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11. APPROXIMATION THEOREMS AND CONVOLUTIONS
Let (X, M, 1) be a measure space, A C M an algebra.

Notation 11.1. Let Sf(A, 1) denote those simple functions ¢ : X — C such that
“1({\}) € Afor all A € C and u(¢ # 0) < co.

For ¢ € Sy(A, p) and p € [1,00), [¢[" =34 |2[P1{4=-) and hence

/ 0 dpp = 3 2P (6 = 2)

z#0
so that S¢(A, p) C LP(p).

Lemma 11.2 (Simple Functions are Dense). The simple functions, Sy(M, 1), form
a dense subspace of LP(u) for all 1 < p < 0.

Proof. Let {¢,},-, be the simple functions in the approximation Theorem
7.12. Since |on| < |f] for all n, ¢, € Sp(M, p) (verify!) and

[f = ¢nl” < (If] + l6n))” < 27| f[P € L.

Therefore, by the dominated convergence theorem,

lim /\f—¢n|pdu=/ Hm |f — én|Pdp = 0.
| |

Theorem 11.3 (Separable Algebras implies Separability of LP — Spaces). Suppose
1<p<ooand AC M is an algebra such that o(A) = M and p is o-finite on
A. Then S¢(A, p) is dense in LP(n). Moreover, if A is countable, then LP(u) is
separable and

D= {Zale ta; € Q+1iQ, Aj € A with p(A;) < oo}
is a countable dense subset.

Proof. First Proof. Let X}, € A be sets such that p(Xy) < oo and Xj T X as
k — oo. For k € N let Hj, denote those bounded M — measurable functions, f, on

X such that 1x, f € Sy(A, M)LP(#). It is easily seen that Hy, is a vector space closed

under bounded convergence and this subspace contains 14 for all A € A. Therefore

by Theorem 8.12, Hy, is the set of all bounded M — measurable functions on X.
For f € LP(u), the dominated convergence theorem implies 1 Xm{l f‘<k} f—1rf

in LP(p) as kK — oco. We have just proved Lx,nqfi<kyf € Sp(A, p) u) ! for all k

and hence it follows that f € S;(A, u) G . The last assertion of the theorem is
a consequence of the easily verified fact that I is dense in Sy(A, p1) relative to the
LP(y) — norm.

Second Proof. Given ¢ > 0, by Corollary 8.42, for all £ € M such that
w(E) < oo, there exists A € A such that p(EAA) < e. Therefore

(11.1) /|1E—1A|pdu:u(EAA) <e

This equation shows that any simple function in S;(M, 1) may be approximated
arbitrary well by an element from D and hence D is also dense in LP(u). m
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Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that f € L*(R,m), then

li iAa:d —0.
Jim /]R fx)e™*dm(xz) =0
Proof. Let A denote the algebra on R generated by the half open intervals, i.e.

A consists of sets of the form .

H (ak, bk] NR

k=1
where ay,br € R. By Theorem 11.3given ¢ > 0 there exists ¢ = > ory ¢k L(ay, b
with ag, by € R such that

/ |f — ¢ldm < e.
R
Notice that
n
/ p(z)e?dm(z) = chl(ak,bk](m)eimdm(z‘)
R R
n br n '
= ch/ e dm(z) = ch)\_le’)‘x\Z’;
k=1 Gk k=1

n
=% ch (e0r — k) — 0 as [\ — oc.
k=1
Combining these two equations with

/R f(@)e=dim(z) / (f(z) - 6(x)) € =dm(z)

< +

/R o) dm (o)

< [[17 - olam + ' [ oa)ean(a)

<e+

/R b))

we learn that

lim sup
[A]—o00

< e+ lim sup

[A]—=o0

— €.

| f@eim(a) [ st@peim(a)

Since € > 0 is arbitrary, we have proven the lemma. m

Theorem 11.5 (Continuous Functions are Dense). Let (X, d) be a metric space,
Ta be the topology on X generated by d and Bx = o(74) be the Borel o — algebra.
Suppose i : Bx — [0,00] is a measure which is ¢ — finite on 74 and let BCy(X)
denote the bounded continuous functions on X such that u(f # 0) < oco. Then
BC(X) is a dense subspace of LP () for any p € [1,00).

Proof. First Proof. Let X € 74 be open sets such that X T X and u(Xy) <
oo. Let k and n be positive integers and set

Y r(x) = min(1,n - dxe (2)) = bn(dxe(z)),
and notice that v, j, — 1dX;2 >0 = lx, as m — oo, see Figure 25 below.
Then ¢, € BCy(X) and {¢pr # 0} C Xj. Let H denote those bounded

M — measurable functions, f : X — R, such that ¢, ,f € BCf(X)L (”). It is

easily seen that H is a vector space closed under bounded convergence and this
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FIGURE 25. The plot of ¢, for n =1, 2, and 4. Notice that ¢, — 1(0,cc)-

subspace contains BC(X,R). By Corollary 8.13, H is the set of all bounded real

valued M — measurable functions on X, i.e. ¥, 1 f € BCy (X)L e for all bounded
measurable f and n,k € N. Let f be a bounded measurable function, by the
dominated convergence theorem, ¢, f — 1lx,f in LP(u) as n — oo, therefore
YA
1ka S BCf(X)

BO; (X)) = ().

Second Proof. Since S;(M, u) is dense in LP(p) it suffices to show any ¢ €
S(M, 1) may be well approximated by f € BCy(X). Moreover, to prove this it
suffices to show for A € M with p(A) < oo that 14 may be well approximated
by an f € BCy(X). By Exercises 8.4 and 8.5, for any € > 0 there exists a closed
set F' and an open set V such that FF C A C V and u(V \ F) < e. (Notice that
u(V) < pu(A) + € < 00.) Let f be as in Eq. (10.1), then f € BC(X) and since
1a — fI < 1w\p,

(11.2) /|1A—f|pd,u§/lv\pdu:,u(V\F) <e

or equivalently

“). It now follows as in the first proof of Theorem 11.3 that

14— fll < €77,

Since € > 0 is arbitrary, we have shown that 14 can be approximated in LP(u)
arbitrarily well by functions from BCf(X)). m

Proposition 11.6. Let (X,7) be a second countable locally compact Hausdorff
space, Bx = o(T) be the Borel o — algebra and p : Bx — [0,00] be a measure
such that p(K) < oo when K is a compact subset of X. Then C.(X) (the space of
continuous functions with compact support) is dense in LP(u) for all p € [1,00).

Proof. First Proof. Let {K}},-, be a sequence of compact sets as in Lemma
10.10 and set X = K. Using Item 3. of Lemma 10.17, there exists {¢n 1}, C
C.(X) such that supp(¢,, 1) C Xi and lim, o ¥k = 1x,. As in the first proof of

Theorem 11.5, let ‘H denote those bounded Bx — measurable functions, f : X — R,

[
such that ¥, ,f € C.(X) (#). It is easily seen that H is a vector space closed

under bounded convergence and this subspace contains BC(X,R). By Corollary
10.18, H is the set of all bounded real valued Bx — measurable functions on X, i.e.
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_ P
Ynif € CC(X)L (&) for all bounded measurable f and n, k € N. Let f be a bounded

measurable function, by the dominated convergence theorem, ¥, ,f — 1lx,f in
[
LP(p) as k — oo, therefore 1x, f € C.(X) *) 1t now follows as in the first proof

of Theorem 11.3 that Co(X)~ " = LP().

