MATH200C, LECTURE 4

GOLSEFIDY

CYCLOTOMIC POLYNOMIALS

In the previous lecture we proved that
0 : Gal(Q[¢,)/Q) — (Z/nZ)*,0(0) = a, + nZ,

where 6((,,) = (% is an injective group homomorphism. And in order to show it

is an isomorphism, we defined the n-th cyclotomic polynomial:

o, () = H (x — (%) € Clz].

1<a<n,ged(a,n)=1

Lemma 1.
H P, /q(x) = 2" — 1.
djn

Proof.
n—1
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dln ged(i,n)=d,0<i<n

=11 1T (x — ¢

dln 0<j<n/d,ged(jn/d)=1

= H H (z — i/d)

dln 0<j<n/d,gcd(j,n/d)=1

= H (I)n/d(l’).

dln

Lemma 2. ¢, (z) € Zx].
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Proof. We proceed by strong induction on n. We have that ®(z) = z—1 € Zlx],
which gives us the base of induction. By the previous lemma, we have that

" —1

a Hd|n,d7$n Dy(x)

Therefore by the strong induction hypothesis, ®,,(x) is the quotient of a long

®,, ()

division of two monic integer polynomials; and so @, (z) € Z[z]. O
Theorem 3. ®,(x) is irreducible in Q[z].

Proof. We assume to the contrary that ®,(x) is reducible in Q[z]. Since ®,(x) is
monic integer polynomial, we deduce that there are integer polynomials f(x), g(z) €
Z[z] such that deg f,degg > 0 and ®,(x) = f(x)g(z). Since (, is a zero of
®,,(x), it should be a zero of f(z) or g(z). W.L.O.G. we can and will assume
that f(¢,) =0.

Claim. Suppose p is prime and p {n. Then if f(¢) =0, then f(¢?) = 0.

Proof of Claim. Suppose to the contrary that f(¢?) # 0. Since ( is a zero of
f(z), it is a zero of @, (z); hence o(¢) = n. Asp1{n, o(¢?) = n; and so ®,,(¢P) = 0;
and so g(¢?) = 0. Hence

meo(r)|f(2), and m¢o(x)]g(a?).

Since f(z) and g(zP) are monic integer polynomials, using Euclid’s algorithm we
can deduce that h(z) := ged(f(x),g(«P)) is a monic integer polynomial. Since
meo(z)|h(z), we have that degh > 0. Thus there are polynomials r, s € Z[z]
such that

f(@) = h(z)r(z), and g(a”) = h(z)s(z).

Let’s view both sides modulo p. So we get
f(x) = h(2)7(z), and g(2)? = h(x)5(x).

This implies that ged(f,g) # 1; and so f(z)g(z) has multiple zeros in F,. So
®,,(x) (mod p) should have multiple zeros in F,. But ®,(x) divides 2™ — 1 and
2™ — 1 does not have multiple zeros in F, as ged(z"™ — 1,nz""!) = 1 (we have this
as ptn), which gives us a contradiction. O
Claim. f(¢%) =0 if ged(a,n) = 1.
Proof of Claim. One can easily deduce this by induction on the number of

prime factors of a and using the previous Claim. O
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The above claim implies that deg f = ¢(n) = deg ®,,; and so deg g = 0, which

is a contradiction. d
Overall we get
Theorem 4. Q[(,]/Q is a Galois extension, and
0 : Gal(Q[¢n]/Q) — (Z/nZ)",0(0) := ae + ni
where 0((,) = (% is a group isomorphism.

Proof. We have already proved that € is an injective group homomorphism. By

the previous Theorem we have m¢, o(z) = ®,(z); and so

|Gal(Q[G]/Q)| = [Ql¢a] : Q] = degmy, o() = deg ®n(w) = ¢(n) = |(Z/nZ)"].

This implies that 6 is onto; and claim follows. [l

SOLVABILITY BY RADICALS

Long ago we mentioned that a lot of algebra had been developed to find zeros
of polynomials. For a given polynomial f(x) € Fx], people tried to find its zeros
using +, —, %, /, and /.. In modern language we say f(x) is solvable by radicals

over F' if there is a chain of fields
F=FCFC---CF,

such that Fj, = Fy[ ™y/ax] for some a;, € Fj, and F), has a zero of f(z). Suppose
the characteristic of F' is zero and F” is the normal closure of F}, over F'. Then by
a result that you have proved in your HW assignment we have that Gal(F'/F’)
is solvable. This is proved by Galois; he proved the converse of this statement as

well and these were his main motivations to work on field theory.

