Part X

PDE Examples

36

Some Examples of PDE’s

Ezample 36.1 (Traffic Equation). Consider cars travelling on a straight road,
i.e. R and let u(¢, z) denote the density of cars on the road at time ¢ and space
x and v(t,z) be the velocity of the cars at (¢,z). Then for J = [a,b] C R,
Ny(t) == fab u(t, z)dx is the number of cars in the set J at time ¢. We must
have

/ At 2)de = Ny() = u(t, a)o(t, a) — u(t, b)o(t, b)

b0
= — — |u(t z)| dx.
| et apte.o) de
Since this holds for all intervals [a, ], we must have

0
u(t, x)dx = o [u(t, z)v(t, z)] .
To make life more interesting, we may imagine that v(¢, ) = —F(u(t, ), uz(t, )),

in which case we get an equation of the form

0 0
—u = —G(u,u,) where G(u,u,) = —u(t,z)F(u(t,x), us(t,x)).
ot ox

A simple model might be that there is a constant maximum speed, v,, and
maximum density w,,, and the traffic interpolates linearly between 0 (when
U = Up,) t0 vy, when (u = 0), i.e. v = vy, (1 — u/uy,) in which case we get

0 0

U= TVmpy (u(l —u/um)).
Ezample 36.2 (Burger’s Equation). Suppose we have a stream of particles
travelling on R, each of which has its own constant velocity and let wu(t,x)
denote the velocity of the particle at = at time ¢. Let x(¢) denote the trajec-
tory of the particle which is at zo at time tg. We have C' = &(t) = u(t, z(¢)).
Differentiating this equation in ¢ at ¢ = tg implies
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0 = [ur(t, 2(t) + e (t, 2()E(8)] |i=t, = wi(to, To) + ua(to, zo)ulto, o)
which leads to Burger’s equation
0=1us+u uy.

Ezample 36.3 (Minimal surface Equation). (Review Dominated convergence
theorem and differentiation under the integral sign.) Let D C R? be a bounded
region with reasonable boundary, ug : 9D — R be a given function. We wish
to find the function u : D — R such that u = ug on 9D and the graph of u,
I'(u) has least area. Recall that the area of I'(u) is given by

A(u) = Area(I'(u / V14 |Vul*dz.

Assuming u is a minimizer, let v € C'(D) such that v = 0 on D, then

_d _d 2
07d5|0A(u+sv)fd8|0./D\/1+|V(u+sv)| dx
:L%|0\/1+|V(U+S?J)\2d$

1
:/7Vu~Vvdx
D /14 |Vul?
o [——
D 1+ [Vl

from which it follows that

Vu | v dx

R ;VU =0.

V14|Vl

Ezample 36.4 (Heat or Diffusion Equation). Suppose that 2 C R™ is a region
of space filled with a material, p(z) is the density of the material at 2 € £2 and
¢(x) is the heat capacity. Let u(t, x) denote the temperature at time ¢ € [0, 00)
at the spatial point z € 2. Now suppose that B C R" is a “little” volume in
R™, OB is the boundary of B, and Eg(t) is the heat energy contained in the
volume B at time ¢. Then

Es(t) = /B p(2)elz)ult, z)dz.

So on one hand,

Ep(t) = (/B p(x)e(x)u(t, x)dx (36.1)
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Fig. 36.1. A test volume B in (2.

while on the other hand,
Ep(t) = /é’B(G(m)Vu(t7 z),n(x))do(z), (36.2)

where G(z) is a n X n—positive definite matrix representing the conduction
properties of the material, n(z) is the outward pointing normal to B at = €
OB, and do denotes surface measure on 9B. (We are using (-, -) to denote the
standard dot product on R™.)

In order to see that we have the sign correct in (36.2), suppose that z € 0B
and Vu(z)-n(x) > 0, then the temperature for points near x outside of B are
hotter than those points near = inside of B and hence contribute to a increase
in the heat energy inside of B. (If we get the wrong sign, then the resulting
equation will have the property that heat flows from cold to hot!)

Comparing Eqgs. (36.1) to (36.2) after an application of the divergence
theorem shows that

/B p(x)e(a)ilt, z)de = /B V- (G()Vult,))(x) da. (36.3)

Since this holds for all volumes B C {2, we conclude that the temperature
functions should satisfy the following partial differential equation.

pla)e(@i(t, ) = V- (G()Vult, ))(@). (36.4)

or equivalently that

u(t,x) = V- (G(z)Vu(t,z)). (36.5)

_1
p@)e@)

Setting g% (x) := Gy;(x)/(p(x)c(x)) and

=Y 9(Gij()/(p(x)e(x))) /0"

=1
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the above equation may be written as:
u(t,z) = Lu(t, x), (36.6)
where ) o2 ‘ o
(EN0) = 300 s 0+ L g () (361
The operator L is a prototypical example of a second order “elliptic” differ-
ential operator.

Ezample 36.5 (Laplace and Poisson Equations). Laplaces Equation is of the
form Lu = 0 and solutions may represent the steady state temperature distri-
bution for the heat equation. Equations like Au = —p appear in electrostatics
for example, where u is the electric potential and p is the charge distribution.

Ezample 36.6 (Shrodinger Equation and Quantum Mechanics).

0 A
it ) = —SU(t2) + V()o(ta) with [4(,0)], = 1.
Interpretation,

/ [ (¢, x)|2 dt = the probability of finding the particle in A at time ¢.
A

(Notice similarities to the heat equation.)

Ezample 36.7 (Wave Equation). Suppose that we have a stretched string sup-
ported at x = 0 and x = L and y = 0. Suppose that the string only undergoes
vertical motion (pretty bad assumption). Let u(t,z) and T'(¢,z) denote the
height and tension of the string at (¢,z), po(x) denote the density in equilib-
rium and Tp be the equilibrium string tension. Let J = [z, 2 + Az]| C [0, L],

®x +Ax

x o

x +Ax

Fig. 36.2. A piece of displace string

then

My(t) = []ut(t,m)po(x)dm
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is the momentum of the piece of string above J. (Notice that po(z)dz is the
weight of the string above x.) Newton’s equations state

dﬂfi;(t) = / ust (¢, ) po(z)dx = Force on String.
J

Since the string is to only undergo vertical motion we require
T(t,x + Azx) cos(apyne) — T(t, ) cos(ay) =0
for all Az and therefore that T'(¢, x) cos(ay) = To, i.e.

To

T(t,x) = cos(an)’

The vertical tension component is given by

sin(az4a:)  sin(ag)
sin(ow 4 Ae) - cos(a)
=Tp [ux(t, z + Az) — ug(t,2)] .

T(t,x + Az) sin(agtaz) — T(t, ) sin(ay) = Tp {

Finally there may be a component due to gravity and air resistance, say

gravity = — / po(z)dx and resistance = —/ k(x)ug(t, x)dx.
J J

So Newton’s equations become
T+ Az
[ unlt)ma)ds = Tous(t. o+ A0) st

T+ Ax r+Ax
7/ po(.’)j)dd?*/ k(x)u(t, z)dx

and differentiating this in Az gives
g (t, ) po () = taw(t, ) — po(x) — k(z)u (L, )
or equivalently that

= Lu z)—1— k(=) u(t,
utt(t,x)fpo(x) wz(t,x) — 1 0(@) +(t, x). (36.8)

Ezample 36.8 (Mazwell Equations in Free Space).

OE

o= B
o V x
oB

2 _ B
5 V x

V-E=V-B=0.
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Notice that

0°E 0B
and similarly, %27],_;3’ = AB so that all the components of the electromagnetic
fields satisfy the wave equation.

Ezample 36.9 (Navier — Stokes). Here u(t,z) denotes the velocity of a fluid
ad (¢, ), p(t,z) is the pressure. The Navier — Stokes equations state,

% + Oyu = vAu — Vp + f with u(0,z) = up(z) (36.9)

V -« = 0 (incompressibility) (36.10)

where f are the components of a given external force and ug is a given di-
vergence free vector field, v is the viscosity constant. The Euler equations
are found by taking v = 0. Equation (36.9) is Newton’s law of motion again,
F = ma. See http://www.claymath.org for more information on this Million
Dollar problem.

36.1 Some More Geometric Examples

Ezample 36.10 (Finstein Equations). Einstein’s equations from general rela-
tivity are

1
Ricy — 5 gSy =T
where T is the stress energy tensor.

Ezample 86.11 (Yamabe Problem). Does there exists a metric g = u®/(*=2) gq
in the conformal class of gy so that g; has constant scalar curvature. This is
equivalent to solving

—vAgou + Sgou = ku®

where v = 42—:;, o= ZJ_“—g, k is a constant and Sy, is the scalar curvature of
Yo-

Ezample 36.12 (Ricci Flow). Hamilton introduced the Ricci — flow,

99

— = Ric,,

ot 7
as another method to create “good” metrics on manifolds. This is a possible
solution to the 3 dimensional Poincaré conjecture, again go to the Clay math
web site for this problem.

Part XI

First Order Scalar Equations



37

First Order Quasi-Linear Scalar PDE

37.1 Linear Evolution Equations

Consider the first order partial differential equation
Ou(t,z) = Z(Ll x)O;u(t, x) with u(0,z) = f(x) (37.1)

where z € R"™ and q;(z) are smooth functions on R". Let A(z) =
(a1(2),...,an(x)) and for u € C* (R",C), let

Au(z) = —|0u($ +tZ(z)) = Vu(z) - Az Zaz

i.e. A(z) is the first order differential operator, A(z) = Y27, a;(x)d;. With
this notation we may write Eq. (37.1) as

dyu = Au with u(0,) = f. (37.2)
The following lemma contains the key observation needed to solve Eq. (37.2).

Lemma 37.1. Let A and A be as above and f € C*(R™,R), then

d ~ -
Ef oetA(z) = Afoettz) = A (fo ') (@). (37.3)
Proof. By definition,

d

Ze(2) = A (@)

and so by the chain rule

LT o h(z) = V(e ()) - AlA(w) = Af(ed(a)
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which proves the first Equality in Eq. (37.3). For the second we will need to
use the following two facts: 1) e(t+9)4 = ¢t4 0 ¢5Z and 2) ¢t4(2) is smooth in
x. Assuming this we find

LT oe @)= Tlof o et (w) = Ly [foctt o (a)] = A (f o) (x)

which is the second equality in Eq. (37.3). m
Theorem 37.2. The function u € C* (D(A),R) defined by
ult,2) = fle () (37.4)

solves Eq. (37.2). Moreover this is the unique function defined on D(A) which
solves Eq. (87.8).

Proof. Suppose that u € C* (D(A),R) solves Eq. (37.2), then

d
dt

—u(t, e (2)) = wy(t, e (2)) — Au(t,e A (2)) =0

and hence

u(t, e (x)) = w(0,z) = f(=).
Let (to,20) € D(A) and apply the previous computations with 2 = e*4(2)
to find u(tp,z) = f(e'*(w0)). This proves the uniqueness assertion. The ver-
ification that u defined in Eq. (37.4) solves Eq. (37.2) is simply the second
equality in Eq. (37.3). m

Notation 37.3 Let !4 f(x) = u(t, ) where u solves Eq. (37.2), i.e.

(@) = fe (@)

The differential operator A : C*(R",R) — C(R",R) is no longer bounded
S0 it is not possible in general to conclude

tAp — 1" in
e ffz;]HA f (37.5)

Indeed, to make sense out of the right side of Eq. (37.5) we must know f
is infinitely differentiable and that the sum is convergent. This is typically
not the case. because if f is only C'. However there is still some truth to
Eq. (37.5). For example if f € C*(R" R), then by Taylor’s theorem with
remainder,

- k t'nf -
ap S Lan = oth)
o n!
by which I mean, for any z € R",
~ n
t=F et f( Z A”f(x) —0ast—0.
n=| O
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Ezample 37.4. Suppose n = 1 and A(z) = 1, A(z) = 8, then ¢4 (z) =z + 1t
and hence

et f(x) = f(z +1t).

It is interesting to notice that

e () = 30 o @)

n=0

is simply the Taylor series expansion of f(z + t) centered at x. This series
converges to the correct answer (i.e. f(x+1t)) iff fis “real analytic.” For more
details see the Cauchy — Kovalevskaya Theorem in Section 39.

Ezample 37.5. Suppose n = 1 and A(z) = 22, fl(g:) = 220, then e'4(z) =
=— on D(A) = {(t,x) : 1 — tz > 0} and hence ' f(z) = f(%=) = u(t, z)

on D(A), where

up = 12U, (37.6)

It may or may not be possible to extend this solution, u(t, x), to a C! solution
on all R2. For example if lim, .o f(z) does not exist, then limsy, u(t, z) does
not exist for any > 0 and so u can not be the restriction of C' — function
on R2. On the other hand if there are constants c. and M > 0 such that
f(x) = ¢4 for x > M and f(z) = c_ for x < —M, then we may extend u to
all R? by defining

_Jeqifz>0andt>1/z
u(t’m)i{c, ifr<Oandt<1/x.

It is interesting to notice that x(t) = 1/t solves #(t) = —22(t) = —A(z(t)),
so any solution u € C'(R?,R) to Eq. (37.6) satisfies Lu(t,1/t) = 0, i.e. u

must be constant on the curves x = 1/t for t > 0 and x = 1/¢ for ¢ < 0. See
Example 37.13 below for a more detailed study of Eq. (37.6).

Example 37.6. Suppose n = 2.

. T 0-1 T
1. If A(z,y) = (—y,x), i.e. A (y) = (1 0 > (y) then
ta [\ _ [cost—sint T
€ y ) \sint cost y
etAf(z,y) = f(zcost—ysint,ycost + xsint).

2.1 Az, y) = (2,y), Pe. A(;) _ ((1)(1)) (;) then

and hence
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. (m) (et 0) <m)
e = f
Y 0e Y

A fz,y) = f (we',ye') .

Theorem 37.7. Given A € C1(R",R") and h € C* (R x R",R).

and hence

1. (Duhamel’ s Principle) The unique solution u € C*(D(A),R) to
uy = Au+ b with u(0,-) = f (37.7)
is given by
ult,) = e f + /Ot AR (r, ) dr

or more explicitly,

w(t,z) = f(et(2)) + / h(r, et=DA ())dr. (37.8)
0

2. The unique solution u € C*(D(A),R) to
uy = Au+ hu with u(0,-) = f (37.9)

is given by
u(t,) = ejot h(r,e(tfﬂ-)A(z))drf(etA(1,)) (37.10)

which we abbreviate as
et(A+Mh)f(m) _ efOt h(-r,e(t—f)A(z))dq—f(etA(m)). (37.11)

Proof. We will verify the uniqueness assertions, leaving the routine check
the Egs. (37.8) and (37.9) solve the desired PDE’s to the reader. Assuming u
solves Eq. (37.7), we find

S et ute )] @) = Sutee @) = (- Au) (e @)

= h(t,e""(x))

and therefore
[e_“iu(t7 )] (z) = u(t,e " (z)) = f(z) +/0 h(r, e~ (x))dr

and so replacing x by e*4(x) in this equation implies

t

u(t,z) = f(et(x 7, e A () dr.
(t.) = f( <>>+/Oh<, (2))d
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Similarly if u solves Eq. (37.9), we find with z(t) := [e‘“‘u(tg)] (x) =
u(t,e"*4(x)) that

At) = %u(t,ff“‘(r)) - (ut - Au) (t, e~ (@)
= n(t, e (@) u(t, e () = h(t, e (2))2(t).
Solving this equation for z(¢) then implies
ult, e—tA(x)) =2(t) = elo h(‘r,a”'A(z))dTZ(O) — o h(r,e**A(z))de(x).
Replacing = by e*”(z) in this equation implies
ult,x) = elo MO TIR@NAT £ (7))
]

Remark 37.8. 1t is interesting to observe the key point to getting the simple
expression in Eq. (37.11) is the fact that

etA(fg) _ (fg)oetA _ (foetA) . (goetA) :et‘&fﬁt’ag‘

That is to say ‘4 is an algebra homomorphism on functions. This property
does not happen for any other type of differential operator. Indeed, if L is some
operator on functions such that e'*(fg) = et f - etl'g, then differentiating at
t = 0 implies

L(fg)=Lf-g+f- Ly,
i.e. L satisfies the product rule. One learns in differential geometry that this
property implies L must be a vector field.

Let us now use this result to find the solution to the wave equation
Ut = Ugy with w(0,-) = f and u(0,-) = g. (37.12)
To this end, let us notice the uy = u,, may be written as
(0 — 02) (01 + 0)u=0
and therefore noting that
(O + 0z) u(t, x)|i=0 = g(x) + ()
we have
(0 + 0p) u(t,x) = ' (g + [') () = (g + ') (x + 1)

The solution to this equation is then a consequence of Duhamel’ s Principle
which gives
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) = e @)+ [ O gt ) 4 i
0

:f(x—t)+/0 6+ ) (@+7—(t—7)dr
=f(x—t)+/0 (g+ 1) (& + 27 — t)dr

t 1
=f(x7t)+/0 g(x+277t)dr+§f(x+277t)|26
t

:%[f(ac-l—t)-l—f(x—t)]+%/;g(w+s)ds.

The following theorem summarizes what we have proved.
Theorem 37.9. If f € C*(R,R) and g € C1(R,R), then Eq. (37.12) has a

unique solution given by

u(t,x) = % (flx+1t)+ flz—t)]+ % [t g(z + s)ds. (37.13)

Proof. We have already proved uniqueness above. The proof that u defined
in Eq. (37.13) solves the wave equation is a routine computation. Perhaps the
most instructive way to verify that u solves uy = ug, is to observe, letting
y = + s, that

/t g(z + s)ds = /Htg(y)dy = /Oﬁtg(y)dy + /Io_t 9(y)dy

—t x—t
x4+t r—t
= / 9(y)dy — / 9(y)dy.
0 0
From this observation it follows that
u(t,z) = F(z+1t)+ Gz —t)
where
1 z 1 r
F@) =3 (1@+ [ atwin) md 60 =5 (1) [ otway).
Now clearly F and G are C? — functions and
(O —0z) F(z+1t)=0and (0;+ 0,) G(z —t) =0
so that

(07 = 02) u(t,z) = (0 — 0:) (04 + 02) (F(z + 1) + G(z — 1)) = 0.
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Now let us formally apply Exercise 37.45 to the wave equation uy = Ugy,
in which case we should let A?> = —92, and hence A = \/—02. Evidently we
should take

cos (+/=02) f(x) = % [f(x+1)+ f(z—t)] and

sin (t —a%) 1t 1 et

—=—alw) =5 [ grsds=3 [ ey
—t r—t

Thus with these definitions, we can try to solve the equation

U = Ugy + h with u(0,-) = f and u(0,-) =g (37.14)

by a formal application of Exercise 37.43. According to Eq. (37.73) we should

have
u(t,) = cos(tA)f + E"HSA)ng /0 sin(( — - DA b7, ydr,

i.e.

T+t—T7

u(t,x) = % [f(x+t)+f(x7t)}+% /_t z+s)ds+= / dT/ dy h(7,y).

t+7
(37.15)

An alternative way to get to this equation is to rewrite Eq. (37.14) in first
order (in time) form by introducing v = u, to find

£(0)-4(2) (1) o
()

01
A:z(az )
502 0

A restatement of Theorem 37.9 is simply

where

A@) = (Z(fi,?ﬂ ; (f(£(+ t) )}_{x(x—;;ﬁé +gt(>m N ;()scdi t))'

According to Du hamel’s principle the solution to Eq. (37.16) is given by

(a6 ) = () [ () o

The first component of the last term is given by

1 1 t—1 1 t THt—7
—/ {/ h(r,z + s)ds} dr = —/ {/ h(r, y)dy} dr
2 0 T—t 2 0 r—t+T7
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which reproduces Eq. (37.15).
To check Eq. (37.15), it suffices to assume f = g = 0 so that

r+t—T7
/ dT/ dy h(r,y).
r—t+T7

t
:%/ (h(ryz+t—7)+ h(r,z —t+7)]dr,
0

Now

1t
U = 5/ [ho(Tyz+t —7) — hy(T,2 —t +7)]d7 + h(t, x)
0
1t
ug(t,x) = 5/ dr [W(ryz+t—7) — h(r,z —t+7)] and
0
1/t
Uga (t, ) = 3 / dr [he(ryz+t —7) — he(r, 2 —t + 7)]

0

so that uy — g, = h and u(0,z) = us(0, ) = 0. We have proved the following

theorem.

Theorem 37.10. If f € C%*(R,R) and g € C1(R,R), and h € C(R?R) such
that h, evists and h, € C(R% R), then Eq. (37.14) has a unique solution
u(t,z) given by Eq. (37.14).

Proof. The only thing left to prove is the uniqueness assertion. For this
suppose that v is another solution, then (u — v) solves the wave equation
(37.12) with f = g = 0 and hence by the uniqueness assertion in Theorem
379, u—v=0. =

37.1.1 A 1-dimensional wave equation with non-constant
coefficients

Theorem 37.11. Let c(x) > 0 be a smooth function and C = c(x)0, and
f,g€ 02(R). Then the unique solution to the wave equation

ugt = C?u = Clgy + gy with u(0,-) = f and u(0,-) =g (37.17)
u(t,x) = % [f(e*tc(x)) + f(etc(x))] —+ %/71 g(e*C (z))ds. (37.18)
defined for (t,x) € D(C) ND(-C).

Proof. (Uniqueness) If u is a C? — solution of Eq. (37.17), then

(0-¢) (0+¢)u0
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and

(at n é) u(t, z)|i—o = g(z) + Cf(2).

Therefore
(0 +C) ult,2) = ¢ (g + ) (@) = (9+ 1) (¢“ ()
which has solution given by Duhamel’ s Principle as
u(t,x) = eit‘z‘ T t ef(tfﬂé 9 e (z))dr
(t5) = (@) + (04+C1) (@)
= 1 @) + [ (a+01) e 0%e)ir
= 1@+ [ (9+01) @ @)as
~fe ) +3 [ o C@histg [ ZreC s
— 5 e @)+ 5@ @)] + 5 [ a(eC @)

(Existence.) Let y = e*%(x) so dy = c(e*(x))ds = c(y)ds in the integral
in Eq. (37.18), then

t etc(z) d
sC _ _y
1 ol (e = / N F
e Ay dy
‘/0 1950 / ﬂ%)g(y’c(y)

B et (z) ﬁ_ e ' ()
7/0 g(y)C(y) /0 90 (y)

From this observation, it follows follows that
u(t,z) = F(e'“(2)) + G(e™*“(x))

where

Fla) =3 (f(:c) + /Ozg(y)%) nd G(a) = 5 (f(m) B /zg(y)cc(lg;))

Now clearly F and G are C? — functions and
(@ - é) F(e!“(z)) = 0 and <8t + é) G(e (z)) =0

so that
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(a;% - 02) ult,z) = (at - é) (at + é) [F(e'€ (z)) + G(e 7€ (2))] = 0.

[
By Du hamel’s principle, we can similarly solve

uge = C?u+ h with w(0,-) = 0 and u(0,-) = 0. (37.19)
Corollary 37.12. The solution to Eq. (37.19) is

1 gt [ Solution to Eq. (87.17)
u(t,x) = 5/ at time t — T dr
O \ with f =0 and g = h(r,")

/ dT/t ’ S (x))ds.

Proof. This is simply a matter of computing a number of derivatives:

up = %/Ot dr [h(T, et (2)) + h(r, e(T_t)C(m))}
it = h(t, )+ & / dr [Ch(T et=1C (2)) — Ch(r, e~ t>0(x))]
Cu = %/; dr Tt_tT Ch(r,e*¢ / dr /Tt fT (i 7,e%(x))ds
%/Ot dr [h(T7 et (2)) — h(r, e(T_t)C(x))} and
C?%u = %/Ot dr [éh(T, =% (1)) — Ch(r, e('rft)c(x))] .

Subtracting the second and last equation then shows uy = A2y + b and it is
clear that u(0,-) = 0 and u:(0,-) =0. =
37.2 General Linear First Order PDE

In this section we consider the following PDE,
Z a;(2)0;u(z) = c(x)u(x) (37.20)
i=1

where a;(x) and ¢(z) are given functions. As above Eq. (37.20) may be written
simply as

Au(z) = c(z)u(z). (37.21)
The key observation to solving Eq. (37.21) is that the chain rule implies
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%u(e“‘(z)) — Au(e*A(2)), (37.22)

which we will write briefly as

—uoe* = Auo e,
ds

Combining Egs. (37.21) and (37.22) implies

d%u(ew(ff)) = c(e*(2))u(e(2))
which then gives
u(e*A (@) = eld <T@y (), (37.23)

Equation (37.22) shows that the values of u solving Eq. (37.21) along any
flow line of A, are completely determined by the value of u at any point on
this flow line. Hence we can expect to construct solutions to Eq. (37.21) by
specifying u arbitrarily on any surface X' which crosses the flow lines of A
transversely, see Figure 37.1 below.

Flow Lines 98—
A

Fig. 37.1. The flow lines of A through a non-characteristic surface 3.

Ezample 37.13. Let us again consider the PDE in Eq. (37.6) above but now
with initial data being given on the line x = ¢, i.e.
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ug = 2u, with u(\,\) = f(N)

for some f € C' (R,R). The characteristic equations are given by

t'(s) = 1 and 2'(s) = —z%(s) (37.24)
and the flow lines of this equations must live on the solution curves to % =

—a?, i.e. on curves of the form z(t) = X5 for C € R and & = 0, see Figure

37.13.

Any solution to u; = 2%u, must be constant on these characteristic curves.
Notice the line = t crosses each characteristic curve exactly once while the
line ¢ = 0 crosses some but not all of the characteristic curves.

Solving Eqs. (37.24) with ¢(0) = A = z(0) gives

A
t(s) = A and = 37.25
(s) =s+ X and z(s) oo ( )
and hence
u(s+ A, 1+—8)\) = f(A) for all A and s > —1/\.
(for a plot of some of the integral curves of Eq. (37.24).) Let
t,x) = A 37.26
(t:2) = (s+ X 72) (37.26)
and solve for A :
z*;m‘x)?—(azt—l))\—x*()
Sl (- B

which gives
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‘o (zt—1) % ngt -1)"+ 41“2. (37.27)

Now to determine the sign, notice that when s = 0 in Eq. (37.26) we have
t =\ =uz. So taking ¢ = x in the right side of Eq. (37.27) implies

(@2 -1) £ /(@2 = 1) +422 (a2 —1) + (22 +1)

2x 2x
. r with +
T | —2/z with —~

Therefore, we must take the plus sing in Eq. (37.27) to find

(zt — 1) 4 1/ (2t — 1)* + 422
2z

and hence

u(t,x) = f et ;ﬁt_l) ar . (37.28)

When z is small,

4z2 2
/\: (xt — 1) + (1 —at) I+ 57 N (kzt)wf—g); _ @
2x - 2 1—xt

so that

u(t,z) = f <1 —mxt> when z is small.
Thus we see that u(t,0) = f(0) and u(t,z) is C* if f is C. Equation (37.28)
sets up a one to one correspondence between solution v to u; = z?u, and
f € CLR,R).
Example 37.14. To solve

Tu, + yu, = Avyu with u = f on S, (37.29)

let A(z,y) = (z,y) = 20, + y9,. The equations for (z(s),y(s)) = e*4(z,y)
are
a'(s) = x(s) and y'(s) = y(s)
from which we learn
e Az,y) = e*(a,y).
Then by Eq. (37.23),

s 20

(e’ (@, y)) = Mo Ty (g y) = ¢3(Frvy(g ).
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Letting (z,y) — e *(z,y) in this equation gives

Wl

u(z,y) = e (177 )y (e (2, y))

and then choosing s so that
s 2 o
L=le™*(z,y)||” = e > (@ +y°),

i.e. so that s = %ln (1’2 + yz) . We then find

u(z,y) = exp (% (1 - ﬁ) xy) f(\/f;’—%)yz)

Notice that this solution always has a singularity at (z,y) = (0,0) unless f is
constant.

Characteristic curves for Eq. (37.29) along with the plot of S.
Example 37.15. The PDE,
e uy + uy = u with u(z,0) = g(z), (37.30)

has characteristic curves determined by 2z’ := e¢* and 3’ := 1 and along these
curves solutions u to Eq. (37.30) satisfy

Lu(w,y) = ulzy). (37.31)

Solving these “characteristic equations” gives
—e72) 0 = / e *r'ds = / 1ds = s (37.32)
0 0

so that

z(s) = —In(e™ ™ — s) and y(s) = yo + s. (37.33)
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From Egs. (37.32) and (37.33) one shows
y(s) =yo+e "0 —e ")
so the “characteristic curves” are contained in the graphs of the functions

y = C — e~ " for some constant C.

Some characteristic curves for Eq. (37.30). Notice that the line y = 0
intersects some but not all of the characteristic curves. Therefore Eq. (37.30)
does not uniquely determine a function u defined on all of R2. On the
otherhand if the intial condition were «(0,y) = g(y) the method would
produce an everywhere defined solution.

Since the initial condition is at y = 0, set yo = 0 in Eq. (37.33) and notice
from Eq.(37.31) that

u(—In(e™™ —s),s) = u(x(s),y(s)) = e*u(xo,0) = e*g(x0). (37.34)
Setting (z,y) = (— In(e~*° — s), s) and solving for (zg, s) implies
s=yand g = —In(e™" +y)
and using this in Eq. (37.34) then implies
u(z,y) = e’g (~In(y +e77)).
This solution is only defined for y > —e™*.

Example 37.16. In this example we will use the method of characteristics to
solve the following non-linear equation,

2?u, +y? u, = u? with =1 on y = 2z. (37.35)

As usual let (z,%) solve the characteristic equations, ' = 2 and 3’ = y? so
that
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(o)) = (T2 ).

1—s20’ 1— sy

Now let (z0,%0) = (A, 2)) be a point on line y = 2z and supposing u solves
Eq. (37.35). Then z(s) = u(z(s), y(s)) solves

2= U (z,y) = 22u, +y? uy = v (z,y) = 22
s

with z(0) = u(A,2X) = 1 and hence

(5 o) = o) = 6) = 5. (37.36)
- (@) = (1 —ASA’ 1 —228/\) - ()\—11— s’ )\—1/12 - s> (37.37)

and solve the resulting equations:
Al os=zland \71/2-s=9y""!

L —2¢~! and hence

for s gives s =z~
l—s=1+2y"" —a =27y (zy + 22 —y). (37.38)
Combining Eqs. (37.36) — (37.38) gives

Ty

Uy = ey

Notice that the characteristic curves here lie on the trajectories determined
by % = ‘;—g, i.e. y=! = 271 + C or equivalently

Some characteristic curves
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37.3 Quasi-Linear Equations

In this section we consider the following PDE,
Az, z) - Vau(t,z) = Zai(x, uw(z))Oiu(z) = c(z,u(z)) (37.39)
i—1

where a;(x, z) and ¢(z, z) are given functions on (z,z) € R" xR and A(z, z) :=
(a1(z, 2),...,a1(x,2)) . Assume u is a solution to Eq. (37.39) and suppose z(s)
solves 2/ (s) = A(z(s),u(z(s)). Then from Eq. (37.39) we find

%WE(S)) = Zai(x(s)v u(x(s)))du(x(s)) = c(a(s), u(z(s))),

see Figure 37.2 below. We have proved the following Lemma.

= e uf,) (ot o)

\’X&)’\

Z,=L(w)

Fig. 37.2. Determining the values of u by solving ODE’s. Notice that potential
problem though where the projection of characteristics cross in x — space.

Lemma 37.17. Let w = (z,2), m(w) = z, m(w) = z and Y(w) =
(A(z,2),c(z, 2)) . If u is a solution to Eq. (37.39), then

u(m o e (o, u(xo)) = m2 0 € (w0, u(0)).
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Let X be a surface in R" (z— space), i.e. ¥ : U C, R®™1 — R such that
X(0) = zp and DX(y) is injective for all y € U. Now suppose ug : ¥ — R is
given we wish to solve for u such that (37.39) holds and u = ug on X. Let

¢(s,y) == m 0™ (2(y), uo(Z(y))) (37.40)
then

%(07 0) = m o Y (o, uo(zo)) = A(zo, uo(zo)) and

D,(0,0) = D, 5(0).

Assume X is non-characteristic at x, that is A(zo, uo(zo)) ¢ Ran X’(0)
where X7(0) : R"™! — R" is defined by

X' (0)v = 9,2(0) = %‘02(81}) for all v € R"7L,

Then (g—f, %,...,%) are all linearly independent vectors at (0,0) €
R x R* So ¢ : R x R*"! — R” has an invertible differential at (0,0)
and so the inverse function theorem gives the existence of open neighborhood
0e W CUandO0 e J C R such that ¢|wa is a homeomorphism onto an

open set V := ¢(J x W) C R", see Figure 37.3. Because of Lemma 37.17, if

LD [,/CP(-TKW)
. UL AN pﬁ
1 w ‘m
[0S

Fig. 37.3. Constructing a neighborhood of the surface X' near xp where we can
solve the quasi-linear PDE.

we are going to have a C! — solution u to Eq. (37.39) with u = ug on ¥ it
would have to satisfy

u(@) =12 0™ ((y), uo(2(y))) with (s,y) := ¢~ (2), (37.41)

ie. z=¢(s,y).

Proposition 37.18. The function u in Fq. (37.41) solves Eq. (37.39) on 'V
with u = ug on X.
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Proof. By definition of u in Eq. (37.41) and ¢ in Eq. (37.40),

¢ (s,y) =mY oe™ (2(y),uo(2(y))) = Ald(s,9)), u(e(s,y))

and

%U(fﬁ(svy)) =Y (¢(s,y), u(¢(s,9))) = c((s,y), u(e(s,y))).  (37.42)

On the other hand by the chain rule,

Lu(ols,)) = Vulé(s,w) - ¢'(s,9)
= Vu(g(s, u)) - A(o(s,y)), u(d(s,y))- (37.43)
Comparing Egs. (37.42) and (37.43) implies
Vu(e(s, y)) - A(¢(s,9), u(d(s,9))) = c(d(s,9), u(¢(s,v)))-
Since ¢(J x W) =V, u solves Eq. (37.39) on V. Clearly u(¢(0,y)) = uo(X(y))

sou=uponX. W

Ezxample 37.19 (Conservation Laws). Let F' : R — R be a smooth function,
we wish to consider the PDE for u = u(t, x),

0= + 0, F(u) = us + F'(u)u, with u(0,z) = g(z). (37.44)

The characteristic equations are given by

t'(s)=1, 2'(s) = F'(2(s)) and disz(s) =0. (37.45)

The solution to Egs. (37.45) with ¢(0) = 0, (0) = « and hence
2(0) = u(t(0), 2(0)) = u(0, 2) = g(x),

are given by

t(s) =s, z(s) = g(z) and z(s) = = + sF'(g(x)).
So we conclude that any solution to Eq. (37.44) must satisfy,

u(s, 2+ sF'(g(z)) = g(2).
This implies, letting 4(x) := x + sF'(g(x)), that
ult,z) = g(vy ' (x)).

In order to find v, ! we need to know 1) is invertible, i.e. that t; is monotonic
in . This becomes the condition

0 <vj(x) =1+tF"(g(x))g (2).

If this holds then we will have a solution.
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Ezxample 37.20 (Conservation Laws in Higher Dimensions). Let F' : R — R"
be a smooth function, we wish to consider the PDE for u = u(t, ),

0=ut+V-F(u) =u+ F'(u) - Vu with u(0,z) = g(z). (37.46)
The characteristic equations are given by
F(s) =1, 2'(s) = F'(2(s)) and d%z(s) —o. (37.47)
The solution to Egs. (37.47) with ¢(0) = 0, (0) = = and hence
2(0) = u(#(0), z(0)) = (0, z) = g(x),
are given by
t(s) = s, 2(s) = g(x) and z(s) = x + sF'(g(x)).
So we conclude that any solution to Eq. (37.46) must satisfy,
u(s,z + sF'(g(x))) = g(x). (37.48)
This implies, letting v5(z) := = + sF'(g(z)), that
u(t,z) = g(; " (x).

In order to find v, ! we need to know 1y is invertible. Locally by the implicit
function theorem it suffices to know,

Yi(@)v = v+ tF" (g(x))dug(z) = [I + tF" (9(x))Vg(z)-]v

is invertible. Alternatively, let y = x+sF’(g(x)), (so z = y—sF'(g(z))) in Eq.
(37.48) to learn, using Eq. (37.48) which asserts g(x) = u(s,z + sF'(g(z))) =
u(s,y),

u(s,y) = gy —sF'(9(x))) = g (y = sF'(u(s,9))) -

This equation describes the solution v implicitly.
Ezample 37.21 (Burger’s Equation). Recall Burger’s equation is the PDE,
Ut + uu, = 0 with (0,z) = g(x) (37.49)

where ¢ is a given function. Also recall that if we view u(t,z) as a time
dependent vector field on R and let z(t) solve

(t) = u(t, 2(t)),

then
Z(t) = up + upd = ug + ugu = 0.

Therefore x has constant acceleration and
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x(t) = z(0) + #(0)t = 2(0) + g(z(0))t.

This equation contains the same information as the characteristic equations.
Indeed, the characteristic equations are

t'(s)=1, 2'(s)=2(s)and 2'(s) = 0. (37.50)

Taking initial condition ¢(0) = 0, z(0) = z¢ and z(0) = u(0,z¢) = g(xo) we
find
t(s) =s, 2z(s)=g(xo) and z(s) = zo + sg(zo).

According to Proposition 37.18, we must have
u((s,zo + sg(zo)) = u(s,z(s)) = u(0,2(0)) = g (zo) . (37.51)

Letting 9¢(x0) 1= xo + tg(zo), “the” solution to (¢,x) = (s,zo + sg(xo)) is
given by s = ¢ and zg = ¢; (). Therefore, we find from Eq. (37.51) that

u(t,z) = g (¢ (@) - (37.52)
This gives the desired solution provided 1; ! is well defined.

Ezample 37.22 (Burger’s Equation Continued). Continuing Example 37.21.
Suppose that g > 0 is an increasing function (i.e. the faster cars start to the
right), then v, is strictly increasing and for any ¢ > 0 and therefore Eq. (37.52)
gives a solution for all ¢ > 0. For a specific example take g(x) = max(z,0),

then ( o if
B 1+t)zifx>0
wt(m)f{ T ifz <0

and therefore,
A+t lzifz >0
v (@) = { z ifz <0

“1zif z
ult,z) =g (¢ ' (2)) = {(1 +3) iiz gzg

Notice that u(t,z) — 0 as ¢ — oo since all the fast cars move off to the right
leaving only slower and slower cars passing = € R.

Ezample 37.23. Now suppose g > 0 and that ¢’(zo) < 0 at some point 2y €
R, i.e. there are faster cars to the left of xg then there are to the right of
Tg, see Figure 37.4. Without loss of generality we may assume that zg =
0. The projection of a number of characteristics to the (t,z) plane for this
velocity profile are given in Figure 37.5 below. Since any C? — solution to
Eq.(37.49) must be constant on these lines with the value given by the slope,
it is impossible to get a C? — solution on all of R? with this initial condition.
Physically, there are collisions taking place which causes the formation of a
shock wave in the system.
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-2.5 -1.25 0 1.25 25

Fig. 37.4. An intial velocity profile where collisions are going to occur. This is the
graph of g(z) =1/ (1+ (z+1)?).

Fig. 37.5. Crossing of projected characteristics for Burger’s equation.

37.4 Distribution Solutions for Conservation Laws

Let us again consider the conservation law in Example 37.19 above. We will
now restrict our attention to non-negative times. Suppose that u is a C! —
solution to

up + (F(u)), = 0 with u(0,z) = g(x) (37.53)

and ¢ € C%(]0,0) x R). Then by integration by parts,
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0=— ./R dz /tzo di(u + F(u)g)p

_ 7/]1{[%0} ‘t:o dm+4dx[20dt(u¢t+F(u)¢z)
_ / o(2)0(0, 5)dz + / da / dt(ult, 2)oe(t, 2) + F(ult, 2))ou(t, 7).
J R >0

Definition 37.24. A bounded measurable function u(t, x) is a distributional
solution to Eq. (37.53) iff

0=R/g(x)<p(0,x)dx+/Rd:r/t>o dt(u(t, )i (t, x) + F(u(t,z))d(t, x))

for all test functions ¢ € C%(D) where D = [0,00) x R.

Proposition 37.25. If u is a distributional solution of Eq. (37.53) and u is
C' then u is a solution in the classical sense. More generally if u € C1(R)
where R is an open region contained in D° := (0,00) x R and

/R do /t 1, 2)6,(0,) + Fu(t,)0(1,)) = 0 (37.54)

for all ¢ € C?(R) then u; + (F(u))z :=0 on R.

Proof. Undo the integration by parts argument to show Eq. (37.54) im-
plies

[+ (F@).)pdodt =0

for all ¢ € C1(R). This then implies u; + (F(u)), =0on R. m

Theorem 37.26 (Rankine-Hugoniot Condition). Let R be a region in
D° and x = c(t) for t € [a,b] be a C curve in R as pictured below in Figure
37.6.

Suppose u € C*(R\ ¢([a,b])) and u is bounded and has limiting values u™
and u~ on x = c(t) when approaching from above and below respectively. Then
w is a distributional solution of uy + (F(u))z =0 in R if and only if

ug + %F(u) :=0o0n R\ c(a,b]) (37.55)

and for all t € [a,b],

e(t) [ut (8, e(t) —u™ (£ c(t)] = F(u® (t,c(t))) — F(u™ (t,c(t).  (37.56)
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®

x=clt)

Fig. 37.6. A curve of discontinuities of w.

Proof. The fact that Equation 37.55 holds has already been proved in the
previous proposition. For (37.56) let {2 be a region as pictured in Figure 37.6
above and ¢ € CL(£2). Then

0= /(u ¢t + F(u)pg)dt dx

Q
= /(ud)t + F(u)py)dt doe + /(u(j)t + F(u)¢y)dt dx (37.57)
2 Q-
where 0
x> c(t
24 = {(t,l‘) e fN: Z‘<C(t)}.
Now the outward normal to {21 along c is
1+ ¢(t)?

and the “surface measure” along c is given by do(t) = /1 + ¢(t)2dt. Therefore

n(t) do(t) = £(é(t), —1)dt

where the sign is chosen according to the sign in 2. Hence by the divergence
theorem,
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/(u O+ F(u)gy)dt de
0
= /(u,F(u)) (b, pz)dt dx
24
_ / (u, F(u)) - n(t) do(t)
9024
]
= i/ (8, e(t)) (uif (¢, e())é(t) — F (i (8, e(t))))dt.

Putting these results into Eq. ( 37.57) gives

8
0= / (6(t) [ut (8, e(8)) — u™ (1, (1))]
— (F(u*(t,c(t)) — F(u™ (t,¢(t))}o(t, ct))dt
for all ¢ which implies
o) [ut (t,e(t) — u™(t,c(t)] = F(ut(t, c(t) — F(u™(t,c(t)).
| |

Example 37.27. In this example we will find an integral solution to Burger’s
Equation, u; + uu, = 0 with initial condition

0 r>1
u(0,z) =¢ 1—20<z<1
1 z < 0.

The characteristics are given from above by
$(t) = (1 — Z‘())t +x9 X9 € (O7 1)
x(t) =x0+ ¢ if 2o <0 and
x(t) = xg if g > 1.
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Projected characteristics

For the region bounded determined by ¢ <z <1 and ¢ < 1 we have u(t, x) is
equal to the slope of the line through (¢,z) and (1,1), i.e.

z—1

u(t,r) = ——.

(to) = T

Notice that the solution is not well define in the region where characteris-
tics cross, i.e. in the shock zone,

Ry:={(t,z):t>1, z>1and z <t},

see Figure 37.7. Let us now look for a distributional solution of the equation

;S\ovt“ﬂ'(_ _,”} ¢
R /i \
\Ami

Fig. 37.7. The schock zone and the values of u away from the shock zone.

valid for all (z,t) by looking for a curve c(t) in Ry such that above ¢(t), u =0
while below ¢(t), u = 1.

To this end we will employ the Rankine-Hugoniot Condition of Theorem
37.26. To do this observe that Burger’s Equation may be written as u; +
(F(u))z = 0 where F(u) = “72 So the Jump condition is

éus —us) = (Fluy) - F(u))

0oem (L)t

Hence ¢(t) = § and therefore c(t) = t+1 for t > 0. So we find a distributional
solution given by the values in shown in Figure 37.8.

that is
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// x Cw - //j;‘/wbo
s S,

\ \iﬂ

Fig. 37.8. A distributional solution to Burger’s equation.

37.5 Exercises

Exercise 37.28. For A € L(X), let

et =) An (37.58)

n=0
Show directly that:

1. et is convergent in L(X) when equipped with the operator norm.
2. ' is differentiable in ¢ and that fe'4 = Aet4.

Exercise 37.29. Suppose that A € L(X) and v € X is an eigenvector of
A with eigenvalue ), i.e. that Av = Av. Show e4v = e v. Also show that
X =R"” and A is a diagonalizable n X n matrix with

A =SDS™! with D = diag(\1,...,\)
then e!4 = SetPS~1 where e!P = diag(e!™,. .., et').

Exercise 37.30. Suppose that A, B € L(X) and [A,B] := AB — BA = 0.
Show that e(A+5) = e4eb.

Exercise 37.31. Suppose A € C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s,t € R. Show
y(t) = e(fﬂt A(T)dT)x

is the unique solution to y(t) = A(t)y(t) with y(0) = .

Exercise 37.32. Compute ¢4 when

= ()
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and use the result to prove the formula

cos(s +t) = cosscost — sin ssin t.

Hint: Sum the series and use et4es4 = e(t+s)4,

Exercise 37.33. Compute e‘* when

Oabd
A=100¢
000

with a,b,c¢ € R. Use your result to compute e +4) where A € R and I is
the 3 x 3 identity matrix. Hint: Sum the series.

Theorem 37.34. Suppose that Ty € L(X) for t > 0 satisfies

1. (Semi-group property.) To = Idx and T;Ts = Ty for all s,t > 0.
2. (Norm Continuity) t — Ty is continuous at 0, i.e. [Ty —I| (x) — 0 as
t10.

Then there exists A € L(X) such that T; = e*4 where e* is defined in Eq.
(37.58).

Exercise 37.35. Prove Theorem 37.34 using the following outline.

1. First show ¢ € [0,00) — T} € L(X) is continuous.

2. For ¢ > 0, let S, := %joe T,dr € L(X). Show S — I as € | 0 and conclude
from this that S, is invertible when e¢ > 0 is sufficiently small. For the
remainder of the proof fix such a small € > 0.

3. Show
1 t+e
TtSE = —/ T—,—dT
€ Jt

and conclude from this that
1
limt=Y (T, — 1) S. = = (T. — Idy).
tll%lt (T ) Se e( € dx)

4. Using the fact that S, is invertible, conclude A = lim¢jo ¢t =1 (T} — I) exists
in L(X) and that

A:E(TE—I)S;I.
€

5. Now show using the semigroup property and step 4. that %Tt = AT; for
all £ > 0.

6. Using step 5, show %e*tATt =0 for all £ > 0 and therefore e *AT, =
eiOATO =1.
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Exercise 37.36 (Higher Order ODE). Let X be a Banach space, , U C,
X™and f € C(J xU,X) be a Locally Lipschitz function in x = (21, ..., 2,).

Show the n'! ordinary differential equation,
y ™) = f(ty(®), 5,y (1)
with y®(0) = y¥ for k=0,1,2...,n—1 (37.59)
where (y3,...,y57") is given in U, has a unique solution for small ¢ € J.

Hint: let y(t) = (y(¢),9(t),...y™ D(t)) and rewrite Eq. (37.59) as a first
order ODE of the form
(1) = Z(t,y(t)) with y(0) = (45, .-, 55 ")-
Exercise 37.37. Use the results of Exercises 37.33 and 37.36 to solve
i(t) — 2y(t) + y(t) = 0 with y(0) = a and (0) = b.

Hint: The 2 x 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I + B where B? = 0.

Exercise 37.38. Suppose that A : R — L(X) is a continuous function and
U,V : R — L(X) are the unique solution to the linear differential equations

V(t) = A(t)V(t) with V(0) = T (37.60)

and

U(t) = —U(t)A(t) with U(0) = 1. (37.61)
Prove that V(t) is invertible and that V~1(¢t) = U(¢). Hint: 1) show
4 UtV (t)] = 0 (which is sufficient if dim(X) < oo) and 2) show com-
pute y(t) := V(¢)U(t) solves a linear differential ordinary differential equation
that has y = 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that U(t) must be defined as in Eq. (37.61) is the content
of Exercise 19.32 in the analysis notes.)

Exercise 37.39 (Duhamel’ s Principle I). Suppose that A : R — L(X) is
a continuous function and V' : R — L(X) is the unique solution to the linear
differential equation in Eq. (37.60). Let x € X and h € C(R,X) be given.
Show that the unique solution to the differential equation:

y(t) = A(t)y(t) + h(t) with y(0) =z (37.62)
is given by )
y(t) =V({)z + V(t) /0 V(1) h(r) dr. (37.63)

Hint: compute <[V =1 (¢)y(t)] when y solves Eq. (37.62).
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Exercise 37.40 (Duhamel’ s Principle II). Suppose that A : R — L(X)
is a continuous function and V : R — L(X) is the unique solution to the linear
differential equation in Eq. (37.60). Let Wy € L(X) and H € C(R, L(X)) be
given. Show that the unique solution to the differential equation:

W(t) = AW (t) + H(t) with W(0) = W, (37.64)
is given by
¢
W)= V()W + V(1) / V(r)"rH(r) dr. (37.65)
0
Exercise 37.41 (Non-Homogeneous ODE). Suppose that U C, X is
open and Z : R x U — X is a continuous function. Let J = (a,b) be an

interval and to € J. Suppose that y € C(J,U) is a solution to the “non-
homogeneous” differential equation:

y(t) = Z(t,y(t)) with y(t,) =z € U. (37.66)

Define Y € CH(J —to,RxU) by Y (t) := (t+to,y(t+1o)). Show that Y solves
the “homogeneous” differential equation

Y (t) = A(Y (¢)) with Y (0) = (¢, y0), (37.67)

where A(t,z) := (1, Z(x)). Conversely, suppose that Y € C'(J — to,R x U)
is a solution to Eq. (37.67). Show that Y () = (¢ + to, y(t + to)) for some y €
C1(J,U) satisfying Eq. (37.66). (In this way the theory of non-homogeneous
ode’s may be reduced to the theory of homogeneous ode’s.)

Exercise 37.42 (Differential Equations with Parameters). Let W be
another Banach space, U x V C, X x W and Z € C(U x V, X) be a locally
Lipschitz function on U x V. For each (z,w) € U xV, let t € J, ., — ¢(t,, w)
denote the maximal solution to the ODE

y(t) = Z(y(t), w) with y(0) = x. (37.68)

Prove

D:={({t,z,w) eERxUXV:te Jyu} (37.69)

isopen in R x U x V and ¢ and d) are continuous functions on D.
Hint: If y(¢) solves the differential equation in (37.68), then v(t) :=
(y(t), w) solves the differential equation,

o(t) = A(v(t)) with v(0) = (z, w), (37.70)

where A(z,w) := (Z(x,w),0) € X xW and let ¢ (¢, (z,w)) := v(t). Now apply
the Theorem 6.21 to the differential equation (37.70).
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Exercise 37.43 (Abstract Wave Equation). For A € L(X) and ¢ € R, let

)277

e
cos(tA) Z a7 g
SlIl i )2n+ 2n+1A2n
— (2n+1)! '

Show that the unique solution y € C2 (R, X) to

ii(t) + A%y(t) = 0 with y(0) = 5o and §(0) =g € X (37.71)
is given by
sin(tA) .
y(t) = cos(tA)yo + 1(4 )yg.

Remark 37.44. Exercise 37.43 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (37.71) as a first order ODE using Exercise
37.36. In doing so you will be lead to compute e'® where B € L(X x X) is

given by
0 I
B = (7142 0) ’

where we are writing elements of X x X as column vectors, (il ) . You should
2

etB B COb(tA) sm(tA)
—Asin(tA) cos(tA)

then show

where

( 1) 2 1 2
Asin(tA) Z—t ntl g2(n+1)
n=0 +1)

Exercise 37.45 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 37.43, but now consider the ODE,

§(1) + A%(t) = F(t) with y(0) = yo and §(0) =o€ X (37.72)
where f € C(R, X). Show the unique solution to Eq. (37.72) is given by

sin(tA) . tsin((t — ) A)
—a YT /0 N

y(t) = cos(tA)yo + 1

f(r)dr (37.73)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (37.73) from Exercise 37.39 and the comments in
Remark 37.44.

Exercise 37.46. Number 3 on p. 163 of Evans.
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Fully nonlinear first order PDE

In this section let ¢/ C, R™ be an open subset of R™ and (z, z,p) € U x R™ x
R — F(x,z,p) € R be a C? — function. Actually to simplify notation let us
suppose U =R"™. We are now looking for a solution v : R™ — R to the fully
non-linear PDE,

F(z,u(x), Vu(z)) = 0. (38.1)

As above, we “reduce” the problem to solving ODE’s. To see how this might
be done, suppose u solves (38.1) and z(s) is a curve in R" and let

2(s) = u(z(s)) and p(s) = Vu(z(s)).
Then

2'(s) = Vu(z(s)) - z'(s) = p(s) - 2’ (s) and (38.2)

P'(8) = Opr(s) Vu((s)). (38.3)
We would now like to find an equation for z(s) which along with the above
system of equations would form and ODE for (z(s), 2(s),p(s)). The term,
Oy (s) Vu(z(s)), which involves two derivative of u is problematic and we would
like to replace it by something involving only Vu and wu. In order to get the
desired relation, differentiate Eq. (38.1) in z in the direction v to find

0=F, - v+ F.0u+F, 0,Vu=F; v+ F.0,u+ F, - VO,u
=F,-v+F., Vu-v+ (0p,Vu) - v,

wherein we have used the fact that mixed partial derivative commute. This
equation is equivalent to

95, Vul (z,u(2),vu(e)) = —(Fe + F V)| (@u(z),vu(o))- (38.4)

By requiring z(s) to solve 2'(s) = Fp(z(s), 2(s), p(s)), we find, using Eq. (38.4)
and Egs. (38.2) and (38.3) that (z(s),z(s),p(s)) solves the characteristic
equations,
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a'(s) = Fp(x(s), 2(s), p(s))
2 (s) = p(s) - Fp(x(s), 2(s), p(s))
P'(s) = —Fu(x(s), 2(s),p(s)) — Fx(x(s), 2(s), p(s))p(s)-
We will in the future simply abbreviate these equations by
¥ =F,
2 =p-F, (38.5)
p, =—F; - sz~

The above considerations have proved the following Lemma.

Lemma 38.1. Let

A(m,z,p) = (Fp($7 va)ap . Fp(x7 Z7p)7 _Fw(xz Z7p) - FZ(.TE, Z7p)p) )
m1(x, z,p) = x and m2(x, z,p) = 2.

If u solves Eq. (38.1) and xo € U, then

e (zo, u(wo), Vu(zo)) = (x(s), u(z(s)), Vu(z(s))) and
u(z(s)) = my 0 e (o, u(wo), Vu(zo)) (38.6)

where x(s) = m 0 54 (g, u(zo), Vu(2o)).

We now want to use Eq. (38.6) to produce solutions to Eq. (38.1). As in
the quasi-linear case we will suppose ¥ : U C, R"! — R” is a surface,
X(0) = zo, DX(y) is injective for all y € U and up : ¥ — R is given. We wish
to solve Eq. (38.1) for w with the added condition that u(X(y)) = ug(y). In
order to make use of Eq. (38.6) to do this, we first need to be able to find
Vu(X(y)). The idea is to use Eq. (38.1) to determine Vu(X(y)) as a function
of X(y) and ug(y) and for this we will invoke the implicit function theorem. If
u is a function such that u(X(y)) = uo(y) for y near 0 and py = Vu(zp) then

9yup(0) = 9yu(Z(y))|y=0 = Vu(zo) - Z'(0)v = po - Z'(0)v.

Notation 38.2 Let Vxug(y) denote the unique vector in R™ which is tan-
gential to X at X(y) and such that

o (y) = Vsuo(y) - '(0)v for all v € R* L,

Theorem 38.3. Let F : R" x Rx R” — R be a C? function, 0 € U C, R"™1,
2

Y:UcC,R! S R" be an embedded submanifold, (xo,z0,p0) € X X RxR™

such that F(xg, z0,p0) = 0 and zop = X(0), up : X <, R such that ug(zg) =

20, n(y) be a normal vector to X at y. Further assume

1. 9yup(0) = po - X'(0)v = po - 9, X(0) for all v € R*~1.
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2. Fp(z0,%0,20) - n(0) # 0.

Then there exists a neighborhood V.C R™ of o and a C?-function v :V —
R such that uo X = uy near 0 and Eq. (88.1) holds for all z € V.

Proof. Step 1. There exist a neighborhood Uy C U and a function py :
Uy — R™ such that

Po(y)™* = Vzuo(y) and F(Z(y), u(Z((y)),po(y)) =0 (38.7)

for all y € Uy, where py(y)**® is component of po(y) tangential to X. This is

Fig. 38.1. Decomposing p into its normal and tangential components.

an exercise in the implicit function theorem.
Choose ag € R such that Vxu(0) + agn(0) = py and define

flay) == F(X(y),uo(y), Vzuo(y) + an(y)).
Then
of
da
so by the implicit function theorem there exists 0 € Uy C U and o : Uy — R
such that f(a(y),y) =0 for all y € Uy. Now define

(a, 0) = Fp(z0, 20, Vsuo(0) + an(0)) - n(0) # 0,

po(y) := Vsuo(y) + a(y)n(y) for y € Up.

To simplify notation in the future we will from now on write U for Uy.
Step 2. Suppose (z, z, p) is a solution to (38.5) such that F'(z(0), z(0), p(0)) =
0 then
F(xz(s),2(s),p(s)) =0forall t € J (38.8)

because
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d
gF(ac(s), 2(s),p(s)) = Fp -2/ + F,2' + F, - p/
—F, - Fy+ F.(p-F,) —F,- (F, + F.p) =0. (38.9)

Step 3. (Notation). For y € U let

(X(s,9), Z(5,y), P(s,y)) = e (Z(y), uo(y), po(y)):

ie. X(s,v), Z(s,y) and P(s,y) solve the coupled system of O.D.E.’s:

X' = F, with X(0,y) = X(y)
Z' = P F, with Z(0,y) = uo(y)
P' = F, — F,P with P(0,y) = po(y). (38.10)

With this notation Eq. (38.8) becomes
F(X(s,y),Z(s,y), P(s,y)) =0 for all ¢t € J. (38.11)

Step 4. There exists a neighborhood 0 € Uy C U and 0 € J C R such that
X : JxUy — R" is a C* diffeomorphism onto an open set V := X (J x Up) C
R" with zo € V. Indeed, X(0,y) = X(y) so that D, X(0,y)|y=0 = X’(0) and
hence

Dxmmmwo:%Xmma+ymn:pum¢mmm+z%mu

s
By the assumptions, F,(zo,20,p0) ¢ Ran X’(0) and X’(0) is injective, it
follows that DX(0,0) is invertible So the assertion is a consequence of the
inverse function theorem.
Step 5. Define
u(z) = Z(X (),

then u is the desired solution. To prove this first notice that u is uniquely
characterized by

w(X(s,y)) = Z(s,y) for all (s,y) € Jo x Up.

Because of Step 2., to finish the proof it suffices to show Vu(X (s,y)) = P(s,y).
Step 6. Vu(X(s,y)) = P(s,y). From Eq. (38.10),

P.X'=P.F,=2 = %U(X) = Vu(X)- X' (38.12)

which shows

[P—Vu(X)]- X' =0.
So to finish the proof it suffices to show

[P — Vu(X)] - 8,X =0
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for all v € R™™! or equivalently that
P(s,y) - 0,X = Vu(z) - 0,X = 0yu(X) = 0,7 (38.13)

for all v € R™1,
To prove Eq. (38.13), fix a y and let

T(S) = P(S7 y) . a’U)((sv y) - 8UZ(S7 y)
Then using Eq. (38.10),

' =P . 9,X+ P 0,X —08,7'
= (~=F, — F.P)-0,X + P-0,F, — 8,(P - F,)
= (=F, — F.P)-0,X — (0,P) - F,. (38.14)

Further, differentiating Eq. (38.11) in y implies for all v € R®~! that

Fy 0,X + F.0,Z+F,-9,P =0. (38.15)
Adding Egs. (38.14) and (38.15) then shows

r'=-F,P-8,X+F.0,Z =—F.r

which implies
r(s) = e Jo F=(5ZP)0w)dor )

This shows r = 0 because po(y)T = (Vsuo) (X(y)) and hence

7(0) = po(y) - 0w X(y) — Ovuo(Z(y))
= [po(y) — Vzuo(X(y))] - 8, %(y) = 0.

Ezample 38.4 (Quasi-Linear Case Revisited). Let us consider the quasi-linear
PDE in Eq. (37.39),

Az, z) - Vau(z) — c(z,u(z)) = 0. (38.16)

in light of Theorem 38.3. This may be written in the form of Eq. (38.1) by
setting
F(z,z,p) = Az, 2) - p — c(x, ).

The characteristic equations (38.5) for this F are
¥=F,=A
Z=p-F,=p-A
p *Fz*sz:*(Az'pfcz)f(AZ'pch)p
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Recalling that p(s) = Vu(s,x), the z equation above may expressed, by using
Eq. (38.16) as
Z=p-A=c

Therefore the equations for (x(s), z(s)) may be written as
2'(s) = Az, 2) and 2’ = ¢(z, 2)

and these equations may be solved without regard for the p — equation. This
is what makes the quasi-linear PDE simpler than the fully non-linear PDE.

38.1 An Introduction to Hamilton Jacobi Equations

A Hamilton Jacobi Equation is a first order PDE of the form
oS .
E(t7 x)+ H(z,V;S(t,x)) =0 with S(0,z) = g(z) (38.17)

where H : R x R® — R and g : R — R are given functions. In this section
we are going to study the connections of this equation to the Euler Lagrange
equations of classical mechanics.

38.1.1 Solving the Hamilton Jacobi Equation (38.17) by
characteristics

Now let us solve the Hamilton Jacobi Equation (38.17) using the method of
characteristics. In order to do this let

(po.7) = (5 98(t,2)) and F(t,,7,p) = po + H(a,p).

Then Eq. (38.17) becomes

oS

0= (tx&at

V2S).

Hence the characteristic equations are given by
d
E(t(s),x(s)) = Flpo,py = (1, VpH (2(5),p(s))

%(po,iﬂ)(s) = —Fa) — Fz(po,p) = —Flu,2) = (0, =V H(z(s),p(s)))
and
2'(s) = (0, 1) - Flpo.p) = Po(s) +p(s) - V. H (z(s), p(s))-

Solving the t equation with ¢(0) = 0 gives t = s and so we identify ¢ and s
and our equations become
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#(0) = V, H((0), p(0) (38.19)
5(0) = ~VH (), p(t) (38.19)
& |G a0 = (o) =0 ana
SISt w(8))] = 55200 = S (6,2(6)) +p(e) -V, H((0), p(0)

= —H(x(t),p(t)) + p(t) - VpH (2(t), p(t)).
Hence we have proved the following proposition.

Proposition 38.5. If S solves the Hamilton Jacobi Equation Eq. 38.17 and
(z(t),p(t)) are solutions to the Hamilton Equations (38.18) and (38.19) (see
also Eq. (88.29) below) with p(0) = (V5g) (z(0)) then

S(T,2(T)) = g(=(0)) + /0 [p(t) - VpH (2(t), p(t)) — H(x(t), p(t))] dt.

In particular if (T, xz) € R x R™ then

S(T, ) :9(90(0))+/0 [p(t) - Vi H (2(2), p(t)) — H(x(t), p(t))] di.  (38.20)

provided (x,p) is a solution to Hamilton Equations (38.18) and (38.19) sat-
isfying the boundary condition z(T) = x and p(0) = (Vg) ((0)).

Remark 38.6. Let X (t,x0,p0) = x(t) and P(t,xo,po) = p(t) where (z(t),p(t))
satisfies Hamilton Equations (38.18) and (38.19) with (x(0),p(0)) = (x0,po)
and let ¥(t,x) := (¢, X (t,z, Vg(x)). Then ¥(0,z) = (0,z) so

9,%(0,0) = (0,v) and 9,%(0,0) = (1, V,H(x, Vg(z)))

from which it follows that ¥’(0,0) is invertible. Therefore given a € R", the
exists € > 0 such that ¥~1(¢,z) is well defined for |t| < € and |z — a| < €.
Writing W~1(T, z) = (T, zo(T, x)) we then have that

(m(t),p(t)) = (X(tv IO(Ta SL’), Vg(l’o(T, :E)), P(tv L0, VQ(:EO(Tv I)))
solves Hamilton Equations (38.18) and (38.19) satisfies the boundary condi-
tion z(T) = x and p(0) = (V,g) (2(0)).
38.1.2 The connection with the Euler Lagrange Equations

Our next goal is to express the solution S(7',z) in Eq. (38.20) solely in terms
of the path z(t). For this we digress a bit to Lagrangian mechanics and the
notion of the “classical action.”
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Definition 38.7. Let T > 0, L : R® x R® — R be a smooth “Lagrangian”
and g : R™ — R be a smooth function. The g — weighted action I%(q) of a
function q € C2%([0,T],R™) is defined to be

15(q) = gla(0)) + / Liq(t), (t))dr.

When g = 0 we will simply write It for I .
We are now going to study the function S(7T',z) of “least action,”

S(T,z) :=inf {I#.(q) : ¢ € C*([0,T]) with ¢(T) =z} (38.21)
T
= inf {g(q(O)) +/0 L(q(t),4(t))dt : ¢ € C*(]0,T)) with ¢(T) = :c} )

The next proposition records the differential of I¥(q).

Proposition 38.8. Let L € C*(R" x R™,R) be a smooth Lagrangian, then
for ¢ € C*([0,T],R") and h € C1([0,T],R")

DIf(q)h =[(Vg(q) — D2L(q,q)) - h],g + [D2L(q, ) - h],_p

+ [ (Dika.) = DL ) (38.22)

Proof. By differentiating past the integral,
d Ta , ,
Ondr(a) = —lolr(a+sh) = | ——loL(a(t) + sh(?), q(t) + sh(t))dt
0

T
:/0 (D1L(g, @)k + D2L(q, 4)h)dt

T 4 . T
= / (D1L(g,4) — EDQL(‘L q))h dt + D2L(q, ¢)h o
0

This completes the proof since I¥.(q) = g(q(0)) + Ir(q) and 9y [g(¢(0))] =
Vg(q(0)) - h(0). m

Definition 38.9. A function ¢ € C%([0,T],R") is said to solve the Euler
Lagrange equation for L if q solves

DiL(g, )~ £[D2L(a. )] = . (38.23)

This is equivalently to q satisfying DIr(q)h = 0 for all h € C1([0,T],R")
which vanish on 0[0,T] = {0,T}.