Second Proof. Following the second proof of Theorem 11.5, let A € M with
p(A) < oo. Since limg oo [[1anke — 1all, = 0, it suffices to assume A C K} for
some k. Given € > 0, by Item 2. of Lemma 10.17 and Exercises 8.4 there exists a
closed set F' and an open set V such that F C A C V and u(V \ F) < €. Replacing
V by V N K{ we may assume that V C K} C Kj. The function f defined in Eq.
(10.1) is now in C.(X). The remainder of the proof now follows as in the second
proof of Theorem 11.5. m

Lemma 11.7. Let (X, 7) be a second countable locally compact Hausdorff space,
Bx = o(1) be the Borel o — algebra and p : Bx — [0,00] be a measure such that
w(K) < oo when K is a compact subset of X. If h € L}, (1) is a function such that

loc
(11.3) /X fhdu =0 for all f € C.(X)

then h(x) =0 for p — a.e. x.

Proof. First Proof. Let dv(xz) = |h(z)|dx, then v is a measure on X such
that v(K) < oo for all compact subsets K C X and hence C.(X) is dense in L'(v)
by Proposition 11.6. Notice that

(11.4) /X f-sgn(h)dv = /X fhdp =0 for all f € C.(X).

Let {Kk};il be a sequence of compact sets such that K T X as in Lemma 10.10.
Then 1k, sgn(h) € L'(v) and therefore there exists f,, € C.(X) such that f,, —
1g,sen(h) in L*(v). So by Eq. (11.4),

m—00

v(Ky) = / lg,dv = lim fmsgn(h)dy = 0.
X X

Since Kj T X as k — o0, 0 =v(X) = [ |hldp, ie. h(z) =0 for p —a.e. .

Second Proof. Let Kj be as above and use Lemma 10.15 to find x €
C.(X,[0,1]) such that x = 1 on Kj. Let H denote the set of bounded measur-
able real valued functions on X such that [  XJhdp = 0. Then it is easily checked
that H is linear subspace closed under bounded convergence which contains C,(X).
Therefore by Corollary 10.18, 0 = [  Xfhdu for all bounded measurable functions
f+ X — R and then by linearity for all bounded measurable functions f : X — C.
Taking f = sgn(h) then implies

0= [ xlbldnz [ prldn
X Ky

and hence by the monotone convergence theorem,

0= 1im/ |h|du:/ |h| dp.
k—oo Ky X
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Corollary 11.8. Suppose X C R™ is an open set, Bx is the Borel o — algebra on
X and p is a measure on (X, Bx) which is finite on compact sets. Then C.(X) is
dense in LP(u) for all p € [1,00).

11.1. Convolution and Young’s Inequalities.

Definition 11.9. Let f,g: R™ — C be measurable functions. We define
frg(z) = A [z —y)g(y)dy

whenever the integral is defined, i.e. either f(z—-)g(-) € L*(R™, m) or f(z—-)g(-) >
0. Notice that the condition that f(x —-)g(-) € L'(R", m) is equivalent to writing
[f1# lg] (z) < oo

Notation 11.10. Given a multi-index a € Z7, let |a| = a1 + - - + ap,

n a « n 8 7]
a ., g [ — -
T .—ij’,and 81—(8z) .—H(axj) .
j=1 j=1
Remark 11.11 (The Significance of Convolution). Suppose that L = Z\a|§k a,, 0% 18
a constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = ¢ in the form

u(z) = Kg() :Z/ k(z,y)g(y)dy

where k(x,y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since 7,L = L, for all z € R™, (this is another way to characterize
constant coefficient differential operators) and L1 = K weshould have . K = KT,.
Writing out this equation then says

[ bla = 20)aw)dy = (Kg) (@ - 2) = 7. Kg(o) = (K7.9) (2)

= / k(z,y)g(y — 2)dy = /R k(z,y +2)g(y)dy.

Since g is arbitrary we conclude that k(z — z,y) = k(z,y + 2). Taking y = 0 then
gives

k(z,z) = k(x — 2,0) =: p(x — 2).
We thus find that Kg = p * g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals, Theorem 9.27.

Proposition 11.12. Suppose q € [1,00|, f € L' and g € L4, then f * g(x) exists
for almost every x, fxg € LY and

1f = gll, < IIfll1 lgll, -
For z ¢ R™ and f: R” — C, let 7. f : R” — C be defined by 7. f(z) = f(z — 2).

Proposition 11.13. Suppose that p € [1,00), then 7, : LP — LP is an isometric
isomorphism and for f € LP, z € R™ — 1, f € LP is continuous.
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Proof. The assertion that 7, : LP — LP is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that 7_, o 7, = id.
For the continuity assertion, observe that

7= f =7y fll, = 17—y (7= f =7y ), = [Ty f = [,
from which it follows that it is enough to show 7, f — f in LP as z — 0 € R™.
When f € C.(R"), 7.f — f uniformly and since the K := Uj.|<isupp(7; f) is
compact, it follows by the dominated convergence theorem that 7,f — f in LP as
z — 0 € R™. For general g € LP and f € C.(R"),

729 — g”p <9 - TZpr + 7 f - pr +f - ng =|7.f - pr +2|f - .ng
and thus

limsup |[7.g = gll,, <limsup |- f = fll, +2[1f = gl, = 2]/ = gll, -
zZ— z—

Because C:(R") is dense in LP, the term [|f — g|[, may be made as small as we
please. m

Definition 11.14. Suppose that (X, 7) is a topological space and p is a measure
on Bx = (7). For a measurable function f : X — C we define the essential support

of f by
(11.5)
supp,(f) ={z € U: p({y € V: f(y) # 0}}) > 0 for all neighborhoods V" of x}.

It is not hard to show that if supp(u) = X (see Definition 9.41) and f € C(X)
then supp,,(f) = supp(f) := {f # 0}, see Exercise 11.5.

Lemma 11.15. Suppose (X, 1) is second countable and f : X — C is a measurable
function and p is a measure on Bx. Then X = U\ supp,,(f) may be described
as the largest open set W such that fly (xz) =0 for p — a.e. x. Equivalently put,
C:= suppu(f) is the smallest closed subset of X such that f = flc a.e.

Proof. To verify that the two descriptions of supp,, ( f) are equivalent, suppose
supp,,(f) is defined as in Eq. (11.5) and W := X \ supp,,(f). Then
W={zxeX:u({yeV:f(y) #0}}) =0 for some neighborhood V of z}
=U{V Co X : pu(fly #0) =0}
=U{V C, X: fly =0for p—ae}.

So to finish the argument it suffices to show u (f1lw # 0) = 0. To to this let U be
a countable base for 7 and set

U ={V elU: fly =0ae.}.
Then it is easily seen that W = Ul and since Uy is countable p (flyw # 0) <
Yveu, #(fly #0)=0. =
Lemma 11.16. Suppose f,g,h : R® — C are measurable functions and assume
that = is a point in R™ such that |f| *|g| (x) < oo and |f|* (|g] * |h|) (x) < oo, then

(1) fxg(x) =g+ f(z)
(2) fx(gxh)(x) = (f *g)* h(z)
(3) If z € R™ and m.(|f| * lg)(z) = |f| % |g| (x — 2) < o0, then

.(fxg)(x) =T.f x g(x) = f *T.9(x)
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(4) If x ¢ supp,,(f)+supp,,(g) then f+*g(z) =0 and in particular, supp,, (f *
g) C supp,, (f) + supp,,(g) where in defining supp,, (f * g) we will use the
convention that “f x g(x) # 07 when |f] * |g| (x) = oo.

