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Abstract

In the 1970s, Isaacs conjectured that there should be a logarithmic bound for the length o
ability of a p-groupG with respect to the number of different irreducible character degrees oG.
So far, there are just a few partial results for this conjecture. In this note, we say that a pro-p group
G has property (I) if there is a real numberD = D(G) that just depends onG such that for any
open normal subgroupN , dl(G/N) � log2 |cd(G/N)|+D. We prove that anyp-adic analytic pro-p
group has property (I). We also study the first congruence subgroupG of a classical Chevalley grou
G with respect to the local ringFp�t�. We show that if Lie(G)(Fp) has a non-degenerated Killin
form, thenG has property (I).
 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statements of results

In 1930s Taketa has shown that ifG is a monomial group, then it is solvable and dl(G) �
|cd(G)| (see [Is94] or [Hu98]). In the 1970s Isaacs asked two questions regardin
inequality. First, he asked if the same inequality holds for any solvable group. Se
he asked if there is a logarithmic bound for dl(G) with respect to|cd(G)| when G is
a p-group. Though both of these question are still open, there are more success
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first one. Gluck [Gl85] has proved that dl(G) � 2|cd(G)| and Berger [Be76] proved th
conjecture for groups having odd order. For the second question, it is a common belie
the answer should be affirmative even for any solvable group. A lot of work has rec
been done in this direction by T. Keller [K99(I),K99(II),K02], and he has almost shown
if Isaacs’ original problem has an affirmative answer, then there is an affirmative a
to the question for any solvable group. However, in the case ofp-groups, there are just
few partial results. For instance, M. Slattery [Sl89] improved Taketa’s inequality just
when cd(G) = {1,p, . . . ,pn}. A. Moretó [Mo03] has recently studiedp-groups whose se
of character degrees consists of two partsA andB such thatA = {1,p, . . . ,pn} and any
element ofB is bigger thanp2n. He shows that for some absolute constantsE1 andE2,
dl(G) � E1 logn + |B| + E2. This result gives a logarithmic bound if|B| has an uppe
bound, and in particular whenB is empty. Nevertheless, the general case is far from t
solved.

In this note, we are going to attack this problem via pro-p groups. We say a pro-p group
has property (I) if its finite quotients satisfy Isaacs’ conjecture, namely if there exists
numberD = D(G) that depends only onG such that for any normal open subgroupN

of G,

dl(G/N) � log2

∣∣cd(G/N)
∣∣ + D.

We will prove the following results:

Theorem A. Any p-adic analytic pro-p group has property (I).

Theorem B. Let G = ker(G(Fp�t�) → G(Fp)), where G is a classical Chevalley group.
Then G has property (I) if p > 2,3 does not divide n + 1 when G is of type An or Cn;
2n − 1 when G is of type Bn or n − 1 when G is of type Dn.

In order to prove Theorem A, we use Howe’s Kirillov theory for compactp-adic ana-
lytic groups, and show dl(G/Gn) � log2 |cd(G/Gn)| + 3 for any uniform groupG with
dimensional subgroupsGn. Then, in order to get to any open normal subgroupN , we start
with uniform groups withQp-simple Lie algebra and prove that for these groups, one
find f = f (G) that just depends onG, such thatGn+f ⊂ N ⊆ Gn, for somen. This infor-
mation gives us property (I) for these kind of uniform groups. Then we prove proper
for “semisimple” case and finally for the general case.

The second part of this note is devoted to the proof of Theorem B. ForFp�t�-analytic
groups there is no analogue of Kirillov theory, as Howe extensively used Baker–Cam
Hausdorff formula, which is meaningless in the positive characteristic. So in this ca
will work with a finite analogue of the adjoint action, and use Clifford’s corresponden
get different irreducible character degrees. We show that dl(G/Gn) � log2 |cd(G/Gn)|+3
whereGn is thenth congruence subgroup. Finally by a result of Shalev, we control

open normal subgroup ofG, by congruence subgroups, and get the result.
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2. Notation and background

2.1. Notation

Throughout this note, we will use the following notation:

|X|: the number of elements of the setX;
dl(G): length of solvability of the solvable groupG;
Irr(G): the set of continuous irreducible complex characters ofG;
cd(G) := {χ(1) | χ ∈ Irr(G)}.

Let G be a group,N � G, χ ∈ Irr(G), andν ∈ Irr(N).

χN : the restriction ofχ onN ;
νG: the induced character;
gν(x) := ν(g−1xg) for anyg ∈ G andx ∈ N ;
IG(ν) := {g ∈ G | gν = ν};
Z(χ) := {g ∈ G | |χ(g)| = χ(1)}.

