Lecture 8: Step 3 of Selberg's proof of local rigidity Sunday, January 22, 2017 Step 3 Let VeIn. (1) Then $T_{\gamma} := C_{SL(\mathbb{R})}(T)$ is abelian. 2 Let In = { y'= In | y' has positive eigen-values }. Then $\Gamma_{\gamma}^{+} \simeq \mathbb{Z}^{n-1}$ (3) Suppose $P_t(T)$ is a cocompact lattice in $SL_n(TR)$ and $\ker P_t = 1$. Then $\frac{\log \lambda_i(f_t(\alpha))}{\log \lambda_j(f_t(\alpha))} = \frac{\log \lambda_i(\alpha)}{\log \lambda_j(\alpha)}$ for any $\alpha \in T_{\chi}^+$ where as always Σ_i (s) is the ith eigenvalue of a in some ordering. Similarly $\frac{\log \left[\lambda_i(p(a'))\right]}{2} = \frac{\log \left[\lambda_i(a')\right]}{2} \quad \text{for any } a' \in I_{\mathcal{Y}}.$ $\log \left| \lambda_{j} \left(\rho_{t} \left(\alpha' \right) \right) \right| \log \left| \lambda_{j} \left(\alpha' \right) \right|$ Lemma. Suppose I' is a cocompact lattice in G. Then, for any $Y \in I'$, $C_{II}(Y)$ is a cocompact lattice in $C_{CI}(Y)$. Proof. There is a natural embedding $G(Y)/C_{\mu}(Y) \longrightarrow G/{\mu}$. It is enough to show it is a proper map, i.e. preimage of a compact set is compact.

Lecture 8: Centralizer of an element of
$$\Gamma$$

Monday, January 23, 2017 3:16 AM
Let C be a compact subset of G. The preimage of CI/I
curder the above embedding is $(CI \cap C_{q}(Y)) C_{p}(Y)/C_{q}(Y)$.
Suppose $(C \lambda) Y = Y (C \lambda)$. So
 $\lambda Y \Lambda^{-1} = C^{-1} Y C = C^{-1} Y C \cap T$.
 $Compact$ discrete.
Therefore there is a finite set \tilde{T} of conjugates of Y
which can be written as $\lambda Y \Lambda^{-1}$ where $\lambda \in T$ and $\exists C \in C$
st. $C \lambda \in C_{q}(Y)$. Hence
 $\{Y \in C_{p}(Y)\} = c \in C, c \Lambda \in C_{q}(Y)\} =: T$
is a finite subset of $G/C_{p}(Y)$.
So $(CT \cap C_{q}(Y)) C_{p}(Y)/C_{p}(Y) \subseteq C F/C_{q}(Y)$
Some of its consequences
 $If Y \in I^{C}$, then $\exists g \in SL_{n}(\mathbb{R}), g C_{SL_{q}(\mathbb{R})}(Y) g^{+} \subseteq diag.$
 $\Rightarrow C_{I}(N) =: I_{Y}$ is abelians and $g I_{Y}^{+} g^{-1}$ is a cocompact
lattice in $\S [^{N_{1}} .] | II a_{i}=1, a_{i} \in \mathbb{R}^{+} \S \xrightarrow{\sim} \S(x_{Y} ..., x_{N}) \in \mathbb{R}|$
 $Z \times_{i} = 0$

Lecture 8: Proof of Step 3: cocompact flats
Mondey, January 23, 2017
Hence
$$C_{p}(Y) \simeq \mathbb{Z}^{n-4}$$
 (culy ?),
alphich implies parts 0 and 0 of Step 3.
Claim. If I is a cocompact lattice in $SL_{n}(\mathbb{R})$, then
any element of I is semisimple, i.e. diagonalizable over C.
Proof of chim. Any VeI can be curitten in its Jordan
form over C, which implies that $Y = S \cdot U$ where S is
semisimple, U is Unipotent, and $SU=US$. So $U \in C_{SL_{n}(\mathbb{R})}(S)$.
Using the real version of Jordan form, one can see
that $\exists a_{i} \in C_{SL_{n}(\mathbb{R})}(S)$ st. $a_{i}Ua_{i}^{i} \rightarrow I$. So $a_{i}Ya_{i}^{i} \rightarrow S$.
Hence Se Closure of the conjugacy class of Y. On the
other hand, let F be a compact set st. $FI=G$,
then ${}^{2}g Y g^{-1} [g \in G_{i}^{2} = {}^{2}k Y'Y Y^{-1}k^{-1}]k \in F$, $Y \in I'_{i}^{2}$
culture. Suppose $V \in I^{(T)}$, $f_{i}(T)$ is a cocompact battice in $SL_{n}(\mathbb{R})$,
and $\ker(f_{i}) = I$. Then $f_{i}(Y)$ is \mathbb{R} -regular.

