB
2
2.

Step 3. (Finishing the proof) By Lemma 28, (90), and (91), we get that

H(X + αY |α) ≥ − log


1

|A||B|
+

1

|f|


.

And since H(X) = log |A| and H(Y ) = log |B|, claim follows. □

Proof of Proposition 20. For a random variable Z with values in a set Z and a function f : Z → C, let
EZ(f) be the expectation of the random variable f(Z); for instance for a function f : Ω → C, we have
Eα(f) =

1
|f×|


c∈f× f(c).

Let X and Y be uniform random variables on the sets A and B, respectively. Suppose Ω is a subset of O
such that πp induces a bijection from Ω to f×.

Step 1. (From cardinality to entropy) Using Lemma 24, part (d), we have

(92) max
c∈Ω

log |A+ cB| ≥ Eα(log |A+ αB|) ≥ Eα(H(X + αY )) = H(X + αY |α).

Step 2. (Entropy to relative entropies of digits) By Corollary 26, we have

(93) H(X + αY |α) ≥
N−1

m=0

Hm,

where Hm := H(πp(Dm(X)) + πp(α)πp(Dm(Y ))|πp(α), {(Di(X), Di(Y )}m−1
i=0 ).

Step 3. (Regularity and bound for relative entropies) By Lemma 22, for any a ∈ A, b ∈ B, and integer k in
[0, N − 1], the conditional probability measures

P(πp(Dk(X))|{Di(X)}k−1
i=0 = {Di(a)}k−1

i=0 ) and P(πp(Dk(Y ))|{Di(Y )}k−1
i=0 = {Di(b)}k−1

i=0 )

are probability counting measures on sets of size mk and lk, respectively. And so by Proposition 27 we have

(94) Hk ≥ max


0,− log


1

mklk
+

1

|f|


.

Step 4. (Finishing the proof) By (92), (93), and (94), we get

max
c∈Ω

log |A+ cB| ≥
N−1

k=0

max


0,− log


1

mklk
+

1

|f|


= log


N−1

k=0

max


1,


1

mklk
+

1

|f|

−1


;

and the claim follows. □

3.2. Scalar-Sum-Product expansion for regular sets. The following is the main result of this section.

Proposition 29 (Scalar-Sum-Product expansion for regular sets). For any positive number ε, positive integer
d, 0 < δ ≪ ε4, and any finite extension K of Qp with large, depending on ε, residue field f the following
holds:

Let O be the ring of integers of K, and p be a uniformizing element of K. Let Ω ⊆ O, and suppose πp

induces a bijection between Ω ⊆ O and f×. Suppose A ⊆ πpN (O) satisfies the following properties:

(a) A is an (m0, . . . ,mN−1)-regular subset; and m0,m1 are more than 1.
(b) |A| ≤ |f|N(1−ε).
(c) |πpl(A)| ≥ |f|lε for any Nδ ≤ l ≤ N .
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Then

max
α∈Ω,a∈A−A

|A+ πpN (α)aA| ≥ |A||f|Nδ.

We prove Proposition 29 by contradiction. For the rest of this section, A and mi’s satisfy all the conditions
of Proposition 29. Moreover we assume to the contrary that |A+ πpN (α)aA| < |A||f|Nδ (for a small enough
δ to be determined later) for any α ∈ Ω and a ∈ A−A, and let

(95) xi :=
logmi

log |f|
for any 0 ≤ i ≤ N − 1.

Lemma 30. Let xi’s be as in (95). Then

x0, x1 ∕= 0 and 0 ≤ xi ≤ 1 for any 0 ≤ i ≤ N − 1,(96)

N−1

i=0

xi ≤ N(1− ε),(97)

l−1

i=0

xi ≥ lε, for any Nδ ≤ l ≤ N,(98)

N−1−k

i=0

min(xi, 1− xi+k) ≤ N


δ +

log 2

log |f|


if xk ∕= 0.(99)

Proof. Since 1 ≤ mi ≤ |f|, |A| =
N−1

i=0 mi ≤ |f|N(1−ε), and |πpl(A)| =
l−1

i=0 mi ≥ |f|lε for Nδ ≤ l ≤ N , one
can see that (96), (97), and (98) hold.

Suppose xk ∕= 0. So there is a ∈ A − A such that a ∈ πpN (pkO) \ πpN (pk+1O). Hence aA is an
(1, . . . , 1,m0, . . . ,mN−1−k)-regular subset of πpN (O). Let m−i = 1 for any i ∈ Z+. Therefore by Proposi-
tion 20 we have

max
α∈Ω

|A+ πpN (α)aA| ≥
N−1

i=0

max


1,


1

mimi−k
+

1

|f|

−1


≥ (

N−1

i=0

mi)

N−1

i=0


1

mi−k
+

mi

|f|

−1

≥ |A|
N−1

i=0

min (mi−k, |f|/mi)

2
.

Thus by the contrary assumption we have

Nδ log |f| ≥ −N log 2 +

N−1

i=0

min(logmi−k, log |f|− logmi).

And so

N


δ +

log 2

log |f|


≥

N−1−k

i=0

min(xi, 1− xi+k).

□

Now we follow Lindenstrauss-Varjú’s treatment [LV] to prove that, if |f| ≫ε 1 and 0 < δ ≪ ε4, then there
are no real numbers x0, . . . , xN−1 that satisfy properties mentioned in Lemma 30. This is based on Mann’s
theorem on Schnirelmann density of subsets of non-negative integers.
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Definition 31. The Schnirelmann density σ(X) of a non-empty subset X of non-negative integers is

σ(X) := inf
n∈Z+

|X ∩ [1, n]|
n

.

Theorem 32 (Mann’s Theorem). Let X,Y be two non-empty subsets of non-negative integers. Suppose X
and Y contain 0. Then either X + Y = Z≥0 or σ(X + Y ) ≥ σ(X) + σ(Y ).

Before we proceed with the proof of Proposition 29, let us recall the definition of the i-th grade gri,p(A) of A

with respect to powers of p. For any non-negative integer i, we let gri,p(A) := πpi+1( A ∩ piO) ⊆ piO/pi+1O
where A := π−1

pN (A). Then for {xk}N−1
k=0 as in Equation (95), we have grk,p(A−A) ∕= 0 if and only if xk ∕= 0.

Let

(100) J := {k ∈ [0, N)| xk ∕= 0}.

Lemma 33 (Lindenstrauss-Varjú [LV]). Let xi’s be real numbers that satisfy conditions (96) and (98) of
Lemma 30. Then we have

(N⌈1/ε⌉δ, N) ∩ Z ⊆


3⌈1/ε⌉ J.

Proof. By (96) and (98), we have that

(101) |(J + 1) ∩ [1, l]| ≥
l−1

i=0

xi ≥ lε

for any l ∈ [Nδ, N). Let k0 be the largest integer such that |(J + 1) ∩ [1, k0]| < k0ε. Hence, by (101), we
have k0 < δN . For any k0 < l ≤ N we deduce that

(102) |(J + 1) ∩ [k0 + 1, l]| = |(J + 1) ∩ [1, l]|− |(J + 1) ∩ [1, k0]| ≥ (l − k0)ε;

in particular applying (102) for l = k0 + 1 we get that k0 ∈ J . Next, we let

X := {j − k0 + 1| j ∈ J, j ≥ k0 − 1} ∪ {k ∈ Z| k ≥ N − k0}.
By (102) we have |(J − k0 + 1) ∩ [1, l − k0]| ≥ (l − k0)ε for any k0 < l ≤ N . Hence we have that the
Schnirelmann density σ(X) of X is at least ε. Therefore by Mann’s theorem (Theorem 32) we have

Z≥0 =


⌈1/ε⌉(X ∪ {0}).

