Homework 1
Thursday, October 4, 2018

1. For a group G, let $\operatorname{Aut}(G):=\{f: G \rightarrow G \mid f$ is an automorphism $\}$. We know that $(\operatorname{Aut}(G), 0)$ is a group. Let $c: G \rightarrow$ Ant (G). $c(g):=c_{g}$ where $c_{g}\left(g^{\prime}\right):=g g^{\prime} g^{-1}$.
(a) Prove that $c_{g} \in \operatorname{Aut}(G)$ and c is a group homomorphism.
(b) Image of c is called the group of inner automorphisms, and it is denoted by $\operatorname{lnn}(G)$. Prove that $\operatorname{ker} c=Z(G)$ and deduce $\operatorname{lnn}(G) \simeq G / Z(G)$.
(c) Prove that $\operatorname{lnn}(G) \triangleleft \operatorname{Aut}(G)$.
(d) Prove that $|Z(\operatorname{Aut}(G))| \leq|\operatorname{Ham}(G, Z(G))|$; in particular. if either $Z(G)=1$ or G is perfect (that means $G=[G, G])$, then $Z(\operatorname{Aut}(G))$ is trivial.
(Hin tiC) $\forall g \in G$ and $\forall \phi \in \operatorname{Aut}(G), \quad \phi \circ C_{g} \cdot \phi^{-1}=C_{\phi(g)}$;
(2) If $\phi \in Z(\operatorname{Aut}(G))$, then $C_{g}=C_{\phi(g)}$; and so $\phi(g)=g \eta(g)$ for some $\eta(g) \in Z(G)$.
(3) Prove $\eta \in \operatorname{Ham}(G, Z(G))$.)
2. Let $\mathrm{SL}_{2}(\mathbb{R})$ be the set real 2×2 matrices with determinant 1 .

For $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{R})$ and $z \in \mathbb{C} \cup\{\infty\}$
$\otimes\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot z:= \begin{cases}\frac{a z+b}{c z+d} & \text { if } z \neq \infty, c z+d \neq 0 . \\ \infty & \text { if } z \neq \infty, c z+d=0, \\ \frac{a}{c} & \text { if } z=\infty .\end{cases}$
(a) Prove that \otimes defines a group action $S L_{2}(\mathbb{R}) \curvearrowright \mathbb{C} \cup\{\infty\}$.
(b) Convince yourself that $\operatorname{lm}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot z\right)=\frac{\operatorname{lm}(z)}{|c z+d|^{2}}$, where $\operatorname{lm}(z)$ is the imaginary part of z. Prove that $S L_{2}(\mathbb{R})$ has three orbits:
the upper half plane \mathcal{H}, the real axis, and the lower half plane \mathcal{H}.

$$
u\{\infty\}
$$

(c) Show that the stabilizer of i is the special orthogonal

3. Show that $\Psi: \operatorname{Act}(G, X) \rightarrow \operatorname{Hom}\left(G, S_{X}\right)$,

$$
((\Psi(m))(g))(x):=m(g, x)
$$

and

$$
\begin{aligned}
& \Phi: \operatorname{Hom}\left(G, S_{X}\right) \rightarrow \operatorname{act}(G, X) \\
& (\Phi(f))(g, x):=(f(g))(x)
\end{aligned}
$$

are inverse of each other.

Homework 1
Friday, October 5, 2018 12:55 AM
4. Suppose G is a finite group, $C \subseteq \mathbb{R}^{n}$ is a convex subset; that means, if $p, q \in C$, then the segment $p q$ is in C. Suppose $G \curvearrowright C$ by affine actions; that means $\forall p, q \in C, \forall t \in[0,1], \forall g \in G$,