Let us note that the Euler Lagrange equations may be written as:

D1 L(q,4) = D1D2L(q, §)¢ + D3L(q, §).
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Corollary 38.10. Any minimizer q (or more generally critical point) of I%(+)
must satisfy the FEuler Lagrange Eq. (38.23) with the boundary conditions

q(T) = = and Vg(q(0)) = V4L(q(0),q(0)) = D2L(q(0),¢(0)).  (38.24)

Proof. The corollary is a consequence Proposition 38.8 and the first deriv-
ative test which implies DIf(¢)h = 0 for all h € C([0,T],R") such that
h(T)=0. m

Ezample 38.11. Let U € C*(R™,R), m > 0 and L(q,v) = %m\v|2 - U(g).
Then
D1 L(g,v) = =VU(q) and DsL(q,v) = mv

and the Euler Lagrange equations become
VU(q) = - mi] = mi
q) = i mq] = mq
which are Newton’s equations of motion for a particle of mass m subject to a
force —=VU. In particular if U = 0, then ¢(t) = ¢(0) + t4(0).
The following assumption on L will be assumed for the rest of this section.

Assumption 1 We assume [D3L(q, v)]_1 exists for all (q,v) € R xR™ and
v — DoL(q,v) is invertible for all geR™.

Notation 38.12 For q,p € R™ let

V(g,p) == [D2L(g,")] " (p)- (38.25)
Equivalently, V (q,p) is the unique element of R™ such that
D,L(q,V(q,p)) = p- (38.26)

Remark 38.13. The function V : R™ x R™ — R”™ is smooth in (g,p). This
is a consequence of the implicit function theorem applied to ¥(q,v) :=

(¢, D2L(q,v)).
Under Assumption 1, Eq. (38.23) may be written as

G=F(q,q) (38.27)

where
F(¢,4) = D3L(q,4) " {D1L(q,d) — D(D2L(g, d)d}-
Definition 38.14 (Legendre Transform). Let L € C*°(R" x R™,R) be a
function satisfying Assumption 1. The Legendre transform L* € C*°(R™ X
R™ R) is defined by
L*(x,p) :=p-v— L(x,v) where p=V,L(zx,v),

i.e.
L*(z,p) =p-V(z,p) — L(z,V(z,p)). (38.28)
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Proposition 38.15. Let H(z,p) := L*(z,p), ¢ € C%([0,T],R") and p(t) :=
Lu(q(t), 4(t)). Then
1. H € C>*(R" x R",R) and
Hx(x,p) = _Lx(mf V(I7p)) and Hp(x7p) = V(Iap)“

2. H satisfies Assumption 1 and H* = L, i.e. (L*)" = L.
3. The path q € C2([0,T],R™) solves the Euler Lagrange Eq. (38.23) then
(q(t),p(t)) satisfies Hamilton’s Equations:
q(t) = Hp(q(t),p(t))
p(t) = —Hz(q(t), p(t)). (38.29)

4. Conversely if (q,p) solves Hamilton’s equations (38.29) then q solves the
Euler Lagrange Eq. (38.23) and

L H(a(t), (1) = 0. (38.30)

Proof. The smoothness of H follows by Remark 38.13.
1. Using Eq. (38.28) and Eq. (38.26)

Hy(x,p) =p- Va(z,p) — Lu(z,V(2,p)) — Lo(z,V(z,p))Va(z,p)
L

=p-Va(®,p) — La(z,V(2,p)) —p- Va(z,p)
= 7L1(1;7 V(IJ)))

and similarly,
Hy(z,p) = V(x,p) +p- Vp(x,p) — Lo(2,V (x,p))Vy(z,p)
=V(z,p) +p- Vp(z,p) —p- Vp(z,p) = V(z,p).

2. Since Hy(z,p) = V(x,p) = [Ly(x,-)]" (p) and by Remark 38.13, p —
V(z,p) is smooth with a smooth inverse L, (z, -), it follows that H satisfies
Assumption 1. Letting p = L,(z,v) in Eq. (38.28) shows

H(z,Ly(z,v)) = Ly(z,v) - V(z, Ly(z,v)) — L(z, V(x, L,(z, v)))
= Lv(l‘vv) U= L(.IJ,U)

and using this and the definition of H* we find

H(2,0) = v [Hy(z,)] " (v) = H(z, [Hy(z,)] " (v)
=v- Ly(z,v) — H(x, L,(x,v)) = L(z,v).
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3. Now suppose that g solves the Euler Lagrange Eq. (38.23) and p(t) =
Ly(q(t),4(t)), then

B SL0sd) = Lo = L0, Vi 0) =~ (0.7)

and )
¢=[Lv(g,)]" (p) = V(g,;p) = Hp(g,p).
4. Conversely if (g, p) solves Eq. (38.29), then
G = Hy(q,p) = V(g p).

Therefore
Ly(q,9) = Lv(q,V(g,p)) =p

and

%Lv(q, q) =p=—Hy(q,p) = Lq(q,V(q,p)) = Le(q,9)-

Equation (38.30) is easily verified as well:

%H(qvp) = Hy(q,p) - 4+ Hy(q,p) - p
= Hy(q,p) - Hp(q,p) — Hy(q,p) - Hy(q,p) = 0.
| ]

Ezample 38.16. Letting L(q,v) = 3m [v]* — U(q) as in Example 38.11, L sat-
isfies Assumption 1,

V(z,p) = [VoL(z,-)] " (p) = p/m

Hw,p) = L*(2,0) = p- L — Lz, p/m) = 5 bl + U(0)

which is the conserved energy for this classical mechanical system. Hamilton’s
equations for this system are,

¢ =p/mand p=—-VU(q).

Notation 38.17 Let ¢(z,v) = q(t) where q is the unique mazimal solution
to Eq. (38.27) (or equivalently 38.23)) with q(0) = x and ¢(0) = v.

Theorem 38.18. Suppose L € C°(R™ x R™ R) satisfies Assumption 1 and
let H = L* denote the Legendre transform of L. Assume there exists an open
interval J C R with 0 € J and U C, R™ such that there exists a smooth
function xg : J x U — R"™ such that

or(xo(T, ), V(xo(T,2), Vg(zo(T, x))) = . (38.31)
Let
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@1 (t) = Gr(zo(T, ), V(o (T, x), Vg(z0o(T) 7))) (38.32)

so that gy v solves the Euler Lagrange equations, g, v(T) = z, ¢, 7(0) =
zo(T, z) and ¢z, 1(0) = V(xo(T, x), Vg(zo(T, x)) or equivalently

9y L(42,7(0), 42,7(0)) = Vg (o (T, 7).

Then the function

T
S(T,x) = I7(¢z,7) = 9(qz,7(0)) + /0 L(qe7(t), dur(t)dt.  (38.33)

solves the Hamilton Jacobi Equation (38.17).

Conjecture 38.19. For general g and L convex in v, the function

S(t ) = ){Q(Q(O))+/O L(g(7),4(r))dr : q(t) = =}

inf
q€C2([0,t],R"

is a distributional solution to the Hamilton Jacobi Equation Eq. 38.17. See
Evans to learn more about this conjecture.

Proof. We will give two proofs of this Theorem.

First Proof. One need only observe that the theorem is a consequence of
Definition 38.14 and Proposition 38.15 and 38.5.

Second Direct Proof. By the fundamental theorem of calculus and dif-
ferentiating past the integral,

B — g, 2) - oo (T,2) + Lt (), (1)

oT
T
N /O %L(%,T(t),w(ﬂ»dt
= VQ(Q?O(T7J:)) : aiTIO(TVr) + L(qz’T(T)’ qI’T(T))
+ DIT(QI,T) |:aiTqI’T:|

= (g (), 4o (T)) + DI(ge.7) {a%qT} L (83

Using Proposition 38.8 and the fact that ¢, r satisfies the Euler Lagrange
equations and the boundary conditions in Corollary 38.10 we find

DI (g, 7) L%qw} - (DQL@JC,T(t),qx,T(t))a%q,,T(t)) . @)

Furthermore differentiating the identity, ¢, r(T') = z, in T implies

d d . d
= —o7(T) = Gor(T) + ﬁqm,T(t)h:T (38.36)

0=r=ar
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Combining Eqs. (38.34) — (38.36) gives
0S(T, x)
or
Similarly for v € R™,

8178(T7 r) = 8v[f(11“(qgv,T) = DI%((‘]JC,T)) [av(ImT]
= DQL(qw,T(T)» qLT(T))aUQ:c,T(T) = DQL(SU7q'x¢T(T))U

= L(2,4z,7(T))) — D2 L(2, G 7(T)) G, 7 (T)- (38.37)

wherein the last equality we have use ¢, r(T) = z. This last equation is
equivalent to
DoL(z, G, 7(T)) = Vo S(T, )

from which it follows that
Combining Egs. (38.37) and (38.38) and the definition of H, shows

aSéTT, z) _ Lz, V(x, Vo S(T, ) — DoL(, 4o 1 (T))V (x, Vo S(T, z))
=—H(z,V,S(T,x)).
|

Remark 38.20. The hypothesis of Theorem 38.18 may always be satisfied lo-
cally, for let ¢ : R x R™ — R x R™ be given by 9(t,y) := (¢, ¢:(y, V(y, Vg(y)).
Then ¥(0,y) := (0,y) and so

$(0,y) = (1,%) and ¢, (0,y) = idgn

from which it follows that ¢/(0,y)~! exists for all y € R™. So the inverse
function theorem guarantees for each a € R™ that there exists an open interval
JCRwith0 € Jand a € U C, R" and a smooth function xg : J x U — R"
such that

(T, zo(T,x)) = (T, z0(T,z)) for T € Jand z € U,
ie.
or(zo(T, ), V(xo(T,z), Vg(zo(T,x))) = .
38.2 Geometric meaning of the Legendre Transform

Let V be a finite dimensional real vector space and f : V — R be a strictly
convex function. Then the function f*: V* — R defined by

832 38 Fully nonlinear first order PDE
7*(0) = sup (a(v) = F(0) (38.39)
vE

is called the Legendre transform of f. Now suppose the supremum on the
right side of Eq. (38.39) is obtained at a point v € V, see Figure 38.2 below.
Eq. (38.39) may be rewritten as f*(«) > «a(-) — f(-) with equality at v or
equivalently that

—f*(a) + a() < f(-) with equality at some point v € V.
Geometrically, the graph of a € V* defines a hyperplane which if translate

by —f*(c) just touches the graph of f at one point, say v, see Figure 38.2.
At the point of contact, v, & and f must have the same tangent plane and

R

2 L
— \\\:\\\\\\\ - //‘//’////
e T ()
e 14
Y \\‘\\\\ T ~
\\\\\\\‘\

Fig. 38.2. Legendre Transform of f.

since « is linear this means that f/'(v) = a. Therefore the Legendre transform
f*:V* = Rof f may be given explicitly by

/() = a(v) — f(v) with v such that f'(v) = a.



39

Cauchy — Kovalevskaya Theorem

As a warm up we will start with the corresponding result for ordinary differ-
ential equations.

Theorem 39.1 (ODE Version of Cauchy — Kovalevskaya, 1.). Suppose
a>0and f: (—a,a)— Ris real analytic near 0 and u(t) is the unique solution
to the ODE

u(t) = f(u(t)) with u(0) = 0. (39.1)

Then u is also real analytic near 0.

We will give four proofs. However it is the last proof that the reader should
focus on for understanding the PDE version of Theorem 39.1.

Proof. (First Proof.)If f(0) = 0, then u(t) = 0 for all ¢ is the unique
solution to Eq. (39.1) which is clearly analytic. So we may now assume that
f(0) # 0. Let G(2) == [; ﬁdu7 another real analytic function near 0. Then
as usual we have

d
(

and hence G(u(t)) = t. We then have u(t) = G~1(t) which is real analytic
near ¢ = 0 since G'(0) = f(o #0. m
Proof. (Second Proof.) For z € C let u.(t) denote the solution to the
ODE
U (t) = zf(u.(t)) with u,(0) = 0. (39.2)

Notice that if u(¢) is analytic, then ¢ — wu(¢z) satisfies the same equation as
u. Since G(z,u) = zf(u) is holomorphic in z and w, it follows that u, in Eq.
(39.2) depends holomorphically on z as can be seen by showing d,u, = 0, i.e.
showing z — wu, satisfies the Cauchy Riemann equations. Therefore if € > 0 is
chosen small enough such that Eq. (39.2) has a solution for || < € and |z| < 2,
then

u(t Z 8 U (t)]2=0- (39.3)

n= O
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Now when z € R, u,(t) = u(tz) and therefore
M (t)|z—0 = O0u(tz)] =0 = u™ (0)t"

Putting this back in Eq. (39.3) shows

oo

ult) = 3~ (O)r"

nO

which shows u(t) is analytic for ¢ near 0. m

Proof. (Third Proof.) Go back to the original proof of existence of so-
lutions, but now replace ¢t by z € C and fot flu(r))dr by [ f(u(§)ds =
fo u(tz))zdt. Then the usual Picard iterates proof work in the class of holo-
morphic functions to give a holomorphic function u(z) solving Eq. (39.1). m

Proof. (Fourth Proof: Method of Majorants) Suppose for the moment we
have an analytic solution to Eq. (39.1). Then by repeatedly differentiating Eq.
(39.1) we learn

i(t) = f'(u(t)i(t) = f'(u(®) f (u(t))
u®(8) = £ () 2 (u(t) + [f @) flult))

() = po (F@®),- o £ (@t)))

where p,, is a polynomial in n variables with all non-negative integer coeffi-
cients. The first few polynomials are p;(z) = z, pa(z,y) = zy, ps(z,y,2) =
2%z + zy®. Notice that these polynomials are universal, i.e. are independent
of the function f and

)] = [p (£(0),... 700 )
<pa (IFO]- . [£700)]) < (9100),... 9" (0)

where ¢ is any analytic function such that }f(k>(0)| < g®(0) for all k € Z,.
(We will abbreviate this last condition as f < g.) Now suppose that v(¢) is a
solution to

0(t) = g(v(t)) with v(0) =0, (39.4)

then we know from above that
o™ (0) = pn (g(O)7 ... 7‘(]("71)(0)) > )u(")(O)‘ for all n.

Hence if knew that v were analytic with radius of convergence larger that
some p > 0, then by comparison we would find



39 Cauchy — Kovalevskaya Theorem 835

— 1
Zn_ )(0)p" < oo

Z 1 ‘
— n!
and this would show

u(t) =3 =pn (£ 70O 1

n=0

is a well defined analytic function for |t| < p.

I now claim that u(t) solves Eq. (39.1). Indeed, both sides of Eq. (39.1) are
analytic in ¢, so it suffices to show the derivatives of each side of Eq. (39.1)
agree at t = 0. For example u(0) = f(0), @(0) = <|of(u(t)), etc. However
this is the case by the very definition of u(™(0) for all n.

So to finish the proof, it suffices to find an analytic function g such that
’f““)(O)! < g®)(0) for all k € Z, and for which we know the solution to Eq.
(39.4) is analytic about ¢ = 0. To this end, suppose that the power series
expansion for f(¢) at ¢ = 0 has radius of convergence larger than r > 0, then

Yoo %f(") (0)r™ is convergent and in particular,

%f(n) (O)Tn

C := max
n

from which we conclude

0] <o

IL

Let
() = i Crmun=0—t_—c- '
g '77170 T l—ufr Tr—u’
Then clearly f < g. To conclude the proof, we will explicitly solve Eq. (39.4)
with this function g(t),

o(t) =C with v(0) = 0.

r
—o(t)
By the usual separation of variables methods we find rv(t) — 20%(¢) = Crt,
ie.
207t — 2rv(t) +v23(t) =0
which has solutions, v(¢) = r + v/r2 — 2Crt. We must take the negative sign
to get the correct initial condition, so that

—Vr2=2Crt=r—ry/1-2Ct/r (39.5)

which is real analytic for |t| < p:=r/C. =
Let us now Jazz up this theorem to that case of a system of ordinary
differential equations. For this we will need the following lemma.
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Lemma 39.2. Suppose h : (—a,a)?— R? is real analytic near 0 € (—a,a)?,

then
Cr

h< —————
rT—2—-—Zg

for some constants C and r.

Proof. By definition, there exists p > 0 such that

z) = Zhaz“ for |z| < p
«@

where hq = £0%h(0). Taking z = r(1,1,...,1) with 7 < p implies there exists
C < oo such that |hy| rloal < C for all o ie.

|ha| < Cr~ ‘a‘<C| |r lad,

This completes the proof since

Yol —eS ¥ 8 (2 - oy (2’

n=0 |a|=n n=0
_ 1 _ Cr
1 — (Zttza) -z — - —2g
all of which is valid provided |z| := |z1| + -+ |zq| < 7. ®

Theorem 39.3 (ODE Version of Cauchy — Kovalevskaya, II.). Suppose
a>0and f: (—a,a)’— R? be real analytic near 0 € (—a,a)® and u(t) is the
unique solution to the ODE

u(t) = f(u(t)) with uw(0) = 0. (39.6)
Then u is also real analytic near 0.

Proof. All but the first proof of Theorem 39.1 may be adapted to the
cover this case. The only proof which perhaps needs a little more comment is
the fourth proof. By Lemma 39.2, we can find C,r > 0 such that

Cr

fi(z) < g;(z) = P ————
for all j. Let v(¢) denote the solution to the ODE,

Cr
B )

with v(0) = 0. By symmetry, v;(t) = vi(t) =: w(t) for each j so Eq. (39.7)
implies

8(t) = g(v(t)) = - (1,1,...,1) (39.7)
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N Cr  C(r/d)
o) = e ~ ) — e

We have already solved this equation (see Eq. (39.5) with r replaced by r/d)
to find

with w(0) = 0.

= r/d—\/r2]& —2Crt/d = r/d (1 /1= 20dt/r> . (39.8)

Thus v(t) = w(t)(1,1,...,1) is a real analytic function which is convergent
for |t] < r/(2Cd).

Now suppose that u is a real analytic solution to Eq. (39.6). Then by
repeatedly differentiating Eq. (39.6) we learn

1 (t) = 0i f; (u(t))t; (t) = 0; f(u(t)) fi(u(?))
ul® (t) = 00 £ (ult) itk (£ (8) + D, £ (u(t) s (1)

W0 = (107 500 o {0} (39.9)

where pn 1s a polynomial with all non-negative integer coefficients. We now

Ic<n,1§i§d)

define u ™ (0) inductively so that

W0) = (05O (O}, )

for all n and j and we will attempt to define
= 1
u(t) = ZO mu(") (0)t™. (39.10)

To see this sum is convergent we make use of the fact that the polynomials
pr, are universal i.e. are independent of the function f;) and have non-negative
coefficients so that by induction

(k) ‘}
u; (0
i (0) k<n,1<i<d

0] < (105 e
<o (@00 o (PO}, ) =70

Notice the when n = 0 that |u;(0)] = 0 = v;(0).! Thus we have shown
u < v and so by comparison the sum in Eq. (39.10) is convergent for ¢ near
0. As before u(t) solves Eq. (39.6) since both functions u(t) and f(u(t)) are
analytic functions of ¢ which have common values for all derivatives in ¢ at
t=0 m

! The argument shows that v](”) (0) > 0 for all n. This is also easily seen directly
by induction using Eq. (39.9) with f replaced by g and the fact that 9%g;(0) > 0
for all a.
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39.1 PDE Cauchy Kovalevskaya Theorem

In this section we will consider the following general quasi-linear system of
partial differential equations

Z ao(z, JFtu)d%u(x) + clz, JF71u) = 0 (39.11)

|a|=k

where
Ju(z) = (u(z), Du(z), D*u(z),. .., D'u(z))

is the “l — jet” of u. Here u : R* — R™ and a,(J* tu, ) is an m x m matrix.
As usual we will want to give boundary data on some hypersurface X' C R™.
Let v denote a smooth vector field along X such that v(z) ¢ T, X (T,X is
the tangent space to X at z) for x € Y. For example we might take v(x)
to be orthogonal to T, X for all x € 3. To hope to get a unique solution to
Eq. (39.11) we will further assume there are smooth functions g; on X for
1=0,...,k—1 and we will require

bu(z)(v(z),...,v(z)) = gz) forz € Y and [ =0,...,k— 1.  (39.12)

Proposition 39.4. Given a smooth function u on a neighborhood of X satis-
fying Eq. (39.12), we may calculate D'u(z) for x € X and l < k in terms of
the functions g; and there tangential derivatives.

Proof. Let us begin by choosing a coordinate system y on R™ such that
EﬁD(y) {yn = 0} and let us extend v to a neighborhood of X' by requiring
8y = 0. To complete the proof, we are going to show by induction on k that
we may compute

8 «@
(—) u(z) for all x € X and |a| < k
dy
from Eq. (39.12).

The claim is clear when k& = 1, since u = gg on X'. Now suppose that k = 2
and let v; = v;(y1,. .., Yn—1) such that

(3

n
v= Z Viaiy' in a neighborhood of X.
i=1

Then

(Du)zxfzxufzul u-ago v ﬂ

K
oy — Oy yn

Since v is not tangential to X = {y,, = 0}, it follows that v, # 0 and hence

Ou 1 990
o0 (gl Zl/l ) on X. (39.13)

i<n
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For k = 3, first observe from the equality u = gy on X and Eq. (39.13) we may
compute all derivatives of u of the form % on X provided «,, < 1. From Eq.

(39.12) for I = 2, we have

g2 = (D?u) (v,v) = v*u + Lo.ts.

0%u
7278 ( )—i—lotq*z/nﬁ-l—loti

where l.o.ts. denotes terms involving gnfj with «,, < 1. From this result, it

follows that we may compute 2 0 2 in terms of derivatives of gg, g1 and go. The
reader is asked to finish the full inductive argument of the proof. m
Remark 39.5. The above argument shows that from Eq. (39.12) we may com-

pute g;}f for any a such that a,, < k.

To study Eq. (39.11) in more detail, let us rewrite Eq. (39.11) in the y
coordinates. Using the product and the chain rule repeatedly Eq. (39.11) may
be written as

Z ba(y, ¥ )05 u(y) + ey, J*tu) =0 (39.14)
|a|=k

where

J'u(y) = (u(y), Du(y), D*u(y), ..., D'u(y)).
We will be especially concerned with the b ,...,0,x) coefficient which can be
determined as follows:

a e naa ana @
Yoo(m) =S (Sam) = X () o

|a|=Ek |=k j=1 o |a|=Ek
« k
= Z Qo <%) (i) + l.o.ts.
i ox OYn

where l.0.ts. now denotes terms involving g:ff with «,, < k. From this equation
we learn that '

B ay « 9 a
k—1 _ n _
b0.0....0%) (Y T ) = > aq ( B ) = > aa (dyn <%)> .

|a|=F |a|=k

Definition 39.6. We will say that boundary data (X, go,...,gk—1) is non-
characteristic for Eq. (39.11) at x € X if

b(0,0,....0,6) (ys J* 1) = ‘%kaa(%ﬁ’lu(x)) (dyn ((%))a

1s invertible at x.
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Notice that this condition is independent of the choice of coordinate system
y. To see this, for £ € (R™)" let

76 = X aale s uio) (€( 1))

|a|=k

which is k& — linear form on (R™)". This form is coordinate independent since
if f is a smooth function such that f(z) = 0 and df, = &, then

£ Y et () £

lee|=F

Noting that
b(0,0,m,O,k)(ya Jk_lu) = a(dyn)

our non-characteristic condition becomes, o(dy,) is invertible. Finally dy,, is
the unique element £ of (R™)"\ {0} up to scaling such that |7, x> = 0. So the
non-characteristic condition may be written invariantly as o(§) is invertible
for all (or any) £ € (R™)" \ {0} such that £|7, 5 = 0.

Assuming the given boundary data is non-characteristic, Eq. (39.11) may
be put into “standard form,”

> baly, I )05 uly) + ely, ¥ u) = 0 (39.15)
|a|=Fk

with
o

8—%:glonyn:0forl<k

where b.o,...,0,%) (¥, JF1u) = Id - matrix and

Jhu(y) = (u(y), Duly), D*u(y), ..., D'u(y)).

By adding new dependent variables and possible a new independent vari-
able for y,, one may reduce the problem to solving the system in Eq. (39.20)
below. The resulting theorem may be stated as follows.

Theorem 39.7 (Cauchy Kovalevskaya). Suppose all the coefficients in Eq.
(89.11) are real analytic and the boundary data in Eq. (39.12) are also real
analytic and non-characteristic near some point a € X. Then there is a unique
real analytic solution to Egs. (89.11) and (89.12). (The boundary data in Eq.
(89.12) is said to be real analytic if there exists coordinates y as above which
are real analytic and the functions v and g; forl =0,...,k—1 are real analytic
functions in the y — coordinate system.)

FEzxample 39.8. Suppose a,b, C,r are positive constants. We wish to show the
solution to the quasi-linear PDE
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Cr .
wy = p—— [bwy + 1] with w(0,y) =0 (39.16)
is real analytic near (¢,y) = (0,0). To do this we will solve the equation using
the method of characteristics. Let ¢(y, z) := Tj—iw, then the characteristic
equations are

t' =0 with £(0) =0
/ p—

y = —bg(y, 2) with y(0) = yo and

2 = g(y, z) with 2(0) = 0.
From these equations we see that we may identify ¢ with s and that y+bz = yo.
Thus 2(t) = w(t, y(t)) satisfies

. Cr
Eeslo—bnd) = T e w
Cr
- with 2(0) = 0.
rfyoJr(bfa)le z(0) =0

Integrating this equation gives

Crt= [ =+ b)) (0r = (=) 2= 5 a=1)
=y b2z ga-h)P=(r—y)z -3t

ie.
1
§(a+b)z2f(rfy)z+0rt=(),

The quadratic formula gives

w(t,y) = — [ =9 £ VTP 2@ 5 0r)

and using w(0,y) = 0 we conclude

wlt,y) = [(r —y) = =92 —2(a+Db) Crt] . (39.17)

a+b
Notice the w is real analytic for (¢,y) near (0, 0).

In general we could use the method of characteristics and ODE properties
(as in Example 39.8) to show

up = a(z, u)ugy + b(z,w) with w(0,z) = g(x)

has local real analytic solutions if a,b and g are real analytic. The method
would also work for the fully non-linear case as well. However, the method of
characteristics fails for systems while the method we will present here works
in this generality.
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Exercise 39.9. Verify w in Eq. (39.17) solves Eq. (39.16).

Solution 39.10 (39.9). Let p:= /(r —y)2 — 2(a + b) Crt, then

r—y 1
a+b atb atb”
wy=Cr/p, p=1—y— (a+bw and

w(t,y) = [r—y—p|=

by +1= 2 (140 y) [l 41 = — a4 b~ 9) /o]
Hence
T AR )
1
= m[(r—y—(a'i'b)w)a'i'b(?"—y)}
1

=& [r —y — aw)

as desired.

FEzample 89.11. Now let us solve for

v(t,x) = (vl,...,vm) (ty 21, .y 2n)

where v satisfies

n om

T aiu’“} with v(0,z) = 0.

i=1 k=1

j Cr

vl =

t m k
r—xy — - —Tp — k’:lv

By symmetry, v/ = v! =: w(t,y) for all j where y = x; + --- + 3,. Since
07 = wy, the above equations all may be written as

C
wy = L — [mnwy + 1] with w(0,y) = 0.
r—y—mw

Therefore from Example 39.8 with a = m and b = mn, we find

w(t,y) = (0= - VE—pr—2m+ O] (39.18)

1
m(n+1)
and hence that

v(t, ) =w(t,xr + - +x,) (1,1,1,...,1) e R™. (39.19)
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39.2 Proof of Theorem 39.7

As is outlined in Evans, Theorem 39.7 may be reduced to the following theo-
rem.

Theorem 39.12. Let (t,x,2) = (t,Z1,...,Tn,21,---,2m) € RxR" x R™
and assume (t,x,z) — Bj(t,z,z) € {m x m — matrices} (for j =1,...,n)
and (t,z,z) — c(t,z,z) € R™ are real analytic functions near (0,0,0) €
R xR" x R™ and x — f(x) € R™ is real analytic near 0 € R™. Then there
exists, in a neighborhood of (t,z) = (0,0) € R x R™, a unique real analytic
solution u(t,z) € R™ to the quasi-linear system

we(t, ) = ZBj(t,x,u(t,z))ﬁju(t,x) + c(t,z,u(t, x)) with u(0,z) = f(x).

(39.20)

Proof. (Sketch.)

Step 0. By replacing u(t, ) by u(t,z) — f(x), we may assume f = 0. By
letting u™*1(¢,2) = t if necessary, we may assume B; and ¢ do not depend
on t. With these reductions we are left to solve

u(t, ) = Z Bj(z,u(t, z))0ju(t, ) + c(z, u(t,z)) with u(0,z) =0. (39.21)
j=1
Step 1. Let
Cr

=X — =Ty — 21— = 2Zm

g(z,2) =
where C' and r are positive constants such that
(Bj)y < gand cp < g

for all k, 1, 5. For this choice of C' and r, let v denote the solution constructed
in Example 39.11 above.

Step 2. By repeatedly differentiating Eq. (39.20), show that if u solves
Eq. (39.20) then 929Fu7(0,0) is a universal polynomial in the derivatives
{8f3§ }a,l < of the entries of B; and ¢ and u with all coefficients being non-
negative. Use this fact and induction to conclude

\a;;at’“uj(o, 0)| < d%0F7(0,0) for all , k and I.

Step 3. Use the computation in Step 2. to define 9%9Fu’(0,0) for all o
and k and then defined

a Ok
u(t,z) == Z %t"x“ (39.22)

«,
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Because of step 2. and Example 39.11, this series is convergent for (¢,x) suf-
ficiently close to zero.
Step 4. The function u defined in Step 3. solves Eq. (39.20) because both

ug(t, x) and zn:Bj(m,u(t x))dju(t, ) + c(z, u(t, z))
j=1

are both real analytic functions in (¢,z) each having, by construction, the
same derivatives at (0,0). m

39.3 Examples

Corollary 39.13 (Isothermal Coordinates). Suppose that we are given
a metric ds? = Edz? + 2Fdzdy + Gdy* on R? such that G/E and F/E
are real analytic near (0,0). Then there exists a complex function u and a
positive function p such that Du(0,0) is invertible and ds® = p|du|® where
du = ugzdz + uydy.

Proof. Working out |du|® gives
dul® = |ug|? da? + 2 Re(ug Ty )dady + \uy\z dy?.
Writing u, = Au,, the previous equation becomes
|dul? = |uz)? (dﬁ + 2Re(N)dady + |\ dy2> .
Hence we must have
E=plus>, F=plus/*ReX and G = p|u,|* |\

or equivalently

F/E =ReXand G/E = |A]”.
Writing A = a + ib, we find a = F/E and a® + b*> = G/E so that

A= % +i\/G/E — (F/E)? = % (Fii\/GEf F2) .

We make a choice of the sign above, then we are looking for u(z,y) € C such
that uy = Au,. Letting u = a + 443, the equation u, = Au, may be written as
the system of real equations

ay = Re[(a+1ib) (ap +if,)] = acy — b, and
By =Im[(a+ i) (ay +i6s)] = afz + bay

which is equivalent to
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(5),-G) ()

8),=\ba)\s),

So we may apply the Cauchy Kovalevskaya theorem 39.12 with ¢ = y to find a
real analytic solution to this equation with (say) u(z,0) = z, i.e. a(z,0) =
and B(z,0) = 0. (We could take u(z,0) = f(z) for any real analytic function
f such that f’(0) # 0.) The only thing that remains to check is that Du(0,0)

is invertible. But
~ (Reuy Reuy \  [ay oy
Du(0,0) = (Imux Imuy) o (ﬁx By

_ Oy A0y — bﬁr
B Bz aBz + bay

so that
det [Du] = b (a2 + 42) = Im X |u,[*.
Thus
det [Du(0,0)] = Im \(0,0) = £1/G/E — (F/E)*|(0,0) # 0.
|

Example 39.14. Consider the linear PDE,
Uy = Uy with u(z,0) = f(x) (39.23)

where f(z) = > o _, ama™ as real analytic function near z = 0 with radius
of convergence p. (So for any r < p, |an,| < Cr~™.) Formally the solution to
Eq. (39.23) should be given by

oo

1
u(@,y) =Y — 0 u(w,y)ly=oy"

n=0

Now using the PDE (39.23),

u(z,y)ly—o = Ou(z,0) = f) ().

Thus we get
- 1
u(w,y) = 3 = @y (39.24)
n=0
By the Cauchy estimates,
OIS —
|z])’
and so
S \y\
‘ () —
;} n=| 0 | |) -
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which is finite provided |y| < p — |z, i.e. |z| + |y| < p. This of course makes
sense because we know the solution to Eq. (39.23) is given by

u(@,y) = flz+y).
Now we can expand Eq. (39.24) out to find

) 1 ~
u(m,y):zﬁ Zm(m—l)...(m—n-&—l)amxm "
n=0 m>n
- (m> ama™ My, (39.25)
m>n>0 n
Since
( ) }(I pmen n} < C Z ( ) —m g m— nyn|
m>n m>n>0
=C Y (2] +ly)™ < oo
m>0

provided |z| + |y| < . Since 7 < p was arbitrary, it follows that Eq. (39.25) is
convergent for |z| + |y| < p.

Let us redo this example. By the PDE in Eq. (39.23), 0;'07u(z,y) =
Ot ™y(x,y) and hence

9, 0;u(0,0) = F+(0).

Written another way

Du(0,0) = fUD(0)

and so the power series expansion for u must be given by
fUeb (o)
u(@,y) =Y () (39.26)
«@
Using f(™(0)/m! < Cr~—™ we learn

@ |04‘ ‘O‘D
f<| D( ) <CZ ‘f ’ |z‘0<1 |y|az CZ ’f 0)‘ Z a' |.’1

> |l——(=,y)"
«@ m=0 |a|=
i T
<CY» r"(z|+y)" = C——F——< < @
2+ )" = Oy

if |z| + |y| < r. Since r < p was arbitrary, it follows that the series in Eq.
(39.26) converges for |z| + |y| < p.

Now it is easy to check directly that Eq. (39.26) solves the PDE. However
this is necessary since by construction D®u,(0,0) = D%u,(0,0) for all . This
implies, because u, and u, are both real analytic, that u, = u,.



Part XII

Elliptic ODE




40

A very short introduction to generalized
functions

Let U be an open subset of R™ and
CSO(U):UKEEUCOO(K) (40.1)
denote the set of smooth functions on U with compact support in U.

Definition 40.1. 4 sequence {¢y}re; C D(U) converges to ¢ € D(U), iff
there is a compact set K CC U such that supp(¢x) C K for all k and ¢ — ¢
in C®(K).

Definition 40.2 (Distributions on U C, R"). A generalized function T on
U Co R" is a continuous linear functional on D(U), i.e. T : D(U) — C is
linear and limy, .o (T, ¢r) = 0 for all {¢r} C D(U) such that ¢, — 0 in D(U).
Here we have written (T, ¢) for T(¢). We denote the space of generalized
functions by D'(U).

Ezxample 40.5. Here are a couple of examples of distributions.

1. For f € Ly, (U) define Ty € D'(U) by (T, ¢) = [, ¢fdm for all ¢ € D(U).
This is called the distribution associated to f.

2. More generally let p be a complex measure on U, then (i, ¢) := |, v Pdu is
a distribution. For example if x € U, and p = §, then (0, ¢) = ¢(x) for

all ¢ € D.

Lemma 40.4. Let aq € C*(U) and L =37, <., 6a0® — a mt order linear
differential operator on D(U). Then for f € C™(U) and ¢ € D(U),

(Lf,¢) == (Tny,6) = (T, L'¢)
where L' is the formal adjoint of L defined by

L= > (-1 ang].

|a|<m
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Proof. This is simply repeated integration by parts. No boundary terms
arise since ¢ has compact support. m

Definition 40.5 (Multiplication by smooth functions). Suppose that
g e C>®(U) and T € D'(U) then we define gT € D'(U) by

(9T, ¢) = (T, g¢) for all g € D(U).
It is easily checked that gT' is continuous.

Definition 40.6 (Differentiation). For T € D'(U) and i € {1,2,...,n} let
0;T € D'(U) be the distribution defined by

(0T, ¢) = —(T,0;¢) for all p € D(U).
Again it is easy to check that 0;T is a distribution.

Definition 40.7. More generally if L is as in Lemma 40.4 and T € D' we
define LT € D’ by

:
(LT,¢) = (T, L ¢).
Ezample 40.8. Suppose that f € L} . and g € C>(U), then gTy = Tys. If

loc

further f € CY(U), then 8;T¢ = Ty, . More generally if f € C™(U) then, by
Lemma 40.4, LTy = Ty

Because of Definition 40.7 we may now talk about distributional or gener-
alized solutions T' to PDEs of the form LT = S where S € D'.

Example 40.9. For the moment let us also assume that U = R. (T}, ¢) =
Ji; @fdm. Then we have

1. hmM—oc Tsin Mz = 0

2. limps— oo Tar—1 gin Mz = ™o Where Jg is the point measure at 0.

3.If f € LYR",dm) with [;, fdm = 1 and fc(z) = e "f(x/e), then
limejo Ty, = do. Indeed,

Um(Ty,¢) =lim [ e "f(z/e)p(z)dx
el0 el0 Jrn
D.C.T.

= lim (x)p(ex)dx ~ = ./R" f(z) 161&1 ¢(ex)dx

el0 Jrn
= 60) | f(w)do = 9(0) = (.0

As a concrete example we have

€
lim ————- = R
elo (@2 +e2) o
ie.

€l0  w(@2+e2)

= 60.
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Example 40.10. Suppose that a € U, then
(0i0a, ¢) = —0ip(a)

and more generally we have

(Léa,6) = (L'0) (a)

851

Lemma 40.11. Suppose f € C([a,b]) and g € PC([a,b]), ie. g €
C' ([a,b] \ A) where A is a finite subset of (a,b) and g(a+), gla—) exists

for a € A. Then

/:f’(m) @)z = [f/(2)g(@)] |2 - /f

- Z £(@) (g(a+) — gla—)).
aEA
In particular p
Lo =Ty + 2A<g(a+> —g(a-)) b
ac

Proof. Write AU {a,b} as {a = ap < oy < -+ < @, = b}, then
n—1
[ rwte = S [ e

n—1

-3 [[f(m)g(x)] - ) )|

n—1

D)L - / F@ @i =3 [/ (@)o(o)

which is the same as Eq. (40.2). m

(40.2)

ag+
ap—
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Elliptic Ordinary Differential Operators

Let £2 C, R™ be a bounded connected open region. A function u € C2(2) is
said to satisfy Laplace’s equation if

Au =0 in (2.
More generally if f € C(£2) is given we say u solves the Poisson equation if
—Au = fin §2.
In order to get a unique solution to either of these equations it is necessary
to impose “boundary" conditions on wu.

Ezample 41.1. For Dirichlet boundary conditions we impose u = g on o
and for Neumann boundary conditions we impose % = g on 0f2, where
g: 02 — R is a given function.

0
Lemma 41.2. Suppose f : 2 <, R, 802 is C? and g : 012 — R is continuous.
Then if there exists a solution to —Au = f with u = g on 92 such that
u € C%(£2°) N CH(N) then the solution is unique.

Definition 41.3. Given an open set 2 C R" we say u G_C’l(ﬁ) if u €
CH(2)NC(N) and Vu extends to a continuous function on §2.

Proof. If u is another solution then v = u — u solves Av = 0,v = 0 on
0f2. By the divergence theorem,

0:/Av~vdm:—/|V1]\2dm+/ vVv-nda:—/|Vv|2dm,
EYe)
2 2

ie}

where the boundary terms are zero since v = 0 on 9f2. This identity implies
J |Vu|?dz = 0 which then shows Vv = 0 and since 2 is connected we learn v
Q

is constant on (2. Because v is zero on 92 we conclude v = 0, that is u = 4.
|

For the rest of this section we will now restrict to n = 1. However we will
allow for more general operators than A in this case.
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41.1 Symmetric Elliptic ODE
Let a € C1 ([0, 1], (0, 00)) and
Lf =—(af") = —af” —d'f for f € C*([0,1]). (41.1)

In the following theorem we will impose Dirichlet boundary conditions on L
by restricting the domain of L to

D(L) :={f € C*([0,1],R) : f(0) = f(1) = 0}.

Theorem 41.4. The linear operator L : D(L) — C([0,1],R) is invertible and
L7t:C([0,1],R) — D(L) C C?%([0,1],R) 4s a bounded operator.

Proof.
1. (Uniqueness) If f,g € D(L) then by integration by parts

(Lf.g) = / (Lf)(@)g(x)dz = / @) @)y () de.  (412)

Therefore if Lf = 0 then

0=(Lf,f) = / a(e) f'(z)? dz

and hence f/ =0 and since f(0) =0, f = 0. This shows L is injective.
2. (Existence) Given g € C([0,1],R) we are looking for f € D(L) such that
Lf =g, 1ie. (af’) = g. Integrating this equation implies

~a(a)'0) = ~C+ [ gy,

Therefore

f’(z) = i _/IySZ$9(?J)dQ

which upon integration and using f(0) = 0 gives

e 1
fla) = /0 a2 dz — (/1y3z3w ) 9(y) dz dy.

If we let

1
ax) .:/0 e dz (41.3)

the last equation may be written as

f(z) = Calz) - / (a(z) - a(y))g(y) d. (41.4)
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It is a simple matter to work backwards to show the function f defined

in Eq. (41.4) satisfies Lf = g and f(0) = 0 for any constant C. So it only
remains to choose C' so that

0= /(1) =Ca(l) - / (a(1) — a(y))g(y)dy.

Solving for C gives C' = fol ( “(y)> g(y) dy and the resulting function
f may be written as

@)= [ 1 (1-28) o) = Ly<stato) )| o0 dy

- / Gz, y)g(y)dy

a(z — 2w gf <
G(xvy)={ ( )é a((x)g Y (41.5)

aly) (11— ify <.

where

For example when a = 1,
_Jrz(l-yifz<y
Cley) = {yu—x) ify <z
[

Definition 41.5. The function G defined in Eq. (41.5) is called the Green’s
function for the operator L : D(L) — C([0,1],R).

Remarks 41.6 The proof of Theorem 41.4 shows

(L'g) (2) = /0 G, y)g(y)dy (41.6)

where G is defined in Eq. (41.5). The Green’s function G has the following
properties:

1. Since L is invertible and G is a right inverse, G is also a left inverse, i.e.
GLf = f for all f € D(L).

2. G is continuous.

3. G is symmetric, G(y,x) = G(z,y). (This reflects the symmetry in L,
(Lf,9) = (f,Lg) for all f,g € D(L), which follows from Eq. (41.2).)

4. G may be written as

_Julx)v(y) if <y
Glay) = {u(y)vm ify <.

where w and v are L — harmonic functions (i.e. and Lu = Lv = 0) with
uw(0) = 0 and v(1) = 0. In particular L,G(z,y) = 0 = L,G(x,y) for all
y#
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5. The first order derivatives of the Green’s function have a jump disconti-
nuity on the diagonal. Fxplicitly,

1
Gy(z,z+) — Gy(z,z—) = e
which follows directly from
_af@)
1 == ifrx<y
Gy(z,y) = — 0 (41.7)
aly) | (1-58) ify <o
By symmetry we also have
1
Ga(y+,y) — Galy—,y) = “aw)

6. By Items 4. and 5. and Lemma 40.11 it follows that

d
LyG(z,y) = LyTGuy) = T (a(y)Gy(z,y)) = o(y — x)
and similarly that

As a consequence of the above remarks we have the following representa-
tion theorem for function f € C%([0,1]).

Theorem 41.7 (Representation Theorem). For any f € C?([0,1]),

£@) = (GLI@) - Gyl p)al) 1), (419

Moreover if we are given h : 9[0,1] — R and g € C([0,1]), then the unique
solution to

Lf =g with f =h on 9]0, 1]

18

§@) = (G9)(@) = Gy (. alh(v)] . (41.9)

Proof. By repeated use of Lemma 40.11,
1 d
(GLf) (@) = — /0 Gl )7 (alo) ()
= /O Gy(z,y)a(y) f (y)dy
=Gyt 6| + [ LGl f)dy
~Gy(eafw)|, + [ oo - nrwiy
y:(l) 0
= Gy(zv)al) /)| _, + 1)
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which proves Eq. (41.8). There are no boundary terms in the second equality
above since G(z,0) = G(z,1) = 0.
Now suppose that f is defined as in Eq. (41.9). Observe from Eq. (41.7)
that
111%111 a(1)Gy(z,1) = —1 and lzi?&a(O)Gy(a;O) =1

and also notice that Gy (z,1) and Gy(z, 0) are Ly — harmonic functions. There-
fore by these remarks and Eq. (41.6), f = h on 9[0, 1] and
y=1
Lf(x) = g(2) = LaGy(,9)a(w)hly)| _ = 9(z)

as desired. m

41.2 General Regular 2nd order elliptic ODE

Let J = [r, s] be a closed bounded interval in R.
Definition 41.8. A second order linear operator of the form
Lf =—af’ +bf +cf (41.10)

with a € C?(J), b € CL(J) and ¢ € C?(J) is said to be elliptic if a > 0,
(more generally if a is invertible if we are allowing for vector valued functions).

For this section L will denote an elliptic ordinary differential operator. We
will now consider the Dirichlet boundary valued problem for f € C2([r, s]),

Lf=—af’"+bf +cf =0with f =0 on d.J. (41.11)

Lemma 41.9. Let u,v € C2?(J) be two L — harmonic functions, i.e. Lu =
0= Lv and let

W = det [u[ U,] =’ — v
u' v
be the Wronskian of u and v. Then W satisfies

b d 1 b1
!
=- —— =———and
W CLVV7 dz W aw "
W(z) = W(r)eff a(adt
Proof. By direct computation

aW' = a(uw'" —ovu") = u (W' + cv) — v (b’ + cu) = bW.
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Definition 41.10. Let H"(J) denote those f € C*~1(J) such that f*=1) is
absolutely continuous and f*) € L?(J). We also let H3(J) = {f € H*(J) : flas =
We make H*(J) into a Hilbert space using the following inner product

k
(,0) g =Y (D7, Dv) 1, .

=0

Theorem 41.11. As above, let D(L) = {f € C*(J): f=0ondJ}. If the
Nul(L) N D(L) = {0}, i.e. if the only solution f € D(L) to Lf =0 is f =0,
then L : D(L) — C(J) is an invertible. Moreover there exists a continuous
function G on J x J (called the Dirichlet Green’s function for L) such that

(L7'9) (0) = [ Gmlay forallgeC ). (1112)

Moreover if g € L?(J) then Gg € H2(J) and L(G g) = g a.e. and more
generally if g € H*(J) then Gg € HEY2(J)

Proof. To prove the surjectivity of L : D(L) — C (J), (i.e. existence of
solutions f € D(L) to Lf = g with g € C(J)) we are going to construct the
Green’s function G.

1. Formal requirements on the Greens function. Assuming Eq. (41.12)
holds and working formally we should have

o@) = Lo | Gty = [ LG@veway  @113)
for all g € C(J). Hence, again formally, this implies
L,G(z,y) = 0(y — z) with G(r,y) = G(s,y) = 0. (41.14)

This can be made more convincing by as follows. Let ¢ € D := D(r,s),
then multiplying

g(z) = Lz/]G(ar,y)g(y)dy

by ¢, integrating the result and then using integration by parts and Fu-
bini’s theorem gives

/J o(@)d(e)de = /J dz(x)L, /J dyG(z, v)g(y)
- / deL,é(z) / dyG(z, v)g(y)
J J
= / dyg(y) / dz Ly¢(z)G(z,y) for all g € C(J).
J J

From this we conclude
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| /J Lod(@)G (e, y)dz = d(y),

ie. LyTg(z,y) = 6(z —y).

. Constructing G. In order to construct a solution to Eq. (41.14), let u,v
be two non-zero L — harmonic functions chosen so that u(r) = 0 = v(s)
and u'(r) = 1 = ¢'(s) and let W be the Wronskian of v and v. By
Lemma 41.9, either W is never zero or is identically zero. If W = 0,
then (u(r),u'(r)) = Aov(r),v'(r)) for some A € R and by uniqueness of
solutions to ODE it would follow that v = Av. In this case u(r) = 0
and u(s) = Av(s) = 0, and hence v € D(L) with Lu = 0. However by
assumption, this implies © = 0 which is impossible since «'(0) = 1. Thus
W is never 0.

By Eq. (41.14) we should require L,G(z,y) = 0 for x # y and G(r,y) =
G(s,y) = 0 which implies that

 [ule)ély) iz <y
Cloy) = {v(xm(y) >y

for some functions ¢ and 1. We now want to choose ¢ and ¥ so that G is
continuous and L,G(z,y) = é(xz — y). Using

Galz,y) = {U/(I)w(y) ifz >y

Lemma 41.9, we are led to require

0=G(y+,y) — Gly—,y) = u(y)o(y) — v(y)¥(y)
1= —[a(2)Ga(z, 9)] 5247 = —aly) V' (9)¢(y) — o' (y)d(y)] -

Solving these equations for ¢ and i gives

and hence

1 fu@p@ife<y
Gla,y) = a(y)W(y){v(w)u(wifxzy. (41.15)

. With this G, Eq. (41.12) holds. Given g € C(J), then f in Eq. (41.12)
may be written as

f(a) = /J G(z,y)9(y)dy

= —v(x : u(y) (z
S / TOAmEd ) / g(y)dy. (41.16)

Differentiating this equation twice gives

860 41 Elliptic Ordinary Differential Operators

f(@) = () / )y (@) / ) %g@)dy (41.17)
and
'@ =~ [ ' %y(y)dy ~u') [ ) %gw)dy
— U/ T ﬂ T U’ T & T
(@) o)+ (2) S (o). (41.18)

Using Lv = 0 = Lu, the definition of W and the last two equations we
find

—aa) () = () () + e(a)o(@) / o)y
+ b (o) + caula) [ : (y)

a(y)W (y)
= —b(z)f'(z) — c(z) f(2) + g(x),

g(y)dy + g(=)

ie. Lf =g.

Hence we have proved L : D(L) — C(J) is surjective and L=1 : C(J) —
D(L) is given by Eq. (41.12).

Now suppose g € L2(J), we will show that f € C'(J) and Eq. (41.17) is
still valid. The difficulty here is that it is clear that f is differentiable almost
everywhere and Eq. (41.17) holds for almost every x. However this is not
good enough, we need Eq. (41.17) to hold for all . To remedy this, choose
gn € C(J) such that g, — g in L2(J) and let f,, := Gg,. Then by what we
have just proved,

fi) = /J G (,)n (v)dy

Now by the Cauchy-Schwarz inequality,
2

V; Ga(2,9) [9(y) — gn(y)] dy

< lg = gullZacs, / G,y dy
J
2
<Cllg- gnHLZ(J)

where C' := sup,c; [;1G.(x y)| dy < oo From this inequality it follows
that f}(x) converges uniformly to [; G.(x,y)g(y)dy as n — oo and hence
fe Cl(J) and

fl(z)= /]Gw(x, y)g(y)dy for all x € J,

ie. Eq. (41.17) is valid for all z € J. It now follows from Eq. (41.17) that
f € H?(J) and Eq. (41.18) holds for almost every z. Working as before we
may conclude Lf = g a.e. Finally if g € H*(J) for k& > 1, the reader may
easily show f € HY¥*2(J) by examining Egs. (41.17) and (41.18). m



41.2 General Regular 2nd order elliptic ODE 861
Remark 41.12. When L is given as in Eq. (41.1), b = —a’ and by Lemma 41.9

_foal _ W (0)a(0)
=W Jo & ®dt — In(a(z)/a(0)) —
W(x) (0)e W(0)e o)

So in this case

_ 1 Julz(y) itz <y
@Y = W 0e0) {v(m)u(y) ifz>y

where we may take

a(x)

u(z) = a(z) = /0 ﬁdz and v(z) = <1 - W) .

Finally for this choice of v and v we have

W(0) = u(0)/(0) = /(0 (0) =~
giving i <
_Julz)(y)ifz <y
Gla,y) = {U(l’)u(y) ifz >y
which agrees with Eq. (41.5) above.

Lemma 41.13. Let L*f := —(af)" — (bf)' +cf be the formal adjoint of L.
Then

(Lf,g) = (f,L"g) for all f,g € D(L) (41.19)
where (f,9) := [; f(z)g(z)dz. Moreover if nul(L) = {0} then nul(L*) = {0}
and the Greens function for L* is G* defined by G*(z,y) = G(y, x), where G
is the Green’s function in Eq. (41.15). Consequently Ly G(z,y) = 6(x — y).

Proof. First observe that G* has been defined so that (G*g, f) = (g9, Gf)
for all f € L?(J).Eq. (41.19) follows by two integration by parts after observ-
ing the boundary terms are zero because f = g = 0 on 9.J. If g € nul(L*) and
f € D(L), we find

0= (L*g,f) = (g, Lf) for all f € D(L).

By Theorem 41.11, if nul(L) = {0} then L : D(L) — C(J) is invertible so the
above equation implies nul(L*) = {0} . Another application of Theorem 41.11
then shows L* : D(L) — C(J) is invertible and has a Green’s function which
we call G(z,y). We will now complete the proof by showing G = G*. To do
this observe that

(f.9) = (L*Gf,9) = (Gf,Lg) = (f,G"Lg) for all f,g € D(L)
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and this then implies G*L = Id p(r)y = GL. Cancelling the L from this equa-
tion, show G* = G or equivalently that G = G*. The remaining assertions of
the Lemma follows from this observation.

Here is an alternate proof that L;G(z,y) = d(z — y), also see Using
GL = Ip(z), we learn for v € D(L) and v € C (J) that

(v,u) = (v,GLu) = (L*G*v,u)
which then implies L*G*v = v for all v € C(J). This implies

fa) = /J G, )L ()dy = (Teoy LF) = (L' Teary, f) for all f € D(L)

from which it follows that LTy, = 0(z —y). ®

Definition 41.14. A Green’s function for L is a function G(x,y) as de-
fined as in Eq. (41.15) where u and v are any two linearly independent L —
harmonic functions.!

The following theorem in is a generalization of Theorem 41.7.

Theorem 41.15 (Representation Theorem). Suppose and G is a Green’s
function for L then

1. LyTg(ay) = 0(x —y) and LG =1 on L2(J). (However Gg and G*g may
no longer satisfy the given Dirichlet boundary conditions.)

2. L;T(e,y) = 6(x —y). More precisely we have the following representation
formula. For any f € H?(J),

£(&) = (GLA)(@) +{Gla.)al) F &) - w)Cl.v)l, F)} |

1(41.20)

3. Let us now assume nul(L) = {0} and G is the Dirichlet Green’s function
for L. The Eq. (41.20) specializes to

f@) = (GLf)(z) = [a(y)G(z,y)], f(y)

y=s

y=r
Moreover if we are given h : 8J — R and g € L?(J), then the unique
solution f € H?(J) to
Lf =g a.e with f =h on dJ
18
1(@) = (Gg)(a) + H(z) (41.21)
where, for x € JO,
y=s
H(z):= —[a(y)G(z, y)]y h(y) o (41.22)
and H(r) := H(r+) and H(s) := H(s—).
! For example choose u,v so that Lu = 0 = Lv and u(a) = v'(a) = 0 and u'(a) =
v(a) =1.
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Proof. 1. The first item follows from the proof of Theorem 41.11 with out
any modification.
2. Using Lemma 41.9,

R U, bu , cu
v aw) =) - G
_od b1, bu ., cu
b aw G taw
o, cu u b1 cu
TG aw taw
:lLu:O

Similarly L*(z7;7) = 0 and therefore L;G(z,y) = 0 for y # x. Since

Gy(x,y):f<d L ){u(m)v(y)ifxgy

dy aly)W(y)) \v(@)uly) ifz >y
1 u(z)'(y)ifz <y
)W () {vcv)u'(y) itz >y (41.23)
we find
Gy(z,2+) — Gy(a,2—) = m {v(@)u/ () — u()' (2)}
__ L
T a(x)

Finally since
2
R
we may conclude form Lemma 40.11 that LyG(z,y) = 6(x — y).Using inte-
gration by parts for absolutely continuous functions and Lemma 41.13, for

fe (),

+ lower order terms

(GLf)(z) = /} G, y)Lf (y)dy

- [t (—a@)j—; bt 4 c<y>) F(w)dy

dy
-/,

2 ()Gl )] ()
+ (~ & bW [ +e)) f(yJ !
= G(z,y)ay)f' W)y="
= —Glw,y)al) f' W)= + [ow)Ga,y), FWI=
+{L;,G(w,y), W)
= )G (@), J O — Gl y)aw)f @I + f@):
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This proves Eq. (41.20).
3. Now suppose G is the Dirichlet Green’s function for L. By Eq. (41.15),

_(d 1 u(z)o(y) ifz <y
)G, = (d_yW) {v(x)U(y) if 2 >y

)
1 u(z)v'(y)ifx <y
W(y) | v(@)/(y) if x>y
and hence the function H defined in Eq. (41.22) is more explicitly given by

1 ) 1
- hs) — ——
7 (W@ (D))~ g
From this equation or the fact that L,G(z,r) =0 = L,G(x,s), H is is L —
harmonic on J°. Moreover, from Eq. (41.24),

H(z) = (v(z)u'(r)) h(r). (41.24)

1 ,
7y () R)
1

=W (u(r)o'(r) = v(r)u'(r)) h(r) = h(r)

H(r)=-

and

1(3) = g () (3)) )

1 "(s) —v(s)u(s s) = h(s).
:W(S)(U(S)U(S) (8)u'(s)) h(s) = h(s)

Therefore if f is defined by Eq. (41.21),
Lf=LGg—LH =gae. onJ°
because LG = I on L*(J) and
flos = (Gg) los + Hlos = Hlgs =h
since Gg € HZ(J). m

Corollary 41.16 (Elliptic Regularity I). Suppose —oco < 19 < s9 < 00,
Jo = (ro,80) and L is as in Eq. (41.11) with the further assumption that
a,b,c € C®(R). If f € C?(Jy) is a function such that g := Lf € C* (Jo) for
some k >0, then f € CFT2(Jy).

Proof. Let r < s be chosen so that J := [r, s] is a bounded subinterval of Jy
and let G be a Green’s function as in Definition 41.14. Since a, b, ¢ are smooth,
it follows from our general theory of ODE that G(z,y) € C™ (J x J\ A)
where A = {(z,x) : © € J} is the diagonal in J X J. Now by Theorem 41.15,
for z € JO,
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Yy=s

1(@) = (Gg)(@) + { Gz p)aw) ] W) ~ [o®)G(z.p)], FW) } |

y=r’
Since
! y=s oo 0
2= {Ga.)aW) ] W) - 2W)C@)], W)} | € (")
it suffices to show Gg € C*2(J°). But this follows by examining the formula

for (Gg)" given on the right side of Eq. (41.18). m
In fact we have the following rather striking version of this result.

Theorem 41.17 (Hypoellipticity). Suppose —oo < 1y < sg < 00, Jy 1=
(ro,80) and L is as in Eq. (41.11) with the further assumption that a,b,c €
C>®(R). If u € D' (Jy) is a generalized function such that v := Lu € C*(.Jp),
then u € C>(Jy).

Proof. As in the proof of Corollary 41.16 let r < s be chosen so that
J :=[r,s] is a bounded subinterval of Jy and let G be the Green’s function
constructed above.? Further suppose £ € J°, 6 € C°(J°0,1]) such that
6 =1 in a neighborhood U of £ and o € C°(V,[0,1]) such that « = 1 in a
neighborhood V' of £, see Figure 41.1. Finally suppose that ¢ € C°(V), then

&
F ; M
"l (\\ O(
SRR
{ PR [V S Y N\
< V<V 7
TR T,

f

Fig. 41.1. Constructing the cutoff functions, 6 and a.

¢ =00=0L"G"¢=0L" (My + M;_o)G*¢
= L*M.G*¢ + 0L* M;_oG*¢

and hence

2 Actually we can simply define G* to be a Green’s function for L*. It is not
necessary to know G*(z,y) = G(y,x) where G is a Green’s function for L.
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(u, @) = (u, L*MyG* ¢ + OL* M1 _,G* )
= (Lu, M, G*¢) + (u, 0L* M1 _G* ).

Now

(Lu, My G* @) = (v, M G* ¢y = (GM v, ¢)
and writing v = D™T}, for some continuous function h (which is always pos-
sible locally) we find

(u,0L* M1 _oG*9)
= (=1)" (u, D"MyL*M;_,G* )

= (—1)"/Mh(m)DZ [0(x) L3 (1 — a(2))G(y, 2)] ¢(y)dydz

= / Y(y)o(y)dy
J

where

wlw)i= [ h@)DRB() L1 - ()G, )] de

J
which is smooth for y € V because 1—a(z) = 0on V and so (1 — a(x)) G(y, x)
is smooth for (x,y) € J x V. Putting this altogether shows
(u,8) = (GMav + 9, 6) for all ¢ € CX(V).

That is to say u = GM,v+1 on V which proves the theorem since GMyv+v €
C®(V). m
FEzxample 41.18. Let L = 63—; - 88—;2 be the wave operator on R? which is not
elliptic. Given f € C?(R) we have already seen that Lf(y—x) = 0 € C*(R?).
Clearly since f was arbitrary, it does not follow that F(z,y) := f(y —z) €
C>(RR?). Moreover, if f is merely continuous and F(x,y) := f(y — ), then
LTy = 0 with F ¢ C?(R2). To check LTr = 0 we first observe

(0 +8,) Tr ) = (Tr, (0 + 0,) 9
= [ 1=2) 0.+ 0,) é(e oy

= [ H@) ety +2) + 6wy + )] dady

— [ f)gz (olay + )] dady =o.

Therefore LTp = (0p — 8y) (92 + 0y) Tr = 0 as well.

Corollary 41.19. Suppose a, b, c are smooth and v € D'(J°) is an eigenvector
for L, i.e. Lu = Au for some A\ € C. Then u € C*(J).

Proof. Since L — X\ is an elliptic ordinary differential operator and
(L-XNu =0 € 0%, it follows by Theorem 41.17 that v € C°(J?).
|
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41.3 Elementary Sobolev Inequalities

Notation 41.20 Let f_dem = ﬁ fJ fdm denote the average of f over J =
[r, s].

Proposition 41.21. For f € H'(J),
(@) < ] / fdm' 1 a e
— 1/2
< ]/deml B (/Jlf/(y)IQdy) <IN Il -

where C (|J]) = max (ﬁ \/m> )

Proof. By the fundamental theorem of calculus for absolutely continuous
functions

f(@) = fla) + / o

for any a,z € J. Integrating this equation on a and then dividing by |J| := s—r

implies B B
@) = [ ram [daa [ pway
and hence
i< [ gam|+ [aa] [ 1761a
<[ [sam| + [ 17 wlay
d D
<| fram| v VI ([ 1w )
< (/ |f|2dm)l/2+ ([ If’(y)IQdy)l/z.
.

Notation 41.22 For the remainder of this section, suppose Lf = —%D (paf’)+
cf. is an elliptic ordinary differential operator on J = [r,s], p € C?(J, (0, 00))
is a positive weight and

(f.9)p = /, F(@)g(@)p()dz.

We will also take D(L) = H2(J), so that we are imposing Dirichlet boundary
conditions on L. Finally let
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£(.9) = [ laf' + clg) pam for J. € H'(),
JJ
Lemma 41.23. For f,g € D(L),

(Lf,9)p = E(f,9) = (F:L9)p: (41.25)

Moreover ) )
E(f, )= aolf Iz +eollfll; for all f € H'(T)

where ¢g := miny ¢ and ag = miny a. If A\g € R with Ao + co > 0 then
13y < K [ECF £+ o151 (41.26)

where K = [min(ag, co + Xo)] "

Proof. Eq. (41.25) is a simple consequence of integration by parts. By
elementary estimates

ELN) Zaollf'll;+eo 13
and
ECL D)+ 20115 = ao [£']l5 + (co + o) [I£]13 > min(ao, co + Xo) [ FlI31 ()
which proves Eq. (41.26). m

Corollary 41.24. Suppose Ao + ¢o > 0 then Nul(L + Ao) N D(L) = 0 and
hence
(L4 Xo): H3(J) — L*(J)

is invertible and the resolvent (L + )\0)71 has a continuous integral kernel

G(z,y), i.e.
L+ ) @) = [ Glepuman
Moreover if we define D(L*) inductively by
D(L*):={ue D(L* ) : L*'u e D(L)}
we have D(L*) = HZ*(J).
Proof. By Lemma 41.23, for all u € D(L),

sy < B ((Buy) + 2o Jull}) = K (L + Ao) u,u))

so that if (L + Ao) v = 0, then Hu||ip(J) = 0 and hence v = 0. The remaining
assertions except for D(L*) = H}(J) now follow directly from Theorem 41.11
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applied with L replaced by L + XAg. Finally if v € D(L) then (L + \o)u =
Lu + Aou € L?(J) and therefore

w=(L+ )" (Lu+ Mu) € H(J).
Now suppose we have shown, D(L*) = H2#(J) and uw € D (L¥+1) | then
(L + Xo)u = Lu+ Mu € D(L*) + D(L*Y) ¢ D(LF) = H2*(J)
and so by Theorem 41.11, u € (L + X\o) ™" H2*(J) € HZ*2(J). m

Corollary 41.25. There exists an orthonormal basis {¢, }rr, for L?(J, pdm)
of eigenfunctions of L with eigenvalues A, € R such that —co < Mg < A1 <
Ao < ...l

Proof. Let \g > —co and let G := (L + Xo) " : L2(J) — H3(J) = D(L) C
L?(J). From the theory of compact operators to be developed later, G is a
compact symmetric positive definite operator on L?(J) and hence there exists
an orthonormal basis {¢,},—, for L?(J, pdm) of eigenfunctions of G with
eigenvalues p, > 0 such that po > p1 > pe > ... — 0.2 Since

Nn(z)n = G(Z)n = (L + /\0)_1 (Z)nv

it follows that p, (L + \o) ¢, = by, for all n and therefore Lo, = A\, ¢, with
An = (p; 1 — Ag) T oo. Finally since L is a second order ordinary differential
equation there can be at most one linearly independent eigenvector for a given
eigenvalue A\, and hence A\, < A\, + 1 for alln. m

Example 41.26. Let J = [0,7], p=1and L = —D? on HZ(J). Then L$ = \¢
implies ¢”" + A¢ = 0. Since L is positive, we need only consider the case
where A > 0 in which case ¢(z) = acos (ﬁx) + bsin (\/Xm) . The boundary

conditions for f imply a = 0 and 0 = sin (\/}r) ,i.e. VA € N,. Therefore in
this example

2
dr(z) = \/;Sm(kx) with \g = k2.
The collection of functions {¢y},-; is an orthonormal basis for L2(J).

