Ex. Let $\vec{v}=(t, 2 t, 1)$. Then
(a) $\vec{v} \cdot(-2 \vec{i}+\vec{j})=0$ for any t
(b) Find all t such that $\vec{v} \cdot(\vec{i}+\vec{j}+\vec{k})=0$.

Solution. (a) $\vec{v} \cdot(-2 \vec{i}+\vec{j})=-2 \vec{v} \cdot \vec{i}+\vec{v} \cdot \vec{j}$

$$
=-2 t+2 t=0
$$

(b) $\vec{v} \cdot(\vec{i}+\vec{j}+\vec{k})=\vec{v} \cdot \vec{i}+\vec{v} \cdot \vec{j}+\vec{v} \cdot \vec{k}$

$$
\begin{aligned}
& \quad=t+2 t+1=3 t+1=0 \\
& \Rightarrow t=-1 / 3
\end{aligned}
$$

Basic algebraic properties:
(a) $(c \vec{v}) \cdot \vec{w}=c \vec{v} \cdot \vec{w}=\vec{v} \cdot(c \vec{w})$
(b) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$
(c) $\vec{v} \cdot\left(\overrightarrow{w_{1}}+\overrightarrow{w_{2}}\right)=\vec{v} \cdot \overrightarrow{w_{1}}+\vec{v} \cdot \overrightarrow{w_{2}}$.

Next we will see Geometric Properties of inner product.

Lecture 4: Length and direction of a 3D vector

Before we tall about geometric properties of inner product, let's see how we can compute length of a SD vector, and how we can encode "direction" of a SD vector.

Length of a 30 vector.

$$
\begin{aligned}
O P^{2} & =P H^{2}+O H^{2} \quad \begin{array}{c}
\text { (since } P \hat{P H O} \text { is a } \\
\text { right angle triangle.) }
\end{array} \\
& =c^{2}+O Q^{2}+Q H^{2}
\end{aligned}
$$

(since $\widehat{\mathrm{HQO}}$ is a right angle triangle)

$$
=c^{2}+a^{2}+b^{2}
$$

So, if $\vec{v}=(a, b, c)$, then

$$
\|\vec{v}\|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

How about direction? In 2D we used an angle to encode direction, but this does NOT work in SD. Let's go back to 2D: we found out

$$
\begin{aligned}
& \vec{v}=(r \cos \theta, r \sin \theta)=r(\cos \theta, \sin \theta) \\
& \text { So } \vec{v}=\|\vec{v}\| \underbrace{(\cos \theta, \sin \theta)} \\
& \text { The vector of length } 1 \\
& \text { in the direction of } \vec{v} .
\end{aligned}
$$

Lecture 4: The unit vector in the direction of a vector
Friday, September 30, 2016 8:30 AM
So the best way of encoding "the direction" of a given vector \vec{v} is using the unit vector $\overrightarrow{e_{\vec{v}}}$ in the same direction as
\vec{v}, in which case we have

$$
\vec{v}=\|\vec{v}\| \vec{e}_{\vec{v}}
$$

Therefore we get
The unit vector $\overrightarrow{{ }_{\vec{v}}}$ in the direction of \vec{v} is given by $\frac{\vec{v}}{\|\vec{v}\|}$. And we say that we have normalized \vec{v}.

Ex. Find the unit vector in the direction of $\vec{v}=(1,2,-3)$.
Solution. $\|(1,2,-3)\|=\sqrt{(1)^{2}+(2)^{2}+(-3)^{2}}=\sqrt{1+4+9}$

$$
=\sqrt{14}
$$

So $\vec{e}_{\vec{v}}=\frac{1}{\sqrt{14}}(1,2,-3)=\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}\right)$.
Ex. Normalize $\vec{v}=(3,0,-4)$.
Solution. We have to find $\frac{\vec{v}}{\|\vec{v}\|}$. Let's start with

$$
\|\vec{v}\|=\sqrt{(3)^{2}+(0)^{2}+(-4)^{2}}=\sqrt{9+0+16}=5 . \text { So } \frac{\vec{v}}{\|\vec{v}\|}=\left(\frac{3}{5}, 0, \frac{4}{5}\right) \text {. }
$$

Lecture 4: Geometric properties of inner product
Friday, September 30, 2016
Let $\vec{v}=(a, b, c)$.

$$
\vec{v} \cdot \vec{v}=(a)(a)+(b)(b)+(c)(c)=a^{2}+b^{2}+c^{2}=\|\vec{v}\|^{2}
$$

This gives us the first geometric property of inner product.

$$
\vec{v} \cdot \vec{v}=\|\vec{v}\|^{2}
$$

Let \vec{v} and \vec{w} be two vectors. Draw them in a way that they have a common initial point.

The angle between these segments is called the angle between \vec{v} and \vec{w}.

Here is the extremely important property of inner product:

$$
\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
$$

why?
math20c-f-16 Page 5

