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Preface

These are lecture notes from Real analysis and PDE, Math 240 and Math 231.
Some sections are in better shape than others. I am sorry for those sections
which are still a bit of a mess. These notes are still not polished. Nevertheless,
I hope they may be of some use even in this form.

Part I

Basic Topological, Metric and Banach Space
Notions



1

Limits, sums, and other basics

1.1 Set Operations

Suppose that X is a set. Let P(X) or 2% denote the power set of X, that is
elements of P(X) = 2¥ are subsets of A. For A € 2% let

A=X\A={zeX :x ¢ A}
and more generally if A, B C X let
B\A={zeB:x¢A}.
We also define the symmetric difference of A and B by
AAB =(B\ A)U(A\ B).

As usual if {Ay},c; is an indexed collection of subsets of X we define the
union and the intersection of this collection by

UaerAa i ={z€eX:Jaecl 5 xe€A,}and
NactAa i ={zeX iz e A Vaecl}.

Notation 1.1 We will also write [[,c; Aa for UaerAa in the case that
{Au}per are pairwise disjoint, i.e. Aq N Ag =0 if a # f.

Notice that U is closely related to 3 and N is closely related to V. For
example let {A4,}°7 | be a sequence of subsets from X and define

{4 io0}={ze X :#{n:zc A,} = oo} and
{A, aa.}:={z € X :z e A, for all n sufficiently large}.
(One should read {4, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost

always.) Then z € {4, i.0.} iff YN e NI n > N >z € A, which may be
written as

4 1 Limits, sums, and other basics

{An 1.0} =NF—q Un>n Ap.

Similarly, © € {4, a.a.} if 3 N e N>V n > N, z € A, which may be
written as
{A, a.a.} =UF_ Nu>n An.

1.2 Limits, Limsups, and Liminfs

Notation 1.2 The Extended real numbers is the set R := RU{4o0} , i.e. it is
R with two new points called co and —oo. We use the following conventions,
+00:-0=0, oo+ a = to0 for any a € R, 0o+ 00 = 00 and —oco — 0o = —o0
while 0o — 0o is not defined.

If A C R we will let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. We will also use the following conven-
tion, if A =0, then sup = —co and inf ) = +co.

Notation 1.3 Suppose that {x,}°°, C R is a sequence of numbers. Then

n=1
lim inf z, = lim inf{z; : k > n} and (1.1)
lim sup z, = lim sup{zy : k > n}. (1.2)

We will also write lim for liminf end lim for limsup .

Remark 1.4. Notice that if aj := inf{zy : k > n} and by := sup{zy : k >
n},then {a;} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (1.1) and Eq. (1.2) always exist and

lim inf 2, =supinf{z;: k> n} and

lim sup z, = infsup{zy : k > n}.
n—oo n
The following proposition contains some basic properties of liminfs and
limsups.

Proposition 1.5. Let {a,}22 ;1 and {b,}2 be two sequences of real numbers.
Then

1. liminf, o a, < limsup,, .. a, andlim, . a, evists in R iffliminf, .. a
limsup,,_, . @, € R.
2. There is a subsequence {an,}72, of {an}s>, such that limg_ o0 apn, =
limsup,,_, o @n.
3.
lim sup (a,, + b,) < lim sup a, + lim sup b, (1.3)

n—oo n—0o0 n—oo

whenever the right side of this equation is not of the form oo — oco.
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4. If ap, > 0 and b, > 0 for all n € N, then

lim sup (a,b,) <lim sup a, -lim sup by, (1.4)
n—oo n—0o0 n—0oo
provided the right hand side of (1.4) is not of the form 0 - oo or oo - 0.
Proof. We will only prove part 1. and leave the rest as an exercise to the
reader. We begin by noticing that

inf{ay : k >n} <supf{ax: k >n}Vn

so that

lim inf a, <lim sup a,.
n—oo n—o0

Now suppose that liminf,,_, . @, = limsup,, . a, = a € R. Then for all
€ > 0, there is an integer N such that

a—e<inf{ay: k> N} <sup{ar: k> N} <a+e,
i.e.
a—e<ap<a-+eforal k> N.

Hence by the definition of the limit, limy_ o, ax = a.
If liminf,,_, o a, = 00, then we know for all M € (0, c0) there is an integer
N such that
M <inf{ay : k> N}

and hence lim,,_,« a,, = co. The case where limsup,,_, . @, = —o0 is handled
similarly. ~
Conversely, suppose that lim, o a, = A € R exists. If A € R, then for
every € > 0 there exists N(¢) € N such that |4 — a,| < € for all n > N(e), i.e
A—e<a, <A+eforaln>N().
From this we learn that

A—e<lim inf a, <lim sup a, < A+e.

n—oo n— oo
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A,

n—oo n—00

i.e. that A = liminf, . a, = limsup,,_, ., an-
If A = oo, then for all M > 0 there exists N(M) such that a,, > M for all
n > N(M). This show that

lim inf a, > M
and since M is arbitrary it follows that

oo < lim inf a, < lim sup a,.
n—00 n—00

The proof is similar if A = —c0 as well. m
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1.3 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
a CC X to denote that « is a finite subset of X.

Definition 1.6. Suppose that a : X — [0,00] is a function and F C X is a
subset, then

Za—Za(L —sup{Za(x):aCCF}.

z€F TEQ
Remark 1.7. Suppose that X =N ={1,2,3,...}, then
Za—z (n) = hm Za(n
n=1 N—eo n=1
Indeed for all N, YN a(n) < Y a, and thus passing to the limit we learn
that

o0

Za(n) < Za.
N

n=1
Conversely, if @« CC N, then for all N large enough so that o C {1,2,..., N},
we have 3 a < >N a(n) which upon passing to the limit implies that

Zag Za(n)

and hence by taking the supremum over a we learn that

Za < Za(n).

Remark 1.8. Suppose that > a < oo, then {x € X : a(z) > 0} is at most
countable. To see this first notice that for any € > 0, the set {z : a(z) > €}
must be finite for otherwise )" a = oo. Thus

{reX:a(z)>0}= Uiozl{a: ca(z) > 1/k}

which shows that {z € X : a(z) > 0} is a countable union of finite sets and
thus countable.

Lemma 1.9. Suppose that a,b: X — [0,00] are two functions, then

Z(aer Za+2band
Zx\a—/\Za

for all X > 0.
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I will only prove the first assertion, the second being easy. Let & CC X be
a finite set, then

da+b)=>"a+d b<> a+d b
a « a X X

which after taking sups over a shows that
dla+b) <> a+d b
X X X
Similarly, if o, 8 CC X, then

Za+Zb< Dat+d b= (a+b)< ;a+b

aupg alp aup

Taking sups over a and [ then shows that
da+> <> (a+b).
X X X

Lemma 1.10. Let X and Y be sets, R C X xY and suppose that a : R — R
is a function. Let ;R :={y €Y : (z,y) € R} and Ry :={x € X : (z,y) € R}.
Then

sup a(z,y) = sup sup a(x,y) = sup sup a(x,y) and

(z,y)ER zeX yEzR YyeEY zERy
f = inf inf = inf inf .
ot R@y) = inf inf a(z,y)= inf flEnRya(%y)
(Recall the conventions: sup ) = —oo and inf ) = +o0.)

Proof. Let M = sup(, ,yep (%, y), Ny = sup,¢_ga(z,y). Then a(z,y) <
M for all (z,y) € R implies N, = sup,¢ pa(z,y) < M and therefore that

sup sup a(z,y) = sup N, < M. (1.5)
rzeX yc. R zeX

Similarly for any (z,y) € R,

a(z,y) < N, < sup N, = sup sup a(z, y)

reX rzeX ye, R
and therefore
sup a(z,y) < sup sup a(z,y) =M (1.6)
(z,y)ER zeX ye. R

Equations (1.5) and (1.6) show that

sup a(z,y) = sup sup a(z,y).
(z,y)eR z€X yEa R

The assertions involving infinums are proved analogously or follow from what
we have just proved applied to the function —a. m
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Y

Ry
g Lo

.
v
.

—_
—X

Fig. 1.1. The z and y — slices of aset R C X x Y.

Theorem 1.11 (Monotone Convergence Theorem for Sums). Suppose
that f, : X — [0,00] is an increasing sequence of functions and

f(.T) = nlggo fn(x) = Sup fn(x)~
Then

Jm > =21
X X

Proof. We will give two proves. For the first proof, let P;(X) ={A C X :
A CC X}. Then

im Z Jn= sup an =sup sup Z fn= sup bupz In

noaePr(X) T, a€Ps(X)
= sup lim fn= sup lim f,
aGPf(X)""OCZ aE'Pf(X)Z"*’OO
=L D=2

aEP;(X)

(Second Proof.) Let S, =Yy fn and S = >y f. Since f,, < fp, < f for
all n < m, it follows that
Sp <8, <S8

which shows that lim,, . S, exists and is less that S, i.e.
X X
Noting that Y fn <>y fo = Sn < Afor all @ CC X and in particular,

angAforallnandaCCX.
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Letting n tend to infinity in this equation shows that

d f<Aforallacc X
[e3

and then taking the sup over all @« CC X gives
Y f<A=lim Y S (1.8)
X X

which combined with Eq. (1.7) proves the theorem. m

Lemma 1.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0, 0]
is a sequence of functions, then

Xt 5, < i ot 3

Proof. Define g, = 1I;fk fn so that g 1 liminf,,_. f, as k — oo. Since
n>

gr. < fn for all k <mn,
ngSanforallnzk
X X

and therefore

ng < lim nlilgo Z fn for all k.
X X
We may now use the monotone convergence theorem to let £k — oo to find
S tim inf £, =3 lim g "EY lim Y g <lim inf Y .
n—oo” " k— o0 k—oo - n— 00 "
X X X X
[

Remark 1.18. 1f A =)~y a < oo, then for all € > 0 there exists o« CC X such
that
A> Za >A—€

for all @ CC X containing «. or equivalently,
A-— Z a
(o3

for all @« CC X containing «.. Indeed, choose a. so that Zm a>A—e

<e (1.9)
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1.4 Sums of complex functions

Definition 1.14. Suppose that a : X — C is a function, we say that

2a=) oa

reX

exists and is equal to A € C, if for all € > 0 there is a finite subset o C X
such that for all « CC X containing o we have

A—Za <e

The following lemma is left as an exercise to the reader.

Lemma 1.15. Suppose that a,b : X — C are two functions such that )y a
and Yy b exist, then Y (a+ Ab) ewists for all X € C and

> (a+ M) = Za—l—)\Zb

Definition 1.16 (Summable). We call a function a : X — C summable
if

Z la] < oo.

X

Proposition 1.17. Let a : X — C be a function, then Yy a exists iff
>ox lal < oo, d.e. iff a is summable.

Proof. If 3" |a| < oo, then Yy (Rea)™ < oo and ¥y (Ima)* < oo
and hence by Remark 1.13 these sums exists in the sense of Definition 1.14.
Therefore by Lemma 1.15, )+ a exists and

Yo=Y Rea)” - Y ea ¢ (Zama ;(Im@).

Conversely, if "y |a| = co then, because |a| < [Rea| + |Ima|, we must

have
Z|Rea| = 00 or Z [Imal =
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a=at —a~ where

a™(z) = max(a(z),0) and o~ (z) = max(—a(z),0). (1.10)

Then |a| = a™ 4+ a~ and



1.4 Sums of complex functions 11
o= Yl = Y+ Yo
X X X
which shows that either )y a* = oo or Yy a~ = co. Suppose, with out loss

of generahty, that >~y a™ = oco. Let X' := {z € X : a(z) > 0}, then we know
that >y, a = oo which means there are finite subsets a,, C X’ C X such
that >°, a > n for all n. Thus if @ CC X is any finite set, it follows that
lim,, oo a = 0o, and therefore Yy a can not exist as a number in R.
[ |

apUa

Remark 1.18. Suppose that X = N and a : N — C is a sequence, then it is
not necessarily true that

> a(n) =" a(n). (1.11)
n=1 neN
This is because
[eS) N
Z a(n) = th Z a(n)
n=1 Ocn:l

depends on the ordering of the sequence a where as ), a(n) does not. For
example, take a(n) = (—=1)"/n then Y _\la(n)] = oo ie. Y ya(n) does
not exist while " ° | a(n) does exist. On the other hand, if

D lam) =" la(n)| < oo

then Eq. (1.11) is valid.

Theorem 1.19 (Dominated Convergence Theorem for Sums). Sup-
pose that f, + X — C is a sequence of functions on X such that f(z) =
limy,, 00 fn(x) € C exists for all x € X. Further assume there is a dominat-
ing function g: X — [0,00) such that

[fn(z)] < g(zx) for allz € X andn € N (1.12)
and that g is summable. Then
lim Y fu(@) =) f(a). (1.13)
reX reX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,

Zgif th 1nf (9% fn) <lim 1nf2gifn
X

=> g+lim inf (ﬂ:an> .
X n—oo X
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Since liminf, o (—a,) = —limsup,,_, ., an, we have shown,
liminf,, Z fn
g£) f<) g9+ { ) <
2 B S 2 S
and therefore

lim sup Zf,,<2f<hm inf Zfﬂ

n—0o0

This shows that lim »_, fpexists and is equal to > f. ®
n—oo

Proof. (Second Proof.) Passing to the limit in Eq. (1.12) shows that |f| <
g and in particular that f is summable. Given € > 0, let @« CC X such that

zgée.

Then for 8 CC X such that a C S3,
Zf_an = Z(f_fn)
B B B
<Z|f nt—Z\f Pl D 1F = fal
B\
<Z|f fal+2) g

B\
< Z'f_fnl + 2e.
o

and hence that

Zf_z.fn Sz‘f_fn|+2€
B B a

Since this last equation is true for all such § CC X, we learn that
D=
X X
which then implies that

Zf an

Sz‘f*fn|+25

< lim sup Z\f ful +2¢

lim sup

n—oo

= 2e.

Because € > 0 is arbitrary we conclude that

Zf an

which is the same as Eq. (1.13). m

lim sup =0.

n—0o0
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1.5 Iterated sums

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 1.20. Suppose that a : X — C is function and F C X is a subset
such that a(z) =0 for all x ¢ F. Show that Y . a exists iff Yy a exists, and

if the sums exist then
Sa-Ye
X F

Theorem 1.21 (Tonelli’s Theorem for Sums). Suppose that a: X XY —

[0, 0], then
2 a=2. 2 a=3 e

XXY
Proof. It suffices to show, by symmetry, that

2 =22

XxY
Let A CC X x Y. The for any o CC X and f CC Y such that A C a X 3, we
have

doas) =) ) es) ) as) ) e
axf a B a Y X Y

ie. > ,a < >y a. Taking the sup over A in this last equation shows

Z aSXX:XY:a.

XxY

We must now show the opposite inequality. If > ;- a = 0o we are done
so we now assume that a is summable. By Remark 1.8, there is a countable
set {(z},, yn)}n 1 C X x Y off of which a is identically 0.

Let {y,,}n be an enumeration of {y,},—,, then since a(z,y) = 0 if
& {yntoeys Zer a(z,y) =Y o, a(z,y,) for all z € X. Hence

N

Z Z a(xvy) = Z Z alx yn) hm Z a(xvyn)
zeX yeY zeX n=1 .LEX n:l
N
= ngnoo Z Z a(T, Yn), (1.14)

zeX n=1

wherein the last inequality we have used the monotone convergence theorem
with Fiy(z) := 2521 a(x,y,). If a CC X, then

S a= Y a<

rE€an=1 (xX{yn};’Ll XxY
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and therefore,

A}i_IEO Z Za(m, Yn) < Z a. (1.15)

z€X n=1 XxY
Hence it follows from Egs. (1.14) and (1.15) that

Z Za(a;y) < Z a (1.16)

reX yey XxY

as desired.

Alternative proof of Eq. (1.16). Let A = {x/, : n € N} and let {z,}.—,
be an enumeration of A. Then for z ¢ A, a(z,y) =0 for all y € Y.

Given € > 0, let 6 : X — [0,00) be the function such that >~ 6 = ¢ and
0(z) > 0 for z € A. (For example we may define § by 6(z,) = /2" for all n
and §(z) =01if z ¢ A.) For each = € X, let 5, CC X be a finite set such that

D alwy) < Y alw,y) +6(x).

yeYy YEPB
Then
S0 3 Y alwy) + 3 o)
X Y z€X yEPLy zeX
*ZZ a(z,y) +e= supzz (z,y)+€
r€X y€Py X zea YEBx
<) a+te (1.17)
XxY

wherein the last inequality we have used

> S e =Yes Y

TEQ Yy Py Ao XxY

with
Ao ={(myy) e X xY:z€aandye b} C X xY.

Since € > 0 is arbitrary in Eq. (1.17), the proof is complete. ®

Theorem 1.22 (Fubini’s Theorem for Sums). Now suppose that a : X x
Y — C is a summable function, i.e. by Theorem 1.21 any one of the following
equivalent conditions hold:

1.3y lal < oo,
2.3 >y lal <ooor
8.2y 2oxlal < oo
Then
YIRS 3 S 3) o
X Y Y X

XxY
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Proof. If a : X — R is real valued the theorem follows by applying
Theorem 1.21 to a* — the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a. m

1.6 £P — spaces, Minkowski and Holder Inequalities

In this subsection, let 1 : X — (0, 00] be a given function. Let IF denote either
Cor R. For p € (0,00) and f: X — F, let

1£llp = O 1f (@) P ()
zeX

and for p = oo let

[[flloc = sup {|f(z)

rxe X},
Also, for p > 0, let
Cp) ={f: X = F:|fllp < oo}
In the case where p(z) = 1 for all z € X we will simply write ¢7(X) for £ ().

Definition 1.23. A norm on a vector space L is a function ||-|| : L — [0, 00)
such that

1. (Homogeneity) |Af|| = || || f]| for all X € F and f € L.
2. (Triangle inequality) ||f + g|l < | fII + gl for all f,g € L.
3. (Positive definite) || f|| = 0 implies f = 0.

A pair (L, ||||) where L is a vector space and ||-|| is a norm on L is called
a normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 1.24. For p € [1,00], (¢P(u), | - ||p) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is
the content of Minkowski’s Inequality proved in Theorem 1.30 below. m

1.6.1 Some inequalities

Proposition 1.25. Let f : [0,00) — [0,00) be a continuous strictly increasing

function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~!
S§—00

and for s,t > 0 let

s t
F(s) = / f(s)ds" and G(t) = / g(tdt'.
0 0
Then for all s,t > 0,
st < F(s) + G(t)
and equality holds iff t = f(s).
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Proof. Let

As i ={(0,7): 0 <7< f(0) for 0 < o < s} and
By :={(0,7):0< 0 <g(r) for 0 <7<t}

then as one sees from Figure 1.2, [0, s] x [0,t] C A5 U B;. (In the figure: s = 3,
t =1, As is the region under ¢t = f(s) for 0 < s < 3 and Bj is the region to
the left of the curve s = g(t) for 0 < ¢ < 1.) Hence if m denotes the area of a
region in the plane, then

st =m([0,s] x [0,t]) < m(As) +m(Bt) = F(s) + G(2).

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes m to be Lebesgue measure on the plane which
will be introduced later.

We can also give a calculus proof of this theorem under the additional
assumption that f is C. (This restricted version of the theorem is all we need
in this section.) To do this fix ¢ > 0 and let

h(s) = st — F(s) = /Os(t ~ f(0))do

If 0 > g(t) = f~1(t), then t — f(0) < 0 and hence if s > g(t), we have
s g(t) s
o= [ = sonao = [T sonao s [ @ sionas

g(t)
< / (t = F(0))do = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s € (0,¢] and hence at a point where 0 = h'(s) =t — f(s). The only
solution to this equation is s = g(¢) and we have thus shown

g(t)
st — F(s) = h(s) < / (t— F(o))do = h(g(t))

0

with equality when s = g(t). To finish the proof we must show fog m(t -
f(o))do = G(t). This is verified by making the change of variables o = g(r
and then integrating by parts as follows:

t

g(t) t
/0 (t— f(o))do = / (t— F(g(r)))g/(r)dr = / (t = 1) (r)dr
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+ + t
0 1 2 3 4

x

Fig. 1.2. A picture proof of Proposition 1.25.

Definition 1.26. The conjugate exponent q € [1,00] top € [1,00] is q := 5%
with the convention that ¢ = oo if p = 1. Notice that q is characterized by any

of the following identities:

q p

==¢ p—==1landq(p—1)=p. (1.18)
P q p q
Lemma 1.27. Let p € (1,00) and q := 1—7% € (1,00) be the conjugate expo-
nent. Then

s P
st < —+ — forall s,t >0
q p

with equality if and only if s =tP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~1 =t and g(t) = T =
971, wherein we have used ¢ — 1 = p/(p—1) — 1 = 1/(p — 1). Therefore
G(t) = t9/q and hence by Proposition 1.25,

with equality iff t = sP~!. m

Theorem 1.28 (Hélder’s inequality). Let p,q € [1,00] be conjugate expo-
nents. For all f,g: X — F,

£l < [1f1lp - lgllq- (1.19)
If p € (1,00), then equality holds in FEq. (1.19) iff

ol
G = Q"
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Proof. The proof of Eq. (1.19) for p € {1,000} is easy and will be left to
the reader. The cases where || f|l; = 0 or co or ||g||, = 0 or oo are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 < |Ifllg:llgllp < oo. Letting s = [f|/[|fll, and t = |gl/llg]l; in Lemma 1.27

implies
P a
ol 11 L gl
[ fllpllglle = 2 IFlp  a llgl®
Multiplying this equation by g and then summing gives

1 1
Il £gllx <L Iy
Iflpllglly =2 g
with equality iff
gl 1P lgl _ IfIP/ QL fIP — [lgll7] £IP
ol = W — m = Hfllﬁ/q = gl ||f||p = H!]”q‘ﬂ .

Definition 1.29. For a complex number \ € C, let

- {F27

Theorem 1.30 (Minkowski’s Inequality). If 1 < p < oo and f,g € (P(n)
then

1 +gllo < Ifllp + gl
with equality iff

sgn(f) = sgn(g) when p =1 and
f =cg for some ¢ > 0 when p € (1,00).

Proof. For p =1,
149l =D 1 +aln <D (flp+lgl) =D flu+ lglw
X X X X
with equality iff
lfl+1gl=1f+4gl < sen(f) = sgn(g).
For p = oo,
Ilf + glloc = sup | f + g| < sup (|f] +|g])
b's X

<sup [f|+sup|g| = || flloo + [|]lco-
X X
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Now assume that p € (1, 00). Since

If + 9" < (2max (|f],19]))" = 2 max (If[", [g") < 2" (IfI" + |9I")

it follows that
I +glip <27 (IF15 + lgllp) < oo
The theorem is easily verified if || f+g||, = 0, so we may assume || f+g||, >
0. Now
[f+glP =1f +gllf +gl""" < (f1+1gDIf + 9P~ (1.20)
with equality iff sgn(f) = sgn(g). Multiplying Eq. (1.20) by u and then sum-
ming and applying Holder’s inequality gives

STUFHgPu <Y I+ gl n+ D Lol 1f + 9P
X X X

< (fllp + Ngllp) I1F + g7~ g (1.21)
( /] )p:< |f + P! )q:( 9] >p
(g I+ glP~*llq lgllp

and sgn(f) = sgn(g).
By Eq. (1.18), ¢(p — 1) = p, and hence

If+ 9P g =D (f + 9P =Y If +glPu (1.22)
X X

with equality iff

Combining Egs. (1.21) and (1.22) implies
1f +glZ < UFIpIF + g2/ + llgllplL.f + 9115/ (1.23)

with equality iff

sgn(f) = sgn(g) and

£l )p: |f+g]? :( lg| )1’
(||pr If+9gls  \llgllp/ (1.24)

Solving for ||f + g|l, in Eq. (1.23) with the aid of Eq. (1.18) shows that
If+allp < Ifllp + llgll, with equality iff Eq. (1.24) holds which happens iff
f=cgwithc>0. m

1.7 Exercises

1.7.1 Set Theory

Let f: X — Y be a function and {4;};c; be an indexed family of subsets of
Y, verify the following assertions.
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Exercise 1.31. (N;jerA;)¢ = User AS.

Exercise 1.32. Suppose that B C Y, show that B\ (U;c;A4;) = Nier(B\ 4;).
Exercise 1.33. f~1(Ujer A;) = User fH(Ay).

Exercise 1.34. f~1(NierA;) = Nierf1(A).

Exercise 1.35. Find a counter example which shows that f(CND) = f(C)N
(D) need not hold.

Exercise 1.36. Now suppose for each n € N={1,2,...} that f,, : X - R is
a function. Let
D={zeX: lim f,(z)=+oc}

show that
D =nN%_ UF—q Nusn{z € X : f,(z) > M}. (1.25)

Exercise 1.37. Let f, : X — R be as in the last problem. Let
C={zeX: lim f,(x) exists in R}.

Find an expression for C' similar to the expression for D in (1.25). (Hint: use
the Cauchy criteria for convergence.)
1.7.2 Limit Problems
Exercise 1.38. Prove Lemma 1.15.
Exercise 1.39. Prove Lemma 1.20.

Let {a,}52, and {b,}52; be two sequences of real numbers.
Exercise 1.40. Show liminf,, .. (—a,) = —limsup,,_, . an.

Exercise 1.41. Suppose that limsup,,_, ., a, = M € R, show that there is a
subsequence {ay,, }72; of {a,}52, such that limy_. an, = M.

Exercise 1.42. Show that

limsup(ay + by) < limsup a,, + limsup by, (1.26)

n—0o0 n—oo n—00

provided that the right side of Eq. (1.26) is well defined, i.e. no co — co or
—00 4 00 type expressions. (It is OK to have 0o+ 0o = 00 or —00 — 00 = —00,
etc.)

Exercise 1.43. Suppose that a,, > 0 and b,, > 0 for all n € N. Show

lim sup(ayby,) < limsup a,, - lim sup by, (1.27)

n—o0 n—oo n—00

provided the right hand side of (1.27) is not of the form 0 - co or oo - 0.
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1.7.3 Dominated Convergence Theorem Problems

Notation 1.44 Forug € R™ and 6 > 0, let By, () := {z € R : |z — up| < 0}
be the ball in R™ centered at ug with radius 6.

Exercise 1.45. Suppose U C R” is a set and ug € U is a point such that
U N (Byy(0) \ {uo}) # 0 for all § > 0. Let G : U \ {up} — C be a function
on U\ {up}. Show that lim,_., G(u) exists and is equal to A € C,! iff for all
sequences {uy, }or, C U\ {uo} which converge to ug (i.e. im, oo un = up)
we have lim,, .. G(u,) = .

Exercise 1.46. Suppose that Y is aset, U C R"isaset,and f: UxY — C
is a function satisfying:

1. For each y € Y, the function u € U — f(u,y) is continuous on U.2
2. There is a summable function g : Y — [0, 00) such that

|f(u,y)] < g(y) forally € Y and u € U.

Show that
Fu):=>" f(u,y) (1.28)

yey

is a continuous function for u € U.

Exercise 1.47. Suppose that Y is a set, J = (a,b) C R is an interval, and
f:J xY — Cis a function satisfying:

1. For each y € Y, the function u — f(u,y) is differentiable on J,

2. There is a summable function g : Y — [0, 00) such that

0
—_— < .
’auf(u,y)‘ <g(y) forall y € Y.

3. There is a ug € J such that 37 | f(uo,y)| < co.
Show:

a) for all u € J that Zyey [f(u,y)| < oo.

! More explicitly, limy—y, G(u) = A means for every every ¢ > 0 there exists a
¢ > 0 such that

|G(u) — A| < € whenerver u € U N (Buyy(6) \ {uo})-

2 Tosay g := f(-,y) is continuous on U means that g : U — C is continuous relative
to the metric on R™ restricted to U.
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b) Let F(u) :=3" y f(u,y), show I is differentiable on J and that
)= Y 5o f ).
ou’
yey
(Hint: Use the mean value theorem.)

Exercise 1.48 (Differentiation of Power Series). Suppose R > 0 and
{an},, is a sequence of complex numbers such that Y - |a,|r™ < oo for
all 7 € (0, R). Show, using Exercise 1.47, f(z) := > oo, anx™ is continuously
differentiable for x € (—R, R) and

oo oo
fl(x)= Znanm”_l = Znanx”_l.
n=0 n=1

Exercise 1.49. Let {a,},- _ be a summable sequence of complex numbers,
ie. >02 _lan] < oo. Fort>0and z € R, define

oo
F(t,z) = Z ane~ " et

n=-—oo
where as usual e’ = cos(z) + isin(z). Prove the following facts about, F :

1. F(t, z) is continuous for (¢,z) € [0, 00)xR. Hint: Let Y = Z and u = (¢, z)
and use Exercise 1.46.

2. 0F(t,x)/0t, OF (t,x)/0x and 8?F(t,z)/0z? exist for t > 0 and = € R.
Hint: Let Y = Z and u = t for computing 0F(¢,z)/0t and v = z for
computing OF (t,z)/0x and 9*F(t,z)/0x?. See Exercise 1.47.

3. F satisfies the heat equation, namely

OF (t,x)/0t = 8°F(t,x)/dx* for t > 0 and x € R.

1.7.4 Inequalities

Exercise 1.50. Generalize Proposition 1.25 as follows. Let a € [—o0, 0] and
f:RNJa,00) — [0,00) be a continuous strictly increasing function such that
lim f(s) = o0, f(a) =0ifa > —oo or lims—._ f(s) =0 if a = —co. Also let
§— 00

g=[f"'b=f(0)>0,

s t
F(s) = / f(s")ds" and G(t) = / g(tdt'.
0 0
Then for all s,¢ >0,

st < F(s)+ Gt Vb) < F(s)+ G(t)
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Fig. 1.3. Comparing areas when ¢t > b goes the same way as in the text.
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Fig. 1.4. When t < b, notice that g(¢) < 0 but G(¢t) > 0. Also notice that G(t) is
no longer needed to estimate st.

and equality holds iff ¢ = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+ (V1) In(tvl)— (V1) <e’+tlnt—t.

Hint: Refer to the following pictures.
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Metric, Banach and Topological Spaces

2.1 Basic metric space notions

Definition 2.1. A function d: X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y,x) for all z,y € X
2. (Non-degenerate) d(z,y) =0 if and only if t =y € X
3. (Triangle inequality) d(z,z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) is a metric space with
d(x,y) := ||z — y|| . Thus the space £ (1) is a metric space for all p € [1, o0].
Also any subset of a metric space is a metric space. For example a surface X
in R? is a metric space with the distance between two points on X being the
usual distance in R3.

Definition 2.2. Let (X,d) be a metric space. The open ball B(x,§) C X
centered at x € X with radius 6 > 0 is the set

B(z,8) :={y € X : d(x,y) < d}.

We will often also write B(x,0) as By(d). We also define the closed ball
centered at x € X with radius § > 0 as the set Cy(0) :={y € X : d(z,y) < d}.

[eS) .

Definition 2.3. A sequence {x,},_, in a metric space (X,d) is said to be
convergent if there exists a point x € X such that lim, . d(z,z,) = 0. In
this case we write limy, o ¢, = = of T, — x as n — oco.

Exercise 2.4. Show that x in Definition 2.3 is necessarily unique.

[e'e}

Definition 2.5. A set F' C X is closed iff every convergent sequence {x,},_,
which is contained in F has its limit back in F. A set V C X is open iff V¢
is closed. We will write F X to indicate the F is a closed subset of X and
V Co X to indicate the V is an open subset of X. We also let 74 denote the
collection of open subsets of X relative to the metric d.
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Exercise 2.6. Let F be a collection of closed subsets of X, show NF :=
NperF' is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fy},_, are closed sets then U}_; F}, is closed. (By taking complements, this
shows that the collection of open sets, 74, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 2.7. For any non empty subset A C X, let da(z) = inf{d(z,a)|a €
A}, then
lda(z) —da(y)| < d(z,y) Yo,y € X. 2.1)

Moreover the set F. = {z € X|da(x) > €} is closed in X.
Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) + d(y,a).
Take the inf over a in the above equation shows that
da(z) <d(z,y)+daly) Vz,yeX.
Therefore, da(z) — da(y) < d(x,y) and by interchanging = and y we also
have that da(y) — da(z) < d(x,y) which implies Eq. (2.1). Now suppose that

{xn}ff:l C F. is a convergent sequence and x = lim, .z, € X. By Eq.

(2.1),

e—da(z) <da(z,) —da(z) < d(z,z,) — 0asn — oo,
so that € < d4(z). This shows that = € F, and hence F, is closed. m
Corollary 2.8. The function d satisfies,
ld(z,y) — d(=',y')| < d(y,y') + d(z,2")
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 2.7 for single point sets and the triangle inequality for
the absolute value of real numbers,

‘d($,y) - d(x/7y/)| < ‘d(x7y) - d(x7yl)| + |d($7 yl) - d(xl>yl)|
< dly,) + d(z, )
|

Exercise 2.9. Show that V' C X is open iff for every z € V thereisa d > 0
such that B,(4) C V. In particular show B,(d) is open for all z € X and
0>0.
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Lemma 2.10. Let A be a closed subset of X and F. T X be as defined as in
Lemma 2.7. Then F. T A€ as € | 0.

Proof. It is clear that d4(z) = 0 for = € A so that F, C A for each ¢ > 0
and hence UesoF. C A°. Now suppose that z € A° C, X. By Exercise 2.9
there exists an € > 0 such that B,(e) C A€, i.e. d(z,y) > € for all y € A.
Hence x € F, and we have shown that A¢ C U.soFe. Finally it is clear that
F. C F., whenever € <e. m

Definition 2.11. Given a set A contained a metric space X, let A C X be
the closure of A defined by

A={zeX:I{z,} CA>3 2= lim z,}.

That is to say A contains all limit points of A.
Exercise 2.12. Given A C X, show A is a closed set and in fact
A=n{F:ACFC X with F closed}. (2.2)

That is to say A is the smallest closed set containing A.

2.2 Continuity

Suppose that (X,d) and (Y, p) are two metric spaces and f : X — Y is a
function.

Definition 2.13. A function f : X — Y s continuous at x € X if for all
€ > 0 there is a § > 0 such that

d(f(z), f(z')) < € provided that p(z,z') < 4.
The function f is said to be continuous if f is continuous at all points x € X.

The following lemma gives three other ways to characterize continuous
functions.

Lemma 2.14 (Continuity Lemma). Suppose that (X, p) and (Y, d) are two
metric spaces and f : X — Y is a function. Then the following are equivalent:

1. f is continuous.

2. fY V) e, for all V € 74, i.e. (V) is open in X if V is open in Y.
3. f~YC) is closed in X if C is closed in Y.

4. For all convergent sequences {z,,} C X, {f(zyn)} is convergent in' Y and

hm flzn) = ( lim x") .
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Proof. 1. = 2. For all z € X and € > 0 there exists 6 > 0 such that
d(f(z), f(2")) < eif p(x,2") <. ie.