So for any integer ⌈1/ε⌉δN < m < N there are t ≤ ⌈1/ε⌉ elements of X that add up to m− ⌈1/ε⌉k0. Since
m− ⌈1/ε⌉k0 < N − k0, there are j1, . . . , jt ∈ J ∩ [k0,∞) such that

(j1 − k0 + 1) + · · ·+ (jt − k0 + 1) = m− ⌈1/ε⌉k0.
Thus we have

m = j1 + · · ·+ jt + (⌈1/ε⌉ − t)k0 + t ∈


3⌈1/ε⌉ J,

as k0, 0, 1 ∈ J . □

For {xk}N−1
k=0 as in (95), let

(103) L := {k ∈ [0, N)| xk ≥ 1/2}.
In particular, L ⊆ J . So L consists of indexes i, where the i-th grade gri,p(A − A) of A − A is large. Now
the idea is that the contrary assumption implies when we shift L by an element of J we cannot get lots of
new indexes; the almost invariance of L under the shifts by elements of J leads us to a contradiction. Let
DL(k) be the number of new elements that are gained after a k-shift of L; that means

(104) DL(k) := |(L+ k ∩ [0, N)) \ L|.
It is useful to notice that DL(k) = |(L ∩ [0, N − k)) \ (L − k)|. Here is the main property of the sets J , L,
and the function DL(k).



SUM-PRODUCT PHENOMENA: p-ADIC CASE. 31

Lemma 34. Suppose k ∈ J . Then

DL(k) ≤ 2N


δ +

log 2

log |f|


,

where DL(k) is as in (104).

Proof. Suppose i ∈ (L ∩ [0, N − k)) \ (L− k). Then

(105) min(xi, 1− xi+k) ≥ 1/2.

On the other hand, since k ∈ J , xk ∕= 0. Therefore by (99) we have

DL(k)

2
=
|(L ∩ [0, N − k)) \ (L− k)|

2
≤



i∈(L∩[0,N−k))\(L−k)

min(xi, 1− xi+k)

≤
N−k−1

i=0

min(xi, 1− xi+k) ≤ N


δ +

log 2

log |f|


.

□

Lemma 35. [LV] For any pair of positive integers k1, k2 < N we have DL(k1 + k2) ≤ DL(k1) +DL(k2).

Proof. For any three sets A,B, and C we have A \ C ⊆ (A \B) ∪ (B \ C). Therefore

DL(k1 + k2) = |(L ∩ [0, N − 1− k1 − k2]) \ (L− k1 − k2)|
≤ |(L ∩ [0, N − 1− k1 − k2]) \ ((L− k1) ∩ [0, N − 1− k1 − k2])|
+ |((L− k1) ∩ [0, N − 1− k1 − k2]) \ (L− k1 − k2)|
≤ DL(k1) +DL(k2).

□

Lemma 36. [LV] For some universal implied constants we have

1

N

N−1

k=0

DL(k) ≥ Nε3/16

if 0 < ε ≪ 1, δ ≪ ε2 and 1 ≪ε |f|.

Proof. By (99) we have

(106) N


δ +

log 2

log |f|


≥

N−1

i=0

min(xi, 1− xi) ≥


i∈[0,N)\L

xi.

By (98), for any integer l ∈ [Nδ, N ], we have

lε ≤
l−1

i=0

xi ≤


i∈[0,N)\L

xi + |L ∩ [0, l)|.

Hence by (106) we have

|L ∩ [0, l)| ≥ l


ε− N

l


δ +

log 2

log |f|


.

Suppose max(δ, log 2
log |f| ) < ε2/16. Then we have

(107) |L ∩ [0, Nε/4)| ≥ Nε2/8.
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For any i ∈ (Nε/4, N) and any k ∈ L∩ [0, Nε/4) we have i ∈ (L∩ [0, Nε/4))+ (i− k). Hence for any integer
i ∈ (Nε/4, N) we have



0≤j<
N(1−ε)

4

1(L∩[0,Nε
4 )+j)\L(i) ≥ |L ∩ [0, Nε

4 )|1[0,N)\L(i),

where 1Y is the characteristic function of a set Y . By adding over i in the above range we get

(108)

N(1−ε/4)

j=0

DL(j) ≥ |L ∩ [0, Nε/4)| · |(Nε/4, N) \ L|.

By (99) we have

N


δ +

log 2

log |f|


≥

N−1

i=0

min(xi, 1− xi) ≥


i∈L

(1− xi) ≥ |L|−
N−1

i=0

xi ≥ |L|− (1− ε)N

Therefore, by our assumption max(δ, log 2
log |f| ) < ε2/16, we have

(109) |L| ≤ N(1− ε+ ε2/8).

Hence by (107), (108), and (109) we have

N−1

j=0

DL(j) ≥ (Nε2/8) ·N

(1− ε/4)− (1− ε+ ε2/8)


≥ N2ε3/16.

□

Corollary 37. For some integer j0 ∈ [Nε3/32, N), we have DL(j0) ≥ Nε3/32 if 0 < ε ≪ 1, 0 < δ ≪ ε2

and 1 ≪ε |f|.

Proof. By Lemma 36 we have



j∈[Nε3/32,N−1]

DL(j) ≥
N−1

i=0

DL(j)− (Nε3/32)(N) ≥ N2ε3/16−N2ε3/32 = N2ε3/32.

And so for some j0 ∈ [Nε3/32, N) we have DL(j0) ≥ Nε3/32. □

Proof of Proposition 29. Suppose max(δ, log 2
log |f| ) < ε4/512, and for some A the assertion of Proposition 29

does not hold. Then we consider J and L as above. Hence by Corollary 37 we have

DL(j0) ≥ Nε3/32

for some integer j0 ∈ [Nε3/32, N). On the other hand, by Lemma 33, since j0 ≥ Nε3/32 > N⌈1/ε⌉δ, for
some integer t in [1, 3⌈1/ε⌉] there are t many elements b1, . . . , bt of J such that

j0 = b1 + · · ·+ bt.

Hence by Lemma 35,

(110) DL(bi) > Nε4/100

for some i.

On the other hand, by Lemma 34, we have that for any b ∈ J

DL(b) ≤ 2N


δ +

log 2

log |f|


< Nε4/128,

which contradicts (110). □
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3.3. Proof of Theorem 9: Scalar-Sum-Product expansion. As in [BG09] (also see [Bou08] or [SG17,
Section 2.3]), we start by a regularization process. The p-adic filtration {πpN (piO)}Ni=1 induces an |f|-regular
rooted tree structure (with N -levels) on πpN (O). So by a similar argument as the above mentioned articles
we get the following large regular subset of A.

Lemma 38. Let 0 < δ < ε < 1 and |f| ≫ε,δ 1. Then for 0 < δ′ ≤ εδ/4 the following holds: Let A ⊆ πpN (O).
Suppose that A satisfies the following properties:

(a) |πpi(A)| ≥ |f|iε for any Nδ′ ≤ i ≤ N ,

(b) |A+A| ≤ |A||f|Nδ′ .

Then there is A′ ⊆ A such that

(a) A′ is (m0, . . . ,mN−1)-regular.
(b) |A′| ≥ |A|/(2 log |f|)N .
(c) |πpi(A′)| ≥ |f|iε/2 for Nδ ≤ i ≤ N .

Proof. By [SG17, Section 2.3], there is a subset A′ ⊆ A such that |A′| ≥ |A|/(2 log |f|)N and A′ is an
(m0, . . . ,mN−1)-regular set. Let n̄ := max{i ∈ [0, N − 1]| |πpi(A′)| < |f|iε/2}. To show that A′ satisfies the
above three conditions, it is enough to show that, if 0 < δ′ ≤ εδ/4 and |f| ≫ε,δ 1, then n̄ < Nδ.

Suppose to the contrary that n̄ ≥ Nδ > Nδ′. Then by the assumption |πpn̄(A)| ≥ |f|n̄ε. On the other hand,
there is a subset A′′ ⊆ A′ such that |πpn̄(A′′)| = 1 and

|A′′| = |A′|
|πpn̄(A′)| >

|A|
(2 log |f|)N |f|n̄ε/2

.