2.2. Character theory

We will essentially use the following two well-known theorems from the character
ory of finite groups.

Theorem 2.1 [Hu98, p. 253]. Let G be a finite group, N � G, ν ∈ Irr(N), and χ ∈ Irr(G).
Assume that 〈χN,ν〉 = e > 0 and [G : IG(ν)] = m. Then

(i) χ(1) = emv(1), (ii ) e2m � |G/N |.

Theorem 2.2 [Is94]. Let G be a finite group, N � G, and ν ∈ Irr(N). Set A = {χ ∈ Irr(G) |
〈χN,ν〉 �= 0} and B = {ψ ∈ Irr(IG(ν)) | 〈ψN,ν〉 �= 0}, then ψ �→ ψG is a bijection be-
tween B and A.

2.3. Pro-p groups

In the first half of this note, we will work withp-adic analytic pro-p groups. We recal
some of the definitions, interested reader may find [DSMS99] helpful.

A pro-p group is calledk-powerful if [G,G] ⊆ Gpk
whereGpk

is the group generate
by gpk

. A torsion freek-powerful pro-p group is calledk-uniform and a uniform group i
a 1-uniform ifp �= 2 and 2-uniform ifp = 2. It is well known that ifG is a uniform group,
we can associate aZp-Lie algebraLG with G. In fact, this algebra can be identified byG

as a set and the Lie operations are defined by

( n n)p−n ( n n)p−2n
g + h := lim
n→∞ gp hp , [g,h] := lim

n→∞ gp ,hp .
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Similarly, aZp-Lie algebraL is calledk-powerful if [L,L] ⊆ pkL, and is called pow
erful if it is 1-powerful (2-powerful) whenp �= 2 (p = 2).

Let G be a pro-p group andH � G. One says thatH is powerfully embedded inG if
[G,H ] ⊆ Hpk+1

wherek = 0 (k = 1) whenp �= 2 (p = 2). If G is a uniform group, then
Gn = Gpn−1 = {gpn−1 | g ∈ G} is p.e. inG. We are going to need the following theorem

Theorem 2.3 [DSMS99, p. 151]. Let G be a uniform pro-p group, and N be a Zp-Lie
subalgebra of LG such that LG/N is torsion free. Then

(i) N is a closed uniform subgroup of G;
(ii) if N is an ideal of LG then N is normal in G and G/N is uniform and LG/N is

isomorphic to LG/N as a Zp-Lie algebra.

Theorem 2.4 [DSMS99, p. 51]. Let G be a finite rank pro-p group. Then G has a powerful
characteristic subgroup W such that any N � W which is a normal open subgroup of G is
p.e. in W .

Theorem 2.5 [DSMS99, p. 152]. Let G be a uniform group. Then G is solvable as a group
if and only if LG is solvable as a Lie algebra.

In the second part of this note, we will work withFp�t�-analytic pro-p groups, and
we use the following terminology and result of Shalev [Sh95]: a sequence of open n
subgroups{Gn}∞n=1 of a pro-p groupG is called anN -sequence ifG = G1 and for any
positive integersm andn, [Gn,Gm] ⊆ Gm+n.

Theorem 2.6 [Sh95]. Let G be a pro-p group, and {Gn}∞n=1 be an N -sequence. If⊕∞
n=1 Gn/Gn+1 is isomorphic to g ⊗Fp

tFp[t] as a graded Lie algebra where g is a finite
simple Lie algebra, then there exists a real number f = f (G) that just depends on G such
that for any normal open subgroup N of G, there is a natural number n:

Gn+f ⊂ N ⊆ Gn.

2.4. Howe’s Kirillov theory

In the 1970s, R. Howe [Ho77] developed Kirillov theory of compactp-adic analytic
groups. He did not go to details for the case of characteristic 2. Recently, A. J
Zapirain [JZ04] used Howe’s correspondence to study the zeta function of irred
characters of a FAb compactp-adic analytic group. He also studied the case of cha
teristic two. We follow his work.

If G is a uniform group, as we sawLG can be identified byG as a set, and soG can act
onLG by group conjugation. We call it adjoint action ofG. G also acts on Irr(LG) via the
adjoint action. IfΩ ⊆ G, we define

ΦΩ(g) = |Ω|−1/2
∑

ω(g).
ω∈Ω
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Lemma 2.7 [Ho77]. Let G be a uniform group and ω ∈ Irr(G); then

StG(ω) = {
x ∈ LG | ω([x,LG]) = 1

}
.

