Lecture 02: Remainder of division by 3,9, and 11

In the previous lecture we saw many examples of rings, and we roughly described rings as new system of numbers. Let's see how these new system of numbers can help us understand the "old" system of numbers better.
[a] Find the remainder of 10320192020 divided by 9 .
Solution. $10320192020=$

$$
\begin{aligned}
& 1 \times 10^{10}+0 \times 10^{9}+3 \times 10^{8}+2 \times 10^{7}+0 \times 10^{6}+1 \times 10^{5}+9 \times 10^{4}+ \\
& 2 \times 10^{3}+0 \times 10^{2}+2 \times 10+0 .
\end{aligned}
$$

Since we want to find the remainder of the above sum-prod. divided by 9, we need to find the "circled"-version in \mathbb{Z}_{9}. $1 \otimes 10^{10} \oplus 0 \otimes 10^{9} \oplus 3 \otimes 10^{8} \oplus 2 \otimes 10^{7} \oplus 0 \otimes 10^{6} \oplus 1 \otimes 10^{5} \oplus 9 \otimes 10^{4} \oplus$ $2 \otimes 10^{3} \oplus 0 \otimes 10^{2} \oplus 2 \otimes 10 \oplus 0$. Now notice that $10=1$ in \mathbb{Z}_{q}; and so $10^{n}=1$ in \mathbb{Z}_{q} for any $n \in \mathbb{Z}^{\geq 0}$. So we need to find $1 \oplus 0 \oplus 3 \oplus 2 \oplus 0 \oplus 1 \oplus 9 \oplus 2 \oplus 0 \oplus 2 \oplus 0$; we need to add the digits and find its remainder divided by 9 .

Lecture 02: Remainder of division by 3, 9, and 11
Sunday, January 13, 2019 11:42 PM

$$
\underbrace{}_{\underbrace{\underbrace{1 \oplus 3}_{\underbrace{\frac{4}{6}}}}_{9=0}+2 \oplus 1 \oplus 2 \oplus 2=2 .}
$$

Since $10=1$ in \mathbb{Z}_{3}, a similar method corks for division by 3 .
(Q) Find the remainder of 10320192020 divided by 11.

Solution. Similar to the previous question we have to find $1 \otimes 10^{10} \oplus 0 \otimes 10^{9} \oplus 3 \otimes 10^{8} \oplus 2 \otimes 10^{7} \oplus 0 \otimes 10^{6} \oplus 1 \otimes 10^{5} \oplus 9 \otimes 10^{4} \oplus$
$2 \otimes 10^{3} \oplus 0 \otimes 10^{2} \oplus 2 \otimes 10 \oplus 0$ in \mathbb{Z}_{11}. Notice that
$10=-1$ in \mathbb{Z}_{11}; and so $10^{n}=(-1)^{n}$ in \mathbb{Z}_{11}. Hence we need to find

$=6$. So the answer is 6 .
Remark. If we end up with a negative number, we need find out what it is in \mathbb{Z}_{n}. For instance $-3=8$ in \mathbb{Z}_{11}.

Lecture 02: Direct product of rings

Having rings R_{1}, \ldots, R_{n}, one can construct a new one:
$R_{1} \times \cdots \times R_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in R_{i}\right.$ for all $i \xi$. (It is called the direct product of R_{i} 's.) We add and multiply component wise:

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}\right)+\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right):=\left(\tilde{x}_{1}+x_{1}^{\prime}, \ldots, \tilde{x}_{n}+x_{n}^{\prime}\right) \text { and } \\
& \left(x_{1}, \ldots, x_{n}\right) \cdot\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right):=\underbrace{\left(x_{1} x_{1}^{\prime}\right.}_{\text {in } R_{1}}, \ldots, \underbrace{x_{n} x_{n}^{\prime}}_{\text {in } R_{n}})
\end{aligned}
$$

-If R_{i} 's are unital rings, then $R_{1} x \cdots \times R_{n}$ is unital.