Therefore we have

|A||f|Nδ′ ≥ |A+A| ≥ |A′′||πpn̄(A)| ≥ |A||f|n̄ε

(2 log |f|)N |f|n̄ε/2
,

which implies that

(111) (2 log |f|)N ≥ |f|n̄ε/2−Nδ′ ≥ |f|N(δε/2−δ′) ≥ |f|N(δε/4).

For |f| ≫ε,δ 1 (so that 2 log |f| < |f|δε/8), (111) implies that ε/8 ≥ ε/4, which is a contradiction. □

Proof of Theorem 9. Let δr(ε/2) (r stands for regular) be such that 0 < δr(ε/2) ≪ (ε/2)4 where the implied
constant is given by Proposition 29. Suppose |f| ≫ε 1, where the implied constant is given by Lemma 38
for ε/2 and δr(ε/2). Now let δ′ ≪ (ε/2)δr(ε/2) be given by Lemma 38.2 We claim δ′ satisfies the desired
conditions.

By the choice of δ′ and Lemma 38, there is A′ ⊆ A such that

(a) |A′| is an (m0, . . . ,mN−1)-regular subset.
(b) |πpi(A′)| ≥ |f|iε/2 for Nδr(ε/2) ≤ i ≤ N ,

(c) |A′| ≥ |A|/(2 log |f|)N .

Next we modify A′ a bit, if necessary, to make sure that m0 and m1 are at least 2.

If m0 = 1 and m1 > 1, then A′ + {a01, a02} is a (2,m1, . . . ,mN−1)-regular subset of A+A.

If m0 = m1 = 1, then A′ + {a11, a12}+ {a01, a12} is a (2, 2,m2, . . . ,mN−1)-regular subset of A+A+A.

If m0 > 1 and m1 = 1, then

(a) there is a subset X0 of A such that |X0| = |πp(X0)| = |πp(A)|,

2To avoid further confusion with the δ used in Lemma 38, we are using δ′, here. This is, in fact, supposed to be the claimed
δ in Theorem 9.
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(b) there is a (1, 1,m2, . . . ,mN−1)-regular subset A
′
0 of A′

Then A′
0 + {a11, a12}+X0 is a regular (|πp(A)|, 2,m2, . . . ,mN−1)-regular subset of A+A+A.

So in all the cases we get an (m0, . . . ,mN−1)-regular subset A
′ of A+A+A such that

(a) m0,m1 > 1.
(b) |πpi(A′)| ≥ |f|iε/2 for Nδr(ε/2) ≤ i ≤ N .

(c) |A′| ≥ |A|/(2 log |f|)N .

If |〈A〉6| ≥ |A||f|Nδ (for small enough δ to be determined later), we are done. So suppose this does not hold.
In particular, |A+A+A| ≤ |A||f|Nδ. Hence |A+A+A| ≤ |f|N(1−ε+δ). So assuming δ < ε/2, we have that
|A′| ≤ |f|N(1−ε/2). Hence A′ satisfies all the conditions of Proposition 29. Therefore we have

(112) max
ω∈Ω,x∈A′−A′

|A′ + πpN (ω)xA′| ≥ |A′||f|Nδr(ε/2).

Since at least one of a01, a02 is a unit, we have that

|〈A〉6 + πpN (ω)〈A〉6| ≥ |A′ + πpN (ω)xA′|.

Therefore we have

max
ω∈Ω

|〈A〉6 + πpN (ω)〈A〉6| ≥ |A′||f|Nδr(ε/2) ≥ |A|

|f|δr(ε/2)
2 log |f|

N

.

Suppose |f| ≫ε 1 so that |f|δr(ε/2)/2 ≥ 2 log |f|. Hence we get

max
ω∈Ω

|〈A〉6 + πpN (ω)〈A〉6| ≥ |A||f|Nδr(ε/2)/2 ≥ |A||f|Nδ′ .

□

3.4. Proof of Theorem 10: a scalar-sum-product set contains a large congruence set.

Proposition 39. For any 0 < ε1 ≪ ε2 ≪ 1, 0 < δ ≪ ε51, and positive integer 1 ≪ε1 C, and any finite
extension K of Qp with large, depending on ε1, residue field f the following holds:

Let O be the ring of integers of K, and p be a uniformizing element of K. Let Ω ⊆ O, and suppose πp

induces a bijection between Ω ⊆ O and f×. Suppose A ⊆ πpN (O) such that

(a) |πpi(A)| ≥ |f|iε1 for any Nδ ≤ i ≤ N .
(b) there are a01, a02, a11, a12 ∈ A such that ai1 − ai2 ∈ πpN (piO \ pi+1O).

Then

πpN (p⌈ε2N⌉O) ⊆ 〈A〉C + πpN (ω1)〈A〉C + · · ·+ πpN (ωC)〈A〉C ,
for some ωi ∈


C(Ω ∪ {1}).

Proof of Theorem 10 modulo Proposition 39. Let δ ≪ ε5m+1
1 . Hence by Proposition 39 applied to the set

πpNm (A), where Nm := ⌊εm−1
2 N⌋, we get that for a positive integer 1 ≪ε1 k there are ωi ∈


k(Ω ∪ {1})

such that

πpNm (p⌈ε
m
2 N⌉O) ⊆ πpNm (pε2NmO)

⊆ 〈πpNm (A)〉k + πpNm (ω1)〈πpNm (A)〉k + · · ·+ πpNm (ωk)〈πpNm (A)〉k
⊆ πpNm (〈A〉k + πpN (ω1)〈A〉k + · · ·+ πpN (ωk)〈A〉k),(113)

Next we find lots of elements with controlled scales in a sum-product set of A. First we notice that by
enlarging k ≫ε1 1, if necessary, we can and will assume that |〈A〉k+〈A〉k| ≤ |〈A〉k||f|Nδ. Hence by Lemma 38
and an argument similar to proof of Theorem 9 there is an (m0, . . . ,mN−1)-regular subset A

′ ⊆ 〈A〉3k such
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that m0,m1 > 1 and |πpi(A′)| ≥ |f|iε1/2 for any N(4δ/ε1) ≤ i ≤ N . By Lemma 33 for the numbers
xi := logmi/ log |f| we have

(114) (N(8δ/ε21), N) ∩ Z ⊆


6⌈1/ε1⌉ vp(〈A〉6k) ⊆ vp(〈A〉36k⌈1/ε1⌉).

For any 1 ≤ j ≤ ε−m
2 and k′ ≫ε1 1, since N(8δ/ε21) ≤ jεm2 N ≤ N , by (114), there is yj ∈ 〈A〉k′ such that

yj ∈ p⌊jε
m
2 N⌋πpN (O) \ p⌊jε

m
2 N⌋+1πpN (O).

Hence by (113) we have

πpN (p⌈ε
m
2 N⌉O) ⊆〈A〉k′ + πpN (ω1)〈A〉k′ + · · ·+ πpN (ωk)〈A〉k′

+ y1(〈A〉k′ + πpN (ω1)〈A〉k′ + · · ·+ πpN (ωk)〈A〉k′)

+ · · ·
+ y⌈ε−m

2 ⌉(〈A〉k′ + πpN (ω1)〈A〉k′ + · · ·+ πpN (ωk)〈A〉k′).

And, since A contains a unit and ε1 ≤ ε2, we have that for a positive integer 1 ≪m,ε1 C

πpN (p⌈ε
m
2 N⌉O) ⊆ 〈A〉C + πpN (ω1)〈A〉C + · · ·+ πpN (ωk)〈A〉C .

□

To prove Proposition 39, let us start with a direct corollary of [BG09, Lemma A.1].

Lemma 40. Let K be a finite extension of Qp, O be the ring of integers of K, and p be a uniformizing
element of K. Suppose B ⊆ πpN (O) such that for any 1 ≤ k ≤ N ,

max
ξ

|{x ∈ B| πpk(x) = ξ}| < |f|−(3/4)k|B|.