Theorem 41.27. Let J = [r,s] and p,a € C2(J,(0,0)), ¢ € C2(J) and L be
defined by

Lf= f%D(paf') +cf.

3 In fact G is “Hilbert Schmidt” which then implies

oo
Z ,ui < 0.
n=0
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and for A € R let
E* = {¢> € H3(J): Lé = ag for some a < /\} .
Then there are constants dy,ds > 0 such that
dim(EY) < dyA + dy. (41.27)

Proof. For A € R let Ej := {¢ € H3(J) : Lp = A\p} . By Corollary 41.24,
Ex = {0} if A < ¢o and since (Lf, g), = (f, Lg), for all f,g € HF(J) it follows
that Ey L Eg for all A # (3. Indeed, if f € Ey and g € Eg, then

(B=N(f,9)p=(fLg),—(Lf,g)p=0.

Thus it follow that any finite dimensional subspace W C E* has an orthonor-
mal basis (relative to (-,-), — inner product) of eigenvectors {¢r}oy C E* of
L, say Lo, = A\p¢r. Let u = 22:1 ur ¢, where ug € R. By Proposition 41.21
and Lemma 41.23,

k=1

[ull? < C lullf sy < C UL+ Xo)u,u), = C (Zuk (A + o) ask,u)
14

(where C' is a constant varying from place to place but independent of «) and
hence for any x € J,

2 n
< Jlully £ CO+20) Y lunl”
k=1

> ke ()
k=1

Now choose uy, = ¢ () in this equation to find

> len@)?
k=1

or equivalently that

2

<O+ Y o)l

k=1

Do ler@)F <C A+ ).
k=1

Multiplying this equation by p and then integrating shows
dim(W) =n =" (¢x, ¢x)p < C (A + Xo) / pdm = C" (A + Ao).-
k=1 I

Since W C E* is arbitrary, it follows that

dim(E*) < C" (A + No).
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Remarks 41.28 Notice that for all A € R, dim(Ey) < 1 because if u,v € E\
then by uniqueness of solutions to ODE, u = [u/(r)/v'(r)]v. Let {¢x} ey C
HZ(J) N C®(J) be the eigenvectors of L ordered so that the corresponding
eigenvalues are increasing. With this ordering we have k = dim(E™M) < dy A\g+
do and therefore,

e > d7 (k= dy). (41.28)

The estimates in Egs. (41.27) and (41.28) are not particularly good as Exam-
ple 41.26 illustrates.

41.4 Associated Heat and Wave Equations

Lemma 41.29. L is a closed operator, i.e. if s, € D(L) and s, — s and
Ls, — g in L2, then s € D(L) and Ls = g. In particular if fr € D(L) and
Yooy fe and Y32, Lfy exists in L2, then Y -, fx € D(L) and

LY fe=>_ Lf
=1 k=1

Proof. Let \g + ¢ > 0 and G = (L + )\0)71 . Then by assumption
(L4 Xo) 8n, — g+ Aos and so
§ 8, =G (L4 Xo) sn — G(g+ Xos) asn — o0
showing s = Gg € D(L + A\o) = D(L) and
(L+)\0)3 = (L+/\0)G(g+)\os) =g+/\08
and hence Ls = g as desired. The assertions about the sums follow by applying
the sequence results to s, = 22:1 fr. m

Theorem 41.30. Given f € L?, let

u(t) = e f = (f,dn)e M (41.29)

n=0
Then for t > 0, u(t,x) is smooth in (t,z) and solves the heat equation
u(t,x) = —Lu(t,x), u(t,z) =0 forz € 0J (41.30)
and f = L* — ltilrélu(t) (41.31)

Moreover, u(t,z) = [, pi(z,y)f(y)p(y)dy where

pi(z,y) =Y e M (2)bn(y) (41.32)

n=0

is a smooth function int > 0 and z,y € J. The function p; is called the
Diurichlet Heat Kernel for L.
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Proof. (Sketch.) For any ¢ > 0 and k € N, sup,, (e7"*#A%) < 0o and so
by Lemma 41.29, for t > 0, u(t) € D (L¥) = HZ*(J)* (Corollary 41.24) and

Lru(t) = i(ﬁ Pn)e” N b

n=0

Also we have LFu(™)(t) exists in L? for all k,m € N and

oo

LEqy(m) ()= (-D)™ Z(f’ bn)e " Pm NG

n=0

By Sobolev inequalities and elliptic estimates such as Proposition 41.21 and
Lemma 41.23, one concludes that u € C*((0, 00), H¥(J)) for all k£ and then
that u € C*((0,00) x J,R). Eq. (41.30) is now relatively easy to prove and
Eq. (41.31) follows from the following computation

1f = a2 = S 1(f.ba) 21— e ]

n=1

which goes to 0 as t | 0 by the D.C.T. for sums.
Finally from Eq. (41.29)

u(t,z) = Z[If(y)¢(y)p(y)dye"“ n ()

n=0

- /J > e M on(@)o(w) f (W)p(y)dy
v n=0

where the interchange of the sum and the integral is permissible since

oo
/ 3 eth
J

n=0

Hu(@)6) ()] py)dy
<c / S (g + A2 1 (0)] ply)dy < o0
b Bord

. - 2 . .
since 07 e (Mg + An)” < 0o because A, grows linearly in n. Moreover
one similarly shows

%9}

J )
() 20 i) = Y- (0 0o, g ot)
n=0

where the above operations are permissible since

4 Basically, if L*u = g € L?(J) then v = G*g € H3*(J).
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62|, < Clnligecs < C||(L+20)* 60

,=C0n+ Ao)"

and therefore

> ‘(*An)j e’”"aik’labn(w)@i”lab(y)‘ <O Pl (n +20)" e < 0.

n=0 n=0

Again we use A, grows linearly with n. From this one may conclude that
pi(x,y) is smooth for ¢t > 0 and =,y € J. (We will do this in more detail when
we work out the higher dimensional analogue.) m

Remark 41.81 (Wave Equation). Suppose f € D(L*), then

L5 1k

)\k (kav ¢1’1

and therefore
cos (VL) f 1= 3" cos (tv/An ) (f; 60)6m
n=0
will be convergent in L? but moreover

LF cos (tx/f) f= icos (t >\n> (f, n) Nt
n=0

= icos (tﬁ) (ka, n)P

n=0
will also be convergent. Therefore if we let
sin (tx/f)
N

where f, g € D(L*) for all k. Then we will get a solution to the wave equation

u(t) = cos (tﬁ) f+

uge(t, ) + Lu(t,z) = 0 with u(0) = f and u(0) = g.

More on all of this later.

41.5 Extensions to Other Boundary Conditions

In this section, we will assume p € C2(J, (0, 00)),
Lu = —p~Y(pau') + b’ + cu (41.33)
is an elliptic ODE on L2(J) with smooth coefficients and

(u,v) = (u,v), = /Ju(z)v(m)p(m)dm (41.34)
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Theorem 41.32. For v € H%(J) let
L*v=—p Y pav') — b’ + [c — p~ ' (pb)'] v. (41.35)
Then for u,v € H2(J),
(Lu,v) = (u, L*v) 4+ B(u,v)|as (41.36)
where

B(u,v) = pa {(u’7u) (—v, 0 + gv)} . (41.37)
Proof. This is an exercise in integration by parts,
(Lu,v) = /J (— (pav’) + pbu’ + pcu) vdm
= /J (pau/v’ = (pbv) u + peu) dm + [pbuv — pau/v] |os
= /J (—u (pav’) — (pbv) u + pcvu) dm

+ [pbuv + pauwv’ — pau'v] |as

= / (7up71 (pav')/ —p7 (pbv) u+ cvu) pdm
J

o (G =)
+ [pa | —uv + uv’ —vu log
a
* / / b
= (u,L™v) + [pa(u ,u) - (v, 0" + Ev)} lo.g-
|
Notation 41.33 Given (o, 8) : 90J — R?\ {0} and u,v € H2(J) let
Bu=ou' + pu=(a,8) - (v,u) on 8J
and .
B*v=av + (5-&-56!)11:041/—0—51) on 0J
where 3 = ([3 + %a) .

Remarks 41.34 The function («, B) : 8J — R? also takes values in R?\ {0}
because (o, B) =0 iff (o, ) = 0. Furthermore if &« =0 then 8 = 5.

Proposition 41.35. Let B and B* be as defined in Notation 41.33 and define

D(L)={ue H*(J): Bu=0ondJ}.
D(L*)={ue H*(J): B'u=0 ondJ},
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Then v € H?(J) satisfies
(Lu,v) = (u, L*v) for all w € D(L) (41.38)

iff ve D(L*). (This result will be substantially improved on in Theorem 41.41
below.)

Proof. We have to check that B(u,v) appearing in Eq. (41.36) is 0. (Ac-
tually we must check that B(u,v)|s; = 0 which we might arrange by using
something like “periodic boundary conditions.” I am not considering this type
of condition at the moment. Since v may be chosen to be zero near r or s we
must require B(u,v) =0 on 8J.) Now B(u,v) = 0 iff

(o) - (—v,v' + §u> =0 (41.39)

which happens iff (uv/, ) is parallel to (U’ + %U,U) . The boundary condition
Bu = 0 may be rewritten as saying (v',u) - (o, 8) = 0 or equivalently that
(v',u) is parallel to (=43, «) on 9J. Therefore the condition in Eq. (41.39) is
equivalent to (—f, «) is parallel to (v’ + gv, v) or equivalently that
/ b *
0= (a,8) |V + =v,v ) = B*v.
a
|
Corollary 41.36. The formulas for L and L* agree iff b =0 in which case
Lu=—p 1D (apu') + cu,

B = B*, D(L) = D(L*) and

(Lu,v) = (u, Lv) for all u,v € D(L). (41.40)

(In fact L is a “self-adjoint operator,” as we will see later by showing
(L+ /\0)71 exists for \o sufficiently large. Eq. (41.40) then may be used to
deduce (L + /\0)71 is a bounded self-adjoint operator with a symmetric Green’s
functions G.)

41.5.1 Dirichlet Forms Associated to (L, D(L))

For the rest of this section let a, by, by, co, p € C?(J), with @ > 0 and p > 0 on
J and for u,v € H'(J), let

E(u,v) = / (au'v" + byuv’ + bot/'v + couv) pdm and (41.41)
J

1/2
2 2
lell gy = (17 + )

where |Jul|* = (u, u), as defined in Eq. (41.34).
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Lemma 41.37 (A Coercive inequality for £). There is a constant K < oo
such that

Q)] < K Jull 1y [0l gy Sor v € H'(I). (41.42)

Let ap = minya, € = miny ¢y and B := max; |by + bs|, then for u € H'(J),
BZ
&(u,u) > “2—0 /1 + (a— 270) Jlull?. (41.43)
Proof. Let A = max;a, B; = maxy |b;| and Cy := max |co|, then

[€(u,v)| < / (@' [o'] + [ba] [ul ['] + [b2| [u'[ [o] + [col [ul [0]) pdm
J
< Al ')l + By flufl [0l + Ba || {[v]l + Co [[ull ||

2 2\1/2 2 2\1/2
< K (Il + ) (107 + J1oll®)
Let ap = miny a, ¢ = miny ¢ and B := max; |b; + bo|, then for any § > 0,
E(u,u) = / (a [u'|* 4 (b1 + o) uu’ + ¢o |u\2) pdm
J
> ao o/ + eljal® = B [ Jul ' pdm
J
2 _ B 2 _
> ao [/|1* + el = = (8 1o/l + 87 ull?)
Bo B
— (0= 50 ) WP+ (o= 570 ) .
Taking § = ao/B in this equation proves Eq. (41.43). =

Theorem 41.38. Let

b=(by—b1), c:=co—p L(ph1), (41.44)
Lu
Bu

—p~ (apu') +bu + cu and
(pau’ + pbiu) |57 -

Then for u € H(J) and v € H'(.J)
E(u,v) = (Lu,v) + [(Bu) v],,
and for w € H'(J) and v € H2(.J),
E(u,v) = (u, L*v) + [(B*v) uly, -

Here (as in Eq. (41.35)
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Lv=—p~ " (apu') = p~ " [pbu] + cu
and (as in Notation 41.33)
b
B*v = pav’ + (pb1 + —pa) v = pav’ + pbav.
a

Proof. Let u € H%(J) and v € H'(J) and integrating Eq. (41.41) by parts
to find

E(u,v) = /J (—p_l (apu’) v — p~t (pbyu) v + bou'v + couv) pdm

+ [pav'v + pbruv]y,

= (Lu,v) + [Bu - v]y; (41.45)
where
Lu=—p~(apu) — p~ (pbyu)’ + bot' + cou
=—p " (apu) + (ba = by) W/ + [co — p~" (pb1) ] w
=—p Yap) +bu' + cu
and
Bu = pau’ + pbu.
Similarly
E(u,v) = /J <fup71 (apv')l +byuv’ —up~! (phov) + Couv) pdm
+ [(pau + phyun),
= (u, LTU) + [Blw- ul,,
where
Ltv=—p~ (apv’) + b1’ — p~t (pbav)’ + cov
=—p~ (apv') + (b1 — b2)v' + [co — p~" (pb2)'] v
= =7 apv') = b0+ [+ p7 (plbr — b2) ] v
=—p L (ap)) =o'+ [c—p~' (pb)] v = L*.
and
B'tv = (pav’ + pbav) = B*v.
L]

Remark 41.39. As a consequence of Theorem 41.38, the mapping

(u,0) —

(a,b1, b2, c0) — E(u,v) = [; (au'v" + bywv’ + byu'v + couwv) pdm

is highly non-injective. In fact £ depends only on a, b = by — by and ¢ :=
co—p~1(pby) on J and by on 8.J.
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Corollary 41.40. As above let (o, 8) : 8J — R2\ {0} and let
D(L)={ue H*(J): Bu=au' 4+ Bfu=0 ondJ} and
Lu = —p~ " (apu’) + bu' + cu.

Given Ao > 0 sufficiently large, (L + o) : D(L) — L%*(J) and (L* + Xo) :
D(L* ) — L*(J) are invertible and there is a continuous Green’s function
G(z,y) such that

(L+MYV@%jLG@wV@My

Proof. Let us normalize « so that & = a whenever a # 0. The boundary
term in Eq. (41.45) will be zero whenever
au’ + byu = 0 when v # 0 on 9.J.
This suggests that we define a subspace x of H'(J) by
x:={u€H"(J):u=0ondJ where o =0on dJ}.

Hence y is either Hj(J), H'(J), {u € H'(J):u(r) =0} or {u € H'(J): u(s)
Now choose a function b; € C2(J) such that b; = 3 on 0.J, then set by := b+by
and co = c+ p~ ' (pby)’, then

D(L)=xN{ue H*(J): Bu=au' +bju=0ondJ}

and
(Lu,v) = E(u,v) for all w € D(L) and v € x.

Using this observation, it follows from Eq. (41.43) of Lemma 41.37, for Ao
sufficiently large and any v € D(L), that

((L+ Xo) u,u) = E(u,u) + Ao(u,u)
ap m2 _ 32 2 ag 2
> I+ (o= g+ o) Tl > 3l
As usual this equation shows Nul(L 4+ Ag) = {0} . Similarly on shows
(u, L*v) = E(u,v) for all v € D(L*) and u € x

and working as above we conclude that Nul(L* + A\g) = {0} . The remaining
assertions are now proved as in the proof of Corollary 41.24. m
With this result in hand we may now improve on Proposition 41.35.

Theorem 41.41. Let L, B, D(L), L*, B* and D(L*) be as in Proposition
41.85 and v € L*(J). Then there exists g € L*(J) such that

(Lu,v) = (u,g) for alluw € D(L) (41.46)
iff ve D(L*) and in which case g = L*v.
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Proof. Choose Ag > 0 so that Lo := (L + AoI) : D(L) — L%(J) is invert-
ible. Then Eq. (41.46) is equivalent to

(Lou,v) = (u, g + Agv) for all u € D(L). (41.47)
Taking u = Ly 'w with w € L?(J) in this equation implies
(w,v) = (L w, g+ Xov) = (w, (Lal)* (g + Mov)) for all w € L*(J)

which shows
v=(Lg") (g+ Aov). (41.48)

Since (Lou,v) = (u, L§v) for all w € D(L) and v € D(L*), by replacing u by
Lytu and v by (Lg) v in this equation we learn

(u, Ly~ v) = (Lgtu,v) for all u,v € L2(J).

From this equation it follows that (Lg)_1 = (L 1)* and hence from Eq.
(41.48) it follows that v € D (L§) = D(L").
]
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Constant Coefficient Equations




42

Convolutions, Test Functions and Partitions of
Unity

42.1 Convolution and Young’s Inequalities

Letting d, denote the “delta—function” at x, we wish to define a product (x)
on functions on R™ such that d, * 6y = d,. Now formally any function f on
R™ is of the form

f= f(x)ddx

]Rn
so we should have

frg= /R e F(2)g(y)d, * 6, dxdy = / [(@)9(y)barydudy

Rm xR™

= / f(x —y)g(y)dzdady
R xR™

= /‘n { D%n flz— y)g(y)dy} Ozdx

which suggests we make the following definition.

Definition 42.1. Let f,g : R® — C be measurable functions. We define
[rglx) = / f@—=y)g(y)dy

whenever the integral is defined, i.e. either f(x —-)g(-) € LY(R™,m) or f(z —
)g(-) > 0. Notice that the condition that f(z—-)g(-) € L*(R", m) is equivalent
to writing | f] * |g| (z) < oo.

Notation 42.2 Given a multi-index o € Z7;, let o] = a1 + -+ + o,

:][[1 7. and 8“—<ax) H(axj) .
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Remark 42.3 (The Significance of Convolution). Suppose that L = Z\a\<k aq 0%
is a constant coefficient differential operator and suppose that we can solve
(uniquely) the equation Lu = g in the form

ue) = Kgla) = [ ket

where k(z,y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the inverse
operation to differentiation.) Since 7. L = L7, for all z € R™, (this is another
way to characterize constant coefficient differential operators) and L= = K
we should have 7, K = K7,. Writing out this equation then says

/n k(x —z,9)9(y)dy = (Kg) (z — 2) = . Kg(z) = (K7.9) (v)
= [ ket —2ay = [ K-+ 2)a)ds

Since g is arbitrary we conclude that k(z — z,y) = k(z,y + 2). Taking y =0
then gives
k(x,z) = k(x — 2,0) =: p(x — 2).

We thus find that Kg = p x g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equa-
tions. More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality
for integrals.

Proposition 42.4. Suppose q € [1,00], f € L' and g € L9, then f x g(z)
exists for almost every x, f x g € L1 and

I1f*gll, < I£11 llgll,

For z € R" and f : R®™ — C, let 7.f : R®™ — C be defined by 7. f(z) =
flz = 2).

Proposition 42.5. Suppose that p € [1,00), then 7, : LP — LP is an isomet-
ric isomorphism and for f € LP, z € R™ — 1, f € LP is continuous.

Proof. The assertion that 7, : LP — LP is an isometric isomorphism
follows from translation invariance of Lebesgue measure and the fact that
7_, o T, = id. For the continuity assertion, observe that

I7-f — Tnyp = |7y (7=f — Tyf)Hp =7y f - f”p

from which it follows that it is enough to show 7, f — fin LP as z — 0 € R™.
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When f € C.(R"), 7. f — f uniformly and since the K := U|,|<;supp(7. f)
is compact, it follows by the dominated convergence theorem that 7, f — f in
LP? as z — 0 € R™. For general g € L? and f € C.(R"),

=9 = gll, <llmz9 == fll, + I f = fll, + If =gl
= llm=f = £ll, + 211 —gll,

and thus
tisup 7.9 |, < lmsup 7.7 — £1,+ 2117 ~ g, =217 g1,
z—> z—

Because C(R™) is dense in LP, the term | f — g/, may be made as small as
we please. W

Definition 42.6. Suppose that (X, T) is a topological space and i is a measure
on Bx = o(7). For a measurable function f: X — C we define the essential
support of f by

supp,(f) ={z€U:p({yeV: fy) #0}) >0Vr>V >z}. (42.1)

Lemma 42.7. Suppose (X, 1) is second countable and f : X — C is a mea-
surable function and p is a measure on Bx. Then X := U \ supp,(f) may
be described as the largest open set W such that flw(z) =0 for p — a.e. z.
Equivalently put, C := supp,,(f) is the smallest closed subset of X such that
f=rlc a.e.

Proof. To verify that the two descriptions of suppu( f) are equivalent,
suppose supp,,(f) is defined as in Eq. (42.1) and W := X \ supp,,(f). Then

W:{meX:,u({yEVSf(y)?éO}):O}

for some neighborhood V' of =
—U{V Co Xt pu(fly #0) =0}
=U{V Co X : fly =0 for p —a.e.}.

So to finish the argument it suffices to show u (f1lw # 0) = 0. To to this let
U be a countable base for 7 and set

U :={Vel: fly =0ae.}.

Then it is easily seen that W = Uy and since Uy is countable p (flw # 0) <
Yveu, #(flv #0)=0. m

Lemma 42.8. Suppose f,g,h : R" — C are measurable functions and assume
that © is a point in R™ such that | f| = |g| (z) < oo and |f] = (|g] x |h]) (z) < oo,
then

1 frg(x) =g f(x)
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2. f x (g h)(x) = (f * g) = h(z)
3. If z € R™ and m.(|f] * |g])(x) = | f| * |g] (x — 2z) < oo, then

T(f*g)(x) = 1. f * g(2) = [ * T.9(z)
4. If © ¢ supp,, (f)+supp,,(g) then f*g(x) =0 and in particular, supp,, (f*

g) C supp,,,(f) + supp,, (g) where in defining supp,,,(f *g) we will use the
convention that “f = g(x) # 07 when | f| * |g| (z) = oo.

Proof. For item 1.,

f1+lal@) = [ 101@=n)lsl )y = [ 110)lal =)y =gl « 7] )

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y — x —y. Similar computations prove all
of the remaining assertions of the first three items of the lemma.

Item 4. Since fxg(z) = f*g(z) if f = f and g = § a.e. we may, by replacing
I by flapp, (r) and g by glapp, (g) if necessary, assume that {f # 0} C
supp,,,(f) and {g # 0} C supp,,(g). So if = ¢ (supp,,(f) + supp,,(g)) then
z ¢ ({f#0}+{g#0}) and for all y € R", either x —y ¢ {f #0} or y ¢
{g #0}. That is to say either x —y € {f =0} or y € {g =0} and hence
f(z—y)g(y) = 0 for all y and therefore f*g(x) = 0. This shows that fxg =10

on R™\ (suppm( f) + supp,, (g)) and therefore

R\ (5upp,, () +5upp,,(9) ) C B" \ supp,,(f *9),

i.e. supp,,(f * g) C supp,,(f) + supp,,(g). m

Remark 42.9. Let A, B be closed sets of R", it is not necessarily true that
A+ B is still closed. For example, take

A={(z,y):xz>0andy > 1/z} and B={(z,y): 2 <0and y > 1/|z|},

then every point of A+ B has a positive y - component and hence is not zero.
On the other hand, for > 0 we have (z,1/z)+(—z,1/z) = (0,2/z) € A+ B
for all z and hence 0 € A + B showing A 4+ B is not closed. Nevertheless if
one of the sets A or B is compact, then A 4+ B is closed again. Indeed, if A is
compact and =, = a, + b, € A+ B and z,, — = € R", then by passing to a
subsequence if necessary we may assume lim,, ., a, = a € A exists. In this
case

lim b, = lim (x, —a,)=2—a€B

n—oo

exists as well, showing t =a+bec A+ B.

Proposition 42.10. Suppose that p,q € [1,00] and p and q are conjugate
exponents, f € LP and g € L%, then f*g € BC(R™), || f *gl, < ||pr ||qu
and if p,q € (1,00) then f x g € Co(R™).
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Proof. The existence of f+g(z) and the estimate | f + g[ (z) < || fll,, ll9]l,, for
all x € R™ is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows [|f * g||, < [ fIl,, l9ll, -
By relabeling p and ¢ if necessary we may assume that p € [1,00). Since

||TZ(f*g)7f*g”u: HTZf*gif*gHu

< lm=f = fll, llglly, = 0as z2—0

it follows that f * g is uniformly continuous. Finally if p, ¢ € (1, 00), we learn
from Lemma 42.8 and what we have just proved that f,, * g, € C.(R™) where
fm = flifj<m and gm = gl|g|<m- Moreover,

59— fm*gmlly <N xg— Fmxglly + [ fm %9 = fin * gmll,,
<N f = fall, Mally, + [1fmll, lg = gmll,
<\ f = fall, Nglly + 1 £1, g = gmll, — 0 as m — oo

showing f* g € Co(R"). m
Theorem 42.11 (Young’s Inequality). Let p,q,r € [1,00] satisfy

1
=+

1 1
S =14-. (42.2)
poq r

If f € L? and g € L9 then |f| * |g| () < oo for m — a.e. © and

1 gl < 1£1l, gl - (42.3)

In particular L is closed under convolution. (The space (L', *) is an example
of a “Banach algebra” without unit.)

Remark 42.12. Before going to the formal proof, let us first understand Eq.
(42.2) by the following scaling argument. For A > 0, let fi(x) := f(\z), then
after a few simple change of variables we find

I£all, = A"YPf] and (f * g)x = Afa * ga.

Therefore if Eq. (42.3) holds for some p, ¢, € [1, oc], we would also have

£ gl = M7 * @), < ANEAL lall,
_ \(+1/r=1/p-1/q)
= A==l £ gl

for all A > 0. This is only possible if Eq. (42.2) holds.

Proof. Let o, 8 € [0,1] and p1,p2 € [0, 00] satisfy pfl —l—pgl +r7l = 1.
Then by Holder’s inequality,
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9@l =| [ 1@ =t
< [16 =01 19 15 = ) o) dy

< (1= ol ay) " (/1= a) o
([19tr dy)l/m

1/r
= ( / [z —y)[ T g (y)| dy) I£11%, gl -

Taking the r*" power of this equation and integrating on z gives

1720ty < [ (f1re =0l ol dy) ao- 1715, ol
1—a)r 1-8)r d
= 1A= gl =5 1 £, g, - (42.4)

Let us now suppose, (1 — a)r = ap; and (1 — 8)r = fp2, in which case Eq.
(42.4) becomes,

£ % gl < £ llGp, Igllp,
which is Eq. (42.3) with

p:=(1—a)r=ap; and q:= (1 — B)r = fBps. (42.5)

So to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, 00]
satisfying p~t + ¢ 1 =141
If o, B, p1, p2 satisfy the relations above, then

a=—" and = "
T+ r+ p2
and 1 1 1r+ 1r+ 11 2 1
T T
I S A0 i TS - T ST N BT
p q pr T p2 T P1 D2 r r

Conversely, if p, g, r satisfy Eq. (42.2), then let o and 8 satisfy p = (1 — a)r
and ¢ = (1 - B)r, ie.
r—p

o= :1—E§1and5=
r r

79 4 _ 24,
' T

From Eq. (42.2),04:17(1—%) >0and 8= ¢ —%) >0, so that «, 8 € [0, 1].
We then define p; := p/a and ps := ¢/, then

1 1 1 1 1 1 1 1 1 1 1

— b 4-=fodac4S=-—4s_—gi=]

P p2 T q p T qg T p T T

as desired. m
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Theorem 42.13 (Approximate ¢ — functions). Let p € [l,00], ¢ €
LYR™), a:= [, f(x)dz, and for t > 0 let ¢y(x) = t~"¢(x/t). Then
1. If f € LP with p < oo then ¢y x f — af in LP ast | 0.
2.If f € BC(R™) and f is uniformly continuous then ||¢¢ * f — f||,, — 0 as
t]o0.
8. If f € L™ and f is continuous on U C, R" then ¢, * f — af uniformly
on compact subsets of U ast | 0.

See Theorem 8.15 if Folland for a statement about almost everywhere con-
vergence.

Proof. Making the change of variables y = ¢tz implies
bux 1@ = [ fa-potiy= [ fa- o
so that
b5 1)~ af(@) = [ (e t2) - )] o)
.
= [ Inatte) = f@) o). (126)

Hence by Minkowski’s inequality for integrals, Proposition 42.5 and the dom-
inated convergence theorem,

605 £ =afl, < [ lred = £l o)l ds =0 st L.

Ttem 2. is proved similarly. Indeed, form Eq. (42.6)

6058 = el < [ et = Fll o) d:

which again tends to zero by the dominated convergence theorem because
lim¢ o || 72 f — flloo = 0 uniformly in z by the uniform continuity of f.
Item 3. Let Bg = B(0, R) be a large ball in R” and K CC U, then

890 42 Convolutions, Test Functions and Partitions of Unity

sup |¢p x f(z) —af(x)| <
reK

| /B [l —12) — f(x)] 6(2)dz

+ /B (o — t2) — f(2)] él2)dz

c
R

< /B 6(=)[dz- sup  |f(x—t2) — f()]

r€K,z€BRr

d

+21fll /B; |6(2)] dz

<lllly - sup |f(z —t2) — f(=)|
r€K,2€B

,2€EBR

2l /| OIS

so that using the uniform continuity of f on compact subsets of U,

fimsup sup |60 £(«) ~ af(@)] <2[fl. [ [6(:)]d 0 as R cx.
t]0 ze K |z|>R

Remark 42.14 (Another Proof of part of Theorem 42.13). By definition of the
convolution and Holder’s or Jensen’s inequality we have

/W |v % ¢¢(2)|Pde < /Rn (/R"(U(x_y))|¢t(y)|dy)pd:c

< / oz — ) Pén(y)dy da: = [o]L,.
R» xR™

Therefore ||v * ¢¢||z» < ||v||z» Wwhich implies v * ¢, € LP. If ¢, € C°(R"™), by
differentiating under the integral (see Theorem 42.18 below) it is easily seen
that v * ¢4 € C*°. Finally for u € C. (R"),
[v—vs@ullr < llv—ullee + llu—wxdillLe + llu* ¢p —v* ¢l v
< lu—w* dullco + 2o — s

and hence
limsup ||[v — v * ¢l e < 2||v — ulLe
t10

which may be made arbitrarily small since C, (R™) is dense in L (R",m).
Exercise 42.15. Let e

_Je Mttt >0
f(t)*{ 0 ift<0.

Show f € C*(R, |0, 1)).
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Lemma 42.16. There ea:ists ¢ € CXR™[0,00)) such that ¢(0) > 0,
supp(¢) C B(0,1) and [, ¢(x)dx = 1.

Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 42.15.
Then h € C=(R,[0,1]), supp(h) C [-1,1] and h(0) = e=2 > 0. Define ¢ =
Jon B(|2|?)dz. Then ¢(z) = ¢ h(|z|*) is the desired function. m

Definition 42.17. Let X C R™ be an open set. A Radon measure on By is
a measure [ which is finite on compact subsets of X. For a Radon measure

w, we let L (1) consists of those measurable functions f: X — C such that
S |f1dp < 0o for all compact subsets K C X.

Theorem 42.18 (Differentiation under integral sign). Let {2 C R" and
f:R™ x 2 — R be given. Assume:

1. x — f(z,y) is differentiable for all y € £2.
2. géﬂ (m,y)’ < g(y) for some g such that [|g(y)|dy < oo.
2

3. [1f(2,y)ldy < oo

Then 2% [f(ac y)dy = f m, (x,y)dy and moreover if x — %(x,y) is

continuous then 80 18 T — f oo (r,y)dy.
The reader asked to use Theorem 42.18 to verify the following proposition.

Proposition 42.19. Suppose that f € L} (R",m) and ¢ € CL(R"), then
f+xo € CHR™) and O;(f * ¢) = f * 0;p. Moreover if ¢ € C(R") then
f*¢ e C®R").

Corollary 42.20 (C* — Uryhson’s Lemma). Given K _C U C, R,
there exists f € C°(R™,[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 42.16, ¢1(z) = t~"¢(z:/t) be as in Theorem
42.13, d be the standard metric on R and € = d(K, U¢). Since K is compact
and U® is closed, € > 0. Let Vs = {zx € R" : d(z, K) <} and f = ¢¢3 %1y,
then

supp(f) C supp(¢es3) + Veyz C Vaeyz C U.

Since ‘_/26/3 is closed and bounded, f € C(U) and for z € K,

flx) = /R Ly, x)<e/s * Ges3(@ —y)dy = /]R Ge/3(x —y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 < f < 1. m
Here is an application of this corollary whose proof is left to the reader.
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Lemma 42.21 (Integration by Parts). Suppose f and g are measur-
able functions on R™ such that t — f(x1,...,%i—1,t,Tiy1,...,Ty) and t —
g(x1, .o i1, t Ty 1, - -« ) are continuously differentiable functzons on R
for each fixed x = (x1,...,2,) € R". Moreover assume f - g, 31 - g and

f- g—off are in L*(R™,m). Then

of
- gd
Rn 8(1)2 gam = R™ f 8Z‘Z

Exercise 42.22 (Integration by Parts). Suppose that (z,y) € R x R"™! —
f(z,y) € C and (z,y) € Rx R"™' — g(x,y) € C are measurable functions
such that for each fixed y € R*!, 2 — f(z,y) and z — g(z,y) are continu-
ously differentiable. Also assume f-g, 9, f-g and f-0,g are integrable relative
to Lebesgue measure on R x R" ™!, where 9, f(z,y) := % f(z+t,y)|=0. Show

/ Ouf(z,y) - g(x,y)dedy = —/ f(@,y) - Opg(z,y)dady. (42.7)
JRxRn—1 RxRn—1

(Note: this result and Fubini’s theorem proves Lemma 42.21.)

Hints: Let ¢ € C°(R) be a function which is 1 in a neighborhood of
0 € R and set ¢ (x) = (ex). First verify Eq. (42.7) with f(x,y) replaced by
Ye(z) f(z,y) by doing the z — integral first. Then use the dominated conver-
gence theorem to prove Eq. (42.7) by passing to the limit, € | 0.

Solution 42.23 (42.22). By assumption, 9, [¥(z)f(z,y)] - g(z,y) and
Ye(z) f(,y)02g(x,y) are in L1(R"), so we may use Fubini’s theorem and
follow the hint to learn

/Rn 1dy/3z [We(@) f(z,9)] - 9(,y)d
B _/Rn 1dy/ [We(@)f(z,9)] - Ong(2, y)dz, (42.8)

wherein we have done and integration by parts. (There are no boundary terms
because 1), is compactly supported.) Now

O [Ye(2) f(2,y)] = Oatpe(x) - f(2,y) + Ye(2) 0 f (2, y)
= e (ex) f(x,y) + e (2)0: f (2, y)

and by the dominated convergence theorem and the given assumptions we
have, as € | 0, that
[ et (eafan) aleasis| < Ce [ 1) ool dody 0
/ ¢E(r)8zf(w,y)-g(w,y)dxdyﬂ/ O f(x,y) - 9(x,y)dxdy and
]Rn ]Rn,

/ V(@) f (@) - Dog(a, y)dady — / F(@,y) - Ougla,y)dady
R» R»
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where C = sup, ¢y [¢'(x)| . Combining the last three equations with Eq. (42.8)
shows

/ Oxf(x,y) - g(z,y)dxdy = f/ f(@,y) - Ocg(z,y)dzdy
RxRn—1 RxRn?—1

as desired.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 42.24. For f € L*(R",m) let
f(f) = (27T)7n/2/ f(x)efig'wdm(x)
R'n.

be the Fourier transform of f. Then f € Co(R™) and HfH < 2m)7"2 ||, -

n/2

(The choice of the normalization factor, (2m)~™/2, in f is for later conve-

nience.)

Proof. The fact that f is continuous is a simple application of the domi-
nated convergence theorem. Moreover,

0] < [ @)l dm(a) < Cr) /211,
$0 it only remains to see that f(£) — 0 as €] — oo.

First suppose that f € C°(R") and let A = 2?21 % be the Laplacian
on R™. Notice that %e*i“ = —igje " and Ae % = — |¢? e7i6%, Using
Lemma 42.21 repeatedly,

/Akf(:c)e_’f dm(x /f VAR =T dm () = \§|2k/f e~ dm(z)
= —(2m)"2 |¢[* £(€)
for any k € N. Hence (21)™/? ‘f({)‘ < |g|7* [A*f]l, — 0 as [¢] — oo and

f € Co(R™). Suppose that f € L'(m) and f;, € C>°(R") is a sequence such
that limy_oo |[|f — frll; = 0, then limy_, o Hf— ka = 0 and hence Hence
u

f € Co(R™) because Co(R™) is complete. m

Corollary 42.25. Let X C R™ be an open set and p be a Radon measure on
Bx.

1. Then C(X) is dense in LP(p) for all 1 <p < oo.
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2. If h € L}, (1) satisfies
/‘ Fhdu =0 for all f € C°(X) (42.9)
P

then h(z) =0 for p — a.e. z.

Proof. Let f € C.(X), ¢ be as in Lemma 42.16, ¢; be as in Theorem
42.13 and set ¢ := ¢ * (f1x). Then by Proposition 42.19 ¢, € C*°(X) and
by Lemma 42.8 there exists a compact set K C X such that supp(v;) C K
for all ¢ sufficiently small. By Theorem 42.13, ¢y — f uniformly on X ast¢ | 0

1. The dominated convergence theorem (with dominating function being
| flloo 15), shows 9, — f in LP(u) as ¢t | 0. This proves Item 1. because
of the measure theoretic fact that C,(X) is dense in LP ().

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f||, |h| 1x) implies

0=1 hdp = li hdp = hdp.
tlfg/X% w /thl%lwt g /Xfu

Since this is true for all f € C.(X), it follows by measure theoretic argu-
ments that h =0 a.e.

42.2 Smooth Partitions of Unity

Theorem 42.26. Let Vi,..., Vi, Co R" and ¢ € C (UL, V;). Then there
k
exists ¢; € C°(V;) such that ¢ = 3° ;. If ¢ = 0 one can choose ¢; > 0.

Proof. The proof will be split into two steps.

1. There exists K; CC V; such that supp ¢ C UK. Indeed, for all € supp ¢
there exists an open neighborhood N, of z such that N, C V; for some
j and N, is compact. Now {N, }zesupp¢ covers K := supp ¢ and hence
there exists a finite set 4 CC K such that K C UyealN,.. Let K =
U{Wx rxe and N, C V7} Then each Kj is compact, K; C V; and

suppp = K C UK

2. By Corollary 42 20 there exists ¢; € C°(V},[0,1]) such that ¢; := 1 in
the neighborhood of K;. Now define
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é1 = ¢y

B2 = (¢ — d1)p2 = A(1 —1h1)9ha

¢3 = (¢ — ¢1 — ¢2)h3 = p{(1 — Y1) — (1 — 9b1)h2}eds
= ¢(1 —1)(1 — p2)¢3

O =(p—d1— 2 — - — 1)U
=¢(1 =)L —v2) ... (1 — Pr—1)¥n

By the above computations one finds that (a) ¢; > 0 if ¢ > 0 and (b)
d—¢1—d2— - —dp =1 —1)(L—th) ... (1 — o) =0.
since either ¢(x) =0 or = ¢ supp ¢ = K and 1 — ¢;(z) = 0 for some i.
|

Corollary 42.27. Let Vi, ..., Vi, Co R™ and K be a compact subset of UF_, V.
Then there exists ¢; € C>(V;,[0,1]) such Zle ¢ < 1 with Zle ¢; =1 on
a neighborhood of K.

Proof. By Corollary 42.20 there exists ¢ € C°(U¥_,V;,[0,1]) such that
¢ = 1 on a neighborhood of K. Now let {¢;}¥_; be the functions constructed
in Theorem 42.26. m
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Poisson and Laplace’s Equation

For the majority of this section we will assume {2 C R™ is a compact manifold
with C? — boundary. Let us record a few consequences of the divergence
theorem in Proposition 22.30 in this context. If u,v € C?(£2°) N C1(£2) and
J |Auldz < oo then

Q

/Au vdm = — /Vu Vvder/Ug—da (43.1)
on

and if further [{|Au|+ |Av|}dz < oo then
2

/(Auv — Avu)dm = / (v% gZu) do. (43.2)
Q o0

Lemma 43.1. Suppose u € C?(£2°) N C1(£2), Au =0 on 2° and u = 0 on
02. Then w = 0. Similarly if Au =0 on £2° and Opu = 0 on 082, then u is
constant on each connected component of (2.

Proof. Letting v = u in Eq. (43.1) shows in either case that

*/VU-VUdTﬂ#*/U%dO': 7/|Vu|2dm.
2 Ye) o)

This then implies Vu = 0 on §2° and hence u is constant on the connected
component of 2°. If u =0 on 02, these constants must all be zero. m

Proposition 43.2 (Laplacian on radial functions). Suppose f(x) =
F (|z|), then

Lenmeyl = e+ B e, @33)

r=|z| | ‘

Af(x) =

nld
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In particular AF (|z|) = 0 implies 2-(r"~'F'(r)) = 0 and hence F'(r) =
Arl=m. That is to say

(r) = Ar? ™ + Bifn #2
"= Alnr+ B ifn=2.

Proof. Since (0,f)(z) = F'(|z]) du|z| = F'(|z[)& - v where & = 1,
Vf(z) = F'(|z|)&. Hence for g € C}(R"),

Af(@)g(x)de / V() - Vg(a) d
= _/n F'(r)z-Vg(rz) dx

= f/ F'(r)ig(rw) " Ldr do(w)
Sn=1x[0,00) dr

JRn

- / 1 P ) g(reo)dr do(w)
Sn—1x]

0,00) dr
L d n—1 o/ n—1
B Sn—1 [0,00) r”—l E (T F (T)) g(rw)r dr do’(w)
J8n=1%[0,00
L d n—
=/ P =TI g(a) da,

i r=lo|

Since this is valid for all g € CL(R"), Eq. (43.3) is valid. Alternatively, we
may simply compute directly as follows:
Af(x) =V - [F'(jz])z] = vF'(|«’f|) &+ F(l2)V - &
=F'(lz))& - &+ F'(|=))V | Tl

— F(a|) +F’(\xl){ sz\2 x}

||
-1,

= F(|j2]) + == 2] F(|z]).

Notation 43.3 Fort > 0, let

a(t) = an(t) ==c {tﬁlf %fzz (43.4)

(n=2)a( S” D 72 Also let
—% if n=2.

where ¢, = {

1 ;
C,n{W LfTL?éz

Inly| ifn=2. (43.5)

P(y) = ¢nly) == a(lyl) =
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An important feature of « is that

I (n— 2) — ifn#2 _ 1 1
a(t) =cy { % iftn=2" o(SnT) 1 (43.6)
for all n. This then implies, for all n, that
1 1 1 1
Vo(z) =Via(|z])] = (|z))2 = — T=— — .
¢( ) [ (‘ |)] (| |) O_(Sn—l) ‘I|7L71 U(Snfl) |.73|
(43.7)

One more piece of notation will be useful in the sequel.

Notation 43.4 (Averaging operator) Suppose u is a finite measure on
some space {2, we will define

L[ fdu = ﬁ /Q fdu.

For example if 2 is a compact manifold with C? — boundary in R" then

Zz[f(:c)d.r ﬁ/ﬂf(:c)d.r: m/nf(x)dx

1 1
140 = g = e

Theorem 43.5. Let 2 be a compact manifold with C?- boundary, u €
C2(02°) N CH(£2) with [, |Au(y)|dy < co. Then for x € £2

uw) = [ (oa =050 ~un 5= ) o~ [ ota — ) sutray
ie}

of

and

(43.8)

Proof. Let ¢(y) := ¢(xr —y) and € > 0 be small so that B;(e) C 2 and
let 2. := 2\ By(e), see Figure 43.1 below.
Let us begin by observing

lz—y|<e lyl<e

o(S" 1)/0 rdr=o(S"" 1)5

nld,,,

when n # 2 and for n = 2 that
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ON

Fig. 43.1. Removing the region where v is singular from (2.

/ Y(y) dy = / In y| dyZU(Sl)/OErlnrdr

|z—y|<e ly|<e

Lo 15" 2
=27 [=r®lnr — =r*| =me" [lne—1/2].
P 1",

This shows ¢ € L}, .(£2) and hence that ¥ Au € L'(£2) and by dominated
convergence theorem,

/ Y(y) Au(y) dy:leifg / Y(y)Au(y) dy
0

2.

Using Green’s identity (Eq. (43.2) and Proposition 43.2) and Ay =0 on {2,

we find
[ sty dy= [ svt) ay-+ [ (55 - Fea)do
2 2. 2]

€

+ / w@ - 6—%) do. (43.9)
90)\00

Working on the last term in Eq. (43.9) we have, for n # 2,
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[ o0 g = [ verw) G+ i)

9B(x.c) lyi=c

/ P(x + ew) 0 T+ ew)e" o (w)

("
7
|lw]=1

1 0
= / = %(m—i—ew)e”_lda(w)

|w]=1

=e/% (x + ew)do(w) — 0 as e | 0.
|w|
Similarly when n = 2,
/ 1/1()@()— In / %(er w)do(w) —0asel0
Y) 5 W) =clne n ew)do €l 0.
OB(z,e€) Jw|=1

—

Using Eq. (43.7) and n(y) = —(y — «) as in Figure 43.2 we find

N

_
- h —
—_— Q .
o —_—
/ \

/

Fig. 43.2. The outward normal to (2 is the inward normal to B(z,€).

o ! 1 ——
%(y) =V,d(y — ) -n(y) = TSy (y—=)- (—(y - x))
1 1
- e (43.10)
and therefore
oY 11
- / U o do(y) = R / u(y)do(y)
900\00 9B (x.€)

=— ][ u(z + ew)do(w) — —u(x) as e | 0

|w|=1
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by the dominated convergence theorem. So we may pass to the limit in Eq.
(43.9) to find

[ ot sty = [ (v)5e — 0 5 ) dot) ~ u(o
2

on

which is equivalent to Eq. (43.8). m

The following Corollary gives an easy but useful extension of Theorem
43.5It will be us

Corollary 43.6. Keeping the same notation as in Theorem 43.5. Further as-
sume that h € C%(£2°) N CY(N2) and Ah =0 and set G(y) = ¢(x —y) + h(y).
Then we still have the representation formula

o) = [ (60 5ew) - utn 252 ) ao - Z G)Luy.  (131)

o

Proof. By Green’s identity (Proposition 22.30) with v = h,

/Au hdm = /(Auh — Ah u)dm = / h% — @u do,
on  On
2 o) o0

Ou Oh
0=— /Au h dm + / (h% - %u) do. (43.12)
Q a0

Eq. (43.11) now follows by adding Eqgs. (43.8) and (43.12). m

Corollary 43.7. For all u € C2(R"),

— | Du(y)s(y)dy = u(0). (43.13)

R

Proof. Let 2 = B(0, R) where R is chosen so large that supp(g) C {2,
then by Theorem 43.5,

w0) = [ (6 Ge ) - utn 52 ) do ~ [ o) sutrdy
0}

o9

_ / o(y) Du(y)dy.
(9]

Remark 43.8. We summarize (43.13) by saying —A¢ = 4.
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Formally we expect for reasonable functions p that
Alp*p)=Apxp=—%p=—p.

Theorem 43.9. Suppose 2 C, R", p € C*(£2) N L*(£2) and

u(z) == / ola = Wpw)dy = (0 Lop) @)

then
—Au=p on .

Proof. First assume that p € C2(£2) in which case we may set p := 1op €
C2(R™). Therefore

1 1
u(z) = /" P(y)mdy = /R" plz — y)Wdy

and so we may differentiate under the integral to find
' 1
Au(z) = [ Dep(z —y) o dy = —p(x)
R

where the last equality follows from Corollary 43.7.
For p € C*(2)NLY(2) and xg € 2, choose a € C°(£2, [0, 1]) such that o =
1 in a neighborhood of 2y and let 8 := 1 — c. Then u = (¢ * ap) + (¢ * Blop)
and so
Au=A(p*ap)+ A(P*Blep). (43.14)

By what we have just proved
A(p*ap) (x) = — (ap) () = —p(z) for x near . (43.15)

Since = 0 near xy and
(6% 1ap) (2) = [ ola ~ 9By,
Q
we may differentiate past the integral to learn
Ao+ f1op) @) = [ Acola = )B)ol)dy =0 (43.16)

for z near xg. and this completes the proof. The combination of Eqs. (43.14
— 43.16) completes the proof. m
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43.1 Harmonic and Subharmonic Functions

Definition 43.10 (HarmonicFunctions). Let 2 C, R™. A function u €
C?(£2) is said to be harmonic (subharmonic) on 2 if Au =0 (Au > 0)
on {2.

Because of the Cauchy Riemann equations, the real and imaginary parts
of holomorphic functions are harmonic. For example 22 = (22 — y?) + 2izy
implies (22 — y?) and xy are harmonic functions on the plane. Similarly,

e® = e" cosy + ie” siny and
In(z) =1Inr+i6
implies
e” cosy, esiny, Inr, and 0(x,y)
are harmonic functions on their domains of definition.

Remark 43.11. If we can choose h in Corollary 43.6 so that G = 0 on 92,
then Eq. (43.11) gives

oG

u(z) = —/G(y)Au(y)dy— /u%da (43.17)
Q o0

which shows how to recover u(z) from Au on £ and u on 9. The next

theorem is a consequence of this remark.

Theorem 43.12 (Mean Value Property). If Au =0 on 2 and B(z,r) C
2 then

1
u(z) = m / u(y) do(y) =: ][ u do (43.18)

8B(z,r) OB (x,r)
More generally if Au >0 on 2, then
u(z) < ][ u do (43.19)
9B (x,r)
Proof. For y € B(z,r),
Gly) = oz —y) —alr) = a(|lz —y|) —a(r)

where « is defined as in Eq. (43.4). Then G(y) = 0 for y € 9B(z,r) and
G(y) > 0 for all y € B(z,r) because « is decreasing as is seen from Eq. (43.6).
From Eq. (43.10) (using now that n is the outward normal to B(z,r)),
oG 1
a—n(errw)—fU — for |w| =1
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and so according to Eq. (43.17) we have

1
u(z) = W / udo — / G(y)Au(y)dy
dB(z,r) B(z,r)
= ][ u do — / G(y)Au(y)dy. (43.20)
OB(z,r) B(z,r)

This completes the proof since G(y) > 0 for all y € B(z,r). m

Remark 43.13 (Mean value theorem). Assuming B(x, R) C {2 and multiplying
Eq. (43.18) (Eq. (43.19)) by

o(0B(z,r)) = o(S" )t

and then integrating on 0 < r < R, implies

R
w(@)m(B(z, R)) = (or <) / dr / u(y) do(y)

dB(z,r)

R . .
= / dr "1 / u(z + rw) do(w) = / udm.
0 s B(z,R)

n—1

Therefore if Au =0 or Au > 0 then

u(z) = ][ udm or u(x) < ][ udm respectively (43.21)
B(z,R) B(z,R)
for all B(z, R) C 2.

Proposition 43.14 (Converse of the mean value property). If u €
C(2) (or more generally measurable and locally bounded) and

u@ = f o) (13.22)
OB(z,r)

for all x € 2 and r > 0 such that B(z,r) C £2, then uw € C*°(£2) and Au = 0.
Similarly, if u € C%(2) and x € 2 and

w0 < o) (43.23)
OB(z,r)

for all r sufficiently small, then Au(z) > 0.
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Proof. First assume u € C(2) and Eq. (43.22) hold which implies
u(z) = ][u(x + rw)do(w) (43.24)
s
for all z € §2 and r sufficiently small, where S = S"~! denotes the unit sphere

in R™. Let n € C°(R™, [0, 00)) such that (0) > 0 and

1= /77(|33|2)d55 =o(5) /(;OO 7)(7’2)7“"71dr

Rn

and for € > 0 let n.(z) = e "n (lf—f) € CP(R™) and uc(z) = ne * u(x).
Then for any xo € {2 and € > 0 sufficiently small, u, is a well defined smooth
function near xy. Moreover for x near xg we have

wie) = [ nta =gty = [ dr [ oo+ rodoto)

=1
= /000 drr™! / e "n (:—j) u(z + rw)do(w)
fwl=1
= u(z)o(S) /000 dr r" ey (:—j) = u(x)

which shows u is smooth near x.
Now suppose that u € C?, and u satisfies Eq. (43.23), z € 2 and |r| < €
with e sufficiently small so that

f(r) = ][ u do = ][ w(z + rw)do(w)
dB(z,r) Sn—1
is well defined. Clearly f € C? (—¢,€), f is an even function of r so f'(0) = 0,
£(0) = u(z) and f(r) > f(0). From these conditions it follows that f”(0) > 0

for otherwise we would find from Taylor’s theorem that f(r) < f(0) for 0 <
|r| < €. On the other hand

0< 50 = [ (@2u) ()il
STL*l
= ][(&@u) (z)wwjdo(w)
S’rlfl
= (0;0;5u) (z)0;; ][ wido(w) = %Au(z) (43.25)

Sn—1
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wherein we have used the symmetry of do on S"~! to conclude
][ wiw;jdo(w) =01if i #j
Snfl
and

/ FIBEEDS F wdow)

gn—1 J=1 gn—1
1 1
== ][ |w|? do(w) = = V.
n n
Sn—1
Alternatively, by the divergence theorem,

wiw;do(w) = wiej - n(w)do(w)

gn—1 Sn—1
=
= V- (zie;) dm
a(S"1) JBo,) (zie;)

1 1

This completes the proof since if u satisfies (43.22) then f is constant and it
follows from Eq. (43.25) that Au(z) = 0.

Second proof of the last statement. Now that we know u is C? we
have by Eq. (43.20) that

/ Gy) duly)dy = ][ wdo —u(z) > 0
B(z,r) B(z,r)

and since with « as in Eq. (43.4),

/ Gy) duly)dy = / Gz +y)dulz +y)dy
B(z,r) B(0,r)

= /OT P tdp /s dwG (x + pw)Au(r + pw)
-/ " dp (a(p) — afr) [ dobuta s )
~ Au(z)o(5™) /0 " dp (a(p) — afr)

= Au(z)o(S" Ven {g - L}

7”L7'n72
= b,r? Au(z)
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where b, is a positive constant. From this it follows that Au(z) > 0.
Third proof of the last statement. If u € C?(§2) satisfies expand
u(z 4+ rw) in a Taylor series

2
u(z +rw) = u(z) +rVu(z) -w+ %ﬁiu(x) + o(r®),
and integrate on w to find

udo = ][ u(z + rw)do(w)
OB(z,r) Sn—1

= ][ [u(m) +rVu(z) w+ r2%83,u(r) +...|do(w)
Srl—l

=u(z) + %T‘QAu(:c) + o(r?).
Thus if u satisfies Eq. (43.22) Eq. (43.23) we conclude
u(z) = u(z) + %TQAU(.%) +o(r?) or
u(z) <wu(z) + %rzAu(sc) + o(r?)

from which we conclude Au(z) = 0 or Au(x) > 0 respectively.

Fourth proof of the statement: If u satisfies Eq. (43.22) then Au = 0.
Since we already know u is smooth, it is permissible to differentiate Eq. (43.24)
in 7 to learn,

0= ][ Vu(z + rw) - w do(w) = ][ %(x + rw) do(w)
S’n.fl S.ﬂ.fl
1

1
_ . R A .
(G )T / Vu-n do (S 1) / u dm
OB(z,r) B(z,r)

Dividing this equation by 7 and letting r | 0 shows Au(z) =0. =

Corollary 43.15 (Smoothness of Harmonic Functions). If u € C2({2)
and Au = 0 then uw € C*(2). (Soon we will show w 1is real analytic, see
Theorem 43.16 of Corollary 43.34 below.)

Theorem 43.16 (Bounds on Harmonic functions). Suppose u is a Har-
monic function on 2 C R™ xg € 2, a is a multi-index with k := |a| and
0 < r < dist(z,,012). Then

Ck Ck
[D%u(wo)| < m”u“u(t}(zo,r)) < WHUHL](Q) (43.26)

(@Mt k)b
- a(n)

where Cl, . In particular one shows that u is real analytic in 2.
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Proof. Let n¢(z) be constructed as in the proof of Proposition 43.14 so
that u(z) = u * ne(x). Therefore, D*u(x) = u. D*n.(z) and hence

[D*u(zo)| < [[ull L1 (B(wo ) 1D ell Lo

Now 1
D) = " (Dn) ()
so that
. Ll 1 1
1D ne(@)| = ™" =57 |(D 77)(?)‘ < Coorm = Corom

where the last identity is gotten by taking e comparable to r. Putting this all
together then implies that

« 1 (a3
[D%u(zo)l < =57 1D nllzellull 22 (Bw0.r))
which is an inequality of the form in Eq. (43.26). To get the desired constant

we will have to work harder. This is done in Theorem 7. on p. 29 of the book.
The idea is to use D*u is harmonic for all o and therefore,

D%u(xo) = ][ D%udm = ][ 8; DPudm
)

B(zo.p B(zo.p)
n
A — 8; DPudm
U(Snil)pn /B(Tgp)

n
[ — Dﬁunq;da
U(Snil)pn /aB(xn,p)

so that n
D u(@o)] < {107t (3.

and for o = 0 and = € B(xg,r/2) we have

1 2\"
wols i s e (2) Tl
B(xz,r/2)

Using this and similar inequalities along with a tricky induction argument one
gets the desired constants. The details are in Theorem 7. p. 29 and Theorem
10 p.31 of the book. (See also Corollary 43.34 below for another proof of
analyticity of u.) m

Corollary 43.17 (Liouville’s Theorem). Suppose u € C? (R"), Au = 0
on R™ and |u(z)| < C(1+ |z|V) for all z € R™. Then u is a polynomial of
degree at most N.

910 43 Poisson and Laplace’s Equation

Proof. We have seen there are constants C),| < co such that

1
'r"‘Ha|
~ 1
< Cloyr" lull Lo (B (o) - e
(1 +r")

'r"a|

|DYu(z0)| < ClafllvllLr(Bwo.r))

o~

—0asr— o0

when if || > N. Therefore D%u := 0 for all || > N and the the result follows
by Taylor’s Theorem with remainder,

u() = | ‘Z D”U(wo)oilx — )"
al<N

Corollary 43.18 (Compactness of Harmonic Functions). Suppose 2 C,
R" and u, € C?(£2) is a sequence of harmonic functions such that for each
compact set K C 2,

Ck ::sup{/ |un|dm:n€N}<oc.
K

Then there is a subsequence {v,} C {un} which converges, along with all of
its derivatives, uniformly on compact subsets of {2 to a harmonic function u.

Proof. An application of Theorem 43.16 shows that for each compact set
K C (2, sup,, |Vun|Lw(K> < oo and hence by the locally compact form of the
Arzela-Ascolli theorem, there is a subsequence {v,} C {u,} which converges
uniformly on compact subsets of {2 to a continuous function u € C(§2). Passing
to the limit in the mean value theorem for harmonic functions along with the
converse to the mean value theorem, Proposition 43.14, shows w is harmonic
on f2. Since v,, — u uniformly on compacts it follows for any K CC 2
that |, ¢ [t —vp|dm — 0. Another application of Theorem 43.16 then shows
D%v,, — D%y uniformly on compacts. m

In light of Proposition 43.14, we will extend the notion of subharmonicity
as follows.

Definition 43.19 (Subharmonic Functions). A function v € C(£2) is said

to be subharmonic if for all x € 2 and all r > 0 sufficiently small,

u(z) < u do.

OB(z,r)

The reason for the name subharmonic should become apparent from Corollary
43.26 below.
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Remark 43.20. Suppose that u,v € C(§2) are subharmonic functions then so
is u + v. Indeed,

u(z) +v(x) < ][ u do + ][ vdo = ][ (u+v) do.

OB(z,r) OB(z,r) OB(x,r)

Theorem 43.21 (Harnack’s Inequality). Let V' be a precompact open and
connected subset of 2. Then there exists C = C(V, (2) such that

supu < Cinfu (43.27)
1 \%4

for all non-negative harmonic functions, u, on 2.

Proof. Let r = 1dist(V, £2°) and 2 € V' (as in Figure 43.3) and |y — o[ <,

<L

He

Fig. 43.3. A pre-compact region V C (2.

then by the mean value equality in Eq. (43.21) of Remark 43.13,

) :
u(z) = ][U(z)d»z:W / u(z)dz

B(z,2r) B(z,2r)
> o [ w5 | ueds = )
= m(B(0,1))(2r)" R0 = on a2 = o)
B(y,r) B(y,r)

see Figure 43.4. Therefore
1
u(z) > Q—nu(y) for all z,y € V with |z —y| < 7. (43.28)

Since V is compact there exists a finite cover S := {W;}}4, of V' consisting of
balls with of radius r with centers z; € V.
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Fig. 43.4. Nested balls.

Claim: For all z,y € V, there exists a chain {Bi}f.;1 C S of distinct balls
such that z € By, y € By and B,NB;y1 # o foralli=1,... k-1

Indeed, by connectedness of V' there exists v € C([0,1],V) such that
~(0) = = while y(1) = y. For sake of contradiction, suppose

T :=sup{t €[0,1] : 3 a chain as above > ~(t) € By} < 1.

Since there are only finitely many possible chains (at most Ziu:l (MLJI@)') there

must be a chain {Bi}i.c:1 C & such that ¥(T) € By. Let Byy1 € S such that
Bit1 3 y(T). If Byy1 = B; with j <k, then {Bi}zzl C S is a chain such that
v(T) € B;. Otherwise, since v(T') € By41 N By, it follows that By1 N By, # 0
and {Bz}f:f C S is a chain such that v(T') € Bjy41. In either case we will
have violated the definition of 7" and hence we must conclude 7" = 1. This
proves the claim, since again using the fact that there are only a finite number
of possible chains, there must be at least one chain for which (1) € By.

To complete the proof, for an% z,y € V use a chain as in the above claim
to find a sequence of points {xj}j:1 CV with N <2M, z1 =z, xny = y and
|zit1 — x;| < r for all 4. Then by repeated use of Eq. (43.28) we may conclude

u(y) < (2" u(z).
Since z,y € V are arbitrary, this equation implies Eq. (43.27) with C := 24M.
m

Remark /8.22. It is not sufficient to assume w is sub-harmonic in Theorem
43.21. For example if M > 0, then u(x) = Mxz? + 1 is sub-harmonic on R,
inf(_y 1yw = 1 while sup(_; ;yu = M + 1. Since M is arbitrary, this would
force C' = co.

Also it is important that {2 is connected. Indeed, if 2 = 1 U £25 with £
and (2 being disjoint open sets, then let u =1 on 2y and v = M on {2, for
any M > 0. This function is harmonic on {2 and hence C > M for all M > 0,
ie. C'=o0.
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Theorem 43.23 (Strong Maximum Principle). Let 2 C R™ be connected
and open and u € C(£2) be a subharmonic function (see Definition 43.19). If

M = sup u(z) is attained in 2 then u := M. (Notice that u € C%(£2) and
zeN

Au = 0, then u is harmonic and hence in particular sub-harmonic.)

Proof. Suppose there exists z € {2 such that M = u(z). If € > 0 is chosen
so that B(x,€) C 2 as in Figure 43.1 and u(y) < M for some y € 0B(z,¢),
then by the mean value inequality,

M =u(z) < ][ u(y)do(y) < M
8B (x,¢)

which is nonsense. Therefore u := M on 0B(z, €) and since € € (0, dist(z, 942))
we concluded that w := M on B(z,R) provided B(z,R) C f2. Therefore
{x € 2 : u(x) = M} is both open and relatively closed in {2 and hence
{z € 2:u(z) = M} = 2 because {2 is connected. m

Corollary 43.24. If 2 is bounded open set u € C(£2) is subharmonic, then

M = maxu(z) = max u(z).
e z€bd(12)

Again this corollary applies to u € C(2) N C%(£2) such that Au = 0.

Proof. By Theorem 43.23, if x € (2 is an interior maximum of u, then
u = M on the connected component §2; of {2 which contains z. By continuity,
w is constant on {2, and in particular u takes on the value M on bd({2). m

Corollary 43.25. Given g € C(bd(2)), f € C(£2) there exists al most one
Junction u € C?(2) N C(£2) such that Au= f on 2 and u = g on bd(£2).

Proof. If v € C?(£2) N C(R2) is another such function then w := u — v €
C?(2)NC(N) satisfies Aw = 0 in 2 and w = 0 on bd(§2). Therefore applying
Corollary 43.24 to w and —w implies

maxw(z) = max w(z) =0and minw(z) = min w(z)=0.
= z€bd(£2) P=xe) z€bd(£2)

Corollary 43.26. Suppose g € C(bd(£2)) and u € C?(£2) N C(£2) such that

Au =0 on 2. Then w < u for any subharmonic function w € C(2) such
that w < g on bd(£2).

Proof. The function —wu is subharmonic and so is v = w — u by Remark
43.20. Since v = w — g < 0 on bd(£2), it follows by Corollary 43.24 that v < 0
on 2,ie.w<gon . m
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43.2 Green’s Functions

Notation 43.27 Unless otherwise stated, for the rest of this section assume
2 C R" is a compact manifold with C? — boundary.

For x € £2, suppose there exists h € C2(£2°) N C1(£2) which solves

Ahy, =0 on 2 with h,(y) = ¢(z — y) for y € . (43.29)
Hence if we define

G(z,y) = dx(y) — ha(y) (43.30)
then by the representation formula (Eq. (43.11) also see Remark 43.11) implies

0G
u(z) = —/G(m,y)Au(y) dy — /W(m,y) u(y) do(y) (43.31)

y

2 o9

for all u € C2(02°) N C*(R2).
Throughout the rest of this subsection we will make the following assump-
tion.

Assumption 2 (Solvability of Dirichlet Problem) We assume that for
each g € C(912) there exists h = hy € C2(£2°) N CH(£2) such that

Ah =0 on 2 with h =g on 052.

In this case we define G(x,y) as in Eq. (43.30). We will (almost) verify that
this assumption holds in Section 43.5 below. The full verification will come
later when we study Hilbert space methods.

Theorem 43.28. Let G(z,y) be given as in Eq (43.30). Then

1. G(z,y) is smooth on (£2° x 2°)\A where A = {(z,z) : x € £2°}.

2. G(x,y) = G(y,x) for all z,y € 2. In particular the function h(z,y) =
hz(y) is symmetric in x,y and x € 2° — h, € C(£2) is a smooth mapping.