$$
\begin{aligned}
\left(1_{R_{1}}, \ldots, 1_{R_{n}}\right) \cdot\left(x_{1}, \ldots, x_{n}\right) & =\left(1_{R_{1}} \cdot x_{1}, \ldots, 1_{R_{n}} \cdot x_{n}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right) \\
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(1_{R_{1}}, \ldots, 1_{R_{n}}\right) & =\left(x_{1} \cdot 1_{R_{1}}, \ldots, x_{n} \cdot 1_{R_{n}}\right) \\
& =\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

So $\left(1_{R_{1}}, \ldots, 1_{R_{n}}\right)$ is the identity of $R_{1} x \cdots \times R_{n}$.
Ex. Compute a^{2} where $a=\left[\begin{array}{ll}(1,0) & (2,2) \\ (0,2) & (0,1)\end{array}\right] \in M_{2}\left(\mathbb{Z} \times \mathbb{Z}_{4}\right)$.
Solution.

$$
\begin{aligned}
a^{2} & =\left[\begin{array}{ll}
(1,0)^{2}+(2,2) \cdot(0,2) & (1,0) \cdot(2,2)+(2,2) \cdot(0,1) \\
(0,2)(1,0)+(0,1)(0,2) & (0,2) \cdot(2,2)+(0,1)^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
(1,0)+(0,0) & (2,0)+(0,2) \\
(0,0)+(0,2) & (0,0)+(0,1)
\end{array}\right]=\left[\begin{array}{ll}
(1,0) & (2,2) \\
(0,2) & (0,1)
\end{array}\right]
\end{aligned}
$$

Lecture 02: Integer multiple of elements of abelian gp

A few observations: $(1,0) \cdot(0,1)=(0,0)$; and so $(1,0)$ and $(0,1)$ are zero-divisors in $\mathbb{Z} \times \mathbb{Z}_{4} \cdot(2,2) \cdot(2,2)=(4,0)$ in $\mathbb{Z} \times \mathbb{Z}_{4}$.

Warming. Here $\left(a_{1}, \ldots, a_{n}\right) .\left(b_{1}, \ldots, b_{n}\right)$ should not be confused with the dot prod. of two vertices.

Recall. In group theory you learned what g^{n} means for g in a group (G, \cdot) and $n \in \mathbb{Z}$.

$$
g^{n}=\left\{\begin{array}{ll}
\underbrace{g \cdot \cdots \cdot g}_{n} & \text { if } n>0 \tag{*}\\
1 & \text { if } n=0
\end{array}\right. \text {; and you have seen its }
$$

$-n$ times $m \quad n \quad m+n \quad\left(m^{n} m n\right.$ $\forall g \in G, \forall m, n \in \mathbb{Z}, \quad g^{m} \cdot g^{n}=g^{m+n}$ and $\left(g^{m}\right)^{n}=g^{m n}$.

To observe these equations one can consider various cases based on signs of m and n. Writing these for an abelian group $(R,+)$ we use the notation $n x$ instead; $n x=\left\{\begin{array}{ll}x+\cdots+x & \text { if } n>0 \\ 0 & \text { if } n=0 ; \\ 0, ~ \text { times } \\ \frac{(-x)+\cdots+(-x)}{n-n \text { times }} & \text { if } n<0\end{array} \quad\right.$ and $\quad(*)$ gets translated to

Lecture 02: A homomorphism from Z to a unital ring Monday, January 14, 2019 8:21 AM

$$
\begin{equation*}
(n+m) x=n x+m x \text { and } n(m x)=(n m) x \text {. } \tag{*}
\end{equation*}
$$

Suppose $(R,+,$.$) is a ring. As (R,+)$ is an abelian group, (*) holds for it. Notice that (*) cannot be deduced from properties of rings. Here m, n are in \mathbb{Z} and not necessarily in R and $n x$ is not the ring multiplication in R (it is a new notation that we are borrowing from group theory.). Hence (*) has nothing to do with distributive and associative properties of operations in R.

