Homework 5
Friday, November 2, 2018 8:20 AM
1 @) Suppose G_{1} and G_{2} are solvable groups and the following is a short exact sequence $\quad 1 \rightarrow G_{1} \rightarrow G \rightarrow G_{2} \rightarrow 1$. Prove that G is solvable.
(b) Suppose A_{1} and A_{2} are abelian groups and the following is a short exact sequence $1 \rightarrow A_{1} \rightarrow G \rightarrow A_{2} \rightarrow 1$.

Can we conclude that G is nilpotent?
2. Is S_{4} solvable? Is it nilpotent?
3. Suppose G is a group and $\left\{\gamma_{i}(G)\right\}_{i=1}^{\infty}$ is the lower central series of G. Recall that $[x, y]=x^{-1} y^{-1} x y$. We sometime write $x y:=x^{-1} y x$; and so $[x, y]=x^{-1 y} x$. A few useful formulas. - $[x, y]^{-1}=[y, x]$.

- $[x y, z]={ }^{y}[x, z][y, z]$
- $\left[[x, y], x^{-1} z\right]\left[[z, x],{ }^{-1} y\right]\left[[y, z],{ }^{-1} x\right]=1$. (Hall's equation)

$$
\cdot\left[x^{n}, y\right]={ }^{x^{n-1}}[x, y] \cdot{ }^{x^{n-2}}[x, y] \ldots e^{x}[x, y] \cdot[x, y]
$$

Homework 5
Friday, November 2, 2018
(a) Prove that $(x y)^{n} \equiv x^{n} y^{n}[y, x]^{\frac{n(n-1)}{2}}\left(\bmod \gamma_{3}(G)\right)$.
(Hint. ${ }^{z}[y, x] \equiv[y, x]\left(\bmod \gamma_{3}(G)\right)$.

- Use induction and $y^{n} x=x y^{n}\left[y^{n}, x\right]$.)
(b) Suppose N, M, L are normal subgroups of G. Prove

$$
[[N, M], L] \leq[[M, L], N][[L, N], M]
$$

(c) Prove that, for any $m, n \in \mathbb{Z}^{+}$, we have

$$
\left[\gamma_{m}(G), \gamma_{n}(G)\right] \subseteq \gamma_{m+n}(G)
$$

(Hint. Use induction on $\min \{m, n\}$.)
(d) Let $f: \gamma_{m}(G) / \gamma_{m+1}(G) \times \gamma_{n}(G) / \gamma_{n+1}(G) \rightarrow \gamma_{m+n}(G) / \gamma_{m+n+1}(G)$,

$$
f\left(\times \gamma_{m+1}(G), y \gamma_{n+1}(G)\right):=[x, y] \gamma_{m+n+1}(G)
$$

Prove that f is a well-defined bilinear map, which means

$$
\begin{aligned}
& f\left(\bar{x}_{1}, \bar{x}_{2}, \bar{y}\right)=f\left(\bar{x}_{1}, \bar{y}\right) f\left(\bar{x}_{2}, \bar{y}\right) \text { and } \\
& f\left(\bar{x}, \bar{y}_{1} \cdot \bar{y}_{2}\right)=f\left(\bar{x}, \bar{y}_{1}\right) f\left(\bar{x}, \bar{y}_{2}\right)
\end{aligned}
$$

(e) Let $L:=\gamma_{1}(G) / \gamma_{2}(G) \oplus \gamma_{2}(G) / \gamma_{3}(G) \oplus \cdots$. So L is on abelian groups. We use the plus sign + to denote the group

Homework 5
Friday, November 2, 2018
operation in L. Elements of $\gamma_{i}(G) / \gamma_{i+1}(G)$'s are called homogeneous elements of L. We let

$$
\left[x \gamma_{n+1}(G), y \gamma_{m+1}(G)\right]:=[x, y] \gamma_{m+n+1}(G) ?
$$

and extend this bilinearly to a function $L x L \rightarrow L$.
Use part (d) and convince yourself that this can be done. Prove that $[[\bar{x}, \bar{y}], \bar{z}]+[[\bar{y}, \bar{z}], \bar{x}]+[[\bar{z}, \bar{x}], \bar{y}]=0$ in L.
(Remark. This is called the Jacobi identity; and this shows that L is a Lie ring.)
(f) Show that L is generated by $\gamma_{1}(G) / \gamma_{2}(G)$ as a Lie ring; this means you have to show

$$
\left[L_{1}, L_{n}\right]=L_{n+1}
$$

for any $n \in \mathbb{Z}^{2^{1}}$, where $L_{n}=\gamma_{n}(G) / \gamma_{n+1}(G)$
Remark. Problem 4 presents an idea of translating some of the group theory problems to questions about Lie rings. This is the

Homework 5
Friday, November 2, 2018
start of the profound proof of the Restricted Burnside Problem by
I. Zelmanox. In the next problem, you can see an easy application of the above connection with $L_{i e}$ theory.
4. (a) Suppose $G=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ is nilpotent and $\circ\left(g_{i}\right)<\infty$. Prove that G is finite.
(Hint. Shaw that $\gamma_{1}(G) / \gamma_{2}(G)$ is finite. Deduce that $\gamma_{m}(G) / \gamma_{m+1}(G)$ is finite for any $m \in \mathbb{Z}^{2 \perp}$.)
(b) Suppse N is a nilpotent group. Prove that

$$
T:=\{g \in N \mid \circ(g)<\infty\}
$$

is a subgroup.
(c) Let $D_{\infty}:=(\mathbb{Z} / 2 \mathbb{Z}) x_{c} \mathbb{Z} \quad$ where $c: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Ant}(\mathbb{Z})$ $(c(1+2 \mathbb{Z})(x):=-x$.
Prove that D_{∞} is solvable; but

$$
T:=\left\{x \in D_{\infty} \mid 0(x)<\infty\right\}
$$

is not a subgroup.

Homework 5
Friday, November 2, 2018 8:39 AM
5. Let A be a unital ring. A is not necessarily commutative. Suppose π is an ideal of A. Suppose $\pi^{n}=0$; that means $\forall x_{1}, \cdots, x_{n} \in \pi, \quad x_{1} \cdot x_{2} \cdots \cdot x_{n}=0$. Let $G:=1+\pi$.
(a) Prove that G is a subgroup of the group $U(A)$ of units of A. (Recall $U(A):=\left\{a \in A \mid \exists a^{\prime} \in A, a a^{\prime}=a^{\prime} a=1\right\}$.)
(b) Prove that $\gamma_{m}(G) \subseteq 1+\pi^{m}$; and deduce that G is nifpotent.
(c) Prove that $U:=\left\{\left.\left[\begin{array}{ccc}1 & & x_{i j} \\ 1 & \ddots & \ddots\end{array}\right] \right\rvert\, x_{i j} \in R\right\}$ is nilpotent where R is a unital commutative ring.

CH int. Consider $A:=\left\{\left[r_{i j}\right] \in M_{n}(R) \mid r_{i j}=0\right.$ if $\left.i>j\right\}$; convince yourself that A is a unital ring; let $\pi:=\left\{\left[r_{i j}\right] \in M_{n}(R) \mid r_{i j=0}\right.$ if $\left.i \geq j\right\}$, and use part (b).)