3. If 2 is connected, then G(z,y) > 0 for all (x,y) € (£2° x 2°)\A.

Proof. Let € > 0 be small and 2. := 2\ (B(z,¢) U B(z,€)) as in Figure
43.5, then by Green’s theorem and the fact that A,G(z,y) =0 if y # «,
0= [ &)G(z,y)G(z,y)dy
0.

- / (%G(azy)mz, y) - G(Ivy)g—f“ ”) @

892,

+ / G, 5) 0y Gz, y)dy
0.

- [ (56@06ED - Gan Gt ) do
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Fig. 43.5. Excising the singular region from (2.

Since G(x,y) and G(z,y) = 0 for y € 92, the previous equation implies,

0 0
—G(z,y)G(z,y) — G(z,y) =—G(z,y }dor:().
/G(B(z,e)UB(z,e)) {any (@ 9)G(=y) ( )any (=)

We now let € | 0 in the above equations to find

: 9¢(z — y) o v
Lim on, G(z,y)do(y) = lim / G(z,y) an,fb(z y) do.
O(B(z,¢)) OB(z,¢€)
(43.32)

Moreover as we have seen above,

. 9 _
lelﬂ)l / G(z, y)a—nygS(z —vy) do = G(z, z) and
OB(z,€)
lim 99 V) . yydo(y) = Gz, )
€l0 on, ' ’
9(B(z,€))
and hence G(z, z) = G(z, ). Since G(z,y) = ¢p(x —y) — h.(y) and ¢p(xz —y) =
¢(y — x) it follows that h,(y) = hy(z) =: h(z,y). Therefore y — h,(y) and

x — h,(y) are smooth functions. Now by the maximum principle (Theorem
43.23):

|he(y) — h(y)| < max |he(y) — ha(y)]
yeonR
:;ggg\cb(x—y)—qﬁ(z—y)\ —0asz— 2z

Therefore the map z € 2 — h, € C(£2) is continuous and in particular the
map (z,y) — h(z,y) is jointly continuous. Letting n be as in the proof of
Proposition 43.14, we find
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o) = [ W@ (e - Dz
J
— [ h@D -5 n(e - 3) 7 d
02x802

from which it follows that in fact h is smooth on {2 x (2.
It only remains to show  — h, € C(£2) is smooth as well. Fix z € 2 and
for v € R", let H, € C?(£2°) N C1(2) denote the solution to

AH, =0on 2 with H,(y) =v-V¢(z —y) for y € 012.
Notice that v — H, is linear and by the maximum principle,
hoto = he — Holl oo () < lMhato — ha = Hollpoo (00
=llé(z+v—) =z =) =v-Vo(z =)l L~(a0) -
Now,
pzt+v—y)—odlz—y)—v-Vo(z —y)
= /01 [Vo(z +tv —y) — Vo(z — y)] - vdt
so that, by the dominated convergence theorem,
l¢(z +v—-) =gz =) —v-Vo(z = )|[L=00)

1
< |v|/0 V(@ + v — ) = T6(z — Y e (o) 4 = 0 (0]

This proves x — h, is differentiable and that 0,h, = H,. Similarly one shows
that * — h, has higher derivatives as well.

For the last item, let z € £2° and choose € > 0 sufficiently small so that
B(z,e) C 2°\ {y} and G(z,z) > 0 for all z € B(z,¢). Then the function
u(y) := G(x,y) is Harmonic on 2°\ B(z,¢€), u € C(2\ B(z,¢€)), u = 0 on 612
and u > 0 on B(x, €). Hence by the maximum principle, 0 < u on 2\ B(z, )
and since v is not constant we must also have u > 0 on £2°\ B(z, €). Since € > 0
was any sufficiently small number, it follows G(z,y) > 0 for all y € 2°\ {z} .
|

Corollary 43.29. Keeping the above hypothesis and assuming p € C?(£2°) N
LY(02) and g € C(012), then there is (a mecessarily unique) solution u €
C3H2°)NC(N) to

Au = —p with u =g on 0N (43.33)

which is given by Eq. (43.31).

Proof. According to the remarks just before Eq. (43.31), if a solution to
Eq. (43.33) exists it must be given by
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oG
u(@) = [ Glz,y)py) dy — [ 5=(2,y) g(y) do(y)- (43.34)
Y
2 o2

From Assumption 2, there exists a solution v € C2?(§2) N C'(£2) such that
Av =0 and v = g on 9f2. So replacing u by u — v if necessary, it suffices to
prove there is a solution u € C?(£2°) N C(£2) such that Eq. (43.33) holds with
g = 0. To produce this solution, let

u(e) = [ Glay)oty) dy = [ otz = p(s) dy ~ H(z)
2 2
where

H(z) = /Qh(x, y)p(y)dy.
Using the result in Theorem 43.28, one easily shows H € C°°(£2°)NC*(£2)and
AH = 0. By Theorem 43.9,

A, / o(z —y)p(y) dy = —p(z) for z € 2
2

and therefore u € C?(£2) and Au= —p. m

Remark 43.30. Because of the maximum principle, for any z € {2 the map
g € C(0R2) — hy(z) € C(2) is a positive linear functional. So by the Riesz
representation theorem, there exists a unique positive probability measure o,
on 92 such that

hg(z) = /g(y)dam(y) for all g € C(092).
a0

Evidently this measure is given by

doa(y) = —g—im y)do(y)

and in particular —% (z,y) > 0for all x € 2 and y € 9L2. It is in fact easy

to see that —2% (z,9) > 0 for all z € 2 and y € 002.

on,

43.3 Explicit Green’s Functions and Poisson Kernels

In this section we will use the method of images to construct explicit formula
for the Green’s functions and Poisson Kernels for the half plane!, H" = {z €

! We will do this again later using the Fourier transform.
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R" : x,, > O}and Balls B(0,a). For z = (2/,2) € R*"! x (0,00) = H" let
Rz := (2',—2). It is simple to verify |z —y| = |Rx —y| for all z € H" and
y € OH". Form this and the properties of ¢, one concluded, for x € H", that
h.(y) == ¢(y — Rz) is Harmonic in y € H" and h,(y) = ¢(z — y) for all
y € OH". These remarks give rise to the following theorem.
Theorem 43.31. For z,y € H", let
G(z,y) = ¢(y —x) — ¢(y — Rx) = ¢y — ) — ¢(Ry — x).
Then G is the Greens function for A on H™ and
oG 2z, 1 n =n
K(Qf,y) = —%(T7y) = W m fOTIl' e H andy € oH

is the Poisson kernel for H". Furthermore if p € C*(H") N L*(H") and f €
BC (BH”) , then

uw) = [ G+ [ K@)
solves the equation
Au=—p on H" withu = f on OH".
Proof. First notice that
Gy, ) = 6(z —y) — 6l ~ By) = 6(x —y) — 6(Rz ~ RRy) = G(a,1)

since ¢ is a function of |-|. Therefore, if

u@) = [ Gty = [ o@-vowiy— | o Ry,

]H[ﬂ,
we have from Theorem 43.9 that

Aufa) = =pla) = [ Addlo— R)plo)dy = —p(o).

Since G(z,y) = 0 for z € 9H" and so u(x) = 0 for x € OH". It is left to the
reader to show u is continuous on H".
For x € H" and y € OH", we find form Eq. (43.7),

oG 1o}
K(z,y) = —8—ny($,y) = %G(%y)
0
= 2 fofy — ) — oly — o)
1 1
Sy Ve
S TR
N CE e T
1 2%,

S o(Sm ) fy — el
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Claim: For all x € H",
- K(z,y)dy = 1.
oHn
It is possible to prove this by direct computation, since (writing z = (2/, x,,)
as above)

2 T
K(z,y)dy = / - dy
o o(S5m71) Jrn-1 (|2 — g2 + 22)"/?

2 / 1 dy
(5" Jror (Jyf? +1)"*

2 > 1
—— (872 / S ———
a(sn=1) ( ) 0 (r2 4+ 1)"/2

where in the second equality we have made the change of variables y — =,y
and in the last we passed to polar coordinates. When n = 2 we find

2 L gr= [ ——dr=1n/2
/0 "oy /0 r2+1 r=n/

and for n = 3 we may let u = r? to find

> 1 > 1 1> 1
e _dr = / r—————sdr = —/ ———du=
/0 (r2 4+ 1)"/? o (r241)*%? 2Jo (u+1)*?

These results along with

00 1 00 n n—1
/ 7“7‘*272 dr = / (r*+1) 2al
0 (r2+1)" 0 n—1

2 [ Cnja
—nnil/o (r2+1) /2 Lor r"ldr

o 1
r / r’ nt2 dr
n=1lJo (241

allows one to compute fooo r"*zmdr inductively. I will not carry out
the details of this method here. Rather, it is more instructive to use Corollary
43.6 to prove the claim. In order to do this let v € C°(B(0,1),[0,1]) such
that u(0) = 1, u(z) = U(|z|) and U(r) is decreasing as r decreases. Then by
Corollary 43.6, with u(z) = upm () = u(z/M),

up (@ /K ,y)uly/M)do(y) — M~ /G(wvy) (Au) (y/M)dy. (43.35)
H»

By the monotone convergence theorem,
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Jim / Kz, y)u(y/M)do(y) = / K(z,y)do(y)

D]HI n OHn

and therefore passing the limit in Eq. (43.35) gives

1= [ K@wdot) - in |72 [ Glag)sut/M)dy

H»

This latter limit is zero, since

M- / Gla,y) Buly/M)dy

1
=c, M~ 5 — — | (Au M)d
/Lﬂﬂ 7 Ryl }( ) (y/M)dy

1 1
=c M*QM"/ - Au(y)d
! S e = dry" Rx]\ly"Q} W)y
1 1
=c — Au(y)d
H/ /M — g Rx/My"-?] vy

This latter expression tends to zero and M — oo by the dominated conver-
gence and this proves the claim. (Alternatively, for y large,

1 1
lz—y["* Rz —y|"?

1 1 1
‘ ‘17,—2 LiAn—Q )RiiAn_Q
W — Y ol — Y
1 R
- {(1+2|z|-g+..,)7(1+2‘ A )}
Y
1
=0(——)
y" ™!
and therefore
1

|

H»

1
— Au M)d
‘x7y|n_2 ny|n_2:| (Au) (y/M)dy

O(M 2M1 A”)— (1/M) —0
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as M — oo.

Since G(z,y) is harmonic in z, it follows that K(z,y) = —a‘zy G(z,y) is
still Harmonic in z. and therefore
u@) = [ K@) = === [ = f)do(y)
o o(S"71) Jomn |z —y|”
is harmonic as well. Since
U= oo o T O (43.36)

2 1 / 1
= T s f(y)dy
o(57 1) 2271 Jomn <|1./7y‘2 N 1)n/z

it follows from Theorem 42.13 that u((z',,)) — f(z') as x, | 0 uniformly
for 2/ in compact subsets of OH™. m

43.4 Green’s function for Ball

Let 7 > 0 be fixed, we will construct the Green’s function for the ball B(0,r).
The idea for a given « € B(0,r), we should find a mirror location, say pz and
a charge ¢ so that

¢z —y) = q¢ (p2 —y) for all |y[=r.
Assuming for the moment that n > 3 and writing ¢ = 82~ this leads to
the equations
2 A 2 N 2
|z —y|” = |Bpi — By|” = 5° |pi — y|
or equivalently squaring out both sides and using |y| = r,
|z — 2z -y + 1% = B° (P —2p3 - y+1?).
Choosing y L z and y = rZ leads to the conditions
‘x|2 +7,,2 — ﬁ2 (,02 +T'2) and
|lz|* — 2r |z| + r? = 82 (p* —2pr +17).

Subtracting these two equations implies —2r |z| = —2p3%r or equivalently
that p = |z|/B2%. Putting this into the first equation above then implies

2 2 |5152 2,2
‘$| +r :F‘FBT

or equivalently that
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0=128" = (jaf* +71?) 82 + [af*.

By the quadratic formula, this implies

2
(\x|2 + 7"2) + \/(|:17|2 + r2) — 42 |z
2 _

B =

272
2
(I +r2) £ (P =r2) (1ol +92) (12~ 0P
- 2r2 - 272
s
=1or T‘_2

Clearly the charge § = 1 will not work so we must take 5 = |z| /r in which
case, p = r2/|x| and hence

90 (pi —y) = (2| /1) > ¢ <T2% - y) =9 (Ti" - @y) :

Let us now verify that our guess has worked. Let us begin by noting the
following identities for z,y € R",

ré —r~" |z y’Q = (7“2 —2z -y 4172 |z \y\2) (43.37)
and in particular when |y| = r this implies
j#r — |zlg]* = (r* =22y + |af*) = |z -y
so that

x

Y
— lz|=]. 43.38
Zr—lol2] (43.39)

& — y| = | — |alg| = \

Now the function

hay) = ¢ (rf - m?}) =9 (M (y B 7“2ﬁ>)

is harmonic in y and by Eq. (43.38),
X Yy X A
ho(y) = 6 (ar = |o] £) = ¢ (7 — [a] §) = 9(x — y) when |y| =r.
Hence we should define the Green’s function for the ball to be given by

Glo,y) = dw —y) — haly) = oz —y) — ¢ (ir ~ 2l 2)
=¢(x—y) — ¢ (&r—r z[ |y 9)

:¢(x—y)—¢<@ (y—ﬂ%))
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From Eq. (43.37), it follows that hy(y) = hy(z) and therefore G(z,y) is again
symmetric under the interchange of = and y.
For y € dB(0,r), using Eq. (43.7) we find

—K(z,y) =

y—r2ﬁ
SRS [ A I e
(5771 | [y — =" e
1 [ 1 1 )
=5 (e 0 T )

~ s [0 (Bri-e)]

S SR A
TSy — 2" Y Ty Y
_ 1 2 2

= ey

These computations lead to the following theorem.

Theorem 43.32. For xz,y € B(0,r), let
= —) — & (3 — 1212
Gla,y) = 9o —y) — 6 (ar — 2|2
and if y € 0B(0,r), let

Ax_
=D )I yl ™"

K(z,y) = ——( y) =
Then p € C%(B(0,7)) N LY (B(0,7)) and f € C (8B(0, r)) , then
@)= [ Gy [ K@iy (4339
B(0,r) 0B(0,r)

solves the equation

Au = —p on B(0,r) with u = f on 0B(0,r).
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Remark 43.33. Letting p = |z|, we may write K (z,y) as
r2— ,02 1
o(S"Ir (p2 492 — 208 - )"/

K(z,y) = (43.40)

In particular when 7 = 1, n = 2, z = pe'? and y = re’®, this gives

1—p?
27 (p?2 +1—2pcos (6 — )

K(z,y) =
which agrees with the Poisson kernel P,(§ —a) of Eq. (22.40) which we derived
earlier by Fourier series methods.

Proof. The proof is essentially the same as Theorem 43.31 but a bit easier.

For these reasons, we will only prove here the assertion

lim K(z,y)f(y)do(y) = f(=zo) for all zog € 0B(0,r). (43.41)

=0 JoB(0,r)

From Theorem 43.5 with u = 1 it follows again that

/ K(z,y)do(y) = 1.
B0

For any « € (0,1) let
e(a) :=sup{|f(ry) — f(ra)| 1y, € S" ' with §-& < a}.

Then by uniform continuity of f on dB(0,r), it follows that e(a) — 0as a T 1
and hence

|| ____K(z,9)f(y)do(y) - f(r2)|

JOB(0,r)

< / K(z,9) |f(y) — £(ri)| do(y)
dB(0,r)

= [ lenaK ) |5 - 169 doty)
JOB(0,r)

[ yacaK @) 50) - 109 do(y)
dB(0,r)

<2|fll, / yasak (@ y)do(y) + €(a)
< (@) |/, (r ~ Jal ) +e(a)

where C(a) is some constant only depending on «, see Eq. (43.40). Therefore,

sup
|z]=p

Cl@) £l (r* = p?) + e(a)

/ K@y f@)de) - f(rd)| <
dB(0,r)
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and hence

lim sup sup
Pir lz|=p

| K@w)iwiot) - 59 < cle) ~ 0asa 10
9B(0.r)

which implies Eq. (43.41). m

Corollary 43.34. Suppose that u is a harmonic function on (2, then u is real
analytic on §2.

Proof. The condition of being real analytic is local and invariant under
translations as is the notion of being harmonic. Hence we may assume 0 €
B(0,7) C £ for some r > 0, in which case we have, for |z| < r and f =

u‘am, that
ww)= [ Kot = Tl [ ey oty
OB a(S"N)r JoBon
—ﬂ/ &~ gr| " F)do(y) (43.42)
= 0-(5'”*1)7" BT xr —yr y)ao(y). .
Now
o=yl =le—gr[ " =" g - rTte "
2\ —n/2
=r " (1 - Yz + %)
=" (1 - a(z,y)"?
where
o 2 -1 ‘SL’|2
alz,y) =2r gz — g
Since

- [

la(z, y)| < 2r~ " || tor s 20 +af < 1
if |2| < apr and ag < v/2 — 1, we find that |2 — y| ™" has a convergent power
series expansion,

oo
|z —y| ™" =r" Z ama(z,y)™ for |z| < agr.

m=0

Plugging this into Eq. (43.42) shows u(z) has a convergent power series ex-
pansion in z for |z| < (V2—1)r. m
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43.5 Perron’s Method for solving the Dirichlet Problem

For this section let 2 C, R™ be a bounded open set and f € C (bd(£2),R) be
a given function. We are going to investigate the solvability of the Dirichlet
problem:

Au =0 on 2 with u = f on bd(£2). (43.43)

Let S(£2) denote those w € C (£2) such that w is subharmonic on 2 and let
S¢(£2) denote those w € S(2) such that w < f on bd(£2). As we have seen in
Corollary 43.26, if there is a solution to u € C?(2) N C ((_2) , then w < u for
all w € S¢(£2). This suggests we try to define

u(z) = uy(z) == sup {w(z) : w € §(2)} for all z € . (43.44)

Notation 43.35 Given w € S(£2), £ € 2 and v > 0 such that B(§,r) C {2,
let (see Figure 43.6)

[ w(y) fory e 2\ B(E,7)
werly) = { h(y) for yeBEr)

where h € C (B(f,r)) is the unique solution to

Ah =0 on B(&,r) with h =w on dB(&,r).

The existence of h is guaranteed by Theorem 43.52.

—>

Fig. 43.6. The construction of we,, in the one-dimensional case.

Proposition 43.36. Let w € S(£2) and we, be as above. Then

1w < we .
2. we,r € S(02), i.e. we, is subharmonic.

3. For any & € 2 andr > 0 such that B(§,r) C {2, the mean value inequality
is valid,
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Proof. 1. Since w = we, on 2\ B(£,7), it suffices to show w < h on
B(&,r). But this follows from Corollary 43.26.

2. Since wg , is harmonic on B(€,r) and subharmonic on 2\ B(¢,r), we
need only show

wer(y) < ][ we rdo
0B(y,p)

for all y € 9B(&,r) and p sufficiently small. This is easily checked, since w is
subharmonic,

wer(y) = w(y) < ][ wdo < ][ we rdo
9B(y.p) 9B(y,p)

wherein the last equality we made use of Item 1.
3. By item 1. and the mean value property for the harmonic function, we .,
we have
W) <wer@ = wedo= [ v
aB(&,r) OB(&,r)
[ ]

Theorem 43.37. The function u = uy defined in Eq. (43.44) is harmonic on
2 and u < f on bd(£2).

Proof. Let us begin with a couple of observations. In what follows
m:=min{f(z):x € bd(2)} and M := min{f(z): z € bd(2)}.

1. The function u = uy > m on {2 since m € S(12).

2. By the maximum principle w < M on {2 for all w € S¢(§2) and therefore
uy < M on £2.

3. Ifwi,...,wm € S§(R2), then w = max {w,...,wn} € Sf(£2). Indeed for
& € 2 and r small,

wdo > ][ w;do > w;(§)
OB(&,r) OB(&,r)

for all 4.

4. Now suppose £ € 2 and R > 0 be chosen so that B({,R) C 2 and
D C B(&, R) is a countable set. Then there is a harmonic function wp on
B(&, R) such that wp = uy on D.

To prove this last item let D := {yx},-,; and choose {wi*} C Sf(£2)
such that w}"(yx) — u(yx) as m — oo for each k. By replacing w}" by
max {w},...,wi"} if necessary we may assume for each k that w]® is in-
creasing in m for each k. Letting
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Wy, = max {w{®,...,wy}

we find an increasing sequence {Wp,,} C Sy(£2) such that W, (y) T us(y) for
all y € D. Finally define a sequence {wy,} C Sp(£2) by wim := (Win)¢ 2 - By
the maximum principle, wy, is still increasing and since W,,, < w,,, and we still
have wp, (y) T ug(y) for all y € D. We now define wp := limy, oo Win| B¢, R)
which exists because wy, is increasing and w. We have wp = uy on D and
because {wy,} is a bounded and convergent sequence of harmonic functions
on B(, R), it follows from Corollary 43.18 that w is harmonic on B(¢, R).
This completes the proof of item 4.

We now use item 4. to prove uy is continuous at £ € {2. To do this let
{yrtre; C B(& R) be any sequence such that y, — £ as k — oo and let
D ={¢} U{yx}re; C B(& R). Since wp is harmonic and hence continuous,

i ug(ye) = lim wp(yx) = wp(€) = uy(€)

showing uy is continuous.

To show uy is harmonic on B(§, R), let D be a countable dense subset of
B(&, R). Then the continuity of uy and the fact that uy = wp on D, it follows
that uy = wp on B(§, R). In particular u; is harmonic on B(, R). Since & is
arbitrary, we have shown u; is harmonic. m

To complete our program, we want to show that uy extends to a function
in C(2) and that uy = f on bd(£2). For this we will need some assumption
on bd(£2).

Definition 43.38. A function Q € C’(Q) is a barrier function for n €
bd(£2) if Q is subharmonic on £2, Q(n) =0 and Q(z) <0 for all x € bd(£2)\

{n}.

Ezample 43.39. Suppose that 7 € bd(£2) and there exists £ € R™ such that
(z —n)-& < 0forall z € bd(£2)\{n} (see Figure 43.7 below), then the function
Q(z) := (x —n) - € is a barrier function of 7.

Ezample 43.40. Suppose that 7 € bd(£2) and there exists a ball B(£,7)N 2 =
{n} (see Figure 43.8), then Q(z) := a(r) — a(|z — ¢|) is a barrier function for
71, where « is defined in Eq. 43.4.

Theorem 43.41. Suppose f € C(bd(£2)) and u = uy is the harmonic func-
tion defined by Eq. (43.44) and there exists a barrier function Q forn € bd(£2).
Then limy ., ur(x) = f(n). In particular if every point n € bd(§2) admits a
barrier function, then there is a unique solution u € C (2)NC?(£2) to Au =0
with w = f on bd(£2).

Proof. Given ¢ > 0 and K > 0, let w(z) := f(n) — ¢ — KQ(z) for all
x € 2. For any € > 0 we may choose (using continuity of f and compactness
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Clya

x

Fig. 43.7. Constructing a barrier function at point where 1 where 942 lies in a half
plane.

Fig. 43.8. Another n for which there exists a barrier function.

of bd(£2)) K sufficiently large so that w < f on bd(£2), i.e. w € Sy(92).
Therefore w < uy and hence

fn) —e=w(n) = }Lmqw(x) < liminfus(z).

T—n
Since € > 0 is arbitrary, this shows

ligliyrllf ug(x) > f(n). (43.45)

We now consider the function

—u_ys(z) = —sup{w(z) :w e S_§(2)} =inf {—w(z) : w € S_;(2)}
—inf {(W(z): W €S_;(2)}. (43.46)
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If we S(2) and —W € S_f(12), then w — W is sub harmonic and w — W <
f—f = 0 on bd(£2), therefore by the maximum principle it follows that
w < W on (2. Coupling this fact with Eq. (43.46) shows —u_¢(z) > w(z) for
all w € Sp(£2) and then taking the supremum over w shows uy(z) < —u_s(z).
Therefore using Eq. (43.45) with f replaced by —f shows

limsupus(z) < limsup (—u_¢(z)) = — liglj;lf (u—s(z)) < = (=f(m) = f(n)

o T
(43.47)
which combined with Eq. (43.45) shows

lim uy(z) = f(n).

z—n

Exercise 43.42. Suppose that R is an n x n orthogonal matrix (R¥R =1 =
RR') viewed as a linear transformation on R". Show for f € C? (R") that
A(foR)=AfoR,ie. Aisinvariant under rotations.

Exercise 43.43. Show that every point € bd({2) has a barrier func-
tion when bd(£2) is C2. Hint: By making a change of coordinated involv-
ing rotations and translations change of coordinates, it suffices to assume
n = 0 € bd(£2) and that B(0,7) N bd(£2) is the graph of a C? — function
g : B(0,7) NR"*"! — R" such that g(0) = 0 and Vg(0) = 0. Show for § > 0
sufficiently small that

ds(x) := |den — x| for z € bd(£2)

has a unique global minimum at = = 0. Use this fact and Example 43.40 to
complete the proof.

Remark 43.44. To make Barrier functions for cones C, let D := C NS™~! and
let u(w) for w € D denote the Dirichlet eigenfunction on D for the spherical
Laplacian with smallest eigenvalue A > 0, i.e. —Agn-1u = Au. This function is
positive on D° and vanishes on the boundary. If C has sperical symmetry, the
function should be describable explicitly. At any rate, we can now considier
the function U(rw) = r®u, then
1 n—1 a re
AU = —8 (T‘ 8,. [7’ U]) + T—zASn—lu

pn—1"T

=a(a+n—2)r*2u— "2y
which will be zero if A = a(a+n—2), ie.
a4+ (n—2)a-A=0

where
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—(n—2)+1/(n—2)* +4A

2

o =

Hence taking
(n—2)° +4X - (n —2)

o = 5

2

the function U(rw) = r®u(w) is harmonic in C and 0 on C. (Probably should
be doing these considerations for the exterior of C.)

43.6 Solving the Dirichlet Problem by Integral Equations

Another method for solving the Dirichlet problem to reduce it to a question
of solvability of a certain integral equation in bd(§2). For a nice sketch of how
this goes the reader is referred to Reed and Simon [11], included below. For a
more detailed account the reader may consult Sobolev [16] or Guenther and
Lee [6].

The following text is taken from Reed and Simon Volume 1.

Mses Recutis Fou THE BANACH SpACE C

Example (Dirichlet problem) v The main impetus for the study of
compact operators arose from the use of integral equations in attempting to
solve the classical boundary value problems of mathematical physics. We
briefly describe this method. Let D be an open bounded region in R® with a
smooth boundary surface @D. The Dirichlet problem for Laplace’s equation
is: given a continuous function f'on 8D, find a function , twice differentiable
in D and continuous on D, which satisfies

Au(x) =0 xeD
u(x)=f(x) xeéD
Let K(x, ¥) = (x — y, n,)/2x|x — y|® where n, is the outer normal to 4D at

the point y € D. Then, as a function of x, K(x, y) satisfies A, K(x, y) =0in
the interior which suggests that we try to write u as a superposition

ux) = [ Kex, )l dS0) (V1.6a)

where @(y) is some continuous function on 3D and dS is the usual surface
measure. Indeed, for x € D, the integral makes perfectly good sense and

Au(x) =0 in D. Furthermore, if x, is any point in 4D and x — x, from
inside D, it can be proven that

ux) = = o) + [ Ko, o) dsty) (VL6b)
If x = x, from outside D, the minus is replaced by a plus. Also,

[ Ktxo. 3000 dS(7)
2D

ists and is a continuous function on 8D if ¢ is a continuous function on
dD. The proof depends on the fact that the boundary of D is smooth which
implies that for x, ye éD, (x —y,n)~ c|x—y|* as x> y.

Since we wish u(x) = f(x) on d D, the whole question reduces to whether we
can find ¢ so that

fG) = —o) + j; " K(x, y)p(y) dS(»), xedD

Let T: C(8D) — C(2D) be defined by
Tp = K(x,y)o0)dsp)
oD

Not only is Tbounded but (as we will shortly see) Tis also compact. Thus, by
the Fredholm alternative, either 2 = 1 is in the point spectrum of Tin which
case there is a € C(@D) such that (/ — T)y =0, or —f=(/— T)p has a
unique solution for each f e C(6D). If u is defined by (V1.6a) with i replacing
@, then u = 0 in D by the maximum principle. Further, dufdn is continuous
across 0D and therefore equals zero on dD. By an integration by parts this
implies that # =0 outside 8D. Therefore, by (VL.6b), 2y(x) =0 on 4D, so
the first alternative does not hold.
The idea of the compactness proof is the following. Let

(X —Z ":)

K D= op s

If & > 0, the kernel K is continuous, so, by the discussion at the beginning of
this section, the corresponding integral operators T, are compact. To prove
that T is compact, we need only show that |[T— T,||— 0 as § -+ 0. By the
estimate

LN = TN < Ifll [ 1K 2) = Kiw 2)] dS)
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we must only show that the integral converges to zero uniformly in x as
& = 0. To prove this, divide the integration region into the set where [x—z| >¢&
and its complement. For fixed ¢, the kernels converge uniformly on the first
region. By using the fact that K is integrable, the contribution from the
second region can be made arbitrarily small for ¢ sufficiently small.
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Introduction to the Spectral Theorem

The following spectral theorem is a minor variant of the usual spectral theorem
for matrices. This reformulation has the virtue of carrying over to general
(unbounded) self adjoint operators on infinite dimensional Hilbert spaces.

Theorem 44.1. Suppose A is an n xn complex self adjoint matriz, i.e. A* =
A or equivalently Aj; = /L-j and let p be counting measure on {1,2,...,n}.
Then there exists a unitary map U : C* — L2({1,2,...,n},du) and a real
function X : {1,2,...,n} — R such that UAE = X\ - UE for all £ € C". We
summarize this equation by writing UAU Y = M)y where

My L2({1,2,...,n},du) — L*({1,2,...,n},du)
is the linear operator, g € L*>({1,2,...,n},du) — A-g € L*>({1,2,...,n},du).

Proof. By the usual form of the spectral theorem for self-adjoint matrices,
there exists an orthonormal basis {e;};-_, of eigenvectors of A, say Ae; = Me;
with A; € R. Define U : C* — L%({1,2,...,n},du) to be the unique (unitary)

map determined by Ue; = d; where
L f1lifi=j
%) = {Oifiyéj
and let A: {1,2,...,n} — R be defined by A(7) := X;. m

Definition 44.2. Let A : H — H be a possibly unbounded operator on H. We
let
DA Y={ye H: 3ze€H > (Az,y) = (z,2) V2 € D(A)}

and for y € D(A*) set A*y = z.

Definition 44.3. An operator A on H is symmetric if A C A* and is self-
adjoint iff A= A*.

The reader should check that A : H — H is symmetric iff (Az,y) = (x, Ay)
for all z,y € D(A).
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Proposition 44.4. Let (X,p) be o — finite measure space, H = L*(X,dpu)
and f: X — C be a measurable function. Set Ag = fg = M;g for all

geDMy)={g9ge H: fge H}.
Then D(My) is a dense subspace of H and M} = Mj.

Proof. For any g € H = L?(X,du) and m € N, let g,,, := 91|f|<m- Since
[fgm| < mlg| it follows that fg, € H and hence g, € D(Mjy). By the
dominated convergence theorem, it follows that g,, — ¢g in H as m — oo,
hence D(My) is dense in H.

Suppose h € D(M7F) then there exists k € L? such that (Myg, h) = (g, k)
for all g € D(Mjy), i.e.

/ foh dp = / gk dy for all g € D(My)
b'e X
or equivalently
/ g(fh — k)du = 0 for all g € D(M;). (44.1)
b'e

Choose X,, C X such that X,, T X and u(X,) < oo for all n. It is easily

checked that _
fh—k

Th—H
is in D(My) and putting this function into Eq. (44.1) shows

gn = 1Xn 1\f\§n

/ |Fh — k| 1) fj<ndp = 0 for all n.
X

Using the monotone convergence theorem, we may let n — oo in this equation
to find fx ‘fh—k’du = 0 and hence that fh = k € L?. This shows h €
D(My) and Mjh = fh. m

Theorem 44.5 (Spectral Theorem). Suppose A* = A then there exists
(X,u) a o — finite measure space, f : X — R measurable, and U : H —

L3(z,p) unitary such that UAU™Y = M;y. Note this is a statement about
domains as well, i.e. UD(My) = D(A).

I would like to give some examples of computing A* and Theorem 44.5 as
well. We will consider here the case of constant coefficient differential operators
on L?(R™). First we need the following definition.

Definition 44.6. Let a, € C™(U), L = 3, <, @a0* — am'™ order linear
differential operator on D(U) and

L'o= > (-1 [a¢]

la|<m
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denote the formal adjoint of L as in Lemma 40.4 above. For f € LP(U) we
say Lf € LP(U) or LY (U) if the generalized function Lf may be represented

loc
by an element of LP(U) or L7, (U) respectively, i.e. Lf =g e LY (U) iff

loc

/ Lt dm= / gpdm for all ¢ € C(U). (44.2)
U U
In terms of the complex inner product,
(1.9):= [ f@g()im(z)
U

Eq. (44.2) is equivalent to

(f-L%¢) = (g.9) for all p € CZ(U)

where

L= Y (1) 0" [aae].

|a]<m

Notice that L® satisfies L® ¢ = LT¢. (We do not write L* here since L® is to
be considered an operator on the space on D’ (U).)

Remark 44.7. Recall that if f,h € L? (R"), then the following are equivalent
1. f=h.
2. (h,g) = (f, F~1g) for all g € C= (R).
3. (h,g) = (f,F1g) forall g € S(R").
4. (h,g) = (f Flg) forall g € L? (R™).

Indeed if f = h and g € L2 (R™), the unitarity of F implies
(h,g) = (ﬁg) = (Ff9)=(£,F9).

Hence 1 = 4 and it is clear that 4 = 3 = 2. If 2 holds, then again since
F is unitary we have

(hig) = (£, 7 '9) = (f.9) forall g € C* (R")
which implies h = f a.e., i.e. h = f in L2 (R").

Proposition 44.8. Let p(z) = 3, <., @ax® be a polynomial on C",

L:=p(0):= Z aq 0% (44.3)

o] <m

and f € L2 (R™). Then Lf € L2 (R™) iff p(i€) f(€) € L*(R™) and in which
case
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(Lf) (&) = p(i&) f(£). (44.4)

Put more concisely, letting
={fel?*R"):LfeL*R")}
with Bf = Lf for all f € D(B), we have

FBF ™! = Myg).-
Proof. As above, let
L= 3" a,(-0) and L® := > G (—0)". (44.5)
|a|<m |al<m
For ¢ € C° (R™),
0% =1° [6© e O = ¥ au(-0.)" [ o) eane)
laj<m '

- / P00 (€) e SarE) = 7 [p06 (©)] (@)
So if f € L2 (R") such that Lf € L2 (R™). Then by Remark 44.7,
(LF,9) = (Lf,6Y) = (f,L6") = (f(@), 7" [p(i©)6 (9)] (@)
= (f(©), [P0 ©)]) = 1) (), 6 (€)) for all ¢ € C* (R")

from which it follows that Eq. (44.4) holds and that p (i¢) f(€) e L2 (R).
Conversely, if f € L?(R") is such that p(i€) f(€) € L?(R") then for
¢ € C (R™),

(f,L7¢) = (f, FL? ¢) : (44.6)
Since

F(E70)© = [ oweane) = [T i)

/¢ )@a0%e AN (x /¢ )T (—i€)™ e~ 4 (x)

= (#)$(¢),
Eq. (44.6) becomes

(£:L°6) = (£, G(0)) = (p(i€) f(£).9(9))
= (77 [pi©) f(©)] (@), 0(a)) .

This shows Lf = F~! [p (i€) f(g)] cL?(R"). m
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Lemma 44.9. Suppose p(z) = Z\a|§m aax® is a polynomial on R™ and L =
p(0) is the constant coefficient differential operator B = Z|a|§m aa 0% with
D(B) := S (R") C L?(R"). Then

FBF ™' = M)l srn)-

Proof. This is result of the fact that F (S (R")) = S(R") and for f €
S (R™) we have

f@) = | F©e7dNe)

so that
Bf(z)= [ f(&)L.eTd\(E) = / F©p(ig)e™mdA(€)
R™ Rn
so that X .
(Bf) (€) = p(i€) f(&) for all f € S(R™).
| ]

Lemma 44.10. Suppose g : R" — C is a measurable function such that
lg(z)| < C <1 + |yc\M) for some constants C and M. Let A be the unbounded
operator on L? (R™) defined by D(A) = S (R™) and for f € S(R™), Af = gf.
Then A* = Mj.

Proof. If h € D (Mjy) and f € D(A), we have

(a5.m) = [ afhdm = [ faldm = (7. Mgh)

which shows Mz C A*, i.e. h € D(A*) and A*h = Mzh. Now suppose h €
D (A*) and A*h =k, i.e.

/ gfhdm = (Af, h) = (f,k) :/ fkdm for all f € S(R")
n R'n.
or equivalently that

/ (gh — k) fdm =0 for all f € S (R™).

Since the last equality (even just for f € C° (R™)) implies gh — k = 0 a.e. we
may conclude that h € D(Mjy) and k = Mzh, i.e. A*C M;. m

«

Theorem 44.11. Suppose p(z) = Z|a\<m aax® is a polynomial on R™ and
A = p(0) is the constant coefficient differential operator with D(A) :=
C> (R") C L?(R") such that A = L = p(0) on D(A), see Eq. (44.3). Then
A* is the operator described by
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DA ={feL*R"):L'fe L*(R")}
={rer*®):pe)f(§) e 1* ")}
and A*f = LYf for f € D(A*) where L' is defined in Eq. (44.5) above.
Moreover we have FA*F~1 = M—.
p(i€)

Proof. Let D(B) = S (R"™) and B := L on D(B) so that A C B. We are

first going to show A* = B*. As is easily verified, in general if A C B then

B* C A*. So we need only show A* C B*. Now by definition, if g € D(A*)
with &k = A*g, then

(Af,g) = (f,k) for all f € D(A) :=C>R").

Suppose that f € S (R™) and ¢ € C2° (R™) such that ¢ = 1 in a neighborhood
of 0. Then f,(z) := ¢(z/n)f(z) is in S (R™) and hence

(fna k) = (Lfnvg) . (44.7)

An exercise in the product rule and the dominated convergence theorem shows
fn— fand Lf, — Lf in L% (R") as n — co. Therefore we may pass to the
limit in Eq. (44.7) to learn

(f.k) = (Bf.g) for all f € S (R")
which shows g € D(B*) and B*g = k.

By Lemma 44.10, we may conclude that A* = B* = Mm and by Propo-

sition 44.8 we then conclude that
D(A") = {f € L*R") : plig) f(€) € L* (R")}
={fel’®R"):LifeL*(R")}
and for f € D(A*) we have A*f =LTf. m
Ezample 44.12. If we take L = A with D(L) := C2° (R™), then
L' =A=FM_ 2 F!
where D(A) = {f € L*(R") : Af € L>(R™)} and Af = Af.

Theorem 44.13. Suppose A = A* and A < 0. Then for all ug € D(A) there
exists a unique solution u € C*([0,00)) such that u(t) € D(A) for all t and

u(t) = Au(t) with u(0) = uo. (44.8)
Writing u(t) = e*4uq, the map ug — 4
i.€.

ug s a linear contraction semi-group,

lletuol| < |luol| for all t > 0. (44.9)

So !4 extends uniquely to H by continuity. This extension satisfies:
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1. Strong Continuity: the map t € [0,00) — et4

ug € H.
2. Smoothing property: t > 0

ug is continuous for all

g € (] D(A™) =: C=(A)
n=0

and

k
|AketA|| < (%) e * for all k € N. (44.10)

Proof. Uniqueness. Suppose u solves Eq. (44.8), then
d
E(u(t),u(t)) = 2Re(u, u) = 2Re(Au,u) < 0.

Hence ||u(t)]| is decreasing so that ||u(¢)|| < |Juo||.This implies the uniqueness
assertion in the theorem and the norm estimate in Eq. (44.9).

Existence: By the spectral theorem we may assume A = My acting
on L%(X,u) for some o — finite measure space (X, ) and some measurable
function f : X — (—o0,0]. We wish to show u(t) = e/fuy € L? solves

u(t) = fu(t) with u(0) = ug € D(My) C L*.
Let ¢ > 0 and |A| < t. Then by the mean value inequality
(AN _ otf
A
This estimated along with the fact that

u(t + AA) —u(t) _ e“’*’AZ —etf g PO e Fetfug as A — 0

enables us to use the dominated convergence theorem to conclude

. o o ut+A) —u(t)
u(t)=1L $1E10 - =
as desired. i.e. 4(t) = fu(t).

The extension of e' to H is given by M.;. For g € L?, |e!/g| < |g| € L?
and e/ g — €79 f pointwise as t — 7, so the Dominated convergence theorem
shows t € [0,00) — et4g € H is continuous. For the last two assertions, let
t>0and f(z) = 2Fe'®. Then (In f)'(z) = £ +¢ which is zero when z = —k/t
and therefore

Uo

= max {\fe(HA)fu(ﬂ : A between 0 and A} < |fuo| € L%

etf fug = fu(t)

k
I}}g(})(!xketw‘ =|f(—k/t)| = (%) ek,

Hence

B\
|A*et4|,, < max |xkem’ < (—) e F < o0
<0 t
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Theorem 44.14. Take A= FM_j¢2F ! so Als = A then

C>®(A) := ﬁ D(A™) c €= (RY)

n=1

i.e. for all f € C(A) there exists a version f of f such that f € C(R%).

Proof. By assumption |¢[2"f(¢) € L? for all n. Therefore f(£) = %

for some g, € L? for all n. Therefore for n chosen so that 2n > m + d, we
have e

_— <
T+epr|l, =%

2

/ €™ F©)1dE < [lgallza
Rd

which shows \§|m\f(§)| € L' for all m = 0,1,2,... We may now differentiate
the inversion formula, f(z) = [ f(£)e™™¢d¢ to find

D f(z) = / (i€)* /()¢ ¢ de for any o

and thus conclude f € C*°. m

Exercise 44.15. Some Exercises: Section 2.5 4, 5, 6, 8, 9, 11, 12, 17.

44.1 Du Hammel’s principle again

Lemma 44.16. Suppose A is an operator on H such that A* is densely de-
fined then A* is closed.

Proof. If f,, € D(A*) — f € H and A*f,, — ¢ then for all h € D(A)
(9.) = lim (4" f. 1)
while
i (A" fy, ) = lim (f, AR) = (f, AB),
i.e. (Ah, f) = (h,g) for all h € D(A). Thus f € D(A*) and A*f=g. ®
Corollary 44.17. If A* = A then A is closed.

Corollary 44.18. Suppose A is closed and u(t) € D(A) is a path such that
u(t) and Au(t) are continuous in t. Then

A/OT u(r)dr = /OT Au(T)dr.
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Proof. Let 7, be a sequence of partitions of [0, T| such that mesh(m,) — 0
as n — oo and set

fo =Y _u(ri)(7is1 — i) € D(A).

Tn

Then f, — fo 7)dr and

Afp = ZAU(TZ (Tig1 — 1) — / Au(T)dr.

Tn

Therefore fo T)dr € D(A) and Afo u(r)dr = fo Au(r)dr. ®

Lemma 44.19. Suppose A = A*, A <0, and h : [0,00] — H is continuous.
Then

(s,t) € [0,00) x [0, 00) — e*Ah(t)
(5,t) € (0,00) x [0,00) — AFesAh(t)
are continuous maps into H.
Proof. Let k£ > 0, then if s > o,
1A% (e*Ah(t) — e 4h(r)) ||
— [[akem (eC=n(t) — 1)) |

< [[akem || =4 () = A + e~ h(r) — ()|

< (g)ke*k- [1R(t) = () + =) = h(m)] -

So
o Tm A% (e h(0) — e h(m) ]| = 0
and we may take o = 0 if k = 0. Similarly, if s < o,
A" (eh(t) = e”*n(r)) |
= HAkesA (h(t) _ (o—s Ah )H

< [[Ake | [In(e) = b + |(r) — el 4n(r) ]
< (%)ke—k (118 = A + |[1(r) = =47 ]

and the latter expression tends to zeroas s To and t — 7. m

Lemma 44.20. Let h € C([0,00),H), D = {(s,t) eR?:5>¢ >0} and
F(s,t) = fot eB=DAR(T)dr for (s,t) € D. Then
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1. F € CY(D, H) (in fact F € C>=(D, H)),

gt F(s,t) = et=4R(1) (44.11)

and

E(: t
OF(=.1) _ / A=A () dr. (44.12)
0Os 0
2. Given € > 0 let
¢
ue(t) == F(t +e,t) = / DA () dr.
0
Then ue € Ct ((—¢,00), H) , uc(t) € D(A) for allt > —¢ and
Ue(t) = e“Ah(t) + Auc(t). (44.13)
Proof. We claim the function
¢
(s,t) € D — F(s,t) == / e AR(r)dr
0

is continuous. Indeed if (s’,¢') € D and (s,t) € D is sufficiently close to (s,t’)
so that s > t/, we have

t t’
F(s,t) - F(s',t) = /0 eI AR(T)dr — /0 e =D AR(T)dr

’

t t
:/ E(S_T)Ah(T)dT—/ e(S_T)Ah(T)dT
0 0

+ /Otl [e<S_T>A - e<s/_T)A] h(r)dr

so that

IF(s,1) — F(s', )] < / '

e(s_T)Ah(T)H dr

IN
°:\
=
BN
2
B
\]

+ / ’ H [l — el =A] h(T)H dr.  (44.14)

By the dominated convergence theorem,

t
lim / h(T)|| dr
Lo | [

=0
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and

Q- ar=o

which along with Eq. (44.14) shows F' is continuous.
By the fundamental theorem of calculus,

lim
(8,t)—(s",t"

0
ZF(s,t) = et
(s, 1) 0
and as we have seen this expression is continuous on D. Moreover, since

%e(sz)Ah('r) = Ae(sz)Ah(T)

is continuous and bounded for on s > ¢t > 7, we may differentiate under the
integral to find

OF (s,t)
Js

¢
= / AeC=DAR(T)dr for 5 > t.
0

OF(st) ..
s 1S

A similar argument (making use of Eq. (44.10) with k& = 1) shows
continuous for (s,t) € D.
By the chain rule, u(t) := F(t + ¢,t) is C! for ¢t > —¢ and
OF(t+e,t) OF(t+et)
(t) =
te(t) os o

t
= e““h(t) + / A=A (P dr = e“Ah(t) + uc ().
0

Theorem 44.21. Suppose A = A*, A <0, ugp € H and h : [0,00) — H is
continuous. Assume further that h(t) € D(A) for allt € [0,00) and t — Ah(t)
is continuous, then

¢
u(t) == etug +/ eDAR(T)dr (44.15)
0
is the unique function u € C*((0,00), H)NC([0, 00), H) such that u(t) € D(A)
for allt > 0 satisfying the differential equation
u(t) = Au(t) + h(t) for t >0 and u(0+) = uo.
Proof. Uniqueness: If v(t) is another such solution then w(t) := u(t) —
v(t) satisfies,
w(t) = Aw(t) with w(0+) =0

which we have already seen implies w = 0.

944 44 Introduction to the Spectral Theorem

Existence: By linearity and Theorem 44.13 we may assume with out loss
of generality that uy = 0 in which case

u(t) = /Ot =D An(1)dr.

By Lemma 44.19, we know 7 € [0,t] — e*~74h(r) € H is continuous, so the
integral in Eq. (44.15) is well defined. Similarly by Lemma 44.19,

7€ 0,t] — e AAR(T) = AT AN(r) € H

and so by Corollary 44.18, u(t) € D(A) for all ¢t > 0 and
¢ t
Au(t) = / Ae(tiT)Ah(T)dT = / e(tiT)AAh(T)dT.
0 0

Let .
ue(t) = / AR () dr
0

be defined as in Lemma 44.20. Then using the dominated convergence theo-
rem,

t
sup [lue (t) — u(t)|| < sup / (et — et ()| ar
t<T t<T Jo

< [M e - i om0

flglg [[Aue(t) — Au(t)|| < /0 H(eéA —1I) Ah(7)|[dr — 0 as e |0

‘ /Ot e€Ah(7')d7' — /Ot h(r)dr

Integrating Eq. (44.13) shows

and

g/o ||(66A—I) h(T)HdT—>0 ase | 0.

ue(t):/0 eEAh(T)dTJr/O Aue(T)dr (44.16)

and then passing to the limit as € | 0 in this equations shows

ult) = /0 t h(r)dr + /O t Au(r)dr.

This shows u is differentiable and 4(t) = h(t) + Au(t) for all ¢ > 0. m
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Theorem 44.22. Let o > 0, h: [0,00) — H be a locally a — Holder continu-
ous function, A= A*, A <0 and ug € H. The function

¢
u(t) := ety +/ DA (Y dr
0

is the unique function u € C*((0,00), H)NC([0,00), H) such that u(t) € D(A)
for allt > 0 satisfying the differential equation

u(t) = Au(t) + h(t) fort >0 and u(0+) = uo.
(For more details see Pazy [9, §5.7].)

Proof. The proof of uniqueness is the same as in Theorem 44.21 and for
existence we may assume ug = 0.
With out loss of generality we may assume ug = 0 so that

u(t) = /Ot AN () dr.

By Lemma 44.19, we know 7 € [0,t] — =7 4h(r) € H is continuous, so the
integral defining u is well defined. For € > 0, let

¢ ¢
ue(t) :=/ €(t+677)Ah(T)dT =/ e(tiT)A€6Ah(T)dT.
0 0

Notice that v(7) := e““h(r) € C=(A) for all 7 and moreover since Ae‘? is
a bounded operator, it follows that 7 — Awv(7) is continuous. So by Lemma
44.19, it follows that 7 € [0,] — Ael~"4y(7) € H is continuous as well.
Hence we know u(t) € D(A) and

t
Aue(t):/ At A AR (1) dr,
0

Now

t t
Aug (t) = /0 AetH AR dr + /0 AetH DA ey h(t)] dr,

t
/ Ae(t+577)Ah(t)d7_ — *€(t+677)Ah(t)|:zg — e(t+6)Ah(t) _ eeAh(t)
0

and
[ Aeter<4 () - he))| < e‘lﬁ I7(r) = h(t)|
1 1 ey —1 a—1
SCE mlt*T‘ SOS ‘t*T' .

946 44 Introduction to the Spectral Theorem

These results along with the dominated convergence theorem shows lime o Auc(t)
exists and is given by

. — 1 (t+e)A _ €A
lg%lAuf(t) 1511101 [e h(t) —e h(t)}

t
ij{,l ) AetHeDA (1) — h(t)] dr

= " h(t) — h(t) + /0 t A=A () — h(t)] dr.
Because A is a closed operator, it follows that u(t) € D(A) and
Au(t) = e n(t) — h(t) + /0 t Ae=DA (7) — h(t)] dr.
Claim: ¢ — Au(t) is continuous. To prove this it suffices to show
o(t) = A /0 " DA () — he))dr
is continuous and for this we have
t+A
ot + A) — vt) = /0 AeHHA=DA(L (1) = h(t + A))dr
— /0 t A=A (h(r) — h(t))dr

=1+1I

where

t+A

I AeTHA=DA(B(1) — h(t 4+ A))dr and

7= / t [Ae@M*T)A(h(T) R+ D)) — AeDA(R(7) — h(t))] dr
0
/ t (A 294 (h(r) — h(1)) — A (h(r) — h(t))] dr
0
+ / t [Ae(”A’T)A(h(t) — h(t + A))] dr
0

=1L +1I,

and
ot
I = / A [e@M*ﬂA - eWﬂA} (h(r) — h(t))dr and
0

I, — [e(t+A)A _ eAA] (h(t) — h(t+ A)).
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We estimate I as

t+A
”IHS/z | 4et 2D m(r) — h(t + &) | ar

t+A 1
——t+ A —71|"d
/t t+A—T|+ Tl dr

<C

|A]
=C/ 227l = Ca ™t A|Y - 0as A — 0.
0
It is easily seen that ||[ILz| < 2C|A|* — 0 as A — 0 and
A [etrta=m4 = et=DA] ((r) - he))|| < €l = 7"

which is integrable, so by the dominated convergence theorem,
¢
L] < / HA [e<t+A_T>A - e(t_T)A] (h(r) — h(t))H dr - 0as A — 0.
0

This completes the proof of the claim.
Moreover,

Auc(t) — Au(t) = eI n(t) — €' h(t) + h(t) — e“*h(t)
K e(t+ef‘r)A _ e(tf‘r)A 7) — -
+ [ a( ) [h(r) — h(t)) d
so that
| Auc(t) — Au(t)|| <2||h(t) — e“*h(t)||
‘ (t—7)A (€A _ 7) — i~
+/0 [ Ac=4 (¢4 — 1y i) — (e @
<2||h(t) — e“*h(t)|

vt [ e - D ) - h e

from which it follows Au.(t) — Au(t) boundedly. We may now pass to the
limit in Eq. (44.16) to find

u(t) = i () =l { / e An(rydr + / t Aue(r)df}

0 0

- /0 “hrydr + /0 ' u(rydr

from which it follows that u € C1((0,00), H) and u(t) = h(t) + Au(t). =
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Heat Equation

The heat equation for a function u : Ry x R™ — C is the partial differential
equation

(at - %A) w =0 with u(0,z) = f(x), (45.1)

where f is a given function on R™. By Fourier transforming Eq. (45.1) in the
x — variables only, one finds that (45.1) implies that

(& + % |§|2) a(t, &) = 0 with 4(0,€) = f(&). (45.2)

and hence that 4(t,&) = eteEl*/2 f (€). Inverting the Fourier transform then
shows that

u(t,w) = FH (e HF2(9)) (@) = (F7 (719/2) ) (@) =2 /2 £ (a).
From Example 32.4,
F1 (eftIEIQ/Z) (2) = py(z) = t /22l
and therefore, _
u(t.a) = [ e =) f)dy

This suggests the following theorem.
Theorem 45.1. Let

pi(x —y) = (2mt) /2 e lemul /2 (45.3)

be the heat kernel on R™. Then

1
(@ - EAJC) pr(z —y) =0 and ltifglpt(x —y) = 0:(y), (45.4)
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where § is the 0 — function at x in R™. More precisely, if f is a continuous
bounded function on R™, then

u(t,z) = / pe(z — ) f(y)dy

is a solution to Eq. (45.1) where u(0,x) := limy o u(t, z).

Proof. Direct computations show that (6,5 — %AI) pi(x —y) =0 and an
application of Theorem 11.21 shows limy | p:(z — y) = d2(y) or equivalently
that limy o f5. pe(z — y)f(y)dy = f(x) uniformly on compact subsets of R".
This shows that lim; o u(t,z) = f(z) uniformly on compact subsets of R". m

Proposition 45.2 (Properties of ¢!4/2).

1. For f € L*(R",dx), the function

e—azlz—yl’

(¢2721) (@) = (Pup)) = AW g

is smooth in (t,x) for t >0 and x € R™ and is in fact real analytic.

2. etA/2 qcts as a contraction on LP(R™,dx) for all p € [0,00] and t > 0.
Indeed,

3. Moreover, pyx f — f in LP ast — 0.

Proof. Item 1. is fairly easy to check and is left the reader. One just
notices that p;(xz — y) analytically continues to Ret > 0 and z € C" and then
shows that it is permissible to differentiate under the integral.

Item 2.

o NI < [ 170 =iy

and hence with the aid of Jensen’s inequality we have,

I 5 < [ £ PR~ v)dude = 171,

So P, is a contraction V¢ > 0.

Item 3. It suffices to show, because of the contractive properties of p;*,
that py = f — fast | 0 for f € C.(R™). Notice that if f has support in the
ball of radius R centered at zero, then

\m*ﬁuﬂsA|ﬂwau—w@sumw/<Rau—w@

" lyl<

= ||fllacCRMe~ 7 (I2I=R)?

and hence

lpe * f = flI%e = / pe * f — fIPdy + || fllc CRM e~ 2 121 = R,

ly|I<R

Therefore p+ f — fin LP ast | 0 Vf € C.(R"). m
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Theorem 45.3 (Forced Heat Equation). Suppose g € Cy(RY) and f €
C2([0,00) x RY) then

t
u(t, z) :=py * g(x) +/0 Di—r x f(T,2)dT

solves 5 1
8—1: = §Au+ f with u(0,-) = g.
Proof. Because of Theorem 45.1, we may with out loss of generality as-
sume g = 0 in which case

t
u(t,x) = /0 pe* f(t —7,z)dr.

Therefore
ou t 0
E(th) =Pt *f(O,:c) +/0 DPr* af(t - T,l‘)dT
¢ 0
=p folo) = [ prs o f - rayar
and

¢
éu(t,x) = / Dy * éf(t —7,)dT.
2 ) 2

Hence we find, using integration by parts and approximate § — function argu-
ments, that

A ¢
(% - 3) u(t, z) =pt*f0($)+/0 Dr * <—§T - %A> f(t =7 2)dr
=p * fo(z)
t
+13EJI/E Dy ok (—6%_ - %A) ft—r,x)dr
= pex fola) ~limp, = f(t — 7.)].

¢
+ lim (i - lA) pr* f(t — T, 2)dT

elo Jo \or 2
= pi * fo(x) — pe x fo(z) + 161%1 pe* f(t—€,1)
= f(t,x).
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45.1 Extensions of Theorem 45.1

Proposition 45.4. Suppose f : R — R is a measurable function and there
exists constants ¢, C < oo such that

f(a)] < Cetler

Then u(t, ) := p; * f(x) is smooth for (t,z) € (0,c¢71) x R" and for all k € N
and all multi-indices «,

o (5) o= (0 (5) ) o0

In particular u satisfies the heat equation uy = Au/2 on (0,c¢™1) x R™.

Proof. The reader may check that

Do (%)kw) — g ()

where ¢ is a polynomial in its variables. Let o € R™ and € > 0 be small, then
for x € B(z,€) and any 5 > 0,

o = ol = [2f? = 2lallyl + |yl = [y + |2 — (572l + 6 lyI?)
> (1= 82 lyl* = (872 = 1) (Jeol* +¢)

Hence

o (2) e -w)10)

e

<sup{

S C(Ba xo, 6) sup {

:e<t<c—e&x€B(.r0,e)}

e—arlz—yl®

C  Cesh?
(27Tt)"/2

q(t_lvx - y)

:e<t<c—e&xEB(a:0,e)}

el=3e(1-87)+5]lyP?

gtz —y ,
( ) (27Tt)n/2

e<t<c—eand
x € B(zo,€)

By choosing 3 close to 0, the reader should check using the above expression
that for any 0 < § < (1/t — ) /2 there is a C' < oo such that g(y) < Ce~lvI’,
In particular ¢ € L' (R"). Hence one is justified in differentiating past the
integrals in p; * f and this proves Eq. (45.5). m

Lemma 45.5. There exists a polynomial q,(x) such that for any 8 > 0 and

6> 0,
1 52
1ese Bl gy < 57 = ) B9
/]Rn ly|>6€ Y >0 qn ﬁ52 €
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Proof. Making the change of variables y — Jy and then passing to polar
coordinates shows

/ 1|y|2567my‘2dy = 5"/ 1|y‘2167552|y|2dy =0 (Snfl) 5”/ e BT 1y,
Rn Rn 1

Letting A = 862 and ¢, ()\) := foo e 2 rndr, integration by parts shows

r=1

oo —Ar? 0o —Ar?
n—1 € ! - 1 (n—2) €
= - Z 1 -
Dn(N) /r:lT d(_2/\> 53¢ +2/T:1(n )r \ dr

1 _ n—1
A+ In—2(A).
Iterating this equation implies

e 2\
1 -1 1 -3
dn(N) e 2 ( et g D S ¢,L,4()\))

) 23\ 23 2
and continuing in this way shows

_ _ (n—=1M
d)n()\) =€ /\Tn()\ 1) + W¢I(A)
where § is the integer part of n/2, ¢ =01if n is even and ¢ = 1 if n is odd and
Ty, is a polynomial. Since

e -\

(f)o(}\) = / e—)\r2dr < ¢1(>\) = / Te—/\rzdr ==
r=1 r=1 22

it follows that

$n(N) < e Man(A7H)
for some polynomial ¢,. m
Proposition 45.6. Suppose f € C(R™,R) such that |f(x)] < Ceslel then
pe * f — f uniformly on compact subsets as t | 0. In particular in view of
Proposition 45.4, u(t,x) := py * f(x) is a solution to the heat equation with
u(0, ) = f().

Proof. Let M > 0 be fixed and assume |z| < M throughout. By uniform
continuity of f on compact set, given € > 0 there exists § = §(t) > 0 such
that |f(z) — f(y)| < e€if |z —y| < and |z| < M. Therefore, choosing a > ¢/2
sufficiently small,

Ipe» f(a) — f(z)] = 1 [rw -y - 1) dy1
< [n) 15— ) - f@]dy
C
< e./‘y@pz(y)dy + R ~/|y\25
< e+é(27rt)‘”/2/ e (F=a)lvP gy,

ly| =6

(2 2y A2
(817" 4 o5l Il gy
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So by Lemma 45.5, it follows that

Ipes f(2) — f@)] < e+ C (2mt) 257, (%) o (H-o)p?

B (3 -
and therefore

limsup sup |p;* f(z) — f(z)|<e—0ase|0.
t0 |e|<M

Lemma 45.7. If q(x) is a polynomial on R™, then

o A"
[ mla =ty = 3° S 5000

n=0
Proof. Since
ft2) = [ mia=vads = | ()Y ansa"s'dy = Y Calt)a”,

f(t,z) is a polynomial in z of degree no larger than that of g. Moreover
f(t,z) solves the heat equation and f(t,xz) — q(x) as t | 0. Since g(t,x) :=
S tn—,é—nq(:c) has the same properties of f and A is a bounded operator
when acting on polynomials of a fixed degree we conclude f(¢,2) = g(¢t,z). m

Ezample 45.8. Suppose ¢(z) = w172 + x5, then

2

t t
et 2q(z) = myao + a5 + 3 A (@122 + 23) + 577 A% (w125 + 73)
4 t 2 ? |

= 2129 + 25 + 6tx3 + 3t2.

Proposition 45.9. Suppose f € C°(R™) and there exists a constant C' < oo

such that )
YD) < CeClel,
|a|=2N+2
then
N tk
(pr# (@) = €22 f(x)” = gAkf(fv) +O(t" ) ast 10
k=0 "
Proof. Fix z € R" and let
1
Inw) = > D f@)y”.
la|<2N+41
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Then by Taylor’s theorem with remainder

If(z+y) - fn(y) < ClyPN sup Clottul®
tefo,1

< O |y[ANH2 2Ol HP] < Gy 2N H2 2017
and thus
‘/R pz(y)f(ﬂwy)dw[R pt(y)fzv(y)dy'
< é/R pi(y) [N 2 gy

A 2N+2 ¢2 2
- CtNH/ pi(y) [y el dy = OV,
RTL

Since f(z+y) and fn(y) agree to order 2N +1 for y near zero, it follows that

N

k
[ v =3 5a Zk,m (& +9)lymo
R pr
N
which completes the proof. m

45.2 Representation Theorem and Regularity

In this section, suppose that {2 is a bounded domain such that 2 is a C? —
submanifold with C? boundary and for T' > 0 let 27 := (0,T) x §2, and

I'p = ([0,T]) x 02) U ({0} x £2) C bd(2r) = ([0,T] x 92) U ({0,T} x £2)
as in Figure 45.1 below.

Theorem 45.10 (Representation Theorem) Suppose u € C*1(0r)
(01 = Q7 =[0,T] x 2) solves uy = Au + f on Q2r. Then

u(T,x) = /pT(x —y)u(0,y)dy + / pr—i(z —y) (L, y)dydt
[0,T)x £

0,
+ [PTz

DLt (o — y)ult,y) — pr-o(e — 59 (0) | do(y)di

1
2

[0,Tx0%2
(45.6)
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Fig. 45.1. A cylindrical region {27 and the parabolic boundary I'r.

Proof. For v € C*1([0,T] x 1), integration by parts shows

" 1
/ Sfodydt = /v(ut ~5 Av)dydt
Qr Qr
1 t=T
= /(—vt + §Vv - Vu)dydt + /vu‘t_o dy
Qr 2 a
1 v
+ 5 / U%dtdg
[0,Tx0%2

1 T
= /(fvt ~3 Av)udydtJr/vu‘Ody
Qr 2

+

DO | =
—
N
QD|®
SRR
IS

|

<
QD
<
N——
IS
Q
Iy
&

Given € > 0, taking v(t,y) := prie—t(z — y) (note that v; + 3 Av = 0 and
v € CHL([0,T] x 2)) implies

ft,9)prte—t(z — y)dydt = 0+ / pe(z — y)u(t, y)dy
[0,T]x 2 ©

- / pre(z — y)ult,y)dy

2

Oprye—i(xz— 7/)
+% { oy (b y) } do(y)dt

. —Drte—t(T — y)%(y)
[0,T]x0%2

Let € | 0 above to complete the proof. m

Corollary 45.11. Suppose [ = 0 so w(t,z) = 2Au(t,z). Then u €
C*>((0,T) x 2).
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Proof. Extend p:(x) for ¢ < 0 by setting p:(z) := 0 if ¢ < 0. It is not to
hard to check that this extension is C* on R x R™\{0}. Using this notation
we may write Eq. (45.6) as

(t.a) = [ (e = )ul0,y)dy
/

w5 [ B nutn) et -0 G| dotiyir
[0,00)x02

The result follows since now it permissible to differentiate under the integral
to show uw € C* ((0,T) x £2). m

Remark 45.12. Since x — pi(z) is analytic one may show that z — u(¢,z) is
analytic for all x € (2.

45.3 Weak Max Principles

Notation 45.13 Let a;;,b; € C (Q27) satisfy a;; = aj; and for u € C2(£2) let

n

Lu(t,z) = Z a(t, )z, o, (T) + Zb (t, z)ug, ( (45.7)

ij=1
We say L is elliptic if there exists 0 > 0 such that
Zaij(t,z)figj > 0)¢? for all € € R" and (t,z) € Q.

Assumption 3 In this section we assume L is elliptic. As an example L =
%A is elliptic.

Lemma 45.14. Let L be an elliptic operator as above and suppose u € C? (£2)
and xo € {2 is a point where u(z) has a local mazimum. Then Lu(t,z) < 0
for allt € [0,T].