Then 〈B〉200 = πpN (O).

Proof. It is a consequence of [BG09, Lemma A.1] as it is observed in [BG09, Proof of Corollary A.1]. □

Next following [BG09, Proof of Corollary A.1] we show how Lemma 40 helps us to deal with (extremely)
large sets.

Lemma 41. For any 0 < ε ≪ 1, 0 < δ ≪ ε, and any finite extension K of Qp the following holds:

Let O be the ring of integers of K, p be a uniformizing element of K, and f be the residue field. Suppose
A ⊆ πpN (O) such that |A| ≥ |f|N(1−δ). Then

πpN (p⌈εN⌉O) ⊆ 〈A〉200.

Proof. 3 Let

n0 := max{k| max
ξ

|{x ∈ A|πpk(x) = ξ}| > |f|−(3/4)k|A|}.

Hence for small enough δ (to be determined later) we have

|f|N−n0 > |f|−(3/4)n0 |A| ≥ |f|−(3/4)n0 |f|N(1−δ).

Therefore we have

(115) n0 < 4Nδ.

Let ξ ∈ πpn0 (O) be such that A′ := {x ∈ A| πpn0 (x) = ξ} has at least |f|−(3/4)n0 |A|-many elements. And let

B := πpN−n0 ({x ∈ O| πpN (x0 + pn0x) ∈ A}),

3This is identical to [BG09, Proof of Corollary A.1]. It is included for the convenience of the reader.



36 ALIREZA SALEHI GOLSEFIDY

where πpn0 (x0) = ξ. By Lemma 40, we have that

〈B〉200 = πpN−n0 (O).

Hence

〈A〉200 ⊇ πpN (p200n0O).

Now (115) gives us the claim. □

Proof of Proposition 39. By Lemma 41, it is enough to prove that

(116) |〈A〉C + πpN (ω1)〈A〉C + · · ·+ πpN (ωC)〈A〉C | ≥ |f|N(1−O(ε2)),

for a positive integer C ≫ε1 1 and ωi ∈


C(Ω∪ {1}). One can get (116) by applying Theorem 9 repeatedly
and using the fact that ε1 ≪ ε2. □

Proof of Corollary 11. Since πpe′ (A) = πpe′ (O), we have πp(A) = f. Therefore there is a subset Ω ⊆ A

such that πp induces a bijection between Ω and f×. If K is ramified over Qp, then e′ = 2. So by the
assumption, we can apply Theorem 10 to Ω ⊆ A and A, which implies the claim. Now suppose K is an
unramified extension of Qp, and let s : f → πp2(A) be a section of πp : πp2(A) → f. Since K is an unramified
extension of Qp, f cannot be embedded into πp2(O) as an additive group. Hence there are x1, x2 ∈ f such
that s(x1) + s(x2)− s(x1 + x2) ∕= 0. Therefore this time we can apply Theorem 10 to Ω ⊆ A and 〈A〉2 and
get the claim. □

4. Getting a thick Zp-segment in a sum-product of a large set.

In this section, first we get a thick Zp-segment in a small scale in a sum-product set where the implied
constants are independent of local field K, but the caveat is that we assume gr1,p(〈A〉;O) ∕= 0. This is based
on a multi-scale analog of the Bourgain-Katz-Tao argument and another application of Mann’s theorem. It
is worth pointing out that this result is not needed to prove Theorem 1. Next we prove Theorem 1, where
we relax the condition on the set A, but assume that the degree of the field extension K/Qp is bounded.

4.1. Multi-scale version of the Bourgain-Katz-Tao argument. In this section we give a p-adic version
of [BKT04, Theorem 4.3]. One surprising result is that the implied constants are independent of the choice
of local field K.

Lemma 42. For any positive integer t, positive numbers 0 < ε1 ≪ ε2 ≪t 1, 0 < δ ≪ε1 1, any positive
integer C ≫ε1 1, and any finite extension K of Qp with large, depending on ε1, residue field f the following
holds: let O be the ring of integers of K, and p be a uniformizing element of K. Suppose A ⊆ πpN (O) such
that

(a) |πpi(A)| ≥ |f|iε1 for any Nδ ≤ i ≤ N .
(b) 0, 1 ∈ A and there are a1, a2 ∈ A such that a1 − a2 ∈ πpN (pO \ p2O).

Then either

πpN (p⌈ε2N⌉O) ⊆ 〈A〉C ,
or

πp⌊tε′N⌋(〈A〉C ∩ πpN (p⌈ε
′N⌉O)) is a ring,

for some ε′ in [ε
m(ε1)
2 , ε2].

Proof. Let m := m(ε1) be a large integer (will be determined later). Let θ : f× → O× be the group
homomorphism such that πp(θ(x)) = x for any x ∈ f× (recall that such group homomorphism exits by
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Hensel’s lemma). Let ψN : f → πpN (O),ψN (0) = 0, and ψN (x) = πpN (θ(x)) for any x ∈ f×. Then by
Theorem 10, if 0 < δ ≪ε1,m 1, we have that

(117) πpN (p⌈ε
m
2 N⌉O) ⊆ 〈A〉C1 + ψN (α1)〈A〉C1 + · · ·+ ψN (αk)〈A〉C1 ,

for some integers k := k(ε1) and C1 := C1(ε1,m), and αi ∈ f×.

Now we introduce a process through which the number k of the involved scalars will be reduced in the
expense of enlarging C1 and shrinking the size of the congruence subgroup, i.e. enlarging εm2 . Then we will
analyze the case when this process halts before getting k = 0.

For simplicity we say BG(A; ε, k, C) holds if for k elements αi ∈ f× we have

(118) πpN (p⌈εN⌉O) ⊆ 〈A〉C + ψN (α1)〈A〉C + · · ·+ ψN (αk)〈A〉C .
Claim 1. Suppose 0 < δ0 < 1 and BG(A; ε, k, C) holds. Then we have either (reduction)

(119) BG(A; ε+ δ0, k − 1, 8C),

or (δ0-injectivity) for any x,x′ ∈ 〈A〉k+1
2C := 〈A〉2C × · · ·× 〈A〉2C we have that

(120) l(x) = l(x′) ⇒ x− x′ ∈ πpN (p⌊δ0N⌋O),

where l(x0, . . . , xk) := x0 + ψN (α1)x1 + · · ·+ ψN (αk)xk and αi ∈ f× satisfy (118).

Proof of Claim 1. Suppose δ0-injectivity fails, i.e. there are x,x′ ∈ 〈A〉2C × · · ·× 〈A〉2C such that

(a) x− x′ ∕∈ πpN (p⌊δ0N⌋O)k+1, and
(b) l(x) = l(x′).

Then, for some i0, (xi0 − x′
i0
)πpN (O) ⊇ πpN (p⌊δ0N⌋O). Without loss of generality let us assume that it

happens for i0 = k (notice that, if i0 = 0, we can multiply both sides by ψN (α−1
1 ) to make sure that one of

the remaining coefficients is one). Hence we have

πpN (p⌈εN⌉+⌊δ0N⌋O) ⊆ψN (α0)〈A〉2C(xk − x′
k) + · · ·+ ψN (αk)〈A〉2C(xk − x′

k)

(since l(x) = l(x′),) ⊆ψN (α0)〈A〉4C + · · ·+ ψN (αk−1)〈A〉4C −


k−1

i=0

ψN (αi)(xi − x′
i)


〈A〉2C

⊆ψN (α0)〈A〉8C + · · ·+ ψN (αk−1)〈A〉8C ,(121)

which means that BG(A; ε+ δ0, k − 1, 8C) holds. □

Claim 2. Suppose BG(A; ε, k, C) holds and αi ∈ f× satisfy (118). If l(x) :=


i αixi is δ0-injective on

〈A〉k+1
2C for some δ0 > ε (see (120)), then

πp⌊δ0N⌋


〈A〉C ∩ πpN (p⌈εN⌉O)



is closed under addition and multiplication.