By (8) C fH( By (e))

Soif V C, Y and z € f~1(V) we may choose € > 0 such that By,)(e) C V
then

By(8) € fH(By(@) € f71(V)
showing that f~1(V) is open.

2. = 1. Let € > 0 and = € X, then, since f~(Bj)(€)) Co X, there exists
8 > 0'such that B, (8) C f~1 (B (€)) ie. if p(z,2’) < & then d(f(z'), f(x)) <
€.

2. <= 3. If C is closed in Y, then C¢ C, Y and hence f~1(C¢) C, X.
Since f~1(C°) = (f~1(C))", this shows that f~1(C) is the complement of an
open set and hence closed. Similarly one shows that 3. = 2.

1. = 4. If f is continuous and z,, — x in X, let ¢ > 0 and choose § > 0 such
that d(f(z), f(z')) < € when p(z,z’) < ¢. There exists an N > 0 such that
p(z,xz,) < ¢ for all n > N and therefore d(f(z), f(z,)) < € for all n > N.
That is to say lim, .. f(z,) = f(z) as n — oo.

4. = 1. We will show that not 1. = not 4. Not 1 implies there exists € > 0,
a point z € X and a sequence {z,}.., C X such that d(f(z), f(z,)) > €
while p(z,2,) < L. Clearly this sequence {a,,} violates 4. m

There is of course a local version of this lemma. To state this lemma, we
will use the following terminology.

Definition 2.15. Let X be metric space and x € X. A subset A C X is a
neighborhood of x if there exists an open set V C, X such that x € V C A.
We will say that A C X is an open neighborhood of = if A is open and
x € A

Lemma 2.16 (Local Continuity Lemma). Suppose that (X, p) and (Y, d)
are two metric spaces and f : X — Y is a function. Then following are
equivalent:

1. f is continuous as x € X.

2. For all neighborhoods A C'Y of f(x), f~1(A) is a neighborhood of v € X.

3. For all sequences {x,} C X such that x = im0 Ty, {f(xn)} is con-
vergent in Y and

lim f(z,)=f ( lim ac"> .
The proof of this lemma is similar to Lemma 2.14 and so will be omitted.

Example 2.17. The function d4 defined in Lemma 2.7 is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y,x) is continuous
for each x € X.

Exercise 2.18. Show the closed ball C(d) := {y € X : d(z,y) < §} is a
closed subset of X.
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2.3 Basic Topological Notions

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 2.19. A collection of subsets 7 of X is a topology if

1.0, Xer
2. 7 is closed under arbitrary unions, i.e. if Vo, € T, fora € I then |J Vo € 7.
acl
3. 7 is closed under finite intersections, i.e. if Vi,...,V, € 7 then V1NN
V., €T.

A pair (X,7) where T is a topology on X will be called a topological
space.

Notation 2.20 The subsets V' C X which are in T are called open sets and
we will abbreviate this by writing V C, X and the those sets F' C X such that
F° € 7 are called closed sets. We will write F' C X if F' is a closed subset of
X.

Ezample 2.21. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 74 is a topology, see
Exercise 2.6.

2. Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the
trivial topology, 7 = {), X} . In this topology only the empty set and X
are open (closed).

3. Let X = {1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does
not come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and
the sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and {1, 3}
are neither open nor closed.

Definition 2.22. Let (X, 7) be a topological space, A C X andis: A — X
be the inclusion map, i.e. ia(a) = a for all a € A. Define

Ta=izl(r)={ANV:V e},
the so called relative topology on A.

Notice that the closed sets in Y relative to 7y are precisely those sets of
the form CNY where C'is close in X. Indeed, B C Y isclosed if Y\B =Y NV
for some V' € 7 which is equivalent to B =Y \ (Y NV) =Y N V¢ for some
Ver

Exercise 2.23. Show the relative topology is a topology on A. Also show if
(X, d) is a metric space and T = 74 is the topology coming from d, then (74) 4
is the topology induced by making A into a metric space using the metric

dlaxa-
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Fig. 2.1. A topology.

Notation 2.24 (Neighborhoods of ) An open neighborhood of a point
x € X is an open set V. C X such that x € V. Let 7, = {V € 7 : 2 € V}
denote the collection of open neighborhoods of x. A collection n C T, is called
a neighborhood base at x € X if for all V € 1, there exists W € n such that
wWcVv.

The notation 7, should not be confused with
Ty =i (1) = {z}nV:Ver} = {0, {z}}.

When (X, d) is a metric space, a typical example of a neighborhood base for
x is n = {By(€) : € € D} where D is any dense subset of (0, 1].

Definition 2.25. Let (X, 7) be a topological space and A be a subset of X.
1. The closure of A is the smallest closed set A containing A, i.e.
A=n{F:ACFCX}.

(Because of Exercise 2.12 this is consistent with Definition 2.11 for the
closure of a set in a metric space.)
2. The interior of A is the largest open set A° contained in A, i.e.

A°=uU{Ver:V CA}.
3. The accumulation points of A is the set
acc(A)={z e X :VNA\{z} #0 for alV €1, }.

4. The boundary of A is the set 0A := A\ A°.

5. A is a neighborhood of a point x € X if v € A°. This is equivalent
to requiring there to be an open neighborhood of V of x € X such that
V CA
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Remark 2.26. The relationships between the interior and the closure of a set
are:

(A°) = {Ve:Verand V C A} =({C:Cis closed C D> A°} =A°
and similarly, (4)¢ = (A°)°. Hence the boundary of A may be written as
0A= A\ A° = AN (A°)° = AN A°, (2.3)
which is to say 0A consists of the points in both the closure of A and A°.

Proposition 2.27. Let A C X and z € X.

LIfVC, X and ANV =0 then ANV = 0.

2.0 € AiffVNA#D for al V € 1.

3.2 €lAWVNAAD and VNAS#£D for all V € 7.
4. A= AUacc(A).

Proof. 1. Since ANV =0, A C V¢ and since V¢ is closed, A C V. That
istosay ANV = 0.

2. By Remark 2.26', A = ((A°)°)° so z € A iff z ¢ (A°)° which happens
TV AforallVer, ieif VAA#£Dforal Ve,

3. This assertion easily follows from the Item 2. and Eq. (2.3).

4. Ttem 4. is an easy consequence of the definition of acc(A) and item 2. m

Lemma 2.28. Let A C Y C X, AY denote the closure of A in'Y with its
relative topology and A = AX be the closure of A in X, then AY = AX NY.

Proof. Using the comments after Definition 2.22,

AY =n{BCY:AcCB}=n{CNnY:AcCCrC X}
=Yn(n{C:AcCcCX})=YnAX

Alternative proof. Let z € Y then z € AY iffforall V € 7Y, VN A # 0.
This happens iff for all U € Ti_( ,UNYNA=UnNA # () which happens iff
x € AX. That is to say AY = AXNY. m

Definition 2.29. Let (X, 7) be a topological space and A C X. We say a
subset U C T is an open cover of A if A C UU. The set A is said to be
compact if every open cover of A has finite a sub-cover, i.e. if U is an open
cover of A there exists Uy CC U such that Uy is a cover of A. (We will write
A CC X to denote that A C X and A is compact.) A subset A C X s
precompact if A is compact.

! Here is another direct proof of item 2. which goes by showing x ¢ Aiff there exists
Ver, suchthat VNA=0.1fx ¢ Athen V=A4Ac€r, and VNAC I{DAZ(Z).
Conversely if there exists V' € 7, such that VN A = 0 then by Item 1. ANV = .
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Proposition 2.30. Suppose that K C X is a compact set and F C K is a
closed subset. Then F is compact. If {K;}!_, is a finite collections of compact
subsets of X then K = U}_, K; is also a compact subset of X.

Proof. Let Y C 7 is an open cover of F, then Y/U{F*°} is an open cover
of K. The cover UU{F°} of K has a finite subcover which we denote by
UpU{F*°} where Uy CC U. Since F'N F¢ =), it follows that Uy is the desired
subcover of F.

For the second assertion suppose U C 7 is an open cover of K. Then U
covers each compact set K; and therefore there exists a finite subset U; CC U
for each ¢ such that K; C Ul;. Then Uy := U} U; is a finite cover of K. m

Definition 2.31. We say a collection F of closed subsets of a topological space
(X,7) has the finite intersection property if NFo # O for all Fo CC F.

The notion of compactness may be expressed in terms of closed sets as
follows.

Proposition 2.32. A topological space X is compact iff every family of closed
sets F C P(X) with the finite intersection property satisfies (| F # 0.

Proof. (=) Suppose that X is compact and F C P(X) is a collection of
closed sets such that (| F = (. Let

U=F={C°:CeF}Cr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fo = U5 CC F,
then NFy = 0 so that F does not have the finite intersection property.

(«) If X is not compact, there exists an open cover U of X with no finite
subcover. Let F = U°, then F is a collection of closed sets with the finite
intersection property while F =0. m

Exercise 2.33. Let (X, 7) be a topological space. Show that A C X is com-
pact iff (A4, 74) is a compact topological space.

Definition 2.34. Let (X, 7) be a topological space. A sequence {zp}o.; C
X converges to a point x € X if for ol V € 15, x, € V almost always
(abbreviated a.a.), i.e. #({n:x, ¢ V}) < co. We will write x,, — = as n —
0o or limy, o T, = x when x,, converges to x.

Ezxample 2.35. Let Y = {1,2,3} and 7 = {V,0,{1,2},{2,3},{2}} and y,, = 2
for all n. Then y,, — y for every y € Y. So limits need not be unique!

Definition 2.36. Let (X,7x) and (Y,7y) be topological spaces. A function
f:X =Y is continuous if f~*(1y) C 7x. We will also say that f is Tx /Ty
—continuous or (Tx,Ty) — continuous. We also say that f is continuous at
a point x € X if for every open neighborhood V' of f(x) there is an open
neighborhood U of x such that U C f=Y(V). See Figure 2.2.
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Fig. 2.2. Checking that a function is continuous at z € X.

Definition 2.37. A map f : X — Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f~' :
Y — X is continuous. If there exists f : X — Y which is a homeomorphism,
we say that X and Y are homeomorphic. (As topological spaces X andY are
essentially the same.)

Exercise 2.38. Show f : X — Y is continuous iff f is continuous at all points
reX.

Exercise 2.39. Show f : X — Y is continuous iff f~!(C) is closed in X for
all closed subsets C of Y.

Exercise 2.40. Suppose f : X — Y is continuous and K C X is compact,
then f(K) is a compact subset of Y.

Exercise 2.41 (Dini’s Theorem). Let X be a compact topological space
and f,, : X — [0,00) be a sequence of continuous functions such that f,,(x) | 0
as n — oo for each € X. Show that in fact f, | 0 uniformly in z, i.e.
sup,ex fn(z) | 0 as n — oco. Hint: Given € > 0, consider the open sets

Vii={z e X : folx) <e}.

Definition 2.42 (First Countable). A topological space, (X,T), is first
countable iff every point v € X has a countable neighborhood base. (All
metric space are first countable.)

When 7 is first countable, we may formulate many topological notions in
terms of sequences.

Proposition 2.43. If f : X — Y s continuous at x € X and lim,,_, x,, =
x € X, then lim, o f(x,) = f(x) € Y. Moreover, if there exists a countable
neighborhood base n of x € X, then f is continuous at x iff lim f(x,) = f(x)

or all sequences {x,}>° , C X such that x, — T asn — oo.
f q nfn=1 n
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Proof. If f : X — Y is continuous and W € 7y is a neighborhood of
f(z) € Y, then there exists a neighborhood V of x € X such that f(V) C W.
Since x,, — x, ¥, € V a.a. and therefore f(z,) € f(V) C W aa., ie.
fzn) — f(x) as n — oo.

Conversely suppose that n = {W,,}22, is a countable neighborhood base
at « and nl;n;o f(zn) = f(2) for all sequences {z, },-; C X such that z,, — z.

By replacing W,, by Wy N---NW,, if necessary, we may assume that {W,} =,
is a decreasing sequence of sets. If f were not continuous at = then there exists
V € T4z such that z ¢ f~1(V)°. Therefore, W, is not a subset of f~(V)
for all n. Hence for each n, we may choose z,, € W,, \ f~1(V). This sequence
then has the property that x, — z as n — oo while f(x,) ¢ V for all n and
hence lim, .o f(z,) # f(z). W

Lemma 2.44. Suppose there exists {®n}or, C A such that z, — =, then
x € A. Conversely if (X,T) is a first countable space (like a metric space)
then if v € A there exists {x,} -, C A such that x,, — .

Proof. Suppose {z,}o, C A and z,, — z € X. Since A° is an open
set, if € A° then z, € A° C A° a.a. contradicting the assumption that
{z,}>2, C A. Hence z € A.

For the converse we now assume that (X, 7) is first countable and that
{Vn}ff:l is a countable neighborhood base at z such that V; DV, D V3 D ...
By Proposition 2.27, z € Aiff VN A # 0 for all V € 7,. Hence z € A implies
there exists x, € V,, N A for all n. It is now easily seen that z,, — x as n — oo.
|

Definition 2.45 (Support). Let f : X — Y be a function from a topological
space (X, Tx) to a vector space Y. Then we define the support of f by

supp(f) := {z € X : f(z) # 0},

a closed subset of X.

Ezample 2.46. For example, let f(x) = sin(x)1[ 4x(x) € R, then
{f # 0} = (0,4m) \ {m, 2, 37}

and therefore supp(f) = [0, 4~].

Notation 2.47 If X and Y are two topological spaces, let C(X,Y) denote
the continuous functions from X to Y. If Y is a Banach space, let

BC(X,Y)={fe€C(X,Y): sup 1f()lly < oo}

and

Co(X,Y) :={f € C(X,Y) : supp(f) is compact}.
If Y =R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.
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The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 2.48. Suppose that f : X — Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(A) C f(A) forall AC X
3. fXB)C f~YB) foradl BC X.

Proof. If f is continuous, then f~! ( f(A)) is closed and since A C
FH(fA) c 1 (f(A)) it follows that A C f~! (f(A)) . From this equa-

tion we learn that f(A) C f(A) so that (1) implies (2) Now assume (2), then
for B CY (taking A= f~1(B)) we have

f(F~X(B)) C f(f~X(B)) C f(f~Y(B))C B
and therefore ~
f~YB) C f~1(B). (2.4)

This shows that (2) implies (3) Finally if Eq. (2.4) holds for all B, then when
B is closed this shows that

FHB) c f7Y(B) = f71(B)  [71(B)

which shows that

f7UB) = fU(B).
Therefore f~1(B) is closed whenever B is closed which implies that f is con-
tinuous. m

2.4 Completeness

Definition 2.49 (Cauchy sequences). A sequence {z,}h., in a metric
space (X,d) is Cauchy provided that
lim d(zp,zm)=0.
m,n— oo

Exercise 2.50. Show that convergent sequences are always Cauchy se-
quences. The converse is not always true. For example, let X = Q be the
set of rational numbers and d(z,y) = |z —y|. Choose a sequence {z,, }ro; C Q
which converges to v/2 € R, then {x,}>°, is (Q,d) — Cauchy but not (Q,d)
— convergent. The sequence does converge in R however.

Definition 2.51. A metric space (X,d) is complete if all Cauchy sequences
are convergent sequences.
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Exercise 2.52. Let (X, d) be a complete metric space. Let A C X be a subset
of X viewed as a metric space using d|ax 4. Show that (A, d|ax4) is complete
iff A is a closed subset of X.

Definition 2.53. If (X, ||-||) is a normed vector space, then we say {z,}nry C
X is a Cauchy sequence if limy, n—o0 ||Tm — n|| = 0. The normed vector
space is a Banach space if it is complete, i.e. if every {z,}oo, C X which
is Cauchy is convergent where {z,}r., C X is convergent iff there ewists
x € X such that lim, o ||z, — z|| = 0. As usual we will abbreviate this last
statement by writing lim,, oo ,, = x.

Lemma 2.54. Suppose that X is a set then the bounded functions £>°(X) on
X is a Banach space with the norm

£l =lIFlloc = sup |f(2)].
zeX

Moreover if X is a topological space the set BC(X) C (*°(X) = B(X) is
closed subspace of £°(X) and hence is also a Banach space.

Proof. Let {f,},-; C ¢°°(X) be a Cauchy sequence. Since for any z € X,
we have

[fn(x) = frn ()| < || fr — f’rnHoo (2.5)

which shows that {f,(z)},-; C F is a Cauchy sequence of numbers. Because F
(F=Ror C) is complete, f(x) :=lim, . fn(z) exists for all x € X. Passing
to the limit n — oo in Eq. (2.5) implies

|f(x) = fon(z)| < lim sup || fn — f’rn”x

n—o0o

and taking the supremum over & € X of this inequality implies

Hf - fm“oo <lim sup ”fn - fm”OC —0asm — o
n—oo

showing f,, — f in £*°(X).

For the second assertion, suppose that {f,},., C BC(X) C ¢°(X) and
fn — f € 0°(X). We must show that f € BC(X), i.e. that f is continuous.
To this end let z,y € X, then

lf(x) = fW)] < 1f(@) = fa(@)| + [fulz) = fa@)] + [fuly) — f(¥)]
<2|f- fn”oo + | faul®) = fu(y)l-

Thus if e > 0, we may choose n large so that 2||f — fu|l, < €/2 and
then for this n there exists an open neighborhood V, of x € X such that
[Ful@) — faW)| < ¢/2 for y € Vo Thus |f(x) — f(y)| < ¢ for y € V, showing
the limiting function f is continuous. m
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Remark 2.55. Let X be a set, Y be a Banach space and ¢*(X,Y’) denote
the bounded functions f : X — Y equipped with the norm | f|| = ||f]l,, =
sup,cx || f(@)|ly - If X is a topological space, let BC(X,Y) denote those f €
0*°(X,Y) which are continuous. The same proof used in Lemma 2.54 shows
that £>°(X,Y’) is a Banach space and that BC(X,Y) is a closed subspace of
{*(X,)Y).

Theorem 2.56 (Completeness of (P(u)). Let X be a set and pn : X —
(0,00] be a given function. Then for any p € [L,00], (€P(u),-|l,,) is @ Banach
space.

Proof. We have already proved this for p = co in Lemma 2.54 so we now
assume that p € [1,00). Let {f,,},o; C P(n) be a Cauchy sequence. Since for
any x € X,

[fn(@) = fm(2)] < —

[ fn = fmll, = 0 asm,n — oo

( )

it follows that {f,(z)}.—, is a Cauchy sequence of numbers and f(z) :=
lim,, o frn(z) exists for all z € X. By Fatou’s Lemma,

I1fn = £II% = ;u < lim_inf |fy = ful” < lim_ inf§u~ | for = fonl?
= lim inf|f, — fm|h — 0 as n — oo.
m—0o0

This then shows that f = (f — fn) + fn € P(1) (being the sum of two P —
functions) and that f, “, fom

FEzxample 2.57. Here are a couple of examples of complete metric spaces.

. X =R and d(z,y) = |z — y|.

X = R" and d(,y) = 2 — yll, = Sy (o - 91)2-

X =P(u) for p € [1,00] and any weight function .

. X =C([0,1],R) — the space of continuous functions from [0, 1] to R and
d(f,g) == max,ejo,1) | f(t) — g(t)|. This is a special case of Lemma 2.54.

5. Here is a typical example of a non-complete metric space. Let X =

C([0,1],R) and

d(f,9) ::/0 [£(t) — g(t)| dt.

2.5 Bounded Linear Operators Basics

Definition 2.58. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there ezists C' < oo such that
T ()| < Cllz|lx for all z € X. We denote the best constant by ||T||, i.e.
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171 = sup IZ@ _ o @) < e = 13-
# = #0

The number || T is called the operator norm of T.

Proposition 2.59. Suppose that X andY are normed spaces andT : X — Y
is a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(¢)T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § >
0 such that ||T(z)|| < 1if ||z|| < §. Therefore for any x € X, |T" (dz/||z|) || <1
which implies that [|7'(z)|| < %[z and hence ||T|| < % < co. (c) = (a) Let
x € X and € > 0 be given. Then

IT(y) = T@)I| = 1Ty — )| < Tl fly — |l <e

provided ||y —z|| < €¢/||T|| =4. m

For the next three exercises, let X = R" and Y = R™ and T : X — Y
be a linear transformation so that 7' is given by matrix multiplication by an
m x n matrix. Let us identify the linear transformation 7" with this matrix.

Exercise 2.60. Assume the norms on X and Y are the ¢! — norms, i.e. for
zeR"™, ||z|]| = 22:1 |z;| . Then the operator norm of T' is given by

[T = max Z |Tis] -

1<j<n

Exercise 2.61. Suppose that norms on X and Y are the {>° — norms, i.e. for
z € R", ||z|| = maxi<j<p |z;| . Then the operator norm of T is given by

n
T| = Tiil -
7)) = masx X;I il
Exercise 2.62. Assume the norms on X and Y are the ¢ — norms, i.e. for
zeR, |z = >i—1 3. Show [T? is the largest eigenvalue of the matrix
TUT : R — R™,

Exercise 2.63. If X is finite dimensional normed space then all linear maps
are bounded.

Notation 2.64 Let L(X,Y) denote the bounded linear operators from X to
Y. If Y = F we write X* for L(X,F) and call X* the (continuous) dual space
to X.
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Lemma 2.65. Let X,Y be normed spaces, then the operator norm ||| on
L(X,Y) is a norm. Moreover if Z is another normed space and T : X — Y
and S :Y — Z are linear maps, then ||ST|| < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm
is to verify the triangle inequality, the other axioms being easy to check. If
A,B € L(X,Y) then the triangle inequality is verified as follows:

oAz + Bol| - llAa] + | B
4+ B =su
R A F]
Azx Bx
< supu Foup 122y 4y
el T Tl

For the second assertion, we have for z € X, that
1STx|| < (IS Tz < ISHT[]]-

From this inequality and the definition of ||ST||, it follows that ||ST| <
STl -

Proposition 2.66. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y),| - |lop) is @ Banach space. In particular the dual
space X* s always a Banach space.

We will use the following characterization of a Banach space in the proof
of this proposition.

Theorem 2.67. A normed space (X, |l - 1I) #s a Banach space iff for every
N

sequence {x,}oo, such that Z lzn|| < oo then imy oo Y T = S exists in
n=1
X (that is to say every absolutely com}ergent series is a convergent series in

X ). As usual we will denote S by E Tp.
n=1
Proof. (=)If X is complete and Z |zn]| < co then sequence Sy = Z Ty,
=1 n=1
for N € N is Cauchy because (for N > M)

N
ISy — Sumll < Z |zn|| — 0 as M, N — .
n=M+1

=] N
Therefore S = Z Ty = My oo Z T, exists in X.
=1

(=) Suppose that {z,},-; is a Cauchy sequence and let {y, = z,, }72,

be a subsequence of {z,,} - ; such that Z lYn+1 — yYnll < 0o. By assumption
n=1
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N [eS)
UNL = U1 = > (Wnt1 —Yn) = S =Y (Y1 —ya) € X as N — oo.

n=1 n=1

This shows that limy_., yn exists and is equal to z := y; +S. Since {z,, }>-
is Cauchy,

n=1

& =zl < llz = yrll + llyx — 2l — 0 as k,n — o0

showing that lim,, . z,, exists and is equal to z. m
Proof. (Proof of Proposition 2.66.) We must show (L(X,Y),|| - ||lop) is
complete. Suppose that T, € L(X,Y) is a sequence of operators such that

> ITn]l < oo. Then

n=1
00 e
S oTazl| < ITul 2] < 00
n=1 n=1

o0
and therefore by the completeness of Y, Sz := > T,z = limn_o Sy exists
n=1

N
in Y, where Sy := > T,,. The reader should check that S : X — Y so defined
n=1

in linear. Since,

[Szll = lim [[Syel < lim ZIIT x| < ZHT [l

n=1

S is bounded and -
151 < 3 1Tl (26)
n=1
Similarly,

||Sx—SM$||: lim ||SNx—SMac||
N—oo

N o)
< im0 Tzl = D0 1T il
—00
n=M+1 n=M+1

and therefore,

IS = Sull < > Tl — 0 as M — co.
n=M
[ ]
Of course we did not actually need to use Theorem 2.67 in the proof. Here
is another proof. Let {T,,}.-; be a Cauchy sequence in L(X,Y). Then for
each x € X,
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T = Tal| < |17 — Tl ]| = 0 as m,m — oo

showing {T,,z} - is Cauchy in Y. Using the completeness of Y, there exists
an element 7'z € Y such that

,}Lngo |Thx — Tl = 0.
It is a simple matter to show T : X — Y is a linear map. Moreover,
|72 — Tozl) < | T2 — Tozl) + | Tone — Toe]| < [T — Tzl + | Ton — Tl |
and therefore
T = Tyall < lim sup (|7 — Tl + [T — Tall )

m—o00

= ||z| - lim sup ||T5n — Th]l -
m-—0o0

Hence
T —T,| <lm sup ||T,n, —Ty| — 0as n — oco.
m—00

Thus we have shown that T, — T in L(X,Y) as desired.
The following simple “Bounded Linear Transformation” theorem will often
be used in the sequel to define linear transformations.

Theorem 2.68 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach space, and S C Z is a dense linear subspace of Z. If T :
S — X is a bounded linear transformation (i.e. there exists C < oo such that
Tz < Clz|| for all z € S), then T has a unique extension to an element
T € L(Z,X) and this extension still satisfies

|T=|| < Cllz|l for all z €.

For an application of this theorem see Proposition 4.2 where the Riemann
integral is constructed.

Exercise 2.69. Prove Theorem 2.68.

2.6 Compactness in Metric Spaces
Let (X, p) be a metric space and let Bl (e) = By(e) \ {z}.

Definition 2.70. A point z € X is an accumulation point of a subset E C X
if 0 #ENV\{z} for all V C, X containing x.

Let us start with the following elementary lemma which is left as an exer-
cise to the reader.
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Lemma 2.71. Let E C X be a subset of a metric space (X, p). Then the
following are equivalent:

1. x € X is an accumulation point of E.

2. Bl(e)NE # 0 for all e > 0.

3. By(€) N E is an infinite set for all € > 0.

4. There exists {zy},oq C E\ {z} with lim,_,o z, = .

Definition 2.72. A metric space (X, p) is said to be ¢ — bounded (e > 0)
provided there exists a finite cover of X by balls of radius €. The metric space
is totally bounded if it is € — bounded for all € > 0.

Theorem 2.73. Let X be a metric space. The following are equivalent.

(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(¢) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b = ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists £ C X,
such that #(F) = oo and E has no accumulation points. Then for all z € X
there exists d,, > 0 such that V,, := B,(d,,) satisfies (V. \{z})NE = . Clearly
V = {Va},cx is a cover of X, yet V has no finite sub cover. Indeed, for each
xz € X, V, N E consists of at most one point, therefore if A CC X, Uyea Vs,
can only contain a finite number of points from F, in particular X # U,caV,.
(See Figure 2.3.)

Fig. 2.3. The construction of an open cover with no finite sub-cover.

(b = ¢) To show X is complete, let {z,}o, C X be a sequence and
E = {z, :neN}. If #(F) < oo, then {z,},-, has a subsequence {z,,}
which is constant and hence convergent. If E is an infinite set it has an accu-
mulation point by assumption and hence Lemma 2.71 implies that {x,} has

a convergence subsequence.
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We now show that X is totally bounded. Let € > 0 be given and choose
x1 € X. If possible choose zo € X such that d(z2,z1) > €, then if possible
choose 23 € X such that d(zs, {z1,22}) > € and continue inductively choosing
points {mj};.’zl C X such that d(zp, {z1,...,2n—1}) > €. This process must
terminate, for otherwise we could choose E = {x7}]°i1 and infinite number of
distinct points such that d(z;, {z1,...,2;_1}) > eforall j =2,3,4,.... Since
for all z € X the B;(¢/3) N E can contain at most one point, no point € X
is an accumulation point of E. (See Figure 2.4.)

Fig. 2.4. Constructing a set with out an accumulation point.

(¢ = a) For sake of contradiction, assume there exists a cover an open
cover V = {V,}aea of X with no finite subcover. Since X is totally bounded
for each n € N there exists A4,, CC X such that

xX={J B.(i/n)c | C.(1/n).

TEA, €A,

Choose z1 € Ay such that no finite subset of V covers Ky := Cjy, (1). Since
K1 = Uzea, K1NCL(1/2), there exists xg € Ag such that Ky := K;NC,,(1/2)
can not be covered by a finite subset of V. Continuing this way inductively,
we construct sets K,, = K,_1 N Cy, (1/n) with z,, € A, such no K,, can
be covered by a finite subset of V. Now choose y,, € K,, for each n. Since
{K,},7; is a decreasing sequence of closed sets such that diam(K,) < 2/n,
it follows that {y,} is a Cauchy and hence convergent with

y= lim y, € Ny _1 Kp,.
n—oo

Since V is a cover of X, there exists V' € V such that x € V. Since K, | {y}
and diam(K,) — 0, it now follows that K, C V for some n large. But this
violates the assertion that K, can not be covered by a finite subset of V.(See
Figure 2.5.)

|
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A

4

v

Fig. 2.5. Nested Sequence of cubes.

Remark 2.74. Let X be a topological space and Y be a Banach space. By com-
bining Exercise 2.40 and Theorem 2.73 it follows that C.(X,Y) ¢ BC(X,Y).

Corollary 2.75. Let X be a metric space then X is compact iff all sequences
{zn} C X have convergent subsequences.

Proof. Suppose X is compact and {z,} C X.

1. If # ({zn :n=1,2,...}) < oo then choose z € X such that z, = z i.o.
and let {ng} C {n} such that z,, =« for all k. Then z,,, — =

2. If#({zn:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {z}, hence there exists z,, — .

Conversely if E is an infinite set let {2,,}32, C F be a sequence of distinct
elements of £. We may, by passing to a subsequence, assume z,, — x € X
as n — 00. Now z € X is an accumulation point of E by Theorem 2.73 and
hence X is compact. m

Corollary 2.76. Compact subsets of R™ are the closed and bounded sets.
Proof. If K is closed and bounded then K is complete (being the closed
subset of a complete space) and K is contained in [—M, M]™ for some positive
integer M. For § > 0, let
As =02" N [-M,M]" := {0z : x € Z" and d|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that

K C [-M, M| C Ugen, B(, €) (2.7)



2.6 Compactness in Metric Spaces 45

which shows that K is totally bounded. Hence by Theorem 2.73, K is compact.
Suppose that y € [—M, M]™, then there exists x € A such that |y;—x;| < §
for i =1,2,...,n. Hence

n

d*(z,y) = Z (yi — z:)* < no®
i=1
which shows that d(z,y) < y/nd. Hence if choose § < €/y/n we have shows
that d(z,y) <, i.e. Eq. (2.7) holds. m

Ezample 2.77. Let X = ¢(P(N) with p € [1,00) and p € X such that p(k) > 0
for all k € N. The set

K :={z e X :|z(k)| < p(k) for all k € N}

is compact. To prove this, let {z,},., C K be a sequence. By com-
pactness of closed bounded sets in C, for each k € N there is a subse-
quence of {z,(k)},—; C C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence {y,},—, of {z,},-, such that
y(k) = limy—o0 yn (k) exists for all k& € N.2 Since |y, (k)| < p(k) for all n
it follows that |y(k)| < p(k), i.e. y € K. Finally

Jim |y — yn[[f = lim Z\y k) = yn (k)P = Z lim_ |y (k) —yn(k)|" =
k 1

where we have used the Dominated convergence theorem. (Note |y(k) — y,, (k)|* -

2PpP(k) and pP is summable.) Therefore y, — y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and
totally bounded. It is simple to show K is closed, for if {z,},-; C K is a
convergent sequence in X,  := lim, oo Zpn, then |z(k)| < lim, oo |20 (k)| <
p(k) for all k € N. This shows that € K and hence K is closed. To see that K

is totally bounded, let € > 0 and choose N such that (3,2 v, \p(lﬂ)\p)l/p
Since H,iv:l Cyx)(0) € CV is closed and bounded, it is compact. Therefore
there exists a finite subset A C ngl C(k)(0) such that

N
11 Cotr)(0) € UzeaBY (e)

? The argument is as follows. Let {n}}52; be a subsequence of N = {n}>_, such that
limj o0 @,,1 (1) exists. Now choose a subsequence {n3}52, of {n}}52, such that
J

lim; o0 z,2 (2) exists and similarly {n3}52, of {n3}52, such that lim; . z,3(3)
J J
exists. Continue on this way inductively to get
{3y 2 {52 D {nf152 D (nf}52a o
such that lim;_.. x,x (k) exists for all k& € N. Let m; := nj so that eventually
J

{m;}52, is a subsequence of {nf};';l for all k. Therefore, we may take y; := m;.
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where BN (e) is the open ball centered at z € CV relative to the
°({1,2,3,...,N}) — norm. For each z € A, let 2 € X be defined by
Z(k) = z(k) if k < N and 2(k) =0 for kK > N + 1. I now claim that

K C U.caB:(2e) (2.8)

which, when verified, shows K is totally bounced. To verify Eq. (2.8), let
z € K and write z = u + v where u(k) = z(k) for ¥ < N and u(k) = 0 for
k < N. Then by construction v € B;(e) for some Z € A and

o0 1/p
[vll, < ( > Ip(k)l”> <e.

k=N+1

So we have
lz—2ll, = llutv—2[, < llu—Z2l,+ ], <2

Exercise 2.78 (Extreme value theorem). Let (X, 7) be a compact topo-
logical space and f : X — R be a continuous function. Show —oco < inf f <
sup f < oo and there exists a,b € X such that f(a) = inf f and f(b) = sup f.
3 Hint: use Exercise 2.40 and Corollary 2.76.

Exercise 2.79 (Uniform Continuity). Let (X,d) be a compact metric
space, (Y, p) be a metric space and f : X — Y be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists § > 0 such that
p(f(y), f(z)) < eif z,y € X with d(z,y) < 6. Hint: I think the easiest proof
is by using a sequence argument.

Definition 2.80. Let L be a vector space. We say that two norms, |-| and
IIIl, on L are equivalent if there exists constants o, 8 € (0,00) such that

IfIl < alfl and |fI < BIf| forall f € L.

Lemma 2.81. Let L be a finite dimensional vector space. Then any two norms
|| and ||| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}_; be a basis for L and define a new norm on L by

n
= Z\ai\ for a; € F.
1 i=1

By the triangle inequality of the norm |-|, we find

3 Here is a proof if X is a metric space. Let {z,}°°, C X be a sequence such that
f(zn) 1 sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that , — b € X as n — oco. By continuity of f, f(b) =sup f.
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n
> aif;
=

Doaifi| <D laillfil < MY las| = M
i=1 i=1 i=1
where M = max; |f;|. Thus we have

Ifl < M flly

for all f € L. This inequality shows that |-| is continuous relative to ||-||, . Now
let S:={f € L:|f|l, =1}, a compact subset of L relative to |-||, . Therefore
by Exercise 2.78 there exists fy € S such that

m=nt{|f]: feS}=fol >0.

