Homework 4
[1] In this problem, you prove that $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ if $n \geq 7$. (All the automorphisms of S_{n} are inner.) Suppose $\varphi \in \operatorname{Aut}\left(S_{n}\right)$.
(a) Suppose $n \geq 5$, and φ sends transpositions to transpositions; that means $|\operatorname{supp}(\varphi(a b))|=2$ for any $1 \leq a<b \leq n$. Prove that φ is an inner automorphism.

Hint(D) suppose τ_{1} and τ_{2} are two transpositions. Observe:
τ_{1} and τ_{2} do not commute if and only if $\left|\operatorname{supp}\left(\tau_{1}\right) \cap \operatorname{supp}\left(\tau_{2}\right)\right|=1$.
(2) Any transposition gives us an edge in the complete graph with n vertices; by assumption φ induces a bijection on the edges of the complete graph. (1) implies two edges with a common vertex are mapped to two edges with a common vertex. Use this to get a permutation σ on vertices.
(3) Show that for any transposition $\tau, \sigma \varphi(\tau) \sigma^{-1}=\tau$.I
(b) Prove that $\varphi\left(\sigma_{1}\right)$ and $\varphi\left(\sigma_{2}\right)$ are conjugate if and only if σ_{1} and σ_{2} are conjugate.
(c) Let T_{k} be the set of permutations with cycle type $\underbrace{2, \ldots, 2, \underbrace{1}_{n-2 k}, \ldots, 1}_{k}$; for instance T_{1} consists of transpositions. Show that

Homework 4
Friday, October 26, 2018 2:14 PM

$$
\left|T_{k}\right|=n(n-1) \cdots(n-2 k+1) / k!2^{k} \geq \frac{n(n-1)}{2} \frac{(2 k-2)!}{k!\cdot 2^{k-1}}
$$

(d) Prove that $\varphi\left(T_{1}\right)=T_{k}$ for some $1 \leq k \leq n / 2$. (Use part (b))
(e) Prove that $\varphi\left(T_{1}\right)=T_{1}$; and deduce that $\varphi \in \operatorname{Inn}\left(S_{n}\right)$.
(2.) In this problem, you prove that $\operatorname{Aut}\left(S_{6}\right) \neq \operatorname{Inn}\left(S_{6}\right)$.
(In this problem you can use the fact that A_{n} is simple if $n \geq 5$)
(a) Show that S_{5} has 6 Sylow 5 -subgroups. Deduce that S_{6} has a subgroup H which is isomorphic to S_{5} and acts transitively on $\{1,2, \cdots, 6\}$. And so Fix $\left(\sigma H \sigma^{-1}\right)=\varnothing$ for any $\sigma \in S_{6}$.
(b) Consider $S_{6} \curvearrowright \mathrm{~S}_{6} / \mathrm{H}$ by the left translations. Since $|H|=\left|S_{5}\right|$, we have $\left|S_{6 / H}\right|=6$. So the above action gives us a group homomorphism $\phi: S_{6} \rightarrow S_{6}$. Prove that φ is an isomorphism.
(C) Show that $F_{i x}(\varphi(H)) \neq \varnothing$, and deduce φ is NOT inner automorphism of S_{6}.

Homework 4
Friday, October 26, 2018
. One of the important result in finite group theory is the following result of Burnside:

Burnside's normal p-complement theorem.
Suppose G is a finite group, $1 \neq P$ is a Sylow p-subgroup, and $P \subseteq Z\left(N_{G}(P)\right)$. Then $\exists N \triangleleft G$ st. $|N|=|G / p|$.

This is an extremely useful theorem; for instance try to use this to give a short of a result we have proved earlier: a group G of order $p(p+1$) has a normal subgroup of order p or $p+1$. (This is not part of the problem). In this problem you will see the powerful combination of this theorem with the Schur-Zassenhaus theorem:
(3) Suppose $\operatorname{gcd}(n, \varphi(n))=1$, and G is a group of order n. Prove that a group of order n is cyclic.
(Hint. Anith. observations: $\operatorname{god}(n, \varphi(n))=1 \Rightarrow n$ is square -free

$$
-\operatorname{gcd}(n, \varphi(n))=1\} \Rightarrow \operatorname{gcd}(m, \varphi(n))=\operatorname{gcd}(m, \varphi(m))=\operatorname{gct}(n, \varphi((n))=1 .
$$

- Use strong induction on n; and the mentioned theorems.)

