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Cyclotomic polynomials

In the previous lecture we proved that

θ : Gal(Q[ζn]/Q) → (Z/nZ)×, θ(σ) := aσ + nZ,

where θ(ζn) = ζaσn is an injective group homomorphism. And in order to show it

is an isomorphism, we defined the n-th cyclotomic polynomial:

Φn(x) :=
󰁜

1≤a≤n,gcd(a,n)=1

(x− ζan) ∈ C[x].

Lemma 1.
󰁜

d|n

Φn/d(x) = xn − 1.

Proof.

xn − 1 =
n−1󰁜

i=0

(x− ζ in)

=
󰁜

d|n

󰁜

gcd(i,n)=d,0≤i≤n

(x− ζ in)

=
󰁜

d|n

󰁜

0≤j≤n/d,gcd(j,n/d)=1

(x− ζdjn )

=
󰁜

d|n

󰁜

0≤j≤n/d,gcd(j,n/d)=1

(x− ζjn/d)

=
󰁜

d|n

Φn/d(x).

□

Lemma 2. Φn(x) ∈ Z[x].
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Proof. We proceed by strong induction on n. We have that Φ1(x) = x−1 ∈ Z[x],
which gives us the base of induction. By the previous lemma, we have that

Φn(x) =
xn − 1󰁔

d|n,d ∕=n Φd(x)
.

Therefore by the strong induction hypothesis, Φn(x) is the quotient of a long

division of two monic integer polynomials; and so Φn(x) ∈ Z[x]. □

Theorem 3. Φn(x) is irreducible in Q[x].

Proof. We assume to the contrary that Φn(x) is reducible in Q[x]. Since Φn(x) is

monic integer polynomial, we deduce that there are integer polynomials f(x), g(x) ∈
Z[x] such that deg f, deg g > 0 and Φn(x) = f(x)g(x). Since ζn is a zero of

Φn(x), it should be a zero of f(x) or g(x). W.L.O.G. we can and will assume

that f(ζn) = 0.

Claim. Suppose p is prime and p ∤ n. Then if f(ζ) = 0, then f(ζp) = 0.

Proof of Claim. Suppose to the contrary that f(ζp) ∕= 0. Since ζ is a zero of

f(x), it is a zero of Φn(x); hence o(ζ) = n. As p ∤ n, o(ζp) = n; and so Φn(ζ
p) = 0;

and so g(ζp) = 0. Hence

mζ,Q(x)|f(x), and mζ,Q(x)|g(xp).

Since f(x) and g(xp) are monic integer polynomials, using Euclid’s algorithm we

can deduce that h(x) := gcd(f(x), g(xp)) is a monic integer polynomial. Since

mζ,Q(x)|h(x), we have that deg h > 0. Thus there are polynomials r, s ∈ Z[x]
such that

f(x) = h(x)r(x), and g(xp) = h(x)s(x).

Let’s view both sides modulo p. So we get

f(x) = h(x)r(x), and g(x)p = h(x)s(x).

This implies that gcd(f, g) ∕= 1; and so f(x)g(x) has multiple zeros in Fp. So

Φn(x) (mod p) should have multiple zeros in Fp. But Φn(x) divides x
n − 1 and

xn− 1 does not have multiple zeros in Fp as gcd(x
n− 1, nxn−1) = 1 (we have this

as p ∤ n), which gives us a contradiction. □
Claim. f(ζan) = 0 if gcd(a, n) = 1.

Proof of Claim. One can easily deduce this by induction on the number of

prime factors of a and using the previous Claim. □
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The above claim implies that deg f = φ(n) = degΦn; and so deg g = 0, which

is a contradiction. □

Overall we get

Theorem 4. Q[ζn]/Q is a Galois extension, and

θ : Gal(Q[ζn]/Q) → (Z/nZ)×, θ(σ) := aσ + nZ

where σ(ζn) = ζaσn is a group isomorphism.

Proof. We have already proved that θ is an injective group homomorphism. By

the previous Theorem we have mζn,Q(x) = Φn(x); and so

|Gal(Q[ζn]/Q)| = [Q[ζn] : Q] = degmζn,Q(x) = degΦn(x) = φ(n) = |(Z/nZ)×|.

This implies that θ is onto; and claim follows. □

Solvability by radicals

Long ago we mentioned that a lot of algebra had been developed to find zeros

of polynomials. For a given polynomial f(x) ∈ F [x], people tried to find its zeros

using +,−,×, /, and n
√
.. In modern language we say f(x) is solvable by radicals

over F if there is a chain of fields

F =: F0 ⊆ F1 ⊆ · · · ⊆ Fn

such that Fk+1 = Fk[ mk
√
ak] for some ak ∈ Fk and Fn has a zero of f(x). Suppose

the characteristic of F is zero and F ′ is the normal closure of Fn over F . Then by

a result that you have proved in your HW assignment we have that Gal(F ′/F )

is solvable. This is proved by Galois; he proved the converse of this statement as

well and these were his main motivations to work on field theory.

Theorem 5. Suppose char(F ) = 0, f(x) ∈ F [x] is irreducible, and E is a splitting

field of f(x) over F ; then f(x) is solvable by radicals over F if and only if

Gal(E/F ) is solvable.