Lecture 8: Proof of Step 3: cocompact flats Monday, January 23, 2017 9:17 AM Proof of Claim. By the above discussion, Cy (V) is abelian. Hence $C_{P_{t}(T_{1})}(P_{t}(\gamma))$ is abelian, and at the same time a cocompact Lattice in C_{SL(R)} (P(S)). Now suppose to is the smallest value at which $p_{to}(x)$ has two equal eigen-values. In particular, for any o <t < to, all of eigen-values of p(x) are real. By the previous claim, $f_{t_o}(x)$ is diago. over \mathbb{R} Hence $C_{SL,QR}(\mathcal{A}(\mathcal{X}))$ contains a copy of $SL_2(\mathbb{R})$. So the following version of Borel's density theorem, implies a copy of $SL_2(\mathbb{R})$ is in the Zariski-closure of $C_{\mu(T)}(\rho_{t}(n))$, which implies $C_{P(T)}(P_{t}(X)) = P_{t}(C_{T}(X))$ is NOT abelian. That is a contradiction. Theorem (Bonel's density theorem) Suppose Γ is a lattice in G(R) where G is an alg. group/R. Then the Zariski-closure H of Γ contains G(R) := $\langle u | u \in G(R), unip \rangle$. <u>Pf.</u> By Chevalley's theorem, $\exists p: G \rightarrow GL(V)$ and $[v_{\sigma}] \in P(V)$ s.t. $H = \{g \in G \mid P(g) [v_i] = [v_i]\}$. If $G(\mathbb{R})^{\dagger} \notin H$, then there is a unip. $u \in G(\mathbb{R})$ sit. $p(u) Iv_J \neq Iv_J$.

Lecture 8: Proof of Step 3: chamber preserving maps
Monday, January 23, 2017 2:30 PM

$$\exists a nbhd O of [v_{i}] st. [neZ^{+}] p(u^{n}) [v] \in OS[<\infty,$$

for any $[v] \in O$, i.e. no point in O is a p(u)-recurrent
point which contradicts Poincaré's recurrence theorem. \blacksquare
Suppose $\forall \in I^{(n)}$. After changing p_{i} by a continuous conjugation
and T by a conjugation, we can assume
 $C_{\mu}(Y) \subseteq ding$ and $C_{\mu(T)}(p_{i}(Y)) \subseteq diag$.
Hence $\Delta_{i} = g \log x \mid x = g^{2}$ for some $g \in C_{\mu(T)}(f_{i}(Y))$ is a
lattice in $DC := g(x_{1}, ..., x_{n}) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i} = oS$. For a permutation
 $\sigma \in S_{n}$, let $U_{0}^{+} := g : X \in \mathbb{R} \mid X_{O_{1}} < X_{O_{2}} < ... < X_{O_{n}} S$. Then \exists
isomorphisms $\Phi_{i} : \Delta_{0} \rightarrow \Delta_{i}$ st. $D = \Phi_{i}$ is continuous current
 $\left(\begin{array}{c} \Theta_{i} (U) (\Delta_{0} \cap U_{0}^{+}) \right) = \begin{array}{c} \Theta_{i} (\Delta_{1} \cap U_{0}^{+}) \\ \sigma \in S_{n} \\ \text{and}, \text{ for any } U \in \Delta_{1} \cap U_{0}^{+}, U = \Theta_{i}(x) \\ \text{is path-connected} \\ to $\Phi_{i}(U)$, we have
 $\forall \sigma, \Phi_{i}(\Delta_{0} \cap U_{0}^{+}) = \Delta_{i} \cap U_{0}^{+}.$$

Lecture 8: Proof of Step 3: chamber preserving maps Monday, January 23, 2017 3:09 PM So to finish Proof of Step 3, it is enough to prove the tollowing lemma: Lemma . Let Δ, Δ' be two lattices in $\mathcal{M} := \{ X \in \mathbb{R}^n \mid \Sigma_X := o \}$. Let $\Theta: \pi \to \pi$ be a linear bijection. Suppose any ore Sn. Then θ is scaling, i.e. $\exists c \in \mathbb{R}^+$, $\theta(v) = cv$ We start with the following Lemma. (directional density of lattices) Lemma. Let V be a finite-dimensional IR-vector space, and let A be a lattice in V. Then 2 Rr | VEALZOSS is dense in the projective space P(V). proof. Since Δ is a lattice in V, $\exists v_1, ..., v_n \in \Delta$ s.t. $\Delta = \bigoplus_{i=1}^{n} \mathbb{Z} v_{i} \quad \text{and} \quad V = \bigoplus_{i=1}^{n} \mathbb{R} v_{i} \cdot As \ (c_{i}, \dots, c_{n}) \vdash p \sum c_{i} v_{i}$