$$
g \cdot(t p+(1-t) q)=t \quad g \cdot p+(1-t) g \cdot q .
$$

Prove that G has a fixed point; that means

$$
\exists x \in C \text { st. } \forall g \in G, g \cdot x=x \text {. }
$$

(Hint. (1) Suppose $c_{1}, \ldots, c_{n} \in C$. By the convexity of C, using induction show the average $\frac{1}{n}\left(c_{1}+c_{2}+\cdots+c_{n}\right)$ is in C.
(2) Take $y \in C$, and let x be the average of the G-orbit of y. Prove that x is a fixed point of G.)
5. Suppose G is a finite subgroup of the group $G \perp(\mathbb{R})$ of $n \times n$ real invertible matrices. Prove that there is an inner product on \mathbb{R}^{n} which is G-invariant.
(Recall. $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called an inner product if
(a) $\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle$
(c) $\langle v, v\rangle\rangle 0$
(b) $\left\langle v, c_{1} w_{1}+c_{2} w_{2}\right\rangle=c_{1}\left\langle v, w_{1}\right\rangle+c_{2}\left\langle v, w_{2}\right\rangle$ if $v \neq 0$.
(d) $\langle v, w\rangle=\langle w, v\rangle$

Homework 1
Friday, October 5, 2018 12:57 AM
for instance $\quad\left(a_{1}, \ldots, a_{n}\right) \bullet\left(b_{1}, \cdots, b_{n}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$ is an inner product.)
(Hint. Define $\langle v, w\rangle:=\frac{1}{|G|} \sum_{g \in G} g v \cdot g w$
Che average of the standard inner product along the G-orbits of v and w.) ; you have to show \langle,$\rangle is$ an inner product and $\langle g v, g w\rangle=\langle v, w\rangle$.)
[This problem is extremely useful as it implies:
if $V \subseteq \mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n} which is invariant under G (that means $\forall v \in V \forall g \in G$, we have $g \cdot v \in V$.) then $V^{\perp}:=\left\{w \in \mathbb{R}^{n} \mid \forall v \in V,\langle w, v\rangle=0\right\}$ is also G-invariant, and $V \oplus V^{\perp}=\mathbb{R}^{n}$.]
6. Recall that we say $G \curvearrowright X$ transitively if $|G X|=1$. A transitive group action $G \curvearrowright x$ is called primitive if it does not preserve any non-trivial partition of X, where trivial partitions are $\{X\}$ and $\{\{x\} \mid x \in X\}$.

Homework 1
Friday, October 5, 2018
For instance, let $\sigma:\{1,2,3,4\} \rightarrow\{1,2,3,4\}$,

$$
1 \stackrel{\sigma}{\longmapsto} 2 \stackrel{\sigma}{\longmapsto} 3 \stackrel{\sigma}{\longmapsto} 4 \stackrel{\sigma}{\longmapsto} 1 \text {. Then }
$$

$\{\{1,3\},\{2,4\}\}$ is
preserved by $\langle\sigma\rangle$; so $\langle\sigma\rangle \bigcap\{1,2,3,4\}$ is NOT primitive though it is transitive.

Suppose $G \curvearrowright X$ is a nontrivial transitive Then $G \curvearrowright X$ is primitive if and only if for any $x \in X$ the stabilizer group G_{x} of x is a maximal subgroup; that means (1) G_{x} is a proper subgp
(2) $G_{x} \leq H \leq G \Rightarrow$ either $G_{x}=H$ or $G=H$.

Hint. Since $G \curvearrowright X$ is transitive, $X=G \cdot x$;
If $\exists G \underset{x}{ }<H \not \equiv G$, then show that $\{g H \cdot x \mid g \in G\}$ is a non-trixial partition of X which is preserved by $G \curvearrowright X$.

- Suppose $\left\{X_{i} \mid i \in I\right\}$ is a partition which is preserved by the G-action. So $\forall g, g \cdot X_{i}=X_{\sigma_{g}(i)}$ where $\sigma_{g} \in S_{I}$. Suppose $\left|X_{0}\right| \geq 2$; and $x \in X_{0}$

Homework 1
Friday, October 5, 2018

$$
\forall g \in G_{x}, g \cdot X_{0} \cap X_{0} \neq \varnothing \text {, which implies } g X_{0}=X_{0} \text {. }
$$

So $G_{X_{0}} \supseteq G_{x}$. Since $\left|X_{0}\right| \geq 2$ and $G \nsim X$ is transitive,
$G x_{0} \nRightarrow G_{x}$. Since $\exists x^{\prime} \in X \backslash X_{0}$ and $G \curvearrowright X$ is trans. $G x_{0} \nsubseteq G$.)
7. Suppose GคX transitively. Prove that the kernel of this group action is the normal core $\operatorname{cor}\left(G_{x}\right)$ of the stabilizer group of a point $x \in X$.

