Lecture 19 : transpositions; Conjugation; Computation.
Monday, November 17, 2014
9:30 AM
Proposition. $(1) \neq \pi \in S_{n}$ can be uniquely written as a product of disjoint cycles.

Pf. (Let me go over the proof that I presented in the previous lecture with a different wording.)

$$
\begin{aligned}
\pi & =\left(a_{11}, a_{12}, \ldots, a_{1 k_{1}}\right) \ldots\left(a_{l 1}, a_{l 2}, \ldots, a_{l k_{l}}\right) \\
& =\frac{\left(b_{11}, b_{12}, \ldots, b_{1 t_{1}}\right)}{c_{1}} \ldots(\underbrace{b_{s 1}}_{c_{s}}, \ldots, b_{s t_{s}})
\end{aligned}
$$

We would like to show $\left(a_{11}, \ldots, a_{1 k_{1}}\right)=\left(b_{i 1}, \ldots, b_{i t_{i}}\right)$
for some 2. Then after cancelation we can use induction on l.
$\pi\left(a_{11}\right)=a_{12} \neq a_{11} \Rightarrow a_{11}=b_{i j}$ for some i and j.
Notice that

$$
\begin{aligned}
& \left(b_{i 1}, \ldots, b_{i t_{i}}\right) \\
& =\left(b_{i j}, b_{i j+1}, \ldots, b_{i t_{i}}, b_{i 1}, \ldots, b_{i j-1}\right)
\end{aligned}
$$

So w.l.o.g. we can assume that $j=1$.
We also notice that $C_{k}^{\prime} ' s$ commute. And so w.l.o.g. we can assume $i=1$. 1.e. $a_{11}=b_{11}$.

$$
\Rightarrow \quad a_{12}=\pi\left(a_{11}\right)=\pi\left(b_{11}\right)=b_{12}
$$

\Rightarrow Repeating this we get $\left(a_{11}, \ldots, a_{1 l_{1}}\right)=\left(b_{11}, \ldots, b_{1 t_{l}}\right)$.
So we can cancel them and proceed by induction on l.
Def. A 2 -cycle is called a transposition.
Cor. Any permutation is a product of transpositions.
Pf. It is enough to show any cycle is a product of transpositions:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right) \stackrel{?}{=}\left(a_{1}, a_{2}\right)\left(a_{2}, a_{3}\right) \cdots\left(a_{n-1}, a_{n}\right) \\
& \left(a_{1}, a_{2}\right)\left(a_{2}, a_{3}\right) \cdots\left(a_{n-1}, a_{n}\right) a_{j}=\text { if } j<n \\
& \left(a_{1}, a_{2}\right) \ldots\left(a_{j-1}, a_{j}\right)\left(a_{j}, a_{j+1}\right) a_{j}=a_{j+1} \\
& \left(a_{1}, a_{2}\right) \cdots\left(a_{n-1}, a_{n}\right) \quad a_{n}=a_{1}
\end{aligned}
$$

Cor. A k-cycle is a product of $k-1$ transpositions.
Leman. $\tau\left(a_{1}, \ldots, a_{n}\right) \tau^{-1}=\left(\tau\left(a_{1}\right), \ldots, \tau\left(a_{n}\right)\right)$
PP. $\tau\left(a_{1}, \ldots, a_{n}\right) \tau^{-1} \quad \tau\left(a_{i}\right)=\tau\left(a_{1}, \ldots, a_{n}\right) \underline{a_{i}}$

$$
\begin{aligned}
& = \begin{cases}\tau\left(a_{i+1}\right) & \text { if } i \neq n \\
\tau\left(a_{1}\right) & \text { if } i=n . \\
x \notin\left\{\tau\left(a_{1}\right), \ldots, \tau\left(a_{n}\right)\right\} & \Rightarrow \tau^{-1}(x) \notin\left\{a_{1}, \ldots, a_{n}\right\} \\
& \Rightarrow\left(a_{1}, \ldots, a_{n}\right) \underline{\tau^{-1}(x)}=\underline{\tau^{-1}(x)} \\
& \Rightarrow \tau\left(a_{1}, \ldots, a_{n}\right) \tau^{-1} \underline{x}=\underline{x}\end{cases}
\end{aligned}
$$

Def. The cyclic type of π is $2 \ell \ell\left(c_{1}\right) \leq \ell\left(c_{2}\right) \leq \cdots \leq \ell\left(c_{l}\right)$ where $\pi=C_{1} \cdots \cdots c_{l}$ and $C_{i} ' s$ are disjoint cycles.

