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1 Geometric Finiteness

Definition Geometric Finiteness If there is a convex fundamental region for a
Fuchsian group Γ with finitely many sides, we say Γ is geometrically finite.

Theorem 1.1 Siegel’s Theorem If µ(Γ\H) < ∞ for a Fuchsian group Γ, then
Γ is geometrically finite.

Proof If F is compact, then it must have finitely many edges, because each
edge of Dp(Γ) is a perpendicular bisector of the point p and some element of
Γp, and Γp is an isolated set. This means we can easily triangluate F and
calculate its finite area using the Gauss-Bonnet theorem. So we restrict our
attention to situations where F is not compact and therefore has a vertex on
R ∪ {∞}.

Let F = Dp(Γ) be any Dirichlet region. Connect each vertex on the bound-
ary ∂F to the point p with geodesics to get a triangulation of F . Next, pick a set
of segments on ∂F that are connected and label them Am, Am+1, ..., An. Denote
the vertex on one side of Am by am so that the previous set of segments have
vertices am, ..., an+1. Let ∆k be the triangle having side Ak and denote its an-
gles αk, βk, and γk where if ωk is the angle at vertex ak, then ωk+1 = βk+γk+1.
From the Gauss-Bonnet theorem, µ(∆k) = π − αk − βk − γk. It follows that

n−1∑
k=m

µ(∆k) = (n−m)π + (βm−1 + γn −
n∑

k=m

ωk)−
n−1∑
k=m

αk

or equivalently,

n−1∑
k=m

µ(∆k) +
n−1∑
k=m

αk = −π + βm−1 + γn +
n∑

k=m

π − ωk

Now, hold m fixed and let n→∞. Examining the right side, we see that the first
sum is bounded since µ(Γ\H) <∞ and the second is bounded by 2π. Therefore,
the right side must also be bounded. As a result,

∑n
k=m π − ωk, which is strictly

increasing must converge and γn has a limit, which we shall call γ∞. Since the
sum on the right side converges, we see that π − ωk = π − γk − βk−1 → 0+. So
there is also a limit β∞ and β∞ + γ∞ = π. Furthermore, since ρ(p, ak) must
be unbounded, for infinitely many k, ρ(p, ak+1) > ρ(p, ak), which means by the
sine rule

(
1 < sinh ρ(p,ak+1)

sinh ρ(p,ak) = sin γk

sin βk

)
that γk > βk, so γ∞ ≥ β∞, which means
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γ∞ ≥ π/2. Likewise there is a β−∞ ≥ π/2. So −π + β−∞ + γ∞ ≥ 0, which
means

∞∑
k=−∞

αk +
∞∑

k=−∞

µ(∆k) ≥
∞∑

k=−∞

(π − ωk)

And adding the previous inequality for all connected parts of ∂F , we get 2π +
µ(F ) ≥

∑
ω π − ω where ω belongs to any vertex with finite hyperbolic distance

from p. We wish to show that there are only finitely many such angles.
Let a(1), ..., a(n) be vertices with finite hyperbolic distance from p that are

congruent modulo Γ. Say a(i) has angle ω(i). Then if m is the order of the
element that fixes a(1), then

∑
i ω

(i) = 2π/m. We only include vertices ωi < π,
so n ≥ 3, which means

∑n
i=1 (π − ω(i)) = (n − 2

m )π ≥ π. Therefore, there are
only a finite number of sets of congruent vertices and each set contains a finite
number of vertices.

The last step is to show that the remaining vertices (at infinity) have fi-
nite cardinality. We can select any N of them and make a hyperbolic polygon
F1 ⊂ F having the same N vertices at infinity and get an analogous equation∑
ω (π − ω) = 2π + µ(F1). Since ω = 0 for any vertex at infinity, the sum is

no less than Nπ. Thus, Nπ ≤ 2π + µ(F1) ≤ 2π + µ(F ), which means N is
bounded.

Theorem 1.2 If Γ\H is compact for a Fuchsian group Γ, then there are no
parabolic elements of Γ.