Theorem 2.8 [Ho77]. Let G be a uniform pro-p group with p > 2 and Ω be a G-orbit in
Irr(LG). Then ΦΩ ∈ Irr(G) and all irreducible characters of G have this form.

Theorem 2.9 [JZ04]. Let G be a uniform pro-2 group. Then there exists a bijection
f between Irr(G) and {ΦΩ | Ω is a G-orbit in Irr(G)} such that for any χ ∈ Irr(G),
f (χ)G2 = χG2 .

Combining these two theorems, we have the following corollary:

Corollary 2.10. Let G be a uniform group and Gn = Gpn−1
. Then

cd(G/Gn) = {|Ω|1/2
∣∣ Ω is a G-orbit in Irr(LG/pnLG)

}
.

3. Uniform groups with simple Qp-Lie algebras

We shall start with uniform groups. One can easily see the following remark.

Remark 3.1.

(i) dl(G/Gn) � log2(n) + 1 if G is a finitely generated pro-p group and{Gn} is anN -
sequence.

(ii) If G is a uniform group with simpleQp-Lie algebra andGn = Gpn−1
for any natural

numbern, then

log2(n) + 1− log2 s � dl(G/Gn) � log2(n) + 1, whereGs ⊆ [G,G].

The lower bound in the second part of the remark is a consequence of Shalev’s result
about powerful groups, which says ifM and N are powerfully embedded inG, then
[Npm

,Mpn] = [N,M]pm+n
.

Now, we are going to find different irreducible character degrees ofG/Gn. By Corol-
lary 2.10, we know that in order to get different character degrees, we need to find di
orbit sizes in Irr(LG/pnLG). The following remark tells us when an orbit in Irr(LG) is in-
teresting for us.

Remark 3.2.

(i) In the above setting, ker(ΦΩ) = ⋂
ω∈Ω ker(ω).

(ii) pnLG ⊆ ker(ω) if and only if ω(u) = θa(u), whereθ is apn-th root of unity anda is
in L∗

G.

(iii) ΦΩ(1) = |Ω|1/2 = [G : StG(ω)].
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In fact, using Remark 3.2,Gn ⊆ ker(ΦΩ) if and only if Ω is aG-orbit of a character in
the formθa(u), whereθ is apn−1-th root of unity anda is in L∗

G. Hence Irr(LG) has an
element of orderpn−1, sayω, whoseG-orbit gives us an irreducible character ofG/Gn.

Lemma 3.3. Let G be a uniform group, ω ∈ Irr(LG). If StG(ω) is a proper subgroup of G,
then it is also a proper subgroup of StG(ωp).

Proof. By Lemma 2.7, StG(ω) = {x ∈ LG | ω([x,LG]) = 1}. On the other hand, one ca
find apn-th root of unityθ anda ∈ L∗

G such thatω(x) = θa(x). Thus StG(ω) = {x ∈ LG |
a([x,LG]) ∈ pnZp} is a proper subset ofLG. Letx be an element ofLG outside of StG(ω),
ands be the largest integer for whichpsZp containsa([x,LG]). Hencepn−1−sa([x,LG])
is contained inpn−1Zp and not inpnZp. Thereforepn−1−sx is in StG(ωp) and not in
StG(ω). �

Using Remark 3.2 and Lemma 3.3, one can get the following corollary.

Corollary 3.4. Let G be a uniform group. Then for any natural number n,

dl(G/Gn) � log2

∣∣cd(G/Gn)
∣∣ + 3.

Proof. Let s be the largest natural number for whichpsLG contains[LG,LG]. Choose
a ∈ L∗

G such thata([LG,LG]) would not be a subset ofps+1Zp, and letω(x) = θa(x)

whereθ is a primitivepn−1-th root of unity. Thus by the Lemmas 3.3 and 2.7, ifn > s −1,

StG(ω) � StG(ωp) � · · · � StG
(
ωpn−2−s )

� G.

Hence ifn > s − 1, then by Remark 3.2,n − s − 1 � |cd(G/Gn)|, and if n � s − 1 then
G/Gn is Abelian and therefore|cd(G/Gn) = 1|.

On the other hand, since[G,G] ⊆ Gs+1, it can easily be seen that

dl(G/Gn) � log2(n) − log2(s + 1) + 2

if n > s + 1, and dl(G/Gn) = 1 otherwise. So in any case, we have

dl(G/Gn) � log2

∣∣cd(G/Gn)
∣∣ + 3. �

By the above corollary, we have a good understanding about the quotients ofG by
the dimensional subgroups. So if one controls any normal open subgroup ofG by the
dimensional subgroups, we can get property (I).