Proof. For item 1.,

flol@ = [ 171 =)lal )y = [ 1716)lol (v~ 2)dy = lo =11 @)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y — x — y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.

Item 4. Since f x g(z) = f g(z) if f = f and ¢ = § ae. we may,
by replacing f by fleupp, (r) and g by glgupp (g if necessary, assume that
{f # 0} C supp,,(f) and {g # 0} C supp,,(g). So if z ¢ (supp,,(f) + supp,,(g))
then x ¢ ({f #0}+{g #0}) and for all y € R", either x —y ¢ {f #0} or
y ¢ {g#0}. That is to say either z —y € {f =0} or y € {g =0} and hence
f(z —y)g(y) =0 for all y and therefore f * g(x) = 0. This shows that f * g =0 on

R™\ (suppm(f) + supp,, (g)) and therefore

R™\ (SUPpm(f) + SUPpm(g)) C R™ \ supp,,(f *g),

i.e. supp,,(f * g) C supp,,(f) + supp,,(g). m

Remark 11.17. Let A, B be closed sets of R™, it is not necessarily true that A+ B
is still closed. For example, take

A={(z,y):x>0andy >1/z} and B={(z,y):z <0and y > 1/|x|},

then every point of A 4+ B has a positive y - component and hence is not zero. On
the other hand, for z > 0 we have (z,1/x) + (—z,1/z) = (0,2/x) € A+ B for all
x and hence 0 € A+ B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A 4+ B is closed again. Indeed, if A is compact and
Ty = ap + b, € A+ B and x, — = € R"™, then by passing to a subsequence if
necessary we may assume lim,, .. a, = a € A exists. In this case

lim b, = lim (¢, —a,)=z—a€ B

n—oo n—oo

exists as well, showing x =a+b€ A+ B.

Proposition 11.18. Suppose that p,q € [1,00] and p and q are conjugate expo-
nents, f € LP and g € L%, then f*g € BCR"), |f=*gll, < Ifl,llgll, and if
p,q € (1,00) then f x g € Co(R™).

Proof. The existence of f * g(z) and the estimate |f x g| (x) < || f]|,, [|9ll, for all
x € R™ is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows || f = g[|, <[/f[, [l9ll, - By relabeling
p and ¢ if necessary we may assume that p € [1,00). Since

s (f*g) = fxgll,=lmf*g—f*gll, <lr=f = fll, llgll, > 0as z—0

it follows that f % g is uniformly continuous. Finally if p,q € (1,00), we learn
from Lemma 11.16 and what we have just proved that f,, * g, € C.(R™) where
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Jm = flif|<m and gm = gl|g|<m- Moreover,
I %9~ fon* gmlly, S Nf*g— fin*glly + 1 fm* g = fon * gmll,,
< = fmlly lglly + N fmll, lg = gmll,
< |If = fmll, lglly + 151, 19 = gmll, — 0 as m — oo
showing, with the aid of Proposition 10.30, f x g € Co(R™). m

Theorem 11.19 (Young’s Inequality). Let p,q,r € [1,00] satisfy

11 1
(11.6) S =14-=.
P oq r

If f € LP and g € L then |f] *|g| (z) < 00 for m — a.e. © and
(11.7) 1+ gl < W1l llgllg -

In particular L' is closed under convolution. (The space (L', %) is an evample of a
“Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq. (11.6)
by the following scaling argument. For A > 0, let f\(x) := f(Az), then after a few
simple change of variables we find

1fall, = A7YP NIl and (f % g)x = Afx * ga.
Therefore if Eq. (11.7) holds for some p,q,r € [1, 0], we would also have

£ % gll, = A7 * 9Nl < ATXNA lgall, = AU == Dy g1 gl
for all A > 0. This is only possible if Eq. (11.6) holds.

Proof. Let o, 8 € [0,1] and p1,pa € [0,00] satisty p; ' 4+ py ' +r~' = 1. Then
by Hoélder’s inequality, Corollary 9.3,

fxg(a)] = / f(@ — y)g)dy| < / @ =) 19w £ — )" l9() ) dy

< ([ 1=l g ay) " (f1s-pn dy)l/m (19 ) "
/r

1
- ( 1=y |g<y>|“ﬁ>’“dy) LA, Il
Taking the r'" power of this equation and integrating on x gives
I£+gl; < [ ( [1s@=yi0- |g<y>|“‘ﬁ”dy) dz - 1£1,, Il
(11.8) = IFIG= g = 11 align,

Let us now suppose, (1 — a)r = ap; and (1 — 8)r = Bpe, in which case Eq. (11.8)
becomes,

1F gl < 11, 91,
which is Eq. (11.7) with
(11.9) p:=(1—a)r=ap; and q:= (1 — B)r = Bps.

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, 0]
satisfying p ™' +¢ ' =14r"L
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If o, B, p1, p2 satisfy the relations above, then

r T
T+ p1 T+ P2
and
1 1 1r+ 1r+ 1 1 2 1
O R S
P q b1 T p2 T pP1 P2 r r

Conversely, if p, q,r satisfy Eq. (11.6), then let o and g satisfy p = (1 — o)r and
g=(1-pB)r, ie.
rT—p r—q q

o= :1—B§1and6:—:1—
r r r r

<1

From Eq. (11.6), a = p(1 — %) >0and 8 =q(l — %) >0, so that a, 8 € [0,1]. We
then define p; := p/a and py := q/f3, then

as desired. m
Theorem 11.21 (Approximate § — functions). Let p € [1,00], ¢ € L}(R"), a :=
Jgn f()dz, and for t > 0 let ¢y(x) =t~ "¢(x/t). Then

(1) If f € LP with p < oo then ¢rx f — af in LP ast | 0.

(2) If f € BC(R™) and f is uniformly continuous then |¢y * f — f|l. — 0 as
t]o0.

(3) If f € L™ and f is continuous on U C, R™ then ¢y x [ — af uniformly on
compact subsets of U ast | 0.

Proof. Making the change of variables y = tz implies

P fla)= [ flz—y)eu(y)dy = | flz—1z)p(2)dz

Rﬂ. Rﬂ.
so that

b f(z) - af(z) = / (@ —t2) — f(2)] d(2)dz

(11.10) = [ (@) - fa) o)

Hence by Minkowski’s inequality for integrals (Theorem 9.27), Proposition 11.13
and the dominated convergence theorem,

6045 =afl, < [ lmed = £l o) dz = 0ast L0,
Item 2. is proved similarly. Indeed, form Eq. (11.10)

o048 =afll < [ et = flllo(a)]dz

which again tends to zero by the dominated convergence theorem because
limy|o || 72 f — fllo, = 0 uniformly in z by the uniform continuity of f.
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Item 3. Let Bg = B(0, R) be a large ball in R” and K CC U, then

sup ¢ * f(z) —af(z)] < +
zeEK

/ o —t2) — f(2)] d(2)dz
B

c
R

/ o —t2) — f(2)] $(=)dz
Br

< [ o@lds s ife—t2) - @1+ 200 [ 161z

rz€K,z€EBRr

<ol s 1S —t) — @I+ 20 [ 16t

so that using the uniform continuity of f on compact subsets of U,

lim sup sup [, * f(2) — af ()] < 2 Hflloo/ [6(2)| dz — 0 as R — oc.
t]0 zeK |z|>R

]
See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Exercise 11.1. Let 1t
] e it t>0
(1) = { 0 if t<o.
Show f € C*°(R, [0, 1]).