For the remaining part of this lecture we focus on proving the “if” part of this

Theorem. The following is an important result that has many applications.
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Proposition 6 (Independence of characters). Suppose G is a group, F is a field,

and χ1, . . . ,χn : G → F× are distinct group homomorphisms. Then χi’s are

F -linearly independent; that means
󰁓n

i=1 ciχi = 0 for some ci ∈ F implies that

ci = 0 for any i.

(A group homomorphism χ : G → F× is called a character of G.)

Proof of Proposition 6. Suppose χi’s are linearly dependent and take a non-trivial

linear relation with smallest number of non-zero coefficients. After relabelling, if

necessary, we can and will assume that

(1) c1χ1 + · · ·+ cmχm = 0

and ci ∕= 0 for any i. Since χ1 ∕= χ2 (notice that m cannot be 1), there is g0 ∈ G

such that χ1(g0) ∕= χ2(g0). By (1), for any g ∈ G, we have
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

c1χ1(g) + · · ·+ cmχm(g) = 0 ×χ1(g0)

c1 χ1(g0g)󰁿 󰁾󰁽 󰂀
χ1(g0)χ1(g)

+ · · ·+ cm χm(g0g)󰁿 󰁾󰁽 󰂀
χm(g0)χm(g)

= 0

which implies

c1(χ1(g0)χ1(g)− χ1(g0)χ1(g)) + · · ·+ cm(χ1(g0)χm(g)− χm(g0)χm(g)) = 0.

Therefore

c2(χ1(g0)− χ2(g0))χ2 + · · ·+ cm(χ1(g0)− χm(g0))χm = 0,

which means we have found a non-trivial linear relation with smaller number of

non-zero coefficients; and this is a contradiction. □

Theorem 7 (Hilbert’s Theorem 90). Suppose E/F is a finite Galois extension

and Gal(E/F ) = 〈σ〉. Let NE/F (α) :=
󰁔

τ∈Gal(E/F ) τ(α). Then

NE/F (α) = 1 ⇔ ∃β ∈ E,α =
σ(β)

β
.

Proof. (⇐) is true for any finite Galois extension:

NE/F (α) =
󰁜

τ∈Gal(E/F )

τ

󰀕
σ(β)

β

󰀖
=

󰁔
τ∈Gal(E/F )(τ ◦ σ)(β)
󰁔

τ∈Gal(E/F ) τ(β)
= 1.



MATH200C, LECTURE 4 5

(⇒) Let Tα : E → E, Tα(a) := ασ(a). Since σ ∈ Gal(E/F ), Tα is an F -linear

map. We want to find the minimal polynomial of Tα; so we start with computing

T k
α . Notice that

T 2
α(a) = Tα(Tα(a)) = Tα(ασ(a)) = ασ(ασ(a)) = (ασ(α))σ2(a).

Following the same idea, we can prove by induction on k that

(2) T k
α(a) = (ασ(α) · · · σk−1(α))󰁿 󰁾󰁽 󰂀

αk

σk(a).

In particular, we have T n
α (a) = NE/F (α)a where n = [E : F ]. Hence Tα satisfies

xn −NE/F (α). Notice that, for any τ ∈ Gal(E/F ),

τ(NE/F (α)) =
󰁜

σ∈Gal(E/F )

(τ ◦ σ)(α) =
󰁜

σ∈Gal(E/F )

σ(α) = NE/F (α);

and so NE/F (α) ∈ Fix(Gal(E/F )) = F. Therefore Tα satisfies xn − NE/F (α) ∈
F [x].

Claim. The minimal polynomial of Tα is xn −NE/F (α) if α ∕= 0.

Proof of Claim. Since Tα satisfies this polynomial, it is enough to show that

it does not satisfy a smaller degree polynomial in F [x]; and this is equivalent to

saying that I, Tα, . . . , T
n−1
α are F -linearly independent. Notice by (2) T k

α(a) =

αkσ
k. So if

󰁓n−1
i=0 fiT

i
α = 0, then

󰁓n−1
i=0 (fiαi)󰁿 󰁾󰁽 󰂀

∈E

σi = 0. Since I, σ, . . . , σn−1 :

E× → E× are distinct group homomorphisms, by the previous lemma they are

E-linearly independent. Hence fiαi = 0, which implies fi = 0 as αi ∕= 0 (since

α ∕= 0, we have αi ∕= 0); and claim follows.

If NE/F (α) = 1, then the minimal polynomial of Tα is xn − 1; hence it has

eigenvalue 1. Therefore there is β′ ∈ E such that Tα(β
′) = β′; this means

ασ(β′) = β′.

Thus for β := β′−1 we have α = σ(β)/β. □

The next lemma gives us the connection between Hilbert’s theorem 90 and

Galois’s theorem.

Proposition 8. Suppose µn := {ζ ∈ F | ζn = 1} has n distinct elements,

Gal(E/F ) ≃ Z/nZ. Then there is a ∈ F such that E = F [ n
√
a].
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Proof. As we have mentioned earlier µn is a cyclic group of order n. Suppose

µn = 〈ζn〉. Then NE/F (ζn) = ζnn = 1. Hence by Hilbert’s Theorem 90, there

is β ∈ E such that ζn = σ(β)
β

; this means σ(β) = ζnβ. we will continue next

time. □