We show that one has such a control ifLG ⊗Zp
Qp is a simple Lie algebra. It is a know

result. It can be seen as a corollary of [KLGP97, Theorem III.12] and [LGM, Exe
12.1(4)]. However, we could not find the following setting in the literature. Even Y. Ba
and R. Guralnick [BG02] showed this forG = SL1

n(Zp) for odd primep or n > 2, and
asked for a proof depending on powerful subgroups which also works for the rem

case. Since our proof is different and fairly short, we will write it here:
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Lemma 3.5. Let F be a non-Archimedean local field, O be its valuation ring, and π be
a uniformizing element. If L is an O-Lie algebra such that LF = L ⊗O F is a simple Lie
algebra, then

sup
{∣∣L/ideal(a)

∣∣ ∣∣ a ∈ L \ πL
}

is finite.

Proof. (This short proof is suggested to us by the referee.) By the contrary, as
that for anyi we may findai ∈ L \ πL such that|L/ideal(ai)| > i. SinceL \ πL is
compact, without lose of generality, we may assume thatai converges toa ∈ L \ πL.
Because of the simpleness ofLF , L/ideal(a) is finite. Hence ideal(a) containsπkL for
somek. On the other hand,a ≡ ai (mod πk+1L), for large enoughi, say i > i0. Thus
πkL ⊆ ideal(a) = ideal(ai) + πk+1L for i > i0. Now by induction ons, it is easy to see
thatπkL ⊆ ideal(ai) + πsL for any natural numbers. Therefore ideal(ai) containsπkL

for i > i0, which is a contradiction by the choice ofai ’s. �
Lemma 3.6. Let G be a uniform group with simple Qp-Lie algebra. Then there is a con-
stant f = f (G) such that, for any normal open subgroup N of G, there exists n such that
Gn+f ⊂ N ⊆ Gn.

Proof. SinceG is a finite rank pro-p group, by Theorem 2.4, there is a characteri
subgroupW such that anyN � W which is a normal open subgroup ofG is powerfully
embedded inW . ThereforeN ∩ W p.e. inW , for anyN �o G. SinceG is torsion free,
N ∩ W andW are uniform, andLN∩W andLW are finite indexZp-Lie algebras ofLG.
HenceLW ⊗Zp

Qp is a simple Lie algebra. On the other hand, for anyn ∈ LN∩W and

w ∈ LW , [n,w] = limk→∞(npk
,wpk

)p
−2k

and by the result of Shalev [Sh93] which I me
tioned above,[(N ∩ W)p

k
,Wpk ] = [N ∩ W,W ]p2k

. Thus for anyk, (npk
,wpk

)p
−2k ∈

[N ∩ W,W ] ⊆ N ∩ W and so[n,w] ∈ LN∩W , which means thatLN∩W is an ideal
of LW . Let n be the largest non-negative integer such thatLN∩W ⊆ pnLW . Therefore
p−nLN∩W � LW andp−nLN∩W ∩ (LW \ pLW) is non-empty. Therefore by Lemma 3.
|LW/p−nLN∩W | � C where C is independent ofN . So there isc = c(W) such that
pcLW ⊆ p−nLN∩W ⊆ LW . ThusWpn+c ⊆ N ∩ W ⊆ Wpn

. On the other hand,W �o G

and so there is an integers such thatGps ⊆ W . ThusNps = 〈nps | n ∈ N〉 ⊆ N ∩ W ⊆
Wpn ⊆ Gpn

andGpn+c+s ⊆ N ⊆ Gpn−s
and−n + s + (n + c + s) = c + 2s = f (G) just

depends onG. �
Lemma 3.7. Let G be a uniform group with simple Qp-Lie algebra; then G has prop-
erty (I).

Proof. By Lemma 3.6, there isf = f (G) such that for any normal open subgroupN of G,
we can findn such thatGn+f ⊂ N ⊆ Gn. Thus by Lemma 3.3,

dl(G/N) � dl(G/Gn+f ) � dl(G/Gn) + dl(Gn/Gn+f ) � dl(G/Gn) + 1∣ ∣ ∣ ∣

� log2

∣cd(G/Gn)∣ + 4� log2
∣cd(G/N)∣ + 4, for anyf � n.
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SetD = 4+ dl(G/Gf ). Therefore

dl(G/N) � log2

∣∣cd(G/N)
∣∣ + D,

as we wanted. �

4. Proof of Theorem A

Lemma 4.1. Let G be a pro-p group and H be an open subgroup of it. Then G has
property (I) if H has.

