24. HÖLDER SPACES

Notation 24.1. Let Ω be an open subset of \mathbb{R}^d , $BC(\Omega)$ and $BC(\bar{\Omega})$ be the bounded continuous functions on Ω and $\bar{\Omega}$ respectively. By identifying $f \in BC(\bar{\Omega})$ with $f|_{\Omega} \in BC(\Omega)$, we will consider $BC(\bar{\Omega})$ as a subset of $BC(\Omega)$. For $u \in BC(\Omega)$ and $0 < \beta < 1$ let

$$||u||_u := \sup_{x \in \Omega} |u(x)| \text{ and } [u]_\beta := \sup_{\substack{x,y \in \Omega \\ x \neq u}} \left\{ \frac{|u(x) - u(y)|}{|x - y|^\beta} \right\}.$$

If $[u]_{\beta} < \infty$, then u is **Hölder continuous** with holder exponent⁴³ β . The collection of β – Hölder continuous function on Ω will be denoted by

$$C^{0,\beta}(\Omega) := \{ u \in BC(\Omega) : [u]_{\beta} < \infty \}$$

and for $u \in C^{0,\beta}(\Omega)$ let

$$(24.1) ||u||_{C^{0,\beta}(\Omega)} := ||u||_u + [u]_{\beta}.$$

Remark 24.2. If $u: \Omega \to \mathbb{C}$ and $[u]_{\beta} < \infty$ for some $\beta > 1$, then u is constant on each connected component of Ω . Indeed, if $x \in \Omega$ and $h \in \mathbb{R}^d$ then

$$\left| \frac{u(x+th) - u(x)}{t} \right| \le [u]_{\beta} t^{\beta} / t \to 0 \text{ as } t \to 0$$

which shows $\partial_h u(x) = 0$ for all $x \in \Omega$. If $y \in \Omega$ is in the same connected component as x, then by Exercise 17.5 there exists a smooth curve $\sigma : [0,1] \to \Omega$ such that $\sigma(0) = x$ and $\sigma(1) = y$. So by the fundamental theorem of calculus and the chain rule,

$$u(y) - u(x) = \int_0^1 \frac{d}{dt} u(\sigma(t)) dt = \int_0^1 0 \ dt = 0.$$

This is why we do not talk about Hölder spaces with Hölder exponents larger than 1.

Lemma 24.3. Suppose $u \in C^1(\Omega) \cap BC(\Omega)$ and $\partial_i u \in BC(\Omega)$ for i = 1, 2, ..., d, then $u \in C^{0,1}(\Omega)$, i.e. $[u]_1 < \infty$.

The proof of this lemma is left to the reader as Exercise 24.1.

Theorem 24.4. Let Ω be an open subset of \mathbb{R}^d . Then

- (1) Under the identification of $u \in BC(\bar{\Omega})$ with $u|_{\Omega} \in BC(\Omega)$, $BC(\bar{\Omega})$ is a closed subspace of $BC(\Omega)$.
- (2) Every element $u \in C^{0,\beta}(\Omega)$ has a unique extension to a continuous function (still denoted by u) on $\bar{\Omega}$. Therefore we may identify $C^{0,\beta}(\Omega)$ with $C^{0,\beta}(\bar{\Omega}) \subset BC(\bar{\Omega})$. (In particular we may consider $C^{0,\beta}(\Omega)$ and $C^{0,\beta}(\bar{\Omega})$ to be the same when $\beta > 0$.)
- (3) The function $u \in C^{0,\beta}(\Omega) \to ||u||_{C^{0,\beta}(\Omega)} \in [0,\infty)$ is a norm on $C^{0,\beta}(\Omega)$ which make $C^{0,\beta}(\Omega)$ into a Banach space.

Proof. 1. The first item is trivial since for $u \in BC(\bar{\Omega})$, the sup-norm of u on $\bar{\Omega}$ agrees with the sup-norm on Ω and $BC(\bar{\Omega})$ is complete in this norm.

⁴³If $\beta = 1$, u is is said to be Lipschitz continuous.

