In the first lecture, we recalled what a vector is. How a vector can be described or represented.

How we can do algebra with vectors, and how the algebra can be visualized.
Conceptual: A vector carries two information
(1) direction
(2) magnitude or length.

For example you can think about movement.
. Go towards north $\underbrace{\text { (2) }}_{(1)} \frac{5 \text { miles. }}{(2)}$

- Go towards north-west for $\frac{1 \text { mile. }}{\text { (2) }}$
we can use angle to talk about a general direction in a plane.

Important remark. The movement itself is what we are interested in, and NOT the initial and terminal points.

For two people from the points A and B can move towards north for 1 mile, and reach to the
 points A^{\prime} and B^{\prime}.

They are doing the same movement. So

$$
\overrightarrow{A A^{\prime}}=\overrightarrow{B B^{\prime}} .
$$

(same direction and same length, but different initial points.)
. If you are in Manhattan and ask for direction, you do not expect to hear "go towards north west for 1 miles"! Rather you'd like to hear "go north for 4 blocks and go west for 4 blocks".

In mathematical language, we can use $x y$-axis
 to describe a vector.

Ex.

Ex. What is $\vec{P}_{1} P_{2}$ in the previous example?
Looking at the picture and thinking about the movement from P_{1} to P_{2} we see that one should go 5 steps towards the negative direction of the x-axis and 1 step towards the negative direction of the y-axis. So

$$
\overrightarrow{P_{1} P_{2}}=(-5,-1)
$$

General Rule. $A_{1}=\left(x_{1}, y_{1}\right)$ and $A_{2}=\left(x_{2}, y_{2}\right)$
Then $\vec{A}_{1} A_{2}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right)$
Coordinates of the Coordinates of the

Ex. Compute the components of $\overrightarrow{A B}$ where $A=(1,-1)$ and $B=(4,2)$.

Solution.

$$
\begin{aligned}
\overrightarrow{A B} & =\left(x_{B}-x_{A}, y_{B}-y_{A}\right) \\
& =(4-1,2-(-1)) \\
& =(3,3) .
\end{aligned}
$$

How can we go back and forth between these two ways of describing a vector?

Using components is perfect for doing computations and the geometric interpretation is perfect for visualizing and getting a good intution about the algebraic manipulation of vectors.

Direction and length $\mathrm{H} \rightarrow$ Coordinates

Suppose length of $\overrightarrow{O A}$ is r and it makes angle θ with the positive direction of the x-axis.

Then, since the triangle $O A H$ is a right triangle, $|\cos \theta|=\frac{|O H|}{|O A|} \sim$ length of the segment $O H$.
So $|O H|=r|\cos \theta|$. In fact one can see that the x-compon. of $\overrightarrow{O A}$ is $r \cos \theta$. Similarly one can see that the y-comp.
of $\overrightarrow{O A}$ is $r \sin \theta$. So

$$
\overrightarrow{O A}=(r \cos \theta, r \sin \theta)
$$

Coordinates \longrightarrow Direction and length.

$$
\xrightarrow[0]{A} \quad \text { Since } O A H \text { is a right triangle, }
$$

Length of a vector \vec{v} is denoted by $\|\vec{v}\|$. It is also called norm of \vec{v} or magnitude of \vec{v}. So

$$
\|\overrightarrow{O A}\|^{2}=|x|^{2}+|y|^{2}=x^{2}+y^{2} \text {. Hence }
$$

If $\vec{v}=(x, y)$, then $\|\vec{v}\|=\sqrt{x^{2}+y^{2}}$.
Using the above mentioned equations for $\cos \theta$ and $\sin \theta$ we get :

- Having two vectors \vec{v} and \vec{w} and thinking about them as movements, we can "do them" one after another.

Starting from a point A, first we move according to \vec{v} and then
we continue according to \vec{w}.
Instead we can directly go to
C. We denote this by $+\cdot \overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$

Lecture 1: Vectors
Friday, September 23, 2016 2:45 PM
In fact, one can see that $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$.
In particular it does not matter in which order we apply \vec{v} and \vec{w};
we end up to the same end point. Geometrically we have:

From this picture, we can get two rules to visualize