Homework 4
Friday, October 26, 2018 4:22 PM
Suppose G is a finite group and for any $d \in \mathbb{Z}^{+}$, $\left|\left\{g \in G \mid g^{d}=e\right\}\right| \leq d$. Prove that G is cyclic.
(Hint. Let $X_{d}:=\left\{g \in G \mid \circ(g)=d \xi\right.$ and $\psi(d):=\left|X_{d}\right|$.
Step 1. Show, if $\Psi(d) \neq 0$, then $\Psi(d)=\phi(d)$.
Step 2. Notice $\sum_{d \mid n} \psi(d)=n$ where $n=|G|$.
Step 3. From arithmetic we know $\sum_{d \mid n} \phi(d)=n$. (you are allowed to use this without proof.) Use steps 1 and 2 to show $d \ln \Rightarrow \psi(d)=\phi(d)$; and finish proof.)

55 For a group G, let $[G, G]$ be the subgroup generated by $\left[g_{1}, g_{2}\right]:=g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}$ for $g_{1}, g_{2} \in G$.
(a) Show that $[G, G]$ is a characteristic subgroup of G.
(b) For $N \triangleleft G$, prove that G / N is abelian if and only if $[G, G] \subseteq N$.
(c) Prove that $\left[S_{n}, S_{n}\right]=A_{n}$ if $n \geq 3$.

Homework 4
(6) Prove that there is no finite group G such that

$$
[G, G] \simeq S_{4} .
$$

(Hint. Suppose to the contrary that there is such a group G. Convince yourself that $P:=\{I,(12)(34),(13)(24),(14)(23)\}$ is the unique Sylow 2-subgp of A_{4}; and so P is a characteristic subgroup of A_{4}.

- Gats by conjugation on $[G, G] \simeq S_{4}$; argue why this induces an action on $A_{4} / P \simeq \mathbb{Z} / 3 \mathbb{Z}$;
- Argue why $[G, G]$ should act trivially on A_{4} / P; and deduce $S_{4} \curvearrowright A_{4} / p$ by conjugation should be the trivial action.
- Check that $\left(\begin{array}{llll}1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right) P \neq\left(\begin{array}{ll}1 & 2\end{array} 3\right) P$, and get a contradiction.)
(7) (a) Prove that $\left.\left\langle\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} \ldots n\right)\right\rangle=S_{n}$.
(b) Suppose p is an odd prime, $\tau \in S_{p}$ is a transposition and $\sigma \in S_{p}$ has order p. Prove that $\langle\tau, \sigma\rangle=S_{p}$.

Homework 4
Friday, October 26, 2018
(Hint. (a) Let $H:=\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \cdots n\end{array}\right)\right\rangle$. Notice $(12)(23 \cdots n)=\left(\begin{array}{ll}1 & 2 \cdots n\end{array}\right)$ and so $\gamma:=\left(\begin{array}{lll}2 & 3 & \cdots n\end{array}\right) \in H \Rightarrow \gamma^{i}(12) \gamma^{-i} \in H \Rightarrow(1 j) \in H \quad \forall j \Rightarrow$ $(1 i)(1 j)(1 \quad i)=(i j) \in H$.
(b) After reordening, we can assume $\sigma=(12 \cdots p)$. Let $H=\left\langle\left(\begin{array}{ll}a & b\end{array}\right),\left(\begin{array}{ll}1 & 2 \cdots p\end{array}\right)\right\rangle$; argue why we can further assume $H=\langle\left(\begin{array}{ll}1 & b\end{array}\right),(\underbrace{}_{\sigma} 2 \cdots p)\rangle$ after another reordering if needed; using σ^{i} and part (a) finish the proof.)