Proof. First, we prove the lemma whenH is an open normal subgroup; letN be an open
normal subgroup ofG. ThenN ∩ H is an open normal subgroup ofH , so

dl(H/N ∩ H) � log2

∣∣cd(H/N ∩ H)
∣∣ + DH .

On the other hand, dl(G/N) � dl(G/H) + dl(H/N ∩ H). Therefore

dl(G/N) � log2

∣∣cd(H/N ∩ H)
∣∣ + DH + dl(G/H).

Using Theorem 2.1,

∣∣cd(NH/N)| � |cd(G/N)
∣∣ · [G : H ]3/2.

Thus

dl(G/N) � log2

∣∣cd(G/N)
∣∣ + 3/2 log2[G : H ] + dl(G/H) + DH ,

which finishes the proof in this case. For an arbitrary open subgroup, it suffices to no
any such subgroup is subnormal.�
Lemma 4.2. Let G1, . . . ,Gk be pro-p groups with property (I). Then G = G1×G2×· · ·×
Gk has property (I).

Proof. Let N be an open normal subgroup ofG. Before going to the proof, it is wort
mentioning a few general remarks:

Remark 4.3.

(i) SinceG/N has a faithful fully reducible representation,

N =
⋂

ρ∈Irr(G)

ker(ρ).
N⊆ker(ρ)
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(ii) ρ ∈ Irr(G) if and only if ρ = ρ1 ⊗ · · · ⊗ ρk whereρi ∈ Irr(Gi).
(iii)

⊕k
i=1 ker(ρi) ⊆ ker(ρ1 ⊗ · · · ⊗ ρk) ⊆ ⊕k

i=1 Z(ρi).

Using three parts of the above remark,

k⊕
i=1

Nl
i ⊆ N ⊆

k⊕
i=1

Nu
i , where

Nl
i =

⋂
ρi∈Ai

ker(ρi), Nu
i =

⋂
ρi∈Ai

Z(ρi), and

Ai = {
vi ∈ Irr(Gi)

∣∣ ∃vj ∈ Irr(Gj ) for any 1� j � k andj �= i

such thatN ⊆ ker(v1 ⊗ · · · ⊗ vk)
}
.

ClearlyNu
i /Nl

i is an Abelian group. Therefore

dl(G/N) � dl
(
G/Nl

i

)
� dl

(
G/Nu

i

) + 1 = max
1�i�k

(
dl

(
Gi/N

u
i

)) + 1.

On the other handGi has property (I) for any 1� i � k. Thus

dl(G/N) � max
1�i�k

(
log2

∣∣cd
(
Gi/N

u
i

)∣∣ + Di

) + 1

� log2

∣∣∣∣cd

(
G/

⊕
1�i�k

Nu
i

)∣∣∣∣ + 1+ max
1�i�k

{Di}

� log2

∣∣cd(G/N)
∣∣ + D. �

Lemma 4.4. Let G be a uniform group with semisimple Qp-Lie algebra. Then G has
property (I).

Proof. By our assumptionL= LG ⊗Zp
QP is semisimple andLG is powerful. Therefore

L= L1⊕· · ·⊕Lk whereLi ’s are simpleQp-Lie algebra. Thus certainlyLi = p2(LG∩Li )

is a powerful Lie subalgebra ofLG and alsoL1 ⊕ · · · ⊕ Lk is a finite index additive sub
group ofLG. By Baker–Campbell–Hausdorff formula, we get an open subgroup ofG in
the formG1 × · · · × Gk whereGi is a uniform group withLi as itsZp-Lie algebra. By
Lemma 3.7,Gi has property (I), for any 1� i � k. So by Lemma 4.2,G1 × · · · × Gk has
property (I), and therefore by Lemma 4.1,G has property (I). �
Lemma 4.5. Let G be a uniform group. Then G has property (I).