Proof. Fix t € [0,T] and set Byj = g, (%0), Aij = ay(t, o) and let
{ei}i—, be an orthonormal basis for R such that Ae; = \;e;. Notice that
Ai > 0 > 0 for all 7. By the first derivative test, ug, (o) = 0 for all ¢ and hence

Lu(t, :CU) = Z A“BU = ZAJ’B” = tI‘(AB)

_ Ze"’ - ABe; = ZAeq', - Be; = Z)\i@i - Be;
— Z/\iaziu(t,l’o) <0
7

The last inequality if a consequence of the second derivative test which asserts
O2u(t,zg) <0 forallv e R". m
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Theorem 45.15 (Elliptic weak maximum principle). Let 2 be a bounded
domain and L be an elliptic operator as in Eq. (45.7). We now assume that
aij and b; are functions of x alone. For each u € C (£2) N C?(£2) such that
Lu>0 on 2 (i.e. u is L — subharmonic) we have

maxu < max u. (45.8)
e} bd(£2)

Proof. Let us first assume Lu > 0 on (2. If v and had an interior local
maximum at xo € {2 then by Lemma 45.14, Lu(z) < 0 which contradicts the
assumption that Lu(zg) > 0. So if Lu > 0 on {2 we conclude that Eq. (45.8)
holds.

Now suppose that Lu > 0 on £2. Let ¢(x) := et with A > 0, then

Lo(x) = (Mar(z) + bi(2)A) e > XN(A0 + by (z)) e .

By continuity of b(x) we may choose A sufficiently large so that A0 +b; (x) > 0
on {2 in which case L¢ > 0 on 2. The results in the first paragraph may now
be applied to uc(z) := u(x) + ep(z) (for any € > 0) to learn

= < < for all z € 2.
u(z) + ep(x) = uc(x) &1(3()2() U gg(ar}l() u+ egg(ax ¢ for all =
Letting € | 0 in this expression then implies

u(z) < max u for all x € 2
bd(£2)

which is equivalent to Eq. (45.8). m

Theorem 45.16 (Parabolic weak maximum principle). Assume u €

01’2(§T\FT) N C(ﬁT)
1. If uy — Lu < 0 in Q27 then

max 4 = max u. (45.9)
Q7 I'r

2. If uy — Lu > 0 in Q27 then minu = minu.
Or I'r

Proof. Item 1. follows from Item 2. by replacing v — —u, so it suffices
to prove item 1. We begin by assuming u; — Lu < 0 on 27 and suppose for
the sake of contradiction that there exists a point (¢, o) € £27\'r such that
u(to, ©o) = maxu.

27

1. If (to,20) € 27 (ie. 0 < top < T) then by the first derivative test
%—“(tg, xo) = 0 and by Lemma 45.14 Lu(to, zo) < 0. Therefore,

(ug — Lu) (to, x0) = —Lu(to, xo) > 0

which contradicts the assumption that u; — Lu < 0 in 2.
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2. If (to,w0) € Qr\I'r with to = T, then by the first derivative test,
9u(T, z9) > 0 and by Lemma 45.14 Lu(to, o) < 0. So again

(uy — Lu) (tg,z0) >0

which contradicts the assumption that u; — Lu < 0 in 7.

Thus we have proved Eq. (45.9) holds if u; — Lu < 0 on 7. Finally if
ug — Lu < 0 on 27 and € > 0, the function u®(t,z) := u(t,x) — et satisfies
u§ — Lu® < —e < 0. Therefore by what we have just proved

u(t,r) — et < maxu® = maxu® < maxu for all (¢,2) € 2p.
o I'r I'r

Letting € | 0 in the last equation shows that Eq. (45.9) holds. m

Corollary 45.17. There is at most one solution u € CY2(Qr\I'r) N C(2r)
to the partial differential equation

17,
6—1;:Lu with w=f on I'r.
Proof. If there were another solution v, then w := u — v would solve
% = Lw with w = 0 on I'r. So by the maximum principle in Theorem 45.16,

w=0on 2r. m
We now restrict back to L = %A and we wish to see what can be said
when {2 = R"™ — an unbounded set.

Theorem 45.18. Suppose u € C([0,T] x R®) N C*1((0,T) x R™),
1
up — EAu <0 on[0,7] x R"
and there exists constants A,a < oo such that
u(t,x) < Ae*” for (t,xz) € (0,T) x R™.
Then

sup u(t,z) < K := sup u(0,z).
(t,)€[0,T] xR" zERn

Proof. Recall that

1 n/2 71|z‘2 1 n/2 i
pi(x) = n e 2t = n e 3t

solves the heat equation

aup(a) = 3 Ap(x). (45.10)

960 45 Heat Equation

Since both sides of Eq. (45.10) are analytic as functions in z, so!

%(m) - %(Apt)(ix) = *%Arpt(”)

and therefore for all 7 > 0 and t < 7

apq——t
ot

. . . 1 .
(i) = —pr—i(iz) = §Awp7_t(zz).
That is to say the function

1
T—1

n/2
1 |ZL“2
eT-0 for0<t<rT

plt.2) = pr-ofio) =

solves the heat equation. (This can be checked directly as well.)
Let ¢,7 > 0 (to be chosen later) and set

v(t,x) = u(t,z) —ep(t,x) for 0 <t < 7/2.

Since p(t, x) is increasing in ¢,
2 1 7L/2 1 2
v(t, x) < Ael”! —€<—) ez 2l for 0 <t <7/2.
T

Hence if we require % >aorT< % it will follows that

lim sup v(t,z)| = —o0.
[z] =00 [o<t<r/2

Therefore we may choose M sufficiently large so that

v(t,xz) < K :=supu(0,z) for all x| > M and 0 <t < 7/2.
4

A A
(8t—5)v=(8t—3)u§0

we may apply the maximum principle with 2 = B(0, M) and T = 7/2 to
conclude for (¢,z) € 2p that

Since

u(t,z) —ep(t,z) = v(t,x) < supv(0,2) < K if 0 <t < 7/2.
z€N

! Similarly since both sides of Eq. (45.10) are analytic functions in ¢, it follows that

J . 1
EZ’*L(I) = —pi(x) = —§AP—t-
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We may now let € | 0 in this equation to conclude that
u(t,z) <K if 0 <t<7/2 (45.11)
By applying Eq. (45.11) to u(t + 7/2,x) we may also conclude
u(t,z) < Kif0<t<T.

Repeating this argument then enables us to show u(t,z) < K forall 0 <t <
T m

Corollary 45.19. The heatl equation
1
up — §Au =0 on [0,7] x R™ with u(0,-) = f(-) € C(R")

has at most one solution in the class of functions u € C([0,T] x R™) N
C%1((0,T) x R™) which satisfy

u(t,x) < Ae®® for (t,z) € (0,T) x R"
for some constants A and a.

Theorem 45.20 (Max Principle a la Hamilton). Supposeu € C2 ([0,T] x K

1. u(t,z) < Ae?=” for some A,a ( for allt <T)
2. u(0,2) <0 for all x
3. % < Au e (0 —AN)u<0.

Then u(t,x) <0 for all (t,z) € [0,T] x RY.

Proof. Special Case. Assume 2% < Au on [0,7] x R?, u(0,z) < 0 for
all x € R? and there exists M > 0 such that u(t,z) < 0 if |z > M and
t € [0,T].For the sake of contradiction suppose there is some point (¢,z) €
[0, T] x R? such that u(t,z) > 0.

By the intermediate value theorem there exists 7 € [0, ¢] such that u(r,z) =
0. In particular the set {u = 0} is a non-empty closed compact subset of

(0,T) x B(0, M). Let
7:(0,T] x B(0,M) — (0,T]

be projection onto the first factor, since {u # 0} is a compact subset of (0, 7] x
B(0, M) if follows that

to :=min{t € 7 ({u = 0})} > 0.

Choose a point 2y € B(0, M) such that (to,zo) € {u = 0}, i.e. u(tg,z0) =0,
see Figure 45.2 below. Since u(t,z) < 0 for all 0 < t < ty and z € RY,
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N
Uu<oe

Fig. 45.2. Finding a point (o, zo) such that ¢ is as small as possible and u(to, zo) =
0.

u(tg, ) < 0 for all z € R? with u(ty, zg) = 0. This information along with the
first and second derivative tests allows us to conclude

Ju

Vu(to, o) = 0, Au(to,zo) <0 and o

(t(]7 .’Eo) 2 0.
This then implies that

0
0 < a—?(to,l’o) < Au(to,xo) < 0
which is absurd. Hence we conclude that u < 0 on [0,7] x R®.
General Case: Let pi(x) = tdl/z e~ %1 be the fundamental solution to
the heat equation

Oipy = Apy.

Let 7 > 0 to be determined later. As in the proof of Theorem 45.18, the
function

1

/2
17 ‘1‘2

p—" eiT-0 for0<t<r

P

plta) = -alix) =

is still a solution to the heat equation. Given € > 0, define, for ¢ < 7/2,
uc(t,x) = u(t,x) — e — et — ep(t, ).
Then

(8t_A)Us:(at—A)u—€§—e<0,
ue(0,2) = u(0,2) —e <0 —e< =<0
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and for t < 7/2

2 1 1 2
uc(t, z) < Ae?l®l” — e — er/QeF‘I‘ .

Hence if we choose 7 such that 1= > a, we will have u.(¢t,z) < 0 for |z
sufficiently large. Hence by the special case already proved, u.(t,z) < 0 for
all 0 <t < % and € > 0. Letting ¢ | 0 implies that u(t,z) < 0 for all
0 <t < 7/2. As in the proof of Theorem 45.18 we may step our way up by
applying the previous argument to u(t + 7/2,z) and then to u(t + 7, ), etc.
to learn u(t,z) <Oforall 0 <t<7T. m

45.4 Non-Uniqueness of solutions to the Heat Equation

Theorem 45.21 (See Fritz John §7). For any o > 1, let

_JetTt>0
g(#) = {0 o (45.12)

and define

IZIC

(t
u(t,z) = Z g (Zk) .

Then u € C*(R?) and
Ut = Ugy and u(0,z) := 0. (45.13)
In particular, the heat equation does not have unique solutions.
Proof. We are going to look for a solution to Eq. (45.13) of the form
u(t,z) = Z gn(t)x
n=0

in which case we have (formally) that

e’}

U = Ugw = B _(Gn(t)2" = gn(t)n(n — 1)2"~?)

n=0

=D [9a(8) = (n+2)(n + Dgnsa(t))

n=0

o
I

This implies )

In
(n+2)(n+1)
To simplify the final answer, we will now assume u,(0,2) = 0, i.e. g1 =0 in
which case Eq. (45.14) implies g,, = 0 for all n odd. We also have with g := go,

Gnio = (45.14)

964 45 Heat Equation

oo 900 G g% e®
T w3 T T e R g
and hence "
0 k 2k
_N 9@z

The function u(t,z) will solve u; = ug, for (t,7) € R? with u(0,2) = 0
provided the convergence in the sum is adequate to justify the above compu-
tations.

Now let g(t) be given by Eq. (45.12) and extend g to C\(—o0, 0] via g(z) =

e

e where
27 = g~ lo8(2) — gmallnr+i0) for 5 — pe? with — 7 < 6 < .

In order to estimate g(¥)(t) we will use of the Cauchy estimates on the contour
|z — t| = vt where 7 is going to be chosen sufficiently close to 0. Now

Re(z™%) = e~ @7 cos(af) = |z| cos(ab)

and hence
|g(z)‘ — e*R/e(z’“) — ef\zr”’ cos(a9).

From Figure 45.3, we see

T

v TN ,
[ e &/ e

Fig. 45.3. Here is a picture of the maximum argument 6,, that a point z on dB(t, vt)
may attain. Notice that sin6,, = vt/t = v is independent of ¢ and 6, — 0 as v — 0.

B(7) = min {cos(af) : —m < 0 < 7 and |re’? —t| = 4t}
is independent of ¢ and 5(y) — 1 as v — 0. Therefore for |z —t| = vt we have

lg(2)] < e71217B0) < o= (HUNTB() — =TT < mdt

provided 7y is chosen so small that ) >

1
1+ 2
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By for w € B(t,t7), the Cauchy integral formula and its derivative give

L[ g(z )
g(w) = omi P le—tl=rt dz and

k! g(Z)
g(k) ('LU) = % % ‘27t|:7tm dz

and in particular

kUL (=)

) (¢ ‘ <= _— g
}g ( ) =9 \zft|7’yt|z — w|k+1 ‘ Z‘
k! Ca 27t k! u
< e ¥ T o e (45.16)
2 |yt |yt]

We now use this to estimate the sum in Eq. (45.15) as

| g(k) 2k > | 2k
g () —le k! |zl
t < < P
ult: 0l <3 [T | < 2 G
a1 (22\F 2?2 1
< ezt (=) = — -t <
< (5) e (G o) <

Therefore lilno1 u(t,z) = 0 uniformly for = in compact subsets of R. Similarly
t
one may use the estimate in Eq. (45.16) to show u is smooth and

(k—1)

’U‘f"ll

2 g® (4 (2K) (2k — D22 & (t)
:Z(:)g ®)( )((Zk)! ) 292 )71))!
g(k+1)(t)1,2k-

(2k)!

k

= Ut.

M

x~
Il
<)

45.5 The Heat Equation on the Circle and R

In this subsection, let Sy, := {Lz : z € S} — be the circle of radius L. As usual
we will identify functions on Sy with 2L — periodic functions on R. Given
two 27 L periodic functions f, g, let

1 L
=— g(x)d
(F9)r =57 | J@gl)de
and denote Hy, := L2 _; to be the 2rL — periodic functions f on R such

that (f, f) < co. By Fourier’s theorem we know that the functions x£(z) :=
etk*/L with k € Z form an orthonormal basis for Hy, and this basis satisfies
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2

d? k L

dx? Xk =—\z) %
Therefore the solution to the heat equation on Sy,

1 .

Uy = g with w(0,-) = f € Hp,

is given by

) = S (foxh)e 2 (E) ekt

k€EZ

_ iky/L 2( )t ikx/L
=y (2@/ fly)e” dy) e
kEZ
L

- / phe =)y

—T

where

1 )2 ik
(1‘) 2 7 67%(%) tezkbL/L.
kEL

If f is L periodic then it is nL — periodic for all n € N, so we also would learn

TnL
u(t,z) = / P (@ —y) f(y)dy for all n € N.

—mnL

this suggest that we might pass to the limit as n — oo in this equation to
learn

u(t,x) = /Rpt(l’ - y)f(y)dy

where

1
pie) i= lim pp(e) = lim —— 3" H(E)ei($)s

L—oo 27
€Z
1 102, - 1 z2
— —3&7t il _ —z-
=— [ e 25 "e"TdE = e .
o $= e

From this we conclude

u(t,:c):/pt(x—y)f dyf/ Zpt x —y+2mnL)f(y)dy

nGZ

and we arrive at the identity

§T+27mLf Z 71 L ¢ ika/L
Z = pi(x + 2mnL) Z 5(£) e
nez v ot nez L

which is a special case of Poisson’s summation formula.
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Abstract Wave Equation

In the next section we consider
ugy — Au = 0 with u(z,0) = f(z) and us(z,0) = g(x) for z € R".  (46.1)

Before working with this explicit equation we will work out an abstract Hilbert
space theory first.

Theorem 46.1 (Existence). Suppose A : H — H s a self-adjoint non-
positive operator, i.e. A* = A and A < 0 and f € D(A) and g € g €
D (vV=A4) are given. Then

ult) = cosov A + LA, (16.2)

satisfies:

1. u(t) = cos(tv/—A)V—A [ +sin(tv/—A)g exists and is continuous.

2. i(t) exists and is continuous
i(t) = Au with w(0) = f and u(0) = g. (46.3)
3. & /=A u(t) = —cos(tv/—A)A f + sin(tvV—A)V—Ag exists and is con-

tinuous.

Eq. (46.3) is Newton’s equation of motion for an infinite dimensional har-
monic oscillation. Given any solution u to Eq. (46.3) it is natural to define its
energy by

B(t,u) = 5 [[a@®)|? + |lwu(®)|’] = KE. + PE.

1
2

where w := y/—A. Notice that Eq. (46.3) becomes i + w?u = 0 with this
definition of w.
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Lemma 46.2 (Conservation of Energy). Suppose u is a solution to Eq.
(46.3) such that % /—Au(t) exists and is continuous. Then E(t) = 0.

Proof.
E(t) = Re(a, i) + Re(wu, wit) = Re(t, —w?u) — Re(w?u, @) = 0.
|

Theorem 46.3 (Uniqueness of Solutions). The only function u €
C%*(R, H) satisfying 1) u(t) € D(A) for all t and 2)

i = Au with u(0) = 0 = 4(0)
is the u(t) =0 for all t.

Proof. Let xa(z) = 1z<p and define Py = xa(A) so that Py is
orthogonal projection onto the spectral subspace of H where —M < A < 0.
Then for all f € D(A) we have PyyAf = APy f and for all f € H we have
Py f € D((—A)®) for any a > 0. Let up(t) := Pau(t), then upy, € C3H(R, H),
upm(t) € D((—A)%) for all ¢t and «, t — v/ —Aup(t) is continuous and

d2
ﬁ,M = E(PMU) = PMﬁ = PMAu = APMU = AUM
with up(0) = 0 = ur(0). By Lemma 46.2,

. 2 o _ 1o 2 2 _
5 s @I + llwurr O] = 5 [lear(O)° + llwua (O)]F] =0

for all ¢. In particular this implies 157 (t) = 0 and hence Ppru(t) = ups(t) = 0.
Letting M — oo then shows u(t) =0. ®

Corollary 46.4. Any solution to i = Au with u(0) € D(A) and @ (0) €
D(v/—A) must satisfy t — /—Au(t) is CL.

46.1 Corresponding first order O.D.E.
_(u®)\ _(u
0= (35) = ()
T = (Z) = </;}u> = (1[‘)1 é) r = Bx with

Let v(t) = u(t), and

then
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0171 01
Note formally that

!B <f> - (“(t)) _ (Coswt [ sty )
g) \a(t))  \ —wsinwt f+coswt g

[ coswt —Sir;t“’ f
o ( —wsinwt cos wt) (g ) (46.4)

where

and this suggests that

sin tw
B — cos w‘t =
—w sinwt cos wt

which is formally correct since

ietB _ (—w sinwt coswt )

dt —w? coswt —wsinwt

07\ (coswt  Sintw ‘B
= w — 2
<fw2 O) (—w sin wt cos wt) Be”.

Since the energy form E(t) = ||@]|? + ||w u||? is conserved, it is reasonable to
let
K= D(W=A) & H = (D(VH‘A)>

with inner product

<§ §> =(9,9) + (wf.wf).

For simplicity we assume Nul(y/—A) = Nul(w) = {0} in which case K becomes
a Hilbert space and €' is a unitary evolution on K. Indeed,

[|et? ({;) % = || coswtg — wsinwt f||* + |Jw(cos +wf) + sinwtg|?

= || coswtgl|® + ||wsinwt f||* + ||lw coswtf||* + || sinwtg||*
= wflI? + llgl*.

From Eq. (46.4), it easily follows that %‘ etB (§ exists iff g € D(w)
0

and f € D(—w?) = D(A). Therefore we define D(B) := D(A) ® D(w) =
D(A) & D (vV—A)and

B:(OI):D(B)—»DQ(;)=K
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Since B is the infinitesimal generator of a unitary semigroup, it follows that
B*K = —B, i.e. B is skew adjoint. This may be checked directly as well as
follows.

Alternate Proof that B*X = —B. For

(2).(£) <o =t4y0 51,

0(3) (= (). (=

= (Au,v) — (Av,0) = (u, AD) — (v, AQ)
and similarly

<<Z) B (;j>> - <(Z> , (ZO) — (wu,w) + (v, Ad)

= (—Au, ) + (v, Ail) = —(B (Z) , (

S

S 2
N———
~

which shows —B C B*. Conversely if (:j) € D(B*) and B* (Z) = (5)
then

@ () [3r =517 = ) + oo (46.5)

(Au,?) + (wv,wi) for all u € D(A),v € D(w). Take v = 0 implies
(wv,wtt) = (v,g) for all v € D(w) which then implies wa € D(w*) = D(w)
and hence —A% = w?i = g. (Note @ € D(A).) Taking v = 0 in Eq. (46.5)
implies (Au,?) = (wu,wf) = (—Au, f). Since

Ran(A) = Nul(4)* = {0}* = H,

we find that f = —0 € D(w) since f € D(w). Therefore D(B*) C D(B) and
for (u,?) € D(B*) we have

AN A i
w(5) == () -2 (5)
46.2 Du Hamel’s Principle

Consider
i = Au+ f(t) with u(0) = g and 4(0) = h. (46.6)
Eq. (46.6) implies, with v = 4, that

i (1) = (8)= () = (20) (1) +(7):



46.2 Du Hamel’s Principle 971
Therefore
07

(-l gy el ()
hence

_ sin(ty/—A) tsin((t — 7)vV—A)
u(t) = cos(tvV/—A)g + ﬁh +/0 — 1

Theorem 46.5. Suppose f(t) € D(v/—A) for allt and that f(t) is continuous
relative to || flla == || fll + |vV—A fl|. Then

_ " sin(E=nV=A)
u(t) .7/0 N

solves it = Au+ f with u(0) = 0,%(0) = 0.

Proof. 4(t) = fg cos((t — 7)vV/=A) f(7)dr.

f(r)dr.
f(r)dr

+

mw:ﬂw—Agmw—rnCZwCZﬂﬂm

=f(t)*z4/0 sin((t — 7)v/—A)

N f(r)dr.

So & = Au+ f. Note u(0) = 0 = 4(0).
Alternate. Let w := v/—A, then

ult) :A sin((t — 7)w) F(r)dr

w

/t sin wt cos wT — sin w7 cos wt 7
0

5 (r)dr

and hence

sin wt cos wt — sin wt cos wt

u(t) = f®)

w

t
+ / (coswt coswt + sinwT sinwt) f(7)dr
0
t
= / (coswt coswt + sinwT sinwt) f(7)dr.
0

Similarly,
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i(t) = (coswt coswt + sinwt sinwt) f(t)

¢
+/ w (—sinwt coswt + sinwt coswt) f(7)dr
0

= 1) = [ sin(e = 7o) wi(r)ar = £10) = wPutt)
= Au(t) + f(b).
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Wave Equation on R"

(Ref Courant & Hilbert Vol II, Chap VI §12.)
We now consider the wave equation

ugy — Au = 0 with (0, z) = f(z) and u:(0,z) = g(x) for z € R".  (47.1)
According to Section 46, the solution (in the L2 — sense) is given by

u(t, ) = (cos(tr/—A) f + %g (47.2)

To work out the results in Eq. (47.2) we must diagonalize A. This is of course
done using the Fourier transform. Let F denote the Fourier transform in the
x — variables only. Then

a(t, k) + |k|?a(t, k) = 0 with
(0, k) = f(k) and (¢, k) = G(k).

Therefore

it k) = cos(t|k|) f (k) + %g(m
and so (1
attia) = 7 eostei) 509 + XD 401 o,
ie.
7Si“$_;\/A_A) g=F" [L'(;‘lk‘) g(k)} and (47.3)

cos(t/= D) f = F " [cos(tlk]) (k)] =

g {sin(t|k|)

= A g(k)} . (474)

Our next goal is to work out these expressions in z — space alone.
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47.1 n =1 Case

As we see from Eq. (47.4) it suffices to compute:

= lim 77! (1|5‘§M Smg"g')) *g. (47.5)

This inverse Fourier transform will be computed in Proposition 47.2 below
using the following lemma.

Lemma 47.1. Let Cy; denote the contour shown in Figure 47.1, then for

A # 0 we have
N
lim
M —o0
Cm

d£ = 27FZ'1)\>04

Proof. First assume that A > 0 and let I'y; denote the contour shown in
Figure 47.1. Then

e

M

ei,\Me”‘

do = 27r/ dfe M0 0 as M — oo.
0

Therefore
AN iNE 23
e e e
i o P —omi
Jim £ d€ im / € d& 2mres§,o< £ ) 27
Cum Cy+I'm

Fig. 47.1. A couple of contours in C.

If A <0, the same argument shows
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Cm Cu+I'nm

and the later integral is 0 since the integrand is holomorphic inside the contour
Cy+Iy. m

. o in(t]¢]) _ N
Proposition 47.2. 1\}111100.7: <l‘§|§M 2 @l ) (z) = Sgn(t)ﬁ Ljal<t)-

Proof. Let

in(t in(t o
Iy = VarF! (yaSM & ‘(g‘m))(z)z / sin(f¢) éf) i€ de.

[gl<M

Then by deforming the contour we may write

g _ 1 ite _ —ite
IM:/ sn;tﬁ e"g'wdﬁz—/ e e €T e

24 13
Cum Cum
_ l / et(z+)€ _ pi(z—t)¢ g
2t 13
Cnr

By Lemma 47.1 we conclude that

. 1.
Jim Ty = 22201450 = Le-n>0) = msgn(t) Lij<py-

(For the last equality, suppose t > 0. Then z — ¢ > 0 implies  +¢ > 0 so
we get 0 and if ¢ < —¢, i.e. z +t < 0 then x — ¢ < 0 and we get 0 again. If
|z| < t the first term is 1 while the second is zero. Similar arguments work
when ¢ < 0 as well.) m

Theorem 47.3. Forn =1,

. x4+t
%ﬁ_&) o0 =5 [ 9)NG) na (47.6)
cos(t/~R)g(x) = 3 lo(e+1) + 9o — 1)) (47.7)
In particular
1 1 x4+t
uta) =5+ fa-t)+g [ d Ty

is the solution to the wave equation (47.2).
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Proof. From Eq. (47.5) and Proposition 47.2 we find

% glz) = sgn(t)% /llwfy\>\i| 9(y) dy

z+|t| -+t

:Sgn(t)% / g(y)dy:%/g(y)dy

z—|t| z—t

Differentiating this equation in ¢ gives Eq. (47.7). m

If we have a forcing term, so i = uy +h, with v(0,-) = 0 and (0, -)

then
*sin((t = 7) VI5) L
sin((t —7)v/—
u(t,z) = ———— h(r,x)dT = = dr dyh(T,
() = [ D Ehrayar =5 [ar [ dyhiry)
r—t+T1
1 . t—7
:_/ dr / drh(r,z + ).
2 Jo
—(t+71)

47.1.1 Factorization method for n =1

Writing the wave equation as

0= (07 —2)u= (9 + 0:)(0 — Ou)u = (01 + Oz )v

with v := (0; — 0, )u implies v(t, z) = v(0,z — t) with
v(0,2) = u(0,2) — u(0,2) = g(x) — f'(z).

Now wu solves (9; — O,)u = v, i.e. du = dyu + v. Therefore

t
u(t, x) eta”u(O,x)Jr/ =M% (7, x)dr
0

t
:u(O,x—i-t)—i-/ v(r,z+t—71)dr
Jo

¢
u(0,z +1t) + / v(0,z +1t—27)dr
0 N—

s

1t
u(0,z +1t) + 3 / v(0,z + s)ds
—t

t

=f(x+t)+% / (g(z +8) — f'(x+s))ds

—t

o= t
~fa+) =5 far " +5 [ et

2

fla+t)+ fla—1) 1/i
_—+_
2

5 g(x + s)ds

—t

07
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which is equivalent to Eq. (47.8).

47.2 Solution for n = 3

Given a function f: R" — R and ¢t € R let

flait) = f o+ w)dot) = f /|y|:m f@+p)do(y).
/

Theorem 47.4. For f € L? (R?%),

sin (\/fAt)f _ g {sm\{\t

b EL10)] @) =t

and
cos (\/I)ﬁ) g= % [tf(x; t)] .

In particular the solution to the wave equation (47.1) for n = 3 is given by

u(t,) = o0 (b F(o0) + £ 3(as)

= % / (tg(z + tw) + f(z + tw) + tV f(z + tw) - w)do(w).

|lw]=1

Proof. Let gy := F~! [%‘f—ltlmSM] , then by symmetry and passing to

spherical coordinates,
2m)*? gar(z) = / %ﬁﬁeie.w%: / %Hﬂt eilelés ge

[gl<Mm [gl<m

M 2m
t
/ dpp/ d9/ dd)hmp ¢irleleosdgin

zp|z\ cos ¢
= 27r/ dpsin pt
0

™

—ilz]
etrlzl _ g—iplxl  4n

ilz| N

0

M
= 27r/ dpsin pt sin ptsin p |z| dp.
0

Using
1
sin Asin B = 3 [cos(A — B) — cos(A + B)]

in this last equality, shows
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() = (2m) 2 / [cos((¢ — fal) ) — cos((t +[z])o)ldp

= (2m)” 3”%@(@\)

where

hae(r) := [M[cos((t —r)a) — cos((t + r)a)]de,

an odd function in r. Since

_ [sin)élt ) o . ‘
F [ €] f(é)} = Jim  F N gu(§)f(€)) = Jim (gar * f)(x)

we need to compute gps * f. To this end

gar % f(@) = (1) o [ st - vy

_ (%)gﬂ/o dphMT@ /‘y‘:pf(x—y)da(y)
— (%)gn/om dp hMTfp)ﬁlpr ][ flx —y)do(y)

lyl=p

= %/0 dp har(p)pf (5 p) = %/ﬂm dp har(p)pf (; p)

where the last equality is a consequence of the fact that has(p)pf(;p) is an
even function of p. Continuing to work on this expression suing p — pf(z; p)
is odd implies

M
gur* F(2) = 1= / dp [ foos((t = p)a) = cos(t+ pJlda )

dp / cos((t — p)a)p (s p)da

ﬁ
= —Re/ dp/ dae’t=P)%p f(z; p)da — tf(x;t) as M — oo
using the 1 — dimensional Fourier inversion formula. m
47.2.1 Alternate Proof of Theorem 47.4
Lemma 47.5. A}im fffu cos(pA)dp = 2mH(N).

Proof.



47.3 Du Hamel’s Principle

M Mo
/ cos(pA)dp = / e dp
-M -M

/ (N { /7 A; eip’\dp} )\ — / / dAp(N)e = 2mp(0)

by the Fourier inversion formula. m
Proof. of Theorem 47.4 again.

/sint|§| ezfa‘dgz/ Sintp eip\w\cosHSineda dSO p2 dp
. . p

so that

€]
B sintp eil*ld |1
=2 [ o T bt
:% /o sintp sinp|z| dp
2 [
-z / [cos(p(t — [2])) — cos(p(t + [2]))] dp
:% / [eos(p(t — [a])) — cos(p(t + [a]))] dp
= T (8t la) = 86+ [a])
Therefore
_1 (sint[¢] . oz
= B ) <o
_ %) o | (6(t—\y\>|;|5(t+\y\)> oo ) A)
= | 6= =3 ot o) dp doe)
=10 t g(x;t) — Lico (—1) Glz; —t)
=tg(x;t)
| |

47.3 Du Hamel’s Principle

The solution to

uge = Au+ f with v(0,2) = 0 and u(0,2) =0

979
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is given by

ftf\yfwly _ flt—lzl,z+2) \Z|w+z)
= / dz. (47.9)

C ly—a e
Indeed, by Du Hamel’s principle,
b osin((t — 7)v=2) sin(ry/— D)
u(t,z) = —————— f(r,x)dr = ——— f(t—T,2)dr
() = [ DS oy = [ LD pe— )
t 1t _
:/ Tf(t*7'7.73;’7')d7'=4—/ dr t? / ftzro+rw) do(w)
™ T
0 0 i
_ b / wdy (et y =z + 2)
4 ly — x|
BG@)
_ 1 ft—|z, x-l—z)
T 4n 2|
|z]<t

Thinking of u(t, ) as pressure (47.9) says that the pressure at = at time ¢ is
the “average" of the disturbance at time ¢ — |y — x| at location y.

47.4 Spherical Means

Let n > 2 and suppose u solves uy; = Awu. Since A is invariant under rotations,
ie. for R € O(n) we have A(uo R) = (Au) o R, it follows that uwo R is also a
solution to the wave equation. Indeed,

(u(t,) o R)¢ = upe(t,-) o R = Au(t,-) o R = A(u(t,-) o R).
By the linearity of the wave equation, this also implies, with dR denoting
normalized Haar measure on O(n), that
U, |a]) = / (u(t, Rz) o R)dR
O(n)

must be a radial solution of the Wave equation. This implies

Uy = DU |2]) = A (r" U (4, 7)) ) = [an(t, )+ "Tfl . U(t,T)

rn—1

Now
U Jaf) = / u(t, Re)dR = ][ ult, y)do(y).
0(n) B(0,|x])

Using the translation invariance of A the same argument as above gives the
following theorem.
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Theorem 47.6. Suppose uyy = Au and x € R™ and let

U(t,r) :=u(t,x;r) = ][ u(t,y)do(y)
OB(z,r)

= ][ u(t, z + rw)do(w).
9B(0,1)
Then U solves

Utt = 87'(7"n71Ur')

71
with
U0,r) = ][ (0,2 + rw)do(w) = flasr)
8B(0,1)
Ui(0,r) =g(; 7).
Proof. This has already been proved, nevertheless, let us give another

proof which does not rely on using integration over O(n). To this hence we
compute

0,U(t,r) = b, ]l u(t, z + rw)do(w)

8B(0,1)
= ][ Vu(t,z + rw) - wdo(w)
8B(0,1)
—;/ Vu(t,z +vy) - gdo(y)
- U(Snfl),rnfl lyl=r ’ Y) - yaoly
1
= Au(t,z + y)dy
FE T fye Y

1 /T
= d Au(t,z + y)do(y
o (ST J, p. . ( )do(y)

so that

1 1 1 1 T

— 0, (") = —— 0, | — Aut,

Tn_la (r"'U,) Tn_la [J(S”—l)/o dp/‘y‘:p u(t,z + y)do(y)
1

= Au(t,x + y)do
O—(Snfl)rnfl /IyI:r ( y) (y)

Au(t,z +y)do(y)
lyl=r
= ][ uge(t,x +y)do(y) = Uy

ly|=r
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[
We can now use the above result to solve the wave equation. For simplicity,
assume n = 3 and let V(¢,7) = ru(t,z;r) = rU(t,r). Then for r > 0 we have

2
Vir =20, + 17Uy = T(Urr + ; Ur)
=rUy = V.
This is also valid for » < 0 because V(¢,r) is odd in r. Indeed for r < 0, let

v(t,r) =V (t,—r), then V,,.(t,r) = Vi (t, —1) = Viu(t, —1) = Ve (¢, 7). By our
solution to the one dimensional wave equation we find

r+t
Vitr) = %(V(O,t ) V(0 — 1) +% / Vi(0, y)dy.

r—t
Now suppose that u(0,2) = 0 and u;(0,2) = g(z), in which case
V(0,7) =0 and V; (0,7) = rg(z,r)

and the previous equation becomes

Then
r+t

V(t,r) = % /yﬁ(xvy)dy

r—t
and noting that
8 a7 . p—
| Vi) = Tt 2:0) = u(t.2)
we learn 1
u(t,z) = 5 [tg(z;t) — (=) g(z; —1)] = tg(2;1)

as before.

47.5 Energy methods

Theorem 47.7 (Uniqueness on Bounded Domains). Let 2 be a bounded
domain such that 2 is a submanifold with C? — boundary and consider the
boundary value problem

uy — Au = h on (21
u=f on (02 x1[0,T])U (2 x {t=0})
u =g on 2 x {t=0}

Ifu € C%(Qr) then u is unique.
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Proof. As usual, using the linearity of the equation, it suffices to consider
the special case where f =0, g =0 and h = 0 and to show this implies u = 0.
Let

1
Eqo(t) = —/ {u(t, z)? + |Vu(t, x)ﬂ dz.
2Ja
Clearly by assumption, E(0) = 0 while the usual computation shows
Eq(t) = (1, 1) 120y + (Vu(t), Vi(t)) r2(a)
= (u, AU)LZ(_Q) + (Vu(t), Vu(t))LZ(_Q)
, . ou(t, x
— —(Valt), Va(t)) p2() + / it z) é ) do(z)
Jon n
+ (Vu(t), V?:L(t))Lz(_Q)
=0

wherein we have used u(t, z) = 0 implies u(t,z) = 0 for z € 012.

From this we conclude that Eq(t) = 0 and therefore (¢, z) = 0 and hence
u=0. u

The following proposition is expected to hold given the finite speed of
propagation we have seen exhibited above for solutions to the wave equation.

Proposition 47.8 (Local Energy). Let z € R", T > 0, usy = Au and define
1 [ .
oft) == Pagr—o(uit) = [ [t + Vut)] dy.
B(z,T—t)

Then e(t) is decreasing for 0 <t <T.
Proof. First recall that

o [ rae=g [ a /‘y,x‘:pf(y)d”(y) [ i

B(z,r) OB(x,r)

Hence
. d . 2 2
e(t) = — {la(t y)I" + [Vult, y)["Hdy
B(z,R—t)
1
=-3 / (|%)? + |Vul*)do + / [@ i + Vu - V] dm
OB(z,R—t) B(z,R—t)
1
- / (a2 + |Vul?)do + / i A+ V- Vi dm
OB(z,R—t) B(z,R—t)
1 12 9 . Ou
=—3 (|a|* + |Vu|*)do + 2 U %da
9B (z,R—t) dB(z,R—t)

1
=5 / {2 4(Vu-n) — (Ja)? + |[Vul*) }do < 0
dB(x,R—t)
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wherein we have used the elementary estimate,

2(Vu-n) o< 2|Vul u| < (|4 + [Vul?).
Therefore e(t) < e(0) =0 for all ¢ i.e. e(t) :=0. m

Corollary 47.9 (Uniqueness of Solutions). Suppose that u is a classical
solution to the wave equation with u(0,-) = 0 = u(0,-). Then u = 0.

Proof. Proposition 47.8 shows

1

5[ TP+ Vult )] dy = Bagr(0) =0
B(x,T—t)

for all 0 < ¢ < T and = € R™. This then implies that @(¢,y) = 0 for all y € R™
and 0 <t <T and henceu=0. m

Remark 47.10. This result also applies to certain class of weak type solutions
in z by first convolving u with an approximate (spatial) delta function, say
ue(t,x) = u(t,-) *0.(x). Then u, satisfies the hypothesis of Corollary 47.9 and
hence is 0. Now let € | 0 to find u = 0.

Remark 47.11. Proposition 47.8 also exhibits the finite speed of propagation
of the wave equation.

47.6 Wave Equation in Higher Dimensions
47.6.1 Solution derived from the heat kernel

Let 1
1 2
pi(z) = ———e 2l
‘ (2mt)"/?

and simply write p; for p}. Then
© . 2 . 2
2/ coswt py(t)dt = / py(t)dt = e M 2| Ly = ¢7A/2,
0 R

Taking w = v/—A and writing u(t, z) := cos (\/—At) g(x) the previous iden-
tity gives
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2/ u(t,z) — e*%tht:Q/ u(t, z) pa(t)dt
0 0
=6M/29(9€)=/]R PY(v)g(z — y)dy
=/ L EW (- )y
Be (27A)"/2

7 ),
=— dpe™2xF g(z —y)do(y
ol @ ooty

a(§n1) [ S
:(;W\W/O dpe™ 3% p" g (; p),

and so

) g B A O'(Snil) o —p? n—1-, .
/0 u(t, z)e” dt,,/TW | dpe™ B " (i )
n—1 o0
_ \/g %W‘)H"*W ’ / e B (s 1) dt.
T 0

Suppose n = 2k + 1 and let ¢, := \/_‘72 )n/z , then the above equation reads

oo 1,0 oo
/ u(t,x)e XV dt = cn)\_k/ et 2% (s t)dt
0 0

By the injectivity of the Laplace transform (after making the substitution
t — /1, this implies

cos <\/7At> g(z) = u(t,x) = ¢, (O, My-1)F [t**g(z;t)]
Cn (Gthlc")thl . 8th 1) [ g(il? t)}

k—1 times

=0 | My—10;My—1 ... My-10; [t%_lg(x; t)}

1 k-1
= cnﬁt (?8,‘) [t%*lg(x,t)} .

Hence we have derived the following theorem.

71— o(S"~

W, then

Theorem 47.12. Suppose n =2k + 1 is odd and let ¢,, :==
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cos (V=4t) g(x) = end Ga)k [ g(w;1)]
and

sin (V—4¢) \(/\i;A_At) fz) = /Ot cos (MT> f(x)dr =c, (%@)kil [t%’lg(x; t)} .

Proof. For the last equality we have used

k—1
1
<;8t> #2851 — const. * 2P 172(F=1) — congt. % ¢

so that (%8,5)}“71 [t*~1g(2;t)] = O(t) and in particular is 0 at t = 0. m

47.6.2 Solution derived from the Poisson kernel

Suppose we want to write

e / " o()pe(a)ds

) e . 1 2
/ e~ 1l g — 2Re/ e Te™dr = 2Re - =
R 0 1—4A 1+ A2

. 52 o a2
/ps(I)elALdI — ebdl’/zel/\”z:o —e sA*/2
R

Since

and

¢ must satisfy

oo o0 oo
¢(8)675>\2/2d5 -2 e=s(14X%) /2 — e~8/2e=2/2gs
Tl N ’
0 0 0

from which it follows that ¢(s) = e~*/2. Thus we have derived the formula

oo 5
elol = / (2ms) /265 227" gg (47.10)
0

Let : H — H such that A = A* and A < 0. By the spectral theorem, we
may “substitute” x = ty/—A into Eq. (47.10) to learn

e‘tm:/ (27rs)_1/26_s/2e%Ads
0

and in particular taking A = A one finds
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o0 t2
e VA = / (27['8)71/2678/26ﬂAd5
0

from which we conclude the convolution kernel Q;(x) for e=*V=4 is given by

£l 2
el

o0 o0
— —-1/2 —s/2, n — 1/2 75/2
Qo) = [ (m) e g @s = [ (2m e

~1/2 oy -n/2 [ not *bz( 1l ‘2>
= (2m) (2mt?) / s e ds
0

oo z|2
= (2m)"1/? (27rt2)7"/2 8%_1675%(”%) %
0

2
Making the substitution, v = 3% (1 + %) in the previous integral shows

ntl

2 T2 oo
@@mrwmw"ﬂgb+g>} [t
n nfl EAN +1
e (1) (22

n _n4l 1 t
o0 r (1) =
(t2+|m\ )

n+1 t
- 2 nl( m;l.

24 o)

Theorem 47.13. Let

Qi(z) =cpn—————7 (47.11)

then
VA f () = /R Qi(z —y)f(y)dy. (47.12)

Notice that if u(t, z) := e~*V~=2 f(z), we have d2u(t, z) = (\/—A)2 u(t,x) =

—Au(t, z) with u(0,z) = f(z). This explains why @ is the same Poisson ker-
nel which we already saw in Eq. (43.36) of Theorem 43.31 above. To match
the two results, observe Theorem 43.31 is for “spatial dimension” n — 1 not n
as in Theorem 47.13.

Integrating Eq. (47.12) from ¢ to oo then implies
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——e VA () = e VA f(a) 2

=
/ e VA f(@)dr

= [ [ dra - sty
Now

o] o0 1—n
T Cn = .
/ Qr(x —y)dr = cn/ —dr = <72 + |x\2) : >,
p ¢ 1—n

()’

n—1

cjl <t2 + |33|2>_

[
l>

and hence

n—1

and by analytic continuation,

1 )
—=e VA f (1) =

—(e—it)\/—A
o e

1
et
S /Rn ((efit)QHyIQ)JTf(xfy)dy

n—1

n—1

nc_"l /R (\yl2 - (t—ie)Q)iT Fla —y)dy

and hence

sin (tM) flx)=d, leilrgl /w Im (|y|2 - (t- i€)2)_T f(z —y)dy.

1
V-A
Now if |y| > |¢| then

n—1 n—1

hm(\y\ tfze)z)iT = <|y\27t2>7 :

n—1

is real so

11P81m<\y|2 - (t—z'e)?) P 0 Jy > Y.

_n—1 _n—1
Similarly if n is odd lim.|g (|y|2 —(t— ie)2> = <\y|2 - t2) * €Rand
S0

n—1

lim1 ( 2 _ 2)
lim Im  |y|” — (¢ — ic)
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is a distribution concentrated on the sphere |y| = |¢| which is the sharp prop-
agation again. See Taylor Vol. 1., p. 221- 225 for more on this approach. Let
us examine here the special case n = 3,

1 1 —2¢t
Im — 3 | = Im P} S > X = 2
ly|” = (t — ie) ly|” — 2 + €2 + 2iet <|y|2 2 62) 4 4e22

SO

1
I:=lm | Im|—m———= x —y)d
cl0 Jgn <|y2 —(t— i€)2> fle—u)dy

. —2¢t
= lim ; 5 fla—y)dy
R (\y\ — 12 +62) + 4€2t?
> —2€t ~
=47 lim 2 x; p)d,
ol PR rrery rerEiloiy
T B € F
= ctlim f(z; p)dp.

p
€lo Jo (p? —t2+ 62)2 + 4€2¢2

Make the change of variables p = ¢ + es above to find

oo t 2 2 _
I =ctlim (t+es) 62 flz;t+es)ds
€l0 J_t/e (2est + €252 + €2)” + 4e?t?
oo t 2 B
=ct lim/ (¢ +es) 5 flz;t+ es)ds
€l0 ) _t/c (25t + €s? 4+ €)” + 412

- o t? ¢, = < 1
= th(x,t)/oo mds = th(l',t) [m 32 T 1d9

which up to an overall constant is the result that we have seen before.

47.7 Explain Method of descent n = 2

1 tgly) + > h(y) +tVg(y) - (y — x)
1t =3 @y
B(z,t)

See constant coefficient PDE notes for more details on this.
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Sobolev Theory




48

Sobolev Spaces

Definition 48.1. For p € [1,00], k € N and £ an open subset of RY, let

WEP(2):={f € LP(2):0°f € LV (£2) (weakly) for all |a| < k},

loc

WHEP(0) = {f € LP(R2) : 8*f € LP(2) (weakly) for all |a| < k},

i/p
||fHWk,p(n) = Z Ha”f\\ip(m ifp<oo (48.1)
ol <k
and
Hf“Wk'm(_Q) = Z ”aaf”[,oc(()) if p=oc. (48.2)
|| <k
In the special case of p = 2, we write W2 () =: HE _(£2) and W*2 () =

H* (2) in which case I-lrzco) = Il o) is a Hzlbertmn norm assoczated
to the inner product

(fs @ e = Z/a"f 9%g dm. (48.3)
|| <k

Theorem 48.2. The function, |||yk.s(q), i a norm which makes WkP(£2)
into a Banach space.

Proof. Let f,g € W*?(£2), then the triangle inequality for the p — norms
on L? (£2) and I ({« : |a| < k}) implies
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1/p
I+ gllwera) = Z 0% f +0%gll7s ()
|| <K
1/p
(o3 1e3 p
< | 3 (10 liagay + 1090 )
le|<k
1/p 1/p
(Z 0" f||m) - (Z ||aag||’zp<g>)
|| <k || <k

= Hf”W’W(.Q) + Hgllwk,pm) .

This shows |||y r.» () defined in Eq. (48.1) is a norm. We now show com-
pleteness.

If {f,}or, C WFP(2) is a Cauchy sequence, then {0%f,}>7 , is a Cauchy
sequence in LP(2) for all |a| < k. By the completeness of LP({2), there exists
go € LP(£2) such that g, = LP— lim,, .o 0* f,, for all |a| < k. Therefore, for
all ¢ € C(92),

(£,0°¢) = lim (f,07¢) = (~1)'*! lim (9*fn,0) = (~=1)'*! lim (ga, ¢)-

This shows 0%f exists weakly and g, = 0°f a.e. This shows f € WFP(£)
and that f, — f € WFP(02) asn — 0o. m

Ezample 48.3. Let u(zx) := |x| ™ for € R? and a € R. Then

R 4 R
/ lu(z) dz = o () / — =l = o (S971) / pd=ap=1g.
B(0.R) o o A

Rd ap .
70_(5471)‘ { d—ap if dfap>() (484)

oo otherwise

and hence u € L (R?) iff @ < d/p. Now Vu(z) = —alz|"* ' & where

& :=x/ |z|. Hence if Vu(z) is to exist in L, (R?) it is given by —a lz| > 2
which is in L? (]Rd) iff a+1 < d/p,ie ifa<d/p—1= d—;ﬁ Let us not check

loc

that u € Wllaf (Rd) provided o < d/p — 1. To do this suppose ¢ € C*(R%)
and € > 0, then

—(u, 0;¢) = —lim u(z)0;é(x)dx

€l0 Jiz|>e

= 16111{)1 {/|m>e Oiu(z)p(x)dx + /m:s u(m)qﬁ(m)fda(x)} .

Since
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<9l (Sdﬁl) 17 S 0ase |0

[, o) o)

—a—1

and J;u(z) = —a|z| Z - e; is locally integrable we conclude that

—(u, 0i¢) = /Rd Oiu(z)p(z)dx

showing that the weak derivative 0;u exists and is given by the usual pointwise
derivative.

48.1 Mollifications

Proposition 48.4 (Mollification). Let 2 be an open subset of RY, k €
No :=NU{0}, p € [1,00) and u € VV/ZLP(Q) Then there exists u, € C°(12)
such that u, — u in WP (1).

Proof. Apply Proposition 29.12 with polynomials, p,, (§) = £%, for |o| < k.
|

Proposition 48.5. C2°(R%) is dense in W*P(R?) for all 1 < p < oo.

Proof. The proof is similar to the proof of Proposition 48.4 using Exercise
29.32 in place of Proposition 29.12. m

Proposition 48.6. Let 2 be an open subset of R? k € Ny := NU{0} and
p>1, then

1. for any a with |a| < k, 8% : WhP (2) — Wk=1elr (2) is a contraction.

2. For any open subset V C §2, the restriction map u — uly is bounded from
WP (02) — Wkr (V).

3. For any f € C* () andu € WEP(2), the fu € WP (2) and for |a| < k,

loc

o (fu) =Y (g) FPf .92 By (48.5)

B

where (g) = WLB)'
4. For any f € BC*(2) and u € WEP(Q), the fu € W5 () and for

la| <k Eq. (48.5) still holds. Moreover, the linear map w € W*P(£2) —
fu € WFP () is a bounded operator.

Proof. 1. Let ¢ € C° (£2) and u € WP (2), then for 8 with |8 < k—|a],

(07u,0%) = (=1)/*)(u, 0°076) = (~1)!(u,0™76) = (<L) (" u,0)
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from which it follows that 9°(9%u) exists weakly and 9°(8%u) = 9°*#u. This
shows that d%u € W¥~12? () and it should be clear that 10%ullyyi-iatn() <

[ellyrn ) -
Item 2. is trivial.
3-4. Given u € W/Zf (2), by Proposition 48.4 there exists u, € C° (12)

such that w, — u in WP (£2). From the results in Appendix A.1, fu, €

loc

Ck (92) c WkP(02) and

0 (fun) =Y (g)aﬁ f-00 Py, (48.6)

B

holds. Given V' C, £2 such that V is compactly contained in {2, we may use
the above equation to find the estimate

1o oy < 32 (5) 1% 1%l

B

< CalfiV) D2 N10° Punll oy < Calfs V) ltnllywrnqyr)
BLa

wherein the last equality we have used Exercise 48.36 below. Summing this
equation on |a| < k shows

[ funllwrsry < CU V) lunllyen oy for all n (48.7)

where C(f,V) := Z|a\gk Co(f,V). By replacing u,, by u, — t, in the above
inequality it follows that { fu, }re, is convergent in W*P (V) and since V was

arbitrary fu, — fu in W'/Z’f (£2). Moreover, we may pass to the limit in Eq.

(48.6) and in Eq. (48.7) to see that Eq. (48.5) holds and that
I fullwrsny < CU V) lullwrony < CU V) ullyrs o)

Moreover if f € BC (£2) then constant C(f, V) may be chosen to be indepen-
dent of V and therefore, if u € W*P(£2) then fu € WFP ().

Alternative direct proof of 4. We will prove this by induction on |a].
If a = e; then, using Lemma 29.9,

—(fu,0;0) = —(u, f0i) = —(u,0; [f$] — Oi f - §)
= (Ou, fo) + (u, 0 f - ¢) = (fOu+ Oif - u,9)
showing 9; (fu) exists weakly and is equal to 0; (fu) = fO;u+0;f-u € LP (12).
Supposing the result has been proved for all « such that || < m with m €

[1,k). Let v = a + e; with || = m, then by what we have just proved each
summand in Eq. (48.5) satisfies 9; [0° f - 0°~Pu] exists weakly and

0 [0°f- 00 Pu] = 0P Feif. 00 Pyt 9 f .90 ey e P ().
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Therefore 07 (fu) = 0;0* (fu) exists weakly in L (£2) and
9 (fu) = Z (a) [aﬁ+e¢f L9 By + aﬁf . aa—ﬁﬂnu] _ Z (7) [8ﬁf . 8'7_614
pza NP by \P
For the last equality see the combinatorics in Appendix A.1. m

Theorem 48.7. Let 2 be an open subset of RY, k € Ny := NU{0} and p €
[1,00). Then C®(£2) NWFP(0) is dense in W*P(§2).

Proof. Let §2,, := {z € 2 : dist(z,2) > 1/n} N B(0,n), then
O, c{z € 2 :dist(z,2) > 1/n}NB(0,n) C 2yi1,

2, is compact for every n and Q,LT f2asn — oo. Let Vo = (23, V; := Qj+3\f2j
for j > 1, Ko := 2 and K := {245\ 2,41 for j > 1 as in figure 48.1. Then

Fig. 48.1. Decomposing {2 into compact pieces. The compact sets Ko, K1 and K>
are the shaded annular regions while V5, Vi and V2 are the indicated open annular
regions.

K, CC V, for all n and UK,, = 2. Choose ¢, € C°(V,,[0,1]) such that
¢n =1 on K,, and set g = ¢o and

Jj—1

==t — =) d; =5 [[ (1 - o)

k=1

for j > 1. Then ¢; € C°(V,,,[0,1]),
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n

lfzwkzn(lf@c)HOaanoo
k=0

k=1

so that Y77 ¢x = 1 on £2 with the sum being locally finite.

Let € > 0 be given. By Proposition 48.6, u,, = ¥,u € W*? () with
supp(u,) CC V,,. By Proposition 48.4, we may find v, € C° (V) such that
[tn = vnllweso)y < €/2"+1 for all n. Let v := > o0 | vy, then v € C®(£2)
because the sum is locally finite. Since

oo oo
Z Hun - UTLHW’M}(Q) < Z 6/2n+1 =€ <00,
n=0 n=0

the sum Y °7  (us — vy) converges in WP (£2). The sum, > oo (tn — ),
also converges pointwise to u — v and hence u —v = Y o (up — vy) is in

Wk (£2) . Therefore v € WP (£2) N C*®(£2) and

oo
lu—ol < Z l[wn — UnHWk,p(Q) <e

n=0

Notation 48.8 Given a closed subset F' C R%, let C™ (F) denote those u €
C (F) that extend to a C* — function on an open neighborhood of F.

Remark 48.9. Tt is easy to prove that u € C°° (F) iff there exists U € C* (Rd)
such that u = U|p. Indeed, suppose {2 is an open neighborhood of F, f €
C>®(2) and u = f|p € C* (F). Using a partition of unity argument (making
use of the open sets V; constructed in the proof of Theorem 48.7), one may
show there exists ¢ € C*(£2,[0,1]) such that supp(¢) C 2 and ¢ =1 on a
neighborhood of F. Then U := ¢f is the desired function.

Theorem 48.10 (Density of WP (£2) N C*> (2) in WP (£2)). Let 2 C
R? be a manifold with C° — boundary, then for k € Ny and p € [1,00),
WP (020)NC> (2) is dense in WHP (20) . This may alternatively be stated
by assuming 2 C R? is an open set such that 2° = 2 and 2 is a manifold
with C° — boundary, then WP (£2) N C> (£2) is dense in WP (£2).

Before going into the proof, let us point out that some restriction on the
boundary of 2 is needed for assertion in Theorem 48.10 to be valid. For
example, suppose

Q0 :={zeR?*: 1< |z] <2} and 2:= 2\ {(1,2) x {0}

and 60 : 2 — (0,2) is defined so that z1 = |z|cosf(z) and zy = |z|sinb(z),
see Figure 48.2. Then 6 € BC™ () C Wk () for all k € Ny yet § can
not be approximated by functions from C* (£2) € BC*™ (£2) in WP (£2).
Indeed, if this were possible, it would follows that § € WP (£2y) . However, 0 is
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Fig. 48.2. The region {2 along with a vertical in (2.

not continuous (and hence not absolutely continuous) on the lines {z; = p}N{2
for all p € (1,2) and so by Theorem 29.30, 6 ¢ WP (£).
The following is a warm-up to the proof of Theorem 48.10.

Proposition 48.11 (Warm-up). Let f : R9~! — R be a continuous func-
tion and {2 := {x eRY:zy > f(a:l,...,xd,l)} and C*(£2) denote those
uelC (Q) which are restrictions of C°° — functions defined on an open neigh-
borhood of 2. Then for p € [1,00), C=(£2) "W P () is dense in WP (12).

Proof. By Theorem 48.7, it suffices to show than any v € C*(£2) N
W¥P (£2) may be approximated by elements of C> (£2) N\W*P (£2). For s >0
let us(x) := u(x + seq) which is defined for x € 2 — seq. Since

= {:L' eRY:zy > f(xh,..,xd,l)}
C {mERd::rd+s>f(;v1,...,:rd_1)} = () — seq

and 0%u, = (0%u), for all a,
us € WFP(02 — se4) NC™® (2 — seg) C C (2) nWFP (2).
These observations along with the strong continuity of translations in L? (see
Proposition 11.13), implies lim o [|[u — uslyyrp(p) = 0. ®
48.1.1 Proof of Theorem 48.10

Proof. By Theorem 48.7, it suffices to show than any u € C® (2)NWkP ()
may be approximated by elements of C'*° (.(_Z) NWEP (§2). To understand the
main ideas of the proof, suppose that (2 is the triangular region in Figure
48.3 and suppose that we have used a partition of unity relative to the cover
shown so that u = u; + us + ug with supp(u;) C B;. Now concentrating on
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Fig. 48.3. Splitting and moving a function in C*° (£2) so that the result is in

= (9).

uy whose support is depicted as the grey shaded area in Figure 48.3. We now
simply translate u; in the direction v shown in Figure 48.3. That is for any
small s > 0, let wg(x) := ui(x + sv), then v, lives on the translated grey area
as seen in Figure 48.3. The function wy extended to be zero off its domain of
definition is an element of C*° (Q) moreover it is easily seen, using the same
methods as in the proof of Proposition 48.11, that ws — u; in WP (£2).

The formal proof follows along these same lines. To do this choose an at
most countable locally finite cover {V;}°, of £ such that ¥y C £ and for
each i > 1, after making an affine change of coordinates, V; = (—e,e€)¢ for
some € > 0 and

Vin2={(y,2) € Vi:e>z> fi(y)}

where f; : (—¢,€)971 — (—¢, €), see Figure 48.4 below. Let {n;};-, be a par-

Za0

fi

Fig. 48.4. The shaded area depicts the support of u; = un;.

tition of unity subordinated to {V;} and let u; := un; € C* (V; N 2). Given
d > 0, we choose s so small that w;(x) := u;(z + seq) (extended to be zero
off its domain of definition) may be viewed as an element of C*°(£2) and such
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that [u; — willyyr o) < §/2%. For i = 0 we set wp := ug = unoy. Then, since
{Vi}:2, is a locally finite cover of £2, it follows that w := Y2 w; € C* (£2)
and further we have

oo oo )
Z flui — wiHWk,p(Q) < 25/21 =o0.
i=0 i=1

This shows

u—w= Z(ul —w;) € WhP(0)
=0

and [lu — wllyyr.p (o) < 0. Hencew € C (2)NW*P (£2) is a § — approximation
of w and since § > 0 arbitrary the proof is complete. m

48.2 Difference quotients

Recall from Notation 29.14 that for h # 0

w(w + he') — u(z)
—

Remark 48.12 (Adjoints of Finite Differences). For u € LP and g € L9,

" _ u(z + he;) — u(z) o) da
[ otuto) gta) do = [ ML 40y a

_ g(x — hei) — g(x)
= f/Rd u(z) B — dx

Ou(x) ==

= 7/ u(x)0; " g(z) dx.
Rd

We summarize this identity by (8)* = —9;".

1

Theorem 48.13. Suppose k € Ny, 2 is an open subset of R and V is an
open precompact subset of 2.

1. If1<p<oo, u€WrP(2) and O;u € WEP(0), then
187 ullwrr vy < 19sullyprn o (48.8)
for all 0 < |h| < $dist(V, £2°).

2. Suppose that 1 < p < co, u € WFP(£2) and assume there exists a constant
C(V) < oo such that

1 )
0wl wep(rry < C(V) for all 0 < |h| < S dist(V, £2°).
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Then diu € WEP(V) and ||0ulwroyy < C(V). Moreover if C :=
supyccn C(V) < 0o then in fact O;u € W*P(£2) and there is a constant
¢ < oo such that

Orullwiniay < ¢ (C+ el oy ) -
Proof. 1. Let |a| <k, then
100l ull (v = 1910 ull vy < 190 ulo(er

wherein we have used Theorem 29.22 for the last inequality. Eq. (48.8) now
easily follows.
2. If |00 ullwrs vy < C(V) then for all o] <k,

080wl vy = 1070 ul| Lo vy < C(V).

So by Theorem 29.22, 0;0%u € LP(V) and [|0;0%u|zr(vy < C(V). From this
we conclude that [|0%ul|r»() < C(V) for all 0 < |B] < k + 1 and hence
lullwrsrny < e [C(V)+ ||ullLrvy] for some constant c. m

Notation 48.14 Given a multi-index o and h # 0, let

d

op =] (oM™ .

i=1
The following theorem is a generalization of Theorem 48.13.

Theorem 48.15. Suppose k € Ny, 2 is an open subset of R%, V' is an open
precompact subset of 2 and u € WFP($2).

L If1<p<ocand|a| <k, then |0 ullwr-iaivy < |ullwrroy for b small.
2.1If 1 <p < oo and ||Ofullwerny < C for all |af < j and h near 0, then
uwe WP (V) and ||0%ullywrsyy < C for all o] < j.

Proof. Since 95 = []9;", item 1. follows from Item 1. of Theorem 48.13

and induction on |« .

For Item 2., suppose first that & = 0 so that v € LP(£2) and |05 ul| Lo (vy <
C for |a| < j. Then by Proposition 29.16, there exists {h;};=, C R\ {0} and
v € LP(V) such that iy — 0 and lim;_, oo (9, u, ¢) = (v, ¢) for all ¢ € CZ (V).
Using Remark 48.12,

(v,0) = Jim (9,0, 6) = (=)' lim (u,0%,6) = (~)*! (u,0°0)

which shows 0% = v € LP(V'). Moreover, since weak convergence decreases
norms,
||8°‘u||Lp(V) = ”””Lp(v) <C
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For the general case if k € N, u € W*P(£2) such that o ullwerary < C,
then (for p € (1,00), the case p = oo is similar and left to the reader)

S l10R0%ully iy = D 10705l vy = 105l < C7-
|BI1<k 18|<k

As above this implies 9°0%u € LP(V') for all |a| < j and |8] < k and that

Haaqu[:Vk,p(V) = Z [lo* 3ﬁuHLP v)
1BI<k

48.3 Sobolev Spaces on Compact Manifolds

Theorem 48.16 (Change of Variables). Suppose that U and V are
open subsets of RY, T € CF(U,V) be a C* - diffeomorphism such that
10°T | pery < o0 for all 1 < |af <k and € := infy |[det T'| > 0. Then the
map T* : Wk (V) — WkP (U) defined by u € WFP (V) - T*u :=uoT €
WkP (U) is well defined and is bounded.

Proof. For u € WF? (V)NC> (V) , repeated use of the chain and product
rule implies,

(woT) =@ oT)T'
(woT)" =@ o) T + (W o T)T" = (W o T)T' @T' + (' o T) T"
(woT)® = (u<3> ° T) TRT QT + (' oT) (T' @ T')
+ W o)T' @T" + (u' oT)T®

| times

(o) = (uf >oT)’_/W+Z( Do) p, (T/,77,..., 7).

(48.9)

This equation and the boundedness assumptions on TU) for 1 < j < k implies
there is a finite constant K such that

1
‘(uoT ‘ Z‘ J)OT‘ for all 1 <1< k.

By Holder’s inequality for sums we conclude there is a constant K, such that
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S 0% oD <K, 3 ol o T

la|<k laf<k
and therefore

o Ty < By 2 [ 07 (7(a) e
la|<k
Making the change of variables, y = T'(z) and using
dy = |det T'(z)| dz > edz,

we find

lwo Tlyin ey < Kp Z/|3au|P(T(:r))dz

|a\<k

23 [ iy = =2 el (@810)

|a| <k

This shows that T : WF? (V)N C> (V) — WP (U)NC> (U) is a bounded
operator. For general u € W*? (V)| we may choose u,, € WEP (V)N C>® (V)
such that u, — u in WP (V). Since T* is bounded, it follows that T"*u,,
is Cauchy in W*P (U) and hence convergent. Finally, using the change of
variables theorem again we know,

IT"u = T un |70y < e lu— Un|[7p () — 0 as n— oo

and therefore T*u = lim,,_,o, T*u,, and by continuity Eq. (48.10) still holds
foru € WP (V). m

Let M be a compact C* — manifolds without boundary, i.e. M is a compact
Hausdorff space with a collection of charts z in an “atlas” A such that = :
D(x) C, M — R(z) C, R? is a homeomorphism such that

zoy 'eCk (y(D(x) N D(y))),z (D(z) N D(y))) for all z,y € A.

Definition 48.17. Let {z;})\, C A such that M = 11)(1:7) and let

{@}7 1 be a partition of unity subordinate do the cover {D(xl)}1 1- We now
define u € WFP(M) if u: M — C is a function such that

(1" Z 16i) 0 27 [y oy < (48.11)

Since ||| wen(rzr) @ @ norm for all i, it easily verified that ||-||yyr.m(ar) is @
norm on WHP(M).
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Proposition 48.18. If f € C*(M) and u € W*P (M) then fu € W*P (M)
and

HquWk,p(M) <C Hullwk,pw) (48.12)
where C' is a finite constant not depending on u. Recall that f : M — R is
said to be C? with j <k if fox~! € CI(R(x),R) for all z € A.

Proof. Since [ fo x;l} has bounded derivatives on supp(¢; o x;1)7 it fol-
lows from Proposition 48.6 that there is a constant C; < oo such that

||(¢if“) °© ‘Z;IHW’C-P(R(M)) = H [f °© ”71] (¢su) o I‘AHWIe P(R(x:))

< Ci|(piu) oz IHW’C »(R(z;))

and summing this equation on 7 shows Eq. (48.12) holds with C' := max; C;.
]
Theorem 48.19. If {y]} 1 C A such that M = U}, D(y;) and {wj};il is

a partition of unity subordmate to the cover {D(y])} then the norm

Jj=1’

|U‘Wk<p<]\l) = Z H(%u) o y]-leWk,p(R(yj» (48.13)
i=1

is equivalent to the norm in Eq. (48.11). That is to say the space WP (M)
along with its topology is well defined independent of the choice of charts and
partitions of unity used in defining the norm on W*? (M) .