Lemma 11.22. There exists ¢ € C°(R™,[0,00)) such that $(0) > 0, supp(¢) C
B(0,1) and [, ¢(x)dx = 1.

Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 11.1. Then
h € C(R,[0,1]), supp(h) C [~1,1] and h(0) = e=? > 0. Define ¢ =[5, h(|z|?)dz.
Then ¢(z) = ¢ 'h(|z|?) is the desired function. m

Definition 11.23. Let X C R"™ be an open set. A Radon measure on By is a
measure p which is finite on compact subsets of X. For a Radon measure p, we let
L}, (1) consists of those measurable functions f : X — C such that [, |f|dp < oo
for all compact subsets K C X.

The reader asked to prove the following proposition in Exercise 11.6 below.

Proposition 11.24. Suppose that f € Li, . (R",m) and ¢ € CL(R™), then f x ¢ €

loc
CL(R™) and 0;(f * ¢) = f * 0;¢0. Moreover if ¢ € C>(R™) then f * ¢ € C°(R™).
Corollary 11.25 (C*° — Uryhson’s Lemma). Given K CC U C, R™, there exists
f e Cx(R™[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 11.22, ¢;(z) = t "¢ (z/t) be as in Theorem 11.21,
d be the standard metric on R™ and e = d(K,U¢). Since K is compact and U° is
closed, € > 0. Let V5 = {z € R" : d(x, K) < 6} and f = ¢¢/3 * 1y, ,, then

supp(f) C supp(¢e/3) + Veys C Vaeys C UL
Since ‘726/3 is closed and bounded, f € C°(U) and for x € K,

f(z) = /Rn Lagy, k)<e/3 - Gey3(x —y)dy = /Rn bes3(x —y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 < f < 1. m
Here is an application of this corollary whose proof is left to the reader, Exercise
11.7.
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Lemma 11.26 (Integration by Parts). Suppose f and g are measurable functions

onR™ such thatt — f(x1,...,Ti—1,t, Tix1,--.,Tn) andt — g(z1, ..., Ti—1,t, Tit1,. -
are continuously differentiable functions on R for each fized x = (x1,...,2,) € R™.
Moreover assume f - g, % -gand f - a%% are in L*(R™, m). Then
of dyg
-gdm = — dm
R 8%‘1- g Rn f 8%‘1

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 11.27. For f € L'(R",m) let

fl€) = a2 [ pla)eam(a)
be the Fourier transform of f. Then f € Co(R™) and Hf” 2m)"2||flly- (The
choice of the normalization factor, (21)~™/2, in f is for later convenience.)

Proof. The fact that f is continuous is a simple application of the dominated
convergence theorem. Moreover,

O] < [ 1@l dm() < @r) 2|11,
s0 it only remains to see that f(£) — 0 as |¢] — oco.
First suppose that f € C>°(R™) and let A = Z?Zl 86722’ be the Laplacian on R™.
&

Notice that %e‘ié"; = —i;e % and Ae % = — |§|2 e~ Using Lemma 11.26
J
repeatedly,

[ Ak @ () = [ fa)ake i@ = - | [ e dn)

= —@2m)" 2 ¢ £()
for any & € N. Hence (27)”/2’13(5)’ < |§\72k||Akf||1 — 0 as || — oo and

f € Co(R™). Suppose that f € L'(m) and f;, € C°(R™) is a sequence such that
limk_>oo Hf*fk”l = 0, then limk_ﬂx, Hf*fAkH = 0. Hence f € Co(Rn) by an
application of Proposition 10.30. m “

Corollary 11.28. Let X C R"™ be an open set and i be a Radon measure on Bx.

(1) Then C*(X) is dense in LP(p) for all 1 < p < 0.
( ) ]fh’ € Lloc( ) SGtiS‘ﬁeS

(11.11) / fhdp =0 for all f € C°(X)
b's

then h(xz) =0 for p — a.e. x.

Proof. Let f € C.(X), ¢ be as in Lemma 11.22, ¢; be as in Theorem 11.21 and
set 1 1= ¢ * (f1x). Then by Proposition 11.24 ¢, € C°°(X) and by Lemma 11.16
there exists a compact set K C X such that supp(¢;) C K for all ¢ sufficiently
small. By Theorem 11.21, vy — f uniformly on X ast | 0

(1) The dominated convergence theorem (with dominating function being
| fllo 1K), shows ¢y — f in LP(u) as t | 0. This proves Item 1., since
Proposition 11.6 guarantees that C.(X) is dense in LP(u).
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(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f|, || 1x) implies

0 = lim hdp = [ limyihdp = hdjs.
tw/th 0 /thowt " /Xf 1
The proof is now finished by an application of Lemma 11.7.

11.1.1. Smooth Partitions of Unity. We have the following smooth variants of
Proposition 10.24, Theorem 10.26 and Corollary 10.27. The proofs of these re-
sults are the same as their continuous counterparts. One simply uses the smooth
version of Urysohn’s Lemma of Corollary 11.25 in place of Lemma 10.15.

Proposition 11.29 (Smooth Partitions of Unity for Compacts). Suppose that X
is an open subset of R™, K C X is a compact set and U = {Uj};.lzl 18 an open
cover of K. Then there exists a smooth (i.e. h; € C*(X,[0,1])) partition of unity
{h;}i_, of K such that hj < U; for all j =1,2,...,n.

Theorem 11.30 (Locally Compact Partitions of Unity). Suppose that X is an open
subset of R™ and U is an open cover of X. Then there exists a smooth partition of
unity of {h;}X., (N = oo is allowed here) subordinate to the cover U such that
supp(h;) is compact for all .

Corollary 11.31. Suppose that X is an open subset of R" and U = {Us}ocn C T
is an open cover of X. Then there exists a smooth partition of unity of {ha}aca
subordinate to the cover U such that supp(hy) C Uy, for all o € A. Moreover if U,
is compact for each a € A we may choose hy so that hy, < U,,.

11.2. Classical Weierstrass Approximation Theorem. Let Z; := NU {0}.

Notation 11.32. For z € R? and o € Z% let 2 = Hle zi" and |a| = Z?:l Q.
A polynomial on R is a function p : R¢ — C of the form

p(z) = Z paxr® with p, € Cand N € Z,..
a:la|<N

If po # 0 for some « such that || = N, then we define deg(p) := N to be the

degree of p. The function p has a natural extension to z € C¢, namely p(z) =

d o
}: o a _ i
a:la|<N Paz where 2% = Hi:l Zi

Remark 11.33. The mapping (z,y) € R¢xR? — 2 = x+iy € C?is an isomorphism

: 5 . _ z+z _ 2=z
of vector spaces. Letting z = z — 4y as usual, we have x = %% and y = %=

Therefore under this identification any polynomial p(z, i) on RYxR? may be written

as a polynomial ¢ in (z, Z), namely

z2+2zZ z—Z
2 7 2% )

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in (z,y),

namely p(z,y) = q(z + iy, x — iy).