2. Suppose that $[u]_{\beta} < \infty$ and $x_0 \in \partial \Omega$. Let $\{x_n\}_{n=1}^{\infty} \subset \Omega$ be a sequence such that $x_0 = \lim_{n \to \infty} x_n$. Then

$$|u(x_n) - u(x_m)| \le |u|_{\beta} |x_n - x_m|^{\beta} \to 0 \text{ as } m, n \to \infty$$

showing $\{u(x_n)\}_{n=1}^{\infty}$ is Cauchy so that $\bar{u}(x_0) := \lim_{n\to\infty} u(x_n)$ exists. If $\{y_n\}_{n=1}^{\infty} \subset \Omega$ is another sequence converging to x_0 , then

$$|u(x_n) - u(y_n)| \le |u|_\beta |x_n - y_n|^\beta \to 0 \text{ as } n \to \infty$$

showing $\bar{u}(x_0)$ is well defined. In this way we define $\bar{u}(x)$ for all $x \in \partial \Omega$ and let $\bar{u}(x) = u(x)$ for $x \in \Omega$. Since a similar limiting argument shows

$$|\bar{u}(x) - \bar{u}(y)| \le [u]_{\beta} |x - y|^{\beta}$$
 for all $x, y \in \bar{\Omega}$

it follows that \bar{u} is still continuous and $[\bar{u}]_{\beta} = [u]_{\beta}$. In the sequel we will abuse notation and simply denote \bar{u} by u.

3. For $u, v \in C^{0,\beta}(\Omega)$,

$$[v+u]_{\beta} = \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|v(y) + u(y) - v(x) - u(x)|}{|x-y|^{\beta}} \right\}$$
$$\leq \sup_{\substack{x,y \in \Omega \\ x \neq y}} \left\{ \frac{|v(y) - v(x)| + |u(y) - u(x)|}{|x-y|^{\beta}} \right\} \leq [v]_{\beta} + [u]_{\beta}$$

and for $\lambda \in \mathbb{C}$ it is easily seen that $[\lambda u]_{\beta} = |\lambda| [u]_{\beta}$. This shows $[\cdot]_{\beta}$ is a semi-norm on $C^{0,\beta}(\Omega)$ and therefore $\|\cdot\|_{C^{0,\beta}(\Omega)}$ defined in Eq. (24.1) is a norm.

To see that $C^{0,\beta}(\Omega)$ is complete, let $\{u_n\}_{n=1}^{\infty}$ be a $C^{0,\beta}(\Omega)$ -Cauchy sequence. Since $BC(\bar{\Omega})$ is complete, there exists $u \in BC(\bar{\Omega})$ such that $||u-u_n||_u \to 0$ as $n \to \infty$. For $x, y \in \Omega$ with $x \neq y$,

$$\frac{|u(x)-u(y)|}{|x-y|^{\beta}} = \lim_{n \to \infty} \frac{|u_n(x)-u_n(y)|}{|x-y|^{\beta}} \le \limsup_{n \to \infty} [u_n]_{\beta} \le \lim_{n \to \infty} ||u_n||_{C^{0,\beta}(\Omega)} < \infty,$$

and so we see that $u \in C^{0,\beta}(\Omega)$. Similarly,

$$\frac{|u(x) - u_n(x) - (u(y) - u_n(y))|}{|x - y|^{\beta}} = \lim_{m \to \infty} \frac{|(u_m - u_n)(x) - (u_m - u_n)(y)|}{|x - y|^{\beta}}$$

$$\leq \limsup_{m \to \infty} [u_m - u_n]_{\beta} \to 0 \text{ as } n \to \infty,$$

showing $[u-u_n]_{\beta} \to 0$ as $n \to \infty$ and therefore $\lim_{n \to \infty} ||u-u_n||_{C^{0,\beta}(\Omega)} = 0$.

