Homework b

1. (A) By Fermat little theorem,
$$x^p \equiv x \mod p > \forall x \in \mathbb{Z}$$
.
So in $\mathbb{Z}p$, $x^p - x + 1 = x - x + 1 = 1 \neq 0$. (shee $p \neq 1$)
 \Rightarrow The equation $x^p - x + 1$ has no zero in $\mathbb{Z}p$.
(b). To prove $x^2 - x + 1$ is irreducible in \mathbb{Z}_3 (x),
it suffices to prove that $x^3 - x + 1$ has no zero in \mathbb{Z}_3 since the degree of $x^2 - x + 1$ is 3,
And \mathbb{Z}_3 is a field.
It's true by part (A) if we let $p = 3$.
2. (A). To prove $x^3 - x$ is irreducible in $\mathbb{O}(x)$, it suffices to prove that $x^3 - x$ has no
reaction of since \mathbb{O} is a field and $deg(x^2 - x) = 3$.
Assume by contradiction that $r = \frac{2}{9} = \mathbb{O}$ is a root of $x^3 - x$,
with $a, b \in \mathbb{Z}$, $a \neq 0$ (since $a i = x + 1$), $b \neq 0$, $g(a(a, b) = 1$.
Then $(\frac{1}{2})^3 = x = a^3 - x^{13}$.
 $g(a(a, b) = 1) \Rightarrow a^3 | x, \Rightarrow a | x \Rightarrow a = \pm 1$ or ± 2 .
 $a = \pm 1 \Rightarrow \pm 1 = 2b^3 \Rightarrow b^3 = t \pm 1$.
 $a = \pm 1 \Rightarrow \pm 1 = 2b^3 \Rightarrow b^3 = t \pm 1$.
 $x^3 - 2$ is irreducible in $\mathbb{O}[x]$, and $\mathbb{O}[x]$ is a principal ideal domain, $\mathbb{O}[x]$.
 $x^3 - 2$ is irreducible in $\mathbb{O}[x]$, and $\mathbb{O}[x]$ is a principal ideal domain, $\mathbb{O}[x]$.
 $a + 1 \Rightarrow x^3 - x^3 - x = 0 \Rightarrow x + 1 = x^{1/2} - x^{1/2} - x = 0$.
 $x^3 - x = x^{1/2} - x = 1 = (x^{1/2} - x) = (x^{1/2} - x) = (x^{1/2} - x) - x^{1/2} - x = 0$.
 $x^{3/2} - x = 1 = (x^{1/2} - x) = (x^{1/2} - x) = (x^{1/2} - x) - x^{1/2} - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) - x = 0$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) = (x^{1/2} - x)$.
 $a + (a + x^{1/2} - x) = (x^{1/2} - x) = x^{1/2} - x = 0$.
 $a + (a + x^{1/2} - x) = x^{1/2} - x = 0$.
 $a + (a + x^{1/2} - x) = x^{1/2} - x = 0$.
 $a + (a + x^{1/2} - x) = x^{1/2} - x = 0$.
 $a + (a + x^{1/2} - x) = x^{1/2} - x$

Im
$$\phi_a = \{c_0 + c_1a + \dots + c_na^n \mid c_1 \in O \ 3 \ , \$$
 where $n = degree M_{a(X)}$.
Apply this to the case when $a = {}^{3}J_{2}$ and $n = deg(X^{3} - r) = 3$,
 $\Rightarrow Im \phi_{3J_{2}} = \{c_0 + c_1{}^{3}J_{2} + G|^{3}J_{2}^{2}\}^{2} \mid c_1 \in Q \ 3 \ = O \ 7{}^{3}J_{2}^{3}$
 (-3) By 1st isomorphism theorem:
 $O \ TX] / ker \phi_{3J_{2}} \cong Im \phi_{3J_{2}}$.
 $i.e. O \ TX] / (x^{3} - r) \cong O \ 7{}^{3}J_{2}^{3}$.
 (-4) . Again by the main theorem of evaluation map. we have $Im \phi_a$ is a field.
 $(Where a, \phi_a are as hove 7)$
 $\Rightarrow Im \phi_a = O \ 7{}^{3}J_{2}^{3}J_{2}^{3}J_{2}^{3}$ is a field.
Remark: You can also grove (-2) and (-1) without quoting the main theorem.
For (-2), prove the two sides inclusion, you may want to have $\log division for the
For (-4). prove O \ TX] / (x^{3} - r) \ Ta a field instead, and it's because (x' - r) \ is maximal ideal.$