Theorem 11.34 (Weierstrass Approximation Theorem). Let a,b € R? with a < b

(i.e. a; <b; fori=1,2,...,d ) and set [a,b] := [a1,b1] X -+ X [aq4,bq]. Then for

f € C([a,b],C) there exists polynomials p, on R? such that p, — f uniformly on

[a, b].

q(z,2) = p(
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We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate ¢ — functions.

Corollary 11.35. Suppose that K C R? is a compact set and f € C(K,C). Then
there exists polynomials p, on R® such that p, — f uniformly on K.

Proof. Choose a,b € R% such that a < band K C (a,b) := (a1, b1)x---x(aq, by).
Let f : K U (a,b)° — C be the continuous function defined by f|x = f and
f l(a,p)c = 0. Then by the Tietze extension Theorem (either of Theorems 10.2 or
10.16 will do) there exists F € C(R% C) such that f = F|xiape. Apply the
Weierstrass Approximation Theorem 11.34 to F|j4 ) to find polynomials p,, on R4

such that p, — F uniformly on [a,b]. Clearly we also have p, — f uniformly on
K u

Corollary 11.36 (Complex Weierstrass Approximation Theorem). Suppose that
K c C4is a compact set and f € C(K,C). Then there exists polynomials p,(z, %)
for z € C¢ such that sup, ¢ |pn(z,2) — f(2)] — 0 as n — oo.

Proof. This is an immediate consequence of Remark 11.33 and Corollary 11.35.
|

Example 11.37. Let K = S' = {z € C: |z| = 1} and A be the set of polynomials
in (z, z) restricted to S'. Then A is dense in C(S').?* Since z = 27! on S', we have
shown polynomials in z and z~! are dense in C(S*). This example generalizes in
an obvious way to K = (Sl)d c .

11.2.1. First proof of the Weierstrass Approzimation Theorem 11.34. Proof. Let
0: =(0,0,...,0) and 1: = (1,1,...,1). By considering the real and imaginary
parts of f separately, it suffices to assume f is real valued. By replacing f by
g(x) = flar + z1(by — a1),...,aq + x4(ba — aq)) for = € [0, 1], it suffices to prove
the theorem for f € C([0, 1]).

For x € [0,1], let v, be the measure on {0,1} such that v, ({0}) =1 — z and
vy ({1}) = 2. Then

(11.12) / ydvg(y) =0-(1—z)+1-2 =2z and
{0,1}

(11.13) /{0 1}(y —2)%dv,(y) =2*(1—2) + (1 —2)* 2 = 2(1 — ).

For z € [0,1] let f1y = vy, ®- - - @y, be the product of vy, , ..., vy, on Q= {0,1}".
Alternatively the measure p, may be described by
d

(11.14) e ({eh) = [ (1 =)' 2

i=1
for € € Q. Notice that p, ({€}) is a degree d polynomial in = for each € € Q. For
n € N and z € [0,1], let p” denote the n — fold product of p, with itself on Q"
Xi(w) =w; € QCR? for w € Q" and let

Sp=(S:..., 8 = (X1 +Xo 4+ X,,)/n,

23Note that it is easy to extend f € C(S?) to a function F' € C(C) by setting F(z) = zf(ﬁ)

for z # 0 and F'(0) = 0. So this special case does not require the Tietze extension theorem.
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50 Sy, : Q" — RY. The reader is asked to verify (Exercise 11.2) that

(11.15) Spdpy = ( Stdur, ..., Sﬁduﬁ) =(z1,...,2q) =2
Qn Qn Qn
and
1< d
11.16 / Sy —aPdpt == zi(1—a;) < =
(1116 [ Iz = 0> e < 5

From these equations it follows that S, is concentrating near = as n — o0, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(11.17) pn(z) == o J(Sn)dpy

should approach f(x) as n — oo.
Let € > 0 be given, M = sup {|f(x)| : z € [0,1]} and

de = sup{|f(y) — f(z)| : z,y € [0,1] and |y — x| < €}.

By uniform continuity of f on [0, 1], lim¢ ¢ d. = 0. Using these definitions and the
fact that p?(Q") =1,

@) =@ = | [ 7l) = fS | < [ 11(e)~ 5] d
< x) — f(Sn)|dul x) — f(Sn)| dpl
_/{SMX}m) £(S0)] i +/{|Snw<€}|f() F(S)] di
(11.18) <2MpZ (|Sy, — x| > €) + de.

By Chebyshev’s inequality,

n 1 2 n d
(S, —al > < 5 [ (Su—o)du =5,
and therefore, Eq. (11.18) yields the estimate

2dM
ne?

Hf*pn”uf + de

and hence

limsup ||f — pnll, <0 — 0ase 0.

This completes the proof since, using Eq. (11.14),

n

pal@) = Y fSa@)ui(fw)) = Y f(Salw) [ rel{wid),

weQn weQn i=1
is an nd — degree polynomial in x € RY). m
Exercise 11.2. Verify Egs. (11.15) and (11.16). This is most easily done using
Egs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course Fubini’s

theorem here is over Kkill since these are only finite sums after all. Nevertheless it
is convenient to use this formulation.)
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11.2.2. Second proof of the Weierstrass Approximation Theorem 11.34. For the
second proof we will first need two lemmas.

Lemma 11.38 (Approximate § — sequences). Suppose that {Qn}, -, is a sequence
of positive functions on R% such that

(11.19) Qn(x) de =1 and
Rd

(11.20) lim Qn(z)dz =0 for all € > 0.
lz[>e
For f € BO(RY), Q, * f converges to f uniformly on compact subsets of RZ.
Proof. Let x € RY, then because of Eq. (11.19),

@+ @)~ 1@ =| [ @u) 1)~ s b| < [ @ut) 150 =) - s
R4 Rd
Let M =sup{|f(z)|: # € R} and € > 0, then by and Eq. (11.19)

|Qn * f(z) = fz)] < Q) f(z —y) — f(x)ldy

ly|<e

+ y Qny) |f(x—y) — f(x)|dy
Y| >€

< sup |f(z+2) — f(2)] +2M Qn(y)dy.
|z|<e ly|>e

Let K be a compact subset of R%, then
sup |Qn * f(z) — f(z)| < sup  [f(z+2) — f(z)| +2M Qn(y)dy
zeK |z|<e,zeK ly|>e€
and hence by Eq. (11.20),
lim sup sup |Qn * f(z) — f(z)| < sup |f(z+2)— f(z)].
n—oo €K |z|<e,z€K

This finishes the proof since the right member of this equation tends to 0 as € | 0
by uniform continuity of f on compact subsets of R". m
Let gy, : R —[0,00) be defined by

1 1
(11.21) gn(z) = — (1 — 2%)"1|,<; Where ¢, == / (1 —z?)"dx.
Cn = -1
Figure 26 displays the key features of the functions g,,.
Define
(11.22) Qrn :R" = [0,00) by Qn(x) = gn(z1) - .. qn(zq)-

Lemma 11.39. The sequence {Qn}flo:l 18 an approximate § — sequence, i.e. they
satisfy Fqs. (11.19) and (11.20).