1

Hence given 0 # f € L, then WfH— € S so that
Tl
f 1
m < | | =
‘Hflh [1£1ly
or equivalently
1
171 < 151
This shows that |-| and ||-||; are equivalent norms. Similarly one shows that
|-l and ||-||; are equivalent and hence so are |-| and [|-]|. m

Definition 2.82. A subset D of a topological space X is dense if D = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Example 2.83. The following are examples of countable dense sets.

1. The rational number Q are dense in R equipped with the usual topology.

2. More generally, Q7 is a countable dense subset of R? for any d € N.

3. Even more generally, for any function g : N — (0,00), £P(u) is separable
for all 1 < p < co. For example, let I" C F be a countable dense set, then

D:={x e lP(u):x; € 5 forall i and #{j : z; # 0} < co}.
The set I" can be taken to be Q if F =R or Q +:iQ if F = C.
4. If (X, p) is a metric space which is separable then every subset Y C X is
also separable in the induced topology.
To prove 4. above, let A = {z,}22,; C X be a countable dense subset of
X. Let p(z,Y) = inf{p(x,y) : y € Y} be the distance from = to Y. Recall that
p(-,Y) : X — [0,00) is continuous. Let €, = p(z,,Y) > 0 and for each n let
Yn € By, (£)NY if €, = 0 otherwise choose y,, € B;, (2¢,)NY. Then ify € Y

and € > 0 we may choose n € N such that p(y,z,) < e, < /3 and 1 < ¢/3.
If €, > 0, p(Yn, Tn) < 26, < 2¢/3 and if €, = 0, p(yn, zn) < €/3 and therefore

Py yn) < (Y, Tn) + p(Tn, yn) < €.
This shows that B = {y,}22, is a countable dense subset of Y.
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Lemma 2.84. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A, CC X such that X =
Uzea, B(z,1/n). Let D := U2 A, — a countable subset of X. Moreover,
it is clear by construction that D = X. m

2.7 Compactness in Function Spaces

In this section, let (X, 7) be a topological space.
Definition 2.85. Let F C C(X).

1. F is equicontinuous at x € X iff for all € > 0 there exists U € 7, such
that |f(y) — f(z)] < eforall y e U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{|f(z)|: |f € F} < oo for all z € X.

Theorem 2.86 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topo-
logical space and F C C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (<) Since C(X) C B(X) is a complete metric space, we must
show F is totally bounded. Let € > 0 be given. By equicontinuity there exists
Vy € 1, for all € X such that |f(y) — f(z)| <e¢/2ify € V, and f € F. Since
X is compact we may choose A CC X such that X = U,caV,. We have now
decomposed X into “blocks” {V.},., such that each f € F is constant to
within € on V. Since sup {|f(z)|: 2 € A and f € F} < o0, it is now evident
that

M =sup{|f(z)|:z € X and f € F}
<sup{|f(z)]:z € Aand f € F} + € < .

Let D= {ke/2:k€Z}N[-M,M].If f € Fand ¢ € D* (ie. ¢: A — D
is a function) is chosen so that |¢(z) — f(z)| < €/2 for all z € A, then

1f(y) = ¢(@)] < [f(y) — f(@)| +|f(z) — d(x)| <eVzeAdand y € V..
From this it follows that F = {]—'¢ NS ]D)A} where, for ¢ € D4,
Fo={feF:|fly) —d(z)| <efory eV, and z € A}.

Let I' := {¢€]IDA:]-'¢7E(Z)} and for each ¢ € I' choose fy € F4 N F. For
f€Fy, x€ Aand y € V, we have

1f () = fo W)l < [f(y) = ¢(@))] + |o(z) — foy)] < 2e.
So || f — fsll < 2¢ for all f € F, showing that F, C By, (2¢). Therefore,
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F = U¢ep.7:¢ C U¢ngf¢(2€)
and because € > 0 was arbitrary we have shown that F is totally bounded.
(=) Since ||| : C(X) — [0,00) is a continuous function on C(X)
it is bounded on any compact subset F C C(X). This shows that
sup{||fll : f € F} < oo which clearly implies that F is pointwise bounded.*

Suppose F were not equicontinuous at some point € X that is to say there
exists € > 0 such that for all V € 7, sup sup |f(y) — f(z)| > €.> Equivalently
yeV feF

said, to each V' € 7, we may choose

fv € F and v € V such that |fy(z) — fv(zv)| > e (2.9)

Set Cy = {fw :W e, and W C V}H‘Hoo C F and notice for any V CC 7,
that
NvevCy 2 Cry # 0,

so that {Cy},, € 7, C F has the finite intersection property.® Since F is
compact, it follows that there exists some

fe ) cv#0.

Ver,

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < ¢/3 for
all y € V. Because f € Cy, there exists W C V such that ||f — fw| < /3.
We now arrive at a contradiction;

e <|fw(x) — fwlew)| < [fw(z) = f(@)[ +|f(2) = flaw)| + [f(aw) — fw(@w
<€/3+¢€¢/3+¢/3=c¢

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps e, : C(X) — R given by e.(f) = f(z) for all z € X.
If X is first countable we could finish the proof with the following argument.
Let {V,.}nx1 be a neighborhood base at z such that Vi D Vo D V3 D .... By
the assumption that F is not equicontinuous at z, there exist f, € F and z, €
V.. such that |fn(z) — fn(zn)|] > € V n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that f, converges uniformly
to some f € F. Because z,, — x as n — oo we learn that

€ < |fu(@) = falzn)l < |fulx) = F@)] + (@) = flzn)] + [f(2n) = falza)]
<2l fn = fll 4+ 1 f(x) = f(zn)] — 0 as n — oo

5

which is a contradiction.

If we are willing to use Net’s described in Appendix ?? below we could finish
the proof as follows. Since F is compact, the net {fv}ver, C F has a cluster
point f € F C C(X). Choose a subnet {ga}aca of {fv}very such that go — f
uniformly. Then, since xy — x implies zv,, — x, we may conclude from Eq. (2.9)
that

=

€ < |9a(z) — ga(@v,)| — l9(x) — g(x)| = 0
which is a contradiction.
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2.8 Connectedness

The reader may wish to review the topological notions and results introduced
in Section 2.3 above before proceeding.

Definition 2.87. (X, 1) is disconnected if there exists non-empty open sets
U and V of X such that UNV =0 and X = UUV. We say {U,V} is a
disconnection of X. The topological space (X,T) is called connected if it
is not disconnected, i.e. if there are no disconnection of X. If A C X we say
A is connected iff (A,7a) is connected where T4 is the relative topology on
A. Eaxplicitly, A is disconnected in (X, 7) iff there exists U,V € T such that
UNA#£QUNA#D, ANUNV =0 and ACUUV.

The reader should check that the following statement is an equivalent
definition of connectivity. A topological space (X, 7) is connected iff the only
sets A C X which are both open and closed are the sets X and (.

Remark 2.88. Let A CY C X. Then A is connected in X iff A is connected
inY.

Proof. Since
TA={VNA:VCX}={VNANY:VCcX}={UNA:UC,Y},

the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y. Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y. m

The following elementary but important lemma is left as an exercise to
the reader.

Lemma 2.89. Suppose that f : X — Y is a continuous map between topolog-
ical spaces. Then f(X) CY is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 2.90. Suppose that f : X — Y is a continuous map between topo-
logical spaces, X is connected, Y is Hausdorff, and f is locally constant, i.e.
for all z € X there exists an open neighborhood V' of z in X such that f|y is
constant. Then f is constant, i.e. f(X) = {yo} for some yo € Y. To prove this,
let yo € f(X) and let W := f~1({yo}). Since Y is Hausdorff, {yo} C Y is a
closed set and since f is continuous W C X is also closed. Since f is locally
constant, W is open as well and since X is connected it follows that W = X,

Le. f(X) = {yo}-
Proposition 2.91. Let (X, 7) be a topological space.
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1. If B C X is a connected set and X is the disjoint union of two open sets
U and V, then either B C U or BC V.

2.a. If AC X is connected, then A is connected.
b. More generally, if A is connected and B C acc(A), then AU B 1is
connected as well. (Recall that acc(A) — the set of accumulation points of
A was defined in Definition 2.25 above.)

8. If {Ea} ey 18 a collection of connected sets such that [
Y :=Uyea Ea is connected as well. ~

4. Suppose A, B C X are non-empty connected subsets of X such that AN
B # (), then AU B is connected in X.

5. Bvery point x € X is contained in o unique maximal connected subset
C, of X and this subset is closed. The set C, is called the connected
component of x.

wca Ba # 0, then

Proof.

1. Since B is the disjoint union of the relatively open sets BNU and BNV,
we must have BNU = B or BNV = B for otherwise {BNU, BNV}
would be a disconnection of B.

2. a. Let Y = A equipped with the relative topology from X. Suppose that
U,V C, Y form a disconnection of Y = A. Then by 1. either A C U or
A C V. Say that A C U. Since U is both open an closed in Y, it follows
that Y = A C U. Therefore V = @) and we have a contradiction to the
assumption that {U,V} is a disconnection of ¥ = A. Hence we must
conclude that Y = A is connected as well.

b. Now let Y = AU B with B C acc(A), then
AY = ANY = (AUacc(4)NY = AUB.

Because A is connected in Y, by (2a) Y = AU B = AY is also connected.

3. Let Y := J,c4 Fo- By Remark 2.88, we know that E, is connected in
Y for each a € A. If {U,V} were a disconnection of Y, by item (1),
either B, C U or E, C V for all a. Let A = {a € A: E, C U} then
U =UqeaEy and V = Ugea\ 4 Eqo. (Notice that neither A or A\ A can be
empty since U and V are not empty.) Since

QZUHVZUQQA,BEAC (EaﬂEg) D m FE, 75@

a€cA

we have reached a contradiction and hence no such disconnection exists.

4. (A good example to keep in mind here is X = R, A = (0,1) and B =
[1,2).) For sake of contradiction suppose that {U, V'} were a disconnection
of Y = AU B. By item (1) either A C U or A C V, say A C U in which
case B C V. Since Y = AU B we must have A = U and B = V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies
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A=A =AnY =AN(AUB)=AU(ANB)

and therefore

0£ANBCANB=0,

which gives us the desired contradiction.

5. Let C denote the collection of connected subsets C C X such that x € C.
Then by item 3., the set C, := UC is also a connected subset of X which
contains z and clearly this is the unique maximal connected set containing
x. Since C,, is also connected by item (2) and C, is maximal, C,, = C,,
i.e. C, is closed.

|
Theorem 2.92. The connected subsets of R are intervals.

Proof. Suppose that A C R is a connected subset and that a,b € A with
a < b. If there exists ¢ € (a,b) such that ¢ ¢ A, then U := (—o0,c) N A
and V := (¢,00) N A would form a disconnection of A. Hence (a,b) C A. Let
a := inf(A) and B := sup(A) and choose a,,, 3, € A such that «,, < 3, and
an | aand B, 1 B8 as n — oco. By what we have just shown, (a,,[3,) C A
for all n and hence (a,8) = U, (@, Bn) C A. From this it follows that
A= (o,p), |a,B), (a, 5] or [, ], i.e. A is an interval.

Conversely suppose that A is an interval, and for sake of contradiction,
suppose that {U, V'} is a disconnection of A with a € U, b € V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a,b] C A. Let p =sup ([a,b] N U), then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a,b] N U) > p and p can not be in
V for otherwise p < sup ([a,b] N U) . From this it follows that p ¢ U UV and
hence A # UUV contradicting the assumption that {U, V'} is a disconnection.
|

Definition 2.93. A topological space X is path connected if to every pair of
points {xo,x1} C X there exists a continuous path o € C([0,1], X) such that
c(0) = x¢ and o(1) = z1. The space X is said to be locally path connected
if for each x € X, there is an open neighborhood V. C X of x which is path
connected.

Proposition 2.94. Let X be a topological space.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of R", then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 2.125 —
2.127 below. m
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2.9 Supplement: Sums in Banach Spaces

Definition 2.95. Suppose that X is a normed space and {v, € X : o € A} is
a given collection of vectors in X. We say that s = Y 4va € X if for all
€ > 0 there exists a finite set I. C A such that ||s D U(y” < € for all
A CcC A such that I, C A. (Unlike the case of real valued sums, this does
not imply that Y, c 4 |vall < 00. See Proposition 14.22 below, from which one
may manufacture counter-examples to this false premise.)

Lemma 2.96. (1) When X is a Banach space, ) 4 Vo exists in X iff for
all € > 0 there exists I'. CC A such that || ,c 4 va| <€ for all ACC A\ T..
Also if Y- o4 Vo exists in X then {a € A: v, # 0} is at most countable. (2)
If s =3 caVa € X evists and T : X — Y is a bounded linear map between
normed spaces, then ) . 4 Tvq exists in Y and

Ts=TZUa= ZTUQ,
aEA a€A

Proof. (1) Suppose that s =) 4 v exists and € > 0. Let I'. CC A be
as in Definition 2.95. Then for A cC A\ I,

E Vol < E Vo + E Vo — S|| + E Vo — 8
acA acA a€el. a€el.
= E Vo — S|| + € < 2e.
acl UA

Conversely, suppose for all € > 0 there exists I, CC A such that ||ZaeA Va || <
eforall A CC A\ T Let v, := Up_ I /), C A and set s, := ) Vq. Then
for m > n,

a€vn

[ — snll = Z Vol <1/mn— 0 as m,n — co.
a€Ym \Tn

Therefore {sn}zozl is Cauchy and hence convergent in X. Let s := lim,,_, Sn,
then for A CC A such that v, C A, we have

s—gva

1
<lls=sall +| D va < ls = snll + .
acA

a€A\ v,

Since the right member of this equation goes to zero as n — oo, it follows
that ) 4 va exists and is equal to s.

Let 7y := U221 v, — a countable subset of A. Then for a ¢ v, {a} C A\ v,
for all n and hence
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lvall = Z vg|| <1/n— 0 as n — oo.
Be{a}

Therefore v, =0 for all € A\ 7.
(2) Let It be as in Definition 2.95 and A CC A such that I'. C A. Then

TszTva szva

a€eA acA

<77l <|Tlle

which shows that > ., Tv, exists and is equal to T's. m

2.10 Word of Caution

Ezample 2.97. Let (X, d) be a metric space. It is always true that B,(e) C
C.(€) since Cy(€) is a closed set containing B, (€). However, it is not always
true that B;(e) = Cy(€). For example let X = {1,2} and d(1,2) = 1, then
By(1) = {1}, Bi(1) = {1} while C;(1) = X. For another counter example,
take

X={(z,y) eR*:z=00rz=1}

with the usually Euclidean metric coming from the plane. Then

Booy(1) = {(0,y) e R?: [y| < 1},
Bo,o)(1) = {(0,y) e R?: |y| < 1}, while

Cl0,0)(1) = Bo,0y(1) U {(0,1)}.

In spite of the above examples, Lemmas 2.98 and 2.99 below shows that
for certain metric spaces of interest it is true that B, (e) = Cy(e).

Lemma 2.98. Suppose that (X, |-|) is a normed vector space and d is the
metric on X defined by d(z,y) = |v — y|. Then

B,(e) = Cy(e) and
0Bg(e) ={y € X :d(z,y) = €}.

Proof. We must show that C := C,(¢) C B,(e) =: B. For y € C, let

v =1y —x, then
| =y —z| = d(z,y) <e.

Let @, = 1 —1/n so that a,, 7 1 as n — oo. Let y, = = + a,v, then
d(®,yn) = and(z,y) < €, so that y, € Bz(e) and d(y,yn) = 1 —an, — 0 as
n — 00. This shows that y, — y as n — oo and hence that y € B. m
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Fig. 2.6. An almost length minimizing curve joining x to y.

2.10.1 Riemannian Metrics
This subsection is not completely self contained and may safely be skipped.

Lemma 2.99. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(z,y) =inf{{(0) : 0(0) = = and o(1) = y}

where £(o) is the length of the curve o. We define £(c) = oo if o is not
piecewise smooth.
Then

B, (€) = Cy(e) and
0B, (€) ={y € X : d(z,y) = €}.

Proof. Let C := C,(¢) C B.(e) = B. We will show that C C B by
showing B¢ C C°. Suppose that y € B¢ and choose ¢ > 0 such that B, (d) N
B = (). In particular this implies that

B,(8) N By(e) = 0.

We will finish the proof by showing that d(z,y) > €+ > € and hence
that y € C°. This will be accomplished by showing: if d(z,y) < €+ § then
B, (8) N By(e) # 0.

If d(z,y) < max(e,d) then either x € By(d) or y € By(e). In either case
By (8) N By(€) # 0. Hence we may assume that max(e,d) < d(z,y) < e+ 4.
Let a > 0 be a number such that

max(e, ) < d(z,y) <a<e+d

and choose a curve ¢ from z to y such that £(c) < a. Also choose 0 < ¢’ < ¢
such that 0 < a—¢" < e which can be done since a—d < e. Let k(t) = d(y, o(t))
a continuous function on [0,1] and therefore k([0,1]) C R is a connected
set which contains 0 and d(z,y). Therefore there exists to € [0, 1] such that
d(y,o(to)) = k(to) = 0'. Let z = o(ty) € By(0) then
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d(@, 2) < Uoloe)) = 6o) — Uolgn) < @ —d(z,y) = a— & <
and therefore z € B, () N B, (6) # 0. m

Remark 2.100. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(z,y) =inf {{(c) : 0(0) = z and o(1) = y}.

Let o be a curve from x to y and let € = (o) — d(z, y). Then for all 0 < u <
v <1,
d(o(u),0(v)) < U(o|w0) + e

So if ¢ is within € of a length minimizing curve from z to y that o|p,. is
within e of a length minimizing curve from o(u) to o(v). In particular if
d(z,y) = (o) then d(o(u),c(v)) = £(0o|juy)) for all 0 < u < v < 1, e if o
is a length minimizing curve from z to y that ol ) is a length minimizing
curve from o(u) to o(v).

To prove these assertions notice that

d(ﬂ:, y) +e= é(o—) = Z(O— [O,U]) + €(0—|[u7v}) + e(gl[v,l])
> d(z,o(u)) + é(g‘[uw]) +d(o(v),y)

and therefore

(z,y) + € —d(z,0(u)) — d(o(v),y)
(0(u),0(v)) +e

2.11 Exercises

Exercise 2.101. Prove Lemma 2.71.

Exercise 2.102. Let X = C([0,1],R) and for f € X, let

Il £1l4 ::/0 |f(t)| dt.

Show that (X, ||-||;) is normed space and show by example that this space is
not complete.

Exercise 2.103. Let (X, d) be a metric space. Suppose that {z,}5°, C X is
a sequence and set €, := d(Zy, Tpt1). Show that for m > n that

m—1 oo
d(xnvl'm) S g €k S E €k-
k=n k=n

Conclude from this that if
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oo [}
E €k = g dx7L7x7L+1 o0

k=1 n=1

then {z,}52, is Cauchy. Moreover, show that if {z,}72; is a convergent
sequence and x = lim,,_,, z,, then

oo

d(z,x,) < Z €k

k=n

Exercise 2.104. Show that (X,d) is a complete metric space iff every se-
quence {z,}22; C X such that > .- d(@n,zn41) < 00 is a convergent se-
quence in X. You may find it useful to prove the following statements in the
course of the proof.

1. If {2} is Cauchy sequence, then there is a subsequence y; = x,, such
that 37, d(yj+1,9;) < oo

2. If {x,};2, is Cauchy and there exists a subsequence y; = x,; of {z,}
such that x = lim;_. y; exists, then lim,, . z, also exists and is equal
to x.

Exercise 2.105. Suppose that f : [0,00) — [0,00) is a C? — function such
that f(0) =0, f/ > 0 and f” < 0 and (X, p) is a metric space. Show that
d(z,y) = f(p(z,y)) is a metric on X. In particular show that

_ _r@y)
S )

is a metric on X. (Hint: use calculus to verify that f(a+b) < f(a) + f(b) for
all a,b € [0,00).)

Exercise 2.106. Let d : C(R) x C(R) — [0,00) be defined by

oo

—n ”.f_g”n
d _ _ M = Ilin__
(19 = 2 2" T gl

where || f]l, = sup{|f(z)] : |z| < n} = max{|f(z)] : |z| < n}.

1. Show that d is a metric on C(R).

2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — oo
iff f,, converges to f uniformly on compact subsets of R.

3. Show that (C(R),d) is a complete metric space.

Exercise 2.107. Let {(X,,d,)},o, be a sequence of metric spaces, X :
[I2, X, and for z = (z(n))5e, and y=(y(n)),—, in X let

n dn(z(n),y(n))
d(z,y) = Z? T+ dn(2(n), y(n))

n=1
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Show: 1) (X,d) is a metric space, 2) a sequence {zy},-,; C X converges to
x € X iff x(n) — xz(n) € X, as k — oo for every n = 1,2,..., and 3) X is
complete if X, is complete for all n.

Exercise 2.108 (Tychonoff’s Theorem). Let us continue the notation of
the previous problem. Further assume that the spaces X,, are compact for all
n. Show (X, d) is compact. Hint: Either use Cantor’s method to show every
sequence {Z,, }ro_; C X has a convergent subsequence or alternatively show
(X,d) is complete and totally bounded.

Exercise 2.109. Let (X;,d;) for ¢ = 1,...,n be a finite collection of metric
spaces and for 1 < p < oo and = = (21,29,...,2,) and y = (Y1,...,Yn) in
X = H?:l Xi7 let

n »1/p .
pp(,y) = { (i [dizi, a)]") 7 i pF# oo

1. Show (X, pp) is a metric space for p € [1, co]. Hint: Minkowski’s inequal-
ity.

2. Show that all of the metric {p, : 1 < p < oo} are equivalent, i.e. for any
p,q € [1,00] there exists constants ¢, C' < co such that

pp(2,y) < Cpg(x,y) and pg(x,y) < cpp(z,y) for all z,y € X.

Hint: This can be done with explicit estimates or more simply using
Lemma 2.81.

3. Show that the topologies associated to the metrics p, are the same for all
p € [1,00].

Exercise 2.110. Let C be a closed proper subset of R” and z € R™\ C. Show
there exists a y € C such that d(z,y) = do ().

Exercise 2.111. Let F = R in this problem and A C £2(N) be defined by
A={xc?(N):x(n) >1+1/n for some n € N}
=02 {z € A(N):z(n) >1+1/n}.

Show A is a closed subset of ¢2(N) with the property that d4(0) = 1 while
there is no y € A such that da(y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

2.11.1 Banach Space Problems

Exercise 2.112. Show that all finite dimensional normed vector spaces
(L, |I]l) are necessarily complete. Also show that closed and bounded sets
(relative to the given norm) are compact.
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Exercise 2.113. Let (X, ||-||) be a normed space over F (R or C). Show the
map
Mz, eFXxXXxX sax+dyeX

is continuous relative to the topology on IF x X x X defined by the norm

H()‘v T, y)”]FxXxX = ‘/\‘ + ||JSH + Hy” .
(See Exercise 2.109 for more on the metric associated to this norm.) Also show
that ||-|| : X — [0, 00) is continuous.
Exercise 2.114. Let p € [1,00] and X be an infinite set. Show the closed

unit ball in ¢?(X) is not compact.
Exercise 2.115. Let X = N and for p, g € [1,00) let ||-||,, denote the ¢(N) —
norm. Show [|-||,, and [-||, are inequivalent norms for p # ¢ by showing
o 1
20 11,
Exercise 2.116. Folland Problem 5.5. Closure of subspaces are subspaces.
Exercise 2.117. Folland Problem 5.9. Showing C*([0, 1]) is a Banach space.

Exercise 2.118. Folland Problem 5.11. Showing Holder spaces are Banach
spaces.

=0 ifp<yq.

Exercise 2.119. Let X, Y and Z be normed spaces. Prove the maps
(S,2) e L(X,)Y)x X — Sz €Y

and
(ST)e L(X,Y)x L(Y,Z) — ST € L(X, Z)
are continuous relative to the norms
||(S>x)HL(X,Y)><X = ||S||L(X,Y) + ||zl x and
1CS D)l Lxyvyxevizy) = 1SIlnx,yy + 1T Lz
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.

2.11.2 Ascoli-Arzela Theorem Problems

Exercise 2.120. Let T € (0,00) and F C C([0,T]) be a family of functions
such that:

1. f(t) exists for all t € (0,T) and f € F.
2. supsc 7| f(0)] < oo and

3. M = sup;c 7 SuPyc(o,1) ‘f(t)’ < o0.
Show F is precompact in the Banach space C([0,7T]) equipped with the

norm || fll, = supejo,r 1)l -
Exercise 2.121. Folland Problem 4.63.

Exercise 2.122. Folland Problem 4.64.
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2.11.3 General Topological Space Problems

Exercise 2.123. Give an example of continuous map, f : X — Y, and a
compact subset K of Y such that f~1(K) is not compact.

Exercise 2.124. Let V' be an open subset of R. Show V' may be written as
a disjoint union of open intervals .J,, = (an, b, ), where a,, b, € RU{+o0} for
n=12--- <N with N = oo possible.

2.11.4 Connectedness Problems

Exercise 2.125. Prove item 1. of Proposition 2.94. Hint: show X is not
connected implies X is not path connected.

Exercise 2.126. Prove item 2. of Proposition 2.94. Hint: fix zp € X and let
W denote the set of € X such that there exists o € C([0, 1], X) satisfying
c(0) = zp and o(1) = z. Then show W is both open and closed.

Exercise 2.127. Prove item 3. of Proposition 2.94.
Exercise 2.128. Let
X = {(9:, y) ERZ:y = sin(xil)} u{(0,0)}

equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.

Exercise 2.129. Prove the following strong version of item 3. of Proposition
2.94, namely to every pair of points zg,x; in a connected open subset V' of
R™ there exists o € C®°(R, V) such that ¢(0) = 2y and o(1) = z;. Hint: Use
a convolution argument.
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Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology 7. We
are now interested in restrictions on 7 in order to insure there are “plenty” of
continuous functions. One such restriction is to assume 7 = 74 — is the topology
induced from a metric on X. The following two results shows that (X, 74) has
lots of continuous functions. Recall for A C X, da(z) = inf{d(z,y) : y € A}.

Lemma 3.1 (Urysohn’s Lemma for Metric Spaces). Let (X,d) be a
metric space, V C, X and F C X such that F C V. Then

@) = 2t

m fOT‘Q? eX (31)

defines a continuous function, f : X — [0,1], such that f(z) =1 forxz € F and
f(x)=0ifz ¢ V. (This may also be stated as follows. Let A (A= F) and B
(B = V) be two disjoint closed subsets of X, then there exists f € C(X,|0,1])
such that f =1 on A and f =0 on B.)

Proof. By Lemma 2.7, dr and dy. are continuous functions on X. Since
F and V¢ are closed, dp(z) > 0 if 2 ¢ F and dyc(xz) > 0 if 2 € V. Since
FNVe =0, dp(z) + dye(z) >0 for all z and (dp +dy<)”" is continuous as
well. The remaining assertions about f are all easy to verify. m

Theorem 3.2 (Metric Space Tietze Extension Theorem). Let (X,d)
be a metric space, D be a closed subset of X, —c0 < a < b < o0 and f €
C(D,[a,b]). (Here we are viewing D as a topological space with the relative
topology, Tp, see Definition 2.22.) Then there exists F' € C(X,[a,b]) such that
Flp=f.

Proof.

1. By scaling and translation (i.e. by replacing f by %), it suffices to prove
Theorem 3.2 with a =0 and b = 1.
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2. Suppose a € (0,1] and f : D — [0, ] is continuous function. Let A :=
710, 3a]) and B := f~!([2,1]). By Lemma 3.1 there exists a function
g € C(X,[0,a/3]) such that § = 0 on A and § = 1 on B. Letting g := §4,
we have g € C(X,[0,a/3]) such that ¢ = 0 on A and g = «/3 on B.
Further notice that

2
0< f(z) —g(x) < 3¢ for all z € D.

3. Now suppose f : D — [0,1] is a continuous function as in step 1. Let
g1 € C(X,[0,1/3]) be as in step 2. with o = 1 and let f1 := f —q1|p €
C(D,[0,2/3]). Apply step 2. with @ = 2/3 and f = f; to find g2 €
C(X,[0,42]) such that fo := f — (g1 + 92) |p € C(D, [0, (%)Q]) Continue
this way inductively to find g, € C(X, [0, (%)"71]) such that

N N
F- o= fv e .0, (3) D, (32)

n=1

4. Define F := 37" | g,. Since

Sl < 1(3)%1:1 Lo
2 Z3\3 31-2

the series defining F' is uniformly convergent so F' € C(X, [0, 1]). Passing
to the limit in Eq. (3.2) shows f = F|p.

|

The main thrust of this section is to study locally compact (and o — com-
pact) Hausdorff spaces as defined below. We will see again that this class of
topological spaces have an ample supply of continuous functions. We will start
out with the notion of a Hausdorff topology. The following example shows a
pathology which occurs when there are not enough open sets in a topology.

Ezample 3.3. Let X = {1,2,3} and 7 = {X,0,{1,2},{2,3},{2}} and x,, = 2
for all n. Then z,, — «x for every x € X!

Definition 3.4 (Hausdorff Topology). A topological space, (X,T), is
Hausdorff if for each pair of distinct points, x,y € X, there exists dis-
joint open neighborhoods, U and V of x and y respectively. (Metric spaces are
typical examples of Hausdor(f spaces.)

Remark 8.5. When 7 is Hausdorff the “pathologies” appearing in Example 3.3
do not occur. Indeed if z,, —» z € X and y € X \ {} we may choose V € 7,
and W € 7, such that VN W = (. Then x, € V a.a. implies x,, ¢ W for all
but a finite number of n and hence x,, - y, so limits are unique.
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Proposition 3.6. Suppose that (X, 7) is a Hausdorff space, K CC X and
x € K. Then there exists U,V € 7 such that UNV =0,z € U and K C V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U,V € T such that K CV and F C U.

Proof. Because X is Hausdorff, for all y € K there exists V}, € 7, and
Uy € 7y such that V,NU, = 0. The cover {V},} _y of K has a finite subcover,
{Vy}, e for some A CC K. Let V = UyeaVy and U = NyeaUy, then U,V € 7
satisfy z € U, K C V and U NV = (. This shows that K¢ is open and hence
that K is closed.

Suppose that K and F' are two disjoint compact subsets of X. For each
x € F there exists disjoint open sets U, and V,, such that K C V, and z € U,.
Since {Uy } ¢ is an open cover of F) there exists a finite subset A of F' such
that F' C U := UgeaU,. The proof is completed by defining V' := NycpV,. B

Exercise 3.7. Show any finite set X admits exactly one Hausdorff topology
T.

Exercise 3.8. Let (X, 7) and (Y, 7y) be topological spaces.

1. Show 7 is Hausdorff iff A := {(z,z) : * € X} is a closed in X x X equipped
with the product topology 7 ® 7.

2. Suppose 7 is Hausdorff and f,g : ¥ — X are continuous maps. If
—
{f =9} =Y then f = g. Hint: make use of themap fxg: YV — X x X
defined by (f x ¢) (y) = (f(¥),9(»))-

Exercise 3.9. Given an example of a topological space which has a non-closed
compact subset.

Proposition 3.10. Suppose that X is a compact topological space, Y is a
Hausdorff topological space, and f : X — Y is a continuous bijection then f
is a homeomorphism, i.e. f~1:Y — X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that (f *1)_1 (C) = f(C) is closed in X for all closed
subsets C' of X. Thus f~! is continuous. m

Definition 3.11 (Local and o — compactness). Let (X, 7) be a topological
space.

1. (X, 1) is locally compact if for all x € X there exists an open neigh-
borhood V. C X of x such that V is compact. (Alternatively, in light of
Definition 2.25, this is equivalent to requiring that to each x € X there
exists a compact neighborhood N, of x.)
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2. (X,7) is o — compact if there exists compact sets K,, C X such that
X = U2 K,,. (Notice that we may assume, by replacing K,, by K1 UKyU
-+ UK, if necessary, that K, 1 X.)

Example 3.12. Any open subset of X C R"™ is a locally compact and o —
compact metric space (and hence Hausdorff). The proof of local compactness
is easy and is left to the reader. To see that X is ¢ — compact, for £ € N| let

Kp:={z € X :|z| <kand dxe(z) > 1/k}.

Then K, is a closed and bounded subset of R™ and hence compact. Moreover
KP 1 X as k — oo since!

KpD{rxeX:|z|]<kanddxe(x)>1/k} T X as k — oo.

Exercise 3.13. Every separable locally compact metric space is o — compact.
Hint: Let {z,,},., C X be a countable dense subset of X and define

1
€n = 5 Sup {e>0:C;,, (€) is compact} A 1.

Exercise 3.14. Every o — compact metric space is separable. Therefore a
locally compact metric space is separable iff it is ¢ — compact.

Exercise 3.15. Suppose that (X, d) is a metric space and U C X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.
2. If X is 0 — compact then (U,d) is o — compact. Hint: Mimick Example
3.12, replacing Cy(k) by compact set K CC X such that Ky 7 X.

Lemma 3.16. Let (X, 7) be a locally compact and o — compact topological
space. Then there exists compact sets K, T X such that K, C K, ;1 C Kpq1
for all n.

Proof. Suppose that C' C X is a compact set. For each x € C'let V, C, X
be an open neighborhood of x such that V,, is compact. Then C' C U eV, so
there exists A CcC C such that

C CUzeaVy C UzeAVx =: K.

Then K is a compact set, being a finite union of compact subsets of X, and
C CUgeaVy C K°.

Now let C,, € X be compact sets such that C,, T X as n — oo. Let
K; = C; and then choose a compact set Ko such that Co C K§. Similarly,
choose a compact set K3 such that K> UC3 C K§ and continue inductively to
find compact sets K, such that K, UCy,11 C K, for all n. Then {Kn}oo,
is the desired sequence. m

! In fact this is an equality, but we will not need this here.
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Remark 3.17. Lemma 3.16 may also be stated as saying there exists precom-
pact open sets {G,,}-—, such that G,, C G,, C Gp41 for alln and G,, T X as
n — oo. Indeed if {G,,},2, are as above, let K,, := G, and if {K,,} 7, are as
in Lemma 3.16, let G,, := K?.

The following result is a Corollary of Lemma 3.16 and Theorem 2.86.

Corollary 3.18 (Locally compact form of Ascoli-Arzela Theorem
). Let (X,7) be a locally compact and o — compact topological space and
{fm} C C(X) be a pointwise bounded sequence of functions such that { f |k}
is equicontinuous for any compact subset K C X. Then there exists a subse-
quence {m,} C {m} such that {g, := fm, }oy C C(X) is a sequence which
is uniformly convergent on compact subsets of X.

