Summary
Thursday, March 12, 2020
$\mathbb{Z}_{n} \cdot \mathbb{Z}_{n}^{x}=\left\{[a]_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.

- Euler ϕ-function,

$$
\begin{aligned}
& \phi(n):=|\{a \mid 1 \leq a \leq n, \operatorname{gcd}(a, n)=1\}| \\
& \cdot\left|\mathbb{Z}_{n}^{x}\right|=\phi(n)
\end{aligned}
$$

. $c_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{n}, c_{n}(a)=[a]_{n}$ is a ring homomorphism, and $\operatorname{ker} c_{n}=n \mathbb{Z}$.
. \mathbb{Z}_{n} is a field $\Leftrightarrow \mathbb{Z}_{n}$ is an integral domain
$\Leftrightarrow n$ is prime.
. Chinese Remainder Theorem) if $\operatorname{gcd}(m, n)=1$, then

$$
\mathbb{Z}_{m} \times \mathbb{Z}_{n} \simeq \mathbb{Z}_{m n}
$$

- If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.
- If p is prime, then $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
\mathbb{Z}_{n} was used to introduce rings, units, fields, integral domains, ring homomorphisms, kernel, and ring isomorphisms.

Characteristic
Char $(R)=$ smallest positive integer n such that $n x=0 \quad \forall x \in R$
if there is no such positive integer, $\operatorname{char}(R)=0$.

$$
R \text { unital } \Rightarrow C h a r(R)=\left\{\begin{array}{l}
\text { the additive order of } 1 \text { if } \\
\text { finite } \\
0 \quad \text { Otherwise } .
\end{array}\right.
$$

- Suppose R_{1}, \ldots, R_{m} are unital rings and $\operatorname{char}\left(R_{i}\right)<\infty$.

Then $\operatorname{Char}\left(R_{1} \times \cdots \times R_{m}\right)=1 \cdot c \cdot m \cdot\left(\operatorname{char}\left(R_{1}\right), \cdots, \operatorname{char}\left(R_{m}\right)\right)$.
If D is an integral domain, then
Char (D) is either 0 or a prime.
Integral domain

- Unital commutative non-trixial without zero-divisors.
- Cancellation law.
- Field \Rightarrow integral domain. Converse is not true in general.
- Finite integral domain \Rightarrow Field.
- Any integral domain has a field of fractions.

Universal Property of field of fractions.
Suppose D is an integral domain. Then we constructed

$$
Q(D)=\{a / b \mid a \in D, b \in D \backslash\{0\}\} .
$$

(0) $Q(D)$ is a field.
(1) $i: D \rightarrow Q(D), i(a)=a / 1$ is an infective ring homomorphism.
(2) Suppose $\theta: D \rightarrow F$ is an infective ring homomorphism and F is a field. Then $\tilde{\theta}: Q(D) \rightarrow F$,

$$
\theta(a / b)=\theta(a) \theta(b)^{-1}
$$

is a cuell-defined injective ring homomorphism.
We used this property to show $Q(\mathbb{Z}[i]) \simeq Q[i]$.
Step 1. Q [i] is a field.
Step 2. Get $\tilde{\theta}$ using the universal property.
Step 3. Show $\tilde{\theta}$ is surjective.

Ring of polynomials

- If D is an integral domain, then

$$
\forall f, g \in D I x], \quad \operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g .
$$

. If D is an integral domain, then $D I x]$ is an integral domain.
. $\mathbb{R} D$ is an integral domain, then $D[x]^{x}=D^{x}$.