Notation 24.5. Since Ω and $\bar{\Omega}$ are locally compact Hausdorff spaces, we may define $C_0(\Omega)$ and $C_0(\bar{\Omega})$ as in Definition 10.29. We will also let

$$C_0^{0,\beta}(\Omega):=C^{0,\beta}(\Omega)\cap C_0(\Omega) \text{ and } C_0^{0,\beta}(\bar\Omega):=C^{0,\beta}(\Omega)\cap C_0(\bar\Omega).$$

It has already been shown in Proposition 10.30 that $C_0(\Omega)$ and $C_0(\bar{\Omega})$ are closed subspaces of $BC(\Omega)$ and $BC(\bar{\Omega})$ respectively. The next proposition describes the relation between $C_0(\Omega)$ and $C_0(\bar{\Omega})$.

Proposition 24.6. Each $u \in C_0(\Omega)$ has a unique extension to a continuous function on $\bar{\Omega}$ given by $\bar{u} = u$ on Ω and $\bar{u} = 0$ on $\partial\Omega$ and the extension \bar{u} is in $C_0(\bar{\Omega})$. Conversely if $u \in C_0(\bar{\Omega})$ and $u|_{\partial\Omega} = 0$, then $u|_{\Omega} \in C_0(\Omega)$. In this way we may identify $C_0(\Omega)$ with those $u \in C_0(\bar{\Omega})$ such that $u|_{\partial\Omega} = 0$.

Proof. Any extension $u \in C_0(\Omega)$ to an element $\bar{u} \in C(\bar{\Omega})$ is necessarily unique, since Ω is dense inside $\bar{\Omega}$. So define $\bar{u} = u$ on Ω and $\bar{u} = 0$ on $\partial\Omega$. We must show \bar{u} is continuous on $\bar{\Omega}$ and $\bar{u} \in C_0(\bar{\Omega})$.

For the continuity assertion it is enough to show \bar{u} is continuous at all points in $\partial\Omega$. For any $\epsilon>0$, by assumption, the set $K_{\epsilon}:=\{x\in\Omega:|u(x)|\geq\epsilon\}$ is a compact subset of Ω . Since $\partial\Omega=\bar{\Omega}\setminus\Omega$, $\partial\Omega\cap K_{\epsilon}=\emptyset$ and therefore the distance, $\delta:=d(K_{\epsilon},\partial\Omega)$, between K_{ϵ} and $\partial\Omega$ is positive. So if $x\in\partial\Omega$ and $y\in\bar{\Omega}$ and $|y-x|<\delta$, then $|\bar{u}(x)-\bar{u}(y)|=|u(y)|<\epsilon$ which shows $\bar{u}:\bar{\Omega}\to\mathbb{C}$ is continuous. This also shows $\{|\bar{u}|\geq\epsilon\}=\{|u|\geq\epsilon\}=K_{\epsilon}$ is compact in Ω and hence also in $\bar{\Omega}$. Since $\epsilon>0$ was arbitrary, this shows $\bar{u}\in C_0(\bar{\Omega})$.

Conversely if $u \in C_0(\bar{\Omega})$ such that $u|_{\partial\Omega} = 0$ and $\epsilon > 0$, then $K_{\epsilon} := \{x \in \bar{\Omega} : |u(x)| \geq \epsilon\}$ is a compact subset of $\bar{\Omega}$ which is contained in Ω since $\partial\Omega \cap K_{\epsilon} = \emptyset$. Therefore K_{ϵ} is a compact subset of Ω showing $u|_{\Omega} \in C_0(\bar{\Omega})$.

Definition 24.7. Let Ω be an open subset of \mathbb{R}^d , $k \in \mathbb{N} \cup \{0\}$ and $\beta \in (0, 1]$. Let $BC^k(\Omega)$ ($BC^k(\bar{\Omega})$) denote the set of k – times continuously differentiable functions u on Ω such that $\partial^{\alpha}u \in BC(\Omega)$ ($\partial^{\alpha}u \in BC(\bar{\Omega})$)⁴⁴ for all $|\alpha| \leq k$. Similarly, let $BC^{k,\beta}(\Omega)$ denote those $u \in BC^k(\Omega)$ such that $[\partial^{\alpha}u]_{\beta} < \infty$ for all $|\alpha| = k$. For $u \in BC^k(\Omega)$ let

$$||u||_{C^k(\Omega)} = \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_u \text{ and}$$
$$||u||_{C^{k,\beta}(\overline{\Omega})} = \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_u + \sum_{|\alpha| = k} [\partial^{\alpha} u]_{\beta}.$$