Proof. The fact that @), integrates to one is an easy consequence of Tonelli’s
theorem and the definition of ¢,. Since all norms on R¢ are equivalent, we may
assume that || = max {|z;|: i =1,2,...,d} when proving Eq. (11.20). With this
norm

{Z’ERdZ|Z’|Z€}:Ui:1{$€Rdl|$i‘Z€}
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—R;

0 0.5 1

X

FI1GURE 26. A plot of g1, g50, and q1g0- The most peaked curve is
q100 and the least is ¢;. The total area under each of these curves
is one.

and therefore by Tonelli’s theorem and the definition of ¢,

Qn(:c)dxgzd: / Qu(x)dz = d / 4n () dz.

{lz]>e} 2>} {weR|z|>e}

Since

1
2 1 —z2)"dx
/ qn(m)dx — - fe ( )1
|z >e 2 [y(I—at)nde+2 [ (1—a2)"dx

1
gl_Qnd _ 2\yn+11 _ 2\n+1
B A e i U (e iU
fo %(1 _ x2)”dx (1 _ $2)n+1|6 1— (1 _ 62)n+1

the proof is complete. m

We will now prove Corollary 11.35 which clearly implies Theorem 11.34.

Proof. Proof of Corollary 11.35. As in the beginning of the proof already given
for Corollary 11.35, we may assume that K = [a,b] for some a < b and f = F|g
where F € C(R%,C) is a function such that F|x. = 0. Moreover, by replacing F'(x)
by G(z) = F(ay + z1(b1 — a1),...,aq + 4(bg — aq)) for x € R™ we may further
assume K = [0,1].

Let Qn(z) be defined as in Eq. (11.22). Then by Lemma 11.39 and 11.38,
pn(z) := (Qn * F)(z) — F(z) uniformly for z € [0,1] as n — oo. So to finish the



ANALYSIS TOOLS WITH APPLICATIONS 213

proof it only remains to show p,(z) is a polynomial when = € [0, 1]. For z € [0, 1],

r) = / Qulz — ) f(W)dy
d

_ W) [T len' (@ = (@i = 9:)*) Vg, <1 ] dy

[ 1] i=1

1

H
z&

et (U= (i — )] dy.

[0 1] i:l
Since the product in the above integrand is a polynomial if (z,y) € R™ x R", it
follows easily that p,(x) is polynomial in 2. m

11.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 11.34
to more general topological spaces. We will first need some definitions.

Definition 11.40. Let X be a topological space and A C C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

(1) A is said to separate points if for all distinct points x,y € X there exists

f € A such that f(x) # f(y).

(2) A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

(3) A is called a lattice if fV g :=max(f,g) and f A g = min(f,g) € A for all
f9e A

(4) A C C(X) is closed under conjugation if f € A whenever f € A.%4

Remark 11.41. If X is a topological space such that C(X,R) separates points then
X is Hausdorff. Indeed if z,y € X and f € C(X,R) such that f(x) # f(y), then
f~Y(J) and f=1(I) are disjoint open sets containing x and y respectively when [
and J are disjoint intervals containing f(z) and f(y) respectively.

Lemma 11.42. If A C C(X,R) is a closed algebra then |f| € A for all f € A and
A is a lattice.
Proof. Let f € A and let M = sup |f(z)|. Using Theorem 11.34 or Exercise
zeX
11.8, there are polynomials p,,(t) such that

lim sup [|t| — pn(t)] = 0.

By replacing p, by p, — pn(0) if necessary we may assume that p,(0) = 0. Since
A is an algebra, it follows that f, = p,(f) € A and |f| € A, because |f| is the
uniform limit of the f,’s. Since
1
fvg=5 (f+g+If-gl) and
1
frng=g5 (F+g=If =4,

we have shown A is a lattice. m

24This is of course no restriction when C(X) = C(X,R).
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Lemma 11.43. Let A C C(X,R) be an algebra which separates points and x,y € X
be distinct points such that

(11.23) 3 f,ge A > f(z)#0 and g(y) #0.
Then
(11.24) V= (@), f) : f € A}=R2.

Proof. It is clear that V is a non-zero subspace of R? If dim(V) = 1, then V =
span(a,b) with a # 0 and b # 0 by the assumption in Eq. (11.23). Since (a,b) =
(f(z), f(y)) for some f € Aand f? € A, it follows that (a?,b?) = (f%(z), f3(y)) € V
as well. Since dimV =1, (a,b) and (a?,b?) are linearly dependent and therefore

b

which implies that ¢ = b. But this the implies that f(z) = f(y) for all f € A,
violating the assumption that A4 separates points. Therefore we conclude that
dim(V)=2,ie. V=R% =m

2
Ozdet( ¢ 22 ):ab2—ba2:ab(b—a)

Theorem 11.44 (Stone-Weierstrass Theorem). ppose X is a compact Hausdorff
space and A C C(X,R) is a closed subalgebra which separates points. For x € X
let

Ay, ={f(x): f e A} and
I. ={f € C(X,R) : f(x) =0}.
Then either one of the following two cases hold.
(1) A, =R for all z € X, i.e. for all x € X there exists f € A such that
F(z) # 0.5
(2) There exists a unique point o € X such that A,, = {0}.
Moreover in case (1) A= C(X,R) and in case (2) A=1, ={f € C(X,R):
f(zo) = 0}.
Proof. If there exists x¢ such that A,, = {0} (x¢ is unique since A separates
points) then A C Z,,. If such an z( exists let C = Z,,, and if A, = R for all z, set
C = C(X,R). Let f € C, then by Lemma 11.43, for all z,y € X such that z # y

there exists g,, € A such that f = g, on {x,y}.25 The basic idea of the proof is
contained in the following identity,

(11.25) f(2) = inf sup gy(z) for all z € X.
zeX yeXx

To prove this identity, let g, := sup ¢ x gz and notice that g, > f since g.,(y) =
f(y) for all y € X. Moreover, g,(z) = f(x) for all z € X since gy, (z) = f(x) for all
x. Therefore,

S R e = 9o =
The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (11.25) becoming only an approximate
identity.

251f A contains the constant function 1, then this hypothesis holds.
261f Azo = {0} and z = zg or y = zo, then gz, exists merely by the fact that A separates
points.
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Claim 2. Given € > 0 and x € X there exists g, € A such that g,(x) = f(z) and
f<gz+eonX.

To prove the claim, let V,, be an open neighborhood of y such that |f — gay| < €
on Vy, so in particular f < € 4 gz, on V,. By compactness, there exists A CC X

such that X = (J Vj,. Set
yeEA

9:(%2) = max{g,y(z) : y € A},

then for any y € A, f < €+ gy < € + g, on V, and therefore f < €+ g, on X.
Moreover, by construction f(x) = g.(x), see Figure 27 below.

Fuy

FiGURE 27. Constructing the funtions g,.