Proof. SetL = LG ⊗Zp
Qp andr = Rad(L) ∩ LG, where Rad(L) is the radical of the Lie

algebraL. Clearlyr is an ideal ofLG andLG/r is torsion free. Therefore by Theorem 2
G has an open normal uniform subgroupR such thatLR = r andLG/R � LG/r . Thus

LG/R ⊗Zp

Qp � L/Rad(L) is semisimple. SoG/R satisfies conditions of Lemma 4.4 and
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we conclude that it has property (I). On the other hand, by Theorem 2.5,R is solvable.
Over all we can see that for any open normal subgroupN of G:

dl(G/N) � dl(RN/N) + dl(G/RN) � dl(R) + log2

∣∣cd(G/RN)
∣∣ + DG/R

� log2

∣∣cd(G/N)
∣∣ + DG/R + dl(R),

as we claimed. �
Proof of Theorem A. By Lemmas 4.1 and 4.5, and the fact that any finite-rank prp

group has an open uniform group, we can conclude the result.�

5. Proof of Theorem B

In this chapter, we are going to prove that the first congruence subgroup of a cla
Chevalley groups overFp�t� in most of the cases has property (I). In this sectionp is
always a prime number, and we will use the following embedding (†) of classical Che
groups and their Lie algebras:

(Al) {g ∈ GLl+1 | det(g) = 1} and its Lie algebra is{x ∈ gll+1 | tr(x) = 0}.
(Bl) {g ∈ GL2l+1 | gsgt = s} and its Lie algebra is{x ∈ gl2l+1 | xs = −sxt }, where

s =
[1 0 0

0 0 Il

0 Il 0

]
.

(Cl) {g ∈ GL2l | gsgt = s} and its Lie algebra is{x ∈ gl2l | xs = −sxt }, where

s =
[

0 Il

−Il 0

]
.

(Dl) {g ∈ GL2l | gsgt = s} and its Lie algebra is{x ∈ gl2l | xs = −sxt }, where

s =
[

0 Il

Il 0

]
.

Let us set a few notations. LetO = Fp�t� andGk = ker(G(O) → G(O/(tk))) be the
kth congruence subgroup.G = G1 acts on:

• Gn/G2n by conjugation, i.e.,ghG2n = ghg−1G2n;
• Irr(Gn/G2n) ≡ Hom(Gn/G2n,Fp) by the action induced by conjugation, i.e.,gν(x) =

ν(g
−1

x);
• g(O) = Lie(G)(O) by adjoint action Ad(g);
• g(O)/tng(O) by the action induced by the adjoint action (we will denote it again
Ad(g)); and
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• g(O)∗ = HomO(g(O),O) by the action induced by the adjoint action, i.e., for a
f ∈ g(O)∗ andx ∈ g(O), Ad(g)∗(f )(x) = f (Ad(g−1)(x)).

Now, let us recall a few well-known or easy statements as a remark.

Remark 5.1.

(i) For any positive numbersm andn, [Gm,Gn] ⊆ Gm+n andG
p
n ⊆ Gnp.

(ii) If 1 + gkt
k + gk+1t

k+1 + · · · ∈ Gk , thengi ∈ g(Fp) for k � i � 2k − 1.
(iii) The Killing form of g(Fp) is non-degenerated ifp > 2,3 does not dividen + 1 when

g is of type An or Cn; 2n − 1 wheng is of type Bn or n − 1 wheng is of type Dn

[Se67, p. 47].
(iv)

⊕∞
n=1 Gn/Gn+1 � g(Fp) ⊗Fp

tFp[t] as graded Lie algebras.
(v) Gn/G2n � g(O)/tng(O) asG-modules.

(vi) Irr (Gn/G2n) � HomFp
(g(O)/tng(O),Fp) asG-modules.

(vii) g(O) � g(O)∗ asG-modules, wheneverg(Fp) is a simple Lie algebra.

Quick look at some of the items. Items (i), (iii), and (iv) are well-known. Item (ii) can b
shown directly from the definition of Lie algebra of an affine algebraic group. Using
one can get the following map:

(
1+ gnt

n + gn+1t
n+1 + · · ·)G2n �→ (

gn + · · · + g2n−1t
n−1) + tng(O)

betweenGn/G2n andg(O)/tng(O), which is clearly aG-module isomorphism. Item (vi
is an easy consequence of (v). Proof of item (vii) is based on the fact that Killing
of g(Fp) is non-degenerated. Letk be the Killing form ofg(Fp). For anyx ∈ g(Fp), let
x∗ be an element ofg(Fp)∗ defined byx∗(y) = k(x, y). Sincek is non-degenerated, th
map which sendsx to x∗ is a bijective map fromg(Fp) to g(Fp)∗. On the other hand
g(O) � g(Fp) ⊗Fp

O andg(O)∗ � g(Fp)∗ ⊗Fp
O, so * can be extended to a map fro

g(O) to g(O)∗. And because the Killing form is invariant under the action ofG, * is a
G-module isomorphism. �
Lemma 5.2. Let g be a classical Chevalley Lie algebra which is embedded in glk(Fp)

according to (†). Then there is an element x ∈ g(Fp) such that x has different eigenvalues,
if either g is of type A and p � rank(g) + 1 or g is of type B, C, or D and p is an odd prime
number.