Proproposition. Suppose R is a unital ring. Then

$$
c: \mathbb{Z} \longrightarrow R, c(n):=n 1_{R}
$$

is a ring homomorphism.
Pf. $c(m+n)=(m+n) 1_{R}=m 1_{R}+n 1_{R}=c(m)+c(n)$ $\{b y(*)$

$$
\begin{align*}
& c(m n)=(m n) 1_{R}=m\left(n 1_{R}\right)=m c(n) \tag{I}\\
& c(m)=m 1_{R}= \begin{cases}1_{R}+\cdots+1_{R} & \text { if } m>0 \\
0 & \text { if } m=0 \\
0-m \text { times } & \text { and so } \\
\left.(-1)_{R}\right)+\cdots+\left(-1_{R}\right) & \text { if } m<0\end{cases}
\end{align*}
$$

Lecture 02: A homomorphism from Z to a unital ring
Monday, January 14, 2019
8:39 AM

$$
\begin{align*}
& c(m) c(n)= \begin{cases}\left(\begin{array}{ll}
\tilde{1}_{R}^{m}+\cdots+1_{R}
\end{array}\right) c(n) & \text { if } m>0 \\
0 \cdot c(n) & \text { if } m=0 \\
(\underbrace{\left.-1_{R}\right)+\cdots+\left(-1_{R}\right.}_{-m \text { times }})) c(n) & \text { if } m<0\end{cases} \\
& = \begin{cases}\tilde{1}_{R}^{m} \cdot C(n)+\cdots+1_{R} \cdot C(n) & \text { if } m>0 \\
0 & \text { if } m=0 \\
\underbrace{\left(-1_{R}\right) C(n)+\cdots+\left(-1_{R}\right) C(n)}_{-m \text { times }} & \text { if } m<0\end{cases} \\
& = \begin{cases}\frac{m \text { times }}{c(n)+\cdots+c(n)} & \text { if } m>0 \\
0 & \text { if } m=0 \\
\underbrace{-c(n))+\cdots+(-c(n))}_{-m \text { times }} & \text { if } m<0\end{cases} \\
& =m c(n) \tag{II}
\end{align*}
$$

(I) and (II) imply $c(m n)=c(m) c(n)$.

Let's consider the special case of $R=\mathbb{Z}_{n}$ and give another interpretation of $c: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$.

Proposition. $c_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}, c_{n}(x)$ is the remainder of x divided by n, is a ring homomorphism.

Lecture 02: Homomorphism from Z to Zn
pf. By the previous proposition $c: \mathbb{Z} \rightarrow \mathbb{Z}_{n}, c(m):=m \mathbb{1}_{\mathbb{Z}_{n}}$ is a ring homomorphism.

$$
m \mathbb{1}_{\mathbb{Z}_{n}}= \begin{cases}\overbrace{\mathbb{Z}_{n} \oplus \cdots \oplus \mathbb{Z}_{n}}^{m} & \text { if } m>0 \\ 0 & \text { if } m=0 \\ \overbrace{\left(-1_{\mathbb{Z}_{n}}\right) \oplus \cdots \oplus\left(-\mathbb{Z}_{n}\right)}^{-m \text { times }} & \text { if } m<0\end{cases}
$$

$\left\{\begin{array}{ll}\text { add in } \mathbb{\mathbb { Z }} \\ \text { and take } \\ \text { the remainder }\end{array} \begin{cases}\text { remainder of } m \text { divided by } n & \text { if } m>0 \\ 0 & \text { if } m=0 \\ \text { remainder of }(-1)(-m) \text { divided by } n & \text { if } m<0\end{cases}\right.$ divided by n
$=C_{n}(m)$; and claim follows.
Does the same method works between \mathbb{Z}_{n} and \mathbb{Z}_{m} ?
Q is $c_{n, m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}, c_{n, m}(a):=$ the remainder of a divided by m a ring homomorphion?

Let's check it for $n=2$ and $m=3$:
$c_{2,3}(0)=0 \quad, c_{2,3}(1)=1$. Does it preserve + ?
$c_{2,3}(\underbrace{1+1}_{0})=c_{2,3}(0)=0$
$c_{2,3}(1)+c_{2,3}(1)=1+1=2$
in $\left.\mathbb{Z}_{3} \cdot\right\}$
No, it does not; and $c_{2,3}$ is not a ring ham.