Proof. Let {K,} -, be the compact subsets of X constructed in Lemma
3.16. We may now apply Theorem 2.86 repeatedly to find a nested family of

subsequences
{fm} D {gm} D {omy D {on} o ...

[ee)

such that the sequence {g;;},._; C C(X) is uniformly convergent on K.
Using Cantor’s trick, define the subsequence {hy} of {f.,} by h, = g*. Then
{hn} is uniformly convergent on K; for each [ € N. Now if K C X is an
arbitrary compact set, there exists [ < oo such that K C Ky C K; and
therefore {h,,} is uniformly convergent on K as well. m

The next two results shows that locally compact Hausdorff spaces have
plenty of open sets and plenty of continuous functions.

Proposition 3.19. Suppose X is a locally compact Hausdorff space and U C,
X anfl K CC U. Then there exists V C, X suchthat K CVcVcUcCX
and V' is compact.

Proof. By local compactness, for all x € K, there exists U, € 7, such
that U, is compact. Since K is compact, there exists A CC K such that
{Usz},c4 is a cover of K. The set O = U N (UyeaU,) is an open set such that
K C O C U and O is precompact since O is a closed subset of the compact
set UzpenUsy. (Uzea U,. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that U is compact.

Since U is compact and U = U N U® is a closed subset of U, U is
compact. Because OU C U¢, it follows that OU N K = {), so by Proposition
3.6, there exists disjoint open sets V' and W such that K C V and oU C W.
By replacing V' by VNU if necessary we may further assume that K C V C U,
see Figure 3.1.

Because UNW* is a closed set containing V and UNUNW® = gUNW*° =
@7

Vcilnwe=UnwecUcU.

Since U is compact it follows that V' is compact and the proof is complete. m
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Fig. 3.1. The construction of V.

Exercise 3.20. Give a “simpler” proof of Proposition 3.19 under the addi-
tional assumption that X is a metric space. Hint: show for each z € K there
exists V,, := B, (e;) with €, > 0 such that B,(e;) C Cr(e;) C U with Cy(e,)
being compact. Recall that C,(€) is the closed ball of radius € about x.

Definition 3.21. Let U be an open subset of a topological space (X, 7). We
will write f < U to mean a function f € C.(X,[0,1]) such that supp(f) :=
{r#0}cU.

Lemma 3.22 (Locally Compact Version of Urysohn’s Lemma). Let X
be a locally compact Hausdorff space and K C”C U C, X. Then there exists
f < U such that f =1 on K. In particular, if K is compact and C is closed
in X such that K N C =, there exists f € C.(X,[0,1]) such that f =1 on
K and f =0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 — f rather than f. To motivate the proof, suppose g € C(X,]0,1]) such
that g = 0 on K and ¢ = 1 on U¢. For r > 0, let U, = {g <r}. Then for
0<r<s<1,U C{g<r}CUs andsince {g <r} is closed this implies

KcU.cU.c{g<rycU,cCU.

Therefore associated to the function g is the collection open sets {U, },., C 7
with the property that K C U, C U, CUs C U forall 0 <r < s <1 and
U, = X if r > 1. Finally let us notice that we may recover the function ¢ from

the sequence {U,},, by the formula

g(z) =inf{r >0:2€U,}. (3.3)

The idea of the proof to follow is to turn these remarks around and define g
by Eq. (3.3).
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Step 1. (Construction of the U,.) Let
D={k2":k=12,...,27" ' n=1,2,...}

be the dyadic rationales in (0, 1]. Use Proposition 3.19 to find a precompact
open set Uy such that K C U; C Uy C U. Apply Proposition 3.19 again to
construct an open set Uy /o such that

K CUyyp CUyppCly
and similarly use Proposition 3.19 to find open sets Uy /2, Us/q Co X such that
K CUyyy CUyja CUyjo CUyjp CUspy C Uspy C UL
Likewise there exists open set Uy s, Us/s, Us/s, Uy/s such that

K C Ul/g C Ul/g C U1/4 C Ul/4 C Ug/g - Ug/g C Ul/g
C U1/2 C U5/8 C U5/8 C U3/4 C U3/4 - U7/8 C U7/g c Uy.

Continuing this way inductively, one shows there exists precompact open sets
{Ur},¢p C 7 such that

KcU. cU,cUcU, cU,cU

forall ,se Dwith0<r <s<1.
Step 2. Let U, = X if r > 1 and define

g(z) =inf{r e DU (1,00) : z € U,.},

see Figure 3.2. Then g(z) € [0,1] for all z € X, g(z) = 0 for x € K since
ze€ KCU,forallr € D. If x € UY, then « ¢ U, for all » € D and hence
g(z) = 1. Therefore f := 1 — g is a function such that f = 1 on K and
{f#£0y={g#1} c U, c U, C U so that supp(f) = {f #0} c U, C U is
a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.

Since € = {(a, ), (—00,a) : @ € R} generates the standard topology on
R, to prove g is continuous it suffices to show {g < a} and {g > a} are open
sets for all @ € R. But g(z) < « iff there exists r € DU (1,00) with r < «
such that x € U,. Therefore

{g<oz}:U{UT:r€]D)U(1,oo) > r<al
which is open in X. If @ > 1, {g>a} =P and if a < 0, {g>a} = X. If

a € (0,1), then g(z) > « iff there exists 7 € D such that r > o and = ¢ U,..
Now if 7 > o and z ¢ U, then for s € DN (e, 7), ¢ Us C U,.. Thus we have

shown that
{g>a}:U{(U5)C:sElD) > 8>a}

which is again an open subset of X. m
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Fig. 3.2. Determining g from {U,}.

Exercise 3.23. mGive a simpler proof of Lemma 3.22 under the additional
assumption that X is a metric space.

Theorem 3.24 (Locally Compact Tietz Extension Theorem). Let
(X, 1) be a locally compact Hausdorff space, K cC U C, X, f € C(K,R),
a = min f(K) and b = max f(K). Then there exists F € C(X,]a,b])
such that F|x = f. Moreover given ¢ € [a,b], F can be chosen so that
supp(F —¢) ={F # ¢} C U.

The proof of this theorem is similar to Theorem 3.2 and will be left to the
reader, see Exercise 3.51.

Lemma 3.25. Suppose that (X,7) is a locally compact second countable
Hausdorff space. (For example any separable locally compact metric space and
in particular any open subsets of R™.) Then:

1. every open subset U C X is 0 — compact.
2.If F C X is a closed set, there exist open sets V;, C X such that V,, | F
asn — oo.

3. To each open set U C X there exists f,, < U such that lim, o fn = 1y.
4. The o — algebra generated by C.(X) is the Borel o — algebra, Bx.

Proof.

1. Let U be an open subset of X, V be a countable base for 7 and

VW= {W eV:W CU and W is compact}.
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For each x € U, by Proposition 3.19, there exists an open neighborhood
V of x such that V C U and V is compact. Since V is a base for the
topology T, there exists W € V such that © € W C V. Because W C V, it
follows that W is compact and hence W € VY. As x € U was arbitrary,
U=uW.

Let {W,}>2, be an enumeration of VY and set K, := Up_;W. Then
K, 1 U as n — oo and K, is compact for each n.

2. Let {K,}.-; be compact subsets of F© such that K,, T F° as n — oo and
set V,, := K¢ = X \ K,,. Then V,, | F and by Proposition 3.6, V,, is open
for each n.

3. Let U C X be an open set and {K,} ~, be compact subsets of U such
that K,, T U. By Lemma 3.22, there exist f,, < U such that f, = 1 on
K,,. These functions satisfy, 1y = lim,, o0 fr-

4. By Item 3., 1y is 0(C.(X,R)) — measurable for all U € 7. Hence
T C 0(Ce(X,R)) and therefore Bx = o(1) C 0(C.(X,R)). The con-
verse inclusion always holds since continuous functions are always Borel
measurable.

Corollary 3.26. Suppose that (X,7) is a second countable locally compact
Hausdorff space, Bx = o(t) is the Borel o — algebra on X and 'H is a subspace
of B(X,R) which is closed under bounded convergence and contains C.(X,R).
Then H contains all bounded Bx — measurable real valued functions on X.

Proof. Since H is closed under bounded convergence and C.(X,R) C H,
it follows by Item 3. of Lemma 3.25 that 1y € H for all U € 7. Since T is a w
class the corollary follows by an application of Theorem 9.12. m

3.1 Locally compact form of Urysohn Metrization
Theorem

Notation 3.27 Let Q := [0, 1] denote the (infinite dimensional) unit cube
in RN, For a,b e Q let

=1
d(a,b) =" o an = bal (3.4)
n=1

The metric introduced in Exercise 2.108 would be defined, in this context,

as d(a,b) = 0% 2—%%. Since 1 < 1+ |ap —by| < 2, it follows that

d < d < 2d. So the metrics d and d are equivalent and in particular the
topologies induced by d and d are the same. By Exercises 7.80, the d — topology
on @ is the same as the product topology and by Exercise 2.108, (Q,d) is a
compact metric space.
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Theorem 3.28 (Urysohn Metrization Theorem). Every second count-
able locally compact Hausdor(f space, (X, T), is metrizable, i.e. there is a met-
ric p on X such that T = 7,. Moreover, p may be chosen so that X is isometric
to a subset Qo C Q equipped with the metric d in Eq. (3.4). In this metric
X is totally bounded and hence the completion of X (which is isometric to
Qo C Q) is compact.
Proof. Let B be a countable base for 7 and set
I'={(U,V)eBxB|UCcCV and U is compact}.

To each O € 7 and = € O there exist (U,V) € ' such that t € U C V C O.
Indeed, since B is a basis for 7, there exists V' € B such that x € V C O.
Now apply Proposition 3.19 to find U’ C, X such that x € U’ c U’ c V
with U’ being compact. Since B is a basis for 7, there exists U € B such that
x €U C U’ and since U € U’, U is compact so (U, V) € I'. In particular this
shows that B/ :={U € B: (U,V) € I" for some V € B} is still a base for 7.

If I is a finite, then B’ is finite and 7 only has a finite number of elements
as well. Since (X, 7) is Hausdorff, it follows that X is a finite set. Letting
{:cn}fyzl be an enumeration of X, define T : X — @ by T(z,) = e, for
n=12,...,N where e, = (0,0,...,0,1,0,...), with the 1 ocurring in the
nt spot. Then p(x,y) := d(T(z),T(y)) for 2,y € X is the desired metric.
So we may now assume that I" is an infinite set and let {(Uy,, V;,)} -, be an
enumeration of I.

By Urysohn’s Lemma 3.22 there exists fyv € C(X,[0,1]) such that fyy =
OonU and fyyv =1lon Ve Let F = {fyv | (U, V) € I'} and set f,, := fu, v.,
— an enumeration of F. We will now show that

fe o]

1
plz,y) == Z o [fu() = ful(y)]
n=1
is the desired metric on X. The proof will involve a number of steps.

1. (p is a metric on X.) It is routine to show p satisfies the triangle inequal-
ity and p is symmetric. If z,y € X are distinct points then there exists
(Ungs Vo) € I such that x € U, and V,,, C O := {y}“. Since fn,(z) =0
and fp,(y) = 1, it follows that p(z,y) > 27" > 0.

2. (Let 0 = 7(fn :n €N), then 7 = 79 = 7,,.) As usual we have 79 C .
Since, for each z € X, y — p(x,y) is 70 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B,(e) :=
{ye X :p(z,y) <e} emforall z € X and € > 0. Thus 7, C 79 C 7.
Suppose that O € 7 and « € O. Let (U,,, Vp,) € I" be such that z € Uy,
and V;,, C O. Then fy,(z) = 0 and f,, = 1 on O°. Therefore if y € X and
fro(y) <1, theny € O so z € {fn, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 9. So 7 C 79 and
hence T = 9. Moreover, if y € B;(27") then 27" > p(z,y) > 27" f, (y)
and therefore © € B,;(27™) C {fn, < 1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.
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3. (X is isometric to some Qo C Q.) Let T': X — @ be defined by T'(z) =
(f1(x), fa(x), ..., fn(x),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qo := T'(X). Since Q) is a subset
of the compact metric space (Q,d), Qo is totally bounded and therefore
X is totally bounded.

3.2 Partitions of Unity

Definition 3.29. Let (X, 7) be a topological space and Xo C X be a set. A
collection of sets {Ba},cq C 2% is locally finite on X, if for all z € X,
there is an open neighborhood N, € T of x such that #{a € A : B, N N, #
0} < 0.

Lemma 3.30. Let (X, 7) be a locally compact Hausdorff space.

1. A subset E C X is closed iff EN K is closed for all K CC X.

2. Let {Cqa}yea be a locally finite collection of closed subsets of X, then
C = UacaCy is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, ENK
is closed if F is closed and K is compact. Now suppose that £ N K is closed
for all compact subsets K C X and let x € E€. Since X is locally compact,
there exists a precompact open neighborhood, V, of z.2 By assumption ENV
is closed so = € (E N V)c — an open subset of X. By Proposition 3.19 there
exists an open set U such that x € U C U C (E N V)C, see Figure 3.3. Let
W :=UnNYV. Since

WNE=UNVNECUNVNE =,

and W is an open neighborhood of z and x € E€ was arbitrary, we have shown
E€ is open hence E is closed.

Item 2. Let K be a compact subset of X and for each x € K let N, be an
open neighborhood of z such that #{a € A: C, N N, # (}} < oo. Since K is
compact, there exists a finite subset A C K such that K C UzeaN,. Letting
Ao :={a € A:CyN K # 0}, then

#(A0) <Y #{a€ A: Cu NN, #0} < 00

€A

2 If X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of x which is disjoint from E, then there would exists
Zn € E such that z, — z. Since ENV is closed and z, € ENV for all large n,
it follows (see Exercise 2.12) that # € ENV and in particular that € E. But
we chose x € E°.
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Fig. 3.3. Showing E° is open.

and hence K N (UpeaCa) = K N (Unea,Ca) - The set (Uaea,Cq) is a finite
union of closed sets and hence closed. Therefore, K N (UpeaCl) is closed and
by Item (1) it follows that UscaCy is closed as well. m

Definition 3.31. Suppose that U is an open cover of Xo C X. A collection
{¢:i 3N, C C(X,[0,1]) (N = oo is allowed here) is a partition of unity on
Xo subordinate to the cover U if:

1. for alli there is a U € U such that supp(¢;) C U,

2. the collection of sets, {supp(#;)},, is locally finite on X, and

3. le\il ¢; = 1 on Xo. (Notice by (2), that for each x € Xg there is a
neighborhood N, such that ¢;|n, is not identically zero for only a finite
number of terms. So the sum is well defined and we say the sum is locally

finite.)

Proposition 3.32 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K C X is a compact set and
Uu = {Uj}?:l is an open cover of K. Then there exists a partition of unity
{hiYi_y of K such that hy < Uj for all j=1,2,...,n.

Proof. For all z € K choose a precompact open neighborhood, V;, of z
such that V, C Uj. Since K is compact, there exists a finite subset, A, of K
such that K ¢ |J V;. Let

zeA
szu{Vz:xeAandech}.

Then Fj is compact, F; C U; for all j, and K C UJ_;F;. By Urysohn’s
Lemma 3.22 there exists f; < U; such that f; = 1 on F;. We will now give
two methods to finish the proof.

Method 1. Let h1 = f1, hg = f2(1 — hl) = fQ(l — fl)7

hs = f3(1—=h1—ha) = fs(1 = fr — (1= fi)f2) = fs(1 = f1)(1 = fa)
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and continue on inductively to define

k—1
he=(0—=h——he)fe=fi- [[O-f)VE=23,...,n  (35)
j=1
and to show N
(1=hy—---=hy) =[]0 = £) (3.6)
j=1

From these equations it clearly follows that h; € C.(X,[0,1]) and that
supp(h;) C supp(f;) C Uj, i.e. h; < Uj. Since H;.lzl(l — fj) = 0on K,
>i—1hj=1on K and {h}" is the desired partition of unity.

Method 2. Let g := Z fj € Ce(X). Then g > 1 on K and hence

K C{g> 3}. Choose ¢ € C’ (X [0,1]) such that ¢ =1 on K and supp(¢)
{g>2}anddeﬁnefoflf¢Thenfo—Ooano—llfg 1a
therefore,

C
nd

fotfit-+fa=fo+tg>0

on X. The desired partition of unity may be constructed as

fi(@)
Jo(x) + -+ fulz)

Indeed supp (h;) = supp (f;) C Uj, h; € Ce(X,[0,1]) and on K,

fl +fn :f1+"'+f'n:
f0+fl '+fn fl+"'+fn

hj(z) =

hi 4+ hy

Proposition 3.33. Let (X, 7) be a locally compact and o — compact Hausdorff
space. Suppose that U C T is an open cover of X. Then we may construct two
locally finite open covers V = {Vi}¥ | and W = {W;}¥, of X (N = o0 is
allowed here) such that:

1. W; c W; C V; € Vi and V; is compact f(_)r all 1.
2. For each i there exist U € U such that V; C U.

Proof. By Remark 3.17, there exists an open cover of G = {G,}5%;
of X such that G, C G, C Gpy1. Then X = UL, (G \ Gy—1), where
by convention G_; = Gy = (. For the moment fix & > 1. For each z €
G \ Gk—1, let U, € U be chosen so that x € U, and by Proposition 3.19
choose an open neighborhood N, of z such that N, C U, N (Ghi1\Gr_2), see
Figure 3.4 below. Since {N:},cq,\¢,_, 15 an open cover of the compact set
G \ Gi—1, there exist a finite subset Iy C {Nu},eG,\6,, Which also covers
Gy, \ Gk—_1. By construction, for each W € I}, there is a U € U such that
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Fig. 3.4. Constructing the {I/Vl}fi1 .

W C UN(Ggyr \ Gr_2). Apply Proposition 3.19 one more time to find, for
each W € I, an open set Viy such that W € Viy € Viy C UN(Gra1 \Gr_2).
We now choose and enumeration {W;}¥; of the countable open cover
U2, I, of X and define V; = Viy,. Then the collection {W;}¥; and {Vi}¥,
are easily checked to satisfy all the conclusions of the proposition. In particular
notice that for each k that the set of i’s such that V; N Gy # 0 is finite. m

Theorem 3.34 (Partitions of Unity in locally and o — compact
spaces). Let (X,7) be a locally compact and o — compact Hausdorff space
and U C 7 be an open cover of X. Then there exists a partition of unity of
{hi}¥, (N = oo is allowed here) subordinate to the cover U such that supp(h;)
is compact for all i.

Proof. Let V = {V;}¥, and W = {W;}}¥| be open covers of X with the
properties described in Proposition 3.33. By Urysohn7s Lemma 3.22; there
exists f; < V; such that f; = 1 on W; for each 1.

As in the proof of Proposition 3.32 there are two methods to finish the
proof.

Method 1. Define hy = f1, h;j by Eq. (3.5) for all other j. Then as in Eq.

(3.6)
N N

t-3on=TI0- )=

since for z € X, fj(x) =1 for some j. As in the proof of Proposition 3.32, it
is easily checked that {h;}.", is the desired partition of unity.
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Method 2. Let f = Zil fi, a locally finite sum, so that f € C(X).
Since {W;};2, is a cover of X, f > 1 on X so that 1/f € C (X)) as well. The
functions h; = f;/f for i =1,2,..., N give the desired partition of unity. m

Corollary 3.35. Let (X, 7) be a locally compact and o — compact Hausdorff
space and U = {Ua},eqa C T be an open cover of X. Then there exists a
partition of unity of {ha }aca subordinate to the cover U such that supp(ha) C
U, for all o € A. (Notice that we do not assert that h,, has compact support.
However if U, is compact then supp(hy,) will be compact.)

Proof. By the o — compactness of X, we may choose a countable subset,
{aiticn (N = oo allowed here), of A such that {U; = Us, }; is still an
open cover of X. Let {g;}j<n be a partition of unity subordinate to the
cover {U;}i<n as in Theorem 3.34. Define I, = {j : supp(g;) C Uy} and

I,=1y \ (U?;llfk), where by convention I'y = . Then

[ee) [eo]
{ieN:i<N}=JL=]] D
k=1 k=1
If I, = 0 let hy = 0 otherwise let hy := Zjel“k g5, a locally finite sum. Then
S hi = Z;\;l g; = 1 and the sum > ;o hy is still locally finite. (Why?)
Now for o = oy, € {a;}¥q, let hy = hy, and for a ¢ {a;}¥; let h, = 0. Since

{hr # 0} = Ujer, {95 # 0} C Ujen,supp(g;) C Uy

and, by Item 2. of Lemma 3.30, Ujcr, supp(g;) is closed, we see that

supp(hi) = {hx # 0} C Ujer,supp(g;) C Uy.
Therefore {hqa},c 4 is the desired partition of unity. m

Corollary 3.36. Let (X,7) be a locally compact and o — compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f e C(X,[0,1]) such that f =1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) C B°.

Proof. Let U; = A¢ and Us = B¢, then {U;,Us} is an open cover of X.
By Corollary 3.35 there exists hy, hy € C(X, [0, 1]) such that supp(h;) C U;
for i = 1,2 and hy + ho = 1 on X. The function f = hs satisfies the desired
properties. W

3.3 Cp(X) and the Alexanderov Compactification

Definition 3.37. Let (X, 7) be a topological space. A continuous function f :
X — C is said to vanish at infinity if {|f| > €} is compact in X for all
e > 0. The functions, f € C(X), vanishing at infinity will be denoted by
Co(X).
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Proposition 3.38. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

1. Cy(X) s a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then
Co(X) = Co(X).

Proof.

1. If f e Co(X), K1 := {|f| > 1} is a compact subset of X and there-
fore f(K1) is a compact and hence bounded subset of C and so M :=
SUP,eg, |f(2)| < oo. Therefore || f||, < M V1 < oo showing f € BC(X).
Now suppose f,, € Co(X) and f,, — f in BC(X). Let € > 0 be given and
choose n sufficiently large so that ||f — f,||, < €/2. Since

u —

|f‘ S |fn‘ + |f - fn| S |fn| + Hf - fn“u S |fn| +E/27

{f1z et clful +e/2= €} = {|fn] = ¢/2}.

Because {|f| > €} is a closed subset of the compact set {|f.| > €/2},
{If] > €} is compact and we have shown f € Co(X).

2. Since Cp(X) is a closed subspace of BC(X) and C.(X) C Co(X), we
always have C,(X) C Cy(X). Now suppose that f € Co(X) and let K,, =
{|f| > 2} cC X. By Lemma 3.22 we may choose ¢,, € C.(X, [0,1]) such
that ¢, = 1 on K,,. Define f,, = ¢,,f € Ce(X). Then

1
”f - anu = ”(1 - ¢>n)fHu < E — 0 asn — oo.

This shows that f € C.(X).
|

Proposition 3.39 (Alexanderov Compactification). Suppose that (X, T)
is a non-compact locally compact Hausdorff space. Let X* = X U{oco}, where
{0} is a new symbol not in X. The collection of sets,

T=7U{X"\K:KCC X} CP(X"),

is a topology on X* and (X*,7*) is a compact Hausdorff space. Moreover
f € C(X) extends continuously to X* iff f = g+c with g € Cy(X) and c € C
in which case the extension is given by f(o0) = c.

Proof. 1. (7* is a topology.) Let F := {F C X* : X*\ F € 7%}, ie.
F € Fiff F is a compact subset of X or F' = FyU{oco} with Fy being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
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arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence 7* is a topology.

2. ((X*,7*) is a Hausdorff space.) It suffices to show any point z € X
can be separated from oco. To do this use Proposition 3.19 to find an open
precompact neighborhood, U, of 2. Then U and V := X*\ U are disjoint open
subsets of X* such that x € U and co € V.

3. ((X*,7*) is compact.) Suppose that & C 7* is an open cover of X*.
Since U covers oo, there exists a compact set K C X such that X*\ K € U.
Clearly X is covered by Uy := {V \ {oo} : V € U} and by the definition of 7*
(or using (X*,7*) is Hausdorff), Uy is an open cover of X. In particular U is
an open cover of K and since K is compact there exists A CC U such that
K CcU{V\{oo}:V € A}. It is now easily checked that AU{X*\ K} CU
is a finite subcover of X*.

4. (Continuous functions on C(X*) statements.) Let ¢ : X — X* be the
inclusion map. Then ¢ is continuous and open, i.e. i(V') is open in X* for all
Vopenin X. If f € C(X*), then g = f|x — f(00) = foi— f(00) is continuous
on X. Moreover, for all € > 0 there exists an open neighborhood V' € 7* of co
such that

lg(z)| = |f(z) — f(oo)| < efor all z € V.

Since V' is an open neighborhood of oo, there exists a compact subset,
K C X, such that V = X* \ K. By the previous equation we see that
{r e X :|g(x)| > €} C K, so{|g| > €} is compact and we have shown g van-
ishes at oo.

Conversely if g € Cy(X), extend g to X* by setting g(oco) = 0. Given
€ > 0, the set K = {|g| > €} is compact, hence X* \ K is open in X*. Since
g(X*\ K) C (—¢,¢€) we have shown that g is continuous at co. Since g is also
continuous at all points in X it follows that ¢ is continuous on X*. Now it
f=g+cwith c e C and g € Cy(X), it follows by what we just proved that
defining f(o0) = ¢ extends f to a continuous function on X*. m

3.4 More on Separation Axioms: Normal Spaces

(The reader may skip to Definition 3.42 if he/she wishes. The following ma-
terial will not be used in the rest of the book.)

Definition 3.40 (T — T» Separation Axioms). Let (X, 7) be a topological
space. The topology T is said to be:

1. Ty if for x # y in X there exists V € 7 such that x €V andy ¢V or V
such thaty € V but x ¢ V.

2. Ty if for every x,y € X with x # y there exists V € 7 such that x € V
and y ¢ V. Equivalently, T is Ty iff all one point subsets of X are closed.

3 If one point subsets are closed and z # y in X then V := {z}° is an open set
containing y but not x. Conversely if 7 is 71 and = € X there exists V}, € 7 such
that y € V, and x ¢ V,, for all y # . Therefore, {z}° = Uy, V, € 7.
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8. Ty if it is Hausdorff.

Note T, implies T which implies Ty. The topology in Example 3.3 is Ty
but not 73. If X is a finite set and 7 is a 7} — topology on X then 7 = 2%, To
prove this let € X be fixed. Then for every y # x in X there exists V,, € 7
such that € V,, while y ¢ V,,. Thus {z} = Ny, V, € 7 showing 7 contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of 7} topology which is not T5.

Example 3.41. Let X be any infinite set and let 7 = {A C X : #(A°) < oo} U
{0} — the so called cofinite topology. This topology is T} because if z # y in
X, then V = {z}¢ € 7 with = ¢ V while y € V. This topology however is not
Ty. Indeed if U,V € 7 are open sets such that x € U,y € Vand UNV =0
then U C V. But this implies #(U) < oo which is impossible unless U = ()
which is impossible since x € U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark 3.5) need not occur for T) — spaces. For example, let X = N and
7 be the cofinite topology on X as in Example 3.41. Then z,, = n is a sequence
in X such that z,, — = as n — oo for all x € N. For the most part we will
avoid these pathologies in the future by only considering Hausdorff topologies.

Definition 3.42 (Normal Spaces: Ty — Separation Axiom). A topologi-
cal space (X, T) is said to be normal or Ty if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A, B C X there exists disjoint open
sets VW C X such that ACV and B C W.

Example 3.43. By Lemma 3.1 and Corollary 3.36 it follows that metric space
and locally compact and o — compact Hausdorff space (in particular compact
Hausdorff spaces) are normal. Indeed, in each case if A, B are disjoint closed
subsets of X, there exists f € C(X,[0,1]) such that f =1 on A and f =0 on
B.Nowlet U= {f >3} and V ={f < $}.

Remark 3.44. A topological space, (X, ), is normal iff for any C c W C X
with C being closed and W being open there exists an open set U C, X such
that

ccucUcw

To prove this first suppose X is normal. Since W€ is closed and C N W¢ = {),
there exists disjoint open sets U and V such that C C U and W¢ C V.
Therefore C C U C V¢ C W and since V¢ is closed, C CU c U Cc V¢ C W.
For the converse direction suppose A and B are disjoint closed subsets of
X. Then A C B¢ and B¢ is open, and so by assumption there exists U C, X
such that A C U ¢ U C B¢ and by the same token there exists W C, X such
that U € W C W C B¢. Taking complements of the last expression implies
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BcWecwecU".
Let V=W Then ACUC, X,BCV C, XandUNV CcUNWe=0.

Theorem 3.45 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A, B are disjoint closed subsets of X. Then there
exists f € C(X,[0,1]) such that f =0 on A and f =1 on B.

Proof. To make the notation match Lemma 3.22, let U = A° and K = B.
Then K C U and it suffices to produce a function f € C(X,[0,1]) such that
f=1on K and supp(f) C U. The proof is now identical to that for Lemma
3.22 except we now use Remark 3.44 in place of Proposition 3.19. m

Theorem 3.46 (Tietze Extension Theorem). Let (X,7) be a normal
space, D be a closed subset of X, —oo < a < b < oo and f € C(D,][a,b]).
Then there exists F' € C(X, [a,b]) such that F|p =

Proof. The proof is identical to that of Theorem 3.2 except we now use
Theorem 3.45 in place of Lemma 3.1. m

Corollary 3.47. Suppose that X is a normal topological space, D C X is
closed, F' € C(D,R). Then there exists F € C(X) such that F|p = f

Proof. Let g = arctan(f) € C(D,(=%,%)). Then by the Tietze ex-
tension theorem, there exists G € C(X,[-%,%]) such that G|p = g. Let
B = G’*l({f??}) C X, then BN D = (. By Urysohn’s lemma (Theo-
rem 3.45) there exists h € C(X,[0,1]) such that h = 1 on D and h = 0
on B and in particular hG € C(D,(—%, %)) and (hG) |p = ¢. The function

212
F =tan(hG) € C(X) is an extension of f. m

Theorem 3.48 (Urysohn Metrization Theorem). Every second count-
able normal space, (X,T), is metrizable, i.e. there is a metric p on X such
that T = 7,. Moreover, p may be chosen so that X is isometric to a subset
Qo C Q equipped with the metric d in Eq. (3.4). In this metric X is totally
bounded and hence the completion of X (which is isometric to Qy C Q) is
compact.

Proof. Let B be a countable base for 7 and set
r={U,v)yeBxB|UcV}.

To each O € 7 and = € O there exist (U,V) € I' such that z e U C V C O.
Indeed, since B is a basis for 7, there exists V' € B such that x € V C O.
Because {z}NV¢ = (), there exists disjoint open sets U and W such that z € U,
Ve C W and UNW = . Choose U € B such that z € U C U. Since
UcUcWe,UcWecV and hence (U,V) € I. See Figure 3.5 below. In
particular this shows that {U € B: (U, V) € I' for some V € B} is still a base
for .
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Fig. 3.5. Constructing (U,V) € I.

If I' is a finite set, the previous comment shows that 7 only has a finite
number of elements as well. Since (X, 7) is Hausdorfl, it follows that X is a
finite set. Letting {xn} , be an enumeration of X, define T' : X — @ by
T(xz,) = e, for n = 1, 2 , N where e, = (0,0,...,0,1,0,...), with the
1 ocurring in the n'® spot, Thcn plz,y) = d(T(a:),T(y)) for z,y € X is
the desired metric. So we may now assume that I is an infinite set and let
{(Un, V) }o2 | be an enumeration of I

By Urysohn’s Lemma (Theorem 3.45) there exists fy,y € C(X, [0, 1]) such
that fyy =0on U and fyy =1on Ve Let F = {fy,v | (U,V) € I'} and
set fn := fu,,v, — an enumeration of . We will now show that

Z o 1al@) — 1)

is the desired metric on X. The proof will involve a number of steps.

1. (p is a metric on X.) It is routine to show p satisfies the triangle inequal-
ity and p is symmetric. If z,y € X are distinct points then there exists
(Ungs Vo) € I such that x € U, and V,,, C O := {y}“. Since fn,(z) =0
and fp,(y) = 1, it follows that p(z,y) > 27" > 0.

2. (Let 0 = 7(fn :n €N), then 7 = 79 = 7,,.) As usual we have 79 C .
Since, for each z € X, y — p(x,y) is 70 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that B,(e) :=
{ye X :p(z,y) <e} emforall z € X and € > 0. Thus 7, C 79 C 7.
Suppose that O € 7 and « € O. Let (U,,, Vp,) € I" be such that z € Uy,
and V;,, C O. Then fy,(z) = 0 and f,, = 1 on O°. Therefore if y € X and
fro(y) <1, theny € O so z € {fn, <1} C O. This shows that O may be
written as a union of elements from 7y and therefore O € 9. So 7 C 79 and
hence T = 9. Moreover, if y € B;(27") then 27" > p(z,y) > 27" f, (y)
and therefore © € B,;(27™) C {fn, < 1} C O. This shows O is p — open
and hence 7, C 79 C 7 C 7.



3.5 Exercises 81

3. (X is isometric to some Qo C Q.) Let T': X — @ be defined by T'(z) =
(f1(x), fa(x), ..., fn(x),...). Then T is an isometry by the very definitions
of d and p and therefore X is isometric to Qo := T'(X). Since Q) is a subset
of the compact metric space (Q,d), Qo is totally bounded and therefore
X is totally bounded.

3.5 Exercises

Exercise 3.49. Let (X, 7) be a topological space, A C X, i4 : A — X be
the inclusion map and 74 := i;l(T) be the relative topology on A. Verify
Ta={ANV :V € 7} and show C C A is closed in (A,74) iff there exists
a closed set F C X such that C = AN F. (If you get stuck, see the remarks
after Definition 2.22 where this has already been proved.)

Exercise 3.50. Let (X, 7) and (Y, 7’) be a topological spaces, f : X — Y be
a function, U be an open cover of X and {Fj };L:l be a finite cover of X by
closed sets.

1.IfAC Xisanysetand f : X — Y is (7,7') — continuous then f|4 : A - Y
is (74, 7’) — continuous.

2.Show f : X — Y is (7,7") — continuous iff fly : U — Y is (7y,7’) —
continuous for all U € U.

3.Show f: X — Y is (1,7') — continuous iff f|r, : F; — Y is (7p,,7") -
continuous for all j =1,2,... n.

4. (A baby form of the Tietze extension Theorem.) Suppose V € 7 and
f:V — C is a continuous function such supp(f) C V, then F': X — C

defined by
[ f@) if eV
F(z) = { 0 otherwise

is continuous.
Exercise 3.51. Prove Theorem 3.24. Hints:

1. By Proposition 3.19, there exists a precompact open set V such that
K c V. c V c U. Now suppose that f : K — [0,q] is continuous with
o € (0,1] and let A := f71([0,%0]) and B := f~!([2,1]). Appeal to
Lemma 3.22 to find a function g € C'(X, [0, a/3]) such that g = a/3 on B
and supp(g) C V' \ A.

