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24. HOLDER SPACES

Notation 24.1. Let  be an open subset of RY, BC(2) and BC(£2) be the bounded
continuous functions on Q and Q respectively. By identifying f € BC(£2) with

fla € BC(Q), we will consider BC(2) as a subset of BC(Q?). For u € BC(Q) and
0<p<1let

|u(z) — u(y)| }
|y = sup |u(x)| and [u]g := sup{ .
ol = up el and s = s |

If [u]p < oo, then u is H6lder continuous with holder exponent*® 3. The collection
of 8 — Holder continuous function on §2 will be denoted by

C%P(Q) == {u € BC(Q) : [u]s < oo}
and for u € C%8(Q) let
(24.1) lullco.s (o) = llullu + [uls-

Remark 24.2. If u: Q — C and [u]g < oo for some 8 > 1, then u is constant on
each connected component of Q. Indeed, if z € Q and h € R? then
u(z + th) — u(z)

- < [ulgt?Jt —0ast — 0

which shows Opu(z) = 0 for all z € Q. If y € Q is in the same connected component
as x, then by Exercise 17.5 there exists a smooth curve o : [0,1] — Q such that
0(0) =z and o(1) = y. So by the fundamental theorem of calculus and the chain
rule,

u(y)—u(av)z/o %u(o(t))dt:/o 0 dt = 0.

This is why we do not talk about Holder spaces with Holder exponents larger than
1.

Lemma 24.3. Suppose u € C1(Q) N BC(Q) and d;u € BC(Q) fori=1,2,...,d,
then u € C%1(Q), i.e. [u]; < oo.

The proof of this lemma is left to the reader as Exercise 24.1.

Theorem 24.4. Let Q be an open subset of R%. Then

(1) Under the identification of u € BC (Q) with ulg € BC(Q), BC(Q) is a
closed subspace of BC ().

(2) Every element u € C%?(Q) has a unique extension to a continuous func-
tion (still denoted by u) on Q. Therefore we may identify C*P(Q) with
CY8(Q) c BC(Q). (In particular we may consider C*#(Q) and C%#(Q) to
be the same when 3 > 0.)

(3) The function u € C*P(Q) — |lul|co.s(q) € [0,00) is a norm on C%P(Q)
which make C%(2) into a Banach space.

Proof. 1. The first item is trivial since for u € BC({2), the sup-norm of u on

agrees with the sup-norm on Q and BC(f) is complete in this norm.

431¢ B =1, u is is said to be Lipschitz continuous.



ANALYSIS TOOLS WITH APPLICATIONS 457

o
n=1

2. Suppose that [u]g < oo and zp € 0Q. Let {z,}
that x¢p = lim,,_, ©,,. Then

C Q be a sequence such

lu(zn) — w(@m)| < [ulg|zn — :Em|'@ — 0 as m,n —

showing {u(zy)},., is Cauchy so that @(zo) := limy, o u(zy,) exists. If {y, },-, C
Q) is another sequence converging to xg, then

[u(@n) — ulyn)| < [ulg [zn — yn‘ﬂ — 0 as n — oo,
showing @(zg) is well defined. In this way we define @(z) for all © € 9Q and let
t(x) = u(x) for z € Q. Since a similar limiting argument shows
ja(z) — a(y)| < [u]g |z —y|” for all 2,y € Q

it follows that @ is still continuous and [a]g = [u]s. In the sequel we will abuse
notation and simply denote @ by .
3. For u,v € C%P(Q),

[v+ulg = sup

{ v(y) +uly) — v(z) — u(z)| }

x;yfﬂ ‘.’E - y|B
[v(y) — v(@)| + |u(y) — u(z)|
= ;;?Q{ - |z — y|5y } < kls+luls

and for A € C it is easily seen that [Au]g = |A| [u]g. This shows [-]g is a semi-norm
on C%#(Q) and therefore || - ||co.5(q) defined in Eq. (24.1) is a norm.

To see that C%#(Q) is complete, let {u,}.—, be a C%#()-Cauchy sequence.
Since BC(Q) is complete, there exists u € BC(Q) such that ||u —u,|/, — 0 as
n — oo. For xz,y € Q with x # vy,

M = lim M_ugw < limsuplup]s < lm |lu, || co.s o) < oo,

ool e P e T

and so we see that u € C%4(Q). Similarly,

Ju(x) — un(z) — (uly) — un(y))| — lim (i — un) (@) = (Um — un)(Y)]
|x—y|B m—00 |z —y|?