Proof of Claim 2. Let x, x′ ∈ 〈A〉C ∩ πpN (p⌈εN⌉O). So there is x1 ∈ 〈A〉C × · · · × 〈A〉C such that l(x1) =
x+ x′ = l(x+ x′, 0, · · · , 0).

By assumption for any x1,x
′
1 ∈ 〈A〉2C × · · ·× 〈A〉2C we have that

(122) l(x1) = l(x′
1) ⇒ x1 − x′

1 ∈ πpN (p⌊δ0N⌋O)k+1.

Hence we have

x1 ≡ (x+ x′, 0, . . . , 0) (mod p⌊δ0N⌋),

which implies that πp⌊δ0N⌋(A ∩ πpN (p⌈εN⌉O)) is closed under addition.
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Similarly there is x2 ∈ 〈A〉C × · · · × 〈A〉C such that l(x2) = xx′ = l(xx′, 0, · · · , 0). As xx′ ∈ 〈A〉2C ,
again as above δ0-injectivity on 〈A〉k+1

2C implies that x2 ≡ (xx′, 0, . . . , 0) (mod p⌊δ0N⌋), which implies that

πp⌊δ0N⌋(A ∩ πpN (p⌈εN⌉O)) is closed under multiplication. □

Having the above Claims, we inductively define three sequences {ε′i}, {k′i}, {C ′
i} of numbers:

ε′0 := εm2 , ε′i+1 := (t+ 1)ε′i;

k′0 := k, k′i+1 := ki − 1;

C ′
0 := C1, C ′

i+1 := 8C ′
i.

First notice that for ε2 ≪t 1 and k(ε1) ≤ m(ε1) we have that

(123) ε′i ≤ (t+ 1)kεm2 ≤ (t+ 1)k(t+ 1)−mε2 ≤ ε2, C ′
i ≤ 8kC1 ≪ε1 1.

We know that BG(A; ε′0, k
′
0, C

′
0) holds. Suppose i0 is the smallest non-negative integer such that

BG(A; ε′i0+1, k
′
i0+1, C

′
i0+1)

does not hold. If i0 = k, then BG(A; ε2, 0, 4
kC1) holds. And we are done. Suppose i0 < k. So, by Claim 1,

BG(A; ε′i0 , k
′
i0
, C ′

i0
) holds for some αj ∈ f× and l(x) :=


j αixj is tε′i0 -injective on 〈A〉

k′
i0

+1

2C′
i0

. Therefore, by

Claim 2,

π
p
⌊tε′

i0
N⌋


〈A〉C′

i0
∩ πpN (p⌈ε

′
i0

N⌉O)


is closed under addition and multiplication; and the claim follows. □

In order to get a meaningful conclusion from Lemma 42, we have to show that 〈A〉C has an element with

p-valuation roughly equal to ⌈ε′N⌉ as otherwise πp⌊tε′N⌋(〈A〉C ∩ πpN (p⌈ε
′N⌉O)) can be a very small set. For

that purpose, next we will observe that Lemma 33 gives us such a control.

Proof of Theorem 4. Suppose the implied constants are so that the given inequalities in Lemma 42 are
satisfied for the parameters ε1, ε2, t, δ0, and C0. By changing the implied constants, we can further assume

that δ0 ≤ ε
m(ε1)+1
1 ≤ ε1ε

m(ε1)
2 and C0 ≥ 6/ε1. Suppose δ ≤ ε1δ0/4 and C ≫ C0/(ε

2
1δ0). Notice that for some

C ′ ≤ 4/(ε1δ0) we have that |〈A〉C′ + 〈A〉C′ | ≤ |〈A〉C′ ||f|Nε1δ0/4. Hence by Lemma 38 and a similar argument
as in the proof of Theorem 10, there is an (m0, . . . ,mN−1)-regular subset A

′ of 〈A〉3C′ such that

• |πpi(A′)| ≥ |f|iε1/2 for any Nδ0 ≤ i ≤ N , and
• m0,m1 > 1

By Lemma 33 for the numbers xi := logmi/ log |f| we have

(124) (N⌈2/ε1⌉δ0, N) ∩ Z ⊆


6⌈1/ε1⌉ vp(〈A〉6C′) ⊆ vp(〈A〉36C′⌈1/ε1⌉);

and the claim follows. □

4.2. Proof of Theorem 1. Let us start with (a variation of) [BKT04, Theorem 4]. We include the proof
for the convenience of the reader.

Lemma 43. For any 0 < ε ≪ 1, positive integer C ≫ε 1, and a finite field f the following holds:

Suppose B ⊆ f, |B| ≥ |f|ε, and 0, 1 ∈ B. Then 〈B〉C is a subfield of f.

Proof. By [BKT04, Lemma 4.1], there are α1, . . . ,αk ∈ f× such that k ≪ε 1 and

α1B + · · ·+ αkB = f.

Claim 1: Suppose 0, 1 ∈ X ⊆ f and αi ∈ f× such that

(125) f = α1X + · · ·+ αkX.
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Then either we have (reduction) f =


i ∕=i0
αi〈X〉2, for some i0, or (injectivity) for any x,x′ ∈ Xk


i αixi =


i αix

′
i ⇒ x = x′.

Proof of Claim. Suppose that the injectivity does not hold, i.e. there are x ∕= x′ ∈ Xk such that

(126)


i

αixi =


i

αix
′
i.

Without loss of generality we can assume that xk ∕= x′
k. Thus

f = α1(xk − x′
k)X + · · ·+ αk(xk − x′

k)X

(by (126)) ⊆ α1(X ·X −X ·X) + · · ·+ αk−1(X ·X −X ·X) +


k−1

i=1

αi(xi − x′
i)


X

⊆ α1〈X〉2 + · · ·+ αk−1〈X〉2.
□

Claim 2: Suppose 0, 1 ∈ X ⊆ f and αi ∈ f× such that

f = α1X + · · ·+ αkX.

Suppose for any x,x′ ∈ 〈X〉k2 we have


i

αixi =


i

αix
′
i ⇒ x = x′.

Then X is a subfield of f.

Proof of Claim. It is enough to show X ·X = X and X +X = X. For any y, y′ ∈ X, there is x ∈ Xk such
that

α1(y + y′) =


i

αixi.

Hence y + y′ = x1 ∈ X. And so X is closed under addition. Similarly it is closed under multiplication. □

Now suppose i0 ≤ k be the largest non-negative integer such that

f = α′
1〈B〉4i0 + · · ·+ α′

k−i0〈B〉4i0 ,
for some α′

i ∈ f×. If i0 = k, we are done. If not, then by Claim 1 for X = 〈〈B〉4i0 〉2 we have that for any

x,x′ ∈ 〈〈B〉4i0 〉k−i0
2 we have 

i

α′
ixi =



i

α′
ix

′
i ⇒ x = x′.

Hence, by Claim 2, 〈B〉4i0 is a subfield of f. □

Proposition 44. For any positive integers 0 < ε1 ≪ ε2 ≤ 1/2, 0 < δ ≪ε1 1, positive integers d and
1 ≪ε1,d C, the following holds: suppose K is a field extension of Qp and [K : Qp] ≤ d. Let O be the ring
of integers of K, p be a uniformizing element of K, and f be the residue field of K. Suppose |f| ≫ε1,d 1.
Suppose A is a subset of O which contains 0 and 1. Let R be the closure of the subring of O that is generated
by A. Suppose

(C1) (Equality of grades) for any integer i in [0, N −1], |gri,p(R;O)| = |gr0,p(R;O)|, where gri,p(R;O) :=

πpi+1(R ∩ piO).

(C2) (Bound for the box dimension) for any integer i in [Neδ, Ne], |πpi(A)| ≥ |f|iε1 , where e is the
ramification index of K over Qp.

(C3) (Bound for level p) |πp(A)| ≥ |f|ε1 .