2. Now follow the argument in the proof of Theorem 3.2 to construct F' €
C(X, [a,b]) such that F|x = f.

3. For ¢ € [a,b], choose ¢ < U such that ¢ = 1 on K and replace F' by
F.:=¢F + (1 —¢)c.
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Exercise 3.52 (Sterographic Projection). Let X = R", X* := X U {oo}
be the one point compactification of X, S™ := {y € R"*! : |y| = 1} be the
unit sphere in R"*! and N = (0,...,0,1) € R*. Define f : S — X* by
f(N) =00, and for y € S™\ {N} let f(y) =b € R™ be the unique point such
that (b,0) is on the line containing N and y, see Figure 3.6 below. Find a
formula for f and show f:S™ — X* is a homeomorphism. (So the one point
compactification of R™ is homeomorphic to the n sphere.)

-N

Fig. 3.6. Sterographic projection and the one point compactification of R™.

Exercise 3.53. Let (X, 7) be a locally compact Hausdorff space. Show (X, 7)
is separable iff (X*, 7*) is separable.

Exercise 3.54. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X* := X U {oo},7*),
is not metrizable. Hint: use exercise 3.53.

Exercise 3.55. Suppose (X, d) is a locally compact and o — compact metric
space. Show the one point compactification, (X* := X U {oo}, 7*), is metriz-
able.
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.

For the remainder of the chapter, let [a,b] be a fixed compact interval and
X be a Banach space. The collection S = S([a,b], X) of step functions,
f :]a,b] — X, consists of those functions f which may be written in the form

n—1

f(t) = x01[a,t1](t) + Z wil(ti,ti+1](t)7 (4-1)
i=1
where 7 = {a = tg < t1 < --- < t, = b} is a partition of [a,b] and z; € X.
For f as in Eq. (4.1), let

n—1

I(f) =) (tigr —ti)zi € X. (4.2)

i=0

Exercise 4.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition 7 of
[a,b] does not change the right side of Eq. (4.2).) Also verify that I : § — X
is a linear operator.

Proposition 4.2 (Riemann Integral). The linear function I : & — X
extends uniquely to a continuous linear operator I from S (the closure of the
step functions inside of £°([a,b], X)) to X and this operator satisfies,

(NI < (b=a)|fllec for all f €S. (4.3)

Furthermore, C([a,b],X) C S C £°([a,b], X) and for f €, I(f) may be com-
puted as

n—1

I(f) = ‘lim Z )t — 1) (4.4)

[—0%
=0
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where 1 = {a = tp < t1 < --- < t, = b} denotes a partition of [a,b],
|7] = max {|[tit1 —ti| : ¢ =0,...,n — 1} is the mesh size of m and c[ may be
chosen arbitrarily inside [t;,t; 1]

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality
shows,

n—1 n—1
T <Y (i = ) lall <Dt = )l flloe < 0= @) flloor  (4:5)
=0 i=0

The existence of I satisfying Eq. (4.3) is a consequence of Theorem 2.68.
For f € C([a,b],X), m={a=t) <t1 <--- <t, =b} a partition of [a, D],
and cf € [t;,t;4q] for i =0,1,2...,n— 1, let

n—1
Fo(t) = F(c0)oditg,en) () + D FE) L tt000) (1)-
i=1

Then I(f,) = 321 f(cF)(tis1—t:) so to finish the proof of Eq. (4.4) and that

C(la,b], X) C S, it suffices to observe that lim ;g || f — fx|lcc = 0 because f
is uniformly continuous on [a,b]. m

If f, € S and f € S such that lim, .o || f — fnlloo = 0, then for a < a <
B < b, then 11, g fn € S and limp, o ||L(a,8)f — Lja,8fn||, = 0. This shows
Lo f € S whenever f € S.
Notation 4.3 For f € S and a < o < 8 < b we will write denote If(l[aﬁg]f)

by ff f()dt or f[a g f(@)dt. Also following the usual convention, if a < f <
a < b, we will let

s ) a
[ 10de= 1000 =~ [ e
a B
The next Lemma, whose proof is left to the reader (Exercise 4.13) contains
some of the many familiar properties of the Riemann integral.

Lemma 4.4. For f € S([a,b], X) and o, 3,7 € [a,b], the Riemann integral
satisfies:

1| J2 swae| < (8- s (@l o <t<p)

2. [T ftydt = [ f(t)ydt+ [] f(t)dt.
3. The function G(t) := fat f(r)dr is continuous on [a,b].
4. If Y is another Banach space and T € L(X,Y), then Tf € S([a,b],Y)

" T (/j f(t)dt) _ /j Tf(t)dt.
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5. The function t — || f(t)||x s in S([a,b],R) and

b
< / IF)| de.

6. If f,g € S([a,b],R) and f < g, then

/ab Ft)dt < /abg(t)dt

Theorem 4.5 (Baby Fubini Theorem). Let a,b,c,d € R and f(s,t) € X
be a continuous function of (s,t) for s between a and b and t between ¢ and d.

Then the maps t — f; f(s,t)ds € X and s — fcd f(s,t)dt are continuous and

/Cd Va”f(&t)ds} dt — /b [/Cdf(s,t)dt} ds. (4.6)

Proof. With out loss of generality we may assume a < b and ¢ < d. By
uniform continuity of f, Exercise 2.79,

(t) dt

sup ||f(s;t) — f(s0, 1) — 0 as s — so
c<t<d

and so by Lemma 4.4
d d
/ f(s, t)dt — / f(s0,t)dt as s — sg

showing the continuity of s — fcd f(s,t)dt. The other continuity assertion is
proved similarly.
Now let

r={a<sp<s1< <8, =0} andn' ={c<ty <ty < --<t,=d}
be partitions of [a,b] and [c, d] respectively. For s € [a,b] let s, = s; if s €

(Siy8i+1] and @ > 1 and s, = so = a if s € [sg, s1]. Define ¢, for ¢t € [c,d]
analogously. Then

/ab [/Cdf(s,t)dt} ds — /ab Ucdf(s,tw,)dt
_ /: Vcdf(smt,,/)dt

€ (s) = /Cd f(s, t)dt — /Cd f(s,trr)dt

b
ds+/ er(s)ds

b
ds+ 6y p +/ ex(s)ds

a

where
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,”r«_/ [/ {f(sytnr) — f(Snytar)} dt| ds

The uniform continuity of f and the estimates

and

sup flw (9] < sup / 1 (s,) — £(5. )] i

s€la,b] s€la,b
<(d=c)sup{[[f(s,t) = f(s,tw)ll = (s:2) € Q}

and

H(S‘ITJT’“ S / / ”f S t 511'7 )dt:| ds

< (b—a)(d—c)sup{|[f(s,t) = f(s,tx)

allow us to conclude that

/ab '/cdf(s,t)dt} dS_/ab '/cdf(swtﬂ/)dt} ds — 0 as |r| +|x'| — 0.

By symmetry (or an analogous argument),

/cd '/abf(s,t)ds:| dt — /cd _/abf(sﬂ,tﬂ-/)ds] dt — 0 as ||+ 7’| — 0.

This completes the proof since

b d
/ {/ f(Smtw')dt} ds= Y flsisty)(sier — st — 1))

0<i<m,0<j<n

_ /cd {/abf(sﬂ.,tﬂz)ds} dt

| (s:t) € @}

4.0.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results.

Definition 4.6. Let (a,b) C R. A function f : (a,b) — X is differentiable
at t € (a,b) iff L := limy_ w exists in X. The limit L, if it exists,
will be denoted by f(t) or %(t). We also say that f € C'((a,b) — X) if f is
differentiable at all points t € (a,b) and f € C((a,b) — X).
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Proposition 4.7. Suppose that f : [a,b] — X is a continuous function such
that f(t) exists and is equal to zero for t € (a,b). Then f is constant.

Proof. Let € > 0 and « € (a,b) be given. (We will later let € | 0 and
« | a.) By the definition of the derivative, for all 7 € (a, b) there exists 6, > 0
such that

1F@ = SO = |76 = 1) = f@OE=)|| S ele =7 if Je = 7] < o5
(4.7)

Let
A={teob): [1£(0) - f(@)] < elt - a)} (4.8)

and to be the least upper bound for A. We will now use a standard argument
called continuous induction to show ¢ty = b.
Eq. (4.7) with 7 = a shows ¢y > « and a simple continuity argument shows
to € A, ie.
1£(to) — (@) < elto — ) (4.9)

For the sake of contradiction, suppose that to < b. By Egs. (4.7) and (4.9),

I1£(2) = fla)ll < LF (@) = f(Eo)ll + 1f (o) — fla)l
<e(to—a)+elt—ty) =€t —a)

for 0 <t —ty < dy, which violates the definition of ¢, being an upper bound.
Thus we have shown Eq. (4.8) holds for all ¢ € [, b]. Since € > 0 and @ > a
were arbitrary we may conclude, using the continuity of f, that || f(¢)— f(a)| =
0forallteab. m

Remark /.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem
is not available to vector valued functions. However with the aid of the Hahn
Banach Theorem 28.16 and Lemma 4.4, it is possible to reduce the proof of
Proposition 4.7 and the proof of the Fundamental Theorem of Calculus 4.9 to
the real valued case, see Exercise 28.50.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that f €
C([a,b],X), Then

4 [T f(r)dr = f(t) for allt € (a,b).

2. Now assume that F € C([a,b],X), F is continuously differentiable on
(a,b), and F extends to a continuous function on [a,b] which is still de-
noted by F. Then

/b F(t)dt = F(b) — F(a).
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Proof. Let A > 0 be a small number and consider

I ™ - [ oar - somi=1 [ " — syl

t+h
< / I(f(r) = £(8))]] dr
< he(h),

where e(h) = max-¢,4n [|(f(7) = f())]|. Combining this with a similar com-
putation when h < 0 shows, for all & € R sufficiently small, that

||/ T)dT—/f(TdT— FOR] < |hle(),

where now e(h) = max,e—|n),+n)) |(f(7) — f(£)]. By continuity of f at t,
€(h) — 0 and hence 4 f; f(7)dr exists and is equal to f(¢).

For the second item, set G(t) = f; F(r)dr — F(t). Then G is continuous
by Lemma 4.4 and G(t) = 0 for all ¢ € (a,b) by item 1. An application of
Proposition 4.7 shows G is a constant and in particular G(b) = G(a), i.e.
[P E(r)dr — F(b) = —F(a). m
Corollary 4.10 (Mean Value Inequality). Suppose that f : [a,b] — X is

a continuous function such that f(t) exists for t € (a,b) and f extends to a
continuous function on [a,b]. Then

170 @ < [ 150l < 0 HfHOO. (@10

Proof. By the fundamental theorem of calculus, f(b) f f

and then by Lemma 4.4,
b b
[ dwar] < [ 7w

A= 0-a- .

1£(0) = fla)ll =

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let Q =
(a,b) x (e, d) be an open rectangle in R? and f € C(Q,X). Assume that
%f(s,t), agf(s t) and 2 afag f(s,t) exists and are continuous for (s,t) € @,
then L2 f(s,t) exists for (s,t) € Q and

S 1) = g fs,1) for (5,0) € Q. (411)
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Proof. Fix (so,to) € Q. By two applications of Theorem 4.9,
0
f(s,t) = f(s10,t) + /50 af(mt)da

= f(s0,t) + /S %f(a, to)do + /5 do dTa——f(a 7)) (4.12)

0 S0 to

and then by Fubini’s Theorem 4.5 we learn

t K] ]
f(s,t) = f(s0,1) / (o, to)da+/t dT/ daa—ia—if(oﬂ').

Differentiating this equation in ¢ and then in s (again using two more appli-
cations of Theorem 4.9) shows Eq. (4.11) holds. m

4.0.2 Exercises

Exercise 4.12. Let £°([a,b], X) = {f : [a,b] = X : || fllco = suDsefa ) IF )] <
oo}. Show that (£*°([a, b], X), | - ||oc) is a complete Banach space.

Exercise 4.13. Prove Lemma 4.4.

Exercise 4.14. Using Lemma 4.4, show f = (f1,...,fn) € S([a, b], R™) iff
fi € S(la,b),R) for i = 1,2,...,n and

/abf(t)dt = (/abfl(t)dt,...,/ab fn(t)dt) _

Exercise 4.15. Give another proof of Proposition 4.11 which does not use
Fubini’s Theorem 4.5 as follows.

1. By a simple translation argument we may assume (0,0) € @ and we are

trying to prove Eq (4.11) holds at (s,t) = (0,0).
2. Let h(s,t) := &2 f(s,t) and

G(s,t) := /Os do /Ot drh(o,T)

so that Eq. (4.12) states

f(s,t) = £(0,¢) +/OS %f(o’,tg)d0'+G(S,t)

and differentiating this equation at ¢ = 0 shows

B a B
=2 (5,0) = 2£(0,0) + 5-G(5,0). (4.13)
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Now show using the definition of the derivative that

a S
SG(s,0) = /0 doh(a,0). (4.14)

Hint: Consider

G(s,t) — t/os doh(o,0) = /OS do /Ot dr [h(o,7) — h(0,0)].

3. Now differentiate Eq. (4.13) in s using Theorem 4.9 to finish the proof.

Exercise 4.16. Give another proof of Eq. (4.6) in Theorem 4.5 based on
Proposition 4.11. To do this let ¢y € (¢,d) and sg € (a,b) and define

G(s,t) := /t: dT/S: dof(o,7)

Show G satisfies the hypothesis of Proposition 4.11 which combined with two
applications of the fundamental theorem of calculus implies

0 0 8 0

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t = £y or s = sy to conclude

st)f/ da/ dT——G (0,7) = /da/ droflo,7).  (415)

Finally let s = b and ¢ = d in Eq. (4.15) and then let 5o | a and ¢y | ¢ to
prove Eq. (4.6).

4.1 More Examples of Bounded Operators
In the examples to follow all integrals are the standard Riemann integrals,

see Section 4 below for the definition and the basic properties of the Riemann
integral.

Ezample 4.17. Suppose that K : [0,1] x [0,1] — C is a continuous function.
For f € C([0,1]), let

- / K(z,9)/ (5)dy.

Since
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1
T4@) =TS < [ K@) = Kl 1)y

< flloo max | K (2, y) — K (2, y)] (4.16)

and the latter expression tends to 0 as * — z by uniform continuity of K.

Therefore Tf € C([0,1]) and by the linearity of the Riemann integral, T :
C([0,1]) — C([0,1]) is a linear map. Moreover,

T ()] < /0 K (@, 9)| | ()] dy < /O K@ y)ldy [ fl. < Alfll

where

A:= sup / |K (z,y)| dy < oo. (4.17)

z€[0,1]

This shows || T'|| < A < oo and therefore T is bounded. We may in fact
show [|T'|| = A. To do this let o € [0, 1] be such that

1 1
sup / K (z,y)|dy = / K (0, )| dy.
z€[0,1] Jo Jo

Such an zg can be found since, using a similar argument to that in Eq. (4.16),
x — fgl |K (z,y)| dy is continuous. Given e > 0, let

K (zo0,y)

ly) = el
e+ 1K (z0.y)

and notice that limc|o || fe||,, =1 and

|K (20, )|

v e+ |K(zo,v)

ITflls > [T (x0)| = T.(w0) / ALl g,

Therefore,
K
171 g / / o =
€ e+ |K(zo,y
1
K
— lim \ (‘Z.Ovy)'
o \/e+|K<xo,y>
since
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0 < 1KGro, )] - Azt
e+ |K(zo,y)|
CCY) [ { et [K(z0.9) - |K<xo,y>\]
e+ |K (o, y)?

< e+ K (zo,y)* — | K (0, y)|

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L! ([0, 1])
denote C([0,1]) with the norm

1
1£]l, = / ()] da,

then 7 : L' ([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)| : z,y € [0,1]}, then

(Tf)(@)] < /O (K (2, 9) f(y)| dy < M| fl,

which shows ||T'f||, < M || f||; and hence,
1Tl 2~ < max {|K(z,y)| : z,y € [0,1]} < oc.

We can in fact show that ||T|| = M as follows. Let (zq,%0) € [0, 1]? satisfying
| K (z0,y0)| = M. Then given € > 0, there exists a neighborhood U = I x J
of (xo,y0) such that |K(z,y) — K(zo,y0)] < € for all (z,y) € U. Let f €
C.(I,]0,00)) such that jol f(z)dz = 1. Choose a € C such that |o| = 1 and
aK(xo,y0) = M, then

[(Taf)(zo)| = ‘/0 K(xo,y)af(y)dy‘ = ‘/IK(xmy)af(y)dy
> Re /I oK (20,9) 1 (y)dy
> /I (M — ) fy)dy = (M — ) |laf]|,

and hence
ITaflle = (M =€) llaf]
showing that ||T|| > M — e. Since € > 0 is arbitrary, we learn that ||| > M
and hence ||T]| =
One may also view T as a map from T : C([0,1]) — L*([0,1]) in which
case one may show

1
Tl < [ max|K .yl do < .
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4.2 Inverting Elements in L(X) and Linear ODE

Definition 4.18. A linear map T : X — Y is an isometry if | Tz|y = ||z|x
forallz € X. T is said to be invertible if T is a bijection and T~ is bounded.

Notation 4.19 We will write GL(X,Y) for those T € L(X,Y) which are
invertible. If X =Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 4.20. Suppose X is a Banach space and A € L(X) = L(X, X)
o0

satisfies Y ||A™|| < oco. Then I — A is invertible and
n=0

— “« 1 ” - n - > n
(I—A)~1= — = SoAm and ||(T- )7 <47
n=0 n=0
In particular if ||Al| < 1 then the above formula holds and

1
-1
=270 = =y

Proof. Since L(X) is a Banach space and Z [|A™]| < oo, it follows from
Theorem 2.67 that "~

N
§= i S = fim ) A"
exists in L(X). Moreover, by Exercise 2.119 below,
(I—A)S:(I—A)th SN:Nlim (I—A)Sy

N
— n_ | N+1y _
= i (=) ) A" = i (1 AT =1

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to
S. Moreover, (I — A)~! is bounded because

oo
I =2t = 18] < 3 147
n=0
If we further assume ||A|| < 1, then ||A7]| < ||A|" and

Z A" < Z (1 HAH

n=0
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Corollary 4.21. Let X and Y be Banach spaces. Then GL(X,Y) is an open
(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and
B e L(X,Y) satisfies

B — A <A™ (4.18)
then B € GL(X,Y)
BT =Y [Ix—A"'B]" A7 € L(Y, X) (4.19)
n=0
and ]
B~ <147

L= [[A=H A= Bl
Proof. Let A and B be as above, then
B=A—(A-B)=A[Ix - A"'(A- B))] = A(Ix — )
where A : X — X is given by
A:=A"YA-B)=1Ix-A"'B.
Now
1Al = |[A7HA = B)|| < 1A7H[ 1A = Bl < AT [IIAT =1

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(I-A)'A = [Ix—A Y (A-B)] A

For the last assertion we have,

1B < [[(x = ) IATH < A7 =7 IIAH

1
L= [[A= A= BII

<At

[
For an application of these results to linear ordinary differential equations,
see Section 6.2.
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Holder Spaces

Notation 5.1 Let £2 be an open subset of R%, BC(£2) and BC(12) be the
bounded continuous functions on §2 and §2 respectively. By identifying f €

BC(2) with f|n € BC(£2), we will consider BC(£2) as a subset of BC({2).
Forue BC(£2) and 0 < <1 let

u(z) — u(y
lullw == sup |u(z)| and [u]lg := sup {Lg)‘}
zeR z,y#eﬂ lz =yl

z#y

If [ulg < oo, then u is Hélder continuous with holder exponent' 3. The
collection of B — Holder continuous function on {2 will be denoted by

CYP(2) :={u € BO(N): [u]g < oo}
and for u € COA(£2) let
[ullcos (@) = llullu + [u]p- (5.1)

Remark 5.2.1f u : 2 — C and [u|g < oo for some § > 1, then u is constant
on each connected component of 2. Indeed, if z € 2 and h € R? then

u(z 4+ th) — u(z)

; < [ulpt?/t = 0ast —0

which shows Jpu(xz) = 0 for all x € 2. If y € 2 is in the same connected
component as z, then by Exercise 2.129 there exists a smooth curve o : [0, 1] —
£2 such that 0(0) = z and o(1) = y. So by the fundamental theorem of calculus
and the chain rule,

1 1
u(y) —u(z) = /0 %u(a(t))dt = /0 0dt=0.

This is why we do not talk about Holder spaces with Holder exponents larger
than 1.

LIf 8 =1, uis is said to be Lipschitz continuous.
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Lemma 5.3. Suppose u € CY(2) N BC(2) and diu € BC(N) for i =
1,2,...,d, then u € C%(92), i.e. [u]; < oo.

The proof of this lemma is left to the reader as Exercise 5.15.
Theorem 5.4. Let 2 be an open subset of R%. Then

1. Under the identification of w € BC (£2) with u|o € BC (2), BC(£2) is a
closed subspace of BC(2).

2. Every element u € C%8(02) has a unique extension to a continuous func-
tion (still denoted by u) on 2. Therefore we may identify C*P(£2) with
C%8(0) € BC(9). (In particular we may consider C%P(82) and C8(2)
to be the same when 3 > 0.)

3. The function u € C*P(£2) — |lulcos(o) € [0,00) is a norm on C%P(£2)
which make C%P(§2) into a Banach space.

Proof. 1. The first item is trivial since for « € BC(2), the sup-norm of
u on §2 agrees with the sup-norm on {2 and BC(f2) is complete in this norm.

2. Suppose that [u]g < oo and zy € 902. Let {z,,},-; C £ be a sequence
such that g = lim,, .~ z,,. Then

lu(zn) — u(zm)| < [ulg |z, — acm|ﬁ — 0 as m,n — oo

showing {u(wn)}re, is Cauchy so that @(zo) = limy,_cou(z,) exists. If
{yn}ory C £2is another sequence converging to zo, then

[ul@n) = u(ya)| < [ulslen = yal” — 0 as n — oo,

showing @(xo) is well defined. In this way we define a(x) for all x € 92 and
let @(x) = u(x) for « € £2. Since a similar limiting argument shows

la(x) — a(y)| < [uls |z —y|° for all z,y € 2

it follows that @ is still continuous and []g = [u]g. In the sequel we will abuse
notation and simply denote @ by u.
3. For u,v € C¥3(N),

{ [v(y) + uly) — v(@) - u(z)| }

[v+ulg = sup

z,yen? ‘-r_y‘ﬁ
T#y
v —v(x)| + |u —ulx
< {| () v + [u(w) <>|}§MB+MB
x,y;f? |z =yl
THFY

and for A € C it is easily seen that [Au]g = |A| [u]g. This shows [-]5 is a semi-
norm on C%#(£2) and therefore || - [|co.s() defined in Eq. (5.1) is a norm.

To see that C*#(0) is complete, let {u,}>o, be a C%#(02)-Cauchy
sequence. Since BC(f2) is complete, there exists v € BC(f2) such that
lu —unll, — 0 as n — oo. For z,y € 2 with  # y,
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Ju(z) —u/gy)l I 1)) —ug(y)\
|z — yl oo [z —yl

<limsuplug)s < lm [Jug||co.s(o) < 0o,
n—o00 n—oo

and so we see that v € C%?(£2). Similarly,

[u() — un(z) = (uly) — un(y))l — lim [(um = un) (@) = (um — un)(Y)]
|x—y\5 m—00 |z —y|?

< limsup[u,, — uy]g — 0 as n — oo,

m—00

showing [u —un]s — 0 as n — oo and therefore limy, oo [|u — un||co.6(0) = 0.
[

Notation 5.5 Since 2 and 2 are locally compact Hausdorff spaces, we may
define Co(£2) and Cy(£2) as in Definition 3.37. We will also let

CYP(02) := COP(2) N Co(R2) and CTP(2) := C¥P(2) N Co(2).

It has already been shown in Proposition 3.38 that Co(£2) and Co(£2) are
closed subspaces of BC(f2) and BC({2) respectively. The next proposition
describes the relation between Cy(£2) and Cy(1?).

Proposition 5.6. Each u € Cy(£2) has a unique extension to a continuous
function on 2 given by @ = u on 2 and @ =0 on O and the extension G is
in Co(£2). Conversely if u € Co(2) and ulog = 0, then u|g € Co(£2). In this
way we may identify Co(£2) with those u € Co(2) such that u|ag = 0.

Proof. Any extension u € Cy(£2) to an element © € C(2) is necessarily
unique, since {2 is dense inside 2. So define @ = u on 2 and %@ = 0 on 912.
We must show % is continuous on 2 and @ € C(£2).

For the continuity assertion it is enough to show @ is continuous at all
points in 92. For any e > 0, by assumption, the set K, := {z € 2 : |u(z)| > €}
is a compact subset of 2. Since 902 = 2\ 2, 92N K, = () and therefore the
distance, ¢ := d(K,, 012), between K. and 02 is positive. So if z € 92 and
y € 2 and |y — 2| < 6, then |u(z) — u(y)| = |u(y)| < € which shows @ : 2 — C
is continuous. This also shows {|u| > ¢} = {|u] > €} = K. is compact in 2
and hence also in (2. Since € > 0 was arbitrary, this shows @ € Cy({2).

Conversely if u € Co(£2) such that ulsgp = 0 and € > 0, then K, :=
{;U € 2 : |u(z)| > 6} is a compact subset of 2 which is contained in {2 since
002N K, = (. Therefore K, is a compact subset of 2 showing u|, € Co(12).
|

Definition 5.7. Let {2 be an open subset of R% k€ NU{0} and B8 € (0,1].
Let BC*(£2) (BC*(02)) denote the set of k — times continuously differentiable
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functions u on 2 such that 0%u € BC(£2) (0%u € BC(12))? for all |a| < k.
Similarly, let BC*# () denote those u € BC*(£2) such that [0%u]s < co for
all || = k. For u € BC*(£2) let

lullexy =Y 10%ull, and

lal<k
[ullgrs @ = D 0%l + > [0%uls.
lal<k la|=k

Theorem 5.8. The spaces BC*(£2) and BC*P(02) equipped with || - ||cr (o)
and || || k.5 (g3 respectively are Banach spaces and BC*(£2) is a closed subspace
of BC*(§2) and BC*P(2) C BC* (). Also

CEP(2) = CPP(2) = {u e BC*P(02): 9%u e Cy(2) ¥ |a| < k}
is a closed subspace of BC*P(2).

Proof. Suppose that {u,}r, C BC*(£2) is a Cauchy sequence, then
{0%up}or, is a Cauchy sequence in BC(2) for |a| < k. Since BC(2) is
complete, there exists go € BC({2) such that lim,, o [|0%u, — gal|,, = 0 for
all || < k. Letting u := gy, we must show u € C*(£2) and 0%u = g, for all
|a| < k. This will be done by induction on |¢|. If |a| = 0 there is nothing to
prove. Suppose that we have verified u € C!(£2) and 9%u = g, for all |a| <1
for some [ < k. Then for z € 2,4 € {1,2,...,d} and t € R sufficiently small,

¢
O%up (T + te;) = 0%up(z) + / 0;0%up (z + Te;)dr.
0
Letting n — oo in this equation gives
t
Ou(x + te;) = 0%u(x) + / Jote; (T + T€;)dT
0

from which it follows that 9;0%u(x) exists for all z € 2 and 0;0u = gate, -
This completes the induction argument and also the proof that BCF(§2) is
complete.

It is easy to check that BC¥(£2) is a closed subspace of BC*(£2) and
by using Exercise 5.15 and Theorem 5.4 that that BC*#(2) is a subspace
of BC*(£2). The fact that CF?(£2) is a closed subspace of BCHA(£2) is a
consequence of Proposition 3.38.

To prove BC*#(£2) is complete, let {u, }oo, C BC*A(2) bea |- lor.s ()
— Cauchy sequence. By the completeness of BC*(£2) just proved, there exists
u € BC¥®(§2) such that lim,, |t —tn ||t () = 0. An application of Theorem

? To say 9“u € BC(£2) means that 9*u € BC(£2) and 0w extends to a continuous
function on f2.
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5.4 then shows limy—.co [[0%un — 0%ul|co.s(p) = 0 for [a| = k and therefore
limy, o0 |Ju — u"||cw,(ﬁ) =0. m
The reader is asked to supply the proof of the following lemma.

Lemma 5.9. The following inclusions hold. For any (3 € [0, 1]

BCH0(2) ¢ BCH(R2) ¢ BCHP(12)

BCH0(2) ¢ BC*1(92) ¢ BCHP(0).
Definition 5.10. Let A: X — Y be a bounded operator between two (separa-
ble) Banach spaces. Then A is compact if A[Bx(0,1)] is precompact in'Y" or

equivalently for any {x,}52, C X such that ||z, | < 1 for all n the sequence
Yn = Az, €Y has a convergent subsequence.

Ezample 5.11. Let X =2 =Y and ), € C such that lim,_. A\, = 0, then
A: X —Y defined by (Az)(n) = A,z(n) is compact.

Proof. Suppose {z;}52, C (2 such that |lz;|* = > \xj(n)\z <1 for all j.
By Cantor’s Diagonalization argument, there exists {j;} C {j} such that, for
each n, Ty(n) = z;,(n) converges to some Z(n) € C as k — co. Since for any

M < 0,
M
Z |Z(n)|? = hrn Z |z (n)? <1

nl

we may conclude that Z |Z(n)? <1, ie. 7 € (2

=1
Let y := A%y, and y = AZ. We will finish the verification of this example
by showing y, — y in £% as k — oo. Indeed if A}, = max [An|, then

1Az, — AZ|2 = 3 [\l [ (n) — #(n)?

n=1
M )
=D PalPl@r(n) = 2m)]* + NP D |En(n) - E(n)?
n=1 M+1
M

<D allEnn) = #n)* + Xy @ - 2
1

n=

E

< D IaPlZx(n) — 2(n)]® + 4135 2.

n=1
Passing to the limit in this inequality then implies

lim sup | Az, — AZ|? < 403 — 0 as M — oo.
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Lemma 5.12. If X 2,y £, 7 are continuous operators such the either A
or B is compact then the composition BA : X — Z is also compact.

Proof. If A is compact and B is bounded, then BA(Bx(0,1)) C
B(ABx(0,1)) which is compact since the image of compact sets under con-
tinuous maps are compact. Hence we conclude that BA(Bx (0, 1)) is compact,
being the closed subset of the compact set B(ABx(0,1)).

If A is continuous and B is compact, then A(Bx(0,1)) is a bounded set
and so by the compactness of B, BA(Bx(0,1)) is a precompact subset of Z,
i.e. BA is compact. m
Proposition 5.13. Let {2 C, ]R_d such thaif) is compact and 0 < a < 5 < 1.
Then the inclusion map i : C?(2) — C*(02) is compact.

Let {u,}32; C CP(0) such that ||Ju,|/cs < 1, ie. |unleo < 1 and

[un () — un(y)| < |z —y|? for all z,y € 2.

By the Arzela-Ascoli Theorem 2.86, there exists a subsequence of {@, };2; of
{un}5, and u € C°(£2) such that %, — u in C°. Since

lu(z) — u(y)| = lim |, (z) = @n(y)| < [z - y|",
n—oo
u € CP as well. Define gn =U— Uy € CB, then

[9n]5 + lignllco = llgnllcs <2

and g, — 0in C°. To finish the proof we must show that g, — 0in C*. Given
6> 0,
|gn () — gn(y)|

[g'lJa = sup S An + Bn
THY |I_y|a
where
An:sup{w cx#yand |z —y §5}
=Y
_ Sup{|gn($) _g;(y)‘ . |x7y|ﬁ—a - 75 y and |1‘ 7y‘ < (5}
lz -yl
<677 - [guls < 2677
and

By = sup { D=0 1oy > 5} < 272 g o — 0 5

Therefore,
lim sup [gn]e < lim sup A, 4+ lim sup B, < 20 4+0—-0asd|0.
n—oo n—oo n—oo

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 5.16 below.

Theorem 5.14. Let §2 be a pr@compact open subset of RY, o, 3 € [0,1] and

k,j €Ng. Ifj+58 > k+a, then CIP ( ) is compactly contained in C* (Q) .
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5.1 Exercises

Exercise 5.15. Prove Lemma 5.3.

Exercise 5.16. Prove Theorem 5.14. Hint: First prove CJ97 (.(_2) CC
coe (Q) is compact if 0 < o« < B < 1. Then use Lemma 5.12 repeatedly
to handle all of the other cases.
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Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U C, X, J =(a,b)30and Z € C(J xU,X) - Z
is to be interpreted as a time dependent vector-field on U C X. In this section
we will consider the ordinary differential equation (ODE for short)

y(t) = Z(t,y(t)) with y(0) =z € U. (6.1)

The reader should check that any solution y € C1(J,U) to Eq. (6.1) gives a
solution y € C(J,U) to the integral equation:

y(t) = o + /0 Z(r,y(r))dr (6.2)

and conversely if y € C(J,U) solves Eq. (6.2) then y € C'(J,U) and y solves
Eq. (6.1).

Remark 6.1. For notational simplicity we have assumed that the initial condi-
tion for the ODE in Eq. (6.1) is taken at t = 0. There is no loss in generality
in doing this since if § solves
dy 5o - s~
= () = 2(t,5(2)) with §(to) =z € U

iff y(t) := g(t + to) solves Eq. (6.1) with Z(t,z) = Z(t + to, z).