Lecture 8: Proof of Step 3: chamber preserving maps
Tweaday, January 24, 2017 8:39 MM
induces a homeomorphism from
$$P(\mathbb{R})$$
 to $P(V)$, we can and
cuill assume that $\Delta = \mathbb{Z}^n$ and $V = \mathbb{R}^n$. Now we deduce the
claim using the facts that $\frac{1}{2}\mathbb{R} \cdot [v \in \mathbb{Z}^n \setminus o_s^n] = \frac{1}{2}\mathbb{R} \cdot [v \in \mathbb{Q}^n \setminus o_s^n]$
and \mathbb{Q} is dense in \mathbb{R} .
Continue. Let V be a subspace, let Δ_1, Δ_2 be lattices in V ,
let C be a cone base at the origin, i.e. $v \in C \Rightarrow \mathbb{R}^+ v \in C$.
Suppose $\overline{C} = \mathbb{C}$. Let $\Theta: V \rightarrow V$ be an \mathbb{R} -linear isomorphism s.t.
 $\mathbb{D} \quad \Theta(\Delta_1) = \Delta_2 \otimes \Theta(\Delta_1 \cap \mathbb{C}) = \Delta_2 \cap \mathbb{C}$.
Then $\Theta(\mathbb{C}) = \mathbb{C}$.
Proof. $\forall v = \mathbb{C}$, by the density of directions in Δ_1 , $\exists v_{n,q} \in \Delta_1$
s.t. $\mathbb{R} \cdot v_{n,\Delta} \rightarrow \mathbb{R}^+ v$. Changing v_{n,Δ_1} to $-v_{n,\Delta_1}$ if needed, we
can assume that $\mathbb{R}^+ v_{n,\Delta_1} \rightarrow \mathbb{R}^+ v$. For $n \gg 1$, we have
 $v_{n,\Delta_1} \in \Delta_1 \mathbb{C}$. Therefore

Lecture 8: Proof of Step 3: chamber preserving maps Tuesday, January 24, 2017 $\frac{\Theta(v_{n,\Delta})}{\left\|\Theta(v_{n,\Delta})\right\|} \in \left\{ u \in C \mid \|u\| = 1\right\} = :C^{1} \text{ Hence } \frac{\Theta(v)}{\left\|\Theta(v)\right\|} \in \overline{C^{1}}$ Since Θ is an isomorphism, $w \mapsto \Theta_1 \oplus \Theta_2$ is a homeomorphism $\|\Theta(w)\|$ from $\xi u \in V$ ($\|u\| = 1\xi$ to itself. Hence $\Theta_1(C^1)$ is open. Therefore by the above argument $\theta_1(C^1) \subseteq \overline{C^1}$. Since $\overline{C} = C$, we get $\Theta_1(C^1) \subseteq C^1$. Similarly we get $\theta_1^{-1}(\mathcal{C}^1) \subseteq \mathcal{C}^1$. So $\theta_1(\mathcal{C}^1) = \mathcal{C}^1$, and $\theta(\mathcal{C}) = \mathcal{C}$. Let's go back to the proof of Lemma. Using the above corollary, for any $\sigma \in S_n$, $\Theta(\Omega_{\sigma}^+) = \Omega_{\sigma}^+$ Notice that DC has n-1 walls, $\binom{n-1}{2}$ faces, ..., $\binom{n-1}{k}$ faces, ..., n-1 faces (codim. 1) of codim 2 of codim k of dim 1 Any face of codim k+1 is intersection of exactly two faces of codim k. Hence by induction we have that $\Theta(F) = F$ for any face F of OCT. In particular one-dimensional faces are eigen-directions of θ . One of 1-dimensional faces

Lecture 8: Proof of Step 3: chamber preserving maps Tuesday, January 24, 2017 9:09 AM of \mathcal{M}_{id}^+ is $\mathbb{R}^+(n-1,-1,\dots,-1)$ which is $\{(x_1,\dots,x_n) \mid x_n\}$ $X_1 > X_2 = \cdots = X_n$, $\sum x_i = o$ Hence $\mathbb{R}^{+}(-1, ..., n-1, ..., -1)$ is a 1-din face of $\mathcal{D}_{(1, n-1)}^{+}$ Therefore $\exists c_i \in \mathbb{R}^+$ s.t. $\theta(ne_i - \sum_{j=1}^n e_j) = c_i (ne_i - \sum_{j=1}^n e_j).$ Let $v_k = ne_k - \sum_{j=1}^n e_j$. So $\sum_{i=1}^n v_i = o$ and v_1, \dots, v_{n-1} are linearly independent. Thus $-\mathcal{V}_{n} = \sum_{i=1}^{n} \mathcal{V}_{i} \implies \Theta(-\mathcal{V}_{n}) = \sum_{i=1}^{n} \Theta(\mathcal{V}_{i})$ $\implies -C_n \mathcal{V}_n = \sum_{i=1}^{n} C_i \mathcal{V}_i$ $\implies -\mathcal{V}_n = \sum_{i=1}^{n-1} \frac{C_i}{C_n} \mathcal{V}_i$ Since $v_1, ..., v_{n-1}$ are linearly independent $\frac{C_i}{C_n} = 1$ for any i. So $\Theta(v_i) = c v_i$, which implies $\Theta(v) = cv$ for any veV. 🔳 Remark. Here we proved "irreducible spherical apartments are rigid under linear maps": The simplicial decomposition attached to Elto g on the unit sphere.