Proof. Let us start with setting a notation. To any monic polynomial of degreen, say
q(T ) = T n + an−1T

n−1 + · · · + a0, we relate then by n matrix

Aq =




0 · · · 0 −a0
1 · · · 0 −a1
...

. . .
...

...


 .
0 · · · 1 −an−1
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From elementary linear algebra, the characteristic polynomial ofAq is equal toq.
Now we provide thex claimed in the lemma for each type separately.

Type An: q(T ) = T n+1 − 1 has different roots sincep � n + 1, and sox = Aq provides
our claim.

Type Bn: For this type we need a polynomialq(T ) which has different non-zero roots an
does not have a common root withq(−T ).

We know thatF∗
pn the multiplicative group of the finite fieldFpn is a cyclic

group. Letα be a generator ofF∗
pn . It is a well-known fact that Gal(Fpn/Fp) is a

cyclic group generated by the Frobenius mapa �→ ap. Henceq(T ) = (T − α) ×
(T − αp)(T − αp2

) · · · (T − αpn−1
) is a polynomial with coefficients inFp . It is

easy to see thatq(T ) has the properties we are interested in. Now,

x =
[ 0 01×n 01×n

0n×1 Aq 0n×n

0n×1 0n×n −At
q

]

provides the claim of the lemma.
Types Cn or Dn: with

x =
[

Aq 0
0 −At

q

]

andq the same as for type B, we have the claim.�
Corollary 5.3. Let G be a classical Chevalley group of rank n, which is embedded as
(†) in GLk . If g(Fp) is a simple Lie algebra, then there is x ∈ g(Fp) such that CG(x) =
{g ∈ G | Ad(g)(x) = x} is an Fp-torus which splits over Fpn , and so k(y1, y2) = 0 for any
y1, y2 ∈ Cg(x) = {y ∈ g | [y, x] = 0} where k is the Killing form of g.

Proof. Letx be the regular element provided by Lemma 5.2. Then clearlyCG(x) is defined
over Fp (see [Bo97, p. 130]), andx is diagonalizable overFpn . Sincex has different
eigenvalues,CMk(R)(x̄) = {g ∈ Mk(R) | Ad(g)(x̄) = x̄} is the set of diagonal elemen
over R, whereR is anyFpn -algebra, and̄x is a conjugate ofx which is diagonal. Thus
Cg(x) is a Cartan subalgebra ofg. On the other hand, sincex is semisimple, Lie(CG(x)) =
Cg(x) (see [Bo97, p. 130]). HenceCG(x) contains a maximal torus. ThereforeCG(x) is a
maximal torus since in a reductive groupCG(T) = (T) whereT is a maximal torus. Also
by the previous argument, it isFpn -isomorphic to a subgroup ofDk , which means it is
Fpn -split.

In order to see the second part, it is enough to write the root system ofg with respect to
Cg(x) and note that ifα is a root, so is−α. �

Now let us recall that there is a quite generalization of Hensel’s lemma for sch
which can be found in the work of Nèron [Ne64]. We need a very easy case of it whic

be proved with the same method as the Hensel’s lemma itself.
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Corollary 5.4. If X is a smooth affine Fq -variety, then the congruence map from X(Fq�t�)
to X(Fq�t�/(t

k)) is surjective.

Before going to the proof of Theorem B in the general case, we will show it for quot
of G by the congruence subgroupsGn’s.

Theorem 5.5. For any natural number n, dl(G/Gn) � log2(|cd(G/Gn)|) + 3, if p > 2,3
does not divide l + 1 when G is of type Al or Cl ; 2l − 1 when G is of type Bl or l − 1 when
G is of type Dl .

Proof. Lemma 5.3 provides usx ∈ g(Fp) for which CG(x) is anFp-torus. Letx̄ be an
Fp-linear map fromg(O)/tng(O) to Fp defined by

x̄
((

g0 + g1t
1 + · · · + gn−1t

n−1) + tng(O)
) =

n−1∑
k=0

x∗(gk).

By Remark 5.1(vi), we can getν ∈ Irr(Gn/G2n) which is corresponded tōx.

First Step. gν = ν if and only if Ad(g)∗(x∗) ≡ x∗ (mod tn).