6.1 Examples

Let X = R, Z(z) = 2™ with n € N and consider the ordinary differential
equation
y(t) = Z(y(t)) = y"(t) with y(0) =z € R. (6.3)

If y solves Eq. (6.3) with  # 0, then y(¢) is not zero for ¢ near 0. Therefore
up to the first time y possibly hits 0, we must have
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/z J(7) /y<t> oy G S S |
0 0

—n
(T In|42| =1

and solving these equations for y(¢) implies

ﬁ lf n > ].
y(®) =ylta) = VLD T (6.4)

The reader should verify by direct calculation that y(¢, z) defined above does
indeed solve Eq. (6.3). The above argument shows that these are the only
possible solutions to the Equations in (6.3).
Notice that when n = 1, the solution exists for all time while for n > 1,
we must require
1—(n—Dta" >0
or equivalently that

1

t < W if $n71 > 0 and
1
(1 —mn) ]

Moreover for n > 1, y(t,x) blows up as ¢ approaches the value for which
1— (n—1)ta"~! = 0. The reader should also observe that, at least for s and
t close to 0,

y(t,y(s, @) = y(t + 5, 2) (6.5)
for each of the solutions above. Indeed, if n = 1 Eq. (6.5) is equivalent to the
well know identity, efe® = et and for n > 1,

_ y(s, )
y(t,y(s, @) = Py R T
- n—1
n—1 xT
1—(n—1)t {4’W
€T
- an—1
1 —(n— l)t—l—(nx—l)s:r,"*l
B x
"1 —(n—1)sz"1 — (n— 1)tzn—1
- (i +5.2)
= = $,T).
1= (n—1)(s+ )"} 4
Now suppose Z(z) = |z|* with 0 < a < 1 and we now consider the

ordinary differential equation
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9(t) = Z(y(®)) = ly(®)|" with y(0) =z € R. (6.6)
Working as above we find, if z # 0 that

[ g P e P e
v= [ = ) =

1= .— |yu|""*sgn(u). Since sgn(y(t)) = sgn(z) the previous equation

where u
implies

sgn(a)(1 - a)t = sgn(a) [sen(y(®) [y(®)]' ™ - sen(@) [a]'~]
= ly(t)" ™ fo "

and therefore,

1
y(t,w) = sgn(e) (lel' ™ +sen(@)(1 - a)t) (6.7)
is uniquely determined by this formula until the first time ¢ where |z\17u +
sgn(z)(1 — a)t = 0. As before y(t) = 0 is a solution to Eq. (6.6), however it
is far from being the unique solution. For example letting = | 0 in Eq. (6.7)
gives a function
1
y(t,04) = (1 — ) ==

which solves Eq. (6.6) for ¢ > 0. Moreover if we define

(= a))TFift>0
y(t)'*{(( 0)) iftz()’

(for example if o = 1/2 then y(t) = 1£21,5¢) then the reader may easily check
y also solve Eq. (6.6). Furthermore, y,(t) := y(t — a) also solves Eq. (6.6) for
all @ > 0, see Figure 6.1 below.

With these examples in mind, let us now go to the general theory starting
with linear ODEs.

6.2 Linear Ordinary Differential Equations
Consider the linear differential equation
y(t) = A(t)y(t) where y(0) =z € X. (6.8)

Here A € C(J — L(X)) and y € C'(J — X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y € C(J, X) such that
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0 2 4 6 8

t

Fig. 6.1. Three different solutions to the ODE 5(t) = |y(¢)|*/? with y(0) = 0.

t

y(t) == +/0. A(T)y(r)dr. (6.9)

In what follows, we will abuse notation and use ||-|| to denote the operator
norm on L (X) associated to ||-|| on X we will also fix J = (a,b) 5 0 and let
|6l = maxics[|p(t)]| for ¢ € BC(J, X) or BC(J, L (X)).

Notation 6.2 Fort e R andn € N, let

An(t) = {(r1y..ym) ER":0< 7y <+ <7, <t} ift >0
T () €ERM <7, <o <1 <0} ifE<0

and also write dr = dry ...dr, and

t Tn T2
/ flr, .. mp)dr - = (71)"'1“0/ dTn/ dTn,l.../ drif(mi,...Tn).
An(t) 0 0 0

Lemma 6.3. Suppose that ¢ € C (R,R), then
1 t n
(71)Tl'1t<0 / ’[Z)(Tl) .. .1/1(77”)(17' = —' </ 'lZJ(T)dT) . (610)
An(t) - \Jo

Proof. Let ¥(t) := fot 1 (7)dr. The proof will go by induction on n. The
case n = 1 is easily verified since

—1)tte<o T )dm = t T)dT = .
(-1) vl /Ow dr = w(t)

A (t

Now assume the truth of Eq. (6.10) for n — 1 for some n > 2, then
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i ,/Am) W(n) . Y(r)dr

_ thn T"dfn_l... P dr(m) ()
0
/dann _1(Tn () /dTn _Tn. !P(Tn)

w(t) n—1 n
:/ u du _ ¥ (t) 7
0 (n—=1)! n!

wherein we made the change of variables, u = ¥(7,), in the second to last
equality. m

Remark 6.4. Eq. (6.10) is equivalent to

1 n
/An(t) Y(1y) ... (m)dr = 3 (/Al(t) w(T)dT>

and another way to understand this equality is to view f A, 111(7'1) (1 )dr

as a multiple integral (see Section 9 below) rather than an 1terated integral.
Indeed, taking ¢ > 0 for simplicity and letting .S;,, be the permutation group
on {1,2,...,n} we have

[07t]n:UGESW,{(T1>"'7TTL) GRn:OSTal S STo'n St}

with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ¢(7) ... (7,) is invariant under permutations,
we find

(/Otw(r)dr)n = o (1) ... P(m)dr

= Z / (1) ... p(m)dr
€S {(T15000sTn ) ER™:0< 751 <+ <75, <t}

Z / w(safll) "'1/1(50*171)‘15

orl sooeysn) ERP0< 51 S-S5, <t}

= Z P(s1)...P(s,)ds

geS, {(s1,..,8n)ER™:0<51 <000 <5y <t}
_ n!/ W) .. p(m)dr.
An(t)

Theorem 6.5. Let ¢ € BC(J, X), then the integral equation

u(t) = (1) + / A(r)y(r)dr (6.11)
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has a unique solution given by

y(t) = t)+z "1t<°/A(t)A(Tn)...A(n)qs(ﬁ)dT (6.12)

and this solution satisfies the bound
[9]lao < [16]lo €/ 1A,

Proof. Define A : BC(J,X) — BC(J, X) by

(Ay)(t) = /0 A()y(r)dr

Then y solves Eq. (6.9) iff y = ¢ + Ay or equivalently iff (I — A)y = ¢.
An induction argument shows

(A")(t / drp A1) (A" 9) (7)
_ / dr / A7t A7) A(T—1) (A2 ) (Tu1)

= /Ot dr,, /OM drp_1... /0T2 driA(Ty) .. A(m1)o(m1)

— (e /A AT A e

Taking norms of this equation and using the triangle inequality along with
Lemma 6.3 gives,

(A" @) (D < [l / [AT)I - [|A(T) [[dr

n{l

<Nl ( Lo A(T)Ildf> "
<l 3 ([ 1alar)’

147y < 4 [ 1lar) (6.13

3 147y < el IAOI < oo

n=0

Therefore,

and
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where [-||,, denotes the operator norm on L (BC(J, X)) . An application of

o0
Proposition 4.20 now shows (I — A)~! = Y~ A" exists and
n=0

O e

It is now only a matter of working through the notation to see that these
assertions prove the theorem. m

Corollary 6.6. Suppose that A € L(X) is independent of time, then the so-
lution to

§(t) = Ay(t) with y(0) = v
is given by y(t) = ex where

o0 p

eth = A" (6.14)
n=0 "

Proof. This is a simple consequence of Eq. 6.12 and Lemma 6.3 with
=1 m

‘We also have the following converse to this corollary whose proof is outlined
in Exercise 6.36 below.

Theorem 6.7. Suppose that Ty € L(X) fort > 0 satisfies

1. (Semi-group property.) To = Idx and T,Ts = Ty for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. | T, —I|,x) — 0 as
t]0.

Then there exists A € L(X) such that T; = e*4 where e** is defined in Eq.
(6.14).

6.3 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 6.8. Gronwall’s Lemma. Suppose that f, e, and k are non-negative
functions of a real variable t such that

t
£(t) < e(t) + ‘ / k(r) (7). (6.15)
0

Then .
£O <e®)+| [ Berel Ot ar) (6.16)

0

and in particular if € and k are constants we find that

ft) < e, (6.17)
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Proof. I will only prove the case ¢ > 0. The case ¢t < 0 can be derived by
applying the ¢t > 0 to f(t) = f(—t), k(t) = k(—t) and €(t) = e(—t).
Set F(t) = [y k(r)f(r)dr. Then by (6.15),
F=kf<ke+kF.

Hence,
%(@* o k(S)dsF) —e” Io k(S)ds(F — kF) < kee™ I k(s)ds
Integrating this last inequality from 0 to ¢ and then solving for F' yields:

t t
F(t) < elo k(s)ds | / drk(r)e(r)e” J§ k(s)ds — / dT]C(T)G(T)eth k(s)ds
Jo 0

But by the definition of F' we have that
f<et+F,

and hence the last two displayed equations imply (6.16). Equation (6.17) fol-
lows from (6.16) by a simple integration. m

Corollary 6.9 (Continuous Dependence on Initial Data). Let U C, X,
0 € (a,b) and Z : (a,b) x U — X be a continuous function which is K-
Lipschitz function on U, i.e. |Z(t,x) — Z(t,2")|| < K|z —&'|| for all x and &’
in U. Suppose y1,ys : (a,b) — U solve

—dy;f) = Z(t4i(t)) with yi(0) = z; fori=1,2. (6.18)
Then
ly2() =y @) <[22 — leeKM fort € (a,b) (6.19)

and in particular, there is at most one solution to Eq. (6.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) = |ly2(t) — y1(t)||. Then by the fundamental theorem of
calculus,

f@) = lly2(0) = 41(0) +/0 (92(7) = 91(7)) dr |

< £(0) + ] [ 126 - 2t ar

t
:||332—$1H+K‘/0 J(r)dr

Therefore by Gronwall’s inequality we have,

ly2(8) = (O]l = F(2) < [lzz — 21 "I,
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6.4 Local Existence (Non-Linear ODE)

We now show that Eq. (6.1) under a Lipschitz condition on Z. Another exis-
tence theorem is given in Exercise 8.70.

Theorem 6.10 (Local Existence). Let T >0, J = (-T1,T), zo € X, 7 >0
and
C(zo,r) i ={x e X :|z—ao <r}

be the closed r — ball centered at xo € X. Assume
M =sup{||Z(t,z)| : (t,z) € J x C(zo,7)} < 00 (6.20)
and there exists K < oo such that
Z(t,z) — Z(¢t,y)|| < K|z —y| forall z,y € C(xo,7) andt € J. (6.21)

Let To < min{r/M,T} and Jo := (—To, To), then for each x € B(xo,r—MTp)
there exists a unique solution y(t) = y(t,x) to Eq. (6.2) in C (Jo,C(xq,7)).
Moreover y(t,x) is jointly continuous in (t,z), y(t,x) is differentiable in t,
y(t, x) is jointly continuous for all (t,x) € Jo x B(zg,r — MTy) and satisfies
Eq. (6.1).

Proof. The uniqueness assertion has already been proved in Corollary 6.9.
To prove existence, let C, := C(xo,7), Y := C (Joy, C(z0,7)) and

Su(y)(t) = 2+ /0 Z(r,y(r)dr. (6.22)

With this notation, Eq. (6.2) becomes y = S;(y), i.e. we are looking for a
fixed point of S,. If y € Y, then

152 (y) () — 2ol < [lz = zoll + ‘/0 12 (7, y(r))| dr

< Hl‘—l’oH + MTy<r—MITy+ MTy=r,

< llz = woll + M

showing S, (Y) C Y for all x € B(zg,r — MTp). Moreover if y, z € Y,

15 w)(0) — Se(2) (O] = H [ 126 - 2aoar

<[ 127, 9(r)) — 27, 2(7)) | dr

<K \/ () — =) d] (6.23)

Let yo(t,z) = x and y,(-,x) € Y defined inductively by
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(1 2) = SuYnr (7)) = x+/(; 2, g1 (7, 2))dr- (6.24)

Using the estimate in Eq. (6.23) repeatedly we find
Il yns1 () = yn () ||

<x|[ () = o (P dr

t t1
/ ity / dts ||yn_1<t2)—yn_2<t2)||H
0 0

t t1 tn—1
/ dtl / dtz... ‘/ dtn ||y1(tn) *yo(tn)”’ H
0 0 0

<K n(n) bl [ ar
Ap(t)

< K*?

< K"

_ K"

- (6.25)

lyi(z) = yo(2)||l o < r——

wherein we have also made use of Lemma 6.3. Combining this estimate with

t t
s (t.2) — wolt, )| = H [ #trayin] < \ [ 126:0)1ds| < b,
0 0
where
To 0
My = Ty max / 1Z(r, )] dT,/ 1Z(r, )| dr b < MT,,
0 —To
shows % | | %
m " Ty
lynr1(t,z) —yn(t, z)|| < Mo Y < MOT
and this implies
Zsup{ yn+1(s2) = yn (- 2)ll o0 g o € Jo}
n=0

oo
K’VLTTL
< ZMO — 0 = Myef™ < 0o

n=0

where

[Ynt1(52) = 9n (@)oo gy 7= 5P {llyns1(t:2) —ynlt, 2)]| 1t € Jo}-

So y(t, z) := lim, 0 Yn (¢, ) exists uniformly for ¢ € J and using Eq. (6.21)
we also have
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sup{ || Z(t,y(t)) — Z(t, yn—1(t))|| : t € Jo}
< K|y(2) = yn-1(2) 0., — 0 a8 n — o0

Now passing to the limit in Eq. (6.24) shows y solves Eq. (6.2). From this
equation it follows that y(¢,x) is differentiable in ¢ and y satisfies Eq. (6.1).

The continuity of y(¢,z) follows from Corollary 6.9 and mean value in-
equality (Corollary 4.10):

ly(t, z) =y, ) < lly(t, =) — y(t, 2| + [ly(Et,2") -y, 2]

~ )~ u) + | [ Ziratr

< lytt.a) ~ e + | [ 126t ar

t
<o — o/} 5T + \ [1zeamanla] o2
t/

<o — 25T + M|t —t].

The continuity of §(t, ) is now a consequence Eq. (6.1) and the continuity
ofyand Z. m

Corollary 6.11. Let J = (a,b) 3 0 and suppose Z € C(J x X, X) satisfies
Z(t,x)— Z(t,y)|| < K|z —y|| forallz,y € X andt e J. (6.27)

Then for all x € X, there is a unique solution y(t,x) (fort € J) to Eq. (6.1).
Moreover y(t,x) and y(t,x) are jointly continuous in (t,x).

Proof. Let Jy = (ao,bo) > 0 be a precompact subinterval of J and YV :=
BC (Jo, X) . By compactness, M := sup;cj, [|Z(t,0)|| < oo which combined
with Eq. (6.27) implies

sup || Z(t,z)|| < M + K ||z|| for all z € X.

tedo
Using this estimate and Lemma 4.4 one easily shows S, (Y) C Y forallz € X.
The proof of Theorem 6.10 now goes through without any further change. m

6.5 Global Properties

Definition 6.12 (Local Lipschitz Functions). Let U C, X, J be an open
interval and Z € C(J x U, X). The function Z is said to be locally Lipschitz in
x if for all x € U and all compact intervals I C J there exists K = K(z,I) <
oo and € = €(x,I) > 0 such that B(z,e(x,I)) CU and

1Z(t,x1) — Z(t,x0)|| < K(z,I)||x1 — 20|| ¥V @0, 21 € B(w,e(x,I)) &t el
(6.28)
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For the rest of this section, we will assume J is an open interval containing
0, U is an open subset of X and Z € C(JxU, X) is a locally Lipschitz function.

Lemma 6.13. Let Z € C(J x U, X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
€ > 0 such that Z(t,x) is bounded for (t,z) € I X E. and and Z(t,z) is K -
Lipschitz on E. for allt € I, where

E.:={zc U :dist(z, E) < €}.

Proof. Let e(x,I) and K(z,I) be as in Definition 6.12 above. Since
E is compact, there exists a finite subset A C F such that £ C V :=
UzeaB(z,e(x,I)/2). If y € V, there exists x € A such that ||y — z| < e(z,I)/2
and therefore

12 <12 2)| + K, D) [ly — | < |2 2)|| + K(z, De(z, 1) /2
< :/Illgel{nz(t )| + K(z, Ie(x,I)/2} =1 M < 0.

T

This shows Z is bounded on I x V.
Let

1
= ‘) < =mi
e:=d(E, V) < 22[1615116(.1371)

and notice that ¢ > 0 since E is compact, V¢ is closed and E N V¢ = {.
If y,z € E. and ||y — z|| < ¢, then as before there exists z € A such that
lly — z|| < €(z, I)/2. Therefore

Iz =zl < llz =yl + lly — zll < e+ ez, 1)/2 < ez, 1)
and since y, z € B(z, e(x, 1)), it follows that
1Z(t,y) = Z(t,2)|| < K(z,1)lly — 2 < Kolly — 2|

where Ky := maxzeca K(z,I) < oco. On the other hand if y,z € E, and
lly — z|| > €, then

2M
12(t.y) ~ 2. 2)) < 201 < 2Ly .
Thus if we let K := max {2M /e, Ky} , we have shown
1Z(t,y) —Z(t,2)|| < K|y — 2| for all y, 2 € Ec and t € I.

Proposition 6.14 (Maximal Solutions). Let Z € C(J x U, X) be a locally
Lipschitz function in x and let © € U be fized. Then there is an interval J, =
(a(x),b(x)) with a € [~00,0) and b € (0,00] and a C*—function y : J — U
with the following properties:
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1. y solves ODE in Eq. (6.1).
2.1f 5 : J = (a,b) — U is another solution of Eq. (6.1) (we assume that
0€ J) then JC J and j=1yl| ;.

The function y : J — U is called the mazimal solution to Eq. (6.1).

Proof. Suppose that y; : J; = (a;,b;) — U, i = 1,2, are two solutions to
Eq. (6.1). We will start by showing the y; = y2 on J; N J;. To do this! let
Jo = (ao, bo) be chosen so that 0 € Jy C JiNJo, and let E := y1(Jo)Uy2(Jy) —
a compact subset of X. Choose € > 0 as in Lemma 6.13 so that Z is Lipschitz
on E.. Then y1|s,,Y2|5, : Jo — Ee both solve Eq. (6.1) and therefore are
equal by Corollary 6.9. Since Jy = (ap,by) was chosen arbitrarily so that
[a,b] C J1 N Jz, we may conclude that y3 =y on J1 N Jo.

Let (Yo, Jo = (@a,ba))aca denote the possible solutions to (6.1) such that
0 € J,. Define J, = UJ, and set y = y, on J,. We have just checked that y
is well defined and the reader may easily check that this function y : J, — U
satisfies all the conclusions of the theorem. m

Notation 6.15 For eachxz € U, let J, = (a(x),b(z)) be the mazimal interval
on which Eq. (6.1) may be solved, see Proposition 6.14. Set D(Z) = Uzev (J X
{z}) C J xU and let ¢ : D(Z) — U be defined by ¢(t,x) = y(t) where y is
the mazimal solution to Eq. (6.1). (So for each x € U, ¢(-,x) is the maximal
solution to Eq. (6.1).)

Proposition 6.16. Let Z € C(J x U, X) be a locally Lipschitz function in x
and y : J = (a(x),b(z)) — U be the mazimal solution to Eq. (6.1). If b(x) <
b, then either limsupy ) |1 Z(t, y(£)) | = 00 or y(b(x)—) = linnepyge, y(t) evists
and y(b(z)—) ¢ U. Similarly, if a > a(x), then either imsupy ., [y(t)]| = oo
or y(a(z)+) = limy, y(t) exists and y(a(z)+) ¢ U.

Proof. Suppose that b < b(z) and M = limsup,., [1Z(4, y(8))]] < oo.
Then there is a by € (0,b(z)) such that || Z(¢,y(t))|| < 2M for all t € (by, b(z)).
Thus, by the usual fundamental theorem of calculus argument,

<2M|t —t'|

Hy(t)—y(t’)llé/t 12t y(m) dr

! Here is an alternate proof of the uniqueness. Let
T = sup{t € [0, min{b1,b2}) : y1 = y= on [0,¢]}.

(T is the first positive time after which y; and y» disagree.

Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y,(T) =
y2(T) =: 2’. Applying the local uniqueness theorem to y1(- — T') and y2(- — T)
thought as function from (—d,8) — B(z',€(x’)) for some § sufficiently small, we
learn that y1(-—T') = y2(-—T') on (=9, 6). But this shows that y; = y2 on [0, T+5)
which contradicts the definition of T. Hence we must have the T' = min{b1, b2},
ie. y1 = y2 on J1 N J2N[0,00). A similar argument shows that y1 = y2 on
J1NJ2N(—00,0] as well.
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for all ¢,t' € (bo,b(x)). From this it is easy to conclude that y(b(z)—) =
limyqp(py y(t) exists. If y(b(x)—) € U, by the local existence Theorem 6.10,
there exists § > 0 and w € C! ((b(z) — §,b(z) + 6),U) such that

w(t) = Z(t,w(t)) and w(b(z)) = y(b(z)—).
Now define § : (a,b(z) + &) — U by

y (t) ifted,
() = {fu(t) if t € [b(z), b(x) +6)

The reader may now easily show ¢ solves the integral Eq. (6.2) and hence also
solves Eq. 6.1 for t € (a(z),b(x) + §).2 But this violates the maximality of y
and hence we must have that y(b(z)—) ¢ U. The assertions for ¢ near a(z) are
proved similarly. m

Example 6.17.Let X = R%, J = R, U = {(m,y) cR?2:0<r< 1} where
r2 =22 +42 and
1

—7_2(72/7 .’L’)

Z(z,y) = %(wyy) +1

The the unique solution (z(t),y(t)) to

%(x(t)vy(t)) = Z(x(t),y(t)) with (z(0),y(0)) = (%70)

is given by

(@(t),y() = (t * %) <C°S (1/217 t) S0 <1/21—t>>

for t € J(1/2,0) = (—00,1/2) . Notice that || Z(x(t),y(t))|| — oo as t T 1/2 and

dist((z(t),y(¢)),U°) — 0 ast T 1/2.

Example 6.18. (Not worked out completely.) Let X = U = £2, o € C>(R?)
be a smooth function such that 1) = 1 in a neighborhood of the line segment
joining (1,0) to (0,1) and being supported within the 1/10 — neighborhood of
this segment. Choose a,, T oo and b,, T oo and define

Z(@) = 3" ant(bu(n, 2ns1))(ens1 — en): (6.29)

For any z € £2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : £> — ¢? is a smooth and hence locally
Lipshcitz vector field. Let (y(t), J = (a,b)) denote the maximal solution to

2 See the argument in Proposition 6.19 for a slightly different method of extending
y which avoids the use of the integral equation (6.2).
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y(t) = Z(y(t)) with y(0) = e1.

Then if the a,, and b,, are chosen appropriately, then b < oo and there will
exist t,, T b such that y(t,) is approximately e, for all n. So again y(¢,) does
not have a limit yet sup,cjo ) [[y(¢)|| < oo. The idea is that Z is constructed
to blow the particle form e; to es to e3 to ey4 etc. etc. with the time it takes to
travel from e, to e,4+1 being on order 1/2™. The vector field in Eq. (6.29) is a
first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 6.16 which is more useful when
dim(X) < oo.

Proposition 6.19. Let Z € C(J x U, X) be a locally Lipschitz function in x
and y : Jp = (a(z),b(z)) — U be the mazimal solution to Eq. (6.1).

1. If b(x) < b, then for every compact subset K C U there exists T < b(x)
such that y(t) ¢ K for allt € [Tk, b(z)).
2. When dim(X) < oo, we may write this condition as: if b(x) < b, then
either
limsup ||y(¢)|| = oo or liminf dist(y(t),U¢) = 0.
t7b(x) tTb(z)

Proof. 1) Suppose that b(z) < b and, for sake of contradiction, there
exists a compact set K C U and t, T b(z) such that y(¢,) € K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
Yoo = limy, 00 y(ty,) exists in K C U. By the local existence Theorem 6.10,
there exists Ty > 0 and ¢ > 0 such that for each 2’ € B (y, d) there exists a
unique solution w(-,z') € C1((=Tp,Tp),U) solving

w(t,z') = Z(t, w(t,z')) and w(0,2') = '

Now choose n sufficiently large so that ¢, € (b(z) —Tp/2,b(z)) and y(t,) €
B (Yoo, 0) . Define 3 : (a(x),b(z) +To/2) — U by

o [y ifteJ,
y(t) = {yw(t —tn,y(tn)) if t € (tn — To, b(z) + Tp/2).

wherein we have used (t,, —To, b(z)+T10/2) C (tn —To,tn+To). By uniqueness
of solutions to ODE’s § is well defined, § € C1((a(z),b(z) + Tp/2), X) and §
solves the ODE in Eq. 6.1. But this violates the maximality of y.

2) For each n € N let

K, :={x€U: || <nand dist(z,U°) > 1/n}.

Then K,, T U and each K, is a closed bounded set and hence compact if
dim(X) < oo. Therefore if b(z) < b, by item 1., there exists T, € [0,b(z))
such that y(¢t) ¢ K, for all ¢ € [T,,,b(z)) or equivalently ||y(t)|] > n or
dist(y(t),U¢) < 1/n for all ¢t € [T,,,b(z)). m

120 6 Ordinary Differential Equations in a Banach Space

Remark 6.20. In general it is not true that the functions a and b are continu-
ous. For example, let U be the region in R? described in polar coordinates by
r>0and 0 <6 < 3r/4 and Z(x,y) = (0,—1) as in Figure 6.2 below. Then
b(xz,y) =y for all z,y > 0 while b(z,y) = oo for all z < 0 and y € R which
shows b is discontinuous. On the other hand notice that

{b>t}={z <0} U{(z,y):2 >0,y >t}

is an open set for all ¢ > 0. An example of a vector field for which b(z) is
discontinuous is given in the top left hand corner of Figure 6.2. The map
would allow the reader to find an example on R? if so desired. Some calcu-
lations shows that Z transferred to R? by the map 1) is given by the new
vector

Z(z,y) = —e* (sin (%ﬁ + Ztan_l (y)) ,COS (%ﬂ + % tan ™! (y))) .

W(.fe,ifi‘) - Qlc&r) '&MC%G_%))

Fig. 6.2. Manufacturing vector fields where b(z) is discontinuous.

Theorem 6.21 (Global Continuity). Let Z € C(J x U, X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J x U and the func-
tions ¢ : D(Z) — U and ¢ : D(Z) — U are continuous. More precisely, for
all zy € U and all open intervals Jy such that 0 € Jy CC Jg, there exists
0 =0d(xo,Jo, Z) >0 and C = C(xo, Jo, Z) < 0o such that for all x € B(x,?),
Jo C J, and

16+2) = 6+ 30)l e < Clla — ol (6.30)
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Proof. Let |Jo| = bg —ag, I = Jy and E := y(Jy) — a compact subset of U
and let € > 0 and K < oo be given as in Lemma 6.13, i.e. K is the Lipschitz
constant for Z on E.. Also recall the notation: Aq(t) = [0,¢] if ¢ > 0 and
Aq(t) =[t,0] if t <O0.

Suppose that = € E,, then by Corollary 6.9,

lo(t, 2) = ¢(t o) < llz — zo| "1 < ||l — ol X1 7! (6.31)

for all t € Jy N J; such that such that ¢ (A;(t),z) C E. Letting § :=
ee K170l /2 and assuming = € B(zo,d), the previous equation implies

lot, ) — ot z0)|| <€/2<eViteJoNdy D ¢(A(t),z) C Ee.

This estimate further shows that ¢(¢,x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
6.14 and “continuous induction®” that Jy C J, and Eq. (6.31) is valid for all
t € Jo. This proves Eq. (6.30) with C := ef1Jol,

Suppose that (to, z¢) € D(Z) and let 0 € Jy CC Jy, such that ¢y € Jy and
0 be as above. Then we have just shown Jy x B(zo,d) C D(Z) which proves
D(Z) is open. Furthermore, since the evaluation map

(to,y) € Jo x BC(Jo,U) = y(to) € X

is continuous (as the reader should check) it follows that ¢ = eo(z — &(-,x)) :
Jo x B(zp,d) — U is also continuous; being the composition of continuous
maps. The continuity of (i)(tg, x) is a consequences of the continuity of ¢ and
the differential equation 6.1

Alternatively using Eq. (6.2),

16(t0, @) — 6(t, o) < [B(t0,2) — Bltosao)] + [6(t0, z0) — B(t,x0)]
to
< Clla— ol + \ [ 12 ir
t
< Clx — ol + M |to — t|

where C' is the constant in Eq. (6.30) and M = sup, ¢, [|Z(7, ¢(7,70))| < o0.
This clearly shows ¢ is continuous. ®

6.6 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t,x) € D(Z), set e'?(x) = é(t,z). So the path
t — et?(z) is the maximal solution to

3 See the argument in the proof of Proposition 4.7.
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d

Eetz(m) = Z(e'?(x)) with e°Z(z) = .

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 6.22 We write f : X — X to mean a function defined on some
open subset D(f) C X. The open set D(f) will be called the domain of f.
Given two functions f : X — X and g : X — X with domains D(f) and
D(g) respectively, we define the composite function fog: X — X to be the
function with domain

D(fog)={xe€X:z€D(g) and g(z) € D(f)} =g "(D(f))

given by the rule fog(z) = f(g(z)) for all z € D(fog). We now write f =g
iff D(f) = D(g) and f(x) = g(z) for all x € D(f) = D(g). We will also write
J Cgiff D(f) C D(g) and glp(y) = [-

Theorem 6.23. For fized t € R we consider €'? as a function from X to X
with domain D(e!?) = {x € U : (t,x) € D(Z)}, where D(¢) = D(Z) C R x U,
D(Z) and ¢ are defined in Notation 6.15. Conclusions:

1. Ift,se R andt-s >0, then e'Z o e3Z = e(t+9)Z,
2. Ifte R, then etZ oe ¥ = IdD(e—tZ)~
3. For arbitrary t,s € R, etZ 0 e3Z C e(t+5)Z,

Proof. Item 1. For simplicity assume that ¢, s > 0. The case t, s < 0 is left
to the reader. Suppose that € D(e*? 0e®%). Then by assumption z € D(e*?)
and e*?(x) € D(et?). Define the path y(7) via:

(r) = e () if0<7<s
wr = e(T*S)Z(x) fs<rt<t+s’

It is easy to check that y solves y(7) = Z(y(r)) with y(0) = z. But since,
e™?(x) is the maximal solution we must have that z € D(e*+®%) and y(t +
s) = e(t+9)Z (). That is e*t9)Z(z) = €*Z 0 €% (). Hence we have shown that
7 0 057 ¢ ot+5)Z.

To finish the proof of item 1. it suffices to show that D(e(*+#)%) C D(et% o
e3?). Take x € D(e(T9)%) then clearly x € D(e®?). Set y(r) = eT+9)%(x)
defined for 0 < 7 < t. Then y solves

§(r) = Z(y(7)) with y(0) = e*(x).

But since 7 — e"Z(e*Z(z)) is the maximal solution to the above initial valued
problem we must have that y(7) = e"4(e*?(z)), and in particular at 7 =
t, et+9)2(z) = et4(es4(x)). This shows that @ € D(e*? o e*?) and in fact
e(t+s)Z C P

Item 2. Let # € D(e *?) — again assume for simplicity that ¢ > 0. Set
y(r) = "2 (z) defined for 0 < 7 < t. Notice that y(0) = e~*4(x) and
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§(1) = Z(y(7)). This shows that y(7) = ¢"?(e7*4(x)) and in particular that
x € D(et? oe7Z) and €' o e7t%(z) = z. This proves item 2.

Item 3. I will only consider the case that s < 0 and ¢t + s > 0, the other
cases are handled similarly. Write u for ¢ + s, so that ¢ = —s + u. We know
that e'? = €4 o0 ¢=%% by item 1. Therefore

etZ OeSZ — (euZ Oest) OeSZ,
Notice in general, one has (f og) oh = fo(goh) (you prove). Hence, the
above displayed equation and item 2. imply that

tZ SZ _ euZ ° (e—sZ °

etZ o e 7Y = o(t+s)Z

e (t+s)2

o ID(CRZ) Ce

[
The following result is trivial but conceptually illuminating partial con-
verse to Theorem 6.23.

Proposition 6.24 (Flows and Complete Vector Fields). Suppose U C,
X, p € C(RxU,U) and ¢i(x) = ¢(t, ). Suppose ¢ satisfies:

1. ¢o = Iu,
2. 910 ¢s = ¢y for allt,s € R, and
3. Z(z) := ¢(0,z) exists for all x € U and Z € C(U,X) is locally Lipschitz.

Then ¢y = e'%.
Proof. Let z € U and y(t) = ¢¢(z). Then using Item 2.,

5O = Lyt +9) = oden(®) = b o bula) = Z(u(0)

Since y(0) = « by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 6.9) that ¢(z) = y(t) = e'%(x).
|

6.7 Exercises

Exercise 6.25. Find a vector field Z such that e(!*5)Z is not contained in
etZ ° esZ_

Definition 6.26. A locally Lipschitz function Z : U C, X — X is said to be
a complete vector field if D(Z) = R x U. That is for any x € U, t — €' (x) is
defined for all t € R.

Exercise 6.27. Suppose that Z : X — X is a locally Lipschitz function.
Assume there is a constant C' > 0 such that

1Z(@)]| < CA+ ||z])) for all z € X.

Then Z is complete. Hint: use Gronwall’s Lemma 6.8 and Proposition 6.16.
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Exercise 6.28. Suppose y is a solution to y(t) = |y(¢)|’~ with y(0) = 0.

Show there exists a, b € [0, 00] such that

=02 if t>b
y(t) = 0 if —a<t<b
—1(t+a)?if t<—a

Exercise 6.29. Using the fact that the solutions to Eq. (6.3) are never 0 if
x # 0, show that y(t) = 0 is the only solution to Eq. (6.3) with y(0) = 0.
Exercise 6.30. Suppose that A € L(X). Show directly that:

1. ' define in Eq. (6.14) is convergent in L(X) when equipped with the
operator norm.
2. !4 is differentiable in ¢ and that fet4 = Aet4.

Exercise 6.31. Suppose that A € L(X) and v € X is an eigenvector of A
with eigenvalue A, i.e. that Av = Av. Show e*4v = e'*v. Also show that
X =R" and A is a diagonalizable n X n matrix with

A =8DS™ with D = diag(\1, ..., \n)
then e*4 = SetP? S~ where e'P = diag(et™, ... et ).

Exercise 6.32. Suppose that A, B € L(X) and [A, B] = AB—BA = 0. Show
that e(A+5) = el

Exercise 6.33. Suppose A € C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s,t € R. Show

y(t) = elJs Adr)
is the unique solution to y(t) = A(t)y(t) with y(0) = =.

Exercise 6.34. Compute e when

01
(%)
and use the result to prove the formula

cos(s +t) = cos scost — sin ssint.

Hint: Sum the series and use et4es4 = e(t+s)4,

Exercise 6.35. Compute e’ when

Oabd
A=100¢
000

with a,b,¢ € R. Use your result to compute ef*+4) where A € R and I is
the 3 x 3 identity matrix. Hint: Sum the series.
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Exercise 6.36. Prove Theorem 6.7 using the following outline.

1. First show ¢ € [0,00) — T} € L(X) is continuos.

2. For ¢ > 0, let S, := %f; T,dr € L(X). Show S — I as € | 0 and conclude
from this that S, is invertible when € > 0 is sufficiently small. For the
remainder of the proof fix such a small € > 0.

