Homework 2
Thursday, October 11, 2018

1. Suppose p is an odd prime, G is a group of order $p(p+1)$ that does not a normal subgroup of order p. Prove that p is a Mersenne prime; that means $p=2^{n}-1$ for some $n \in \mathbb{Z}^{+}$.
(Hint. Go through the proof given in lecture.)
2. Suppose $p<q<l$ are three primes, and G is a group of order $p q l$. Prove that G has a normal subgp of order l.

Hint. First prove G has a normal subgroup of order either p, q, or l.)
3. Suppose G is a finite group, and $N \triangleleft G$. Let $P \in S_{y} l_{p}(N)$. Prove that $G=N_{G}(P) N$.
(Hint. $G \curvearrowright S_{y} l_{p}(N)$ by conjugation $+2^{\text {nd }}$ Sylow theorem)
4. Suppose G is a finite group, $N \unlhd G$, and p is a prime factor of $|N|$.
(a) Suppose $\left.P \in S_{y}\right|_{p}(G)$ and $\left.Q \in S_{y}\right|_{p}(N)$. Prove that $\exists g \in G$ st. $Q=g P^{-1} \cap N$.

Homework 2
Thursday, October 11, 2018
(b) Prove that the following is a well-defined surjective function

$$
\begin{aligned}
S_{y} L_{P}(G) & \xrightarrow{\phi} \operatorname{Sg}_{P}(N), \\
P & \mapsto P \cap N .
\end{aligned}
$$

(c) For $P \in S_{y} l_{p}(G)$, let $Q:=\phi(P)$. Prove that

$$
N_{G}(P) \subseteq N_{G}(Q) \text { and }\left|\Phi^{-1}(Q)\right|=\left[N_{G}(Q): N_{G}(P)\right]
$$

(d) Prove that $\left|S_{y}\right|_{p}(N)| |\left|S_{y}\right|_{p}(G) \mid$.
5. A group is called simple if it does not have a non-trivial proper normal subgroup; that means $N \triangleleft G \Rightarrow N=\{e\}$ or $N=G$.
Prove that a group of order $p^{2} q$ is not simple.
6. Prove that a group of order 36 is not simple.
(Hint. Suppose G is simple; find $\left|S_{y}\right|_{3}(G) \mid$; consider $G \curvearrowright S_{y l_{3}}(G)$ by conjugation and show it has a nontrivial kernel.)
7. Let G be a finite group and $H \leq G$. Suppose $\forall x \in H \backslash\{1\}$, $C_{G}(x) \subseteq H$. Prove that $\operatorname{god} \cdot(|H|,[G: H])=1$.

Homework 2
Thursday, October 11, 2018 11:12 PM
(Hint. Suppose $p \mid \operatorname{gcd}(|H|,[G: H])$; consider $\left.Q \in S_{y}\right|_{p}(H)$; find $P \in S_{y l}(G)$ st. $Q \subseteq P$. Show $Z(P) \subseteq Q$.)