Lecture 02: Homomorphism between Zn and Zm
Monday, January 14, 2019 9:14 AM
(Q) Under what condition $c_{n, m}$ is a ring homomorphism?

Let's do backward engineering; suppose $c_{n, m}$ is a ring homomorphism.
Then $c_{n, m}(\underbrace{1_{\mathbb{Z}_{n}}+\cdots+1_{\mathbb{Z}_{n}}}_{k \text { times }})=c_{n, m}\left(1_{\mathbb{Z}_{n}}\right)+\cdots+c_{n, m}\left(\mathbb{1}_{\mathbb{Z}_{n}}\right)$
Notice that $\mathbb{1}_{\mathbb{Z}_{n}}=1$ and $c_{n, m}\left(\mathbb{1}_{\mathbb{Z}_{n}}\right)=1=\mathcal{1}_{\mathbb{Z}_{m}}$.
Following the example of $n=2$ and $m=3$, we let $k=n$.
Then $\underbrace{{\underset{\sim}{\mathbb{Z}}}_{n}+\cdots+\mathbb{Z}_{n}}_{n \text { times }} \mathbb{Z}_{n}=0$; and so (t) implies
$c_{n, m}(0)=\underbrace{{\underset{Z}{m}}^{\mathbb{Z}_{m}}}_{n}+\cdots+\mathbb{1}_{\mathbb{Z}_{m}}=$ remainder of n divided by m.
Hence m / n.
Summary. If $C_{n, m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}, c_{n, m}(a):=$ the remainder of a divided by m
is a ring homomorphism, then m / n.

Next we cant to show its converse. We also show that the following diagram commutes; that means no matter which path we take we get the same result. (The curved arrow says it is a

Lecture 02: Homomorphism between Zn and Zm
Monday, January 14, 2019 9:31 AM
commuting diagram.) So in this case it means $c_{n, m}\left(c_{n}(a)\right)=c_{m}(a)$.
Theorem. Suppose $m \mid n$. Let $c_{n, m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$,
$c_{n, m}(a):=$ remainder of a divided by m.
Then $c_{n, m}$ is a ring homomorphism; moreover the following diagram commutes; that means

$$
c_{n, m}\left(c_{n}(a)\right)=c_{m}(a)
$$

Pf. We start with proving that

the mentioned diagram is a commuting diagram if m / n.
(Notice that, if $m \nmid n$, then this diagram is not commuting; here is an example:

We have to show for any $a \in \mathbb{Z}, C_{n, m}\left(C_{n}(a)\right)=C_{m}(a)$.
Let's start with $C_{n}(a)$. Let q be the quotient of a divided by n; and so $a=n q+c_{n}(a)$. Next let q^{\prime} be the quotient of $C_{n}(a)$ divided by m;

Lecture 02: Homomorphism between Zn and Zm
Monday, January 14, 2019 9:46 AM
and so $\quad C_{n}(a)=m q^{\prime}+c_{n, m}\left(C_{n}(a)\right)$
remainder of $c_{n}(a)$ divided by m.
(1) and (2) imply $a=n q+m q^{\prime}+C_{n, m}\left(C_{n}(a)\right)$.
$m \mid n$ implies $m \mid n q+m q^{\prime}$; and so $\exists q^{\prime \prime} \in \mathbb{Z}$ st. $n q+m q^{\prime}=m q^{\prime \prime}$. Hence by (3) we have

$$
\begin{equation*}
a=m q^{\prime \prime}+\underbrace{c_{n, m}\left(c_{n}(a)\right)}_{\text {in }\{0,1, \ldots, m-1\}} \tag{4}
\end{equation*}
$$

By (4) and uniqueness of quotient and remainder (from long division) we deduce that $C_{n, m}\left(C_{n}(a)\right)$ is the remainder of a divided by m; hence $c_{m}(a)=c_{n, m}\left(c_{n}(a)\right)$.

We will finish prove of this theorem in the next lecture.