We now will finish the proof of the theorem. For each = € X, let U, be a
neighborhood of z such that |f — g,| < € on U,. Choose T' CC X such that
X = | U, and define

zel
g=min{g, :x €'} € A.
Then f <g+eon X and for z €T, g, < f 4+ € on U, and hence g < f + € on U,.
Since X = |J Uy, we conclude
zel
f<gt+eand g < f+eon X,
ie. |f—g| <eon X. Since € > 0 is arbitrary it follows that f € A= A. m

Theorem 11.45 (Complex Stone-Weierstrass Theorem). Let X be a compact
Hausdorff space. Suppose A C C(X,C) is closed in the uniform topology, sep-
arates points, and is closed under conjugation. Then either A = C(X,C) or

A=TI5 ={f € C(X,C): f(xg) =0} for some ¢ € X.

Proof. Since

2

|
|

[+

5 and Imf:f

Re f =
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Re f and Im f are both in A. Therefore
Ar ={Re f,Im f: f € A}
is a real sub-algebra of C'(X,R) which separates points. Therefore either Agx =
C(X,R) or Az = Z,, N C(X,R) for some z and hence A = C(X,C) or I¢,
respectively. m
As an easy application, Theorems 11.44 and 11.45 imply Corollaries 11.35 and
11.36 respectively.

Corollary 11.46. Suppose that X is a compact subset of R™ and p is a finite
measure on (X, Bx), then polynomials are dense in LP(X, ) for all 1 < p < oc.

Proof. Consider X to be a metric space with usual metric induced from R™.
Then X is a locally compact separable metric space and therefore C.(X,C) =
C(X,C) is dense in LP(u) for all p € [1,00). Since, by the dominated convergence
theorem, uniform convergence implies LP(u) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in LP(p). m

Here are a couple of more applications.

Example 11.47. Let f € C([a,b]) be a positive function which is injective. Then
functions of the form Zszl apf* with a, € C and N € N are dense in C([a,b]).
For example if a = 1 and b = 2, then one may take f(z) = z® for any « # 0, or
f(z) = e*, ete.

Exercise 11.3. Let (X, d) be a separable compact metric space. Show that C(X)
is also separable. Hint: Let £ C X be a countable dense set and then consider the

algebra, A C C(X), generated by {d(z,-)},cp -

11.4. Locally Compact Version of Stone-Weierstrass Theorem.

Theorem 11.48. Let X be non-compact locally compact Hausdorff space. If A is
a closed subalgebra of Co(X,R) which separates points. Then either A = Cy(X,R)
or there exists xg € X such that A= {f € Co(X,R) : f(zo) = 0}.

Proof. There are two cases to consider.

Case 1. There is no point ¢y € X such that A C {f € Co(X,R) : f(xg) = 0}.
In this case let X* = X U {co} be the one point compactification of X. Because of
Proposition 10.31 to each f € A there exists a unique extension f e C(X*R)
such that f = f|x and moreover this extension is given by f(co) = 0. Let
A:={f € C(X*,R) : f € A}. Then A is a closed (you check) sub-algebra
of C(X*,R) which separates points. An application of Theorem 11.44 implies
A={F e C(X*,R) 5 F(co) =0} and therefore by Proposition 10.31 A = {F|y :
Fe .A} = CO(X,R).

Case 2. There exists zp € X such A C {f € Co(X,R) : f(zo) = 0}. In this
case let Y := X \ {xo} and Ay := {f|y : f € A}. Since X is locally compact,
one easily checks Ay C Cp(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that Ay = Co(Y,R). So if f € Co(X,R) and f(zg) = 0,
fly € Co(Y,R) =Ay, i.e. there exists g € A such that gly = f|y. Since g(zo) =
f(zo) = 0, it follows that f = g € A and therefore A = {f € Co(X,R) : f(zo) = 0}.
|

Example 11.49. Let X = [0,00), A > 0 be fixed, A be the algebra generated by
t — e *. So the general element f € A is of the form f(t) = p(e™*), where p()
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is a polynomial. Since A C Cy(X,R) separates points and e~ € A is pointwise

positive, A = Cy(X,R).
As an application of this example, we will show that the Laplace transform is
injective.

Theorem 11.50. For f € L([0,00),dz), the Laplace transform of f is defined by

Lf(\) = /OO e f(x)dx for all X > 0.
0
If Lf(N) =0 then f(z) =0 for m -a.e. .

Proof. Suppose that f € L'([0,00),dx) such that £Lf(\) = 0. Let g €
Co([0,00),R) and € > 0 be given. Choose {ay} x>0 such that # ({A > 0:ax #0}) <
oo and

lg(z) — ZaAe_’\ﬂ < eforall z > 0.
A>0
Then

/ " @) fa)da

/000 <g(:c) — Z a,\eM> f(x)dx

A>0
oo
= /
0

Since € > 0 is arbitrary, it follows that [~ g(z)f(z)dz = 0 for all g € Cy([0, 00), R).
The proof is finished by an application of Lemma 11.7. =

g(x) — Z are

A>0

[f (@) da < €| f]]1-

11.5. Dynkin’s Multiplicative System Theorem. This section is devoted to
an extension of Theorem 8.12 based on the Weierstrass approximation theorem. In
this section X is a set.

Definition 11.51 (Multiplicative System). A collection of real valued functions @
on a set X is a multiplicative system provided f - g € Q whenever f,g € Q.

Theorem 11.52 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of B(X,R) which contains the constant functions and is closed under bounded
convergence. If Q C H is multiplicative system, then H contains all bounded real
valued o(Q)-measurable functions.

Theorem 11.53 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of B(X,C) such that: 1 € H, H is closed under complex conjugation,
and H is closed under bounded convergence. If QQ C H is multiplicative system
which is closed under conjugation, then H contains all bounded complex valued
o(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
(11.26) B:={zeX: fi(z) € Ri,..., fm(z) € Ry}

where m = 1,2,..., and for k = 1,2,...,m, fir € Q and Ry is an open interval if
F =R or Ry is an open rectangle in C if F = C. The family C is easily seen to be
a 7 — system such that ¢(Q) = o(C). So By Theorem 8.12, to finish the proof it
suffices to show 15 € H for all B € C.
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It is easy to construct, for each k, a uniformly bounded sequence of continuous
functions{qﬁﬁ}zo:l on F converging to the characteristic function 1g,. By Weier-
strass’ theorem, there exists polynomials p¥,(z) such that |pk(z) — ¢k (z)| < 1/n
for |z| < ||¢r|lc in the real case and polynomials p¥ (z,Z) in z and Z such that
pE(2,2) — ¢k (2)| < 1/n for |2| < ||¢x]lc in the complex case. The functions

Fo i=ph (F)P2(f2) - 0 (fm)  (real case)
F, ::p}L(flf_l)sz(an f_2) . -P?(fm, f_m> (Complex Ca‘se)

on X are uniformly bounded, belong to H and converge pointwise to 15 as n — oo,
where B is the set in Eq. (11.26). Thus 1p € H and the proof is complete. ®

Remark 11.54. Given any collection of bounded real valued functions F on X,
let H(F) be the subspace of B(X,R) generated by F, i.e. H(F) is the smallest
subspace of B(X,R) which is closed under bounded convergence and contains F.
With this notation, Theorem 11.52 may be stated as follows. If F is a multiplicative
system then H(F) = By(7)(X,R) — the space of bounded o (F) — measurable real
valued functions on X.