3. (A). · J-21 = 0

• Fil is not a unit. Otherwise
$$\exists a+b file z f first j st.$$

$$\int -2i \cdot (a+b fil)^{2} = 1.$$

$$\Rightarrow |fil^{2} \cdot (a+b fil)^{2} = 1^{2} (where |s|^{2} = s \cdot \overline{s} \text{ for } s \in C)$$

$$\Rightarrow |fil^{2} \cdot (a+b fil)^{2} = 1.$$
Note that
$$\Rightarrow 21 \cdot (a^{2} + 2b^{2}) = |s. ([a+b fil]^{2} = (a+b fil)(a-b fil) = a^{2} + 2b^{2})$$
Now suppose $fil = (a+b fil)(c+d fil)$ with a.b. $c, d \in Z$.
Then $|fill^{2} = |a+b fill^{2}|(c+d fil)^{2}$

$$\Rightarrow 2| = (a^{2} + 2b^{2})(c^{2} + 2d^{2}).$$
(ase $1 : a^{2} + 2b^{2} = 3$. $2| - 3 \Rightarrow b = 0 \Rightarrow a^{2} = -3$
(ase $1 : a^{2} + 2b^{2} = 7$. $2| -7 \Rightarrow b = 0 \Rightarrow a^{2} = 7$
(ase $3 : a^{2} + 2b^{2} = 1$. $2| -7 \Rightarrow b = 0 \Rightarrow a = \pm 1 \Rightarrow a + b fill = \pm 1$ is unit.
(ase $4 : a^{2} + 2b^{2} = 21 \Rightarrow c^{2} + 2d^{2} = 1 \Rightarrow c + d fill = \pm 1$ is unit.

$$\Rightarrow fill is irreducible in Z[fill]$$

(c). Consider
$$\frac{1}{6} \in DWJ$$
. By up, there is $\frac{1}{6} = 2WJ$ s.t. $|\frac{1}{6} - \frac{1}{6}| \leq \frac{1}{5}$
Let $r = b(\frac{1}{6} - \frac{1}{6}) = a - b\frac{1}{6} \in 2WJ$.
Then $|\frac{1}{6}| = |\frac{1}{6} - \frac{1}{6}| \leq \frac{1}{5} \Rightarrow |r| \leq \frac{1}{5}$ [b].
(d) Define Enclidean function on $\mathbb{Z}[WJ$
 $N: \mathbb{Z}[W] \setminus \frac{1}{6} \xrightarrow{1} \longrightarrow \mathbb{Z}_{70}$
 $a \longrightarrow |a|^2$
 $\forall a, b \in \mathbb{Z}[W], b \neq 0$.
By (c). $\exists q, r \in \mathbb{Z}[W]$ s.t. $a = bq + r$.
Either $r = 0$.
 $or N(r) = |r|^2 \leq \frac{1}{5}(b)^2 = \frac{1}{5}N(b) \leq N(b)$.
 $\Rightarrow \mathbb{Z}[W]$ is Enclidean domain.
(c). Enclidean domain implies PID.
Here $\mathbb{Z}[W]$ is PID.
5. (a). $a - bw \neq 0$ since otherwise $a = o = b$, contradicts that $a^2 + ab + b^2 = p$.
 $a - bw$ is not unit. Otherwise $1 = (a - bw)(c + dw)$.