Theorem 24.8. The spaces $BC^k(\Omega)$ and $BC^{k,\beta}(\Omega)$ equipped with $\|\cdot\|_{C^k(\Omega)}$ and $\|\cdot\|_{C^{k,\beta}(\overline{\Omega})}$ respectively are Banach spaces and $BC^k(\overline{\Omega})$ is a closed subspace of $BC^k(\Omega)$ and $BC^{k,\beta}(\Omega) \subset BC^k(\overline{\Omega})$. Also

$$C_0^{k,\beta}(\Omega) = C_0^{k,\beta}(\bar{\Omega}) = \{ u \in BC^{k,\beta}(\Omega) : \partial^{\alpha} u \in C_0(\Omega) \ \forall \ |\alpha| \le k \}$$
 is a closed subspace of $BC^{k,\beta}(\Omega)$.

Proof. Suppose that $\{u_n\}_{n=1}^{\infty} \subset BC^k(\Omega)$ is a Cauchy sequence, then $\{\partial^{\alpha}u_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $BC(\Omega)$ for $|\alpha| \leq k$. Since $BC(\Omega)$ is complete, there exists $g_{\alpha} \in BC(\Omega)$ such that $\lim_{n \to \infty} \|\partial^{\alpha}u_n - g_{\alpha}\|_u = 0$ for all $|\alpha| \leq k$. Letting $u := g_0$, we must show $u \in C^k(\Omega)$ and $\partial^{\alpha}u = g_{\alpha}$ for all $|\alpha| \leq k$. This will be done by induction on $|\alpha|$. If $|\alpha| = 0$ there is nothing to prove. Suppose that we have verified $u \in C^l(\Omega)$ and $\partial^{\alpha}u = g_{\alpha}$ for all $|\alpha| \leq l$ for some l < k. Then for $x \in \Omega$, $i \in \{1, 2, \ldots, d\}$ and $t \in \mathbb{R}$ sufficiently small,

$$\partial^a u_n(x+te_i) = \partial^a u_n(x) + \int_0^t \partial_i \partial^a u_n(x+\tau e_i) d\tau.$$

Letting $n \to \infty$ in this equation gives

$$\partial^a u(x+te_i) = \partial^a u(x) + \int_0^t g_{\alpha+e_i}(x+\tau e_i)d\tau$$

from which it follows that $\partial_i \partial^{\alpha} u(x)$ exists for all $x \in \Omega$ and $\partial_i \partial^{\alpha} u = g_{\alpha + e_i}$. This completes the induction argument and also the proof that $BC^k(\Omega)$ is complete.

⁴⁴To say $\partial^{\alpha}u \in BC(\bar{\Omega})$ means that $\partial^{\alpha}u \in BC(\Omega)$ and $\partial^{\alpha}u$ extends to a continuous function on $\bar{\Omega}$.

It is easy to check that $BC^k(\bar{\Omega})$ is a closed subspace of $BC^k(\Omega)$ and by using Exercise 24.1 and Theorem 24.4 that that $BC^{k,\beta}(\Omega)$ is a subspace of $BC^k(\bar{\Omega})$. The fact that $C_0^{k,\beta}(\Omega)$ is a closed subspace of $BC^{k,\beta}(\Omega)$ is a consequence of Proposition 10.30.

To prove $BC^{k,\beta}(\Omega)$ is complete, let $\{u_n\}_{n=1}^{\infty} \subset BC^{k,\beta}(\Omega)$ be a $\|\cdot\|_{C^{k,\beta}(\overline{\Omega})}$ — Cauchy sequence. By the completeness of $BC^k(\Omega)$ just proved, there exists $u \in BC^k(\Omega)$ such that $\lim_{n\to\infty} \|u-u_n\|_{C^k(\Omega)} = 0$. An application of Theorem 24.4 then shows $\lim_{n\to\infty} \|\partial^{\alpha}u_n - \partial^{\alpha}u\|_{C^{0,\beta}(\Omega)} = 0$ for $|\alpha| = k$ and therefore $\lim_{n\to\infty} \|u-u_n\|_{C^{k,\beta}(\overline{\Omega})} = 0$.