3. Show
1 t+e
TtSE = —/ T-,-dT
€Ji

and conclude from this that
1
limt Y (Ty — 1) S. = = (T. — Idx).
t10 €

4. Using the fact that S, is invertible, conclude A = lim¢jo ¢t~ (T} — I) exists

in L(X) and that

A=Y@ s
€

5. Now show using the semigroup property and step 4. that %Tt = AT, for
all £ > 0.

6. Using step 5, show Le~*AT, = 0 for all ¢ > 0 and therefore e 4T, =
GioAT() =1.

Exercise 6.37 (Higher Order ODE). Let X be a Banach space, ,U C, X"
and f € C(J xU,X) be a Locally Lipschitz function in x = (z1,...,%,).
Show the n'' ordinary differential equation,

y M) = Ft,y@), 5(0), ...y V@) with y® () =gk for k<n  (6.32)

where (43, ...,yp ") is given in U, has a unique solution for small ¢ € J. Hint:
let y(t) = (y(t),y(t),...y "~V (t)) and rewrite Eq. (6.32) as a first order ODE
of the form

y(t) = Z(t,y () with y(0) = (40, -, 55 ")-
Exercise 6.38. Use the results of Exercises 6.35 and 6.37 to solve
i(t) — 2y(t) + y(t) = 0 with y(0) = a and (0) = b.

Hint: The 2 x 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I + B where B? = 0.

Exercise 6.39. Suppose that A : R — L(X) is a continuous function and
U,V :R — L(X) are the unique solution to the linear differential equations

V(t) = A(t)V(¢) with V(0) =1

and
U(t) = —U(#)A(t) with U(0) = 1. (6.33)
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Prove that V(t) is invertible and that V~1(t) = U(t). Hint: 1) show

LUV (t)] = 0 (which is sufficient if dim(X) < oo) and 2) show com-

pute y(t) := V(¢)U(¢) solves a linear differential ordinary differential equation
that has y = 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that U(¢) must be defined as in Eq. (6.33) is the content
of Exercise 19.32 below.)

Exercise 6.40 (Duhamel’ s Principle I). Suppose that A : R — L(X) is
a continuous function and V : R — L(X) is the unique solution to the linear
differential equation in Eq. (19.36). Let x € X and h € C(R, X) be given.
Show that the unique solution to the differential equation:

y(t) = A(®)y(t) + h(t) with y(0) == (6.34)
is given by ,
y(t) =V(t)z + V(t)/ V()" h(r)dr. (6.35)
0
Hint: compute <[V ~1(¢)y(t)] when y solves Eq. (6.34).

Exercise 6.41 (Duhamel’ s Principle II). Suppose that A : R — L(X) is
a continuous function and V' : R — L(X) is the unique solution to the linear
differential equation in Eq. (19.36). Let Wy € L(X) and H € C(R, L(X)) be
given. Show that the unique solution to the differential equation:

W(t) = AQ)W (t) + H(t) with W (0) = W, (6.36)
is given by
¢
W(t) = V()W + V(t)/ V(r)" H(7)dr. (6.37)
0
Exercise 6.42 (Non-Homogeneous ODE). Suppose that U C, X is open
and Z : Rx U — X is a continuous function. Let J = (a,b) be an interval and

to € J. Suppose that y € C1(J,U) is a solution to the “non-homogeneous”
differential equation:

y(t) = Z(t,y(t)) with y(t,) =z € U. (6.38)

Define Y € C*(J —tg, R x U) by Y (t) = (t +to,y(t +t0)). Show that Y solves
the “homogeneous” differential equation

Y (t) = Z(Y(t)) with Y (0) = (o, %0), (6.39)

where Z(t,2) = (1, Z(z)). Conversely, suppose that Y € C'(J —to,Rx U) is a
solution to Eq. (6.39). Show that Y (t) = (t+to, y(t+to)) for some y € C1(J,U)
satisfying Eq. (6.38). (In this way the theory of non-homogeneous ode’s may
be reduced to the theory of homogeneous ode’s.)
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Exercise 6.43 (Differential Equations with Parameters). Let W be an-
other Banach space, U x V C, X x W and Z € C(U x V,X) be a locally
Lipschitz function on U x V. For each (z,w) € U XV, let t € Jy . — &(t, z, w)
denote the maximal solution to the ODE

y(t) = Z(y(t), w) with y(0) = z. (6.40)

Prove
D:={(t,z,w) ERXU XV :t€ Jyuw} (6.41)

isopen in R x U x V and ¢ and d) are continuous functions on D.
Hint: If y(¢) solves the differential equation in (6.40), then v(t) = (y(t), w)
solves the differential equation,

o(t) = Z(v(t)) with v(0) = (z,w), (6.42)

where Z(2,w) = (Z(z,w),0) € X x W and let ¢(t, (z,w)) := v(t). Now apply
the Theorem 6.21 to the differential equation (6.42).

Exercise 6.44 (Abstract Wave Equation). For A € L(X) and ¢t € R, let

cos(tA) := Z Qtz’lA% and

— (2n)
sin(tA = (=)
Show that the unique solution y € C? (R, X) to
§i(t) + A%y(t) = 0 with y(0) = yo and §(0) = 9o € X (6.43)
is given by
sin(tA) .

y(t) = cos(tA)yo + —r—"5o-

Remark 6.45. Exercise 6.44 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (6.43) as a first order ODE using Exercise
6.37. In doing so you will be lead to compute e'® where B € L(X x X) is

given by
0 I
().

.. Ty
where we are writing elements of X x X as column vectors, (a: ) . You should
2

B — cos(tA) %XA)
—Asin(tA) cos(tA)

then show

where

Asin(tA) := Z 7(2(n+ 1)!t2 142041

n=0
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Exercise 6.46 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 6.44, but now consider the ODE,

§(t) + A%y(t) = f(t) with y(0) = yo and §(0) = go € X (6.44)

where f € C(R, X). Show the unique solution to Eq. (6.44) is given by

y(t) = cos(tA)yo + Si“SA) Jo + /O Sin((t; DA ¢rydr (6.45)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (6.45) from Exercise 6.40 and the comments in
Remark 6.45.
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Algebras, o — Algebras and Measurability

7.1 Introduction: What are measures and why
“measurable” sets

Definition 7.1 (Preliminary). Suppose that X is a set and P(X) denotes
the collection of all subsets of X. A measure p on X is a function p: P(X) —
[0, 00] such that

1. p(@) =0
2. If {Al}fil is a finite (N < 00) or countable (N = o) collection of subsets
of X which are pair-wise disjoint (i.e. A; N A; =0 if i # j) then

p(U Ai) = Z 1(As).

Example 7.2. Suppose that X is any set and = € X is a point. For A C X, let

1 if reA
9:(A) = { 0 otherwise.

Then p = 6, is a measure on X called the Dirac delta function at x.

Example 7.3. Suppose that p is a measure on X and A > 0, then A -y is
also a measure on X. Moreover, if {i4}acs are all measures on X, then

0= ey b L.

A) =" pa(A) for all A C X

acJ

is a measure on X. (See Section 1 for the meaning of this sum.) To prove
this we must show that p is countably additive. Suppose that {4;};2, is a
collection of pair-wise disjoint subsets of X, then

132 7 Algebras, o — Algebras and Measurability

U1 lA ZNA)_ZZMQ

i=1 act
= Z ZNa(Ai) = Z ta (U2, Ag)
a€eJ i=1 aeJ

= (U2, A5)

wherein the third equality we used Theorem 1.21 and in the fourth we used
that fact that p, is a measure.

Ezample 7.4. Suppose that X is a set A : X — [0, 00] is a function. Then

pi= Y A@)d,

rzeX

is a measure, explicitly

u(A) = 3 A)

z€A
forall A C X.

7.2 The problem with Lebesgue “measure”

Question 7.5. Does there exist a measure p : P(R) —[0, 0o] such that
1. p(la, b)) = (b —a) for all a < b and
2. (Translation invariant) p(A + z) = p(A) for all x € R? (Here A + z :=
{y+z:ye A} CR)

The answer is no which we now demonstrate. In fact the answer is no even if
we replace (1) by the condition that 0 < p((0,1]) < oo

Let us identify [0,1) with the unit circle S* := {z € C : |z| = 1} by the
map ¢(t) = 2™ € S for ¢ € [0,1). Using this identification we may use u to
define a function v on P(S?) by v(¢(A)) = u(A) for all A C [0,1). This new
function is a measure on S with the property that 0 < v((0,1]) < oco. For
z€ S8t and N C S let

zN :={zn e S':nec N}, (7.1)

that is to say e N is N rotated counter clockwise by angle #. We now claim
that v is invariant under these rotations, i.e.

v(zN) =v(N) (7.2)

for all z € S* and N C S*. To verify this, write N = ¢(A4) and z = ¢(t) for
some ¢t € [0,1) and A C [0,1). Then
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o(t)p(A) = ¢(t + Amod 1)
where for A C [0,1) and a € [0,1), let
t+Amodl={a+tmodlc[0,1):a € N}
=(@+Anfa<l—-tHhu(t—-1)+ANn{a>1-1t}).
Thus

V(G(HB(A)) =t + Amod 1)
=p((a+An{a<l—tHU(t-1+An{a>1-t}))
—p((a+AN{a<1-t) +pa((t-1D)+An{a>1-1})
=pAnfa<l—t})+p(Anfa>1-1})
=p((An{a<1—-thHhu(An{a>1-1t}))

— (4) = ((A)).
Therefore it suffices to prove that no finite measure v on S! such that Eq.
(7.2) holds. To do this we will “construct” a non-measurable set N = ¢(A)
for some A C [0,1).
To do this let

Ri={z=¢"":tcQ} ={z=¢":1c[0,1)NQ},

a countable subgroup of S'. As above R acts on S! by rotations and divides
S up into equivalence classes, where z,w € S' are equivalent if z = rw for
some r € R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N C S' be the set of these
representative points. Then every point z € S! may be uniquely written as
z=mnr with n € N and r € R. That is to say

St = ]_L(TN) (7.3)

where [],, Aq is used to denote the union of pair-wise disjoint sets {As}. By
Egs. (7.2) and (7.3),

v(SY) = v(rN)=>_ u(N).
TER rER

The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S!) € (0,1). Thus we have reached
the desired contradiction.

Proof. (Second proof of Answer to Question 7.5) For N C [0,1) and
a€l0,1), let

N*=N+amodl
={a+amodl € [0,1):a € N}
=(a+Nnfa<l-aph)U((a—1)+ Nn{a>1—-a}).

134 7 Algebras, o — Algebras and Measurability

If v is a measure satisfying the properties of the Question we would have

p(N)=pla+Nnf{a<l—-a})+p((ea-1)+Nn{a>1-a})
=pu(Nn{a<l—a}l)+pu(Nn{a>1-a})
=puNn{a<l—alU(NnN{e>1-a}))
— u(V). (7.4

We will now construct a bad set N which coupled with Eq. (7.4) will lead to
a contradiction.
Set
Q:={z+reR:reQ} =z +Q.

Notice that @, N Q, # 0 implies that Q, = Q. Let O = {Q, : € R} — the
orbit space of the Q action. For all A € O choose f(A) € [0,1/3)N A.! Define
N = f(O). Then observe:

1. f(A) = f(B) implies that AN B # @ which implies that A = B so that f
is injective.
2. 0={Qn:ne N}.

Let R be the countable set,

R=QnNJ[0,1).
We now claim that
N'NN°=0ifr#sand (7.5)
[0,1) = U,erNT". (7.6)

Indeed, if z € N"NN® # () then z = r +nmod1 and z = s + n’mod 1,
then n —n/ € Q, i.e. @, = Q. That is to say, n = f(Qn) = f(Qn) =n' and
hence that s = rmod 1, but s,7 € [0,1) implies that s = r. Furthermore, if
€[0,1) and n := f(Q.), then x —n =7 € Q and z € N"mod1,

Now that we have constructed N, we are ready for the contradiction. By
Equations (7.4-7.6) we find

1=p([0,1) =Y u(N") = w(N
rER rER
_ {oo if w(N) >0
0 if u(N)=0"

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set. m

Because of this example and our desire to have a measure p on R satisfying
the properties in Question 7.5, we need to modify our definition of a measure.

! We have used the Axiom of choice here, i.e. [] , (AN [0,1/3]) # 0
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We will give up on trying to measure all subsets A C R, i.e. we will only try
to define p on a smaller collection of “measurable” sets. Such collections will
be called ¢ — algebras which we now introduce. The formal definition of a
measure appears in Definition 8.1 of Section 8 below.

7.3 Algebras and o — algebras

Definition 7.6. A collection of subsets A of X is an Algebra if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then A;U---UA, €
A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 7.7. A collection of subsets M of X is a o — algebra (o - field) if
M is an algebra which also closed under countable unions, i.e. if {A;};o; C
M, then U2, A; € M. (Notice that since M is also closed under taking
complements, M is also closed under taking countable intersections.) A pair
(X, M), where X is a set and M is a o — algebra on X, is called a measurable
space.

The reader should compare these definitions with that of a topology, see
Definition 2.19. Recall that the elements of a topology are called open sets.
Analogously, we will often refer to elements of and algebra A or a o — algebra
M as measurable sets.

Example 7.8. Here are some examples.

1.7 = M =P(X) in which case all subsets of X are open, closed, and
measurable.

2. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not
an algebra.

3.7 =A={{1},{2,3},0, X} is a topology, an algebra, and a o — algebra
on X. The sets X, {1}, {2,3},0 are open and closed. The sets {1,2} and
{1, 3} are neither open nor closed and are not measurable.

Proposition 7.9. Let £ be any collection of subsets of X. Then there exists a

unique smallest topology 7(E), algebra A(E) and o-algebra o (&) which contains
E.

Proof. Note P(X) is a topology and an algebra and a o-algebra and
€ C P(X), so & is always a subset of a topology, algebra, and o — algebra.
One may now easily check that
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7€) = ﬂ{T : T is a topology and € C 7}

is a topology which is clearly the smallest topology containing £. The analo-
gous construction works for the other cases as well. m

We may give explicit descriptions of 7(£) and A(E). However o(€) typically
does not admit a simple concrete description.

Proposition 7.10. Let X be a set and € C P(X). For simplicity of notation,
assume that X, € £ (otherwise adjoin them to & if necessary) and let £¢ =
{A°: A€} and &, =EU{X, D} UES Then 7(€) =7 and A(E) = A where

7 := {arbitrary unions of finite intersections of elements from £} (7.7)
and
A = {finite unions of finite intersections of elements from E.}. (7.8)

Proof. From the definition of a topology and an algebra, it is clear that
EcrtCr(€)and &€ C AC A(E). Hence to finish that proof it suffices to show
T is a topology and A is an algebra. The proof of these assertions are routine
except for possibly showing that 7 is closed under taking finite intersections
and A is closed under complementation.

To check A is closed under complementation, let Z € A be expressed as

N K
z= N4

i=1j=1

where A;; € &.. Therefore, writing B;; = Ajj € &., we find that

N K K
ZC:ﬂUBia‘: U (B1j, N B2j,N---NByjy) €A
i=1j=1 JiyeniN=1

wherein we have used the fact that By, N Baj, N--- N By, is a finite inter-
section of sets from &..

To show 7 is closed under finite intersections it suffices to show for V., W € 7
that VN W € 7. Write

V =UpeaVu and W = UgepWp

where V,, and Wpg are sets which are finite intersection of elements from &.
Then

VAW = (UacaVa) N (UgesWp) = () VanWper
(a,8)EAXB

since for each (o, 8) € A x B, V, "W} is still a finite intersection of elements
fromE. m
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Remark 7.11. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is false,

since if
o0
Ay

i=1j=1

s

7 =

with A;; € &, then

0. ()

j1=ljo=1,..in=1,...

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe o(&), see Proposition
1.23 on page 39 of Folland for details.

Exercise 7.12. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F'NV where F is closed and V' is open.

The following notion will be useful in the sequel.

Definition 7.13. A set £ C P(X) is said to be an elementary family or
elementary class provided that

o fe&

o & is closed under finite intersections

e if E €&, then E° is a finite disjoint union of sets from E. (In particular
X = 0° is a disjoint union of elements from E.)

Proposition 7.14. Suppose £ C P(X) is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets

from &.

Proof. This could be proved making use of Proposition 7.14. However it
is easier to give a direct proof.

Let A denote the collection of sets which may be written as finite disjoint
unions of sets from £. Clearly £ C A C A(€) so it suffices to show A is an
algebra since A(E) is the smallest algebra containing £.

By the properties of £, we know that (), X € A. Now suppose that A; =
[Hrea, F € A where, for i = 1,2,...,n., 4; is a finite collection of disjoint
sets from £. Then

ﬁAi=ﬁ<H F): U (FiNFN---NF,)
i=1 i=1 \FeA; (Fiypeey Fr)EAL XX Ay,

and this is a disjoint (you check) union of elements from £. Therefore A is
closed under finite intersections. Similarly, if A =[]z, F with A being a
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finite collection of disjoint sets from &, then A® =, . Since by assump-
tion F¢ € Afor F € A C £ and A is closed under finite intersections, it
follows that A°€ A. m

Exercise 7.15. Let A C P(X) and B C P(Y) be elementary families. Show
the collection

E=AxB={AxB:A€cAand B € B}
is also an elementary family.

The analogous notion of elementary class £ for topologies is a basis V
defined below.

Definition 7.16. Let (X, 7) be a topological space. We say that S C T is a
sub-basis for the topology 7 iff 7 = 7(S) and X = US := UycsV. We say
V C 7 is a basis for the topology T iff V is a sub-basis with the property that
every element V € T may be written as

V=U{BeV:BCV}

Exercise 7.17. Suppose that S is a sub-basis for a topology 7 on a set X.
Show V := Sy consisting of finite intersections of elements from S is a basis
for 7. Moreover, S is itself a basis for 7 iff

VinVa=U{SeS:5CcVinls}.
for every pair of sets Vi, V5 € S.

Remark 7.18. Let (X,d) be a metric space, then £ = {B;(d) : z € X and
0 > 0} is a basis for 74 — the topology associated to the metric d. This is the
content of Exercise 2.9.

Let us check directly that &£ is a basis for a topology. Suppose that z,y € X
and €,6 > 0. If 2 € B(x,d) N B(y, €), then

B(z,a) C B(z,6) N B(y,¢) (7.9)

where @ = min{d — d(z,z),e — d(y,2)}, see Figure 7.1. This is a for-
mal consequence of the triangle inequality. For example let us show that
B(z,a) C B(z,6). By the definition of «, we have that o < 6 — d(z,2) or
that d(z, z) < § — a. Hence if w € B(z,a), then

d(z,w) <d(z,z)+d(z,w) <d—a+dz,w)<d—a+a=9

which shows that w € B(z, ). Similarly we show that w € B(y, €) as well.

Owing to Exercise 7.17, this shows £ is a basis for a topology. We do not
need to use Exercise 7.17 here since in fact Equation (7.9) may be generalized
to finite intersection of balls. Namely if z; € X, §; > 0 and z € N, B(z4,9;),
then
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d(x,z)

%

Fig. 7.1. Fitting balls in the intersection.

B(z,«) C Ny B(x;,0;) (7.10)

where now « := min{6; — d(z;,2z) : i =1,2,...,n}. By Eq. (7.10) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Example 7.19. Suppose X = {1,2,3} and £ = {0, X, {1,2}, {1, 3}}, see Figure
7.2 below.

Fig. 7.2. A collection of subsets.

Then
T(S) = {@’ X, {1}7 {17 2}7 {17 3}}
A(E) = 0 (€) = P(X).

Definition 7.20. Let X be a set. We say that a family of sets F C P(X) is
a partition of X if X is the disjoint union of the sets in F.
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Ezample 7.21. Let X be a set and & = {41,...,A,} where 4;,..., A, is a
partition of X. In this case

AE)=0(&) =7(€) = {Uijeadi : A C{1,2,...,n}}
where U;cpA; :== 0 when A = (). Notice that
#AE) =#(P({L,2,...,n})) =2".

Proposition 7.22. Suppose that M C P(X) is a o — algebra and M is at
most a countable set. Then there exists a unique finite partition F of X such
that F C M and every element A € M is of the form

A=U{aeF:aCA}. (7.11)
In particular M is actually a finite set.
Proof. For each z € X let
Ay = (NyeaemA) € M.

That is, A, is the smallest set in M which contains z. Suppose that C' =
Az N Ay is non-empty. If z ¢ C then z € A, \ C € M and hence A, C A, \C
which shows that A, N C = () which is a contradiction. Hence z € C and
similarly y € C, therefore A, C C = A, N A, and Ay, C C = A, N A4,
which shows that A, = A,. Therefore, ¥ = {A, : * € X} is a partition of
X (which is necessarily countable) and Eq. (7.11) holds for all A € M. Let
F = {P,}}_, where for the moment we allow N = co. If N = oo, then M
is one to one correspondence with {0, 1}N. Indeed to each a € {0, l}N, let
A, € M be defined by
A, =U{P, :a, =1}.

This shows that M is uncountable since {0, 1}N is uncountable; think of the
base two expansion of numbers in [0,1] for example. Thus any countable o
— algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. m

FEzample 7.23. Let X = R and
& ={(a,0):a € R}U{R,D} = {(a,0) "R :a € R} C P(R).
Notice that £ = & and that £ is closed under unions, which shows that
7(€) = &, i.e. £ is already a topology. Since (a,0)¢ = (—o00,a] we find that
& ={(a,0), (—00,a], —00 < a < oo} U{R, 0}. Noting that
(a7 OO) N (7007 b] = (a7 b]

it is easy to verify that the algebra A(E) generated by £ may be described as
being those sets which are finite disjoint unions of sets from the following list
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£ = {(a,))NR:a,beR}.

(This follows from Proposition 7.14 and the fact that € is an elementary family
of subsets of R.) The o — algebra, o(€), generated by £ is very complicated.
Here are some sets in o(€) — most of which are not in A(E).

@) (@b) = U (a,b— 4 € o(6).
n=1
(b) All of the standard open subsets of R are in o(€).
@ {z} =N (2 —+.2] €0(&)
(d) [a,b] = {a} U (a,b] € o(€)
(e) Any countable subset of R is in ¢(&).

Remark 7.24. In the above example, one may replace £ by £ = {(a,>) : a €
Q} U{R, 0}, in which case A(£) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a7 m)7 (7007 a}7 (a7 b] : a7 b e Q} U {@, R} N
This shows that A(£) is a countable set — a fact we will use later on.

Definition 7.25. A topological space, (X,T), is second countable if there
exists a countable base V for T, i.e. V C T is a countable set such that for
every W e T,

W=U{V:VeVsVcCcW}

Exercise 7.26. Suppose £ C P(X) is a countable collection of subsets of X,
then 7 = 7(€) is a second countable topology on X.

Proposition 7.27. Every separable metric space, (X, p) is second countable.

Proof. Let {z,}5°, be a countable dense subset of X. Let V =
o0
{X,0} U {Bs,(rm)} C 7, where {r,,}5°_; is dense in (0,00). Then V is

m,n=1
a countable base for 7,. To see this let V' C X be open and x € V. Choose
€ > 0 such that B,(¢) C V and then choose x,, € B,(¢/3). Choose r,, near
€/3 such that p(z,z,) < rm < €/3 so that € B, (r,) C V. This shows

V= U {Bacn ('rm) : Bz" (Tm) (- V} .

Notation 7.28 For a general topological space (X, T), the Borel o — algebra
is the o — algebra, Bx = o(1). We will use Bg to denote the Borel o - algebra
on R.

Proposition 7.29. If 7 is a second countable topology on X and € C P(X)
is a countable set such that T = 7(£), then Bx := o(1) = 0(£), i.e. o(7(€)) =
a(&).
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Proof. Let £ denote the collection of subsets of X which are finite in-
tersection of elements from &£ along with X and @. Notice that & is still
countable (you prove). A set Z is in 7(&) iff Z is an arbitrary union of sets

from &£;. Therefore Z = |J A for some subset F C &; which is necessarily
AEF
countable. Since £ C o(€) and o(£) is closed under countable unions it fol-

lows that Z € o(€) and hence that 7(€£) C o(€). For the last assertion, since
EC1(€) Co(€) it follows that o(€) C o(r(€)) Co(€). m

Exercise 7.30. Verify the following identities

Br =0({(a,00) : a € R} = o({(a,0) : a € Q}
=o({[a,0) : a € Q}).

7.4 Continuous and Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X, M, p1) is a measure
space and f : X — R,. Roughly speaking, in the next section we are going
to define [ fdu by

X

[e%s}

JEZE VD SE Ol DN}
X

0<ari<az<as<...

For this to make sense we will need to require f~!((a,b]) € M for all a < b.
Because of Lemma 7.37 below, this last condition is equivalent to the condition

f _I(BR) - M7
where we are using the following notation.

Notation 7.31 If f: X — Y is a function and € C P(Y) let
frre=rtE = iEEesy

IfG C P(X), let
[G={AcPY)|f'(A) eg}

Exercise 7.32. Show f~!& and f.G are ¢ — algebras (topologies) provided &
and G are o — algebras (topologies).

Definition 7.33. Let (X, M) and (Y, F) be measurable (topological) spaces. A
function f: X — Y is measurable (continuous) if f~*(F) C M. We will
also say that f is M/F — measurable (continuous) or (M,F) — measurable
(continuous).
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Ezample 7.34 (Characteristic Functions). Let (X, M) be a measurable space
and A C X. We define the characteristic function 14 : X — R by

_JlifzeA
1A(“)*{Oifx¢,4.

If A € M, then 1, is (M, P(R)) — measurable because 1, (W) is either ), X,
A or A€ for any U C R. Conversely, if F is any o — algebra on R containing
a set W C R such that 1 € W and 0 € W€, then A € M if 14 is (M, F) -
measurable. This is because A = 131(W) € M.

Remark 7.35. Let f: X — Y be a function. Given a o — algebra (topology)
F C P(Y), the o — algebra (topology) M := f~1(F) is the smallest o

algebra (topology) on X such that f is (M,F) - measurable (continuous).
Similarly, if M is a o - algebra (topology) on X then F = f.M is the largest
o — algebra (topology) on Y such that f is (M, F) - measurable (continuous).

Lemma 7.36. Suppose that (X, M), (Y,F) and (Z,G) are measurable (topo-
logical) spaces. If f : (X,M) — (Y, F) and g : (Y,F) — (Z,G) are measurable
(continuous) functions then go f: (X, M) — (Z,G) is measurable (continu-
ous) as well.

Proof. This is easy since by assumption ¢~*(G) C F and f~1(F) C M
so that
(Go N @ =1 (g1 @) P M.

Lemma 7.37. Suppose that f : X — Y is a function and € C P(Y), then

o (f71() = f 1 (o(€)) and (7.12)

T(f71E) = fH(r(E)). (7.13)
Moreover, if F = o(€) (or F = 7(€)) and M is a o — algebra (topology) on
X, then f is (M, F) — measurable (continuous) iff f~1(€) C M.

Proof. We will prove Eq. (7.12), the proof of Eq. (7.13) being analogous.
If £ C F, then f~1(&) C f~1(o(€)) and therefore, (because f~1(c(£)) is a o
— algebra)

G=0o(f71(€)) C f(a()

which proves half of Eq. (7.12). For the reverse inclusion notice that
[G={BcY:[f'B)eg}

is a o — algebra which contains £ and thus (&) C f.G. Hence if B € (&) we
know that f~1(B) € G, i.e. f~1(0(£)) C G. The last assertion of the Lemma
is an easy consequence of Egs. (7.12) and (7.13). For example, if f~1£ C M,
then f~lo (€) = o (f7'€) C M which shows f is (M, F) — measurable. m
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Definition 7.38. A function f : X — Y between to topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 7.39. Let X and Y be two topological spaces and f: X —Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 7.37 and By = o(1y),
1 By) = fHo(rv)) = o(f(1v)) C o(rx) = Bx.
|

Corollary 7.40. Suppose that (X, M) is a measurable space. Then f: X —
R is (M, Bg) — measurable iff f~1((a,00)) € M for alla € R iff f~1((a,0)) €
M for alla € Q iff f~1((—o0,a]) € M for all a € R, etc. Similarly, if (X, M)
is a topological space, then f : X — R is (M, 1r) - continuous iff f~1((a,b)) €
M for all —co < a < b < oo iff f~1((a,00)) € M and f~1((—00,b)) € M for
all a,b € Q. (We are using g to denote the standard topology on R induced
by the metric d(x,y) = |z —yl.)

Proof. This is an exercise (Exercise 7.71) in using Lemma 7.37. m
We will often deal with functions f : X — R = RU{%oo0}. Let

B := o0 ({[a,] : a € R}). (7.14)
The following Corollary of Lemma 7.37 is a direct analogue of Corollary 7.40.

Corollary 7.41. f : X — R is (M, Bg) - measurable iff f~*((a,0]) € M
for all a € R iff f~1((—o0,a]) € M for all a € R, etc.

Proposition 7.42. Let Br and Bg be as above, then
Bg={ACR:ANReBr}. (7.15)
In particular {oo},{—o0} € Bg and Br C Bg.
Proof. Let us first observe that
{00} = MpZy[-00, —n) = ML, [-n, o] € By,

{00} = N2, [n,00] € B and R = R\ {+o0} € By.

Letting i : R — R be the inclusion map,
i (Bg) =0 (i7" ({la,00] :a €R})) =0 ({i7! ([a,00]) : a € R})

=0 ({[a,00]NR:a € R}) =0 ({[a, ) : a € R}) = B.

Thus we have shown
Br=i1(Bg)={ANR: Ac B}

This implies:



7.4 Continuous and Measurable Functions 145

1. Ae Bg = ANR €Br and

2. if A C R is such that ANR €Bg there exists B € By such that ANR =
BNR. Because AAB C {£oo} and {c0},{—00} € Bz we may conclude
that A € Bg as well.

This proves Eq. (7.15). m

Proposition 7.43 (Closure under sups, infs and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R is a sequence of M/Bg —
measurable functions. Then

sup; fj, inf;f;, limsup f; and liminf f;
j—oo j—00

are all M /Bg — measurable functions. (Note that this result is in generally
false when (X, M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g () := sup f;(x), then

{z:94+(z) <a}={z: fj(z) <aVyj}
=Nj{z: fi(z) <a} eM

so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:g-(x) >a} =n;{z: fi(z) > a} e M.
Since

limsup f; =infsup{f;:j >n} and

j—oo

liminf f; =supinf{f;:j>n}
J—o0 n
we are done by what we have already proved. m

7.4.1 More general pointwise limits

Lemma 7.44. Suppose that (X, M) is a measurable space, (Y,d) is a metric
space and f; : X —Y is (M, By) — measurable for all j. Also assume that for
each x € X, f(x) =lim, oo fn(z) exists. Then f: X —Y is also (M, By) —
measurable.

Proof. Let V € g and Wy, :={y € Y : dye(y) > 1/m} form =1,2,....
Then W, € 14,

Wy CWon C{y €Y tdye(y) >1/m}CV

for all m and W,,, TV as m — oo. The proof will be completed by verifying
the identity,
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FTHV) = Upemy Uy Nusn £ (W) € ML

Ifz € f~1(V) then f(x) € V and hence f(x) € W,, for some m. Since f,(z) —
f(x), fo(z) € Wiy, for almost all n. That is & € USS_; Uy Nusn [t (Win).
Conversely when x € UZ_; U¥_; Nu>n [y 1 (Wiy,) there exists an m such that
fn(z) € W, C W, for almost all n. Since f,,(z) — f(x) € W,,, C V, it follows
that z € f~4(V). m

Remark 7.45. In the previous Lemma 7.44 it is possible to let (Y,7) be any
topological space which has the “regularity” property that if V' € 7 there exists
W,, € 7 such that W,, CW,, CV and V = Upe_1 Wi, Moreover, some extra
condition is necessary on the topology 7 in order for Lemma 7.44 to be correct.
For example if Y = {1,2,3} and 7 = {Y,0,{1,2},{2,3}, {2}} as in Example
2.35 and X = {a, b} with the trivial o — algebra. Let f;(a) = f;(b) = 2 for all
Jj, then f; is constant and hence measurable. Let f(a) =1 and f(b) = 2, then
fj — f as j — oo with f being non-measurable. Notice that the Borel o —
algebra on Y is P(Y).

7.5 Topologies and o — Algebras Generated by Functions

Definition 7.46. Let £ C P(X) be a collection of sets, A C X, is: A— X
be the inclusion map (ia(x) = x) for all x € A, and

Ea=i"(&)={ANE:Fc&}.

When € = 7 is a topology or € = M is a o — algebra we call T4 the relative
topology and M 4 the relative o — algebra on A.

Proposition 7.47. Suppose that A C X, M C P(X) is a o — algebra and
7 C P(X) is a topology, then Ma C P(A) is a o — algebra and T4 C P(A)
is a topology. Moreover if € C P(X) is such that M = o (&) (T = 7(£)) then
My =0(€a) (Ta=7(Ea)).

Proof. The first assertion is Exercise 7.32 and the second assertion is a
consequence of Lemma 7.37. Indeed,

Ma = i3 (M) = i3 (0(€)) = o(i3"(€)) = o(€4)
and similarly
Ta =iy (1) =iy (7€) = 7(i3'(€)) = 7(Ea).
]

Ezample 7.48. Suppose that (X, d) is a metric space and A C X is a set. Let
7 =14 and dg := d|ax a be the metric d restricted to A. Then 74 = 74,, i.e.
the relative topology, 74, of 74 on A is the same as the topology induced by
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the restriction of the metric d to A. Indeed, if V' € 74 there exists W € 7
such that V' N A = W. Therefore for all z € A there exists ¢ > 0 such that
B.(¢) € W and hence B,(e) N A C V. Since B.(e) N A = Bda(e) is a da —
ball in A, this shows V is d4 — open, i.e. T4 C 74,. Conversely, if V € 74,,
then for each z € A there exists ¢, > 0 such that Bd4(e) = B,(e)N A C V.
Therefore V.= ANW with W := UgcaB,(¢) € 7. This shows 74, C T4.

Definition 7.49. Let A C X, f: A — C be a function, M C P(X) be a o
— algebra and T C P(X) be a topology, then we say that f|a is measurable
(continuous) if f|a is Ma — measurable (Ta continuous).

Proposition 7.50. Let AC X, f: X — C be a function, M C P(X) be a o
— algebra and 7 C P(X) be a topology. If f is M — measurable (T continuous)
then fla is Ma measurable (T4 continuous). Moreover if A,, € M (A, € T)
such that X = U2 A, and f|A,, is Ma, measurable (Ta, continuous) for
all n, then f is M — measurable (T continuous).

Proof. Notice that i4 is (Ma, M) — measurable (74,7) — continuous)
hence f|la = foia is M4 measurable (74 — continuous). Let B C C be a
Borel set and consider

fﬁl(B) = UZO:1 (fil(B) n An) = U?’f:lf

If Ae M (A € 1), then it is easy to check that

AL (B).

My={BeM:BC A} C M and
Ta={BerT:BCA}CT.