Then πpN (〈A〉C) ⊇ p⌈Nε2⌉πpN (R).
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Proof. Step 1. (Describing R for large N) By Theorem 7, there is a positive integer N0 depending only on
[K : Qp] such that, if N ≥ N0, then there are positive integers a and b, and a subfield K0 of K such that
b− a ≥ 6[K : Qp], N ≥ b,

(127) πpb(R) ⊆ πpb(O0), and πpb(R ∩ paO) = πpb(O0 ∩ paO).

By Corollary 17 we have that x+pO → pix+pi+1O is an injection from gr0,p(R;O) to gri;p(R;O). Since by

our assumption |gri;p(R;O)| = |πp(R)| for any integer i in [0, N − 1], we deduce that x+ pO → pix+ pi+1O
is a bijection from gr0,p(R;O) to gri,p(R;O). By the equality of grades (condition C1) and (127) we deduce
that

(128) |gri,p(R;O)| = |gra,p(R;O)| = |gra,p(O0;O)| = |gr0,p(O0;O)|

for any integer i in [0, N − 1]. In particular, |πpj (R∩ piO)| = |πpj−i(O0)| for any integers i < j in [0, N − 1].

By Corollary 17 we have that x + pb−aO → pax + pbO is an injection from πpb−a(R) to πpb(R ∩ paO); and
as these sets have equal cardinality, we deduce that this map is a bijection. The same can be said for the
ring O0 instead of R. Therefore by (127) and b− a ≥ 6[K : Qp], we have

(129) πp6[K:Qp](R) = πp6[K:Qp](O0).

By (128), (129), and Proposition 19, we have

(130) πpN−4(R) = πpN−4(O0).

Step 2. (Bounded generation of πpO(1)(R)) By condition (C3), we have |πp(A)| ≥ |f|ε1 , and we also have
that 0, 1 ∈ πp(A); hence by Lemma 43 we get that

(131) πp(〈A〉C1) = πp(R) and [f : πp(R)] ≤ 1/ε1

where C1 is an integer that only depends on ε1. By induction on i, we show that

(132) πpi(〈A〉Ci) = πpi(R)

where Ci is an integer that depends only on i and ε1. If πpi+1(〈A〉Ci
) is a ring, then πpi+1(〈A〉Ci

) = πpi+1(R);
and we can set Ci+1 := Ci. If not, πpi+1(〈A〉3Ci

∩ piO) ∕= 0. By (131), πpi+1(piO) is an πp(R)-vector space
of dimension at most 1/ε1; and so we can deduce that the πp(R)-subspace spanned by πpi+1(〈A〉3Ci ∩ piO)
is contained in πpi+1(〈A〉6⌈1/ε1⌉Ci

∩ piO). Since length of any chain of πp(R)-subspaces of πpi+1(piO) is at

most 1/ε1, we deduce that πpi+1(〈A〉Ci+1) = πpi+1(R) where Ci+1 := (6⌈1/ε1⌉)⌈1/ε1⌉Ci.

Step 3. (Finishing proof for large N) Suppose N ≥ N0 where N0 is given in Step 1. Then by condition
(C2), (130) (Step 1), (132) (Step 2), and Corollary 11, we have

(133) πpN−4(p⌈ε2(N−4)⌉R) = πpN−4(p⌈ε2(N−4)⌉O0) ⊆ πpN−4(〈A〉C)

where C is any integer that is larger than a function of ε1. Next in (133), we need to change the level from
pN−4 to pN . Suppose s : πpN−4(p⌈ε2(N−4)⌉R) → 〈A〉C is a section of πpN−4 ; that means

(134) for any x ∈ πpN−4(p⌈ε2(N−4)⌉R) we have πpN−4(s(x)) = x.

Let X be the image of s. Suppose N > 6; then ⌈ε2(N − 4)⌉ < (N − 4) − 1. Since R is a finite rank free
Zp-submodule of O and ⌈ε2(N−4)⌉ < (N−4)−1, (134) implies that the Z-span of X is dense in p⌈ε2(N−4)⌉R.

Hence the group generated by πpN−4p(X) is πpN−4p(p
⌈ε2(N−4)⌉R). On the other hand, by (134), we have

that

vp(s(x1 + x2)− s(x1)− s(x2)) ≥ (N − 4)e

for any x1, x2 ∈ πpN−4(p⌈ε2(N−4)⌉R).
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If πpN−4p ◦ s is a group homomorphism, then πpN−4p(X) = πpN−4p(p
⌈ε2(N−4)⌉R); in particular, we have

|πpN−4(p⌈ε2(N−4)⌉R)| = |πpN−4(X)| = |X|

≥ |πpN−4p(X)| = |πpN−4p(p
⌈ε2(N−4)⌉R)|

= |πpN−4(p⌈ε2(N−4)⌉R)||πpN−4p(p
⌈ε2(N−4)⌉R ∩ pN−4O)|

≥ |πpN−4(p⌈ε2(N−4)⌉R)||πp(R)|,

which is a contradiction. Therefore πpN−4p ◦s is not a group homomorphism; and so there is x′ ∈ X−X−X

such that vp(x
′) = (N − 4)e. Since vp(p

−(N−4)x′) = 0, we have that |πp(R)πp(p
−(N−4)x′)| = |πp(R)|; and so

by (131) and Lemma 16, we have grN−4,p(R;O) ⊆ πpN−3(〈A〉3C+C1
). Hence by (133) we deduce that

πpN−3(p⌈ε2(N−4)⌉R) ⊆ πpN−3(〈A〉4C+C1).

Repeating this argument 3 more times, we get that

(135) πpN (p⌈ε2(N−4)⌉R) ⊆ πpN (〈A〉C′),

where C ′ is any positive integer that is larger than a function of ε1.

Step 4. (Finishing proof for small N) If N < max(N0, 7) where N0 is given in Step 1, then by Step 2 we
have πpN (〈A〉C) = πpN (R) for any integer C that is larger than a function of N0 □

Proof of the next Lemma is an adaptation of the argument given in [BG09, Section A.5].

Lemma 45 (Bourgain). For any positive integers 0 < ε ≪ 1, positive integers d, 1 ≪d,ε C, and 1 ≪d,ε N ,
the following holds: suppose K is a field extension of Qp and [K : Qp] ≤ d. Let O be the ring of integers
of K, p be a uniformizing element of K, and f be the residue field of K. Suppose |f| ≫ε,d 1. Suppose A
is a subset of O which contains 0 and 1. Let R be the closure of the subring of O that is generated by A.
Suppose, for any integer i in [1, Ne], |πpi(A)| ≥ |f|iε, where e is the ramification index of K over Qp. Then
there are positive integers m and n, a ∈ O, and a closed subfield K0 of K with ring of integers O0 such that

n ≪d,ε N ≪d,ε n−m, (Exponent conditions)

πpn(O0a) ⊆ πpn(〈A〉C), vp(a) = m, (Bounded generation)

|πp(O0)| ≥ |πp(R)|. (Box dimension control)

Proof. The key point is that we can detect in a bounded number of steps whether the grades of the ring
generated by A are getting larger.

Let ε1 := ε and assume 0 < ε1 ≪ ε2 ≤ 1/4 satisfy the inequality given in Proposition 44.

Step 0. (Setup) We will recursively define a sequence of quadruples (Ai, Ri, ni, Ci) of subsets Ai of O,
subrings Ri of O, and positive integers ni and Ci with the following properties:

(P1) (Ring conditions) Ri is the closure of the ring generated by Ai; and ni is the largest integer in [1, N ]
such that

|gr0,p(Ri;O)| = |gr1,p(Ri;O)| = · · · = |grni−1,p(Ri;O)|.
(P2) (Set conditions)

(P2-a) 0, 1 ∈ Ai.
(P2-b) For any integer j in [1, Ne], |πpj (Ai)| ≥ |f|jε1 .
(P2-c) πp(Ai) = πp(Ri).