- Polynomial vs. functions. Based on Fermat's little theorem if p is prime, $\forall a \in \mathbb{Z}_{p}, \quad a^{p}=a$; but $x^{p} \neq x$ as two polynomials.
Evaluation map. $F \subseteq E$ and $\alpha \in E$
$\phi_{\alpha}: F[x] \rightarrow E, \phi_{\alpha}(g(x))=g(\alpha)$ is a ring ham.

$$
\operatorname{ker}\left(\phi_{\alpha}\right)=\{g(x) \in F[x] \mid g(\alpha)=0\} .
$$

Long Division; existence. R : unital commutative $f, g \in R[x]$, the leading coeff. of g is a unit \Rightarrow $\exists g, r \in R[x]$, (1) $f(x)=g(x) q(x)+r(x)$ (2) $\operatorname{deg} r<\operatorname{deg} g$.

Summary
Long division; uniqueness. Suppose D is an integral domain. $\forall f, g \in D[x]$, leading coeff. of D is a unit. Then there are unique $q, r \in D[x]$ st.
(1) $f(x)=g(x) q(x)+r(x)$
(2) $\operatorname{deg} r<\operatorname{deg} g$.

Factor Theorem. Suppose R is a unital commutative ring; $f(x) \in R[x], a \in R$. Then

$$
f(a)=0 \quad \Longleftrightarrow \exists g(x) \in R[x], f(x)=(x-a) q(x)
$$

Generalized Factor Theorem. Suppose D is an integral domain; $f(x) \in D[x]$. If $f\left(a_{1}\right)=\cdots=f\left(a_{m}\right)=0$ and $a_{i} \neq a_{j}$ for $i \neq j$, then $\exists q(x) \in D[x]$ s.t.

$$
f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right) q(x)
$$

This was used to show $x^{p}-x=x(x-1) \cdots(x-(p-1))$ in $\mathbb{Z}_{p}[x]$ We used this to prove Wilson's theorem $(p-1)!\equiv-1(\operatorname{mat} p)$. (p is prime.) Later this was extended to all finite fields.

Summary
Thursday, March 12, 2020 8:31 PM

- Recalled binomial expansion $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$ where $\binom{n}{i}=\frac{n!}{i!(n-i)!}$. Used this to show that if $\operatorname{Char}(R)=p$ is prime, then
$F_{p}: R \rightarrow R, \quad F_{p}(a):=a^{P}$ is a ring homomorphism.
(This was an alternative way of proving Fermat's little theorem.)
Algebraic numbers
$\alpha \in \mathbb{C}$ is called algebraic if $\exists g(x) \in Q[x] \backslash\{0\}$,
$g(\alpha)=0$. Alternatively if $\operatorname{ker}\left(\phi_{\alpha}\right) \neq 0$.
To understand $\operatorname{ker}\left(\psi_{\alpha}\right)$ we started the study of ideals.

Ideals and Factor rings. R : commutative.
$\phi \neq I \subseteq R$ is called an ideal if
(1) $\forall x, y \in I, \quad x-y \in I$, (2) $\forall x \in I, \quad \forall r \in R, \quad r x \in I$.

Summary

- If $I \triangleleft R$, then we constructed the factor ring R / I. and showed $\pi: R \rightarrow R_{I}, \pi(r):=r+I$ is an onto ring homomorphism and $\operatorname{ker}(\pi)=I$.
The Est Isomorphism Theorem.
Suppose $f: R \rightarrow S$ is a ring homomorphism. Then
(0) kerf $f \varangle R, \quad \operatorname{Im}(f) \subseteq S$ is a subring.
(1) $\bar{f}: R /{ }_{\text {er } f} \rightarrow \operatorname{Im}(f), \bar{f}(r+\operatorname{ker} f):=f(r)$ is a well-defined ring homomorphism.
Ideals generated by a_{1}, \ldots, a_{n}; principal ideals; PID.
The smallest ideal that contains a_{1}, \ldots, a_{n} is denoted by $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and it is

$$
\left\{r_{1} a_{1}+\cdots+r_{n} a_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

when R is a unital commutative ring.

- $\langle a\rangle=R a$ is called a principal ideal.

Summary

- An integral domain D is called a Principal Ideal Domain (PID) if all of its ideals are principal.