The reader is asked to supply the proof of the following lemma.

Lemma 24.9. The following inclusions hold. For any $\beta \in [0,1]$

$$BC^{k+1,0}(\Omega) \subset BC^{k,1}(\Omega) \subset BC^{k,\beta}(\Omega)$$

$$BC^{k+1,0}(\bar{\Omega}) \subset BC^{k,1}(\bar{\Omega}) \subset BC^{k,\beta}(\Omega).$$

Definition 24.10. Let $A: X \to Y$ be a bounded operator between two (separable) Banach spaces. Then A is **compact** if $A[B_X(0,1)]$ is precompact in Y or equivalently for any $\{x_n\}_{n=1}^{\infty} \subset X$ such that $||x_n|| \leq 1$ for all n the sequence $y_n := Ax_n \in Y$ has a convergent subsequence.

Example 24.11. Let $X = \ell^2 = Y$ and $\lambda_n \in \mathbb{C}$ such that $\lim_{n \to \infty} \lambda_n = 0$, then $A: X \to Y$ defined by $(Ax)(n) = \lambda_n x(n)$ is compact.

Proof. Suppose $\{x_j\}_{j=1}^{\infty} \subset \ell^2$ such that $||x_j||^2 = \sum |x_j(n)|^2 \leq 1$ for all j. By Cantor's Diagonalization argument, there exists $\{j_k\} \subset \{j\}$ such that, for each n, $\tilde{x}_k(n) = x_{j_k}(n)$ converges to some $\tilde{x}(n) \in \mathbb{C}$ as $k \to \infty$. Since for any $M < \infty$,

$$\sum_{n=1}^{M} |\tilde{x}(n)|^2 = \lim_{k \to \infty} \sum_{n=1}^{M} |\tilde{x}_k(n)|^2 \le 1$$

we may conclude that $\sum_{n=1}^{\infty} |\tilde{x}(n)|^2 \le 1$, i.e. $\tilde{x} \in \ell^2$.

Let $y_k := A\tilde{x}_k$ and $y := A\tilde{x}$. We will finish the verification of this example by showing $y_k \to y$ in ℓ^2 as $k \to \infty$. Indeed if $\lambda_M^* = \max_{n > M} |\lambda_n|$, then

$$||A\tilde{x}_{k} - A\tilde{x}||^{2} = \sum_{n=1}^{\infty} |\lambda_{n}|^{2} |\tilde{x}_{k}(n) - \tilde{x}(n)|^{2}$$

$$= \sum_{n=1}^{M} |\lambda_{n}|^{2} |\tilde{x}_{k}(n) - \tilde{x}(n)|^{2} + |\lambda_{M}^{*}|^{2} \sum_{M=1}^{\infty} |\tilde{x}_{k}(n) - \tilde{x}(n)|^{2}$$

$$\leq \sum_{n=1}^{M} |\lambda_{n}|^{2} |\tilde{x}_{k}(n) - \tilde{x}(n)|^{2} + |\lambda_{M}^{*}|^{2} ||\tilde{x}_{k} - \tilde{x}||^{2}$$

$$\leq \sum_{n=1}^{M} |\lambda_{n}|^{2} |\tilde{x}_{k}(n) - \tilde{x}(n)|^{2} + 4|\lambda_{M}^{*}|^{2}.$$

Passing to the limit in this inequality then implies

$$\lim \sup_{k \to \infty} ||A\tilde{x}_k - A\tilde{x}||^2 \le 4|\lambda_M^*|^2 \to 0 \text{ as } M \to \infty.$$

Lemma 24.12. If $X \xrightarrow{A} Y \xrightarrow{B} Z$ are continuous operators such the either A or B is compact then the composition $BA: X \to Z$ is also compact.

Proof. If A is compact and B is bounded, then $BA(B_X(0,1)) \subset B(\overline{AB_X(0,1)})$ which is compact since the image of compact sets under continuous maps are compact. Hence we conclude that $\overline{BA(B_X(0,1))}$ is compact, being the closed subset of the compact set $B(\overline{AB_X(0,1)})$.