Proof. Since \~\Wk,p<M) is a norm,

N
= Z¢iu

i=1

>

j=1

N
< Z |¢z‘u‘wk,p(M)

wke(M) =1

N
Z(%@ Oy;1

=1

lul e (ar)

WkP(R(y;))

Mx

S 1 @ioi) 0 55 gy, (48.14)

J' 1i=1

and since z; o y;l and y; o z;l are CF diffeomorphism and the sets

yj (supp(¢;) Nsupp(v;)) and z; (supp(¢;) Nsupp(t;)) are compact, an appli-
cation of Theorem 48.16 and Proposition 48.6 shows there are finite constants
Cjj such that

[ i) 0y ||Wkp(3(y ) = Cii [(0iu) 0 2|y 2 (R(x:))

< Cij oo 27y aiman)
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which combined with Eq. (48.14) implies

K N
‘u|wk,p(M) < ZZCH quﬁluox Hwk‘p (R(z)) = <C Hu”Wk P(M)

j=11i=1

where C' := max; Zj{:l C;j < o0o. Analogously, one shows there is a constant
K < oo such that [[ullyyusary < K ulyrp - ®

Lemma 48.20. Suppose x € A(M) and U C, M such that U C U C D(z),
then there is a constant C' < oo such that

Hu og~!

sy < Clullwenr foralue Wk (). (48.15)

Conversely a function w : M — C with supp(v) C U is in WPP(M) iff

Hu o x71||wk',r’(z(u)) < 0o and in any case there is a finite constant such that

”u”Wk:P(M) < CHUOf'f_1 (48.16)

Hwkm(z(m) :

Proof. Choose charts y; := z, yo,...,yx € A such that {D (yz)};il is
an open cover of M and choose a partition of unity {t; }JKzl subordinate to

the cover {D(y])}]K , such that ¢, = 1 on a neighborhood of U. To construct
such a partition of unity choose U; C, M such that U; € U; € D(y;), U C Uy
and Uf, U; = M and for each j let n; € CE(D(y;), [O 1]) such that n; =1 on
a neighborhood of U;. Then define ¢; := n; (1 —no)--- (1 —nj—1) where by
convention 79 = 0. Then {¢); };il is the desired partition, indeed by induction
one shows

I—ij (L=m)---(1=m)
and in particular
K
1—2% =@=m) - (1-nk)=0.
j=1
Using Theorem 48.19, it follows that

lee e lwes oy = 101%) 027 s o)

< |[|(ru) o x‘1||Wk,p(R(y1)>

K
<D @) 055 g,y
=1

= |u‘Wk_p(M) <C ||u||kaP(]\l)
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which proves Eq. (48.15).
Using Theorems 48.19 and 48.16 there are constants C; for j =
0,1,2..., N such that

K
lallwrsany < Co D 15w 0 u7 s gy,
=

=Co Y |@u) oy oy o y,-’1||Wk,p(R(%>>

j=1
K
< Co Yy Cillsw) 0 2 [ ypingmipny
j=1
K
=Co Cillwsor™t uwor™ | yuniag,) -
j=1

This inequality along with K — applications of Proposition 48.6 proves Eq.
(48.16). m

Theorem 48.21. The space (WP (M), [-llwr.n(ary) 18 @ Banach space.
Proof. Let {z;}.~, C Aand {¢;}}* 1 be as in Definition 48.17 and choose
U; Co M such that supp(¢;) C U; C U; C D(z;). If {un}or, C WEP(M)

is a Cauchy sequence, then by Lemma 48.20, {u,, o z; l}n . C Wk (,(U;))

is a Cauchy sequence for all 4. Since W*P(z;(U;)) is complete, there exists
v; € WHhP(2;(U;)) such that w, o z;' — @ in W*P(z,(U;)). For each i let
v; = ¢; (U; o x;) and notice by Lemma 48.20 that

”leW’»P(]\I) <C H’UI o I;IHW""I’(m(Ui)) =C H’F]iHWkYP(zL(Ui)) <o

so that u := vazl v; € WRP(M). Since supp(v; — ¢su,) C Us, it follows that

Z U'L Z ¢Zu7’1

lw = unllyys, (M)

Wksp (M)
S Z Hvl - ¢iu7l||wk,p(1\/1)
=1
Z N
< Ol @iomi = un)l o 27 o,y
i=1
_CZH giow ! (3= un oz )l ay v

SCZCZ Hf}’ifuno-%';l

i=1

Hkap(zi(Ui)) —0asn— o0
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wherein the last inequality we have used Proposition 48.6 again. m

48.4 Trace Theorems

For many more general results on this subject matter, see E. Stein [17, Chapter

VI,

Notation 48.22 Let H? := {m ER?:zy > O} be the open upper half space
inside of R® and if D > 0 let

={zeH:0<a4<D}.
Lemma 48.23. Suppose k > 1 and D > 0.

1. Ifp € [1,00) and C* (W) Jthen for all o € N¢™1 x {0} € N¢ with |a| <
k-1,
D5

10°ul| 1o pray < D7 0% ull L (@ra ) + g

lo°Feul|,, (48.17)

(HE)
In particular there there is a constant C = C(p, k, D, d) such that
Hu”kalyp(f)Hd) < C(pv D7 k7 d) ”uHWkYP(]HId) . (4818)

2. For p = oo and u € W5 (H?), there is a continuous version @ of u. The
function @ is in BCF~! (Hd) and has the property that 04 extends to a
continuous function v, € BC (IHI) for all |a| < k and the function |gga
is in BC*—1 (8@) and

@l pen-1(omay < llullw.oo@e) for any D> 0.
Proof. 1. Write z € H? as =z = (y,2) € R?¥! x [0,00) and suppose

a € N&7! x {0} ¢ N¢ with |a| < k — 1. Then by the fundamental theorem of
Calculus

“u(y,0) = 0%u(y, z) f/ O%u(y,t)dt (48.19)
0
which implies

10%u(y, 0)] 1j0,p) (2) < [0%u(y, 2)| 1j0,p)(2) + 1[0,D](z)/ |0%ue(y, )] dt.
0

Taking the LP(H%) — norm of this last equation implies

||aau||Lp(aH5§) -DVP < HaauHLP(HdD) +B
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where
z p
<1[0,D](Z)/ |8aut(y7t)‘dt) dydz
0
<1[0,D](z)'2”/“/ 10%uq (y, t)[” dt) dydz
0

D
S/ <1[0,D](Z)’Zp/q/ |0%u(y, t)|” dt) dydz
HE, 0

» pr/atl  pp
Lr(H) plg + 1 = 3 ’

Putting these two equations together shows

— ||8a+edu” ’8a+€du”

p
Lr(Hp) *

(o3 - (0% D €
lo UHLP(BHDEL,) <D {”a uHLP(JHI%) + m ”6 " du||Lﬁ(HdD):|

which is the same as Eq. (48.17).
Suppose that p = co and u € W (Hd) . By Proposition 29.29, we know
that 0“u has a Lipschitz continuous version v, on H¢ for each |a| < k. Being

Lipschitz, each v, has a unique extension to a continuous function H. Let
1€ C2(B(0,1) N (-HY), [0,00))

be chosen so that [, n(z)dz = 1 and nm(z) = m"n(mz) and let up, =

Uk Ty, = Vg * Iy Since supp(n) C (—H?) as in Figure 48.5, u,, € C*° (@) ,

supp(n)

A

| 4

R

Fig. 48.5. The support of .

Y

0%Upy, = O%U * Ny, = Vg * My, for all |a| < k and
llwm — unHBck,l(WOB(O’R» — 0 as m,n — oco.

Therefore 9%, — v, uniformly on compact subsets of H for all lal < k.
Hence vy € C*~! (H?) and 0%y = v, extends to H? for all || < k and
'U()‘Q]Hld S BCk_l (8]1:11) .
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Theorem 48.24 (Trace Theorem). Suppose k > 1 and 2 Co RY such that
2 is a compact manifold with C* — boundary. Then there exists a unique linear
map T : WFP (£2) — WHF=LP (802) such that Tu = ulpgq for allu € C* (2) .

Proof. Choose a covering {Vi}ﬁio of 2 such that V, C £ and for each
i > 1, there is C* — diffeomorphism ; : V; — R(z;) C, R? such that

z; (02 NV;) = R(z;) N bd(H?) and
z; (2N0V;) = R(z;) NHY

as in Figure 48.6. Further choose ¢; € C° (V;,[0,1]) such that Zf\io o =1

O-‘

-
S ) 1

Fig. 48.6. Covering {2 (the shaded region) as described in the text.

on a neighborhood of 2 and set y; := Zilonnv; for i > 1. Given u € Cck (Q) if
p < oo and u € W (£2) if p = oo, we compute
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-

s
Il
iR

Hu‘as’?nwkﬂ,p(ag) H(d’zu) log © yi_lHW’PLp(R(E)mbd(Hd))

I
M=

H [(d’lu) © m;l} |bd(Hd) ||Wk:—1,p(R(mz)mbd<Hd))

21

<D Gi||[(¢iw) o] ||W“‘-P(R(m¢))
=1

<
I

N
< maxC; - Z ” [((blu) ° x;l] ”Ww(R(m)mH@
i—1

—1
+ || [(gow) 0 25] HWM(R(z[,))
<cC Hu”Wk,p(_Q)
where C' = max {1,C1,...,Cn}. The proof is complete if p = co and follows

by the B.L.T. Theorem 2.68 and the fact that C* (Q) is dense inside WP (£2)
ifp<oo. m

Notation 48.25 In the sequel will often abuse notation and simply write ulgn
for the “function” Tu € WF=12(502).

Proposition 48.26 (Integration by parts). Suppose 2 C, R? such that

2 is a compact manifold with C* — boundary, p € [1,00] and q = # is the
conjugate exponent. Then for w € WLP () and v € Whe (),
/ diu - vdm = —/ w - Ojvdm +/ ulpg - v]ganido (48.20)
fe) Q le)

where n : 92 — R? is unit outward pointing norm to 9£2.

Proof. Equation 48.20 holds for u,v € C? (Q) and therefore for (u,v) €
Wk (£2) x Wk (£2) since both sides of the equality are continuous in (u,v) €
WkP (£2) x Wk () as the reader should verify.

Warning BRUCE: We might need p € (1, 00) here. To fix this, I think if
p = 1 one should replace u by unr := 1as(u) where ¥y (z) = [ aly/m)dy
and o € C. (R, [0,1) such that & = 1 on [—1,1]. Then up; € W (£2) and
upyr — w in W (£2) and hence the argument given above goes through. We
need only approximate v € W9(§2) with ¢ < co now. We should then pass
to the limit as M — co. m

. . S
Definition 48.27. Let W' (£2) := C° (12)

inside WkP (12).

Remark 48.28. Notice that if T : Wk? (2) — W*=1r (9£2) is the trace op-
erator in Theorem 48.24, then T' (W(fp(Q)) = {0} ¢ W*~1P(992) since
Tu = u|gn =0 for all u € C(2).

be the closure of C2° (£2)
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Corollary 48.29. Suppose 2 Co, R? such that 2 is a compact manifold with
C' - boundary, p € [1,00) and T : Wi (2) — LP(812) is the trace operator
of Theorem 48.24. Then W, P (2) = Nul(T).

Proof. It has already been observed in Remark 48.28 that W, " (2) C
Nul(T). Suppose u € Nul(T) and supp(u) is compactly contained in (2. The
mollification wu.(x) defined in Proposition 48.4 will be in C° (£2) for ¢ > 0
sufficiently small and by Proposition 48.4, u. — u in WP (§2). Thus u €
W, P (£2). So to finish the proof that Nul(T') c Wy (£2), it suffices to show
every u € WP (£2) may be approximated by v € W, ? (£2) such that supp(v)
is compactly contained in 2. Two proofs of this last assertion will now be
given.

Proof 1. For u € Nul(T) € WL (£2) define

o fu(z) for xR
u(m)f{ 0 for z¢ (.

Then clearly @ € LP (R?) and moreover by Proposition 48.26, for v € C°(R?),

/ ﬁ-&;vdmz/u-é’ivdm:f/&;u-vdm
Rd o} 7]

from which it follows that 0;4 exists weakly in LP (Rd) and 0;u = 1o0;u a.e..
Thus @ € W' (R?) with [|@]ly1pgey = [l () and supp(a) C . (The
reader should compare this result with Proposition 48.30 below.)
Choose V € C} (R%,R?) such that V(z) - n(x) > 0 for all z € 002 and
define
fe(x) = Toai(x) == G o eV (z).

Notice that supp(&) C e~V (£2) CC 2 for all € sufficiently small. By the
change of variables Theorem 48.16, we know that i, € WP (£2) and since
supp(m) is a compact subset of §2, it follows from the first paragraph that
te € Wyt (02).

To so finish this proof, it only remains to show @ — u in WP () as
€ | 0. Looking at the proof of Theorem 48.16, the reader may show there are
constants § > 0 and C' < oo such that

|1 Tevllyyrm(may < Cllollyyrpggay for all v e WP (RY). (48.21)

By direct computation along with the dominated convergence it may be
shown that
Tev — v in WHP (R?) for all v € C°(R?). (48.22)

As is now standard, Egs. (48.21) and (48.22) along with the density of C°(R?)
in Whe (Rd) allows us to conclude T,v — v in WP (Rd) for allv € Whp (Rd)
which completes the proof that %, — u in W1 (2) as € — 0.

Proof 2. As in the first proof it suffices to show that any u € W, * (£2)
may be approximated by v € WP (£2) with supp(v) C §2. As above extend u
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to £2¢ by 0 so that & € WP (Rd) . Using the notation in the proof of 48.24, it
suffices to show u; := ¢;a € WP (R?) may be approximated by u; € WP (£2)
with supp(u;) C £2. Using the change of variables Theorem 48.16, the problem
may be reduced to working with w; = u; o x;l on B = R(z;). But in this case
we need only define w§(y) := w{(y — eeq) for € > 0 sufficiently small. Then
supp(ws) C HYN B and as we have already seen w§ — w; in WP (H%) . Thus
uf == wsox; € WHP(02), u§ — u; as € | 0 with supp(u;) C 2. m

48.5 Extension Theorems

Proposition 48.30. Let k € Ny, p € [1, 00| and suppose 2 is any open subset
of R%. Then the extension by zero map,

ue WEP(02) — 1gu € WHP(RY),
is a contraction. Recall WEP(2) was defined in Definition 48.27) above.
Proof. The result holds for u € C2°(£2) and hence for all u € WFP(£2). m
Lemma 48.31. Let R > 0, B := B(0,R) C R, B* := {x € B: 424 > 0}
and I' := {x € B : x4 = 0}. Suppose that u € C*(B\ I')NC(B) and for each
|| <k, O%u extends to a continuous function v, on B. Then u € C*(B) and

0%u = vy, for all || < k.

Proof. For z € I' and i < d, then by continuity, the fundamental theorem
of calculus and the dominated convergence theorem,

A
u(z + Ae;) —u(z) = lim [u(y + Ae;) —u(y)] = lim diu(y + se;)ds
y—x y—x
yeB\I' vesr '
A A
= lim / ve, (Y + se;)ds =/ Ve, (T + se;)ds
y—x
yeB\I" 0 0
and similarly, for ¢ = d,
u(z + Aeq) — u(z) = 311’1’; [u(y + Aeq) — u(y))
yEBsEn(AN\T
A
= lim / Oqu(y + seq)ds
y—x
yGBsgn(A)\[‘
A A
= lim / Ve, (Y + seq)ds = / Ve, (T + seq)ds.
Yy—x
y€Bsen(AN\ I 0 0
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These two equations show, for each i, d;u(x) exits and d;u(zx) = ve, (x). Hence
we have shown u € C (B).

Suppose it has been proven for some [ > 1 that d%u(z) exists and is
given by ve(z) for all |a| <1 < k. Then applying the results of the previous
paragraph to 0%u(z) with |a| = [ shows that 9;0%u(z) exits and is given by
Va+e,; () for all ¢ and ¢ € B and from this we conclude that 0%u(z) exists
and is given by v (z) for all || <1+ 1. So by induction we conclude 0%u(x)
exists and is given by v,(z) for all |a| < k, i.e. u € C*(B). m

Lemma 48.32. Given any k + 1 distinct points, {ci}f:(), in R\ {0}, the
(k+1) x (k+ 1) matriz C with entries Cy; := (¢;)’ is invertible.

Proof. Let a € R**! and define p(z) := Zf:o ajz?. If a € Nul(C), then

k
0= (¢i) aj =p(ci) fori=0,1,... k.
§=0
Since deg (p) < k and the above equation says that p has k+ 1 distinct roots,

we conclude that a € Nul(C) implies p = 0 which implies a = 0. Therefore
Nul(C) = {0} and C is invertible. m

Lemma 48.33. Let B, BT and I" be as in Lemma 48.31 and {ci}fzo, be
k + 1 distinct points in (oo, —1] for example ¢; = — (i + 1) will work. Also
let a € RFFTL be the unique solution (see Lemma 48.32 to C'"a = 1 where 1
denotes the vector of all ones in RFT1, i.e. a satisfies

k
1= (ci) a; for j =0,1,2... k. (48.23)
j=0

Foru € C¥(H4)" with supp(u) C BNH? and z = (y,2) € R? define

a(z) = a(y, 2) = {Zk u(, 2) 220 (48.24)

iz @iu(y, ¢iz) if z < 0.

Then i € C*(R?) with supp(@) C B and moreover there exists a constant M
independent of u such that

”aHWkwp(B) <M Hu||Wk~P(B+)' (48.25)

Proof. By Eq. (48.23) with j = 0,

k k

Zaiu(y, ¢i0) = u(y,0) Z a; = u(y,0).

i=0 i=0

1 Or more generally, one may assume u € C*(H?) N C. (W) such that each 0%u

for |a| < k extends to a continuous function on HA.
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This shows that @ in Eq. (48.24) is well defined and that @ € C (H"). Let
K= :={(y,2) : (y,—2) € supp(u)}. Since ¢; € (o0, —1], if x = (y,2) ¢ K~
and z < 0 then (y,c¢;z) ¢ supp(u) and therefore a(x) = 0 and therefore
supp(@) is compactly contained inside of B. Similarly if o € N¢ with | < k,
Eq. (48.23) with j = a4 implies

(@) i= (0%u) (y,2) if >0
fol Z?:o a;c (0%u) (y, ¢iz) if z < 0.

is well defined and v, € C (RY) . Differentiating Eq. (48.24) shows 0“@(z) =
vo(z) for z € B\ I' and therefore we may conclude from Lemma 48.31 that
@ € CH(B) C C* (RY) and 0“0 = v, for all |a| < k.

We now verify Eq. (48.25) as follows. For |a| < k,

P

10%all7, 5y = /Rd I:<0 dydz

k
Zaic?" (0%u) (y, ¢iz)
=0

k
< 1, o ,ci2)|P dyd
<c, 03 10%) (. x2) dy
_C/ z>02‘ ||ao¢u) Y,z )|pdyd'z

1 o4 P
=C (; C_z|> llo U||L,,<B+>

r/a
where C' := (Zf:o |a1;c?d|q) . Summing this equation on |a| < k shows
there exists a constant M’ such that [|@|ykmp-) < M'[lullyrpp+) and
hence Eq. (48.25) holds with M =M’ +1. =

Corollary 48.34. Let k > 1, B, B*, {ci}fzo be as in Lemma 48.33 and
suppose that v € W (H?) with supp(u) C BN H4. By item 2. of Lemma
48.23, by modifying u on a null set we may assume that u € BCF~! (Hd) with

0®ueC (W) for all |a| < k. Then the function @ defined in Eq. (48.24) in
Wko(R9), with supp (@) C B and Eq. ({8.25) is still valid.

Proof. By Lemma 48.33, & € C*~!(R?). Let ¢ € C2° (RY) and |a| = k—1
and ¢ € {1,2,...,d}, then by standard integration by parts

(@,0°0:0) = (—1)*1 (%@, ;)
= (=D (15,070, 0;0) + (=) (1 5-0%@, 9;0).

Making use of Proposition 48.26 and the change of variables theorem,
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(@, 0°0,¢) = — (=111 (151 3:0%00, ¢) — (1) (1 5- 0,070, §)
= — (-1 (9,01, 9)

wherein we have used the fact that 0%a|yp+ = 9*u|gp- for all |a| < k to see
that the boundary terms from the integrals cancel. Hence it follows that 0*0;u
exists weakly and is given by the expected formula, namely by differentiating
Eq. (48.24) away from I" and piecing the results together. The verification of
Eq. (48.25) is as before. m

Theorem 48.35 (Extension Theorem). Suppose k > 1 and 2 C, R? such
that 2 is a compact manifold with C* — boundary. Given U C, R? such that
Q2 C U, there exists a bounded linear (extension) operator E : WFP () —
whk.p (Rd) such that

1. Eu=wu a.e. in {2 and
2. supp(Fu) C U.

Proof. As in the proof of Theorem 48.24, choose a covering {Vi}fio of 2
such that Vo C 2, UN Vi C U and for each i > 1, there is C* — diffeomorphism
z; : V; — R(x;) C, RY such that

z; (02N V;) = R(z;) Nbd(H?) and z; (2N V;) = R(z;) NHY = BY

where BT is as in Lemma 48.33 and Corollary 48.34, refer to Figure 48.6.
Further choose ¢; € C2° (V;,[0,1]) such that Zi\’:o ¢; = 1 on a neighborhood
of 2 and set y; := x;|aany, for i > 1. Given u € C* (Q) ifp<oo(uce
Wkee(Q) if p = o0) and 4 > 1, the function v; := (¢;u) o z; ' may be
viewed as a function in C*(H%) N C.(HY) (W (H?)) with supp(u) C B.
Let o; € C¥(B) (W*°°(B)) be defined as in Eq. (48.24) above and define
@ = gou+ Yo, B o € CF(RY) (Whe (R%)). Notice that @ = u on 2,
supp(u) C U and by Lemma 48.20,

N

[l gy < N0l gay + D 1T © @illyr.n ey
i=1
N

< l¢oullyrnc) + Z I0illwew Ry
i=1
N
< C(¢o) lullyrno) + Z lvillwe.rs+)
N
=0 (90) [ullwesqey + D_ (@) 0 27 [y e
i=1

N
< C(¢0) lullyr.r(ay + Zci lltllyyi.n ()
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This completes the proof for p = co and shows for p < co that the map u €
C*() — Bu:= 4 € C*(U) is bounded as map from WP (£2) to Wkr (U).
As usual, we now extend FE using the B.L.T. Theorem 2.68 to a bounded linear
map from WFP (£2) to WP (U) . So for general u € WP (), Eu = WkP (U)
—limy, 0 @y, Where u,, € C¥(02) and u = WP (£2) — lim,, o0 u,,. By passing
to a subsequence if necessary, we may assume that @, converges a.e. to Fu
from which it follows that Fu = u a.e. on 2 and supp(Eu) C U. m

48.6 Exercises

Exercise 48.36. Show the norm in Eq. (48.1) is equivalent to the norm

‘f|wk,p(g) = Z HaafHLP(Q)'

la|<k

Solution 48.37. 48.36This is a consequence of the fact that all norms on

17 ({o: |a| < k}) are equivalent. To be more explicit, let ao = [|0%f| 100,
then
1/p 1/q

D laal < | 3o faal” || 301

ol <k ol <k lal <k
while

1/p p\ 1/p
P

Slaal” | <[ D1 Jagl <[#{olal <KIYP Y Jagl.

|| <k le|<k [ |8<k 1BI<k
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Sobolev Inequalities

49.1 Morrey’s Inequality

Notation 49.1 Let S ! be the sphere of radius one centered at zero inside
Re. For a set I' C S% 1, x € R, and r € (0,00), let

Ipr={z+sw:wel suchthat0<s<r}.

So Iy, =+ 1y, where Iy, is a cone based on I, see Figure 49.1 below.

Fig. 49.1. The cone I0,,.

Notation 49.2 If I’ C S is a measurable set let |I'| = o(I") be the surface
“area” of I
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Notation 49.3 If 2 C R? is a measurable set and f : R — C is a measurable
function let

1
fa = ]Q[f(x)dz = ) /Qf(m)dz
By Theorem 9.35,

/ Fly)dy = f(a:+y)dy=/Tdttd_l/f(ertw) do(w)  (49.1)
Iy or Iy, 0 ha

and letting f = 1 in this equation implies
m(ly,) = || rd/d. (49.2)

Lemma 49.4. Let I' C S ' be a measurable set such that |I'| > 0. For

u € Cl(qu),
Vuy)l
u(y) — u(x)|dy < / 1. 49.3
][ lulw) ~uloldy < g | =y (493)

Proof. Write y = z+sw with w € S9!, then by the fundamental theorem
of calculus,

u(z + sw) —u(z) = /08 Vu(z + tw) - wdt

and therefore,

F/|u(z + sw) — u(z)|do(w) < /OS/F |Vu(z + tw)|do (w)dt

:/ td‘ldt/ Mda(w)
0 rlz+tw— x|

Vu Vu
S, TR N TR

ly — x| -yl

z,s x,r

wherein the second equality we have used Eq. (49.1). Multiplying this inequal-
ity by s%~! and integrating on s € [0, r] gives

[ 1) = iy < / IVl miBer) [ VL,

|1 | |z —y|*!

x,r

which proves Eq. (49.3). m

Corollary 49.5. Suppose d < p < 0o, I' € Bga-1 such that |I'| > 0, 7 €
(0,00) and uw € C*(I'y,). Then
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lu(z)] < C(L, 7, d,p) llullwrer,.,) (49.4)

1 d—l/p p—1 1-1/p B
C(T)r.d.p) = s ( : ’(pfd> R

Proof. For y € I, ,,
lu()] < Ju(y)] + [u(y) — w(@)|
and hence using Eq. (49.3) and Holder’s inequality,

1 [Vu(y)|
u(z)| < u(y)|dy + — d
= O | e

r

where

1
< m HUHLP(Fz ) HlHLp(Fz,r)

||VUHLP r.,

r

1
W”LG(FM,-) (49.5)

where ¢ = ﬁ as before. Now

1 T _ -
HHTHLQ (o) = / dtt? 1/(# D™ do(w)

\F\/ dat (t471) |F|/ dtt™ 71

d—1 p—d

and since

we find

—1
1 p—1 pea\ V1 p—1 E 1—d
”W”L‘I(FO,T) = (pTd |F|7“”’1) =\, =a I v (49.6)
Combining Eqs. (49.5), Eq. (49.6) along with the identity,

m(FT r) La(ler) = m(-l_‘z;r)

C)

m(Ly )0 = (|1 r/d) "7, (49.7)
shows

1-1/p
-1/ -1 _
w(@)| < lull por,,y (T17/d) 7 + IF\ IVull Loz, ( — \F\) i/

1 d*l/ p—l 1-1/p B
= 7 Wllintr S IVl (B2) | o

1 d-Vr (p—1\'"VP a
S ‘I“l/P max < - N (m) ||uHW1’p(Fm,T) -7 /;D.
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Corollary 49.6. For d € N and p € (d,00] there are constants o = aq and
B = Ba such that if u € C*(RY) then for all z,y € R?,

p—1
p—1\" _d
u(y)—u(z)| < 280!/ (m) IVull Lo (50050l =911 7F) (49.8)

where r:= |z —y| .

Proof. Let r := |z —y|, V := B,(r) N By(r) and I, A C S?~! be chosen
so that © + 71" = 0B, (r) N By(r) and y + rA = 0B, (r) N By(r), i.e.

= L (@Bo(r) N By(r) — ) and A= 1 (9B, (r) N B,(r) —y) = T

Also let W =TI}, . N Ay, see Figure 49.2 below. By a scaling,

Fig. 49.2. The geometry of two intersecting balls of radius r := |z —y|. Here
W=1I,,NAy, and V = B(z,r) N B(y,r).

‘Fz,r n Ay¢r| _ ‘Fz,l ﬂAy,l
%, ol

Ba =

€(0,1)

is a constant only depending on d, i.e. we have |I}, | = |4,,| = S|W|. Inte-
grating the inequality

u(z) —u(y)] < |u(z) —u(z)| + [u(z) — u(y)|
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over z € W gives

|mm—uwnsfﬁm»—mawv+fwwy—uwuz
w

w

:I%rl /\u(x —u z)|dz+/|u(z — u(y)|dz

< |Ff,7'| /|u —u(z)|dz + / lu(z) — u(y)|dz

Hence by Lemma 49.4, Holder’s inequality and translation and rotation in-
variance of Lebesgue measure,

I3 |Vu / \Vu
_ < = dz
)=l < 77y | [ 57 S s [ L
-5 Sl »
\m IVl Mugxﬁqu”

1
\F| HVUHLP(V)HHTHLQ o) (49.9)

where ¢ = ;i’—l is the conjugate exponent to p. Combining Egs. (49.9) and
(49.6) gives Eq. (49.8) with a:= [I'|71. m

Theorem 49.7 (Morrey’s Inequality). If d < p < oo, u € WHP(R?),
then there exists a unique version u* of u (i.e. v* = u a.e.) such that u* is
continuous. Moreover u* € CO’F%(Rd) and

14 14 gy < il (49.10)

where C' = C(p,d) is a universal constant. Moreover, the estimates in Eqs.
(49.3), (49.4) and (49.8) still hold when u is replaced by u*.

Proof. For p < co and u € C(R?), Corollaries 49.5 and 49.6 imply

[uly) = u(@)]

lull peray < Cllullwp(ray and —
|z -yl

< C|IVul| pr (ray

1)

which implies [u]; ¢ < C||Vul|prray < C|lullwrrrayand hence

_4d
P

” H Ul*F(Rd) Hu”W1PRd) (49'11)
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Now suppose u € W1P(R?), choose (using Exercise 29.32) u,, € C}(R?)

such that u,, — uin WHP(R?). Then by Eq. (49.11), ||t — | 014 gy 0

as m,n — oo and therefore there exists u* € Co‘lf_(Rd) such that u, — u*
in 1% »(R?). Clearly u* = u a.e. and Eq. (49.10) holds.

If p=ococand u € WH (Rd) then by Proposition 29.29 there is a version
u* of w which is Lipschitz continuous. Now in both cases, p < oo and p = o,
the sequence w,, := u * 0, = u* * 9y, € C™ (Rd) and u,, — u* uniformly on
compact subsets of R?. Using Eq. (49.3) with u replaced by u,, along with a
(by now) standard limiting argument shows that Eq. (49.3) still holds with u
replaced by u*. The proofs of Egs. (49.4) and (49.8) only relied on Eq. (49.3)
and hence go through without change. Similarly the argument in the first
paragraph only relied on Egs. (49.4) and (49.8) and hence Eq. (49.10) is also
valid for p =co. m

Corollary 49.8 (Morrey’s Inequality). Suppose 2 C, R¢ such that 2 is
compact C*-manifold with boundary and d < p < co. Then for u € WHP (),
there exists a unique version u* of u such that u* € o (RY) and we further

have

47l o4 oy < Cldlwro (19.12)

where C = C(p,d, 2).

Proof. Let U be a precompact open subset of R and E : WHP(2) —
WLP(RY) be an extension operator as in Theorem 48.35. For u € WP (£2)
with d < p < oo, Theorem 49.7 implies there is a version U* € Co’lfﬁ(Rd) of
Eu. Letting u* := U*|p,, we have and moreover,

Hu H 01—— Q) < ||U*||CU.1—4

g ¢ &) < CllEullwrrgay < Cllullyng) -

|

The following example shows that L>*(RY) ¢ Wh4(R?), ie. WH4(R?)
contains unbounded elements. Therefore Theorem 49.7 and Corollary 49.8
are not valid for p = d. It turns out that for p = d, W4 (Rd) embeds into
BMO(R?) — the space of functions with “bounded mean oscillation.”

Ezample 49.9. Let u(z) = ¢(z)loglog (1 + \M) where ¢ € C2°(R?) is chosen

so that ¥(x) = 1 for |z| < 1. Then u ¢ L>®(R%) while u € WhH4(R?). Let us
check this claim. Using Theorem 9.35, one easily shows u € LP(R%). A short
computation shows, for |z| < 1, that

1 1 1
1) 1 LV m

Vu(z) =

1 1 ( 1 A)
= T ——x
1+m 10g<1+ﬁ) ||
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where & = z/ |z| and so again by Theorem 9.35,
d

Jiu@ries [ o s | @
re loj<1 \ % z log(l-l—m)

a1y [ 2 dd1
S —_ “dr = 0.
o )/0 rlog(l-!—%) " e

49.2 Rademacher’s Theorem

Theorem 49.10. Suppose that u € Wllof(ﬁ) for some d < p < oco. Then u is
differentiable almost everywhere and w-0;u = d;u a.e. on {2.

Proof. We clearly may assume that p < co. For v € VV;;:(Q) and z,y € {2
such that B(z,7) N B(y,r) C 2 where r := |z — y|, the estimate in Corollary
49.6, gives

_ 4
o(y) — v(@)| < CIVullLo(BrnBE) - | -yl
d

= C||VllLe(B(z.r)nBy.m) (173), (49.13)

Let u now denote the unique continuous version of u € W(£2). The by
the Lebesgue differentiation Theorem 20.12, there exists an exceptional set
E C §2 such that m(E) =0 and

hm ][ |[Vu(y) — Vu(z)[Pdy =0 for z € 2\ E.
B(z,r)

Fix a point € 2\ £ and let v(y) := u(y) —u(z) — Vu(z) - (y — z) and notice
that Vo(y) = Vu(y) — Vu(z). Applying Eq. (49.13) to v then implies

luly) — u(x) - Vu(z) - (y — )|
< CIIVul) = V(@) | 1o (5rnpey) -7

1/p
u(y) — Vu(z)P (1-9)
<c</3(m) [Vu(y) - Vu(z) dy)

1/p
= (Co (8471 l/prd/p Vu(y) — Vu(z)|Pd, o(1=%)
[Vu(y) (z)[Pdy
B(z,r)
1/p
—Ca (s 19u) - Vu@Pay |-l
B(z,r)

which shows u is differentiable at = and Vu(z) = w-Vu(z). m
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Theorem 49.11 (Rademacher’s Theorem). Let u be locally Lipschitz con-
tinuous on 2 C, R% Then u is differentiable almost everywhere and w-
O;u = O;u a.e. on 2.

Proof. By Proposition 29.29 (?i(w)u exists weakly and is in 9;u € L>°(R%)
fori=1,2,...,d. The result now follows from Theorem 49.10. m

49.3 Gagliardo-Nirenberg-Sobolev Inequality
In this section our goal is to prove an inequality of the form:
lulle < CIIVu| pp(ray for u € CHRY). (49.14)

For A > 0, let uy(z) = u(Az). Then

d
sl = [ luGa)itdz = [ a3
R4 R4

and hence ||ux||Le = A=%9||u|| L. Moreover, Vauy(z) = A(Vu)(Az) and thus

IVurllze = Al (Va)alle = AX~7|| V| o
If (49.14) is to hold for all u € C}(R?) then we must have
A=Yy o = [JuxllLe < C|Vullpo@ay = CA=P||Vul|z» for all A > 0
which is only possible if
1—d/p+d/qg=0,ie. 1/p=1/d+1/q. (49.15)

Notation 49.12 For p € [1,d|, let p* := % with the convention that p*
oo if p=d. That is p* = q where q solves Eq (49.15).

Theorem 49.13. Letp =1 so 1* = then

(i17

d

3
v ull_o < H(/ sz |dx> <d | Vul, (49.16)

[[u

for all u € WHI(RY).

Proof. Since there exists u,, € C}(R?) such that u, — u in WHI(R?),
a simple limiting argument shows that it suffices to prove Eq. (49.16) for
u € CL(R?). To help the reader understand the proof, let us give the proof for
d < 3 first and with the constant d~/2 being replaced by 1. After that the
general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (49.17).
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(d =1, p* = 00) By the fundamental theorem of calculus,

= | [ ;u%y)dy' < [ weldrs [ W@l

Therefore ||ul|z < |[u/||p1!, proving the d = 1 case.
(d =2, p* = 2) Applying the same argument as above to y; — u(y1,z2)
and Y2 — u(x17y2)77

(i, 22)] < / vy, 22)] dyy < / |Vu(yr, 2)| dys and

|u($1,x2)| S / |32U($1>y2)| dy2 S/ ‘Vu(mhy?” dy2

and therefore

lu(z1,32)|? S/ \alu(yhm)\dyl'/ [O2u (1, y2)| dya.

Integrating this equation relative to x; and zo gives

fulle = [ luwPas < ([~ ool ae) ([ 10auto))a )
(" )’

which proves the d = 2 case.
(d = 3, p* = 3/2) Let ' = (y1,20,23), 22 = (1,92, 73), and 23 =
(21, 2,y3). Then as above,

()] < / 10,u(a)|dys for i = 1,2,3

! Actually we may do better here by observing
1 x , oo ,
) =5 | [ was [~

<5 [ W@ de

and this leads to an improvement in Eq. (49.17) to

d 1
1 a
e < 5T ([ 1oweyaz)
1.1
< 3 Hvull,.
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and hence
3

t<]] ( /- |aiu<wi>|dyi)% .

i=1 -

|u(z)

Integrating this equation on xy gives,

ot = (f ucetian)” | H (/7 o)

< (/j; |81u(.7:)|d:£1> ' 211 (/:; \aiu(xi)\dazldyi) 2

wherein the second equality we have used the Holder’s inequality with p =
q = 2. Integrating this result on x5 and using Holder’s inequality gives

/ |u(m)|%dm1d1‘2
R2

< (/R |82u(x)dﬂcldxg)%/Rdx2 (/: |81u(x)dz1>% x

1

</R |agu(x3)\dx1dy3) i
< </R |32u(ac)dac1dx2>% (/R |81u(9:)|d:c1dac2>% (/R 33u(x)dx)% .

One more integration of x5 and application of Holder’s inequality, implies

S u(@) e < f[l (/R |‘9¢U(I)|d1’)% < (/]R Vu(m)dm>%

proving the d = 3 case.
For general d (p* = d;fl) as above let o = (21,..., % 1,Yi, Tit1 .-, 2Td)-
Then

o)l < [ " Jou(a)|dy;

and ,
d—1

i < f[l ( 1 Z |8iu(mi)|dyi> . (49.17)

Integrating this equation relative to x; and making use of Holder’s inequality

in the form .
11
i=2

|u(z)

d
<TIfla s (49.18)
1 =2

(see Corollary 10.3) we find
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1

v (s ffi )

< (/ 81u(x)dx1)j Il (/R aiu(wi)|dx1dyi>ﬁ
( i 3w(w)dx1) ( L. |32u(x)dac1da:2)ﬁ><
Zli (/R \@u(mi)\d:pldyi) i

Integrating this equation on z5 and using Eq. (49.18) once again implies,

\u(ac)|d+1dx1da:2
R2

< (/ |82u(x)|dm1dx2)ﬁ/Rdm2 (/]R@lu(:r)d:cl)dil

X H (/ |0;u(x \da:ldyz) o

dil a—1
< (/ |62u(x)|dx1dx2) (/ \81u(a:)|dac1da:2>
R2 R2
d ) Pt
X H (/ \&u(m’)\drldmdyi)
i=3 \/R?

Continuing this way inductively, one shows

/ \u(m)\ﬁldmldmg ..dxy
k 7=
H (/ |Oiu(x)|dx das . . dxk>

i=1

X H </ |8u(x)|dz1dx2 dxkdka)

i=k+1

1

d—1

and in particular when k = d,

—1 d dil
lu(a)| 7T da < (1) I (/ \8iu(x)\d:c1dx2...dxd) (49.19)
Rd 2 Rd

i=1
d

<11 (/R vu(ac)dx)ﬁ - </R |Vu(x)|dx> -

1030 49 Sobolev Inequalities
This estimate may now be improved on by using Young’s inequality (see

d
Exercise 49.33) in the form [] a; < dZL Lad. Indeed by Eq. (49.19) and
i=1
d
full e, <TT ([, o) <

- Zj:(/ |3u(z)|dm>
d/ Z|6ux)|dyc< Adﬁ‘vu(x)\dx

wherein the last inequality we have used Holder’s inequality for sums,

Young’s inequality,

&IH

| —

a 4 12 , 4 1/2
> lail < (Z 1) (Z W) = Vdla.
i=1 i=1 i=1

|
The next theorem generalizes Theorem 49.13 to an inequality of the form
in Eq. (49.14).

Theorem 49.14. If p € [1,d) then,

1/2P\@— 1) p(d 1)

|l o < d™ ||quLp for all uw € WHP(RY). (49.20)

Proof. As usual since C! (]Rd) is dense in WP (R?) it suffices to prove
Eq. (49.20) for u € CL(R?). For v € C}(R?) and s > 1, |ul® € CL(RY) and
V |ul® = s|u|*~tsgn(u)Vu. Applying Eq. (49.16) with u replaced by |u|® and
then using Holder’s inequality gives

e S A7HV ful|ly = sd7H | [[ul* 7 V|
S _
=i IVl oo - [[|ul*~" || za (49.21)

where ¢ = ﬁ. We will now choose s so that s1* = (s — 1)g, i.e.

([Tul®

s q _ 1 _ 1

- P 1
g—1" 1-1% 1-—(1—;)

_ pld-1) :p(dfl):p*dfl
p(d—1)—d(p-1) d—p d

For this choice of s, s1* = p* = (s — 1)q and Eq. (49.21) becomes

o 1/q
|:_/]Rd |ul? dm} T IVl e - {/ |ul? dm} . (49.22)
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Since
1 1 _d-1 p-1 pd-1)—dp-1)
1* q d p dp
_d-p_ 1
pd  p*’

Eq. (49.22) implies Eq. (49.20). m

Corollary 49.15. Suppose 2 C R? is bounded open set with C*-boundary,
then for all p € [1,d) and 1 < q < p* there exists C = C(£2,p,q) such that

llullLa(2)y < Cllullwre()-

Proof. Let U be a precompact open subset of R? such that 2 C U and
E: WP () — wte (Rd) be an extension operator as in Theorem 48.35.

Then for u € C’l(ﬁ) N Wl’p(Q)»
lullor oy < CllBul gty < CIV (B 1y < Clllwro o,
i.e.
||uHLp*(Q) < OH“”W“’(Q) (49.23)

Since C1(R2) is dense in WHP(2), Eq. (49.23) holds for all u € W1P(82).
Finally for all 1 < g < p*,

1
T

lullrae)y < llullpr (@) - Il @) = llull Le- (A(£2))
1
< CA2)7 lullwrr (2

1 11
where T,+p*—q. ]

49.4 Sobolev Embedding Theorems Summary

Let us summarize what we have proved up to this point in the following
theorem.

Theorem 49.16. Let p € [1,00] and u € WP (RY) . Then
1. Morrey’s Inequality. If p > d, then WP — Co'"% and

7l o # gy < Cllullwrn e

2. When p = d there is an L™ - like space called BMO (which is not defined
in these notes) such that WP — BMO.
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3. GNS Inequality. If 1 < p < d, then WP «— LV

_ d—1
P
where p* = ddTpp or equivalently # = % — %

Our next goal is write out the embedding theorems for WP (§2) for general
k and p.

Notation 49.17 Given a number s > 0, let

_ s ifn ¢ Ny
5+ = s+9difneNy

where 6 > 0 is some arbitrarily small number. When s = k + a with k € Ny
and 0 < a < 1 we will write C**(2) simply as C*(2). Warning, although
Ck1(0) C CF1(N) it is not true that C*1(02) = C*+1(12).

Theorem 49.18 (Sobolev Embedding Theorems). Suppose 2 = R? or
2 C R4 is bounded open set with C*-boundary, p € [1,00), k,1 € N with | < k.

1. If p < d/l then WHP () — Wk=La () provided q := d‘i—’;l, i.e. q solves

qg p d

and there is a constant C' < oo such that
l[ullwr-ra(2) < Cllullwro() for allu € WP (£2).

2. If p > d/k, then W*? () — C*=(4/P)+ () and there is a constant C <
oo such that

||uHClc—(d/p)+(Q> < C”u”wk,p(g) for all u € whe (Q) .

Proof. 1. (p < d/l) If u € WFP (2), then 0%u € WP () for all |a] <
k—1. Hence by Corollary 49.15, %u € L?" (£2) for all || < k—1 and therefore
WHhP () < W*=12" (2) and there exists a constant C; such that

[l () < Clltllyrn(gy for all ue WHP (£2). (49.24)
Define p; inductively by, p1 := p* and p; := pj_;. Since % = r: — é it is

easily checked that + = % — % > 0 since p < d/I. Hence using Eq. (49.24)
repeatedly we learn that the following inclusion maps are all bounded:

WHhP (2) — WF P (Q) — WhE2P2 () ... — WEhre(2).

This proves the first item of the theorem. The following lemmas will be used
in the proof of item 2. m
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Lemma 49.19. Suppose j € N andp > d and j > d/p (i.e. j > 1 ifp>d
and j > 2 if p=d) then

WP () — CI=/P ()
and there is a constant C' < oo such that
Hu”cJ*(d/P)Jr(_Q) < C ”unj.p(Q) . (4925)

Proof. By the usual methods, it suffices to show that the estimate in Eq.
(49.25) holds for all u € C* (12).
For p >d and |of <j—1,

||aau||00$1fd/p(g) <C ||aau||W1,p(Q) <C ”u”Wj,p(Q)

and hence
Hu”cz‘—d/p(n) = ”uHCJ*lyl*d/P(Q) <C H“”Wj,p(g)
which is Eq. (49.25).
When p = d (so now j > 2), choose ¢q € (1,d) be close to d so that j > d/q

and ¢* = qud > d. Then

q

W () — W (2) — WI=hT (Q) — ¢I=21=4/4" (),
Since d/q* | 0 as ¢ T d, we conclude that W74 (£2) — CI=2%(£2) for any
a € (0,1) which we summarizes by writing
W () — ¢i=/d ().

[

Proof. Continuation of the proof of Theorem 49.18. Item 2.,
(p>d/k). If p > d, the result follows from Lemma 49.19. So nos suppose
that d > p > d/k and choose the largest [ such that 1 <[ < k and d/l > p

and let ¢ = d—d_%, i.e. g solves ¢ > d and

Then
WEP (Q) s Wh1a () — cF=1=(0/94 () = =50, (Q) = (5 (2)
as desired. m

Remark 49.20 (Rule of thumb.). Assign the “degrees of regularity” k— (d/p),
to the space W¥*? and k + a to the space C*2. If

XY e {W"P:keNg,pe[l,00} U{CH: keNy, a€l0,1]}
with dege,(X) > deg,eq(Y), then X — Y.
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Example 49.21. 1. WkP — Wk-44a iff | — g >k—0— g iff ¢ > g - g iff

151_ ¢
qg=p d
2. Who c 0O iff k — (i) > a.
P4

49.5 Compactness Theorems

Lemma 49.22. Suppose K., : X — Y are compact operators and |K —
KnllLx,y) — 0 as n — oo then K is compact.

Proof. Let {z,}22; C X be given such that ||z, | < 1. By Cantor’s diago-
nalization scheme we may choose {z,} C {z,} such that y,, := lim K,z €
Y exists for all m. Hence o

1K, — Kapl| = || K (2, — 2)) || < || K (2], — 7)|
<K = Enll |2}, — 2ol + [ Km (2, — 27)
<K = Kol + | K (2, — 2) |l

and therefore,
limsup |[Kz), — Kzy|| < ||K — K|l — 0 as m — oo.
l,n—o0

Lemma 49.23. Let n € C(RY), C,f = nx f, 2 C R? be a bounded open set
with C'-boundary, U be an open precompact subset of R® such that 2 C U
and E : WHH(02) — WIH(RY) be an extension operator as in Theorem 48.35.
Then to every bounded sequence {iiy, }oe, C WL (£2) there has a subsequence
{u,}o2 | such that CyEul, is uniformly convergent to a function in C, (R?).

Proof. Let u, := Fu, and C := sup||un||W1,1(Rd> which is finite by
assumption. So {un},—; C W' (RY) is a bounded sequence such that
supp(u,) C U € U CC R? for all n. Since 7 is compactly supported there

exists a precompact open set V' such that U C V and v, := n*u, € C>*(V) C
cee (Rd) for all n. Since,

[onllzee < [[nllzoe [lunllzr < lnllzee unllzr < Cllnllz~and
[Dvpllzee = [In % Dun [z <0l [[Dunllzr < Clinllze,

it follows by the Arzela-Ascoli theorem that {v,} - ; has a uniformly conver-
gent subsequence. m

Lemma 49.24. Let n € C°(B(0,1), [0,00)) such that [pandm =1, ny(x) =
m"n(mz) and Kpu = (Cy,, Eu)|q. Then for all p € [1,d) and g € [1,p*),

Jm (K — il e e),La2) =0

where i : WHP(£2) — LI(§2) is the inclusion map.
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Proof. For u € CL(U) let vy, := 7 * u — u, then
n@)] < i+ 6(0) = )] = | [ o)z =) )t
- _Yy
= ‘/Rd n(y) [u(w ) U(w)} dy‘
1 ! Y
= v int) [ a [Vute -]
and so by Minikowski’s inequality for integrals,

_1 ! Y
HU HL = m/d Y \y\n(y)/o Vu( m)

< ([, wintar) 1w

By the interpolation inequality in Corollary 10.25, Theorem 49.14 and Eq.
(49.26) with r = 1,

IN

L

1
o S = el (49.26)

A -
HUMHLQ < ”vm”Ll HUm”le*

1

1-A
p(d —
SO lelly11 gy {d 1 ( )HvaHLp

< Cm~? Hu”Wl L(Rd) ||UmHW1 P (R%)

<COm™ HU”WM(Rd) ||UmHW1~z>(1Rd)

< O, UM [l .o gy lom i )
where A € (0,1) is determined by

1 A 1- 1 1
LAy A:A(l__)+_.
q 1 p*

Now using Proposition 11.12,
ol ray = 1 2 = gz
< 17 * Ule,p(Rd) + ”uHWl,p(]Rd) <2 Hu”vvl,p(Rd) .
Putting this all together shows
HKmu - uHL‘I(Q) < ||Kmu - EuHLq = H'UmHL‘I
- A
< C(p, [UNm ™ [[ull 1.0 gy <2 Hu”Wl-p(Rd))
< C(p, UM || Bullyr.p (ga
< C(p, |Um ™ ||UHW1-p(Q)
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from which it follows that
|1 Km — illBowre(2),0a(2) < Cm™ — 0 as m — oo.
|

Theorem 49.25 (Rellich - Kondrachov Compactness Theorem). Sup-
pose 2 C R is a precompact open subset with C*-boundary, p € [1,d) and
1 < q < p* then WHP(02) is compactly embedded in LI(2).

Proof. If {u,}.2, is contained in the unit ball in W? (£2), then by
Lemma 49.23 {K,,u,, }ro; has a uniformly convergent subsequence and hence
is convergent in L4(£2). This shows K,, : WLP(£2) — L9(£) is compact for
every m. By Lemma 49.24, K,,, — i in the L (W' (£2),L?(£2)) — norm and
so by Lemma 49.22 i : WP (£2) — L7 () is compact. m

Corollary 49.26. The inclusion of W*P(£2) into Wk=44(2) is compact pro-
vided | > 1 and%>%—£:d;—ppl>0, e q< 72

Proof. Case (i) Suppose ¢ = 1, ¢ € [1,p*) and {un}or, C WFP(02) is
bounded. Then {9%u,}or, C WHP(£2) is bounded for all |a| < k — 1 and
therefore there exist a subsequence {un},-; C {un}oe, such that 0%, is
convergent in L7({2) for all || < k — 1. This shows that {@,} is W*14(0)
— convergent and so proves this case.

Case (ii) £ > 1. Let p be defined so that % =1_ L1 Then

1
P

WhP(2) c WHHP(2) cc Whha().
and therefore W*P(2) cCc Wk=44(02). m

Ezample 49.27. It is necessary to assume that The inclusion of L2([0,1]) —
L([0,1]) is continuous (in fact a contraction) but not compact. To see this,
take {u,}°%, to be the Haar basis for L?. Then u,, — 0 weakly in both L?
and L' so if {un }or, were to have a convergent subsequence the limit would
have to be 0 € L. On the other hand, since |u,,| = 1, ||up |2 = ||un|l; = 1 and
any subsequential limit would have to have norm one and in particular not be

0.

Lemma 49.28. Let 2 be a precompact open set such that 2 is a manifold
with C* — boundary. Then for all p € [1,00), WYP(£2) is compactly embedded
in LP(82). Moreover if p>d and 0 < 3 <1 — %, then WYP(£2) is compactly
embedded in C%P(£2). In particular, WHP(£2) CC L>®(£2) for all d < p < co.

Proof. Case 1, p € [1,d). By Theorem 49.25, W1?(£2) CC L4(£2) for all
1 < ¢ < p*. Since p* > p we may choose g = p to learn W1P(2) CC LP(£2).
Case 2, p € [d,00). For any pg € [1,d), we have

WhP(2) — Whro(2) cC LPo(£2).
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Since p§ = dp_o;)i 1 oo as pg 1 d, we see that W1P(2) CcC Li(2) for all ¢ < oo.

Moreover by Morrey’s inequality (Corollary 49.8) and Proposition5.13 we have
Wir(Q) — C¥75(2) cC C%F(£2) which completes the proof. m

Remark 49.29. Similar proofs may be given to show W*» cc CF=579 for all
>0 provided k — £ >0and k — £ -6 > 0.

Lemma 49.30 (Poincaré Lemma). Assume 1 < p < o0, 2 is a precompact
open connected subset of R? such that 2 is a manifold with C'-boundary.
Then exist C = C(£2, p) such that

lu —uollrr @) < CVullLe(o) for allu € WP(£2), (49.27)
where ug :=f 5 udm is the average of u on £2 as in Notation 49.3.

Proof. For sake of contradiction suppose there is no C' < oo such that Eq.
(49.27) holds. Then there exists a sequence {u,}ro; C W1P(£2) such that

llwn — (un)QHLP(Q) > nHvu"”LP(Q) for all n.

Let
Up 1= )2 (tn) e .
[tn = (un)2llr ()
Then u, € W'P(2), (un)o = 0, Junllr(o) = 1 and 1 = |lun|lir(o) >

n||[Vuy| 1o for all n. Therefore |[Vun|rr(o) < < and in particular
sup ||un|lw1r(2) < oo and hence by passing to a subsequence if necessary
n

there exists u € LP (£2) such that u, — w in LP(£2). Since Vu,, — 0 in
LP(02), it follows that u, is convergent in W1P(£2) and hence u € WP (§2)
and Vu = lim, .o Vu, = 0 in LP(£2). Since Vu = 0, u € WFP(§2) for all
k € N and hence v € C* (£2) and Vu = 0 and 2 is connected implies u is
constant. Since 0 = lim,, o (un )2 = up we must have u = 0 which is clearly
impossible since ||ul|zr(0) = limp oo [[Unllzr(y = 1. ®

Theorem 49.31 (Poincaré Lemma). Let {2 be a precompact open subset
of R and p € [1,00). Then
ul| e < diam(82)||Vul| s for all u € Wy P (£2). (49.28)

Proof. Let diam(£2) = M. By translating (2 if necessary we may assume
2 C[-M,M]% For 1 < p < co we may assume u € C°(£2) since C° (£2) is
dense in WO1 P(£2). Then by the fundamental theorem of calculus,

1 1 M
) = 3| [ owutyess sty — [ oty
21)_m Ja,
1M M dy
< 5/—1\1 |O1u(y, z2, ..., zq)|dy = M/_M \(‘91u(y,3:2,...,:1:d)|m
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and hence by Jensen’s inequality,

M
d
w@P <0 [ oty a0 5

Integrating this equation over z implies,
lulls, < M / |Oru(z) Pdz < MP / Vu(z)Pdz
Q Q

which gives Eq. (49.28). m

49.6 Fourier Transform Method

See L? — Sobolev spaces for another proof of the following theorem.

Theorem 49.32. Suppose s > t > 0, {un},o; is a bounded sequence (say
by 1) in H*(R?) such that K = U,supp(u,) CC RY. Then there exist a
subsequence {v,, }°2; C {un}oe, which is convergent in H*(R?).

Proof. Since

|08, (€)| =

8?/ ey, (x)dx /(—ix)aeﬁg‘zun(z)dx
R R

<z lz2 0 [unlle < Collunllae @y < Ca

i, and all of it’s derivatives are uniformly bounded. By the Arzela-Ascoli
theorem and Cantor’s Diagonalization argument, there exists a subsequence
{vn}52; C {un}oe; such that @, and all of its derivatives converge uniformly
on compact subsets in £ —space. If (&) := lim, .o 9, (), then by the domi-
nated convergence theorem,

/ (L+ [€)°[6(6)Pde = lim / (1+ €) [0, (6) 2t
[¢I<R N7 JIEISR

< limsup ||Un||ils(]Rd) <1.
Since R is arbitrary this implies © € L*((1+ [£|?)*d¢) and [|v]| = (ray < 1. Set
Gn := v — v, while v = F~10. Then {g,}>", C H*(RY) and we wish to show

n=1

gn — 0in HY(RY). Let duy (&) = (1 + |€]?)td€, then for any R < oo,

lgnlZe = / 16(6) — 9n (&) dpr (€)
- / 16(6) — 60 (©)Pdpus (€) + / 19(6) — 3 (©)Pdus ).
[EI<R [¢I>R
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The first term goes to zero by the dominated convergence theorem, hence

lim sup [lgn |3 <1hnlsup(/Ll>R|§(£)—-Qn(ENQdut(ﬁ)

n—oo n—

e e e (LEIEP)
—llﬂsolip/‘glleg 9n(9)] arep—%

1
< Timsup s o2
< h?I’Ln—?olip 1+ Ryt /5\2R|g gn (&)|7dps (&)

1 2
< limsup ——5+—||gn — ¢
> 1717,11—?01(131) (1+R2)57t Hg gHH

1 s—t

49.7 Other theorems along these lines
Another theorem of this form is derived as follows. Let p > 0 be fixed and

g € C.((0,1),[0,1]) such that g(¢t) = 1 for |t| < 1/2 and set 7(t) := g(¢/p).
Then for x € R? and w € I" we have

/0 ’ % F(t)ule + tw)] dt = —u()

and then by integration by parts repeatedly we learn that
/ 02 [r(t)u(x + tw)] tdt = / 02 [r(t)u(x + tw)] d—
- af [T (t)u(z + tw))] d— =

=(-n™m /,) O [r(t)u(z + tw)] d%
m—1

/ o [T(t)u r—i—tw)}( Il dt.

Integrating this equation on w € I" then implies

1040 49 Sobolev Inequalities

|| u( m/ / am[,r .E+tw}(t o dt
- (m: D! /d“’/o O [ (tyule + tw)] £ dt
el

= % / dw /Op tm—di <7;Z) [T(m—k)(t) (k) (x +tw)] 441 g
- 1 / / £ di ( ) o [g(m”“)(t) (9u) (a —I—tw)] -1
|§:( )k’mjgﬁyfxr”ﬂ 0y — af) (2= u) ()]

and hence

u(x) = |F‘( 17 1! i ( ) k—m /FI,,, ly *x|"”*d [g m— k)(|y z|) (85’\4“) (y)]

and hence by the Holder’s inequality,

lu(z)] < C(g) |F|(m 12( ) o {/rl

From the same computation as in Eq. (48.4) we find

P z,p

1/q
s
r

p q(m—d)+d
— |1 gy = 5 (I / patm=d)pd=tg. _ oy L
et a=om | (N i+
m—d
p —1
=o(I' —1).
o )pm_d(P )

provided that pm —d > 0 (i.e. m > d/p) wherein we have used

pim—d)+d(p—1) pm—d
p—1 p—1"~

p
1

q(m—d)+d:p (m—d)+d=

This gives the estimate

1/q p=t p=1
_ja(m—d) d < g (F) (p — 1) ? %ﬂj _ g (F) (p _ 1) Pom
/pm i y:| - { pm —d P pm —d P

Thus we have obtained the estimate that

Clg) {dmwnrf
|| (m —1)! pm —d

m
T — 1 m c— 1
LDy < K ) >

k=0

u(@)] <

ok

Yy—x

Lr(Iy,p) '



49.8 Exercises 1041

49.8 Exercises

Exercise 49.33. Let a; > 0 and p; € [l,00) for ¢ = 1,2,...,d satisfy
Zlep;1 =1, then

d d_
Hai < Z—afi.
=1

i= i1 Pi

Hint: This may be proved by induction on d making use of Lemma 1.27.
Alternatively see Example 10.11, where this is already proved using Jensen’s
inequality.

Solution 49.34 (49.33). We may assume that a; > 0, in which case
d 4 Lmar el ; 1
Hai = eXimmai _ i prna’ o Z —eel = Z —a;".
i=1 i=1 '

This was already done in Example 10.11.
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Variable Coefficient Equations




50

2"d order differential operators

Notations 50.1 Let §2 be a precompact open subset of RY, Ay = Ay, Ay Ap €
BC>=(£2) fori,j=1,...,d,

d d
ple,€) ==Y Ay&&+ ) Ak + Ao

ij=1 i=1
and
d d
L=p(z,0) =— Z Aij0;0; + ZAiai + Ao.
ij=1 i=1
We also let
d d
Lt == " 0:0;Ma,, = > 0:;Ma, + Ao.
=1 i=1

Remark 50.2. The operators L and LT have the following properties.
1. The operator LT is the formal adjoint of L, i.e.
(Lu,v) = (u, LTv) for all u,v € D(2) = C=(1).

2. We may view L as an operator on D'({2) via the formula u € D'(2) —
Lu € D'(£2) where

(Lu, @) := (u, LT¢) for all ¢ € C= (2).
3. The restriction of L to H**2(2) gives a bounded linear transformation
L: H*2%(0Q) — H*(2) for k € Ny.
Indeed, L may be written as

d d
L=~ M, 0:0; + Y Ma,0; + Ma,.

ij=1 i=1
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Now 9; : H*(£2) — H**1(£2) is bounded and M, : H*(2) — H*(12) is
bounded where 1 € BC*({2). Therefore, for k € No, L : H*T2(0) —
H¥(£2) is bounded.

Definition 50.3. For u € D'({2), let
[(u, 8)|

lullzr-2(0) = sup
ozseD() 19l a1(02)

and
H_I(Q) = {u € D/(Q) : HUHH—l(Q) < OO} .

Ezample 50.4. Let 2 =R% and S C £2 be the unit sphere in R?. Then define
o €D (1) by

(0, 0) = /S oo,

Let us shows that o € H~1 (£2). For this let 7' : H*(£2) — L?(S,do) denote
the trace operator, i.e. the unique bounded linear operator such that T'¢ = ¢|s
for all ¢ € C° (R‘i) . Since T is bounded,

o, ) < 7 ()27l 15y < o ()2 ITN a2y 1Ml -1 -
This shows 0 € H~1(£2) and [[0]| ;1) < 0 () 1Tl 111 0y 1205 -

Lemma 50.5. Suppose {2 is an open subset of R? such that 2 is a manifold
with CO — boundary and 2 = 2°, then the map u € [H&(Q)]* — ulpg) €
H=Y(0) is a unitary map of Hilbert spaces.

Proof. By definition C2° (£2) is dense in Hg (£2), and hence it follows
that the map u € [H}(2)]" — ulp(o) € H(£2) is isometric. If u € H~1(2),

—H'(2
it has a unique extension to H} () = C° (Q)H D and this provides the

inverse map. W
If we identify L*(£2) = H°(£2) with elements of D'(£2) via u — (u,-)2(2),
then

D()D>H () DH' () =L*(Q)>H (Q)DH* () D...
Proposition 50.6. The following mapping properties hold:

1. If x € BCY(2). Then M, : H~*(£2) — H™1(£2) is a bounded operator.

2.0fV = Y0 Ma, 0 + Ma, with A;, Ay € BCHR), then V : L2(02) —
H=Y(0) is a bounded operator.

3. The map L : D'(2) — D'(2) restricts to a bounded linear map from
HY($2) to H=Y(£2). Also
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Proof. Let us begin by showing M, : H}(£2) — H(£2) is a bounded
linear map. In order to do this choose x,, € C2° (R?) such that x, — x in
BCY(Q2). Then for ¢ € C* (2), xnd € CX(2) C HL(£2) and there is a
constant K < oo such that

||X7L¢H?—Il.1'((2) < Klxallger @) H¢||if(§(n) :

By density this estimate holds for all ¢ € Hg(£2) and by replacing x, by
Xn — Xm We also learn that

[ (Xn = Xm) ¢||i1(§(:2) <K |lxn — Xm”Bcl(ﬁ) ||¢||§{3(n) — 0 asm,n — ooc.
By completeness of Hg(£2) it follows that x¢ € Hg(§2) for all ¢ € H}(£2) and
2 2
e 1s ) < K Il e 161 -

1. If u € H71(2) and ¢ € H({2), then by definition, (M,u, @) = (u, x$)

and therefore,
[(Myu, @) = [{u, x&)| < llullz—1 (@)Xl 3 (2)
< Kxllpor @) lullz-12) |19l 12 )
which implies Myu € H~* (£2) and
[Myullz-1(2) < K Xl per @) [ullz-1(0)-
2. Foru € L2(2) and ¢ € C> ()
[0t )] = 1, 048)| < [l - 19650y
< lll 2 () 191l 3 02)

and therefore [|0;ul[ -1 () < [[ull2(g) - For general V = S Ma,d; +
M 4, , we have

d
1Aull -1y < DK 1Al gy 190l -1 + 1 Aollog [l 2oy
<

1

d

> KAl gy + Aol | lull 2oy -
i=1

3. Since V : HY(2) — L2(2) and i : L2(£2) — H~1(£2) are both bounded
maps, to prove L = — ij:l My,,0;0; +V is bounded from H'(£2) —
H=1(£2) it suffices to show May,,0;0; - H'(£2) — H™(£2) is a bounded.
But Ma,,0;0; : H'(£2) — H~*(£2) is bounded since it is the composition
of the following bounded maps:

B %120 5 5N 0) " H (),
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|
Lemma 50.7. Suppose x € BC*®(12) then

1.[L,M,] =V is a first order differential operator acting on D'({2) which
necessarily satisfies V : H*(2) — H*=Y(2) for k=0,1,2,... etc.
2. If u € H*(0), then

(L, M Ju € H*"1(Q) for k=0,1,2,...

and
L, MyJull =12y < Cr(X)llull a2y

Proof. On smooth functions u € C* (£2),
d d d
ij=1 i=1 ij=1
and therefore

d d d
(L, MyJu=—=2>" Ai;dix-0u+ | Y Aidix — »_ Aijdidyx | - u

ij=1 i=1 ij=1
=:Vu.