< limsup[um, — up)g — 0 as n — oo,

m—0o0

showing [u — u,]s — 0 as n — oo and therefore lim,, .o ||t — un|[co.8(0) = 0. W

Notation 24.5. Since {2 and Q are locally compact Hausdorff spaces, we may
define Cy(€2) and Cp(2) as in Definition 10.29. We will also let

CYP () := C%F(Q) N Cy(Q) and C P () := COP(Q) N Co(Q).

It has already been shown in Proposition 10.30 that Co(£2) and Co(Q) are closed
subspaces of BC(2) and BC(Q) respectively. The next proposition describes the

relation between Cp(Q2) and Cy(£2).

Proposition 24.6. Fach u € Cy(2) has a unique extension to a continuous func-
tion on Q given by @ =u on Q and 4 = 0 on O and the extension u is in Co(Q).
Conversely if u € Co(Q) and ulga = 0, then ulg € Co(Q). In this way we may
identify Co(Q) with those u € Co(Q) such that u|pg = 0.



458 BRUCE K. DRIVER'

Proof. Any extension u € Cy(Q2) to an element % € C(Q) is necessarily unique,
since €2 is dense inside Q. So define % = u on 2 and @ = 0 on 9. We must show @
is continuous on Q and @ € Cp().

For the continuity assertion it is enough to show # is continuous at all points
in 9. For any € > 0, by assumption, the set K. := {x € Q: |u(z)| > €} is a
compact subset of . Since 9Q = Q\ Q, 92N K. = 0 and therefore the distance,
§ = d(K.,00), between K. and 99 is positive. So if z € 9Q and y € Q and
ly — x| < 6, then |ii(x) — i(y)| = |u(y)| < € which shows @ : Q — C is continuous.
This also shows {|i| > ¢} = {|u| > ¢} = K. is compact in © and hence also in €.
Since € > 0 was arbitrary, this shows @ € Cp(€2).

Conversely if v € Cp(Q) such that ulpg = 0 and € > 0, then K, :=
{z €Q:|u(z)] > €} is a compact subset of Q which is contained in Q since
90N K, = (). Therefore K, is a compact subset of {2 showing u|o € Cp(2). m

Definition 24.7. Let Q be an open subset of R%, k € NU{0} and 3 € (0,1]. Let
BC*(Q) (BCk(€)) denote the set of k — times continuously differentiable functions
u on Q such that 0%u € BC(Q) (0%u € BC(Q))* for all |a| < k. Similarly, let
BCkP(Q) denote those u € BC¥(2) such that [0%u]sz < oo for all |a| = k. For
u € BC*(Q) let

lullcr) = D 19%ull, and

la| <k
|u||ck5 @ = Z 10%ullu + Z [0%u]
lo| <k lo| =k

Theorem 24.8. The spaces BC*(Q) and BC*P(Q) equipped with, | - ||cx(q) and
| - llcrsgm respectively are Banach spaces and BC*(Q) is a closed subspace of
BCk(Q) and BCH8(Q) ¢ BC*(Q). Also

CEA(Q) = CPP(Q) = {u e BC*P(Q): %u e Co() V |al < k}
is a closed subspace of BC*P(Q).

Proof. Suppose that {u,} -, C BC¥(Q) is a Cauchy sequence, then {0%u, }oo
is a Cauchy sequence in BC(Q) for |a| < k. Since BC(R?) is complete, there exists
ga € BC(Q) such that lim, o [|0%Upn — gall, = 0 for all |a| < k. Letting u := go,
we must show u € C¥(Q) and 0% = g, for all |a| < k. This will be done by
induction on |a|. If |o| = 0 there is nothing to prove. Suppose that we have

verified u € C'(Q) and 0%u = g, for all || < I for some [ < k. Then for z € €,
i€{1,2,...,d} and t € R sufficiently small,

t
O%up(x + te;) = 0%up(x) + / 0;0%up (x + Te;)dr.
0
Letting n — oo in this equation gives
t
0%u(x + te;) = 0%u(x) + / Jorte; (T + TE)dT
0

from which it follows that 0;0%u(x) exists for all € Q and 0;0%u = gate,. This
completes the induction argument and also the proof that BC*(Q) is complete.

4476 say 8*u € BC()) means that 8%u € BC(Q) and 8%u extends to a continuous function
on Q.
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It is easy to check that BC¥() is a closed subspace of BC*(Q) and by using
Exercise 24.1 and Theorem 24.4 that that BC*# (1) is a subspace of BC*((2). The

fact that Ci”(Q) is a closed subspace of BC¥8() is a consequence of Proposition
10.30.