(P3) (Bounded generation) πpni (〈Ai〉Ci) ⊇ πpni (p⌈niε2⌉Ri) and Ci ≪d,ε1 1.
(P4) (Connection between sets)

(P4-a) αiAi ⊆ αiAi+1 ⊆ 〈Ai〉Ci
for some αi ∈ O such that vp(αi) ≪d,ε ni and πp(p

−vp(αi)/eαi) = 1.
(P4-b) |πp(Ri)| < |πp(Ri+1)|.
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And we stop when ni ≥ Nδ0 where δ0 is a fixed positive number smaller than ε1 and 1/d.

Step 1. Since |πp(A)| ≥ |f|ε1 , by Lemma 43 there is a positive integer C ′
0 that is at most a function of ε1

such that

(136) πp(〈A〉C′
0
) is a subfield of f.

Let A0 := 〈A〉C′
0
; we notice that A0 satisfies (P2) because of the assumption and (136).

Step 2. Suppose we have already defined Ai that satisfies Property (P2). At this step, we more or less get
Property (P3) and give an indication on what Ci can be. Furthermore we introduce an auxiliary set A′

i+1

and an auxiliary ring R′
i+1. This pair (A′

i+1, R
′
i+1) will help us to enlarge πp(Ri) in a bounded number of

steps.

Let Ri be the closure of the subring generated by Ai; and let ni be the largest positive integer in [1, N ] such
that the first ni grades grj,p(Ri;O) of Ri have equal number of elements; that means Property (P1) holds.

By Proposition 44 there is a positive integer Ci ≪d,ε1 1 such that πpni (〈Ai〉Ci
) ⊇ πpni (p⌈niε2⌉Ri). So for

any positive integer Ci in [Ci,Θd,ε1(Ci)] Property (P3) holds.

If ni ≥ Nδ0, we let Ci := Ci and we are done. If not, we have to proceed and define Ai+1 and Ci, and make
sure that Property (P3) and Property (P4) hold. We also notice that

|πp(R0)| < |πp(R1)| < · · · < |πp(Ri)|

and πp(Rj)’s are fp-subspaces of πp(O). Hence

(137) i ≤ d.

Next we proceed as in Step 3 of proof of Proposition 44: let mi := ⌈niε2⌉ and s : πpni (pmiRi) → 〈Ai〉Ci

be a section of πpni which sends 0 to 0; that means for any x ∈ πpni (pmiRi) we have πpni (s(x)) = x and
s(0) = 0. Let

(138) A′
i+1 := s(pmi)−1


〈Ai〉2Ci

∩ pmiO

,

and R′
i+1 be the closure of the ring generated by A′

i+1. Since s(pmi) ∈ 〈Ai〉Ci
, we deduce that s(pmi)〈Ai〉Ci

is a subset of 〈Ai〉2Ci
∩ pmiO; and so

(139) 〈Ai〉Ci
⊆ A′

i+1;

and since 0, 1 ∈ Ai, we deduce that Ai ⊆ A′
i+1 and 0, 1 ∈ A′

i+1. Let n
′
i+1 be the largest positive integer such

that the first n′
i+1-th grades of R′

i+1 have equal sizes; that means

|gr0,p(R′
i+1;O)| = · · · = |grn′

i+1−1,p(R
′
i+1;O)|.

Step 3. In this step, we show

(140) πpni−mi (A
′
i+1) = πpni−mi (Ri) = πpni−mi (R

′
i+1);

and then we deduce that

(141) ni −mi ≤ n′
i+1 ≤ ni.

To show (140), first we start with an argument similar to proof of Corollary 17, and prove that

(142) πpni (Ri ∩ pmiO) = πpni (s(pmi )Ri).

Let l : πpni−mi (Ri) → πpni (Ri ∩ pmiO), l(πpni−mi (x)) := πpni (s(pmi)x). One can see that l is a well-defined
injection. On the other hand,

|πpni−mi (Ri)| =
ni−mi−1

j=0

|grj,p(Ri;O)| =
ni−1

j=mi

|grj,p(Ri;O)| = |πpni (Ri ∩ pmiO)|;
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and so l is a bijection, which implies (142). By (142), we deduce (Ri ∩ pmiO) + pniO = s(pmi )Ri + pniO;
and so

s(pmi)−1(Ri ∩ pmiO) + pni−miO = Ri + pni−miO,

which implies

(143) πpni−mi (A
′
i+1) ⊆ πpni−mi (s(p

mi)−1(Ri ∩ pmiO)) = πpni−mi (Ri).

Since πpni−mi (Ri) is a ring, by (139) and (143) we deduce that

(144) πpni−mi (Ri) = πpni−mi (R
′
i+1).

Because of the existence of the section s, we have

(145) s(pmi)A′
i+1 + pniO ⊇ pmiRi + pniO = s(pmi)Ri + pniO,

which implies πpni−mi (A
′
i+1) ⊇ πpni−mi (Ri). And so by (143) and (144) we get (140). By (140) and Property

(P1) for Ri, we have that n′
i+1 ≥ ni −mi. By (139), we have that Ri ⊆ R′

i+1; and so together with ni < N
we deduce

(146) |grni,p(R
′
i+1;O)| ≥ |grni,p(Ri;O)| > |gr0,p(Ri;O)| = |gr0,p(R′

i+1;O)|,

where the last equality is deduced from (144). By (146), we get that n′
i+1 ≤ ni; and (141) follows.

Step 4. In this step, we define Ai+1, Ci, and αi.

We start with a similar argument as in Step 3 and prove that

(147) π
p
n′
i+1

(R′
i+1 ∩ p⌊n

′
i+1/2⌋O) = π

p
n′
i+1

(s(pmi)−1s(p⌊n
′
i+1/2⌋+mi)R′

i+1).

Notice that mi ≤ ⌊n′
i+1/2⌋+mi ≤ ni/2 +mi < ni; and so vp(s(p

mi)−1s(p⌊n
′
i+1/2⌋+mi)) = ⌊n′

i+1/2⌋e. Let

l′ : π
p
⌈n′

i+1
/2⌉(R

′
i+1) → π

p
n′
i+1

(R′
i+1 ∩ p⌊n

′
i+1/2⌋O), l′(π

p
⌈n′

i+1
/2⌉(x)) := π

p
n′
i+1

(s(pmi)−1s(p⌊n
′
i+1/2⌋+mi)x).

One can see that l′ is a well-defined injective map. We also have

|π
p
⌈n′

i+1
/2⌉(R

′
i+1)| =

⌊n′
i+1/2⌋

j=0

|grj,p(R′
i+1;O)| =

n′
i+1

j=⌈n′
i+1/2⌉

|grj,p(R′
i+1;O)| = π

p
n′
i+1

(R′
i+1 ∩ p⌊n

′
i+1/2⌋O).

Hence l′ is a bijection, which implies (147). By (138), we have s(pmi)−1s(p⌊n
′
i+1/2⌋+mi) ∈ A′

i+1; therefore by
⌈n′

i+1/2⌉ ≤ ni −mi, πpni−mi (A
′
i+1) = πpni−mi (R

′
i+1) (see (140)), and (147), we get that

(148) π
p
n′
i+1

(R′
i+1) = π

p
n′
i+1

(〈A′
i+1〉2).

Next we show that π
p
n′
i+1

+1(R′
i+1) = π

p
n′
i+1

+1(〈A′
i+1〉O[K:Qp](1)). Let c0 := 2 and V0 be the zero fp-vector

space; we will recursively define an increasing sequence {cj}j of positive integers and fp-vector spaces Vj

such that

(∗) either π
p
n′
i+1

+1(〈A′
i+1〉cj ) is a ring or there is a subspace Vj+1 of grn′

i+1,p
(R′

i+1;O) which is a subset

of π
p
n′
i+1

+1(〈A′
i+1〉cj+1 ∩ pn

′
i+1O) and dimfp Vj+1 = j + 1.