Theorem \mathbb{Z} and $F[x]$ are SIDs if F is a field.
Theorems on algebraic numbers $\quad \alpha \in \mathbb{C}$ algebraic.
(Minimal polynomial). $\exists!$ manic irreducible $m_{\alpha}(x) \in \mathbb{Q}[x]$ st.

$$
\operatorname{ker} \phi_{\alpha}=\left\langle m_{\alpha}(x)\right\rangle
$$

- $f(x) \in Q[x]$ and $f(\alpha)=0$ implies $m_{\alpha}(x) \mid f(x)$.
- If $p(x) \in \mathbb{Q}[x]$ is monic and irreducible and $p(\alpha)=0$, then $m_{\alpha}(x)=p(x)$.

$$
\left(\mathbb{Q}[\alpha]:=\operatorname{lm} \phi_{\alpha}\right) \text { Suppose } \quad \operatorname{deg} m_{\alpha}=d
$$

- $\mathbb{Q}[\alpha]$ is the \mathbb{Q}-span of $1, \alpha, \ldots, \alpha^{d-1}$; that means

$$
Q[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{d-1} \alpha^{d-1} \mid a_{0}, \cdots, a_{d-1} \in \mathbb{Q}\right\} .
$$

$-1, \alpha, \ldots, \alpha^{d-1}$ are Q-linearly independent; that means

$$
\left.\begin{array}{c}
\left.b_{0}+b_{1} \alpha+\cdots+b_{d 1} \alpha^{d-1}=c_{0}+c_{1} \alpha+\cdots+c_{d-1} \alpha^{\alpha-1}\right\} \Rightarrow b_{i}=c_{i} \\
b_{i}, c_{i} \in Q
\end{array}\right\} i
$$

Summary

- $Q[\alpha] \simeq \mathbb{Q}[x] /\left\langle m_{\alpha}(x)\right\rangle$ (using the $1^{\text {st }}$ isomorphism
- $Q[\alpha]$ is a field. theorem.)

To prove the last item we studied maximal ideals.
Maximal and Prime Ideals
$I \triangleleft R$ is called a maximal ideal if
(1) I is a proper ideal; that means $I_{\neq R}$,
(2) $\left.\begin{array}{c}I \neq J \\ \\ J \not \subset R\end{array}\right\} \Rightarrow J=R$.

Theorem. I is maximal $\Longleftrightarrow R / I$ is a field.

- I<R is called a prime ideal if
(1) I is a proper ideal;
(2) $a b \in I \Rightarrow a \in I$ or $b \in I$.

Theorem. I is prime $\Longleftrightarrow R / I$ is an integral domain.

- I: maximal $\Rightarrow I$: prime.
. Suppose R / I is finite; I : prime $\Longleftrightarrow I$: maximal.

Summary
Thursday, March 12, 2020
Theorem. Suppose D is a PID and $o \neq a \in D$.
Then $\langle a\rangle$ is maximal $\Longleftrightarrow a$ is irreducible.
$\left(\mathbb{Q}[x]: P I D ; m_{\alpha}(x)\right.$: irred. ; $\mathbb{Q}[\alpha] \simeq \mathbb{Q}[x] /\left\langle m_{\alpha}(x)\right\rangle$
and the above theorem imply $\mathbb{Q}[\alpha]$ is a field.)
-Theorem. D:PID and $0 \neq I \triangleleft D$. Then
I prime \Longleftrightarrow I maximal.