Similarly,

d d
LJr (Xu) = — Z 828] [XA”U] - 281(XAZU) + A()Xu

ij=1 i=1

d

ij=1
d d
=Y Aidixu— | Y Aydiojx | u. (50.1)
i=1 i,j=1
Noting that
d d d
Vie=2 Z 0; [0ix - Agju] + ZAiaiX - Z Aij0i0;x | - u

i,j=1 i=1 i,j=1

d d d
i,j=1 i=1 ij=1

Eq. (50.1) may be written as
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(LY, M) = -VT.
Now suppose k = 0, then in this case for ¢ € D (£2),
L, MyJu, )| = |(u, [My, LT)g)| = [(u, VIg)|
< ullL2 @) IV ¢llz2(2) < Cllullz2 (@) 19l 3 (2)-
This implies [|[L, MyJullg-1(e) < Cllullz2 and in particular [L, MyJu €
HY2). For k > 0, [L,MyJu = Vu with V as above and therefore by

Proposition48.6, there exists C' < oo such that ||[Vul gr-1(0) < C ||“HH1¢(Q) .
|

Definition 50.8. The operator L is uniformly elliptic on (2 if there exists
e > 0 such that (Aij(x)) > €l for all v € 12, i.e. Aij(x)&E; > el€)? for all
x € 2 and £ € RY.

Suppose now that L is uniformly elliptic. Let us outline the results to be
proved below.

50.1 Outline of future results

1. We consider L with Dirichlet boundary conditions meaning we will view
L as a mapping from H(2) — H-1(02) = [Hé(())]* . Proposition 51.13
below states there exists C = C(L) < oo such that (L + C) : H}(2) —
H~1(0) is an isomorphism of Hilbert spaces. The proof uses the Dirichlet
form

E(u,v) := (Lu,v) for u,v € H3(£2).

Notice for v € D(§2) and u € Hg(£2),
E(u,v) = (Lu,v) = (u, Lv)
= / u (fBiBj(Aijv) — 61 (A»LU) + A()’U) dm
o}

= / [Bzu . 8]' (Al-jv) — u@z (AZU) + qu’U} dm
2

= / [A,L]@ZU . 8]-11 + (A»L + 8]A”) 8Zu SU A+ A()'uﬂ)] dm.
e}

Since the last expression is continuous for (u,v) € H(£2) x HE($2), we
have shown

8(’[1, U) = / [A”@zu . 8]‘1) + (Al + 8JA1]) oiu- v+ AOUU] dm
2

for all u,v € H}(2).
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2. To implement other boundary conditions, we will need to consider L acting

on subspaces of H?(f2) which are determined by the boundary conditions.
Rather than describe the general case here, let us consider an example
where L = —A and the boundary condition is % = pu on 012 where
Ot = Vu-n, n is the outward normal on 0f2 and p : 92 — R is a smooth

function. In this case, let
2 ou
D:=queH*(2): ——=puondf;.
an

We will eventually see that D is a dense subspace of H'(§2). For u € D
and v € H! (2),

(—Au,v) = / Vu - Vv dm —/ vOpu do
o) a0
= / Vu - Vv dm —/ puv do =: E(u,v). (50.2)
o) a0

The latter expression extends by continuity to all u € H(£2). Given &
as in Eq. (50.2) let —Ag : H' (2) — [Hl(())]* be defined by —Agu =
E(u,-) so that —Agu is an extension of —Au as a linear functional on
HE(£2) to one on H(£2) D HE(£2). Tt will be shown below that there exists
C < oo such that (—Ag + C) : HY(02) — [Hl(ﬂ)]* is an isomorphism of
Hilbert spaces.

. The Dirichlet form £ in Eq. (50.2) may be rewritten in a way as to avoid

the surface integral term. To do this, extend the normal vector field n
along 02 to a smooth vector field on (2. Then by integration by parts,

/ puv do = / nZpuv do = / 0; [nipuv] dm
a0 0 fe)
= {/ V- (pn) wv + pn;Osu - v + pnsu - O;v| dm.
fe)

In this way we see that the Dirichlet form & in Eq. (50.2) may be written
as

E(u,v) = / [Vu - Vv + aipdiu - v + ag;ud;v + agouv] dm (50.3)
7]

with ago = V- (pn), a;o = pn; = ag;. This should motivate the next
section where we consider generalizations of the form £ in Eq. (50.3).
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It follows directly from the definitions that (Leu,v) = (u, l::rgv) for all
u,v € H'(£2). The Einstein summation convention will be used below when

ol convenient.
o e Proposition 51.4. Suppose 2 is a precompact open subset of R? such that 02
Dirichlet Forms is a manifold with C? — boundary, Then for allu € H*(2) and v € H' (2),
(Leu,v) = E(u,v) = (Lu,v) + / Bu - v pdo (51.2)
an

and for all u € HY(2) and v € H? (2),

(u, ,CI;’U> = E(u,v) = (u, LTv) + /u - Bt pda, (51.3)
o10)
In this section {2 will be an open subset of R%. ’
where
51.1 BaSiCS B = njaij@i =+ ’I’Lj(l()j =nNn- aV +n- G,U7., (514)
BT =n; [aija]' + a.,;()} =an-V+n- a. o, (515)
Notation 51.1 (Dirichlet Forms) Fora, € N¢ with |a|, |8 < 1, suppose
a,p € BC™ (2) and p € BC™ (22) with p > 0, let Lu:=p~t Z (_I)WI 0° [paasd®u] (51.6)
£ 9°u-9°v d 51.1 lal.18]<1
<u,v>—Q§ﬁj<l/aaﬁ w- 0% dy (51.1) o
s Liv:=p=t >~ (=1)0* [panz0”0] (51.7)
where dy == pdm. We will also write (u,v) := [, uv du and L? for L*(£2, ). ], |BI<1

In the sequel we will often write a; g for ac, g, aa,; for an.e; and a;j for ac, e;- We may also write L, L' as

Proposition 51.2. Let £ be as in Notation 51.1 then 1 1
L= —aijajai + (aio —agj; —p 8j [paij]) 81 + (aoo —p aj [paoj}) s (518)

1
€ (u,v)| < Cllullgr||v|lgr for all u,v € H L' = —a5;0:0; + (ao; — ajo — p~'0: [pas;]) 8; + (aoo — p~ "0 [pas]) . (51.9)

where C'is a constant depending on d and upper bounds for {Haaﬁ”BC(Q) e, 18 Proof. Suppose u € H?(£2) and v € H' (£2) , then by integration by parts,

Proof. To simplify notation in the proof, let ||-|| denote the L?(§2,u) — d
norm. Then Ewo)= > [ (D07 [pagsdu] v du+ D N [ nylaa0%u] v g
leef,|B]<1 la|<1 j=1,
€@, 0)l < C Y {ll0sull 1950 + sl [0l + Il 1950l] + lull [lo]} ? o0
ij = (Lu,v) + / Bu - v pdo,

< Cllullar - [lvll e i

[ ] where

Notation 51.3 Given £ as in Notation 51.1, let L¢ and Eir be the bounded
linear operators from H'(£2) to [Hl(Q)r defined by

Leu:=E (u,-) and E:fgu =E(u).
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d
Lu=p"" 3" (=1)710% [pags0ul = —p71 3 Y 0; (pac;0%u) + > aot
laf,|B]<1 la|<1j=1 |al<1

d d d
= —p71 Z 8]' (pa,;jai’u) — p71 Z aj (paoju) + Z a;00;u + agou

i,j=1 j=1 i=1
d

d d
==Y aididu—p ' Y (95lpai)) Ou— Y ag;d5u

ij=1 i,j=1 j=1
d d
—p ! Z (05 [pao;]) u + Z a;00;u + agou
j=1 i=1
and
d d d
Bu = Z an (a0;0%u) = Z ;05U + Z 70U
la]<1j=1 ij=1 j=1

Similarly for uw € H*(£2) and v € H? (02),

. d
E(u,v) = Z u- (=1)lelpy=1ge [paaﬂaﬁ'l}} dp+ Z Z w-n; [awaﬁv]
lal,|BI<1 () =1 [8]<1p)
= (u, Ltv) + /u - Bty pdo,
le)
where Bfv = n; [a;;0; + aio] and

Liv = —p710; (pa;;0;v) + ag;05v — p~9; (paiov) + agov
= —ai;0:05v — p~" (9 [pai;]) Ojv
+ aojajv - aw@iv - p71 (81 [palo]) v+ apgoV
= [—az—j&-aj + (aoj - aj[) - pilai [paL]D 8j + app — pilai [paio]] V.
|
Proposition 51.4 shows that to the Dirichlet form £ there is an associated
second order elliptic operator L along with boundary conditions B as in Eqs.
(51.6) and (51.4). The next proposition shows how to reverse this procedure

and associate a Dirichlet form £ to a second order elliptic operator L with
boundary conditions.

Proposition 51.5 (Following Folland p. 240.). Let A;, Agp € BC™ (02)
and A;; = Aj; € BC™ (2) with (A;j) >0 and p > 0 and let

L= —Aij&;aj + A;0; + Ag (51.10)

and (u,v) := [, uvpdm. Also suppose v : 92 — R and V : 82 — R* are
smooth functions such that V(z) - n(xz) > 0 for all x € 382 and let Bou :=
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V -Vu+au. Then there exists a Dirichlet form & as in Notation 51.1 and B €
C> (02 — (0,00)) such that Eq. (51.2) holds with Bu = SByu. In particular
if u € H?(0), then Bu = 0 iff Bou = 0 on 912.

Proof. Since mixed partial derivatives commute on H?2({2), the term
a;;0;0; in Eq. (51.8) may be written as
1
5 (aij +aji) 9;0;.

With this in mind we must find coefficients {aq s : |@|,|8] < 1} as in Notation
51.1, such that

Ay = %(aij +aji), (51.11)
A; = (am —agj — pflaj [paij]) , (51.12)
Ag = ago — p~19; [pag;] , (51.13)
a™n = BV and (51.14)
n;ap; = Pa. (51.15)

Eq. (51.11) will be satisfied if
a;; = Aij + cij

where ¢;; = —c;j; are any functions in BC*°({2). Dotting Eq. (51.14) with n

shows that . A
a*n-n n-an n-An
= = = 51.16
s V-n V-n V-n ( )

and Eq. (51.14) may now be written as

"'A:V =cn (51.17)

w:= An —

which means we have to choose ¢ = (¢;;) so that Eq. (51.17) holds. This is
easily done, since w-n = 0 by construction we may define ¢£ := w(n-&)—n(w-§)
for £ € R Then c is skew symmetric and cn = w as desired. Since c;j are
smooth functions on 02, a partition of unity argument shows that ¢;; = —cj;
may be extended to element of C°°({2). (These extensions are highly non-
unique but it does not matter.) With these choices, Eq. (51.11) and Eq. (51.14)
now hold with 8 as in Eq. (51.16). We now choose ag; € C*(£2) such that
ag; = Pan; on 9f2. Once these choices are made, it should be clear that Eqs.
(51.13) and (51.14) may be solved uniquely for the functions ag; and ago. ®m

51.2 Weak Solutions for Elliptic Operators

For the rest of this subsection we will assume p = 1. This can be done here
by absorbing p into the coefficient ag.



51.2 Weak Solutions for Elliptic Operators 1055

Definition 51.6. The Dirichlet for £ is uniformly elliptic on 2 if there
exists € > 0 such that (a;j(x)) > €l for all x € 2, i.e. a;j(x)&E; > el¢l? for
all z € 2 and € € RY.

Assumption 4 For the remainder of this chapter, it will be assumed that €
is uniformly elliptic on {2.

Lemma 51.7. If €2 < A¢ + B then €2 < A% + 2B.

Proof. £2 < %AQ + %{2 + B. Therefore %52 < %A2 +Bor & < A% +2B.
|

Theorem 51.8. Keeping the notation and assumptions of Proposition 51.2
along with Assumption 4, then

€
E(u,u) + Cellull2 (o) = Fllullm ), (51.18)

whereC’Ezg—t—C-&-g.

Proof. To simplify notation in the proof, let ||-|| denote the L?(£2) — norm.
Since

/aij(?iu - Oju dm > e/\Vu|2d;v = ¢||Vul|2,
7 e}
Eu,u) 2 el VulZ. — C(IVull [lull + [[ull®)
and so
vl < Szl + (Fetw o)+ Sul?).
Ther”eforie| by Lemma 51.7 with A = E|jul|, B = (2&(u,u) + £|ul/?) and
§=IVull,

C? 2 c
IVul® < 25 llull® + = (€, u) + - ul®)
2 c? 20
= Eg(u, u) + (6—2 + ?> flul|?.

Hence

€ 2C?
Sl < ) + (25 € Jul?

which, after adding § [|u|* to both sides of this equation, gives Eq. (51.18). m
The following theorem is an immediate consequence of Theorem 51.8 and
the Lax-Milgram Theorem 53.9.

Corollary 51.9. The quadratic form
Q(u,v) := E(u,v) + Ce(u,v)

satisfies the assumptions of the Lax Milgram Theorem 53.9 on H(£2) or any
closed subspace X of H'(£2).

1056 51 Dirichlet Forms

Theorem 51.10 (Weak Solutions). Let £ be as in Notation 51.1 and C.
be as in Theorem 51.8,

Q(u,v) := E(u,v) + Ce(u,v) for u,v € HY(2)

and X be a closed subspace of H(£2). Then the maps L : X — X* and
LF: X — X* defined by

Lv:=Qv,) = (Le+ C)v and
Liv:= Q(,v) = (EI; + C) v
are linear isomorphisms of Hilbert spaces satisfying
2 . 2
—1 —1
1£ ”L(X*.,X) = p and |[(£T) ||L(X*,X) S p

In particular for f € X*, there exist a unique solution u € X to Lu = f and
this solution satisfies the estimate

2
fulln oy < 20l
Remark 51.11. If X D H}(£2) and u € X then for ¢ € C° (2) C X,

(Lu, ¢) = Qu, ¢) = (u, (L' +C) ¢) = (L + C)u, 9).

That is to say Lu|cs(2) = (L + C)u. In particular any solution u € X to
Lu = f € X* solves

(L+C)u= flex) €D (2).

Remark 51.12. Suppose that I' C 92 is a measurable set such that o (I") > 0
and Xp := {u € H'(2) : 1puloo =0} . If u € H? (£2) solves Lu = f for some
f € L%(02) C X*, then by Proposition 51.4,

(f,u) :== (Lu,v) = E(u,v) + C(u,v) = (L+ C)u,v) + /Bu -v do (51.19)
a0
for all v € Xp C HY(§2). Taking v € D(2) C Xr in Eq. (51.19) shows
(L+C)u=fae. and

/Bu~vda=0for all v e Xp.
o0
Therefore we may conclude, u solves
(L4 C)u = f a.e. with
Bu(z) =0 for 0 —a.e. x € 02\ I' and

u(z) =0 for o —a.e. z €I
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The following proposition records the important special case of Theorem
51.10 when X = H{(§2) and hence X* = H~1(£2). The point to note here is
that Lu = (L + C)u when X = H}(£2), i.e. Lu equals [(L + C)u] extended
by continuity to a linear functional on X* = [H{(£2]".

Proposition 51.13. Assume L is elliptic as above. Then there exist C' > 0

sufficiently large such that (L + C) : H}(2) — H~Y(Q) is bijective with
bounded inverse. Moreover

ICE+ C)_IHL(Hol(Q)qH*l(Q)) <2/
or equivalently
2
lull g2y < ;H(L'i‘ Cullgr-1(0) for all u € Hy(£2).
Our next goal, see Theorem 52.15, is to prove the elliptic regularity result,

namely if X = H}(2) or X = H'(2) and u € X satisfies Lu € H*(£2), then
u€ H2(2)n X.




52

Elliptic Regularity

Assume that (2 is a compact manifold with C2 — boundary and satisfying
2° = £ and let £ be the Dirichlet form defined in Notation 51.1 and L
be as in Eq. (51.6) or Eq. (51.8). We will assume & or equivalently that L
is uniformly elliptic on 2. This section is devoted to proving the following
elliptic regularity theorem.

Theorem 52.1 (Elliptic Regularity Theorem). Suppose X = HE(§2) or
HY($2) and £ is as above. If u € X such that Leu € H*(£2) for some k €
No U {-1}, then u € H**%(2) and

[ullser2(£2) < C(1Leull () + llullL2(2)- (52.1)

52.1 Interior Regularity

Theorem 52.2 (Elliptic Interior Regularity). To each x € C°(12) there
exist a constant C' = C(x) such that

HXuHHl(Q) S C{HLUHH_I(.Q) + ”u”L?(U)} fOT‘ all u € Hl(Q) (522)
In particular, if W is a precompact open subset of {2, then
lullzrwy < CYILull -1(0) + [ullL22)}- (52.3)
Proof. For u € H'(2), xu € H}(£2) and hence by Proposition 51.13,
Proposition 50.6 and Lemma 50.7,

2
Ixulle o) = ZIL + Ce) (xu) la-1(e

2
; IX(L + Cu + [L, MyJull g-1(0)
2,

I /\

XL+ Cullr-1(a) + llullL2(o) }

2
=C(x) {IILullg-1(2) + Cellull 10y + llullL2(2) }

IN
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from which Eq. (52.2) follows. To prove Eq. (52.3), choose x € C2°(£2,0,1])
such that x =1 on a neighborhood of W in which case

lull g owy = Ixullar owy < llxullare)y < C{ILullg-10) + llullz2(o)}-
n

Exercise 52.3. Let v € R? with |v| = 1, u € L? (£2) and W be an open set
such that W CC (2. For all h # 0 sufficiently show

||83“||H71(W) < Mlullpzgo -
Notice that O"u € L2(W) c H~Y(W).

Solution 52.4 (52.3). Let W; be a precompact open subset of {2 such that
W Cc Wy € Wy C 2. Then for ¢ € D (W) and h close to zero,

05w, 6)] = [{, 85" 6)] < llull 2wy 105"l 2 o
< lull 2wy 1900l L2 () (Theorem 48.13)

< Mull 2oy 191l 1) -

Hence

1021 -1y = 510 { | (Oh11, )] : & € D (W) with 6] = 1}
< ullz2(o)

Theorem 52.5 (Interior Regularity). Suppose L is 2" order uniformly
elliptic operator on 2 and u € H'(02) satisfies Lu € H*(§2)' for some k =
—1,0,1,2,..., then u € HFI2(2). Moreover, if W CC (2 then there exists

loc

C=Cc,(Ww ) < oo such that

HUHH’““(W) < C(HLUHH'«(Q) + H“||L2(.(Z))- (52.4)

Proof. The proof is by induction on k£ with Theorem 52.2 being the case
k = —1. Suppose that the interior regularity theorem holds for —1 < k < k.
We will now complete the induction proof by showing it holds for k = kg + 1.

So suppose that u € H'(£2) such that Lu € H*!(2) and W = W, C 2
is fixed. Choose open sets Wi, Wy and Wy such that Wy ¢ Wy € Wy C
Wy C Wy € W3 C W3 C 2 as in Figure 52.1. The idea now is to apply the
induction hypothesis to the function d7u where v € R? and 07 is the finite
difference operator in Definition 29.14. For the remainder of the proof h # 0
will be assumed to be sufficiently small so that the following computations
make sense. To simplify notation let D" = 9.

1 A priori, Lu € H1(2) C D' ().
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Fig. 52.1. The sets W; for i = 0,1, 2.

For h small, D"u € H'(W3) and D"Lu € H%+1(Wj3) and by Exercise
52.3 for kg = —1 and Theorem 48.13 for ky > 0,

D" Ll greo (wyy < 1Ll o1 (wa)- (52.5)
We now compute LD"u as
LD"y = D" Lu + [L, D"u, (52.6)
where
[L, D"u = LD"u — D"Lu
= P(z,0)D"u(z) — D"P(z, d)u(x)

— P(s,0) (u(x + hz;L) - u(m))
~ P(z 4 hv, 0)u(z + hv) — P(z, 0)u()
h
_ P(x,0) — P(x 4 hv, D)
N h

u(z 4+ ) = Lhthu(z),

Thu(z) = u(z + ho)

and

L= Z Aa(z) — Iza(m + he) 0%u.
lal<2

The meaning of Eq. (52.6) and the above computations require a bit more
explanation in the case kg = —1 in which case Lu € L%(£2). What is being
claimed is that

LD"M; = D"Lu+ L'

as elements of H~1(W3). By definition this means that
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—(u, D™"L1¢) = (LD"u, ) = (D" Lu + L"7}}u, ¢)
= ~(u, L'D7"g) + (rlu, (L)' ).

So the real identity which needs to be proved here is that [D*”’,LT] ¢ =

-7k (L")T ¢ for all ¢ € D (W3). This can be done as above or it can be in-
ferred (making use of the properties L' is the formal adjoint of L and —D~" is
the formal adjoint of D") from the computations already done in the previous
paragraph with « being a smooth function.

Since L" is a second order differential operator with coefficients which
have bounded derivatives to all orders with bounds independent of h small,
[L, D"u = L"tlu € H* (W) and there is a constant C' < oo such that

L, DMl o (wry = L 7wl o oy

< Cllrdull grror2wyy < Cllull grro+2 () - (52.7)
Combining Eqs. (52.5 — 52.7) implies that LD"u € H*o(W3) and
ILD" ull grxa (wyy S I1Lwllrvosr (wy) + 1wl rvo+2(iwsy)-
Therefore by the induction hypothesis, D"u € H*+2(1;) and
||Dhu||H’C0+2(W0) 5 ”LDhUHH’cU(Wl) + ||DhU||L2(W1)
< ||Lu||H"‘0+1(W2) + ||UHH’<U+2(W3) + HUHHl(WZ)
S Lul groviowy) + 1l mrove oy
S 1 Lullgro+r @) + [ Lull o () + lull 2y (by induction)

S [Lullgro+r (@) + llull 2oy -
So by Theorem 48.13, 9,u € H*T2(W,) for all v = e; with i = 1,2,...,d and
||aiuHHko+2(W) = ||81lu||Hkn+2(Wﬂ) S 1Ll o+ @) + ||UHL2(:2)'
Thus u € H*+3(W,) and Eq. (52.4) holds. m

Corollary 52.6. Suppose L is as above and u € H'() such that Lu €
BC™>(2) then u € C>(12).

Proof. Choose 2y CC 2 so Lu € BC™®(02y). Therefore Lu € H*(12)
for all k = 0,1,2,.... Hence u € HE:F2(£2) for all k = 0,1,2,.... Then by

Sobolev embedding Theorem 49.18, u € C({2y). Since 2y is an arbitrary
precompact open subset of 2, u € C*({2). m
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52.2 Boundary Regularity Theorem

Ezxample 52.7. Let 2 = D(0,1) and u(z) = (1 + z)log(1 + z). Since u(z) is
holomorphic on {2 it is also harmonic, i.e. Au =0 € H*(£2) for all k. However
we will now show that while v € H'(£2) it is not in H2(£2). Because u is
holomorphic,

ou Ou
Uz = o =1+1log(1+ z) and wu, =ig- =i +ilog(l+ 2)
from which it is easily shown u € H'(£2). On the other hand,
0? 1
Upy = 55U = ——
022 142

and

2
dx dy

2
1 1
142 . z
Q 241
/ | ‘ 1
2 —
z
c
where C is the cone in Figure 52.2. This shows u ¢ H?({2) and the problems
come from the bad behavior of v near —1 € 912.

T@e

QT

\\\\ \
N

2 [
dxdyzE/O T—Qrdrzoo,

T

C

-l

Fig. 52.2. The cone used in showing u not in H?(£2).

This example shows that in order to get an elliptic regularity result which
is valid all the way up to the boundary, it is necessary to impose some sort of
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boundary conditions on the solution which will rule out the bad behavior of
the example. Since the Dirichlet form contains boundary information, we will
do this by working with £ rather than the operator L on D’ ({2) associated to
£. Having to work with the quadratic form makes life a bit more difficult.

Notations 52.8 Let

1. Ny:={zeH": |z| <r}.
2. X = H}(N,) or X be the closed subspace H'(N,) given by

X ={ue H'(N,) : ulggnny, =0} . (52.8)
3. Fors<rlet X;={ueX:u=0onH"\N, for some p < s}.

Ny

Np

.

Fig. 52.3. Nested half balls.

Remark 52.9. 1.1f ¢ € Cm(ﬁn) and vanishes on H" \ N, for some p < r
then ¢u € X, for all u € X.
2. If u € X, then 9yu € X, for all a such that aq = 0 and |h| sufficiently
small.

Lemma 52.10 (Commutator). If » € C®(N,) then for v € Ni~' x {0}
there exists C (1) < 0o such that

I, 7 f v,y < Cy () Y110 Fllzav,)- (52.9)

a<y
for all f € L3(N,) with 0*f € L?*(N,.) for a < 7.

Proof. The proof will be by induction on |v|. If v = e; for some i < d,
then

3 (Wf) (z) == Y+ hei) f(z +hh€i) — () f()
[(x + he;) = ()] f(z + he)) + (@) [f (@ + he;) — f(2)]
h

= 9i (@) f(z + he;) + 9 (2)0} f(x)
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which gives ‘ , ’
[Oh, ¥]f = (Op¥)Th [ (52.10)
This then implies that

1, 01 f 2,y < CEOIFNza,y-

Now suppose |y| > 1 with v = ¢; ++' so that 9] = 5‘2/82 with|y'| = |y|-1.
Then L , _
(v, 0] = [v,0; 10}, + 0, [, 9]
and therefore by the induction hypothesis and Theorems 48.13 and 48.15,

1 031l < Cor (@) D 10°0 fllz2 + 1107 [, 041 f 22

a<y’
< Co@) 32 107 fllus + 107 (@)rif] oo (52.11)
a<y!
But |
' i (g - v i 561 i 982
o [(Ohv) f] m%‘zw G 0" T
and hence ) ' ,
107 ()T f1I < C > 107 f| e (52.12)

B!
Combining Egs. (52.11) and (52.12) gives the desired result,

1w, 321 f N2 < C(9) D 0% f 2.

a<ly
|
Lemma 52.11 (Warmup for Proposition 52.12). Let aqp € BC™ (HY)
with (a;;) > €d;; for some € > 0,
(Lu,v) = E(u,v) = Z ap0%u - 0Pv du, (52.13)

fa lallB<1

X = H}(HY) or HY(HY). There exists C < oo such that if u € X such that
Lu=: f € L*(H?), thenu € H? (RY) and

Null gzey < CUFI L2y + Jullx-)- (52.14)

Proof. If Lu= f € X* then (L + C)u = f + Cu, so by the Lax-Milgram
method,

lullx S If A+ Cullxe < 1 fllx- + Cllull - S ILullx- + [lull - -
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We wish to prove d;u € H'(HY) for all i < d and
[10sull e ey S 1 Lull 2 ey + [l x-

To do this consider

(Lluv)= [ N aapdfdu- v du
e lallBI<1
= Z {0 (aasd™u) + [ans, O] 0°u} - 9%v dx
2 lalJBI<1
=i —(Lu, & "v) — Z (3} anp)Tid%u - D% dx
Hd lal,|BI<1

= _<£u7 a;}LU> - g@;a(T}iLuv U= _(f7 a;hv) - ga}la(T}iLuv U)

= (azhfv U) - 86}10.(7_}2;“7 U)

wherein we have made use of Eq. (52.10) in the third equality. From this it
follows that _
LOMu = O Lu — Eyi o(Thu,-) € X*

and
1£0tu] . < [l culy. + |[Eapalrin )| . S ICulla+ lulx
S Icule + 1 ullx- + x-S I€ul e + lulx- -
Therefore,

19Full S [1£0F ] . + [[0]

~

S Lull g2 + llullx- -

xS [Lull gz + llull - + llull 2

Since h is small but arbitrary we conclude that d;u € X and
l0:ully < l1€ull 2 + lulx. for alli < d.

Finally if 7 = d, we have that f = Lu =}, 5., Aa0%u + 02w which implies
(writing Ag,q for Ase,)

Oju=Agu | F— D Audu| €L
a#2eq

because we have shown that 9;,0;u € L? if {i, j} # {d} . Moreover we have the
estimate that
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030l . S |1F = D0 Aadul| S Iflle+ > 10%ull

a#2eq 2 a#2eq
SUFze + D 107l o S 1€ull 2 enay + Il x--
j<d

Thus we have shown that u € X N H?(H¢) and
lll g2 ey S 1Cullr2qmay + llullx-

[ ]
If we try to use the above proof inductively to get higher regularity we run
into a snag. To see this suppose now that f € H'. Then as above

LOfu= 0} Lu—Ey (Thu,) = O} f — Eyy ,(Thu, ).
Let 8,{@ =b and T,j;u = w and consider
E(w,v) = /Hd be,s0%w - OPvdm.
Since w € H? we may integrate by parts to find

Ep(w,v) =/ (fl)"m 0% (ba,30%w) - vdm f/ ba,qa0%w - vdo.
Hd OHd
This shows that &(w,-) is representable by (fl)lm 0P (ba,30%w) € L? plus
the boundary term
v — be,a0%w - vdo.
OH4

To continue on by this method, we would have to show that the boundary
term is representable by an element of L?. This should be the case since
Vlgge € H-1/? (Hd) while 9%w € H/? (Hd) with bounds. However we have
not proven such statements so we will proceed by a different but closely related
approach.

Proposition 52.12 (Local Tangential Boundary Regularity). Let a, 5 €
(O (Nt) with Qjj & fj Z 26‘£|2,
Qu,v) = Z Uapd®u - 9Pv da, (52.15)
&, lalBl<1
X = HY(Ny) or X be the closed subspace of H' (N;) defined in Eq. (52.8) of
Notation 52.8. Suppose k € Ng, uw € X and f € H*(N,) satisfy,

Q(u,v) = /N fv dx for allv € X;. (52.16)
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Given p < t, there exists C < oo such that for all v € N(‘fl x {0} with
|v| <k+1, ue H(N,) and

107ull gy (w,y < CU s vy + lullmr ) (52.17)
Proof. Let p < r < s <t and consider the half nested balls as in Figure
52.4 below. The proof will be by induction on j = |y|. When j = 0 the

N

N
i

p r s t

Fig. 52.4. A collection of nested half balls along with the cutoff function ¢.

assertion is trivial. Assume now there exists j € [1,k + 1] N N such that
u € HY(N,) for all |y| < j with 74 = 0 and

107 ullzr vy < CUFarvy + lullmr )

Fix ¢ € C°(N;) such that ¢ = 0 on N; \ N, and ¢ = 1 in a neighborhood
of N,. Suppose 7 is a multi-index such that |v| = j and 74 = 0. Then 9] (¢u) €
X, for h sufficiently small.

With out loss of generality we may assume 7, > 0 and write v = e; +/
and 0] = 8%6,?1. For v € X,
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/N S 0s0°0] (6u) - 0 = /N S aasd]0° (6w - 0%

Q(0) (¢u),v)

* |al,18]<1 ¢ Jal,|8]<1
= Y ) (aapd* (pu)) - 9%v
laf.[8]<1 7 Ve
Eq
+ > / [0, 0710 ($u) - 9
lal.|8]<1
= > ah Gapdd®u) - 9%v
lal,|B]<1
E>

+ Y 9 (aapl0”, ¢lu) - 0% + B
laf[8]<1 7 Ve

= Z (71)M / aap0%u - d)aﬁéﬁhv + E1 + Es
lodl,|B1<1 Ne

= > (—pH /N as0%u - 0° [p07 0] + By + Es
lal,[8]<1 ¢
Es

+ Y (4)'7‘/ aapd%u - [¢,0°] O
lal,|BI<1 N

= (1) Q(u, 97 ) + E1 + B> + Ey

= (=) [ ¢f8” v+ By + By + Es
Ny
Ey

= El + E2 + E3*/ 82/ [(f)f] . 61;7,1).
N
=FE +Ey+ Es+ Ey.

To summarize,

Q8] (¢u),v) = E1 + Ey + Es + Ey

where
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-3 /N G, O])0° ($u) -

lal,18]<1
Eyi= Y ) (aapl0”, dlu) - 0°v
lal,|81<1 Ne
Es = Z (71)‘7‘/ aa30%U - [qﬁ 8‘3] v and
lo, 811 Ne

- [ o ten oty
Ny

To finish the proof we will estimate each of the terms F; for i =1, ...

Using Lemma 52.10,

E< Y / laas, 8710°(¢u) - 8%

lel,181<1

<o,y Y. laas, 9710% (6wl 2w, )
|QM/B‘§1

<lollavy Do D Cilaap)llo’d(su)l|zz(n

o], |B|<16<y

S el D 10w,

<y

lollar vy (171, + el v,y ) (B indluction).

N

For Es,

Baf =] D 07 (aag (0%6) u) - 0

18<1, o =17 Ne

<lolmwy D 10[aas(@ @)ulll

IBI<1,]al=1

<Clllmn,y Y 107aas(0%@)ull L2y,
[BI<T,|el=1

< Clollarw,) Z 0%l 2w,

o<y
<Clollaww,y Y, I10%ulla,
[6|<j—1,8n=0
< Clollar vy (e, + lwllgrv,y) (by induction).

A

For Ej,

4.
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|Es| < Z

|| <1,|B]=1

/ a0 - (5‘B¢) AN
JN,

/N O aasdu- (0°6)] - 0y
la|<1,]8]=1 ¢

< D> vlaen

o] <1,]8]=1

<Clvllm,y Y > 107l L2,

o <16

<Clollan v,y Y 10%ully,)

o<y’

0" [a0p0"u - (0°9)] 2,

< Clllar )y L f v,y + lullzrv,)) (by the induction hypothesis).

Finally for Ey,

<10 pvllz2 vy 187 (@)l L2,

< Nollareny 187 (6|20
<ol v,y lofllai-1 vy < Cllolla )

i = ] 37 [6f)- 0y

N

Fllarn,)-
Putting all of these estimates together proves, whenever || = 7,
Q0 (¢w),v)| < Cllvllm vy If lrx vy + el ov.) (52.18)

for all v € X,. In particular we may take v = 9] (¢u) € X, in the above
inequality to learn

Q (9} (¢u), 9) (pu)) < CNOY (pu)ll e v,y (1 f lms vy + Nlullzrvyy)- (52.19)

But by coercivity of @,

195 (6w |2 () < C [Q@(W)ﬁl(cﬁu)) + ||8Z(¢U)H%Q(Ng)j|
SOy (W)l vy (N s vy + el vy
+ 105 (0wl (v 105 (Du) | L2 v,

o + ||u 1 X
SR, (g b el o) g

and hence

10, (bl vy SN Es .y + Il vy + 195 (Gu)ll L2 (v, - (52.21)

Now
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107 (du) | 2.y = 10407 (du)ll L2 (w,)

< 18] (¢w)ll (v < 1107 (6u)| 12 (v,

<C Z l0%ul| g2 (n,) by the chain rule
asy’

< CUIf e,y + llullmr(v,)) by induction.
This last estimated combined with Eq. (52.21) shows
105 (Bl v,y S NFl ey + Nl vy
and therefore 87 (¢u) € H! (N,) and
07 (@)l v.y S I les vy + Nl (v)-
This proves the proposition since ¢ =1 on N, so

107ull g v,y = 1107 (pw)]l 1,y < 107 (Gu)
SNl + llull -

L (v,

]
Theorem 52.13 (Local Boundary Regularly). As in Proposition 52.12,
let Qo8 € Cc> (Nt) with Q5 fl gj > 26‘f|2,
Qu,v) = Z aa30%u - d%v dx

lal.181<15,

and X = HY(Ny) or X € HY(N,) as in Eq. (52.8) . If f € H*(N,) for some
k>0 and u € X solves Q

Q(u,v) = (f,v) for allv € X,
then for all p < t, uw € H**2(N,) and there exists C < oo such that
lull s+ v,y < CUS ey + lull g, )-

Proof. The theorem will be proved by showing 8u € L2?(N,) for all
[v] < k+ 2 and
107 ull L2,y S N f L (ovey + Nl e vy - (52.22)

The proof of Eq. (52.22) will be by induction on j = 4. The case j = 0,1
follows from Proposition 52.12. Suppose j = ¢4 > 2 and 7' = v — 2¢4 so
97 = 97 92. Now letting

L= Y (-1)P0Panp0, = Y Aa0",

lal,|B]<1 |a<2
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then Lu = f in the distributional sense. Writing A for A0,0,...,0,2)5

f=A0u+ Y Aa0u

la|<2,aq<2
so that 1
02 = Z(f — Z An0%u)
|a|<2,aq<2
and
" 2 ’ ]_ Aa o
Pu=0"%u=0"|=f- >  =0"ul. (52.23)
A
[a|<2,aq<2

Now by the product rule

Z 87' (A_Naaau) = Z (’7/)8(7’,6+a) (A_NU‘> . 8(6+D‘>u,
4 || <2,04<2,6<y/ g A

la|<2,aq<2
(52.24)
Since (7 + a)q < j, the induction hypothesis (i.e. Eq. (52.22) is valid for
|| < j) shows the right member of Eq. (52.24) is in L?(N,) and gives the
estimate

UGS INETR N

o] <2,00<2 Loy, lels2oa<2s<y

L2(N,)
SNl ey + ||UHH1(N“-

Combining this with Eq. (52.23) gives 87u € L?*(N,) and

’ Aa o
l07ullL2(w,) S ”fHH\"f’\(NL) + Z o (76 u)

<2 <2
le|<2,aq L2(N,)

S are vy + 1 Ny + el S I iy + el
(52.25)

[
The following assumptions an notation will be in force for the remainder
of this chapter.

Assumption 5 Let 2 be a bounded open subset such that 2° = 2 and 2 is
a C* - manifold with boundary, X be either HE(2) or HY(2) and &€ be a
Dirichlet form as in Notation 51.1 which is assumed to be elliptic. Also if W
is an open subset of R? let

Xy :={v € X :supp(v) CC W N 2}.
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Lemma 52.14. For each p € 082 there exists precompact open neighborhoods
V and W in R% such that V. C W, for each k € N there is a constant C), < oo
such that if u € X and f € H*(82) satisfies

E(u,v) = /fv dx for allv € Xw (52.26)
2

then uw € H*2(V N 2) and

[wll grvevngy < CUf s @) + llulla2) (52.27)

Proof. Let W be an open neighborhood of p such that there exists a chart
¥ : W — B(0,7) with inverse ¢ := ¢~! : B(0,7) — W satisfying:

1. The maps ¥ and ¢ has bounded derivatives to all orders.
2. y(WNN) = B(0,r) NH? = N, and o (W Nbd(2)) = B(0,r) N bd(H)).

Now let p < 7 and define V := ¢(B(0, p)), see Figure 52.5.

Fig. 52.5. Flattening out the boundary of {2 in a neighborhood of p.

Suppose that u € X satisfies Eq. (52.26) and v € Xy. Then making the
change of variables x = ¢(y),

! fodm = N/ F (6(w)) v (6(w)) J(y)dy = /N i
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where J(y) == |det ¢'(y)], f(y) = J(y)f (6(y)) and 3(y) = v (é(y)). By the
change of variables theorem, ¢*v := v o ¢ is the generic element of X,.(N,)

and f € H*(N,). We also define a quadratic form on X(N,) by

= 5 [ a0t @ow)- 0 Govyam

lel,|BI<1

Again by making change of variables (using Theorem 48.16 along with the
change of variables theorem for integrals) this quadratic form may be written
in the standard form,

Z / (0,300 - %% dm.
lal,|8]<1

This new form is still elliptic. To see this let I" denote the matrix (a;;), then

Z% (o) -8, (Do) =TV (io) V (iow)
3,j=1
=T [)" Vo []" Vioy
which shows
iy =W e W) e

and
d

Z ai;&& =1 [W]trf : W),}trf > € ‘W’]Wf

i,j=1

2
> e lef

where ,
5:inf{’[w'(m)]tr§‘ :|{|=1&$€W}>0
Then Eq. (52.26) implies

Q(a,?) = /N F(y)o(y)dy for all & € X,.

Therefore by local boundary regularity Theorem 52.13, @ € H*+2(N,) and
there exists C' < oo such that

1l sz o,y < CU e vy + ll - (52.28)

Invoking the change of variables Theorem 48.16 again shows u € H*(V) and
the estimate in Eq. (52.28) implies the estimated in Eq. (52.27). m

Theorem 52.15 (Elliptic Regularity). Let {2 be a bounded open subset
such that £2° = 2 and 2 is a C™ — manifold with boundary, X be either
HY(02) or HY(2) and € be a Dirichlet form as in Notation 51.1. If k € N and
u € X such that Leu € H(02) then u € H**2(02) and

[ullerec) < CUflar @) + llullx-) < CUfllr @) + [wllz@). (52.29)
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Proof. Cover 902 with {V;}¥, and {W; }1 1 as in the above Lemma 52.14
such that V; CC W;. Also choose a precompact open subset Vj contained in
2 such that {VQ}ZN:O covers 2. Choose W, such that Vi ¢ Wy and W, C £2.
If Leuw=: f € H*(§2), then by Lemma 52.14 for i > 1 and Theorem 52.5 for
i=0,u € H*2(V;) and there exist C; < oo such that

lull zrev2vingy < Cilllfllarwine) + lull i (wing))- (52.30)
Summing Eq. (52.30) on i implies u € H*+2(£2) and
[ullgr+z(2) < CU1fll a2y + lullx)- (52.31)
Finally

[ullk < C(E(u,u) + |[ullf-1(0)
=C((f,u)r20) + ||U||§{71<9))
< C(If 2 lull L2y + 1ullir-1 ()

1 )
< Clz1fl720) + 5 llullX + lullf-1 (o))
26 2
for any § > 0. Choosing ¢ so that C'§ = 1, we find
L2 1 2 2
5”“”){ < C(Q_5||f||L2(Q) + HUHH%(Q))
which implies with a new constant C that

lullx <C (Ifllz2() + llulla-1(2)) - (52.32)

Combining Egs. (52.31) and (52.32) implies Eq. (52.29). =



53

Unbounded operators and quadratic forms

53.1 Unbounded operator basics

Definition 53.1. If X and Y are Banach spaces and D is a subspace of X,
then a linear transformation T from D into Y is called a linear transformation
(or operator) from X toY with domain D. We will sometimes wr If D is dense
in X, T is said to be densely defined.

Notation 53.2 If S and T are operators from X to'Y with domains D(S)
and D(T) and if D(S) C D(T') and Sz =Tz for x € D(S), then we say T is
an extension of S and write S C T.

‘We note that X x Y is a Banach space in the norm

[z, )l = VIl + llyl>-

If H and K are Hilbert spaces, then H x K and K x H become Hilbert spaces
by defining
((.27, y>7 <xl7 y/>)H><K = (Z‘, x/)H + (y7 y/)K
and
((’Ua SL’), <yl7 I/>)K><H = (I7 x,)H + (y7 y,)K
Definition 53.3. IfT is an operator from X toY with domain D, the graphof
T is
I'(T):={{(z,Dz) : 2 € D(T)} C H x K.
Note that I'(T) is a subspace of X X Y.
Definition 53.4. An operator T : X — Y is closedif I'(T') is closed in X xY.

Remark 53.5. It is easy to see that T is closed iff for all sequences z,, € D
such that there exists ¢ € X and y € Y such that z,, — « and Tz, — y
implies that x € D and Tz = y.
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Let H be a Hilbert space with inner product (-, -) and norm |jv|| := /(v,v).
As usual we will write H* for the continuous dual of H and H* for the
continuous conjugate linear functionals on H. Our convention will be that
(-,v) € H* is linear while (v,-) € H* is conjugate linear for all v € H.

Lemma 53.6. Suppose that T : H — K is a densely defined operator between
two Hilbert spaces H and K. Then

1. T* is always a closed but not necessarily densely defined operator.
2. If T is closable, then T* = T*.

3. T is closable iff T* : K — H is densely defined.

4. If T is closable then T = T**.

Proof. Suppose {v,} C D(T) is a sequence such that v,, — 0 in H and
Tv, — k in K as n — oo. Then for | € D(T*), by passing to the limit in
the equality, (T'vp,!) = (v, T*l) we learn (k,1) = (0,7*l) = 0. Hence if T* is
densely defined, this implies £ = 0 and hence T is closable. This proves one
direction in item 3. To prove the other direction and the remaining items of
the Lemma it will be useful to express the graph of 7™ in terms of the graph
of T. We do this now.

Recall that k € D(T*) and T*k = h iff (k,T2)x = (h,x)g for all z €
D(T). This last condition may be written as (k,y)x — (h,2)g = 0 for all
(z,y) € I'(T).

Let V : Hx K — K X H be the unitary map defined by V(z,y) = (—y, z).
With this notation, we have (k,h) € I'(T™*) iff (k,h) L VI'(T), i.e.

D(T™) = (VI(T)* = V(I(T)"), (53.1)
where the last equality is a consequence of V' being unitary. As a consequence
of Eq. (53.1), I'(T™) is always closed and hence T™* is always a closed operator,
and this proves item 1. Moreover if T is closable, then

() = V) =VIT) = VDT = 0T

which proves item 2.
Now suppose T is closable and k L D(T*). Then

(k,0) € D(T*)* =V I(T)** = VI(T) = VI(T),

where T denotes the closure of T. This implies that (0,k) € I'(T). But T
is a well defined operator (by the assumption that T is closable) and hence
k = T0 = 0. Hence we have shown D(T*)% = {0} which implies D(T*) is
dense in K. This completes the proof of item 3.

4. Now assume 7' is closable so that T™ is densely defined. Using the
obvious analogue of Eq. (53.1) for T* we learn I'(T**) = UI'(T*)* where
Uly,z) = (—x,y) = =V Yy, z). Therefore,

D) = UV(D(T)Y): = -T(@) = T@) = 1(T)

and hence T = T**. m
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Lemma 53.7. Suppose that H and K are Hilbert spaces, T : H — K 1is
a densely defined operator which has a densely defined adjoint T*. Then
Nul(T*) = Ran(T)* and Nul(T) = Ran(T*)* where T denotes the closure
of T.

Proof. Suppose that k& € Nul(T*) and h € D(T), then (k,Th)
)

(T*k,h) = 0. Since h € D(T) is arbitrary, this proves that Nul(T*) C
Ran(T)*. Now suppose that k& € Ran(T)*. Then 0 = (k, Th) for all h € D(T').
This shows that k& € D(T*) and that 7%k = 0. The assertion Nul(T) =

L

Ran(T*)* follows by replacing T by T* in the equality, Nul(7*) = Ran(T)+.
|

Definition 53.8. A quadratic form q on H is a dense subspace D(q) C H
called the domain of q¢ and a sesquilinear form q : D(q) x D(¢) — C.
(Sesquilinear means that q(-,v) is linear while q(v,-) is conjugate linear
on D(q) for all v € D(q).) The form q is symmetric if q¢(v,w) = g(w,v)
for all v,w € D(q), q is positive if q(v) > 0 (here q(v) = q(v,v)) for all
v € D(q), and q is semi-bounded if there exists My € (0,00) such that
q(v,v) > —Mpl||v||* for all v € D(q).

53.2 Lax-Milgram Methods

For the rest of this section g will be a sesquilinear form on H and to simplify
notation we will write X for D(q).

Theorem 53.9 (Lax-Milgram). Let ¢ : X x X — C be a sesquilinear form
and suppose the following added assumptions hold.

1. X is equipped with a Hilbertian inner product (-,-)x.

2. The form q is bounded on X, i.e. there exists a constant C' < oo such
that |g(v, w)| < Cllv||x - |w|lx for all v,w € X.

3. The form q is coercive, i.e. there exists € > 0 such that |q(v,v)| > €||v|%
for allv e X.

Then the maps £ : X — X* and L1 : X — X* defined by Lv = q(v,")
and LY := q(-,v) are linear and (respectively) conjugate linear isomorphisms
of Hilbert spaces. Moreover

L7 < et and I(C) M) < et
Proof. The operator £ is bounded because

ql\v,w
ol = sup L2 < o (53.2)

w0 [wllx

Similarly £F is bounded with HUH <C.
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Let B : X — X~* denote the linear Riesz isomorphism defined by 3(z) =
(x,-)x for z € X. Define R:=371L: X — X so that L = R, i.e.

Lv=q(v,-) = (Rv,")x for all v € X.

Notice that R is a bounded linear map with operator bound less than C' by
Eq. (53.2). Since

(LTv) (w) = g(w,v) = (Rw,v)x = (w, R*v)x for all v,w € X,

we see that LTv = (-, R*v)x, i.e. R* = B71LT, where 5(2) = (=, )x = (-, 2)x.
Since 8 and § are linear and conjugate linear isometric isomorphisms, to finish
the proof it suffices to show R is invertible and that ||R71||x < e~
Since

(v, R*v)x| = |(Rv,v)x| = la(v,v)| > €||v]%, (53.3)
one easily concludes that Nul(R) = {0} = Nul(R*). By Lemma 53.7,
Ran(R) = Nul(R*)* = {0} = X and so we have shown R : X — X is
injective and has a dense range. From Eq. (53.3) and the Schwarz inequality,
ellvllk < [Rvllx|lvllx, ie.

|Rv||x > €|lv||x for all v € X. (53.4)

This inequality proves the range of R is closed. Indeed if {v,} is a sequence
in X such that Rv,, — w € X as n — oo then Eq. (53.4) implies

ellvn — vmllx < ||Rvn — Rop|lx — 0 as m,n — oo.

Thus v = lim,_ v, exists in X and hence w = Rv € Ran(R) and so
Ran(R) = Ran(R)X = X.So R: X — X is a bijective map and hence
invertible. By replacing v by R™v in Eq. (53.4) we learn R~! is bounded

with operator norm no larger than ¢!, m

Theorem 53.10. Let q be a bounded coercive sesquilinear form on X as in
Theorem 53.9. Further assume that the inclusion map i : X — H is bounded
and let L and LT be the unbounded linear operators on H defined by:
DL):={veX:weX —q(v,w) is H - continuous} ,
DL :={we X :veX —qv,w)is H - continuous}

and for v € D(L) and w € D(L') define Lv € H and L'w € H by requiring
q(v,") = (Lv,-) and q(-,w) = (-, LTw).

Then D(L) and D(LY) are dense subspaces of X and hence of H. The oper-
ators L™ : H — D(L) C H and (L")™' : H — D(L") ¢ H are bounded
when viewed as operators from H to H with norms less than or equal to
et Hi”i(X,H) . Purthermore, L* = Lt and (L')* = L and in particular both L
and LY = L* are closed operators.
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Proof. Let o : H — X* be defined by a(v) = (v,-)|x. If (v, -)x is perpen-
dicular to a(H) = i* (H*) C X*, then

0= ((v,")x,(w))= = (v, )x, (w,))x= = (v,w) for all w € H.

Taking w = v in this equation shows v = 0 and hence the orthogonal comple-
ment of o(H) in X* is {0} which implies o(H) = ¢* (H*) is dense in X*.

Using the notation in Theorem 53.9, we have v € D(L) iff Lv € i* (H*) =
a(H) iff v e L7t (a(H)) and for v € D(L), Lv = (Lv,-)|x = a(Lv). This and
a similar computation shows

D(L) = £7(i* (H*)) = £ (a(H)) and D(LT) == (L7~ (i* (H")) = (L") (a(

and for v € D(L) and w € D(L') we have Lv = (Lv,-)|x = a(Lv) and LTw =
(-, Ltw)|x = a(L'w). The following commutative diagrams summarizes the
relationships of L and £ and Lt and LT,

X 5% x Zx
i 7 T aand ¢ 7T T a
D(L) 5 H ph = B

where in each diagram i denotes an inclusion map. Because £ and LT are
invertible, L : D(L) — H and L' : D(LT) — H are invertible as well. Because
both £ and LT are isomorphisms of X onto X* and X* respectively and a(H)
is dense in X* and &(H) is dense in X*, the spaces D(L) and D(L') are dense
subspaces of X, and hence also of H.

For the norm bound assertions let v € D(L) C X and use the coercivity
estimate on ¢ to find

2 2 .2
ellvflF <e ell% x, o) l[oll% < Nl my la(v, 0)| = [l x, oy (Lo, 0) ]

.12
< Nellz xmy Lol ol -

Hence e||v||g < HZ‘”i(X,H) |Lv||g for all v € D(L). By replacing v by L™ v
(for v € H) in this last inequality, we find

il
—E o],

— . — — 112
L~ ollm < Le|L 1||B(H) <et HZ”L(XA,H)'

Similarly one shows that H(LT)_IHB(H) <e ! ||iHi<X’H) as well.
For v € D(L) and w € D(L'),

(Lo, w) = gfv, w) = (v, L) (53.5)
which shows L € L*. Now suppose that w € D(L*), then

q(v,w) = (Lv,w) = (v, L*w) for all v € D(L).
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By continuity if follows that
q(v,w) = (v, L*w) for all v € X

and therefore by the definition of L, w € D(L') and Lfw = L*w, i.e. L* C L.
Since we have shown LT ¢ L* and L* ¢ Lf, Lt = L*. A similar argument
shows that (LT)* = L. Because the adjoints of operators are always closed,
both L = (LT)* and LT = L* are closed operators. m

Corollary 53.11. If g in Theorem 55.10 is further assumed to be symmetric
then L is self-adjoint, i.e. L* = L.

Proof. This simply follows from Theorem 53.10 upon observing that L =
LT when ¢ is symmetric. m

53.3 Close, symmetric, semi-bounded quadratic forms
and self-adjoint operators

Definition 53.12. A symmetric, sesquilinear quadratic form q: X x X — C
is closed if whenever {vn}:;l C X is a sequence such that v, — v in H and

q(vn, — V) = q(Vn, — Vi, Uy, — V) — 0 as myn — 00

implies that v € X and lim, o g(v — v,) = 0. The form q is said to be
closable iff for all {v,} C X such that v, — 0 € H and q(v, — vp) — 0 as
m,n — oo implies that q(v,) — 0 as n — oo.

Example 53.13. Let H and K be Hilbert spaces and T': H — K be a densely
defined operator. Set g(v,w) := (Tv,Tw)k for v,w € X := D(q) := D(T).
Then ¢ is a positive symmetric quadratic form on H which is closed iff T is
closed and is closable iff T' is closable.

For the remainder of this section let ¢ : X x X — C be a symmet-
ric, sesquilinear quadratic form which is semi-bounded and satisfies ¢(v) >
—Mj ||v||® for all v € X and some My < oo.

Notation 53.14 For v,w € X and M > My let (v,w)y = q(v,w) +
M (v, w). Notice that
[vl13 = a(v) + Ml[v||* = q(v) + Mo|v* + (M — Mo) [Jv]|?
> (M = M) o], (53.6)
from which it follows that (-,-)pr is an inner product on X and i : X — H

is bounded by (M — M0)71/2. Let Hyy denote the Hilbert space completion of
(X7 ('7 )M)
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Formally, Hyy = C/ ~, where C denotes the collection of || - ||a—
Cauchy sequences in X and ~ is the equivalence relation, {v,} ~ {u,} iff
limy, 00 [|Un — unllar = 0. For v € X, let i(v) be the equivalence class of the
constant sequence with elements v. Notice that if {v,, } and {u,,} are in C, then
limyy, oo (Vn, um ) i exists. Indeed, let C be a finite upper bound for ||u, ||
and ||v,||ar. (Why does this bound exist?) Then

[(Vns ) ar — (U, w) ar| = [(Vn = Vky Urn) ar + (Vky U — Ug) 1]
< C{llvn — vllar + [um — wllar} (53.7)

and this last expression tends to zero as m,n, k,l — oo. Therefore, if v and @
denote the equivalence class of {v,, } and {u,} in C respectively, we may define
(0, 2) pr = limy, p— oo (Un, Um)ar- It is easily checked that Hjs with this inner
product is a Hilbert space and that i : X — Hjs is an isometry.

Remark 53.15. The reader should verify that all of the norms, {|| - ||ar : M > My},

on X are equivalent so that H)s is independent of M > M.

Lemma 53.16. The inclusion map ¢ : X — H extends by continuity to a
continuous linear map t from H s into H. Similarly, the quadratic form q : X x
X — C eatends by continuity to a continuous quadratic form § : Hyy X Hpy —
C. Ezplicitly, if v and @ denote the equivalence class of {vn} and {u,} in C
respectively, then i(0) = H —lim,, oo v, and §(0,0) = limy, —oc0 ¢(Vn, Un)-

Proof. This routine verification is left to the reader. m
Lemma 53.17. Let q be as above and M > My be given.

1. The quadratic form q is closed iff (X, (-,-)a) is a Hilbert space.

2. The quadratic form q is closable iff the map @ : Hyy — H is injective. In
this case we identify Hyr with i(Hpy) C H and therefore we may view §
as a quadratic form on H. The form § is called the closure of q and as
the notation suggests is a closed quadratic form on H.

A more explicit description of G is as follows. The domain D(§) consists
of those v € H such that there exists {v,} C X such that v,, — v in H and
q (v —vm) — 0 as myn — oo. If v,w € D(§) and v, — v and w, — w as
just described, then G(v, w) := lim, 00 ¢(Vp, wy,)-

Proof. 1. Suppose ¢ is closed and {v,};-, C X is a |||, — Cauchy
sequence. By the inequality in Eq. (53.6), {v,}r—, is ||| — Cauchy and
hence v := lim,,_, v, exists in H. Moreover,

q(Vn = vm) = v — Um”?w - M v, - UmH?{ -0

and therefore, because ¢ is closed, v € D(q) = X and lim,,—,o q(v —v,) =0
and hence lim,_,« ||v, — UH?\/{ = 0. The converse direction is simpler and will
be left to the reader.
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2. The proof that ¢ is closable iff the map 72 : Hyy — H is injective will be
complete once the reader verifies that the following assertions are equivalent.
1) @ : Hy — H is injective, 2) () = 0 implies © = 0, 3) if v, 20 and
q(vy, — vm) — 0 as m,n — oo implies that g(v,) — 0 as n — oo.

By construction H)y; equipped with the inner product (-,-)ar := ¢(+,*) +
M(-,-) is complete. So by item 1. it follows that ¢ is a closed quadratic form
on H if ¢ is closable. m

Ezample 53.18. Suppose H = L?*([-1,1]), D(q) = C([-1,1]) and q(f,9) :
£(0)g(0) for all f,g € D(q). The form q is not closable. Indeed, let f,(z) =
(1+22)7", then f,, — 0 € L? as n — oo and q(f, — fm) = 0 for all m,n while
q(fn —0) =¢q(fn) =1 - 0 as n — oco. This example also shows the operator
T : H — C defined by D(T) = C ([-1,1]) with T'f = f(0) is not closable.

Let us also compute T for this example. By definition A € D(T™) and
T*\ = fiff (f,g) = XTg = A\g(0) for all g € C([~1,1]). In particular this
implies (f,g) = 0 for all g € C'([—1,1]) such that g(0) = 0. However these
functions are dense in H and therefore we conclude that f = 0 and hence
D(T*) = {0}

Exercise 53.19. Keeping the notation in Example 53.18, show I'(T) = HxC
which is clearly not the graph of a linear operator S : H — C.

Proposition 53.20. Suppose that A : H — H is a densely defined positive
symmetric operator, i.e. (Av,w) = (v, Aw) for all v,w € D(A) and (v, Av) >
0 for all v € D(A). Define ga(v,w) = (v, Aw) for v,w € D(A). Then qa
is closable and the closure g is a mon-negative, symmetric closed quadratic
form on H.

Proof. Let (+,-)1 = (-,-) + qa(-,-) on D(A) x D(A), v, € D(A) such that
H-lim,_oo v, = 0 and

qa(vn, — V) = (A(vn, — V), (U — Up)) — 0 a8 M,n — 0.

Then
limsup ga(v,) < lim ”Un”% = lim (vm,vp)1 = Hm {(vm,v0)+(Vm, Av,)}
N—00 n—oo m,n— 00 m,n— o0

where the last equality follows by first letting m — oo and then n — oo.
Notice that the above limits exist because of Eq. (53.7). m

Lemma 53.21. Let A be a positive self-adjoint operator on H and define
qa(v,w) = (v, Aw) for v,w € D(A) = D(qa). Then qa is closable and the
closure of qa is

Ga(v,w) = (VAv, VAw) for v,w € X := D(Ga) = D(VA).
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Proof. Let §(v,w) = (VAv, VAw) for v,w € X = D(V/A). Since VA is
self-adjoint and hence closed, it follows from Example 53.13 that ¢ is closed.
Moreover, § extends ga because if v,w € D(A), then v,w € D(A) = D((v/A)?)
and G(v,w) = (VAv,VAw) = (v, Aw) = ga(v,w). Thus to show § is the
closure of g4 it suffices to show D(A) is dense in X = D(v/A) when equipped
with the Hilbertian norm, ||wl||? = ||Jw||? + §(w).

Let v € D(VA) and define v, := Ljo,m](A)v. Then using the spectral
theorem along with the dominated convergence theorem one easily shows that
U € X = D(A), limy,— 00 ¥ = v and lim,, o0 VAv, = VAv. But this is
equivalent to showing that lim,, oo || — V|1 =0. ®

Theorem 53.22. Suppose q : X x X — C is a symmetric, closed, semi-
bounded (say q(v,v) > —Myl|[v||?) sesquilinear form. Let L : H — H be the
possibly unbounded operator defined by

D(L) :={ve X :qv,-) is H — continuous}

and for v € D(L) let Lv € H be the unique element such that q(v,-) =
(Lv,-)|x. Then

1. L is a densely defined self-adjoint operator on H and L > —Myl.

2. D(L) is a form core for q, i.e. the closure of D(L) is a dense subspace
in (X, |||5)- More explicitly, for all v € X there exists v, € D(L) such
that v, — v in H and g(v —v,) — 0 as n — oo.

3. For and M > My, D(q) = D (VL + MI).

4. Letting qr,(v,w) := (Lv,w) for all vyw € D(L), we have qr, is closable
and 4r, = q.

Proof. 1. From Lemma 53.17, (X, (-,*)x := (*,*)m) is a Hilbert space for
any M > Mj. Applying Theorem 53.10 and Corollary 53.11 with ¢ being
(,*)x gives a self-adjoint operator Ly : H — H such that

D(Ly) :=={ve X :(v,)x is H — continuous}
and for v € D(Ly),
(Lyv,w)g = (v,w) x = q(v,w) + M(v,w) for all w € X. (53.8)

Since (v,-)x is H — continuous iff ¢(v,-) is H — continuous it follows that
D(Lys) = D(L) and moreover Eq. (53.8) is equivalent to

((Lyg — MI)v,w)g = q(v,w) for all w € X.

Hence it follows that L := Ly — M T and so L is self-adjoint. Since (Lv,v) =
q(v,v) > =My ||[v]|*, we sce that L > —Mol.

2. The density of D(L) = D(Lys) in (X, (,+)ar) is a direct consequence of
Theorem 53.10.

3. For
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v,w € D(Q) =D <\/L_M) D (\/L MI) :D( L+MOI)
let Q(v,w) := ( Lo, LMw) . For v,w € D(L) we have
Qv,w) = (Lyv,w) = (Lv,w) + M (v,w) = q(v,w) + M (v,w) = (v,w),, .

By Lemma 53.21, @ is a closed, non-negative symmetric form on H and
D(L) = D (L) is dense in (D(Q), Q). Hence if v € D(Q) there exists
v, € D(L) such that Q(v — v,) — 0 and this implies q(v,, — v,) — 0 as
m,n — oo. Since ¢ is closed, this implies v € D(q) and furthermore that
Qv,w) = (v,w),, for all v,w € D(Q).

Conversely, by item 2., if v € X = D(q), there exists v,, € D(L) such that
|l = vmllp; — 0. From this it follows that @ (v, —v,) — 0 as m,n — oo
and therefore since @ is closed, v € D(Q) and again Q(v, w) = (v, w),, for all
v, w € D(q). This proves item 3. and also shows that

q(v,w) = (\/LJerIu\/LJr]VIIw) — M(v,w) for all v,w € X

where X :=D (\/L_) .

4. Since qy, C q, qr. is closable and the closure of ¢z, is still contained in q.
Since gz, = Q@ — L (+,-) on D(L) and the closure of Q|py = (-,+);, it is easy
to conclude that the closure of ¢y, is g as well. ®

Notation 53.23 Let P denote the collection of positive self-adjoint operators
on H and Q denote the collection of positive and closed symmetric forms on
H.

Theorem 53.24. The map A € P — §a € Q is bijective, where §a(v,w) :=
(VAv, VAw) with D(Ga) = D(VA) is the closure of the quadratic form
ga(v,w) == (Av,w) for v,w € D(q) := D(A). The inverse map is given
by g € Q — Ay € P where A, is uniquely determined by

D(Aq) ={v e D(q) : q(v,-) is H - continuous} and
(Aqu,w) = q(v,w) for v e D(A44) and w € D(q).

Proof. From Lemma 53.21, g4 € Q and ¢4 is the closure of g4. From
Theorem 53.22 A, € P and

a() = (VArVA;) = da,

So to finish the proof it suffices to show A € P — §a € Q is injective.
However, again by Theorem 53.22, if ¢ € Q and A € P such that ¢ = ¢4, then
v € D(Ay) and Agv = w iff

(\/ZU, \/Z) = Q(Uv ) = (Aq’U7 )|X
But this implies VAv € D (\/Z) and Agv = VAVAv = Av. But by the
spectral theorem, D (\/Z\/Z) = D(A) and so we have proved A, = A. ®
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53.4 Construction of positive self-adjoint operators

The main theorem concerning closed symmetric semi-bounded quadratic
forms ¢ is Friederich’s extension theorem.

Corollary 53.25 (The Friederich’s extension). Suppose that A: H — H
is a densely defined positive symmetric operator. Then A has a positive self-
adjoint extension A. Moreover, A is the only self-adjoint extension of A such
that D(A) C D(Ga).

Proof. By Proposition 53.20, ¢ := §a exists in Q. By Theorem 53.24,
there exists a unique positive self-adjoint operator B on H such that g = q.
Since for v € D(A), q(v,w) = (Av,w) for all w € X, it follows from Eq. (?7?)
and (?7) that v € D(B) and Bv = Av. Therefore A := B is a self-adjoint
extension of A.

Suppose that C'is another self-adjoint extension of A such that D(C) C X.
Then ¢ is a closed extension of g4. Thus ¢ = §a C {c, i-e. D(§a) C D(dc)
and ¢a = go on D(Ga) X D(Ga). For v € D(C) and w € D(A), we have that

do(v,w) = (Cv,w) = (v, Cw) = (v, Aw) = (v, Bw) = (v, w)
By continuity it follows that
jo(v,w) = (Cv,w) = (v, Bw) = q(v,w)

for all w € D(B). Therefore, v € D(B*) = D(B) and Bv = B*v = Cv. That
is C' C B. Taking adjoints of this equation shows that B = B* ¢ C* = C.
Thus C=B. m

Corollary 53.26 (von Neumann). Suppose that D : H — K is a closed
operator, then A = D*D is a positive self-adjoint operator on H.