 $\implies |1|^2 = |\mathbf{A} - \mathbf{b}\mathbf{w}|^2 | \mathbf{c} + \mathbf{d}\mathbf{w}|^2.$

(In general,
$$|c + dw|^2 = (c + dw)(\overline{c + dw}) = (c + dw)(c + d\overline{w})$$

= $c^2 + cd(w + \overline{w}) + d^2w\overline{w} = c^2 - cd + d^2 \in \mathbb{Z}_{>0}$

$$\implies 1 = (a^{2} + ab + b^{2})(c^{2} - cd + d^{2}) = P(c^{2} - cd + d^{2}) = b^{2}$$

Suppose
$$a - bw = (c+dw)(l+fw)$$
.
Then $|A - bw|^2 = |c+dw|^2 |l+fw|^2$
 $\Rightarrow a^2 + ab + b^2 = (c^2 - cd + d^2)(l^2 - l+f^2) = p$.
 $\Rightarrow Case 1 : c^2 - cd + d^2 = l$. $\Rightarrow (c+dw)(c+dw) = 1$.
 $w + w = -l \Rightarrow w \in \mathbb{Z}[w] \Rightarrow c+dw \in \mathbb{Z}[w]$
 $\Rightarrow c+dw is a nait in \mathbb{Z}[w]$.
 $Lase 2 : c^2 - cd + d^2 = p \Rightarrow (l^2 - l+f^2) = l$

⇒ a-bw is irreducible.

(b) First note that
$$b \neq 0$$
 in $\mathbb{Z}p$.
Otherwise $b \mid p$. $a^{2} + ab + b^{2} = (a + \frac{1}{2}b)^{2} + \frac{3}{4}b^{2} \ge \frac{3}{4}b^{2} \ge \frac{3}{4}p^{2} > p \le$.
($p > 3 \Rightarrow \frac{3}{4}p > 1 \Rightarrow \frac{3}{4}p^{2} > p$).
 $(\frac{4}{7})^{2} + \frac{4}{5} + 1 = (\frac{1}{7})^{2} (a^{2} + ab + b^{2}) = 0$ in $\mathbb{Z}p$ since $a^{2} + ab + b^{2} = 0$ (mod p).
 $a - b \cdot \frac{4}{7} = a - A = 0$.
 $\Rightarrow a = \frac{4}{5}$ is a solution for $(b - 1)$ and $(b - 2)$.
(b) $\phi (a + bw) + c + dw) = \phi (a + c + (a + ab - w)) = (a + c) + (b + d) a$.
 $\phi (a + bw) + \phi (c + dw) = a + ba + c + da = (a + c) + (b + d) a$.
 $\phi (ca + bw)(c + dw) = \phi (a + c + (a + bc)w + b d(-w - 1))$
 $= \phi (a - b d) + (a d + bc - b d) a$.
 $\phi (a + bw) \cdot \phi (c + dw) = (a + b d) (c + da)$
 $= a - b d = a - b - a = 0$ in $\mathbb{Z}p$ by our choice of a .
 $\Rightarrow \phi is ring homomorphism$.
(d) $\phi (a - bw) = a - b \cdot a = 0$ in $\mathbb{Z}p$ by our choice of a .
 $\Rightarrow (a - bw) = c ker \phi$.
Since $\mathbb{Z}(w]$ is PEO (as shown in 4 (cc) and $a - bw$ is *Preducible*.
 $\Rightarrow (a - bw) = ker \phi$ since apperently (cer $\phi \neq \mathbb{Z}(w)$].
(d) $\psi (n - bw) = ker \phi$ since apperently (cer $\phi \neq \mathbb{Z}(w)$].
(d) $\psi (n - bw) = ker \phi$ since apperently (cer $\phi \neq \mathbb{Z}(w)$].
(e). $\forall n \in \mathbb{Z}p$. by abuse of notation, view n as element in \mathbb{Z} .
Then $\psi (n) = n$
 $\Rightarrow \phi$ is surjective.
 $\Rightarrow by 1$ is the proving theorem. $\mathbb{Z}[w]/(a - bw) \cong \mathbb{Z}p$.