Suppose π
p
n′
i+1

+1(〈A′
i+1〉cj ) is not a ring; then by (148) there is xj ∈ R′

i+1 ∩ pn
′
i+1O ∩ 〈A′

i+1〉3cj such that

π
p
n′
i+1

+1(xj) ∕∈ π
p
n′
i+1

+1(〈A′
i+1〉cj ). Hence by the graded structure of grp(R

′
i+1;O) and (148), we have that

fpxj + Vj ⊆ π
p
n′
i+1

+1(〈A′
i+1〉1+4cj ). Hence Vj+1 := fpxj + Vj and cj+1 := 1 + 4cj satisfy (∗).

Since grn′
i+1,p

(R′
i+1;O) is an fp-vector space of dimension at most dimfp(O/pO) = [K : Qp], we get that

π
p
n′
i+1

+1(R′
i+1) = π

p
n′
i+1

+1(〈A′
i+1〉C′

i
) where C ′

i ≪d 1. Let s′ : π
p
n′
i+1

+1(R′
i+1) → 〈A′

i+1〉C′
i
be a section of
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π
p
n′
i+1

+1 ; and

(149) A′′
i+1 := s′(pn

′
i+1)−1


〈A′

i+1〉2C′
i
∩ pn

′
i+1O


.

Hence

(150) |πp(A
′′
i+1)| = |grn′

i+1,p
(R′

i+1;O)| > |gr0,p(R′
i+1;O)| = |πp(Ai)|.

By (150), as in Step 1, we have that πp(〈A′′
i+1〉C0

) is a subfield of f. Let Ai+1 := 〈A′′
i+1〉C0

. By (138)

(151) s(pmi)2C0C
′
is′(pn

′
i+1)C0Ai+1 ⊆ 〈Ai〉4C0C′

iCi
,

and 0, 1 ∈ Ai+1. By (149) and s′(pn
′
i+1) ∈ 〈A′

i+1〉C′
i
, we get that

(152) 〈A′
i+1〉C′

i
⊆ A′′

i+1.

By (139) and (152), we get that

(153) Ai ⊆ Ai+1.

Therefore by (150), (151), and (153), we get that Ai+1, Ci := 4C0C
′
iCi, and αi := s(pmi)2C0C

′
is′(pn

′
i+1)C0

satisfy Property (P4) (Connection between sets). Since Ai satisfies Property (P2), by (153) we get that Ai+1

also satisfies Property (P2) (Set conditions).

Step 5. Finishing the proof.

By (137), the above process stops in i0 ≤ d+ 1 steps, and we get ni0 ≥ Nδ0. By Property (P4), inductively
we get that for any integer j in [0, i0]

γjAj ⊆ 〈A〉j−1
i=0 Ci

,

for some γj ∈ O such that vp(γj) ≪d,ε1 Nδ0. Hence

(154) γi0Ai0 ⊆ 〈A〉i0−1
i=0 Ci

.

By Property (P3) we have

πp
ni0 (〈Ai0〉Ci0

) ⊇ πp
ni0 (p

⌈ni0
ε2⌉Ri0);

and so by (154)

(155) π
p
ni0

e+Ci0
vp(γi0

)(γ
Ci0
i0

p⌈ni0ε2⌉Ri0) ⊆ π
p
ni0

e+Ci0
vp(γi0

)(〈γi0Ai0〉Ci0
) ⊆ π

p
ni0

e+Ci0
vp(γi0

)(〈A〉i0
i=0 Ci

).

Let n := ni0e+ Ci0vp(γi0), m := ⌈ni0ε2⌉e+ Ci0vp(γi0), a := p⌈ni0
ε2⌉γ

Ci0
i0

, and C :=
i0

i=0 Ci. Then

n ≪d,ε1,δ0 N ≪d,ε1,δ0 n−m, (Exponent conditions)(156)

πpn(Ri0a) ⊆ πpn(〈A〉C), vp(a) = m, C ≪d,ε1 1, (Bounded generation)(157)

|gr0,p(Ri0 ;O)| = · · · = |gr(n−m)/e,p(Ri0 ;O)| ≥ |πp(R)|. (Grades equality)(158)

Since N ≫d,ε1,δ0 1, by (158) (Grades equality) and Step 1 of proof of Proposition 44, there is a subfield K0

of K with ring of integers O0 such that

πpn−m−4e(Ri0) = πpn−m−4e(O0);

and so

(159) πpn−4e(O0a) = πpn−4e(Ri0a) ⊆ πpn−4e(〈A〉C),

and |πp(O0)| ≥ |πp(R)| ≥ |f|eε1 . And the claim follows by (156), (157), (158), and (159). □



SUM-PRODUCT PHENOMENA: p-ADIC CASE. 45

Proof of Theorem 1. Step 1. (Small residue field) In [BG09, Appendix], Bourgain has essentially proved
Theorem 1 for a given fixed prime p, with two short comings: (1) in [BG09, Appendix], it is assumed that
p is a fixed prime that is large compared to d; (2) In [BG09, Proposition 3.3], Bourgain only claims that a
thick Zp-segment at certain scale can be generated in bounded number of steps.

Going through the argument in [BG09, Appendix], one can see that the largeness of p compared to d is used
to ensure that K is not a widely ramified extension of Qp. In turn, this is used in [BG09, Section A.6] to
describe the structure of certain subrings of O. In fact [BG09, Section A.6] is the only place, where the
largeness of p is used. So Proposition 19 and Step 1 of proof of Proposition 44 remove this obstruction.

Going through the proof of [BG09, Proposition 3.3] in [BG09, Section A.5], one can observe that one gets
the stronger version as it is presented in Lemma 45.

Step 2. (Large residue field) As in [BG09] (see also [SG17, Section 2.3]), there is A′ ⊆ A such that πpN (A′)
is an (m0, . . . ,mN−1)-regular set, and

|πpN (A′)| ≥ |A|
(2 log |f|)N ≥ |f|Nε/2,

for |f| ≫ε 1. Let

n := max{k| |πpk(A′)| = m0 · · ·mk−1 < |f|kε/4}.
So for any n+ 1 ≤ l ≤ N , we have

(160)

l−1

i=n

mi ≥


l−1

i=0

mi


n−1

i=0

mi

−1

≥ |f|lε/4|f|−nε/4 = |f|(l−n)ε/4.

We also have

(161) |f|N−n ≥
N−1

i=n

mi ≥


N−1

i=0

mi


n−1

i=0

mi

−1

≥ |f|Nε/2|f|−nε/4.

Therefore M := N − n ≥ Nε/2 − nε/4 = Nε/2 − (N −M)ε/4 ≥ Nε/4. So there is a subset B ⊆ O such
that

(a) pN
′
B ⊆ A−A for N ′ ≤ N(1− ε/4) (here N ′ is just n),

(b) πpM (B) is a regular set for M ≥ Nε/4,

(c) |πpi(B)| ≥ |f|iε/4 for any 1 ≤ i ≤ M .

In particular, there is λ ∈ (B − B) ∩O×. So replacing A with λ−1A and B with λ−1(B − B), we can and
will assume that B contains 0 and 1. Notice that proving the claim of Theorem 1 for a unit multiple λ−1A
of A implies the claim for A.

Hence by Lemma 45 there are positive integers M1 and M2, a ∈ O, and a subfield K0 of K with ring of
integers O0 such that

πpM2 (O0a) ⊆ πpM2 (〈B〉C),(162)

M2 ≪d,ε M ≪d,ε M2 −M1, vp(a) = M1,(163)

|πp(O0)| ≥ |πp(O)|ε/4.(164)

And so by (162) we get

πpM2+CN′ (O0(p
N ′Ca)) ⊆ πpM2+CN′ (〈pN

′
B〉C) ⊆ πpM2+CN′ (〈A〉C).

Let N1 := M1 +CN ′ and N2 := M2 +CN ′. Hence by (163), we get that N1 and N2 satisfy (3) for suitably
chosen δ and enlarging C if necessary. And the claim follows. □
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