Theorem 5. Suppose char(F') =0, f(z) € F[z] is irreducible, and E is a splitting
field of f(x) over F; then f(z) is solvable by radicals over F if and only if
Gal(E/F) is solvable.

For the remaining part of this lecture we focus on proving the “if” part of this

Theorem. The following is an important result that has many applications.



4 GOLSEFIDY

Proposition 6 (Independence of characters). Suppose G is a group, F is a field,
and X1,...,Xn : G = F* are distinct group homomorphisms. Then x;’s are
F-linearly independent; that means ., c;x; = 0 for some ¢; € F implies that
¢i =0 for any 1.

(A group homomorphism x : G — F* is called a character of G.)

Proof of Proposition 6. Suppose x;’s are linearly dependent and take a non-trivial
linear relation with smallest number of non-zero coefficients. After relabelling, if

necessary, we can and will assume that
(1) axi1+ -+ enxm =0

and ¢; # 0 for any i. Since y; # x2 (notice that m cannot be 1), there is gy € G
such that x1(g0) # x2(g0)- By (1), for any g € G, we have

caxi(g) + -+ cmxm(g) =0 xx1(90)
c1 X1(909) +- -+ ¢cm xm(gog) =0
—— N——

x1(g0)x1(g) Xm (90)Xm (9)
which implies
c1(x1(90)x1(9) — x1(g0)x1(9)) + - - + em(x1(90)Xm(9) — Xm(90)Xm(g)) = 0.

Therefore

ca(x1(g0) — x2(90))x2 + - + cm(x1(90) = Xm(90))Xm = 0,

which means we have found a non-trivial linear relation with smaller number of

non-zero coefficients; and this is a contradiction. 0

Theorem 7 (Hilbert’s Theorem 90). Suppose E/F is a finite Galois extension
and Gal(E/F) = (o). Let Ng/r(a) == I cqam/r 7(). Then

o(B)

Proof. (<) is true for any finite Galois extension:

- a(B) - HTeGal(E/F)(TOU)(B) B
H ( B )_ HTGGal(E/F)T(B) -

NE/F(Oé) =
T€Gal(E/F)
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(=) Let T, : E — E,T,(a) := ac(a). Since 0 € Gal(E/F), T, is an F-linear
map. We want to find the minimal polynomial of T,; so we start with computing
T*. Notice that

Ta(a) = Tu(Tua(a)) = Ta(ao(a)) = ac(ac(a)) = (ao(a))o*(a).
Following the same idea, we can prove by induction on k that

(2) Ta(a) = (ao(a) - 0" (a)) o*(a).

In particular, we have T7)(a) = Ng/p(o)a where n = [E : F|. Hence T, satisfies
x" — Ng/p(a). Notice that, for any 7 € Gal(E/F),

Wer@) = I Geoda)= [ ofe)=Narla)
o€Gal(E/F) oE€Gal(E/F)
and so Ng/p(a) € Fix(Gal(E/F)) = F. Therefore T, satisfies 2" — Ng/p(a) €

Claim. The minimal polynomial of T, is 2™ — Ng,/p(a) if o # 0.

Proof of Claim. Since T, satisfies this polynomial, it is enough to show that
it does not satisfy a smaller degree polynomial in F'[x]; and this is equivalent to
saying that I,T,,...,T"" ! are F-linearly independent. Notice by (2) T¥(a) =
aro®. So if ' fTE = 0, then Y0 (fiw) o' = 0. Since I,0,...,0"" :

—~—

€E
E* — E* are distinct group homomorphisms, by the previous lemma they are

E-linearly independent. Hence f;a; = 0, which implies f; = 0 as «; # 0 (since
a # 0, we have «; # 0); and claim follows.

If Ngp(a) = 1, then the minimal polynomial of Tj, is ™ — 1; hence it has
eigenvalue 1. Therefore there is 8 € E such that T,(5’) = /#’; this means

ac(f) =7
Thus for 8 := 37! we have a = o(3)/0. O

The next lemma gives us the connection between Hilbert’s theorem 90 and

Galois’s theorem.

Proposition 8. Suppose p, = {{ € F|{" = 1} has n distinct elements,
Gal(E/F) ~Z/nZ. Then there is a € F such that E = F[{/a].
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Proof. As we have mentioned earlier pu, is a cyclic group of order n. Suppose
pn = (Cn). Then Ng/p((n) = ¢ = 1. Hence by Hilbert’s Theorem 90, there
is § € E such that (, = %; this means o(f) = (,8. we will continue next
time. 0]



