BRUCE K. DRIVER[†]

- 7. Study Guide for Math 120A Midterm 1 (Friday October 17, 2003)
 - (1) $\mathbb{C} := \{z = x + iy : x, y \in \mathbb{R}\}$ with $i^2 = -1$ and $\overline{z} = x iy$. The complex numbers behave much like the real numbers. In particular the quadratic formula holds.
 - (2) $|z| = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}, |zw| = |z| |w|, |z+w| \le |z| + |w|, \operatorname{Re} z = \frac{z+\overline{z}}{2},$ $\operatorname{Im} z = \frac{z-\overline{z}}{2i}, |\operatorname{Re} z| \le |z| \text{ and } |\operatorname{Im} z| \le |z|.$ We also have $\overline{zw} = \overline{z}\overline{w}$ and $\overline{z+w} = \overline{z} + \overline{w}$ and $z^{-1} = \frac{\overline{z}}{|z|^2}.$ (3) $\{z: |z-z_0| = \rho\}$ is a circle of radius ρ centered at z_0 .
 - $\{z : |z z_0| < \rho\}$ is the open disk of radius ρ centered at z_0 . $\{z : |z z_0| \ge \rho\}$ is every thing outside of the open disk of radius ρ centered at z_0 .
 - (4) $e^z = e^x (\cos y + i \sin y)$, every $z = |z| e^{i\theta}$.
 - (5) $\arg(z) = \left\{\theta \in \mathbb{R} : z = |z|e^{i\theta}\right\}$ and $Arg(z) = \theta$ if $-\pi < \theta \le \pi$ and $z = |z|e^{i\theta}$. Notice that $z = |z|e^{i\arg(z)}$
 - (6) $z^{1/n} = \sqrt[n]{|z|} e^{i \frac{\arg(z)}{n}}.$
 - (7) $\lim_{z\to z_0} f(z) = L$. Usual limit rules hold from real variables.
 - (8) Mapping properties of simple complex functions
 - (9) The definition of complex differentiable f(z). Examples, p(z), e^z , $e^{p(z)}$, 1/z, 1/p(z) etc.
 - (10) Key points of e^z are is $\frac{d}{dz}e^z = e^z$ and $e^z e^w = e^{z+w}$.
 - (11) All of the usual derivative formulas hold, in particular product, sum, and chain rules:

$$\frac{d}{dz}f(g(z)) = f'(g(z))g'(z)$$

and

$$\frac{d}{dt}f\left(z\left(t\right)\right) = f'\left(z\left(t\right)\right)\dot{z}\left(t\right).$$

- (12) Re z, Im z, \overline{z} , are nice functions from the real variables point of view but are **not** complex differentiable.
- (13) Integration:

$$\int_{a}^{b} z\left(t\right) dt := \int_{a}^{b} x\left(t\right) dt + i \int_{a}^{b} y\left(t\right) dt.$$

All of the usual integration rules hold, like the fundamental theorem of calculus, linearity and integration by parts.

22