To prove BC*A(Q) is complete, let {u,}>o, € BC*A(Q) be a || - lews@) —
Cauchy sequence. By the completeness of BC*(Q) just proved, there exists u €
BC*(€) such that lim,, |u—unllcr @) = 0. An application of Theorem 24.4 then
shows limy, .o [[0%un — 0%ul| o5y = 0 for |a] = k and therefore limy, o [|u —

The reader is asked to supply the proof of the following lemma.

Lemma 24.9. The following inclusions hold. For any 3 € [0,1]

BC*10(Q) ¢ BCk1(Q) ¢ BC*P(Q)

BC*10(Q) ¢ BCH1(Q) ¢ BC*#(Q).
Definition 24.10. Let A : X — Y be a bounded operator between two (sep-
arable) Banach spaces. Then A is compact if A[Bx(0,1)] is precompact in Y

or equivalently for any {z,}52,; C X such that ||x,|| < 1 for all n the sequence
Yn := Az, € Y has a convergent subsequence.

Example 24.11. Let X = ¢2 =Y and A\, € C such that lim, o A, = 0, then
A: X =Y defined by (Az)(n) = A,x(n) is compact.

Proof. Suppose {z;}52, C £* such that [lz;[* = > |xj(n)|2 < 1 for all j. By
Cantor’s Diagonalization argument, there exists {j5} C {j} such that, for each n,
Zr(n) = xj,(n) converges to some Z(n) € C as k — oo. Since for any M < oo,

M M
=, 2 5, 2
=1 <1
> la(m)P = lim 3 a0 <

n=1
o0
we may conclude that Y |Z(n)? <1, ie. 7 € (%
1

—~

Let yr := AZp and y::: AZ. We will finish the verification of this example by
showing yr — y in £ as k — oo. Indeed if A}, = max |An|, then
nz

oo

[AZ, — AZ|* =Y [Aaf* [E1(n) — E(n)|*
n=1
M 0o
Z Anl?lEk(n) — &) + [Nig* Y 1@k (n) — E(n)]
n=1 M+1
M
* ~ ~112
< Z Ak (n) = Z(n)? + [Ny (|25 — 2|
i
<D AallEr(n) — E(n)* + 45
n=1

Passing to the limit in this inequality then implies
lim sup ||AZ, — A%|* < 4|\5)* — 0 as M — oo.

k—o0
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Lemma 24.12. If X 27 5 Z are continuous operators such the either A or
B is compact then the composition BA : X — Z is also compact.

Proof. If A is compact and B is bounded, then BA(Bx(0,1)) C B(ABx(0,1))
which is compact since the image of compact sets under continuous maps are com-
pact. Hence we conclude that BA(Bx (0, 1)) is compact, being the closed subset of
the compact set B(ABx(0,1)).

If A is continuos and B is compact, then A(Bx(0,1)) is a bounded set and so
by the compactness of B, BA(Bx(0,1)) is a precompact subset of Z, i.e. BA is
compact. H

Proposition 24.13. Let 2 CO_Rd such that Q is compact and 0 < a < B < 1.
Then the inclusion map i : C?(Q) — C*(Q) is compact.

Let {u,}5, C CA(Q) such that |lu,|/cs < 1, ie. |Jun]oo <1 and
[un (@) = un(y)| < | —y|” for all 2,y € Q.

By Arzela-Ascoli, there exists a subsequence of {i,, }°; of {u,}3; and u € C°()
such that @,, — u in C°. Since

u(@) — u(y)] = lim_[in(z) — @ (y)] < = — 9I°,
u € CP as well. Define g, := u — @, € C®, then

[9n]5 + llgnllco = llgnllcs <2

and g, — 0 in C°. To finish the proof we must show that g, — 0 in C®. Given
0 >0,

|gn () — gn(y)|

[gn}oz = sup . < An + Bn
T#Yy |x—y|
where
An—sup{w cx#yand |z —y| §5}
|z —yl|~
n\T) — gn —«
—sup { LDl oy 2y o oy < 6
<677 [gnlp < 2677
and

B, —SHP{W e —yl > 5} <267 ||gnllco — 0 as n — oo.

Therefore,

lim sup [gn]e < lim sup A, + lim sup B, < 204+ 0—>0asd | 0.
n—oo n—oo n—oo
This proposition generalizes to the following theorem which the reader is asked to
prove in Exercise 24.2 below.

Theorem 24.14. Let Q be a precompact open subset of R? a,B € [0_, 1] and k,j €
No. If j + B > k + «, then CI+P (Q) is compactly contained in C* (Q) .
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24.1. Exercises.
Exercise 24.1. Prove Lemma 24.3.

Exercise 24.2. Prove Theorem 24.14. Hint: First prove C78 (Q) cC Che (Q) is
compact if 0 < a < f < 1. Then use Lemma 24.12 repeatedly to handle all of the
other cases.