If A is continuous and B is compact, then $A(B_X(0,1))$ is a bounded set and so by the compactness of B, $BA(B_X(0,1))$ is a precompact subset of Z, i.e. BA is compact.

Proposition 24.13. Let $\Omega \subset_o \mathbb{R}^d$ such that $\overline{\Omega}$ is compact and $0 \leq \alpha < \beta \leq 1$. Then the inclusion map $i : C^{\beta}(\overline{\Omega}) \hookrightarrow C^{\alpha}(\overline{\Omega})$ is compact.

Let
$$\{u_n\}_{n=1}^{\infty} \subset C^{\beta}(\overline{\Omega})$$
 such that $||u_n||_{C^{\beta}} \leq 1$, i.e. $||u_n||_{\infty} \leq 1$ and

$$|u_n(x) - u_n(y)| \le |x - y|^{\beta}$$
 for all $x, y \in \overline{\Omega}$.

By Arzela-Ascoli, there exists a subsequence of $\{\tilde{u}_n\}_{n=1}^{\infty}$ of $\{u_n\}_{n=1}^{\infty}$ and $u \in C^o(\bar{\Omega})$ such that $\tilde{u}_n \to u$ in C^0 . Since

$$|u(x) - u(y)| = \lim_{n \to \infty} |\tilde{u}_n(x) - \tilde{u}_n(y)| \le |x - y|^{\beta},$$

 $u \in C^{\beta}$ as well. Define $g_n := u - \tilde{u}_n \in C^{\beta}$, then

$$[g_n]_{\beta} + ||g_n||_{C^0} = ||g_n||_{C^{\beta}} \le 2$$

and $g_n \to 0$ in C^0 . To finish the proof we must show that $g_n \to 0$ in C^{α} . Given $\delta > 0$,

$$[g_n]_{\alpha} = \sup_{x \neq y} \frac{|g_n(x) - g_n(y)|}{|x - y|^{\alpha}} \le A_n + B_n$$

where

$$A_n = \sup \left\{ \frac{|g_n(x) - g_n(y)|}{|x - y|^{\alpha}} : x \neq y \text{ and } |x - y| \leq \delta \right\}$$
$$= \sup \left\{ \frac{|g_n(x) - g_n(y)|}{|x - y|^{\beta}} \cdot |x - y|^{\beta - \alpha} : x \neq y \text{ and } |x - y| \leq \delta \right\}$$
$$\leq \delta^{\beta - \alpha} \cdot [g_n]_{\beta} \leq 2\delta^{\beta - \alpha}$$

and

$$B_n = \sup \left\{ \frac{|g_n(x) - g_n(y)|}{|x - y|^{\alpha}} : |x - y| > \delta \right\} \le 2\delta^{-\alpha} \|g_n\|_{C^0} \to 0 \text{ as } n \to \infty.$$

Therefore,

$$\lim \sup_{n \to \infty} [g_n]_{\alpha} \le \lim \sup_{n \to \infty} A_n + \lim \sup_{n \to \infty} B_n \le 2\delta^{\beta - \alpha} + 0 \to 0 \text{ as } \delta \downarrow 0.$$

This proposition generalizes to the following theorem which the reader is asked to prove in Exercise 24.2 below.

Theorem 24.14. Let Ω be a precompact open subset of \mathbb{R}^d , $\alpha, \beta \in [0, 1]$ and $k, j \in \mathbb{N}_0$. If $j + \beta > k + \alpha$, then $C^{j,\beta}(\bar{\Omega})$ is compactly contained in $C^{k,\alpha}(\bar{\Omega})$.

24.1. Exercises.

Exercise 24.1. Prove Lemma 24.3.

Exercise 24.2. Prove Theorem 24.14. **Hint:** First prove $C^{j,\beta}\left(\bar{\Omega}\right) \sqsubset \sqsubset C^{j,\alpha}\left(\bar{\Omega}\right)$ is compact if $0 \le \alpha < \beta \le 1$. Then use Lemma 24.12 repeatedly to handle all of the other cases.