- To show an integral domain D is not a PID it is enough to find $a \in D$ sit.
(1) a is irreducible (2) $\langle a\rangle$ is not prime. We used the above to show $\mathbb{Z}[\sqrt{-10}]$ is not a PID. We used $N: \mathbb{Z}[\sqrt{-10}] \rightarrow \mathbb{Z}, N(a+\sqrt{-10} b):=a^{2}+10 b^{2}$ to show $\sqrt{-10}$ is irreducible. Then we showed $\langle\sqrt{-10}\rangle$ is not prime;

$$
2 \cdot 5 \epsilon\langle\sqrt{-10}\rangle \text { and } 2 \notin\langle\sqrt{-10}\rangle, 5 \notin\langle\sqrt{-10}\rangle \text {. }
$$

Summary
We defined a Unique Factorization Domain (UFD): an integral domain such that
(1) $\forall a \in D$ and $a \notin\{0\} \cup D^{x}, a$ can be written as a product of irreducibles (Existence)
(2) If p_{i} 's and q_{j}^{\prime} 's are irreducible and $p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$, then $n=m$ and $P_{i}=u_{i} q_{\sigma_{i}}$ for some $u_{i} \in D^{x}$ and a permutation σ. (Uniqueness).
Theorem. In a PID the uniqueness part holds.
(Proof of the above theorem was based on induction and the following result: p, q_{1}, \ldots, q_{m} : irred. $p \mid q_{1} \cdots q_{m}$ implies $\exists i$ and $u \in D^{x}$ s.t. $p=u q_{i}$.)
Theorem. $F[x]$ is a UFD.
(\mathbb{Z} is a UFD.)

Finding a zero in a larger field.
Theorem. Suppose F is a field and $f(x) \in F[x]$ is a manic irreducible polynomial. Then there are E and $\alpha \in E$ st.
(1) E is a field and $\exists i: F \rightarrow E$ an infective ring homomorphism (we say E is a field extension of F.)
(2) $f(\alpha)=0$ (It is more formal to write $i(f)(\alpha)=0$ where

$$
\begin{aligned}
& \left.i\left(a_{0}+a_{1} x+\cdots+a_{d} x^{d}\right)=i\left(a_{0}\right)+i\left(a_{1}\right) x+\cdots+i\left(a_{d}\right) x^{d} \cdot\right) \\
& \text { (3) } E=\left\{b_{0}+b_{1} \alpha+\cdots+b_{d-1} \alpha^{d-1} \mid b_{i} \in F\right\} \text { where } \\
& d=\operatorname{deg} f . \\
& \text { (4) } c_{0}+c_{1} \alpha+\cdots+c_{d-1} \alpha^{d-1}=c_{0}^{\prime}+c_{1}^{\prime} \alpha+\cdots+c_{d-1}^{\prime} \alpha^{d-1} \\
& c_{i} \prime c_{1}^{\prime} \in F \quad \Rightarrow c_{i}=c_{i}^{\prime} \quad \forall i .
\end{aligned}
$$

Applying the previous theorem repeatedly we got:
Theorem. Suppose F is a field and $f(x) \in F[x] \backslash\{0\}$.
Then \exists a field E and $\alpha_{1}, \ldots, \alpha_{n} \in E$ st.

$$
f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)
$$

for some $c \in F$.
Finite fields
Theorem. Suppose $f(x) \in \mathbb{Z}_{p}[x]$ is manic and irreducible, and $\operatorname{deg} f=d$. Then there are E and $\alpha \in E$ st.
(1) E is a field, $\mathbb{Z}_{p} \subseteq E$;
(2) $|E|=p^{d}$.
(3) $f(\alpha)=0$.
(4) $f(x) \mid x^{p^{d}}-x$.

Theorem. Suppose p is prime and d is a positive

Summary
integer; then \exists a finite field $\mathbb{E}_{p^{d}}$ st.

$$
\left|\mathbb{I}_{p^{d}}\right|=p^{d} .
$$

Theorem. $x^{p^{d}}-x=\prod_{\alpha \in \mathbb{F}_{p^{d}}}(x-\alpha)$
(We recalled that in a finite group G of order n we have $g^{n}=1 \quad \forall g \in G$; used this to show

$$
\left.\forall \alpha \in \mathbb{E}_{p^{n}}, \quad \alpha^{p^{n}}=\alpha .\right)
$$