Proof. By Remark 5.1(vi) and the way we choseν, gν = ν if and only if Ad(g)∗(x̄) = x̄.
Now let Ad(g)(a) = T 0

g (a) + T 1
g (a)t + · · · for a ∈ g(Fp). If g ∈ G, thenT 0

g = id and
T k

g (g(Fp)) ⊆ g(Fp) and all of them areFp-linear maps. Thus

Ad(g)∗(x̄)

(
n−1∑
i=0

yit i

)
= x̄

(
Ad

(
g−1)( n−1∑

i=0

yit i

))
= x̄

(
n−1∑
i=0

Ad
(
g−1

)
(yi)t i

)

= x̄

(
n−1∑
i=0

n−1∑
j=0

T
j

g−1(yi)t i+j

)
=

n−1∑
i=0

n−i−1∑
j=0

x∗(T j

g−1(yi)
)

=
n−1∑
i=0

x∗(yi) +
n−1∑
i=0

n−i−1∑
j=1

x∗(T j

g−1(yi)
)

= x̄

(
n−1∑
i=0

yit i

)
+

n−1∑
i=0

n−i−1∑
j=1

x∗(T j

g−1(yi)
)

where¯ : g(O) → g(O)/tng(O) is the natural epimorphism. Hence overall we get t
Ad(g)∗(x̄) = x̄ if and only if, for anyy0, . . . , yn−1 in g(Fp),

n−1∑ n−i−1∑
x∗(T j

−1(yi)
) = 0.
i=0 j=1
g



A. Salehi Golsefidy / Journal of Algebra 286 (2005) 476–491 489

l-

h

e

Now, for anyi, sety0 = · · · = yi−1 = yi+1 = · · · = yn−1 = 0 andyi = y, so

n−i−1∑
j=1

x∗(T j

g−1(y)
) =

n−i−1∑
j=1

T
j

g−1

∗
(x∗)(y) = 0.

Therefore
∑i

j=1 T
j

g−1

∗
(x∗) = 0, for any 0� i � n − 1, and soT j

g−1

∗
(x∗) = 0, for any

0� i � n − 1. On the other hand,

Ad(g)∗(x∗)(y) = x∗(Ad
(
g−1)y) = x∗

( ∞∑
i=0

T i
g−1(y)t i

)
=

∞∑
i=0

x∗(T i
g−1(y)

)
t i

= x∗(y) +
∞∑
i=1

x∗(T i
g−1(y)

)
t i = x∗(y) +

∞∑
i=1

T i
g−1

∗
(x∗)(y)t i

which completes the proof of the first step.�
Second Step. IG/G2n

(ν) = CG(x)Gn/G2n.

Proof.

IG/G2n
(ν) = {

gG2n ∈ G/G2n |g ν = ν
}

= {
gG2n ∈ G/G2n | Ad(g)∗(x∗) ≡ x∗ (mod tn)

}
(First Step)

= {
gG2n ∈ G/G2n | Ad(g)(x) ≡ x (mod tn)

}
(Remark 5.1(vii))

= CG(x)Gn/G2n (by Corollaries 5.4 and 5.3). �
Third Step. ν can be extended to IG/G2n

(ν).

Proof. It is clear that(CG(x) ∩ Gn)G2n/G2n ⊆ ker(ν), using the second part of Coro
lary 5.3. Henceψ(agG2n) = ν(gG2n) is a well-defined map wherea and g are any
elements ofA = CG(x) andGn, respectively. And clearlyψ is a homomorphism, whic
shows the claim. �
Final Step. By Clifford’s correspondence,ψG/G2n is an irreducible character ofG/G2n

and ψG/G2n(1) = [G : AGn] since ψ(1) = 1. Hence {[G : AGk] | 1 � k � n} ⊆
cd(G/G2n). On the other hand,AGk+1 � AGk since g(Fp) is centerless. Therefor
|cd(G/G2n)| � n. Thus by Remarks 5.1 and 3.1,

dl(G/Gn) � log2(n) + 1< log2�n/2� + 3 � log2

∣∣cd(G/Gn)
∣∣ + 3. �

Proof of Theorem B. Let N be an open normal subgroup ofG, then by Theorem 2.6
and Remark 5.1(iv),Gn+f ⊆ N ⊆ Gn, for somen, wheref = f (G) just depends onG.

Therefore forn � f ,
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,

bul,
dl(G/N) � dl(G/Gn+f ) � dl(G/Gn) + 1

� log2

∣∣cd(G/Gn)
∣∣ + 4 (by Theorem 5.5)

� log2

∣∣cd(G/N)
∣∣ + 4.

Hence for any normal open subgroupN of G,

dl(G/N) � log2

∣∣cd(G/N)
∣∣ + log2(f ) + 5. �
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