Lecture 23: Local Artinian rings
Wednesday, May 23, 2018 12:13 AM
In the previous lecture are proved that any Artinian ring is a unique
product of local Artinian rings. Here is on local Artinian rings.
Proposition. A: local Artinian ring, Nax A=\$th?. Then TFAE
(1) Any ideal of A is principal (2) the is principal (3) dimArtin (###)
$$\leq 1$$
.
Pt. Clearly (1) \Rightarrow (2) \Rightarrow (3).
(3) \Rightarrow (1). If dim $_{M_{HT}}$ (th/ $_{HF}^2$) = a , then th = th?
Since A is Artinian, A is Noetherian; and so the is f.g. Hence, by
Nakayama's lemma and J(A) = th, are have the = 0; this implies
A is a field.
If dim $_{M_{HT}}$ (the $= 1$, then $\equiv x \in th \times th^2$ s.t. $+ th^2 = th$.
Suppose $a \neq Di \leq A$. Since A is Artinian, $J(A)^n = a$; and so the $= 3 \times t^n$.
Then $\equiv y \in A$ s.t. $a = y x^k$ and $y \in A \times th$. Hence $x^k \in D$, and
so the $= (x^k) \leq CL \leq th^k$; this implies $CL = \langle x^k \rangle$.

Lecture 23: Dimension 1 Noetherian domains
Wednesday, May 23, 2018 8.49 AM
Next we study Noetherian rings of dim. 1. For a minimal prime.
PESpec A, Alip is again Noeth, and of dim. 1; moreover it is
an integral domain. And knowing structure of Alip tells us a lot
about A. So we assume in addition that A is an integral
domain. Let
$$\overline{A}$$
 be the integral closure of A in its field of
tractions. Since $\overline{A}/_{\overline{A}}$ is an integral extension, we deduce
that \overline{A} : Noetherian; dim \overline{A} = dim A = 1;
 \overline{A} : integral domain; \overline{A} : integrally closed.
So we shall focus on understanding:
integral domain, integrally closed, Noetherian, dim = 1.
Such a ring is called a Dedekind domain; and use have seen
that the integral closure $O_{\overline{K}}$ of \overline{Z} in a finite extension k of
 Q is a Dedekind domain.
In order to deal with one prime at a time, we localized A at
the Max $A = Spec A \setminus Sog$.

Lecture 23: Local Noetherian domain of dim 1
Proby, May 25, 2018 7255 AM
Strice A is integrally closed,
$$\forall$$
 thre Max A, A_{th} is integrally
closed.
Lenne D: integral domain, local, Noetherian, and dim D=1. Then
(*) Spec D= %0, tht 3, the is a closed point and 0 is dense.
Special point generic
(1) $0 \neq D \leftarrow D \Rightarrow D$ is the primary and $\exists k \in \mathbb{Z}^+$, the CD.
(*) $Th \Rightarrow Th^2 \Rightarrow \cdots$ and $\bigcap_{i=1}^{\infty} Th^i = 0$.
Pf. (0) is clear. (4) Since $Dt \neq o$, $V(Dt) \subseteq Spec D \setminus \%^* = \% th^2$
 $\Rightarrow V(Dt) = \% th \% \Rightarrow \sqrt{Dt} = th \Rightarrow th \% \subseteq Dt$ as the is fig.
(2) If $th^2 = th^{-1}$, then $th^2 = J(D) th^2$. Since D is Noeth.
(*) Since D is an integral domain, th=0 which is a contradiction.
H $\bigcap_{i=1}^{\infty} th^2 \neq 0$, then by part (4) the $i=1$ this is a contradiction.
H $\bigcap_{i=1}^{\infty} th^2 = th^2$ which is a contradiction.

Lecture 23: DVR Friday, May 25, 2018 1:50 AM we are done. If $\alpha H \neq D$, then $\alpha H \leq H \propto \alpha H = 1$ is a D-submod of D and Max D= { tt} . Since III is a fig. A-mod, I aje A st. $\alpha_{+}^{n} \alpha_{n-1} \alpha_{+} \cdots + \alpha_{o} \in Ann \quad 111 = o$ As D is integrally closed, a D which is a contradiction. (2) ⇒ (3) clear. $(3) \Longrightarrow (\mathcal{H}) \circ \neq \mathcal{T} \triangleleft \mathcal{D}. Then by lemma \quad \mathcal{T} \supseteq \mathcal{H}^{k} \quad \text{for some } k.$ Then $\overline{D} := D/_{H}k$ is a zero dimensional, local Noetherian ring, with dim_ $\frac{111}{111^2} = 1$ where $\frac{111}{111^2} = \frac{111}{111^2}$. So \overline{D} is a local Artinian with dim THT/HTZ=1, which implies UL/11 = 111 / 11 k for some i; and claim follows. (4) \Rightarrow (5) Let $\pi \in 111 \setminus 111^2$. Then by assumption $\exists k, \langle \pi \rangle = 111^k$. Since $\pi \in 111 \setminus 111^2$, k=1. And so $111^k = \langle \pi^k \rangle$.

Lecture 23: DVR
Friday, May 25, 2018 2:13 MM
(5) => (6) By the discussion prior to the proof of (1)=>(2),
we have
$$D \supseteq \langle \pi, \gamma \supseteq \langle \pi^{2} \rangle \supseteq \cdots$$
. So for any deD,
=1. $\forall (d) \in \mathbb{Z}^{\geq 0} \text{ s.t. } \langle d \rangle = \langle \pi^{0} \rangle$.
Let $\forall (9/L) := \forall (a) - \forall (b)$; one can rather easily check
that $\forall \text{ is a (discrete) Valuation of F.}$
(6) => (1) D is a valuation ring; and so it is integrally closed.