The second assertion is now an easy consequence of the previous three equa-
tions. m

Definition 7.51. Let X and A be sets, and suppose for a € A we are give a
measurable (topological) space (Yo, Fo) and a function fo : X — Y,. We will
write o(fa : a € A) (T(fa : « € A)) for the smallest o-algebra (topology) on
X such that each fo is measurable (continuous), i.e.

0(fo:a € A)=a(Usf 1 (Fa)) and
T(fa:a € A) = 1(Uafy  (Fa)).

Proposition 7.52. Assuming the notation in Definition 7.51 and addition-
ally let (Z, M) be a measurable (topological) space and g : Z — X be a
function. Then g is (M,o(fq : a € A)) — measurable (M, 7(fo : @ € A)) -
continuous) iff fo o g is (M, Fo)—measurable (continuous) for all o € A.

Proof. (=) If gis (M, 0(fq : @ € A)) — measurable, then the composition
faogis (M,F,) — measurable by Lemma 7.36.
(<) Let
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G=0(fa:acA)= U(U(,EAfofl(}'a)) .
If fo0gis (M, F,) — measurable for all o, then
g TN Fa) C MV a e A

and therefore

971 (UaeAfgl(]:a)) = UaeAgilf(;l(]:a) M.

Hence

g_l G) = g_l (‘7 (UaeAfojl(]:a))) = U(g_l (UaeAfa_l(fa)) M

which shows that g is (M, G) — measurable.
The topological case is proved in the same way. m

7.6 Product Spaces

In this section we consider product topologies and o — algebras. We will start
with a finite number of factors first and then later mention what happens for
an infinite number of factors.

7.6.1 Products with a Finite Number of Factors

Let {X;}"_; be a collection of sets, X := X; x Xo X+ x X, and 7, : X — X,
be the projection map 7 (z1,2,...,2,) = 2; for each 1 < i < n. Let us also
suppose that 7; is a topology on X; and M; is a ¢ — algebra on X; for each 7.

Notation 7.53 Let & C P(X;) be a collection of subsets of X; for i =
1,2,...,n we will write, by abuse of notation, & X Ea X - - - x &, for the collec-
tion of subsets of X1 X --- x X,, of the form A; X Ay x -+ X A, with A; € &;
for alli. That is we are identifying (A1, Ag, ..., Ap) with A1 X Ag X -+ X A,

Definition 7.54. The product topology on X, denoted by m @ o @ --- T,
is the smallest topology on X so that each map m; : X — X; is continuous.
Similarly, the product o — algebra on X, denoted by M1 @ Mo® -+ Q@ M,
is the smallest o — algebra on X so that each map m; : X — X; is measurable.

Remark 7.55. The product topology may also be described as the smallest
topology containing sets from 71 X --- X 7, i.e.

MM T, =7(T1 X -+ X Tp).

Indeed,
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TR & Ty :T(ﬂ-hﬂ-?a ~~77rn)
r({nym (Vi) i Vi€ fori =1,2,...,n})
({V1><V2>< X Vp:Vierfori=1,2,...,n}).

Similarly,
MMy @M, =0c(Mp X Mg X -+ x My).

Furthermore if B; C 7; is a basis for the topology 7; for each i, then By x- - -x B,
is a basis for 7 @ T2 ® -+ @ T, Indeed, 7, X -+ X 7, is closed under finite
intersections and generates 71 @ T ®- - - ®T,,, therefore 71 X - - - X 7, is a basis for
the product topology. Hence for W € 11 @ u ®---® 7, and = (x1,...,2,) €
W, there exists V4 x Vo x -+ x V,, € 71 X -+- X 75, such that

zeVixVox---xV, CW.

Since B; is a basis for 7;, we may now choose U; € B; such that z; € U; C V;
for each 7. Thus
zeU xUyx---xU,CW

and we have shown W may be written as a union of sets from By x --- x B,.
Since
By X XB,C X+ XTp, CTI®Ta® -+ R Tp,

this shows By x --- x B, isabasisfor 71 @ m @ -+ @ 7.

Lemma 7.56. Let (X;,d;) fori=1,...,n be metric spaces, X := X1 X -+ X
X, and for x = (x1,22,...,Z) and y = (Y1,Y2,.-.,Yn) in X let

= Zdi(ﬂ%yi)~ (7.16)

Then the topology, T4, associated to the metric d is the product topology on X,
i.e.
Td=Td, @Tdy @+ QTq,,-

Proof. Let p(z,y) = max{d;(z;,y;) : ¢ = 1,2,...,n}. Then p is equivalent
to d and hence 7, = 74. Moreover if € > 0 and = = (z1,22,...,2,) € X, then

BP(e) = Bgi(e) X oo X Bg:(e).
By Remark 7.18,
€ :={B(e): x € X and ¢ > 0}

is a basis for 7, and by Remark 7.55 £ is also a basis for 74, ® 74, ® - - - ® 74,, .
Therefore,
Ty @Tdy @+ @ Ta, =7(E) =T, =T4.
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Remark 7.57. Let (Z, M) be a measurable (topological) space, then by Propo-
sition 7.52, a function f : Z — X is measurable (continuous) iff mof : Z — X;
is (M, M;) —measurable ((, 7;) — continuous) for i = 1,2, ..., n. So if we write

f(Z) = (fl(Z),fQ(Z),...,fn(Z)) c X1 X X2 X+ X Xn:

then f : Z — X is measurable (continuous) iff f; : Z — X, is measurable
(continuous) for all i.

Theorem 7.58. Fori=1,2,...,n, let & C P(X;) be a collection of subsets
of X; such that X; € & and M; = o(&;) (or 7 = 7(&;)) for i =1,2,.
then

Mi@My®@:--- @M, =0(& xE x -+ x&,) and
MO QT =7( X E X -+ X &Y.

Written out more explicitly, these equations state

o(o(&) x (&) x - x0(&,)) =0(E1 xE x -+ x &) and (7.17)
T(1(E1) X 7(E2) X+ -+ X T(En)) =7(E1 X Ea X -+ X &p). (7.18)

Moreover zf{(X,,ﬂ)} 1 1s a sequence of second countable topologzcal spaces,
T=T1®T® - T, is the product topology on X = X; X --- x X, then

Bx :=0(m®mn®  ®1m,)=0(Bx, x--xBx,)
=:BX1®"'®BXn'

That is to say the Borel o — algebra and the product o — algebra on X are the
same.

Proof. We will prove Eq. (7.17). The proof of Eq. (7.18) is completely
analogous. Let us first do the case of two factors. Since

& xE C 0’(51) X 0'(52)
it follows that
0 (&1 x &) Co(o(&) xo(E)) =o(m,m).

To prove the reverse inequality it suffices to show m; : X1 x Xo — X; is
o (&1 x &) — M; = 0(&;) measurable for ¢ = 1,2. To prove this suppose that
E € &, then

THE)=ExXo €& x & Co(& x &)

wherein we have used the fact that Xy € &. Similarly, for ¥ € & we have
SHUE)=XI1xEec& x&Co(6xE).

This proves the desired measurability, and hence
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o(m,m) C o (& % &) C o(m,m2).

To prove the last assertion we may assume each &; is countable for i = 1, 2.
Since & x &; is countable, a couple of applications of Proposition 7.29 along
with the first two assertions of the theorems gives

o(1(r X 12)) = o(r(7(&1) x 7(&2)))
0'(7' (51 X 52)) = 0'(51 X 52) = O'(O'(Sl) X 0’(52))
:O'(Ml ><./Vl2) = M;® Ms.

o(n @ 1)

The proof for n factors works the same way. Indeed,
Ey xE X xE, Co(&r) xo(&)x - xa(&)

implies

oc(E1xE x--x&,) Co(o(&) xa(&)x--xa(&))

=0(m1, ..., 7n)

and for E € &;,

T HE) =X x Xox X X; 1 X Ex Xjy1---x X,
which shows

T HE) €& xEx - xECo(ErxE X xE).

[

This show 7; is 0 (&1 X €2 X + -+ X &,) — M; = 0(&;) measurable and therefore,
o(m1,y...,mn) Co (&1 xE x -+ x&,) Co(m,...,m).
If the &; are countable, then

(Mm@ - ®@T,) =0(T(T1 X Ta X -+ X Ty))
o(T(T(&1) X T(&) x -+ x 7(E)))

o(T(Er xE x -+ X &)

=0(& x & x--x &)

o(E1) X 0(E2) % -+ X 0(En)

My X My X -+ x My,)

=M OMy®- - @M,

a(
o (

Remark 7.59. One can not relax the assumption that X; € &; in Theorem 7.58.
For example, if X7 = Xy = {1,2} and & = & = {{1}}, then o(& x &) =
{0, X1 x X2,{(1,1)}} while o(c(&1) X 0(E)) = P(X7 X Xa).
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Proposition 7.60. If (X;,d;) are separable metric spaces for i = 1,...,n,
then

Bx, ® - ®Bx, = B(X1><<-»><X7,)
where Bx, is the Borel o — algebra on X; and B(x,x...xx,) 15 the Borel o —
algebra on X1 x --- x X, equipped with the product topology.

Proof. This follows directly from Proposition 7.27 and Theorem 7.58. m
Because all norms on finite dimensional spaces are equivalent, the usual
Euclidean norm on R™ x R™ is equivalent to the “product” norm defined by

(=, )] rr + [Yllgn -
Hence by Lemma 7.56, the Euclidean topology on R™" is the same as the

product topology on R™*" =~ R™ x R™ Here we are identifying R™ x R™ with
R™+" by the map

R™ xR = llz]

(z,y) ER™ X R™ — (21,..., Ty, Y1, .-, Yn) € R,
Proposition 7.60 and these comments leads to the following corollaries.
Corollary 7.61. After identifying R™ x R™ with R™*" as above and letting
Brn denote the Borel o —algebra on R™, we have

n-times
Bamin = Ban @ Ban and Ban — Ba @ - @ Bo.
Corollary 7.62. If (X, M) is a measurable space, then

f: (fhf?a"'afn) X —R"
is (M, Bgn) — measurable iff f; + X — R is (M,Bgr) — measurable for each
i. In particular, a function f : X — C is (M,Bc) — measurable iff Re f and
Im f are (M, Br) — measurable.
Corollary 7.63. Let (X, M) be a measurable space and f,g : X — C be

(M, Bc) — measurable functions. Then f £ g and f - g are also (M,Bc) -
measurable.

Proof. Define F/': X = CxC, AL :CxC—-Cand M :CxC — C by
F(z) = (f(x),9(x)), Ax(w,z) = w £ z and M(w, z) = wz. Then Ay and M
are continuous and hence (Bgz, Bc) — measurable. Also F' is (M, Bc ® Be) =
(M, Bez) — measurable since m o F = f and m 0o F = g are (M,Bc) —
measurable. Therefore AL oF = f+gand MoF = f-g, being the composition
of measurable functions, are also measurable. m

Lemma 7.64. Let a € C, (X, M) be a measurable space and f: X — C be a
(M, Bc) — measurable function. Then
_L 0
F — 1 T® if f(z)#
() { a if f(z)=0

18 measurable.
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Proof. Define i : C — C by

i(z):{gif z#0

aif z=0.
For any open set V' C C we have
HV) =it (V{0 uiTH(V n{0})

Because 1 is continuous except at z = 0, i~ (V' \ {0}) is an open set and hence
in Bc. Moreover, i~1(V N {0}) € Bc since i71(V N {0}) is either the empty
set or the one point set {a}. Therefore i~!(r¢) C Be and hence i~*(Bc) =
i~Y(o(rc)) = o(i~(7c)) C Bc which shows that 4 is Borel measurable. Since
F' =140 f is the composition of measurable functions, F' is also measurable. ®

7.6.2 General Product spaces

Definition 7.65. Suppose(Xa, Ma),cq 5 a collection of measurable spaces
and let X be the product space

X = H X,
acA

and o 1 X — X, be the canonical projection maps. Then the product o —
algebra, @ M., is defined by
«

®MQ =o(mp:a€A) =0 (Uﬂal(/\/la)> .

a€cA a

Similarly if (Xo, Ma)aca 18 a collection of topological spaces, the product
topology @ M, is defined by

®Ma =7(rp:a€A)=1 (Uwgl(MQ)> .

acA

Remark 7.66. Let (Z, M) be a measurable (topological) space and

<X: 11 Xm®/\/la>

acA a€cA

be as in Definition 7.65. By Proposition 7.52; a function f : Z — X is mea-
surable (continuous) iff m, o f is (M, M) — measurable (continuous) for all
o€ A
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Proposition 7.67. Suppose that (Xo, Ma),ec4 15 a collection of measurable
(topological) spaces and E, C M, generates M,, for each o € A, then

RacaMy =0 (UQGAW(;I(‘?&)) (T (UocEAﬂ'(;l(Sa))) (7.19)

Moreover, suppose that A is either finite or countably infinite, X, € &, for
each a € A, and My, = o(&,) for each o € A. Then the product o — algebra
satisfies

®MQJ<{HEQ:EHESQ forallaeA}). (7.20)

acA a€cA

Similarly if A is finite and Mo, = 7(E,), then the product topology satisfies

®MQ=T<{HEQ:EQESQ forallaGA}). (7.21)

a€A acA
Proof. We will prove Eq. (7.19) in the measure theoretic case since a sim-
ilar proof works in the topological category. Since J 751 (Ea) C Uamst(Ma),

@

it follows that

F:=0 (Uﬂal(é'a)> Co (Uﬂal(Ma)> = ®M(1.
Conversely,
FDo(ny!(Ea)) = 15 (0(Ea)) = 75 (Ma)
holds for all « implies that

Uw(;l(/\/{a) cF

and hence that @ M, C F.

«
We now prove Eq. (7.20). Since we are assuming that X, € &, for each
a € A, we see that

Uma'(€) © {H Ey : Ey €&, for allaeA}

acA

and therefore by Eq. (7.19)

®Ma =0 (Uﬂal(é'a)> Co ({H E,:E,€&, forall a e A}) .

acA a acA

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,
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H Ea = maGAﬂ—;l(Ea) € ® Ma

acA acA

and hence

a<{HEa:Ea65a forallaeA}) C®MQ.

acA acA

Here is a generalization of Theorem 7.58 to the case of countable number of
factors. m

Proposition 7.68. Let {Xa},c4 be a sequence of sets where A is at most
countable. Suppose for each o € A we are given a countable set E, C P(Xy).
Let 7o = 7(E,) be the topology on X, generated by E, and X be the product
space [ [ o 4 Xa with equipped with the product topology T := @aeaT(Ea). Then
the Borel o — algebra Bx = o (1) is the same as the product o — algebra:

Bx = ®acaBx,,
where Bx, = 0(1(€,)) = 0(&) for all a € A.

Proof. By Proposition 7.67, the topology 7 may be described as the small-
est topology containing & = Uaeam, 1 (£,). Now £ is the countable union of
countable sets so is still countable. Therefore by Proposition 7.29 and Propo-
sition 7.67 we have

Bx =o(r) = o(7(€)) = 0(€) = Qacao(&a)
= ®QEAU(TQ) = ®a€ABX(,-
]

Lemma 7.69. Suppose that (Y,F) is a measurable space and F : X —Yisa
map. Then to every (o(F), Bg) — measurable function, H from X — R, there
is a (F,Bg) — measurable function h:Y — R such that H = ho F.

Proof. First suppose that H = 14 where A € o(F) = F~1(Bg). Let
J € By such that A = F~*(J) then 14 = 1g-1(jy = 1; o F and hence the
Lemma is valid in this case with b = 1;. More generally if H = Y a;14, is a
simple function, then there exists J; € Bg such that 14, = 1, o F' and hence
H =hoF with h:=3" a;1;, — a simple function on R.

For general (o(F),Bg) — measurable function, H, from X — R, choose
simple functions H,, converging to H. Let h,, be simple functions on R such
that H,, = h,, o F. Then it follows that

H = lim H, =limsup H,, =limsuph,o F =hoF
n—00 n—o0 n—oo
where h := limsup,, ., h, — a measurable function from ¥ to R. m

The following is an immediate corollary of Proposition 7.52 and Lemma
7.69.
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Corollary 7.70. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Yo. Let Y =[], c4 Ya,
F = QacaFa be the product o — algebra on'Y and M := o(fs : a € A)
be the smallest o-algebra on X such that each f, is measurable. Then the
function F : X — Y defined by [F(z)], := fa(z) for each a € A is (M, F)
- measurable and a function H : X — R is (M,Bg) - measurable iff there
exists a (F,Bg) — measurable function h from'Y to R such that H = ho F.

7.7 Exercises

Exercise 7.71. Prove Corollary 7.40. Hint: See Exercise 7.30.

Exercise 7.72. Folland, Problem 1.5 on p.24. If M is the o — algebra gen-
erated by £ C P(X), then M is the union of the o — algebras generated by
countable subsets F C €.

Exercise 7.73. Let (X, M) be a measure space and f,, : X — F be a sequence
of measurable functions on X. Show that {z : lim,_. fn(z) exists} € M.

Exercise 7.74. Show that every monotone function f : R — R is (Bg, Bg)
measurable.

Exercise 7.75. Folland problem 2.6 on p. 48.

Exercise 7.76. Suppose that X is a set, {(Ya,7q): @ € A} is a family of
topological spaces and f, : X — Y, is a given function for all &« € A. Assuming
that S, C 7, is a sub-basis for the topology 7, for each a € A, show S :=
Uacafy 1(Ss) is a sub-basis for the topology 7 := 7(f : @ € A).

Notation 7.77 Let X be a set and p := {py }re be a family of semi-metrics
on X, i.e. pp : X x X — [0,00) are functions satisfying the assumptions
of metric except for the assertion that p,(z,y) = 0 implies x = y. Further
assume that pp(x,y) < ppt1(x,y) for all n and if pp(x,y) =0 for alln € N
then x =y. Givenn € N and z € X let

B (z,€) i={y € X : pp(z,y) < €}.

We will write 7(p) form the smallest topology on X such that p,(z,-) : X —
[0,00) is continuous for alln € N and z € X, i.e. 7(p) := 7(pn(z-) :n €N
and z € X).

Exercise 7.78. Using Notation 7.77, show that collection of balls,
B:={B,(z,e):neN, z € X and ¢ > 0},

forms a basis for the topology 7(p). Hint: Use Exercise 7.76 to show B is a
sub-basis for the topology 7(p) and then use Exercise 7.17 to show B is in
fact a basis for the topology 7(p).
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Exercise 7.79. Using the notation in 7.77, let

[e'e}

d(l‘,y) _ Z 27n pn(x7y) .

— l+palz,y)

Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zj}po; C
X converges to x € X iff

lim p,(zx,2) =0 for all n € N.
k—oo

Exercise 7.80. Let {(X,,d,)},-, be a sequence of metric spaces, X :=
[, X, and for oz = (z(n))pe, and y=(y(n)),—; in X let

s dn(x(n),y(n))
d(z,y) = Z m'

(See Exercise 2.107.) Moreover, let m; : X — X; be the projection maps, show
Ta = @y 17Ta; = 7({m; : i € N}).

That is show the d — metric topology is the same as the product topology on
X.
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Measures and Integration

Definition 8.1. A measure p on a measurable space (X, M) is a function

M — [0,00] such that

1. p(@) =0 and
2. (Finite Additivity) If {A;};_, C M are pairwise disjoint, i.e. A;NA; =10

when i # j, then
() A =3 (A
i=1 i=1

3. (Continuity) If A, € M and A, T A, then u(Ay) T u(4).

We call a triple (X, M, ), where (X, M) is a measurable space and u :
M — [0, 00] is a measure, a measure space.

Remark 8.2. Properties 2) and 3) in Definition 8.1 are equivalent to the fol-
lowing condition. If {4;};2, C M are pairwise disjoint then

u(J Ai) = D (A0, (8.1)

To prove this suppose that Properties 2) and 3) in Deﬁmtlon 8.1 and
{4;}2, C M are pairwise disjoint. Let B,, U A; 1 B:= U A;, so that
i=1

=1

® @ i ST A = S A,
p(B) = lim p(B,) = nlggozlu(/lz) = Zlﬂ(A’)'
Conversely, if Eq. (8.1) holds we may take A; = () for all j > n to see that
Property 2) of Definition 8.1 holds. Also if A, T A, let By, := A, \ A,—1. Then
{Bn},_, are pairwise disjoint, A, = Uj_, B; and A = U2, B;. So if Eq. (8.1)
holds we have
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oo

w(A) = Z w(B
=l > 5) = Jim W) = Jm i)

Proposition 8.3 (Basic properties of measures). Suppose that (X, M, u)
is a measure space and E, F € M and {E]}Joi1 C M, then :
(E) Sp(F) if ECF.
(VE;) <32 u(E;).
w(Er) < oo and Ej | E, i.e. E1 D E3 D E3D ... and E = N;E;, then

m(E;) | p(E) as j — oo.

Proof.
1. Since F = EU(F\ E),

WF) = w(E) + p(F\ E) > p(E).

2. Let E =FL; \(E1 U---UE;_1) so that the E; ’s are pair-wise disjoint and
E = UE Since E; C Ej it follows from Remark 8.2 and part (1), that

E) =Y u(Ey) <Y ulE)).

3. Define D; = E; \ E; then D; 1 E; \ E which implies that

T E

1
2.
3

=

p(Ey) = p(B) = lim p(Di) = p(Er) = lim p(E;)

which shows that lim; . p(E;) = p(E).
|
Definition 8.4. A set E C X is a null set if E € M and p(E) =0. If P is

some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for z}

is a null set. For example if f and g are two measurable functions on
(X, M, ), f=g a.e. means that u(f # g) = 0.

Definition 8.5. A measure space (X, M, u) is complete if every subset of a
null set is in M, i.e. for all F C X such that F C E € M with u(FE) =0
implies that F € M.
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Fig. 8.1. Completing a o — algebra.

Proposition 8.6. Let (X, M, u) be a measure space. Set
N={NCX:3FeM > N CF and pu(F) =0}

and ~
M={AUN:Ae M,N e M},

see Fig. 8.1. Then M is a o-algebra. Define i(AUN) = u(A), then fi is the
unique measure on M which extends .

Proof. Clearly X, € M.
Let A € M and N € N and choose F' € M such that N C F and
u(F) =0. Since N¢ = (F\ N)U F*,

(AUN)® = A°NN° = A°N (F\ N U F°)
= [A°N (F\ N)]U[A° N F]

where [A°N (F\ N)] € NV and [A° N F°] € M. Thus M is closed under
complements.

If A, € M and N; C F; € M such that u(F;) = 0 then U(4; U N;)
(UA;) U(UN;) € M since UA; € M and UN; C UF; and p(UF;) < 3 u(F)
0. Therefore, M is a o-algebra.

Suppose AU N; = BU Ny with A,B € M and Ny, No,€ N. Then A C
AUN; C AUN; U Fy = BU Fy which shows that

1(A) < u(B) + p(Fz) = p(B).

Similarly, we show that p(B) < u(A) so that u(A) = u(B) and hence g(AU
N) := p(A) is well defined. Tt is left as an exercise to show fi is a measure,
i.e. that it is countable additive. m

Many theorems in the sequel will require some control on the size of a
measure u. The relevant notion for our purposes (and most purposes) is that
of a o — finite measure defined next.
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Definition 8.7. Suppose X is a set, EC M C P(X) and p : M — [0,00]
is a function. The function p is o — finite on & if there exists E,, € € such
that W(Ep,) < o0 and X = Up—1 E,. If M is a o — algebra and 1 is a measure
on M which is o — finite on M we will say (X, M, u) is a o-finite measure
space.

The reader should check that if p is a finitely additive measure on an
algebra, M, then p is ¢ — finite on M iff there exists X,, € M such that
X, T X and pu(X,) < .

8.1 Example of Measures

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F C P(X) is a countable or finite partition of X and M C P(X)
is the o — algebra which consists of the collection of sets A C X such that

A=U{aec F:aCA}. (8.2)

It is easily seen that M is a o — algebra.
Any measure p : M — [0, 00] is determined uniquely by its values on F.
Conversely, if we are given any function A : F — [0,00] we may define, for

AeM,
pA)= > ANa)=> AMa)laca

acF3aCA acF

where 1,c4 is one if @« C A and zero otherwise. We may check that u is a
measure on M. Indeed, if A = ]_[fil A; and o € F, then o C A iff « C A; for
one and hence exactly one A;. Therefore 1404 = Zfil laca, and hence

pA) =D M) laca = D M) Y laca,
=1

acF aeF
=SS M@ aca, = 3 u(4)
i=1 aeF i=1

as desired. Thus we have shown that there is a one to one correspondence
between measures p on M and functions A : F — [0, c0].

We will leave the issue of constructing measures until Sections 12 and 13.
However, let us point out that interesting measures do exist. The following
theorem may be found in Theorem 12.37 or see Section 12.8.1.

Theorem 8.8. To every right continuous non-decreasing function F: R — R
there exists a unique measure g on Br such that

pr((a,b)) =F(b)—F(a) ¥V —c0<a<b< o (8.3)
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Moreover, if A € Br then

pip(A) = inf {Z(F(bi) — Fa;)) : A € UZ, (as, bi]} (8.4)

= inf {Z(F(bi) — F(a;)): AC H(ai,bi]} : (8.5)

In fact the map F' — pp is a one to one correspondence between right con-
tinuous functions F with F(0) = 0 on one hand and measures p on Br such
that u(J) < oo on any bounded set J € Bg on the other.

Ezample 8.9. The most important special case of Theorem 8.8 is when F(z) =
z, in which case we write m for p . The measure m is called Lebesgue measure.

Theorem 8.10. Lebesque measure m is invariant under translations, i.e. for
B e Bgr and x € R,
m(z + B) = m(B). (8.6)

Moreover, m is the unique measure on Br such that m((0,1]) = 1 and Eq.
(8.6) holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |A|m(B) (8.7)
where A € R, B € Bg and AB := {\z : z € B}.

Proof. Let m,(B) := m(x + B), then one easily shows that m, is a
measure on Bg such that my((a,b]) = b — a for all a < b. Therefore, my =m
by the uniqueness assertion in Theorem 8.8.

For the converse, suppose that m is translation invariant and m((0, 1]) = 1.
Given n € N, we have

Lo k=1 ko (k-1 1
0.1 = e (o 1 = vty (S + 0.7

Therefore,

That is to say
1
0,—]) =1/n.
m((0, ) = 1/n
Similarly, m((0,
invariance of m,

]) = 1/n for all I,n € N and therefore by the translation
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m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an, T a, then (an,by,) | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—a,

i.e. m is Lebesgue measure.

To prove Eq. (8.7) we may assume that A # 0 since this case is trivial to
prove. Now let my(B) := |A| "' m(AB). It is casily checked that m, is again a
measure on Br which satisfies

mx((a, b)) = A7 'm ((Aa, Ab]) = A1 (b — Xa) =b—a
if A\ >0 and
ma((a,8]) = A7 m (A, xa)) = — AT (Ab—Xa) =b—a

if A< 0. Hence m) =m. m

‘We are now going to develope integration theory relative to a measure. The
integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

8.2 Integrals of Simple functions

Let (X, M, 1) be a fixed measure space in this section.

Definition 8.11. A function ¢ : X — F is a simple function if ¢ is M
— Bgr measurable and ¢(X) is a finite set. Any such simple functions can be
written as

¢=> Aila, with A; € M and \; € F. (8.8)
=1

Indeed, let A1, Ma,..., Ay be an enumeration of the range of ¢ and A; =
¢~ 1({\i}). Also note that Eq. (8.8) may be written more intrinsically as

= Ylg1((y))-

y€eF

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 8.12 (Approximation Theorem). Let f : X — [0,00] be mea-
surable and define
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92n_q
k n
¢n(x) = Z 2—nlf,1(<2%’%])(m) + 2 lffl((Q“,oc])(m)
k=0
22n 1
=> on U <<ty (@) + 2" go0ny (2)
k=0

then ¢, < f for all n, ¢, (x) T f(z) for all x € X and ¢, T [ uniformly on
the sets Xpr := {x € X : f(x) < M} with M < co. Moreover, if f : X —
C is a measurable function, then there ezists simple functions ¢, such that
limy, 00 P () = f(2) for all x and |pn| T |f] as n — oco.

Proof. It is clear by construction that ¢,(xz) < f(z) for all  and that
0< f(x) = ¢n(z) <27™if € Xan. From this it follows that ¢,,(z) 1 f(z) for
all z € X and ¢, T f uniformly on bounded sets.

Also notice that

k k+1 2k 2k +2
271,’ on } (2n+1’ 2n+1 ]
2k 2k +1 2k +1 2k+2
= (2n+17 on+1 Ju( ont+l ’ ontl ]

and for o € S (¥, 351]) s 6u(e) = dni(e) = o and for @ €
FHEEL 3] o) = 3 < 35 = 6 (@). Similarly

(2", 00] = (2", 2" U (2", o0,

so for x € f7H(2" x]) ¢u(x) = 27 < 2" = ¢, 1(x) and for z €
“L((2m, 27, gnia(x) > 2" = ¢, (z). Therefore ¢, < ¢yq1 for all n and
we have completed the proof of the first assertion.
For the second assertion, first assume that f : X — R is a measurable
function and choose ¢ to be simple functions such that ¢;* T fr as n — oo
and define ¢,, = ¢, — ¢,,. Then

|¢'n| - ¢+ + ¢n S ¢n+1 + ¢T_L+1 = ‘¢11+1|

and cloarly | ¢ = 67 + 05 1 fo+f- = |f| and ¢ = 6 — 7 — fr —f- = f
as n — o0o.

Now suppose that f: X — C is measurable. We may now choose simple
function u, and v, such that |u,| 7 |Ref|, |va] T Im f|, u, — Ref and
v, — Im f as n — co. Let ¢, = u,, + vy, then

|6n|? = u2 + 02 1 |Re f|* + |Im f|* = | f]?

and ¢, = u, +iv, - Ref+ilmf=fasn—oco. m
We are now ready to define the Lebesgue integral. We will start by inte-
grating simple functions and then proceed to general measurable functions.
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Definition 8.13. Let F = C or [0,00) and suppose that ¢ : X — T is a simple
function. If F = C assume further that p(¢~*({y})) < oo for all y # 0 in C.
For such functions ¢, define 1,(¢) by

L(8) =D yn(@™ ' ({y}).

Proposition 8.14. Let A € F and ¢ and ¢ be two simple functions, then I,
satisfies:

1.
I,(Ap) = A, (9). (8.9)

Lu(¢+ ) = 1u(¥) + 1u(9).
3. If ¢ and ¥ are non-negative simple functions such that ¢ < 1 then
Iu(0) < 1u(¥).
Proof. Let us write {¢ =y} for the set ¢~ ({y}) C X and u(¢ = y) for
n({d=y}) = u(@" ({y})) so that

L) = >yl =y).

yeC
We will also write {¢ = a,v = b} for ¢~1({a}) N ~1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that A € F then

L) => yuAo=y)=> yulé=y/N

yeRr yeRr
=D Az (¢ = 2) = Mu(9)
z€eF

provided that A # 0. The case A = 0 is clear, so we have proved 1.
Suppose that ¢ and ¥ are two simple functions, then

L(¢+v) =D zpue+1v =2)

z€F

= Zz w(Uper{¢ =w, v =z—w})
z€F

=32 b =w, v =2—w)
zeF  weF

=Y Grwue=w, v =2)
ERIS

= =2+ wp(d=w)
z€F weF

= 1u(¥) + 1u(9)-
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which proves 2.
For 3. if ¢ and v are non-negative simple functions such that ¢ <

I($) =D ap(d=a)= > ap(¢=a,9 =)

a>0 a,b>0
<D bule=a, b =b)=> bu(t =b) = L(¥),
a,b>0 b>0

wherein the third inequality we have used {¢p =a,9p =b} =0ifa>b. m

8.3 Integrals of positive functions

Definition 8.15. Let LT = {f : X — [0,00] : f is measurable}. Define

/ fdp =sup {I.(¢) : ¢ is simple and ¢ < f}.
p's

Because of item 3. of Proposition 8.14, if ¢ is a non-negative simple function,
Jx ¢dp = I.(¢) so that [, is an extension of I,. We say the f € Lt is
integrable if [, fdu < co.

Remark 8.16. Notice that we still have the monotonicity property: 0 < f < g
then

/ fdp =sup{I,(¢) : ¢ is simple and ¢ < f}
X

<sup{I,() : ¢ is simple and ¢ < g} < / qg.
X

/chd,uzc/deu.

Also notice that if f is integrable, then u ({f = c0}) = 0.

Similarly if ¢ > 0,

Lemma 8.17. Let X be a set and p : X — [0,00] be a function, let p =
Y owex PE)0z on M =P(X), i.c.

w(A) =" pl).

T€EA

If f : X — [0,00] is a function (which is necessarily measurable), then

/X fin=3 ot
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Proof. Suppose that ¢ : X — [0,00] is a simple function, then ¢ =
> ef0,00) Zlo—1({z1) and

Sopv=Y pla) > zlg@ep@ = Y. 2> pa) ey (@)

zeX z€[0,00] z€[0,00] wEX
= 3 o) = [ odn
z€[0,00] X

So if ¢ : X — [0,00) is a simple function such that ¢ < f, then

/ ¢dp =Y pp <> pf.
X X X

Taking the sup over ¢ in this last equation then shows that

/deu < XX:pf-

For the reverse inequality, let A CC X be a finite set and N € (0, 00).
Set fN(x) = min{N, f(z)} and let ¢n 4 be the simple function given by
dn.a(z) == 1a4(x) fN(2). Because dn (z) < f(z),

;pr :¥9¢N,A :/X¢N,Adu§ /deu~

Since fN 1 f as N — oo, we may let N — o0 in this last equation to concluded

E /)’ ’d}l
A </X

and since A is arbitrary we learn that

;MSANM

Theorem 8.18 (Monotone Convergence Theorem). Suppose f, € LT
is a sequence of functions such that f, T f (f is necessarily in L™) then

[t [Fasn—o.

Proof. Since f, < fi,, < f, for all n < m < oo,

[tz [tz [
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from which if follows f fn is increasing in n and

lim [ f, < / 1. (8.10)

n—oo

For the opposite inequality, let ¢ be a simple function such that 0 < ¢ < f
and let « € (0,1). By Proposition 8.14,

/fn > /1E7,,fn > /nfwza . . (8.11)

‘Write qf) = Z )\i]-Bl with \; >0 and B; € M, then

A fp, © E&ZM/1m=ZMM&ﬂ%

="\ lim p(E, N B;)

—ZMZH - [o

Using this we may let n — oo in Eq. (8.11) to conclude

lim [ f,>a lim qf)—a/d)

n—0o0 n—o0

Because this equation holds for all simple functions 0 < ¢ < f, form the
definition of [ f we have lim S fo = of f. Since @ € (0,1) is arbitrary,

lim [ f, > [ f which comblned with Eq. (8.10) proves the theorem. m

n—00
The following simple lemma will be use often in the sequel.

Lemma 8.19 (Chebyshev’s Inequality). Suppose that 