11.6. Exercises.

Exercise 11.4. Let (X, 7) be a topological space, 1 a measure on Bx = o(7) and
f: X — C be a measurable function. Letting v be the measure, dv = | f| du, show
supp(v) = supp,,(f), where supp(v) is defined in Definition 9.41).

Exercise 11.5. Let (X, 7) be a topological space, u a measure on Bx = o(7) such
that supp(p) = X (see Definition 9.41). Show supp,,(f) = supp(f) = {f # 0} for
all f e O(X).

Exercise 11.6. Prove Proposition 11.24 by appealing to Corollary 7.43.

Exercise 11.7 (Integration by Parts). Suppose that (z,y) € R x R"™* — f(z,y) €
Cand (z,y) € R x R — g(z,y) € C are measurable functions such that for each
fixed y € R*™ Y 2 — f(z,y) and z — g(z,y) are continuously differentiable. Also
assume f - g, O.f - g and f - O,¢ are integrable relative to Lebesgue measure on
R x R, where 0, f(2,y) := 4 f(z +t,y)|t=0. Show

a2 [ ofy) gndsdy =~ [ fe): dugleg)dody.
RxRn—1 RxRn—1
(Note: this result and Fubini’s theorem proves Lemma 11.26.)

Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of 0 € R and
set Ve (x) = (ex). First verify Eq. (11.27) with f(z,y) replaced by ¢ (x) f(z,y) by
doing the x — integral first. Then use the dominated convergence theorem to prove
Eq. (11.27) by passing to the limit, € | 0.

Exercise 11.8. Let M < oo, show there are polynomials p, () such that

lim sup |[[t| - pn(t)] =0
n—00 |41 < N

as follows. Let f(t) = V1 —¢ for [t| < 1. By Taylor’s theorem with integral re-
mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
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constants®” o, > 0 for n € N such that T —2 =1— 37 a,a" for all |z| < 1.
Use this to prove Y7, o, = 1 and therefore g, (z) :=1— > " | a,a"

lim sup |[vV1—2x — gn(z)|=0.

m—00 | p1<]
Let 1 —a =t2/M? ie. x =1—t>/M?, then
: 2] 2 /072
lim sup |— —gn(1—¢"/M*)| =0
m=oo g < | M
so that p,, () == Mq,, (1 — t?/M?) are the desired polynomials.
Exercise 11.9. Given a continuous function f : R — C which is 27 -periodic and

n .
€ > 0. Show there exists a trigonometric polynomial, p(6) = > ane™? such that
n=—N

|f(0) — P(0)] < € for all § € R. Hint: show that there exists a unique function
F € C(S") such that f(0) = F(e') for all § € R.

Remark 11.55. Exercise 11.9 generalizes to 27 — periodic functions on R?, i.e. func-
tions such that f(0+2me;) = f(0) foralli = 1,2,...,d where {el} _, is the standard
basis for R?. A trigonometric polynomial p(6) is a functlon of § € RY of the form
(0) _ Z aneinﬂ
nel’

where T is a finite subset of Z?. The assertion is again that these trigonometric
polynomials are dense in the 2w — periodic functions relative to the supremum
norm.

Exercise 11.10. Let i be a finite measure on Bga, then I := span{ei*® : A € R4}
is a dense subspace of LP(p) for all 1 < p < co. Hints: By Proposition 11.6, C,(R?)
is a dense subspace of L?(u). For f € C.(R?) and N € N, let

= Z f(z +27Nn).
nezd

Show fy € BC(RY) and x — fy(Nz) is 2m — periodic, so by Exercise 11.9, 2 —
fn(Nz) can be approximated uniformly by trigonometric polynomials. Use this
fact to conclude that fy € DX (). After this show fy — f in LP(pu).

Exercise 11.11. Suppose that p and v are two finite measures on R? such that

(11.28) /Rd e du(z) = /Rd e dy(x)

for all A € R%. Show p = v.

Hint: Perhaps the easiest way to do this is to use Exercise 11.10 with the
measure u being replaced by pu+v. Alternatively7 use the method of proof of Exercise
11.9 to show Eq. (11.28) implies [, fdu(z) = [pa fdv(z) for all f € C.(RY).
Exercise 11.12. Again let p be a ﬁnlte measure on BRd. Further assume that

= JpaeMl®ldu(z) < oo for all M € (0,00). Let P(R?) be the space of
polynomlals p(x) = >4 <n Pat® With p, € C, on R<. (Notice that |p(z)[P <
C(p,p, M)eMI®l | so that P(R?) ¢ LP(u) for all 1 < p < 00.) Show P(R?) is dense
in LP(u) for all 1 < p < oo. Here is a possible outline.

(2n=3)!!
2nn!

2Ty fact oy = , but this is not needed.
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Outline: For A € R? and n € N let f2(x) = (A-2)" /n!
(1) Use calculus to verify sup,sqt®e™ M = (a/M)* e~ for all & > 0 where
(0/M)? := 1. Use this estimate along with the identity

|>\ . z|pn < |>\|Im |x‘P7l — (|x|pn efM\z|) ‘)\|pn eM\m\

to find an estimate on || 7], .
(2) Use your estimate on || ||, to show > 131l < oo and conclude

) N
ezA-(-) _ Z f;\z
n=0

(3) Now finish by appealing to Exercise 11.10.

=0.

p

lim
N —oco

Exercise 11.13. Again let p be a finite measure on Bra but now assume there
exists an € > 0 such that C := [, el?ldp(z) < oco. Also let ¢ > 1 and h € L9(u)
be a function such that [p, h(z)z*du(z) = 0 for all & € N3. (As mentioned in
Exercise 11.13, P(R?) C LP(u) for all 1 < p < 00, so & — h(x)z® is in L'(p).)
Show h(z) = 0 for u— a.e. x using the following outline.
Outline: For A € R? and n € N let f)(z) = (A-2)" /n! and let p = ¢/(q — 1)
be the conjugate exponent to q.
(1) Use calculus to verify sup,~qt®e™ = (a/e)”e™® for all @ > 0 where

(0/€)" := 1. Use this estimate along with the identity
e e G L

to find an estimate on Hf;L\Hp .

(2) Use your estimate on Hf;L\Hp to show there exists § > 0 such that
S Hf;)“p < 0o when |A| < 6 and conclude for |A\| < § that e*® = LP(u)—~
>0 o [ (). Conclude from this that

/ h(z)e*du(z) = 0 when |\ < 6.
R

(3) Let A € R? (|A| not necessarily small) and set g(t) := [p, € “h(x)dp(z)
for t € R. Show g € C*°(R) and

g™ (t) = /d(i/\ - )" e h(x)dp(z) for all n € N,
(4) Let T = sup{r > OR; glo,;) =0}. By Step 2., T' > 0. If T' < oo, then
0=g™\(T) = /Rd (i) - z) e TV h(x)dpu(z) for all n € N.
Use Step 3. with h replaced by 72 *h(z) to conclude
g(T +1) = /]Rd e THONTh () dp(z) = 0 for all t < 6/ [N

This violates the definition of T and therefore T' = oo and in particular we
may take T' =1 to learn

/ h(z)e®dpu(z) = 0 for all A € RY.
Rd
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(5) Use Exercise 11.10 to conclude that

/R ha)g(@)du(z) =0

for all g € LP(u). Now choose g judiciously to finish the proof.