Proof Denote by F a compact Dirichlet region for Γ and define a function η
on all z ∈ H by the minimum distance between z and any one of its images
under a non-elliptic element of Γ. η(z) = inf{ρ(z, T (z))|T ∈ Γ, T not elliptic}.
First, we should show that η(z) is continuous. Note that since Γz0 is discrete,
only a finite number of non-elliptic elements even approach the infimum, so we
can ignore the others. Given any small ε > 0, let δ = ε/3. If ρ(z, z0) < δ,
then for any non-elliptic Ti ∈ Γ, ρ(Ti(z), Ti(z0)) < δ. This means ρ(z, Ti(z)) ≤
ρ(z0, Ti(z0)) + 2δ ≤ η(z0) + 2δ. So |η(z)− η(z0)| ≤ 2δ < ε, which means η(z) is
continuous.

Since F is compact, there is some z0 ∈ F so that ∀z ∈ F, η(z0) ≤ η(z).
Denote η(z0) = η. Note, that since we are excluding elliptic points, z0 is not
fixed and η > 0. In fact, this inequality holds throughout H. Let z ∈ H be
an arbitrary point and pick w ∈ F and S ∈ Γ such that w = S(z). Then
ρ(z, T0(z)) = ρ(S(z), ST0(z)) = ρ(w, STiS−1(w)) ≥ η.

If Γ were to contain an elliptic element, then it would be conjugate in
PSL(2,R) to the transformation z 7→ z + 1. But picking some z0 with very
large imaginary value, we get ρ(z0, z0 + 1) < η, which is a contradiction.

2 Fuchsian Group Signatures

For this section, let Γ have a compact fundamental region F . Since F has
finitely many vertices, Γ contains finitely many elliptic cycles and hence a finite
number of periods, given by m1, ...,mr. The quotient space Γ\H is a compact
orientable surface, called an orbifold, with genus g. Given this information, we
say that Γ has signature (g;m1, ...,mr).
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Theorem 2.1 If a Fuchsian group Γ has signature (g;m1,m2, ...,mr), then

µ(Γ\H) = 2π

[
(2g − 2) +

r∑
i=1

(
1− 1

mi

)]

Proof The Dirichlet region has r distinct vertices, which remain fixed under
various elliptic cycles. Some of them may be disguised if they are fixed by
an elliptic element of order 2, because the vertex may have angle π. We still
include these vertices. Now consider all vertices that map to a specific vertex
under some element of Γ. These each uniquely cover a sort of pie chart m times
where m is the order of the elliptic elements fixing this vertex. So the sum of
the angles of the vertices mapping to a specific vertex is 2π/m. If we add all
angles at all the elliptic vertices, then we get

∑r
i=1

2π
mi

. We may have excluded
some (say s) cycles of vertices who are not fixed by any elliptic element. So
their angles add to 2π. The sum of all angles is therefore 2π

[
s+

∑r
i=1

1
mi

]
.

Now, we use the Euler formula 2−2g = (r+s)−e+1 for a surface of genus g
consisting of (r+ s) vertices, e edges, and one face. By triangulating a polygon
F with n edges and angles αi, and applying the Gauss-Bonnet theorem, we see
that µ(F ) = (n − 2)π −

∑
αi. Making one more observation, we see that for

the orbifold Γ\H, 2e = n. Therefore,

µ(Γ\H) = (2e− 2)π −
∑

αi = 2π

[
(2g − 2) +

r∑
i=1

(
1− 1

mi

)]

At this point, I will introduce a theorem which I will not prove, and I will
use it to show a corollary to the previous theorem.

Theorem 2.2 Poincare’s Theorem If g ≥ 0, r ≥ 0, mi are integers, and
2g − 2 +

∑r
i=1

(
1− 1

mi

)
> 0, then there exists a Fuchsian group with signa-

ture (g;m1, ...mr).

Corollary 2.3 For any Fuchsian group Γ, µ(Γ\H) ≥ π/21.

Proof To be continued...
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