7. Study Guide for Math 120A Midterm 1 (Friday October 17, 2003)
(1) $\mathbb{C}:=\{z=x+i y: x, y \in \mathbb{R}\}$ with $i^{2}=-1$ and $\bar{z}=x-i y$. The complex numbers behave much like the real numbers. In particular the quadratic formula holds.
(2) $|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}},|z w|=|z||w|,|z+w| \leq|z|+|w|, \operatorname{Re} z=\frac{z+\bar{z}}{2}$, $\operatorname{Im} z=\frac{z-\bar{z}}{2 i},|\operatorname{Re} z| \leq|z|$ and $|\operatorname{Im} z| \leq|z|$. We also have $\overline{z w}=\bar{z} \bar{w}$ and $\overline{z+w}=\bar{z}+\bar{w}$ and $z^{-1}=\frac{\bar{z}}{|z|^{2}}$.
(3) $\left\{z:\left|z-z_{0}\right|=\rho\right\}$ is a circle of radius ρ centered at z_{0}.
$\left\{z:\left|z-z_{0}\right|<\rho\right\}$ is the open disk of radius ρ centered at z_{0}.
$\left\{z:\left|z-z_{0}\right| \geq \rho\right\}$ is every thing outside of the open disk of radius ρ centered at z_{0}.
(4) $e^{z}=e^{x}(\cos y+i \sin y)$, every $z=|z| e^{i \theta}$.
(5) $\arg (z)=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}$ and $\operatorname{Arg}(z)=\theta$ if $-\pi<\theta \leq \pi$ and $z=$ $|z| e^{i \theta}$. Notice that $z=|z| e^{i \arg (z)}$
(6) $z^{1 / n}=\sqrt[n]{|z|} e^{i \frac{\arg (z)}{n}}$.
(7) $\lim _{z \rightarrow z_{0}} f(z)=L$. Usual limit rules hold from real variables.
(8) Mapping properties of simple complex functions
(9) The definition of complex differentiable $f(z)$. Examples, $p(z), e^{z}, e^{p(z)}$, $1 / z, 1 / p(z)$ etc.
(10) Key points of e^{z} are is $\frac{d}{d z} e^{z}=e^{z}$ and $e^{z} e^{w}=e^{z+w}$.
(11) All of the usual derivative formulas hold, in particular product, sum, and chain rules:

$$
\frac{d}{d z} f(g(z))=f^{\prime}(g(z)) g^{\prime}(z)
$$

and

$$
\frac{d}{d t} f(z(t))=f^{\prime}(z(t)) \dot{z}(t)
$$

(12) $\operatorname{Re} z, \operatorname{Im} z, \bar{z}$, are nice functions from the real - variables point of view but are not complex differentiable.
(13) Integration:

$$
\int_{a}^{b} z(t) d t:=\int_{a}^{b} x(t) d t+i \int_{a}^{b} y(t) d t
$$

All of the usual integration rules hold, like the fundamental theorem of calculus, linearity and integration by parts.