Proposition. π_{1} and π_{2} are conjugate in S_{n}
if and only if they have the same cyclic type.
$P_{f} \Rightarrow \pi c_{1}=c_{1} \cdots c_{l} \Rightarrow \tau \pi_{1} \tau^{-1}=\tau\left(c_{1} \cdots c_{l}\right) \cdot \tau^{-1}$

$$
=\left(\tau c_{1} \tau^{-1}\right) \cdot\left(\tau c_{2} \tau^{-1}\right) \cdots \cdot\left(\tau c_{l} \tau^{-1}\right)
$$

By the above lemma, $\tau c_{i} \cdot \tau^{-1}$ s are disjoint cycles
and length of $c_{i}=$ length $\tau c_{i} \tau^{-1}$. So π_{1} and
$\tau_{\pi} \tau^{-1}=\pi_{2}$ have the same cyclic type.

$$
\begin{aligned}
& \left(a_{11}, \ldots, a_{1 l_{1}}\right)\left(a_{21}, \ldots, a_{2 l_{2}}\right) \cdots\left(a_{k 1}, \ldots, a_{k l_{k}}\right)^{\pi \pi_{1}} \\
& \text { and }\left(b_{11}, \ldots, b_{1 l_{1}}\right)\left(b_{21}, \ldots, b_{2 l_{2}}\right) \cdots\left(b_{k 1}, \ldots, b_{k l_{k}}\right)^{\pi \pi_{2}}
\end{aligned}
$$

are products of disjoint cycles.

$$
\begin{aligned}
& \text { So } \exists \tau \in S_{n} \text { st. } \quad a_{i j} \mapsto b_{i j} \\
& \Rightarrow \tau \pi_{1} \tau^{-1}=\pi_{2} .
\end{aligned}
$$

Proposition. $\pi=\tau_{1} \ldots \tau_{r}=\rho_{1} \ldots \rho_{s}$ and τ_{i} / s and ρ_{j} / s are transpositions

$$
\Rightarrow \quad r \equiv S(\bmod 2)
$$

Pf. $\tau_{1} \ldots . \tau_{r}=\rho_{1} \ldots \ldots \rho_{s} \Rightarrow \tau_{1} \ldots \ldots \tau_{r} \cdot \rho_{s} \ldots \rho_{1}=(1)$
So (1) is written as product of $r+s$ transpositions, and we would like to prove $r+s$ is even.

We introduce a process through which at each step the parity of the number of transpositions does not
change and at the same time we eventually end up getting 0 transpositions.

We bring a to the left terms:

$$
\begin{aligned}
& (a, x)(y, z)=(y, z)(a, x) \\
& (x, y)(a, x)=(a, y)(x, y)
\end{aligned}
$$

We get rid of $\underline{\underline{a}}$:

$$
(a, x)(a, y)=(a, y)(y, x)
$$

There cannot be only 1 transposition involving \underline{a}.

$$
(a, x)(a, x)=(1)
$$

Through this process, we get rid of all the numbers without changing the parity of the number of transpositions so $2 \mid r+s \Rightarrow r \equiv s(\bmod 2)$.

Def/Cor. . $\pi \in S_{n}$ is called even if it can be written as a product of even number of transpositions. otherwise it is called odd.

- The sign map ign: $S_{n} \rightarrow\{ \pm 1\}$,

$$
\operatorname{sgn}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd } .\end{cases}
$$

Proposition. (1) $\operatorname{sgn}\left(\pi_{1} \pi_{2}\right)=\operatorname{sgn}\left(\pi_{1}\right) \operatorname{sgn}\left(\pi_{2}\right)$ it is a
(2) $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$. homomorphism.
(3) $\operatorname{sgn}(C)=(-1)^{k-1}$ if c is a k-cycle.

Def./Cor. $A_{n}:=\left\{\pi \in S_{n} \mid \pi\right.$ is even $\}$ is a subgroup. it is called the alternating group on n elements.