Proof. The operator D* is densely defined by Lemma 53.6. The quadratic
form ¢(v,w) = (Dv, Dw) for v,w € X := D(D) is closed (Example 53.13)
and positive. Hence by Theorem 53.24 there exists an A € P such that ¢ = §a,
ie.

(Dv, Dw) = (\/Zv, \/Zw) for all v,w € X = D(D) = D(VA).  (53.9)
Recalling that v € D (A) C X and Av = g happens iff
(Dv, Dw) = q(v,w) = (g, w) for all w € X

and this happens iff Dv € D(D*) and D*Dv = g. Thus we have shown
D*D = A which is self-adjoint and positive. m

1088 53 Unbounded operators and quadratic forms
53.5 Applications to partial differential equations

Let U C R" be an open set, p € C1(U — (0,00)) and for 4,5 = 1,2,...,n let
a;; € CL(U,R). Take H = L?(U, pdx) and define

a(f,9) /Z )0, (2);9(x) p(a) d

i,j=1
for f,g € X = C2(U).

Proposition 53.27. Suppose that a;; = aj; and that szzl a;j(x)&& >0
for all £ € R™. Then q is a symmetric closable quadratic form on H. Hence
there exists a unique self-adjoint operator A on H such that G = q4. Moreover
A is an extension of the operator

Al = —oo5 Z 0y (p(@)asy (2):f (x))

p(;,;
for f € D(A) = C%(U).

Proof. A simple integration by parts argument shows that ¢(f,g) =
(Af,9)u = (f, Ag)m for all f,g € D(A) = CZ(U). Thus by Proposition 53.20,
q is closable. The existence of A is a result of Theorem 53.24. In fact A is the
Friederich’s extension of A as in Corollary 53.25. m

Given the above proposition and the spectral theorem, we now know that
(at least in some weak sense) we may solve the general heat and wave equa-
tions: uy = —Au for ¢ > 0 and uyy = —Au for ¢ € R. Namely, we will take

u(t,-) == tAu(O )

and

= %111 t\/_
ult, ) = cos(tV Ayu(0, ) + — sntvA) o,
respectively. In order to get classical solutions to the equations we would have
to better understand the operator A and in particular its domain and the
domains of the powers of A. This will be one of the topics of the next part of
the course dealing with Sobolev spaces.

Remark 53.28. By choosing D(A) = CZ(U) we are essentially using Dirichlet
boundary conditions for A and A. If U is a bounded region with C2-boundary,
we could have chosen (for example VERIFY THIS EXAMPLE)

D(A) = {f € C*(U)NCHT) : with du/On = 0 on OU}.

This would correspond to Neumann boundary conditions. Proposition 53.27
would be valid with this domain as well provided we assume that a;; and p
are in C1(U).
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For a second application let H = L?(U, pdz; RN) and for j = 1,2,...,n,
let Aj : U — Myxn (the N x N matrices) be a C* function. Set D(D) :=
CHU — RY) and for S € D(D) let DS(z) =31 | Ai(2)9;S(z).

Proposition 53.29 (“Dirac Like Operators”). The operator D on H de-
Jfined above is closable. Hence A := D*D is a self-adjoint operator on H, where
D is the closure of D.

Proof. Again a simple integration by parts argument shows that D(D) C
D(D*) and that for S € D(D),

D*S(a) = @ 3 ~0i(p(@) Ai(@)S (a).

In particular D* is a densely defined operator and hence D is closable. The
result now follows from Corollary 53.26. m




54

L? — operators associated to €

Let 2 be a C? — manifold with boundary such that £2 = 2°, p € C>®(£2) with

p>0on 2, ans € BC™ (£2) such that (a;;) > el for some € > 0 and & be
the elliptic Dirichlet form given by

E(u,v) = /Zawaaua% dp
2

where du := pdm. Let H = L?(p) 2 L?(m) and X = H(2) or H}(£2).
Definition 54.1. Let

D(Le) ={ue€ X : Leu:=E(u,") € L?(p dx)}
D(LL) ={ue X : LLu:=E(-,u) € L2(p dz)}

and for uw € D(Lg) (u € D(L‘TE)) define Leu (LZU) to be the unique element
in L?(u) such that

E(u,v) = (Lew,v)r2(m) = [ Leu-vpdm
2

E(,u) = (v, Leu)r2(y = [v- L;updm
2

for allv e X.

Theorem 54.2. If X = H}(2) let B=B'=0 and if X = H'(R2) let B and
B? be given (as in Proposition 51.4) by

Bu:=3" aaj0%n; =n-aVu+ (n-ap.)u
Btu:=3" a;gd®un; =an - Vu+(n-a.p)u.
Then
D(Le) ={u € H*(2)N X : Bul,, =0}
D(L}) =f{ue H¥(2)NX : Btu|,,, =0}
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and

Leu= %2((—8)%%@%) =: Lu
L];u = %2(—8)%%/36%) =: Ltu.

Moreover Lg = (L;E)* and L = LZ.
Proof. By replacing €(u,v) by €(u,v) + C(u,v), Le — Lg + C and L} —
Lz +C for a sufficiently large constant C, we may assume that & (u,v) satisfies
ellull3: < E(u,u) for all w € H'.
Then by Theorem 53.10, L = LL, (LL)* = Lg and
Lg: D(Lg) — L* () and Lf : D(LL) — L2 (2)

are linear isomorphisms. By the elliptic regularity Theorem 52.15, both D(Lg¢)
and D(LZ) are subspaces of H2(£2) and moreover there is a constant C' < oo
such that

[ull 20y < CllLeul L2 (q) - (54.1)

From Proposition 51.4 (integration by parts), for u € H?(£2) and v € X,

£ —(L | Bu| - ‘ d 54.2
(w.0) = (L)oo + [ Bl o] pdo (54.2)
o0
while, by definition, if u € D(Lg) then
E(u,v) = (Leu,v)p2(y) for all v e X. (54.3)

Choosing v € H}(£2) C X, comparing Egs. (54.2) and (54.3) shows that Lu =
Lgu. So for uw € D(Lg), Lgu = Lu and moreover we must have Bu o = 0 as
well. Therefore

D(L¢) € H*(2) N {u: Bu I 0}.

Conversely if u € H2(£2) with Bu‘an =0, E(u,v) = (Lu,v) 2y for allv € X

and therefore by definition of Lg, u € D(Lg) and Lgu = Lu. The assertions
involving LI: are proved in the same way. m

54.1 Compact perturbations of the identity and the
Fredholm Alternative

Definition 54.3. A bounded operator F : H — B is Fredholm iff the

dim Nul(F) < oo, dim coker(F) < oo and Ran(F) is closed in B. (Recall:
coker(F) := B,/ Ran(F').) The index of F is the integer,

indez(F) = dim Nul(F') — dim coker(F) (54.4)

= dim Nul(F) — dim Nul(F™). (54.5)
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Example 54.4. Suppose that H and B are finite dimensional Hilbert spaces
and F' : H — B is a linear operator. In this case, the rank nullity theorem
implies
index(F') = dim Nul(F') — dim coker(F')
= dim Nul(F) — [dim B — dim Ran(F)]
= dim Nul(F) + dimRan(F) — dim B
=dim H — dim B.

Theorem 54.5. If R : H — H is finite rank, then F' = I + R is Fredholm
and index(F) = 0.

Proof. Let H; = Nul(R), H» = Ran(R), P, : H — H; be orthogonal
projection, {t;};_, be an orthonormal basis for Ran(R) and ¢; := R*v); for
i=1,2,...,n. Then for h € H,

n

Rh="Y (Rh.pi) i = Y (R i =) (h, )i
=1

i=1 i=1

and hence {¢1, ..., ¢} C Nul(R). Therefore Hy = Nul(R)* C span {¢1,...,¢,}
is finite dimensional. For h = hy + ho € H; @ Ha,

Fh = (P1 + P2) (h1 + ho + Rhg) = (h1 + PthQ) + (hg + PQRPQhQ)
= (h1+P1Rh2)+(IH2 +P2RP2) ha. (546)

From Eq. (54.6) we see that h = hy + he € Nul(F) iff hy € Nul(Iy, + P,RP,)
and hy = —P; Rho and hence

Nul(F) = Nul(Ip, + PyRP). (54.7)
Tt is also easily seen from Eq. (54.6) that
Ran(F') = H; ® Ran(Iy, + PoRP,). (54.8)

Since Hs is finite dimensional, Ran(Iy, + PoRP) is a closed subspace of Hy
and so Ran(F) is closed. Moreover
coker(F) = H /Ran(F) = [Hy @ Hs| /[H1 ® Ran(Iy, + PaRP,)]
~ H, /Ran(Iy, + PyRP,) = coker(Iy, + PoRP,). (54.9)

So by Egs. (54.7), (54.9) and Example 54.4,

index(F) = dim Nul(F') — dim coker(F)
= dim Nul(Iz, + PyRPy) — dim coker(Iz, + PyRP,)
= index(Ig, + P2RP2) = 0.
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Corollary 54.6. If K : H — H compact then F = I + K is Fredholm and
index (F') = 0.

Proof. Choose Ry : H — H finite rank such that ¢ := K — Ry is a bounded
operator with operator norm less than one. Then

F=I+K=I+e+R=T+e)I+{T+¢e)'R))=U(+R),

where U := (I +¢): H — H is invertible and R := (I +¢&)"'Ry : H — H is
finite rank. Therefore, Ran (F)) = U(Ran (I + R)) is closed,

dim coker(F') = dim coker(I + R) < oo, (54.10)
Nul(F) = Nul(I + R), and
dim Nul(F) = dim Nul(I + R). (54.11)

From this it follows that F is Fredholm and index (F) = index(I+R) =0. m

54.2 Solvability of Lu = f and properties of the solution

Theorem 54.7. Let 02 C R? be a C* — manifold with boundary such that
2 =9°. Let € be an elliptic Dirichlet form, L := Lg be the associated opera-
tor.

1. For C > 0 sufficiently large, (L + C) : D(L) — L*(£2) is a linear isomor-
phism and
(L+C)"': L*(N) — D(L) C H*()

is a bounded operator and D(L) is a closed subspace of H? (12).
2. (L+ C)™! as viewed as an operator from L?(£2) to L*(£2) is compact.
3. Ifue D(L) and Lu € H*($2) then u € H*2($2).

(L
4. Ifu € D(L) and Lu € C®(0) then u € C®(02) := FO] Cck(02).
k=0
(L

5 Ifu e D_) is an eigenfunction of L, i.e. Lu = Au for some \ € C, then
ue C™(12).

Proof. 1. It was already shown in the proof of Theorem 54.2 that (L+C') :
D(L) — L%(f2) is bijective. Moreover the bound in Eq. (54.1) shows that
(L+C)~1: L2(02) — H?*(N2) is bounded. If {u,} -, C D(L) C H2({2) is
a sequence such that u,, — u € H%(2), then {(L + C)u, },o is convergent
in L%($2) since (L + C) : H2(£2) — L*(£2) is bounded. Because L is a closed
operator, it follows that u € D(L) and so D(L) is a closed subspace of H? (£2).

2. This follows from item 1. and the Rellich - Kondrachov Compactness
Theorem 49.25 which implies the embedding H?(£2) — L2(£2) is compact.

3. If f € H*() and u € D(L) such that Lu = f € H*(2) then Leu = f
and hence the elliptic regularity Theorem 53.10 gives the result.



54.2 Solvability of Lu = f and properties of the solution 1095

4. Since C®(2) C HF(N) for all k, it follows by item 1. that u €
N H*(2). But () H*(2) c C>=(2) by the Sobolev embedding Theorem
k=0

k=0
49.18.

5.If u e D(L) C H*(2) and Lu = \u € H%($2) for some A € C, then by
item 3., u € H*(£2) and then reapplying item 3. we learn v € H%({2). This

process may be repeated and so by induction, u € (| H*(£2) C C>®(2). m
k=0

Theorem 54.8 (Fredholm Alternative). Let £2 C R? be a C* — manifold
with boundary such that 2 = (2°. Let € be an elliptic Dirichlet form, L := Lg
be the associated operator. Then

1. L:D(L) — L?(£2) and L* : D(L*) — L% (£2) are Fredholm operators.
2. index (L) = index (L*) = 0.

3. dim Nul(L) = dim Nul(L*).

4. Ran (L) = Nul(L*)".

5. Ran (L) = L? (2) iff Nul(L) = {0}.

Proof. Choose C > 0 such that (L + C) : D(L) — L?(£2) is a invertible
map and let
K:=C(L+C):1*(2)— D(L)

which by Theorem 54.7 is compact when viewed as an operator from L2({2)
to L2(£2). With this notation we have

(L+C)'L=(L+C)"(L+C—-C)=1Ipyp — K
and
LIL+C) ' =(L+C)L+0C)'=CL+C) " =1I20) — K.
By Corollary 54.6 orProposition 16.35, I72(o)— K is a Fredholm operator with
index (I12(g) — K) = 0. Since Ran (L) = Ran (L(L + C)™') = Ran (I — K)
it follows that Ran (L) is a closed and finite codimension subspace of L? (£2)

and
dim coker(L) = dim coker( — K).

Since
u € Nul(L) — (L +C)u € Nul(L(L + C)™") = Nul(I - K)
is an isomorphism of vector spaces
dimNul(L) = dim Nul( — K) < co.

Combining the above assertions shows that L is a Fredholm operator and
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index (L) = dim coker(L) — dim Nul(L)
= dim coker(/ — K) — dim Nul(I — K)
=index(I — K) =0.

The same argument applies to L* to show L* is Fredholm and index (L*) = 0.
Because Ran (L) is closed and Ran (L)* = Nul(L*), Ran (L) = Nul(L*)* and

L*(2) = Nul(L*)* ® Nul(L*) = Ran (L) ® Nul(L").
Thus dim coker(L) = dim Nul(L*) and so
0 = index (L) = dim Nul(L) — dim coker(L)
= dim Nul(L) — dim Nul(L*).

This proves items 1-4 and finishes the proof of the theorem since item 5. is a
direct consequence of items 3 and 4. m

Ezample 54.9 (Dirichlet Boundary Conditions). Let A denote the Laplacian
with Dirichlet boundary conditions, i.e. D(A) = H}(2)NH?(2). If u € D(A)
then
/ Vu - Vodm = (—Au,v) for all v € H(£2) (54.12)
Q

and in particular for © € Nul(A) we have
/ [Vul|? dm = (—Au, u) = 0.
2

By the Poincaré inequality in Theorem 49.31 (or by more direct means) this
implies u = 0 and therefore Nul(A) = {0}. It now follows by the Fredholm
alternative in Theorem 54.8 that there exists a unique solution u € D(A) to
Au = f for any f € L*(92).

Ezample 54.10 (Neuwmann Boundary Conditions). Suppose A is the Lapla-
cian on {2 with Neuwmann boundary conditions, i.e.

ou
_ 200y . 9% _
D(A)={ue H*(2): o 0}.
If w € D(A) then
/ Vu - Vodm = (—Au,v) for all v € H(£2). (54.13)
fe)

so that the Dirichlet form associated to A is symmetric and hence A = A*.
Moreover if u € Nul(A), then

0= (—Au,v) = / \Vul? dm,
2
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ie. Vu = 0. As in the proof of the Poincaré Lemma 49.30 (or using the
Poincaré Lemma itself), u is constant on each connected component of 2.
Assuming, for simplicity, that {2 is connected, we have shown

Nul(Ay) = span {1}.

The Fredholm alternative in Theorem 54.8 implies that there exists a (non
unique solution) u € D(A) to Au = f for precisely those f € L?({2) such that
fLllie [fldm=0.

Q

Remark 54.11. Suppose £ is an elliptic Dirichlet form and L = Lg is the
associated operator on L?(§2). If £ has the property that the only solution to
E(u,u) = 0 is u = 0, then the equation Lu = f always has a unique solution
for any f € L2(£2).

Ezample 54.12. Let A;; = Aj;, A; and Ay be in C* (£2) with Ay > 0 and
(Ai;) > €l for some € > 0. For u,v € H}(£2) let

E(u,v) = / (Z A;j0udv + Aguv)dm, (54.14)
2
and L = Lg, then

L= ijAijaiu -+ A()u, (5415)
with D(L) := H?(2) N H}(£2). If u € Nul(L), then 0 = (Lu,u) = E(u,u) =0
implies 9;u = 0 a.e. and hence u is constant on each connected component of
0. Since u € HE(2), u oo 0 from which we learn that v = 0. Therefore
Lu = f has a (unique) solution for all f € L?(2).

Ezxample 54.13. Keeping the same notation as Example 54.12; except now we

view € as a Dirichlet form on H'(£2). Now L = Lg is the operator given in
Eq. (54.15) but now

D(L) = {u € H*(£2) : Bu =0 on 912}
where Bu = njA;;j0;u. Again if u € Nul(L) it follows that u is constant on

each connected component of (2. If we further assume that Ag > 0 at some
point in each connected component of {2, we could then conclude from

0=2~E(u,u) = / Agu?dm,
fe)

that u = 0. So again Nul(L) = {0} and Ran (L) = L? (£2).

1098 54 L? - operators associated to £

54.3 Interior Regularity Revisited

Theorem 54.14 (Jazzed up interior regularity). Let L be a second order
elliptic differential operator on £2. If u € L2, .(§2) such that Lu € H¥  (£2)
then u € Hfjf(()) and for any open precompact open sets {2y and 21 con-
tained in 2 such that 2y C 21 C 21 C 2 there is a constant C < oo

independent of u such that

[wllzzrra(ae) < Ol x ) + llullz2 ()

Proof. When k > 0 the theorem follows from Theorem 52.5. So it suffices
to consider the case, k = 0, i.e. u € L2 __(£2) such that Lu € L2 _(£2). To finish
the proof, again because of Theorem 52.5, it suffices to show u € H}OC(Q). By
replacing {2 by a precompact open subset of {2 which contains (21 we may
further assume that u € L?(£2) and Lu € L?({2). Further, by replacing L by
L + C for some constant C' > 0, the Lax-Milgram method implies we may
assume L : H}(2) — H~1(£2) is an isomorphism of Banach spaces. We will
now finish the proof by showing u € H} () under the above assumptions.

If x € C° (£2), then by Lemma 50.7 [L, M, ] is a first order operator so,

L(xu) = xLu + [L, MyJu =: f, € L*(2) + H™*(2) = H(2).

Let ug = L™1f, € HE(£2), ¢ € C(£2) such that 1) = 1 on a neighborhood of

supp(x) and
v:=1 (xu—ug) = xu — Yug € LZ(Q)

Then, because supp(fy) C supp(x), we have f, = f, and
Lv = L [xu — ¢ug] = fy, —YLug — [L, Mylug = fr, — ¥ fy — [L, Myluo
=—[L,Mylug =:g € LA(0).

Let D(Lp) := H?*(2)N H}(2) and Lpu = Lu for all w € D(Lp) so
that Lp is L with Dirichlet boundary conditions on §2. I now claim that
v € D(Lp) C H}(£2). To prove this suppose

¢ e D(LY) = {¢ e HY(2): L¢ € 12(2)} = HY(2) N HA(%2)

and let &, := 0, * £ where 7, is an approximate § — sequence so that &,, —
€ in HZ (£2). Choose ¢ € C°(§2) such that ¢ = 1 on a neighborhood of

loc

supp(v) D supp(g), then

(975) = W}E}noo(.% gm) = n}Enoo(Lv’ ¢£m) = W}Enx(u Lt (¢§m))
= lim (v, Ltfm) = (v, Lff) = (v, LTD§)~

m—0o0

Since this holds for all £ € D(LTD) we see that
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veD((LL)) = D(Lp) = HY(2) N HA(2) ¢ H'(2)
D D 0 }

where the first equality is a consequence of Theorem 54.2 which states Lp =
(LE) . Therefore, xu = tug +v € H(£2) and since x € CX () was
arbitrary we learn that u € H} (£2). m

54.4 Classical Dirichlet Problem

Let 2 be a C*>® — manifold with boundary such that 2 = 2° and let L = A
with Dirichlet boundary conditions, so D(A) := H(£2) N H2(£2).

Theorem 54.15. To each f € C(012), there exists a unique solution u €
C>®(2)NC(£2) to the equation

Ay =0 with u = f on 0f2.

Proof. Choose f, € C*®(2) such that lim,, . ||fn]on — fll Lo a0y = 0
We will now show that there exists u,, € C°(£2) such that

Au, = 0 with u, = f,, on 052. (54.16)

To prove this let us write the desired solution as u, = v, + f, in which case
v, = 0 on 92 and 0 = Au,, = Av,, + Af,. Hence if v, solves Av, = —Af,
on {2 with v, = 0 on 912 then u, = v, + f, solves the Dirichlet problem in
Eq. (54.16).

By the maximum principle,

lun — um”Loo(_(}) < Nfn = finllpoe(02) — 0 as m,n — oo
and so {u,}oe, C C(f2) is uniformly convergent sequence. Let u :=
lim, oo u, € C(£2). The proof will be completed by showing u € C* ({2)
and Au = 0. This can be done in one stroke by showing u satisfies the mean
value property. This it the case since each function u,, satisfies the mean value
property and this property is preserved under uniform limits. m

Remark 54.16. Theorem 54.15 is more generally valid in the case A is re-
placed by an elliptic operator of the form L = —Zij %Eﬁ(pai]ﬁj ) with
pE Coo(ﬁio,oo)) and a;; € C*(2) such that Sor e i(2)&i&5 > elé]?
forall z € 2,€ € R?. Then again for all f € C(8f2) there exist a solution
u € C™(£2) N C(2) such that

Lu =0 with v = f on 02.

The proof is the same as that of Theorem 54.15 except the last step needs
to be changed as follows. As above, we construct solution to Lu, = 0 with
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Up = fn on 382 and we then still have u,, — u € C(f2) via the maximum
principle. To finish the proof, because of Theorem 54.14, it suffices to show
Lu = 0 in the sense of distributions. This is valid becasue if ¢ € D (£2) then

i.e. Lu = 0 in the sense of distribution.

54.5 Some Non-Compact Considerations

In this section we will make use of the results from Section 53.3. Let p €
C>®(R%,(0,00)), A;; € BC®(R?) such that 3" A;; & & > 0 for all |¢] # 0 and
define

Q(u,v) = /ZAijaiu v p dz for u,v € C° (RY).
Rd

Then as we have seen Q has a closed extension @ and unique self adjoint
operator L on L?*(p dx) such that v € D(L) iff v — Q(u,v) is L*(pdx)
continuous on D(Q) and in which case Q(u,v) = (Lu,v)r2(pde)- Standard
integration by parts shows

we C2(RY) € D) and Lu = — 370,(pA00).

Proposition 54.17. Let Q(u,u) := [ > A;;0'u - u pdz, then
Rd

D(Q) C {u € L*(pdzx) N Hjpo(R?) : Q(u,u) < 00}

Proof. By definition of the closure of @, C2°(R%) is dense in (D(Q), Q1)
Since for all 2 CC R? there exists an € = ¢(£2) such that p 3> A;; & & > €l€|?
on {2, we learn

Q(u,u) > e||u||%,1<m for all u € C°(R?). (54.17)

Therefore if u € D(Q) and u,, € C° (R?) such that Q1(u—uy) — 0asn — oo
then [lup —tm || g1 (o) — 0, ie. u = lim wu, in H(£2). Hence a simple limiting
argument shows Eq. (54.17) holds for all u € D(Q) :

Q1(u,u) > elul| 31 (g for all u € D(Q).
This shows D(Q)  H},,.(R%). Moreover

Q(Umun) > [ A;jOiun Oju, pde
o)

1 nooo !

Qu,u) > [ A;j0mdju pda.
2
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Since £2 cC R? is arbitrary this implies that
Q(u7 u) > /Aijﬁiu Ou p dx.
Q

Proposition 54.18. Suppose u € D(L*) then uw € HZ (R?) and for all
2 CC 2y CC R? there exist C = Cy(12) such that

l[ull zrze ) < CUL Ul 20 da) + Null L2(p azy) (54.18)

Proof. Suppose u € D(L) and Lu = f. Then for all ¢ € C® (Rd)7
(Lu, ¢) = (f: ¢)r2(p)- Therefore

/ZAZ']&;u @updazz/fgbp dx

so —0;(pAi; O;u) = pf in the sense if distributions and hence
— Aij 9;0u+LOT. = f
in the distributional sense. Since D(L) C D(Q) C H},. (]Rd) , by local elliptic
regularity it follows that D(L) C H2,.(R?) and for all £ D 2
lullz(20) < CUILull 22y + lullz2 ()
Now suppose u € D(L?), then u € D(L) C H},, (R?) and Lu € D(L) C
HZ,. (Rd) implies u € Hf,. (Rd) and
lull#ae) < CUILullr2(2,) + [ Lullp2(ay))

< C(LPul p2(a,) + l[ull L2 (20 + l[ullm2(a))

< C(IL2ull 2 (@,) + |1 Ll 2 () + llullz2(0,))-
If w € D(L?®) then u € H},, (R?) and Lu € H},, (R?) implies u € HY . (RY)
and

lullms 2oy < CUILullHa0y) + llullL2(oy))
< O8] r2(2y) + 1L%ull 22 (2) + | L]l £2(2) + [l 22).-

u € D(L*) implies uw € H7*_(RY) and

k k
lull 2oy < C Y I ull oy < C Y IIE 2

=0 =0
< C(ILFullr2pas) + l1ull L2 (pan))

by the spectral theorem. m

1102 54 L? - operators associated to £
54.5.1 Heat Equation

Let u(t) = e *Fuy where ug € L? (p) . Then u(t) € D(LF) for all k when t > 0
and hence u(t) € HzF_ (R) for all k. But this implies for each ¢ > 0 that
u(t) has a continuous in fact C*- version because H?*(£2) — C?k=2/4() for
k> é. Moreover

‘L’“ {u(t—kh) —u(t) Lu(t)}

b —0ash—0
for all k =0,1,2,... and therefore,

L2(0)

— Lu(t)

—0ash—0

u(t + h) —u(t)
h C2k—2/d((2)

when k > 4. This shows t — u(t) is differentiable and in C%*=%(D for all
k > L. Thus we conclude that u(t,z) is in C**°((0,00) x R?) and %(t7 z) =

Lu(t,z), i.e. u is a classical solution to the heat equation.

54.5.2 Wave Equation
Now consider the generalized solution to the wave equation

. sin(v/Lt)
u(t) = cos(VLt) f + 7 g

where f,g € L?(p). If f,g € C° (R‘i) , then f,g € D(L*) for all k and hence
u(t) € D(L*) for all k. It now follows that u(t) is C*°-differentiable in ¢ relative
to the norm || f|lx == |||l L2 (pax) + |IL¥ f|| L2(paz) for all k € N. So by the above
ideas u(t,z) € C*®°(R x R?) and

i(t, ) + Lu(t,z) = 0 with
u(0,z) = fo(x) and
w(0,7) = go().
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Spectral Considerations

For this section, let £2 be a bounded open subset of R? such that £2° = 2 and
2 is C*™ — manifold with boundary. Also let £ be a symmetric Dirichlet form
with domain being either X = H'(£2) or X = H}(£2) and let L := L¢ be the
corresponding self adjoint operator.

Theorem 55.1. There exist {\;};o; C R such that \y <Xy < X3 < -+ — 00
and {¢,} C D(L) C L?(02) such that {¢,} is an orthonormal basis for L?(12)
and L¢n = )\n(bn fOT‘ all n.

Proof. Choose C' > 0 such that (L +C) : D(L) — L?(£2) is invertible
and let T := (L+C)~! which is a compact operator (see Theorem 54.7) when
viewed as an operator from L2(£2) to L2(£2). Since L = L*,

((L+ C)u,v) = (u, (L + C)v) for all u,v € D(L)

and using this equation with u, v being replaced by Tu, T'v respectively shows
(u, Tv) = (Tu,v) for all u,v € L% Moreover if u € L?(2) and v = Tu € D(L),

(Tu,u) = (T(L+ C)v, (L + C)v) = (L+ C)v,v) >0

and so we have shown 7' = 7™ and T > 0. By the spectral Theorem 16.17 for
self-adjoint compact operators, there exist {y, }52; C R4 and an orthonormal
basis {¢,}52, of L2(2) such that T'¢,, = p,é, and g > g > puz > ...
and limp; = 0. Since T¢,, = pingn iff (L + C) "¢, = pnd, € D(L) iff
ll/n(L + O)¢n = ¢n iff

1
L¢n = N_(l - Cﬂn)¢n = A\nOn

where A, := (%—C’)Tooasn—u)o. |

Corollary 55.2. Let L be as above, then
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D(L) ={u € L*(2) : Y A2 (u, ¢n)* < 00}

n=1
Moreover Lu = Z An (U, &) 0n, for allu € D(L), i.e. L is unitarily equivalent
to the operator A €2 — % defined by (Az), = Ayz,, for alln € N,

Proof. Suppose u € D(L), then

Lu= (Lu,dn)bn = D _(u, Ln)bn = = D Anl(u, $n)$

with the above sums being L? convergent and hence
A2 (s 8)? = |Lulff < oc.

Conversely if Y A2 (u, ¢,)? < 00, let

N

un =Y _(,¢n)n € D(L).

n=1

Then uxy — u in L%(£2) and
N o)
Luy = (t,¢n)Andn = > (U, ¢n)An in L*(£2).
1 1

OO
Since L is a closed operator, u € D(L) and Lu = Y (u, ¢n) Anr. W
T

55.1 Growth of Eigenvalues I

Ezample 55.5. Let 2 = (0, ).

1. Suppose L = f% with D(L) = H2(2)N H}(£2), i.e. we impose Dirichlet
boundary conditions. Because L = L* and L > 0 (in fact L > eI for some
€ > 0 by the by the Poincaré Lemma in Theorem 49.31) if Lu = Au then
A > 0. Let A = w? > 0, then the general solution to Lu = w?u is given by

u(z) = Acos(wz) + Bsin(wz)

where A, B € C. Because we want «(0) = 0 = u({) we must require A=0

2_2
and (w = nm. Hence we have A, = 27— and u,(z) = |/%sin (%Fz) for

n € N is an orthonormal basis of eigenvectors for L.
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2. The reader is invited to show that if L = ;dz

conditions then ug(z) := ﬁ and u,(z) = ﬁcos (2x z) for n € N forms
an orthonormal basis of eigenfunctions of L with eigenvalues given by
2_2
)\n = n[;r
3. Suppose that L = —A on £2¢ with Dirichlet boundary conditions and for
m € N? let

Ui () = Uy (1) -+ Uy (Ta)
where each u; is given as in Item 1. Then {Um tm € Nd} is an orthonormal
basis of eigenfunctions of L with eigenvalues given

71'2 a 2 7I'2 2
Am :Z_szi :£_2|mR
i=1
Remark 55.4. Keeping the notation of item 3. of Example 55.3, for A > 0 let
Ey\ =span{om : A < A}

. for all m € N¢.

Then
: d. d. /\Z
dim(Ey) =#{meN": A, <A} =#{meN Cmlpe < =

from which it follows that

2 2\ d/2
dim(Ey) < mq (B (0, %)) = wq (%) = Cmy (2°) M2
Ve ™

Lemma 55.5. Let £2, £ and L be as described at the beginning of this section.
Given k € N, there exists C = Cy, < 0o such that

[lull pr2x 2y < Clllull (o) + HLku||L2<m) for all u € D(LF). (55.1)
Proof. We first claim that for u € D(L*).
lull2e () < Crlllull a2y + [LullL2go) + - + | Lol L2 (2))- (55.2)

We prove Eq. (55.2) by induction. When k = 0, Eq. (55.2) is trivial. Consider
u € D(L¥+D) C D(LF). By elliptic regularity (Theorem 52.15) and then
using the induction hypothesis,

k+1

[ull gracesn (@) < Clllull @) + 1Ll geie) < Cria | D 1L ull 20
J=0

This proves Eq. (55.2). Because sup { (HAQP

TA> 0} for any p > m, it follows
by the spectral theorem that

L™ w320y < C (||u|\§2<m + HLPUH%QW)) for all p > m.

Combining this fact with Eq. (55.2) implies Eq. (55.1). m
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Theorem 55.6. Continue the notation in Lemma 55.5 and let {¢n}rr, be

the orthonormal basis described in Theorem 55.1 and for A € R let

n=1

Ey :=span{¢, : A\, < A}.
If k is the smallest integer such that k > d/4, there exist C < oo such that
dim(Ey) < O(1 + \%) (55.3)
for all A\ > info(L).

Proof. By the Sobolev embedding Theorem 49.18, H?*(02) — Cf’“*% () c
c (.Q) . Combining this with Lemma 55.5 implies D (Lk) — C (_Q) and for
u € D(L¥),

lullcoay < llull ot < Cllullazeiay < Clllullzz(o)+HIL ull12(a))- (55.4)

2(2) =
Let A > info(L) and u € E) C D(L*). Since
w= Y (u,¢n)¢n and LFu =" X:(u,¢,)¢n,

n:A, <A An <A
2%k
IZ¥ulZa i) = D Al 60) P <IN lullZe - (55.5)
An<A
Combining Egs. (55.4) and (55.5) implies

lullco < CA+ M) lull 2oy = CA+N) [ [(u, ¢0)[ (55.6)
An <A

N
Let N = dim(E)), y € 2 and take u(z) := > ¢n(y)on(z) in Eq. (55.6)
n=1
to find

Z\% (w)* < sup Z¢n(y)¢n )| SO+ [oaly)?

from which it follows that

S len()l® < C2(1+ A2

n=1

Integrating this estimate over y € {2 then shows
N N
dim(Ey) =3 1 = Z/|¢n(y)|2 dy < C2(1+ \F)2|0|
1 1
Q

which implies Eq. (55.3). ®
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Corollary 55.7. Let k be the smallest integer larger than d/4. Then there
exists € > 0 such that \, > en™?* for n sufficiently large. Noting that k ~ d/4
this says roughly that A, ~ n%?2, which is the correct result.
Proof. Since!
n < dim(Ey,) < e(14 A2F),

o1<AZor ), > (2-1)%. m

c

1 If A = A\, has multiplicity larger than one, then n < dim Ey, otherwise n =
dim E},, .
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Construction of Heat Kernels by Spectral
Methods

A couple of references for this and later sections are Davies [3, 4] and L.
Saloff-Coste [12].

For this section, again let £2 be a bounded open subset of R? such that
2° = 2 and 2 is C* — manifold with boundary. Also let £ be a symmetric
Dirichlet form with domain being either X = H(£2) or X = HZ(£2) and
let L := Lg be the corresponding self adjoint operator. Let {¢,},.; be the
orthonormal basis of eigenvectors of L as described in Theorem 55 1 and
{An}oo, denote the corresponding eigenvalues, i.e. Lo, = Ay,

As we have seen abstractly before,

t) = cos(VLt) f + %\/\/fft) g

= S feosty/ Mt + 2 (5.6,
n=1 n

solves the wave equation

2
a@tQ + Lu = 0 with «(0,z) = f(z) and 4(0,z) = g(z)

and

u(t) = e Pug =Y e (ug, dn)dn
n=1

solves the heat equation,

% = —Lu with u(0,2) = up(z). (56.1)

Here we will concentrate on some of the properties of the solutions to the heat
equation (56.1). Let us begin by writing out (¢, z) more explicitly as
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[eS) N
utia) = 3 [ ualw)on(u)dy oua) = Jim / wo() 3 € (@) () d
n=1 0 n= 1
(56.2)
Theorem 56.1. Let p;(x,y) denote the heat kernel associated to L defined
by
pi(x,y) —Ze PG (@) b (y)- (56.3)
Then

1. the sum in Eq. (56.3) is uniformly convergent for all t > 0
2. (t,z,y) — pr(z,y) € C°(RT x 2 x 2)
3. u(t,x) = [ pe(z, y)uo(y)dy solves Eq. (56.1).

2

Proof. Let N
P (@) =Y e P du(@)dn(y),

n=1

then (t,z,9) — pN(x,y) € C®(R x 2 x ). Since L*¢,(x) = M, by the
Elliptic regularity Theorem 52.15,

160l e () < Cllonllza@) + IL Gl r2(e) < CL+AL).

Taking k > d/4, the Sobolev embedding Theorem 49.18 implies
H¢7LHCD({)) < ||¢'n||c2k*d/2(_(’z) < C”(bn”H?k(.Q) < C(l + /\2)

Therefore sup |¢n(z)dn(y)| < C2(14+M*)? while by Corollary 55.7, A, > n*/¢
and thereff)feegvhile S0 e (14 AE)2 < oo, More generally if |a| = 2m
10%nllco < 10%bullaze < NIl mzaem < C(L+XTF™)
and hence
H¢n ® ¢TLHC2"1(Q><Q) < 02(1 + >\Z+m)2

from which it follows that

fe o]

Z supe Ay © Onllcam(axa) = YoM lone nllcan(axn)

n=112 n=1
(o)
<c? Z e (14 A2 < 0,
n=1

So plN (x,y) and all of its derivatives converge uniformly in ¢ > € and z,y € 2
as N — oo. Therefore p;(z,y) := th N (z,y) exists and (¢, z,y) — p:(2,y)
—00
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is C* (Q) for t > 0 and x,y € £2. It is now easy to justify passing the limit
under the integral sign in Equation (56.2) to find u(t,z) = [ pi(z, y)uo(y)dy.
- 2

Remark 56.2. pi(z,y) solves the following problem % = —Lypt, pi(-,y) sat-
isfies the boundary conditions and ltilrg (-, y) = 0y

Definition 56.3. A bounded operator T : L?*(£2) — L2(02) is positivity pre-
serving if for every f € L*(2) with f > 0 a.e. on 2 has the property that
Tf>0 a.e. on {2

Proposition 56.4 (Positivity of heat kernel’s). Suppose D(L) = H}(£2)N
H2(£2), i.e. L has Dirichlet boundary conditions, then the operator e 'L is
positivity preserving for all t > 0 and the associated heat kernel pi(x,y) is

non-negative for all t € (0,00) and z,y € 2.

Proof. Since e~ #(E+C) = ¢~tC¢—tL ig positivity preserving iff e &

itivity preserving, we may assume

L= 72(11']'((‘)1'8]' + Zazﬁz +a

with @ > 0. Let f € C* (£2,(0,00)) and u(t,x) := e~ "L f(x), in which case u
solves

is pos-

% = —Lu with u(0,2) = f(z) > 0 for (t,z) € [0,T] x £2
with u(t,z) =0 for z € 912.
If there exist (to,zo) € (0,T] x £2 such that
u(to,z0) = min{u(t,z) : 0 <t < T,z € 2} <0,
then %(to,xo) <0, d;u(ty, o) = 0 for all ¢ and by ellipticity,
a;j(x0)0:05u(to, xo) > 0

Therefore at (to,zo),

0= % + Ly = % — a;;0;05u + a;0;u + au

=g—?—aijaiajumu:(go)—(zo)+(<0)<o

which is a contradiction. Hence we have shown

0 < ult,z) = /Q pel ) f(y)dy for all (t,2) € [0,T] x 2. (56.4)
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By a simple limiting argument, Eq. (56.4) also holds for all non-negative
bounded measurable functions f on 2. Indeed, let f, = ( flo +n*1) *
N, where 7, € C®(R? (0,00)) is a spherically symmetric approximate § -
sequence. Then f, € C* (Q, (0, oo)) and hence

0< /Q pu(,y) )y — /Q pe(z,9) F(y)dy.

From this equation it follows that p(x,y) > 0 and that e~*F is positivity
preserving. H

Lemma 56.5. Suppose f, > 0 on 2 and f, — d, as n — oo, then
lim [, f2(z)dx = occ.
n—0o0

Proof. For sake of contradiction assume lim [ f2(z)dz # co. By passing

to a subsequence if necessary we may then assmume M =: sup,, [, f2(x)dw <
oo and that f,, converges weakly to some g € L% (£2). In which case we would
have

o@) = [ oy = [ aowdy for all o€ C ().
2

But this would imply that g = 0, which is incomensurate with g being an
L2(02) function and we have reached the desired contradiction. m

Theorem 56.6. Let p; be a Dirichlet heat kernel, then limy o pe(x, z) = oo
and pi(z,y) > 0 for all z,y € 2 and t > 0.

Proof. We have seen p;(z,-) — §, for all z € 2. Therefore by lemma

li 2dy = oo.
i / pi(z,y) dy = o0
(P

/pt(:v,y)Qdy = /pz(w, Y)pe(y, x)dy = pae(z, ).
2 2
Therefore 1tilr(r)1 pot(z,x) = oo for all x € .

Sketch of the rest: Choose a compact set K in {2, then by continuity
there exists ¢p > 0 and € > 0 such that pi(z,y) > 1 forall z € K, |z —y| <
eand 0 < t < 9. (Note tanhp;(x,x) is continuous on [0,1] X {2, where
tanhpo(z,z) = 1.) Now if z € K and y € K and |z —y| < 2¢, we have for
t < to that

pi(z,y) = / Dol 2o, y)dz > / pja(a, 2)pualz, )z
2 B(xz,e)NB(y,e)N§2

>m (B(z,e) N B(y,e) N 2) > 0.
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Working inductively, we may use this same idea to prove that p;(z,y) > 0 for
all t < tp and z,y € K. Moreover the same semi-group argument allows one
to show pi(z,y) > 0 for all £ > 0 as well.

Second Proof using the strong maximum principle.

Now for y fixed 0 < ¢t < T, f(t,z) = pi(z,y) solves % =
L, f(t,x), f(e,x) = pe(z,y). With out loss of generality, assume

L=— Z —aiaijaj + a with a > 0.

For if a is not greater than 0, replace L by L+ A and observe that e~ #(-+3)
e~ etl. Therefore p)(z,y) = e pi(z,y) so pi(z,y) > 0 iff p}z,y) > 0.
Then % = L,pi(z,y) for all T > ¢ > € and = € 2. By the strong maximum
principle of Theorem 12 on page 340 if there exist (zo,t0) € £2 x (¢, 7] such
that pt, (zo,y) = 0 then z — p¢(x,y) is a constant on (0ty) x {2 which is false
because the constant would have to be 0, but [ p,(z,y)dz > 0 for T small.
|

56.1 Positivity of Dirichlet Heat Kernel by Beurling
Deny Methods

Assumption 6 Suppose L = —0;a;;0; + a where a;; = aj; > el and a €
C>®(2) and D(L) = H}(2) N H2(£2).

Theorem 56.7. Let \g = max(—a) i.e. —\g = min(a). Then for all X > Ao,

Ly =L+ X : D(L) — L% () invertible and if f € L*(£2), f > 0 a.e then
L;lf >0 a.e., ie. L;l 15 positivity preserving.

Proof. If A > Ay then A + a > 0 and hence if Lyu = 0 then

(Lau,u) = /(aijc')iuaju + (a + Nu?)dz = 0.
Q

This implies Vu = 0 a.e. and so u is constant and hence u = 0 because u € H.
Therefore Nul(Ly) = {0} and so Ly is invertible by the Fredholm alternative.
Now suppose f € C®(2) such that f > 0, then u = L;lf € C>(2) with
Lyu = f > 0and u =0 on 0f2. We may now use the maximum principle idea
in Theorem 45.16 to conclude that u > 0. Indeed if there exists x¢ € {2 such
that u(xo) = minu < 0 at zo, then

0 < f(zo) = (Lau)(zo) = — (ai;0i0ju)(z0) +(diai;)0ju(wo)
>0 =0
+ (a4 Nu(zo) <0
—————

<0

1116 56 Construction of Heat Kernels by Spectral Methods

which is a contradiction. Thus we have shown u = L;l f>0if f €
C>®(12,(0,00)). Given f € L?>(£2) such that f > 0 a.. on 2, choose
fn € C>®(£2) such that f, > L and f, — f in L?(2) and f, — [ ae.
on 2. (For example, take f, = ns, * (flﬁ—&- %) say.) Then u, = Ly f, >0
for all n and u,, — u = L;lf in H?(£2). By passing to a subsequence if nec-
essary we may assume that u, — u a.e. from which it follows that v > 0 a.e.
on 2. m

Theorem 56.8. Keeping L as above, e *F : L2(02) — L2(02) is positivity
preserving for all t > 0.

Proof. By the spectral theorem and the fact that (1 + %)71" — e A
boundedly for and A > 0,

—n -n —17"
e 'tf= lim (1+E> f=lim (3) {(E+L> } I
n—oo n n—oo \ N t

Now (% + L)71 is positivity preserving operator on L? (£2). Where 2 > Xg
and hence so is the n — fold product. Thus if

S ON(GORE

then u,, > 0 a.e. and u,, — e L' f in L2 (£2) implies e *£f > 0 a.c. W
Theorem 56.9. p;(z,y) > 0 for all z,y € §2.

Proof. f € L?(£2) with f > 0 a.c. on 2, e L' f € C®(2) and e f >0
a.e. by above. Thus e~ * f > 0 everywhere. Now

/ pe(z,y) Fw)dy = (e f) () > 0

2

for all f > 0. Since p;(z,y) is smooth this implies p;(z,y) > 0 for all y € 2
and since z € 2 was arbitrary we learn p;(z,y) >0 for all z,y € 2. =m
7?77 BRUCE for f € C° (22) C ND(L") = C*(L) we have ||(e ‘£ f) —
fllzx — 0ast | 0 for all k. By Sobolev embedding this implies that (e 7~ f) —
f(z)ast|Oforall z € Rie. [pz,y)f(y)dy — f(x).
Q
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Nash Type Inequalities and Their
Consequences

Corollary 57.1. Suppose d > 2, then there is a constant Cy < oo such that

244/d

4/d
lul3¥4¢ < CallVull3 ully’ (57.1)

for allu e C} (RY).

Proof. By Corollary 49.15, ||uf2- < C||[Vulls where 2* = 24 and by
interpolation
0 -0
lullz < llully llullg
where % + % = % Taking p = 2* and ¢ = 1 implies 2% +1-0= %, ie.
0 (2% — 1) = f% and hence

g2 ___r __d 1
1 * _ _ 2d
1— 5 2(2 1) (d—2) 2 -1
d d-2 d
a2 d+2 d+2
and 1 — 0 = . Hence
f[ull2 < 7 < o7 || Vullf IIUHM

and therefore
di2 2
[ull,™ < ClIVull2 [lull{-

and squaring this equation then gives the estimate in Eq. (57.1). m

Proposition 57.2 (Nash). Corollary 57.1 holds for all d.

Proof. Since the Fourier transform is unitary, for any R > 0 and [|%||, <
[z,
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g = [ a©Pds= [ lapas+ [ japac
' lel<r >R

_ 1 .
o (ST Rl + g [ IePlaPde
[E1>R

_ 1
o (8°71) RYulls + 1 Dulf = £(R)

where f(R) = aR?+ 25 and a = ¢ (S971) |Ju||2, and b = || Dul|3. To minimize
f7 we set f (R) = 0 to find daR4™* — 2bR™% = 0, i.e. R¥2 = 2L and hence

( G . With this value of R, we find

1 piay (a7 2
2 (b+aR"?) = (2b b+d

2
- (M) b (@) T 0y aTr T = O o b7

f(R) =

d 2b
which gives the estimate
lull3 < CdHDuHS“ f[u lld“
which is equivalent to
2+4/d 4/d
ulZH 7 = ul 35 < Call Dull Jlull /"
[

Proposition 57.3. Suppose A(x) = {a;;(x)}¢;_, such that there exists e > 0
and M < oo such that el < A(x) < MI for all x € RY. Define D(£) =

WL2(RY) and
& = E i;DiuDv dx.
(u,v) . /daw uD;v dx

Then € is a closed symmetric quadratic form. Moreover C®(R?) is a core
for E.
Proof. Clearly |Jul|y1.2 < %(HUHLZ(Q + &(u,u)) and
E(u,u) < M||Dul|? < M||uljywr.2.

and hence

113 +EC,) = - llwe

so that (D(E), VI +5(-,-)) is complete. m
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Theorem 57.4. Let —L denote the positive self-adjoint operator on L?(R%)
such that &(u,v) = (V=L u,v/=L v)r2(ra) and define T, := e'* : L2 — L2
(Notice that ||T;flla < || fll2 for all f € L? and t > 0.) Then

1.Tif>0a. e if f >0 a.e.

2. Tif € L"NL>® forall f € L' N L™
30<Tf<1if0<f<1aec

4 N\ Tefllee <\ fllpe for all f € LY N L.

Proof. (Fake proof but the spirit is correct.) Let u(t,z) = T} f(x) so that
up = Lu with (0, z) = f(z)

where Lf =" 9;(a;;0; f)(x) — a second order elliptic operator. Therefore by
the “maximum principle,”

—[flloe = inf f(2) < u(t,z) <sup f(z) < [|fll

and hence || f|loo > ||7%f|lco- This implies items 1. and 3. of the theorem.

For g, f € L' N L,

I(Tef, )| = 1(f, Teg) |l < [1f 11 Teglloc < 1 F112llglloo-

Taking sup over g € L' N L™ such that ||g||, = 1 implies |3 f||.: < |||
and we have verified that

1T fllp < (£l for p € {1,2, 00}

Hence by the Riesz Thorin interpolation theorem, ||T3f||, < | f|l, for all p €
1,00). m

Theorem 57.5 (Beurling - Deny). Items 1. — 4. of Theorem 57.4 hold if
for allu € Wh2, |u| € WE2 and 0V (u A1) € WH2 and

E(lu]) <E(u) and EOV (uA 1)) < E(u). (57.2)
Proposition 57.6. Suppose u € W1P(£2) then liy=0y Du=0 a.e.
Proof. Let ¢ € Cg° (£2) such that ¢(0) = 1. For € small set ¢.(z) = ¢(z/¢)

and
udo) = [ owir= [ o(%)ay
— ¢ / ; o(w)du = ety (3/¢).
Then

D [the(u)] = ¢¢(u) Du = ¢(u) Du
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and hence for all f € C°(12),
(¢e(u)Du, f) = (D [Ye(uw)], ) = (tbe(u), =D f) = 0(€) — 0.

Combining this with the observation that

¢e(u)Du z, liy=oyDu as e | 0
implies
/1{u:0}Du -fdm=0forall feCX2)
2
which proves 1,—oyDu=0aec. =
Exercise 57.7. Let u € W'P. Show
1.If ¢ € C*(R), ¢(0) = 0 and |¢| < M < oo, then ¢(u) € WP and
D¢(u) = ¢'(u)Du a.e.
2. |u| € WYP and D|u| = sgn(u)Du.
3. Bq. (57.2) holds.
Solution 57.8. Let u, € C* (RY) N WP such that u,, — u in W'P. By

passing to a subsequence if necessary we may further assuem that w,(z) —
u(z) for a.e. z € RY. Since |¢p(u)| < M |u]

|6(w) = G(un)| < M [u— un|
it follows that |¢(w)|, |¢(un)| € LP and ¢(u,) — ¢(u) in LP. Since ¢'(u,) is
bounded, ¢'(u,) — ¢'(u) a.e. and d;u,, — G;u in LP, it follows that
10:6(un) — Oip(w)|l,,
= [[¢' (un)Osun — &' (u)Osull,,
< 16 (un) [Oiun — Osulll,, + [[[¢'(w) — ¢'(un)] Diull,,
< M ||05un — yull,, + ||[¢' (u) — &' (un)] dsull,, — 0
where the second term is handled by the dominated convergence theorem.
Therefore ¢(u) € WP and 0;¢(u) = ¢’ (u)d;u.
Let ¢c(z) := Va2 + €2, then ¢.(z) = T |¢L(z)] <1 for all z and
VP 0 ifxz=0
lelﬂ)l 9c(z) = {sgn(x) ifx #0.
From part 1., ¢ (u) € WP and ;¢ (u) = ¢.(u)d;u. Since ¢.(u) — |u| in LP
and
0ide(u) = ¢.(u)diu — Lyzosgn(u)d;u = sgn(u)d;u a.e.
where the last equality is a consequence of Proposition 57.6. Hence we see
that |u| € WL? and D|u| = sgn(u)Du.
Remark: (BRUCE) I think using the absolute continuity of u along lines
could be used to simplify and generalize the above exercise to the case where
¢ € AC(R) with |¢/(z)] < M < oo for m — a.e. z € R.
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Remark 57.9. Ty extends by continuity to L for all 1 < p < oo, denote the
extension by T and then T, f = T f if f € LP for some p. In this way we
view T'; as a linear operator on |J LP.

1<p<oco

Theorem 57.10. There is a constant C < oo such that
c .
ITefllze < sl £llz (57.3)

for all f € L2.

Proof. Ignoring certain technical details. Set u(t) = Tif and v(t) =
lu(t)||3 and recall that u solves

@ = Lu with u(0) = f.
Then
. d .
*'U(t) = H'U, ”2 - 72(”7 u) = 72(u7 Lu)
= 25(%10 > —||DU||%2-
€
Combining this with the Nash inequality from Eq. (57.1),
2+4¢ 4/d

™% < ClDul3a [lully/,

implies

2+4/d 2+4/d 1+2/d
oy » I aC B scuwe

d d d
€ lu(®)y e 1Y ey

Since fiw(*lfz/d)dt = 7%1}—2/117 it Eq. (57.4) is equivalent to

d (d ,Q/d) 20
v >
dt el 113

and integrating this inequality gives

5 4
ITufll5 % = v=2/4(t) > v~ 2(t) — v~ 2/(0) > Li/d
dell fIly
Some algebra then implies
4/d
T, fH4/d dﬁ”le/
=0y

and hence c
1T fll2 < m”le
and by duality, Lemma 57.12 below, this implies Eq. (57.3). =
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Remark 57.11. From Eq. (57.3),

C C
12271 = et f3 < —sllet f e = (€1, F)

C? o
< Wﬂe fllie | flle

and hence Eq. (57.3) implies the inequality,

1 floe < Sy (575)
Lo S 7z L. .

Lemma 57.12 (Duality Lemma). Let T be a linear operator on Upe(, 00 LP
such that T(L* N L>) = (L' N L>®) and T : L? — L? is self adjoint. If

ITfllp < Cllfllq for all f € L' 0 L*

then
ITfllq < CIfllp for all f € L* AL

1,1 1,1
whereq,Jrq—landerp,—l.

Proof.
Il = sup (Tf,9)l= sup |(f,Tg)| < sup |fllyITgllp
ligll,= llgll,=1 llgll,=1
< CHfllp/ sup |lgllg = Clflp-
gllg=1
|

Proposition 57.13 (Converse of Theorem 57.10. ). If
e £l < Ct=Y*|flly for all f € L? (57.6)

then i
17157 < ==€(f, DI -

Proof. By the duality, Lemma 57.12, (57.6) implies
e ]|, < Ct=*| f|l, forall f € L?
and therefore

t
C22|| 7112 > |l f112 = (21, 1) = (f, f) +/0 2(Le*™" f, f)dr

Since ze?™ > g for x < 0, it follows from the spectral theorem that Le?™" > L
for L < 0. Using this in the above equation gives the estimate
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ot
C2H 2| FIT > 1IF1I5 + 2/0 (Lf, Ndr = || fIl5 +2t(Lf, f)
> |IfI3 — 2tE(F, f).

Optimizing this inequality over ¢ > 0 by taking ¢t = £(f, ]‘)*2/d+2||f||411/dJr2

implies

—d/
1713 < €% (£, £y 2) ™ U1 + 260 122 A1 27, )

1711574 < ce(r, NI
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Notes from coulhon.tex.

Theorem 58.1. Let (X, i) be a measure space and f be a positive measurable
function. Then for 1 < p < oo,

112 =p / p(f > t)rldt

Proof. We have

fT‘
151 = [ ran= [ ([ o) = [t
JXx x \Jo JX R4
:/ p(f > t)pt?~ dt
0
|
In these notes we are going to work in either one of the two following
settings.
58.1 Weighted Riemannian Manifolds
Here we assume that M is a non-compact, connected Riemannian manifold

with Riemannian metric g which is also equipped with a smooth measure p.

We let [V f|> = g(Vf,Vf) and
0= [ 19 = (A1) o0 220

Here (f,g) := [,; fgdu. We have the following general important facts. The
heat kernel is the smooth integral kernel for the heat operator, e~*#.
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Definition 58.2. Given a smooth hypersurface A C M let |A| denote the

surface measure, i.e.
4] = / (N
A

where N is a normal vector to A.

Theorem 58.3 (||V1g|, = |042|,). Let £2 CC M be a precompact domain
with smooth boundary and let fo(x) = he(dge(x)) where he(z) = (£) A1. Here
dge(x) denotes the Riemannian distance of x to 2. Then

lim [V fell, = 10421,

which we write heuristically as
Vi, =08,.
Proof. We have
Vfe(z) = hl.(dge(z))Vdge(z) for a.e. x
and hence
[V i(x)| = 1d9<‘ (z)<e for a.e.
and therefore,
lelirg IV fell, = l(lﬂ)l %u (dpe <€) =1042].
[ ]

Theorem 58.4 (Coarea Formula). Let (M, g) be a Riemannian manifold,
/M — [0,00) be a reasonable function and w be a smooth volume form on
M. Then

HVfHLL(H):/O |0 {f > t}|dt.

Proof. See [5, 1, 2] for a complete Rigorous proof. We will only give the
idea here. Locally choose coordinates = = (z!,...,2™) on M such that z! = f.
This is possible in neighborhood of points where df is non-zero. Then 8?ci is

tangential to the level surface {f =t} for i = 2,...,n and therefore

22 0L\ 9 9,
Moal 922 e’ ~ P\ aa VI ) IV 0227 B

(0 Vi P P

Now
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o Vf
(g o) =197 (a”)
_ -1 90 L -1 0 4 -1
= VA o f = VA et = (V]
and therefore,
‘ 0 0 0 0

Integrating this equation with respect to dz!...dz™ then gives

/‘M(Nazvv?)

on one hand, on the other
0 0

N—,...,—

/‘N( " Ox?’ ’835")

WAVET

(N7@7”.78:c”)
:/R [/{f_m Iu(N,)@ da' = /Ooo |0{f > t}|dt.

det ... dz" = ||Vf||L1(u)

dz'...da"

dz? ... dx"} dz!

58.2 Graph Setting

Let I' = (V, E) be a non-oriented graph with vertices V and edges E. We
assume the graph is connected and locally finite, in fact I think he assumes
the graph is finitely ramified, i.e. there is a bound K < oo on the number of
edges that are attached to any vertex. Let d denote the graph distance and

N::{ny:ltzyZO:x,er > .TyEE}

be a measure on E. Extend u to all pairs of points xy with x,y € V' by setting
Hay = 0 if zy ¢ E. Using this notation we let
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Mz t= Z Py = Z Hay

yev yeVizyeE
p(z,y) = Hzy (the Markov Kernel),
i
p(R2) == px when 2 CCV,
zen

0 :={zxye€e E:x € N and y € 0N},

|092|, = Z ey and
€N, y¢ N

IVF(@)P = Z f(x Pp(a,y).

In this setting Pf(z) := >, p(z,y)f(y) corresponds to e t4w and P is a self-

adjoint operator on L2(V, u). Also recall that A, corresponds to 1 — P. As in
the manifold case we still have

IV1al, = 2|82, and (58.1)
> 1
| 14> B1de = 5195l (55.2)

as we will now verify. Using the definitions,

9121, = e 3 (o) = 10l o:0) = (o) = La(w)l

Y z,y

= > eyt D ey =209,

€N, Y¢N ¢ Q,yeN

verifying Eq. (58.1). For the graph co-area formula (58.2):

IVl iy = D 1 D1 (@) = F() o2, y) = Zlf ) = )] tray-

while

0{f >t} = Z Hay = Z Hay = Z Lyy)<t<f(@)Hay
ze{f>t}y¢{f>t} f(z)>t and f(y)<t

so that

/0 0{f >t} dt = / D i) <t< fayHaydt = Z/O L (y) <t< f(x)Harydt
= Z 1f(y <f(x (z) — (y)) Hay
=35 Z lf(@) = FW)] pay = va”Ll(u)
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58.3 Basic Inequalities

We begin with a couple of very simple Sobolev inequalities. Suppose that

f € C*(R), then
Fo) = (/ f(tdtf/ I dt)

from which it follows that
1
f@I<5 [ 17l
R

By the Mean value inequality we have the oscillation inequality,

If () = f@)] < ly =21 ]l

The first inequality is dimension dependent and probes the global structure
of R while the second inequality works in arbitrary generality and hence does
not probe the global structure of R in any way. Let us now list a number of
inequalities which are true in R"™ for all f € C°(R™).

||fH2_n < C||Vflly (Sobolev Inequality) (58.3)
IF172" < ClAR™ IV £, (Nash Inequality) (58.4)
IS0, < CAR™ - IV £]l, (Moser Inequality) (58.5)

1f(@) = f(W)] < Cplz—y[' /P [Vl for p>n (oscillation inequality).
(58.6)

The last inequality is valid for all f € C*°(R") as well.
Let W(f) = [V fll, and for a positive f let

2k if f22k+1
fri=(f =28 n2b =0 F—2kif 2k < f < 2kH1
0 if f<2k

Then
ka = Vf12k§f§2k+1
and therefore

IV FIE = / VAP ds = / SOV Ly epirdp = 3 / IV fil? dp.
M M k 3 M
This shows that

IVfl, = <Z IV ficl )1/p~

This is a key truncation property for positive Lipschitz functions f. As an
application we have the following theorem.
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Theorem 58.5. The Nash and Sobolev inequalities are equivalent.

Proof. Sobolev = Nash. Recall the Holder interpolation inequality,
1-0 0
[/ [/ i

where

pe po D1
Taking pg =2, po =1 and p; = n2”2 we solve for 6 to find

1 1-6 n—2 n—2 n+2
31 0 ’Ho(zn )’1_9< 2n)

and hence

1 1-60 0
+_

n 2
d1-0=—o
2 nt2

and therefore,

n.+2

1l < 171 11
This inequality along with the Sobolev inequality (58.3) shows,

L

I£115F> =

which is the Nash inequality (58.4) with the same constant.
Nash = Sobolev. Conversely suppose the Nash inequality (58.4) is
valid. Applying Nash to fi we find

(/ f;?)m/n (1l*>)”

< Cflli ™ IV fillz = C2 | falli™ / IV fI” du

By

where By, 1= {2’C <f< 2’“’1} . Combining this inequality with the following
two elementary inequalities;

[z = 22
{f=2k+1}

Ifilly < 2% (f = 2")
gives
(@2 ({1 > 2k+1}))1+2/n < 0% (2 (f > Qk))4/n/ V12 dp.
By,

Let ¢ = ;725 be the exponent in the Sobolev inequality and v = 15 < 1,
= 2‘1" (f > 2’“) and by, := ka |Vf\ dp. Then the above inequality says,
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Qi1 < Clbu 2(1 v)

and summing this equation of k € Z then gives

v (1-v)
Yo=Y <0 Y Hai Y < (Z ’”“) (Z )

wherein we have used Holder’s inequalities with the conjugate indices 1/v and
1/(1 — v) in the last inequality. Since we are using counting measure, we also

have ) )
lal3 <> llally ax < ||all}
k

which combined with the previous inequality gives
v 2(1—v)
Succ(Tn) (T
k k k

=C </|Vf\2d,u>u <;Gk>2(1—'/)

which then shows

and hence

We also have

=30 [ <2 (=2 =23
k v<

k fSQlH»l

and it then follows that

£l < 200" ( / Wffdu) )

which proves the Sobolev inequality (58.3). m

58.4 A Scale of Inequalities

In this section let ¢ : Ry — R, be an increasing function, for example ¢(t) =
ct!/™ and ¢(t) = clog(t) for t > 2.
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Definition 58.6 (S}). Given p € [1,00] and ¢ as above, we say S} holds
provided

£, < o (2D IIVSIl, for all 2 5 |2] < oo and f € Lipo(2)  (58.7)

where Lipy({2) denotes those functions f on M or V such that f is Lipschitz
and supp(f) C 2 and f =0 on 012.

Proposition 58.7. Suppose 1 < p < ¢ < oo and Sg holds then Sz¢ holds.
»
Proof. Apply Sg to the function f9/? to find
11y = || <eden|vs| =oaand|sarovy|
P P p p

where we should check that the approximate chain rule holds in the graph
case here. Now apply Holder’s inequality with

1_1, 1
p q pg/(g—p)

to the last expression to find

Hf(q/p—l)fopg va”qu(q/p—l)H I =V fH (/( (q p)/p)p[I/(‘IP>)gP_‘IE
_ Vo, ( / fq)W = IV 11, 11,7

17157 < 12 219 1, 11,7

This gives

that is to say
q
I1fll, < & (1920) » V£, -

[
We now give some equivalent inequalities to Si in the following theorem.

Theorem 58.8. We have

S5 = ¢(|B(x,r)]) =21 <= |B(z,r)| > ¢~ (r)
|0£2] < 1
121~ o (1520)
Sé <= to the ¢ — Nash inequality

S5 = 121 < ¢(12)1092] (e

) for all reasonable 2

(up to constants) where the ¢ — Nash inequality is the inequality,
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¥k
B

The ¢ — Nash inequality is clearly equivalent to

2
0 (1712) = 2w <912 for ati p e o) 5 g1, =1

¢ (I\f\\i)

where 0(z) = x/¢?(1/z).

£l <o ( ) IVflly for all f € CZ(M). (¢ ~ Nash) — (58.8)

Proof. (sgo) Let f(z) := (r — d(wo,2)), = hr(d(xo,x)) where hy () =
max ((r —t),0). Then

Fig. 58.1. Plot of h, when r = 3.

V()] = [k (d(zo, 2))| [Vad(wo, )| = Lagwo.a)<r
and || f||,, = 7. So putting this function into (S(‘;") then implies

r=fle <& (B0, ")) IVl = & (I1B(zo,7)])-

For the converse, if supp(f) C 2, then by the mean value theorem,

[flloe < in( Vo (58.9)

where in({2) := (in radius of {2) is the radius of the largest ball contained in
2. To prove this last equation, let zy € 2 and y € 02, then by the mean
value theorem and the definition of in(£2),

|f (o)l = |f(y) = f(zo)| < d(z0,y) [Vl < in(2)[IVf]-
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This proves Eq. (58.9). Now suppose ¢(|B(z,r)|) > r holds for all x and r,
and let B(x,r) C 2. Then since ¢ is increasing,

r < ¢ (|B(z,7)]) < (1))

and taking sups over all B(x,r) C {2 we learn that in(§2) < ¢(|£2]). Using this
inequality in the estimate in Eq. (58.9) shows

[flloe < o(2D IVl »

as desired.
(S;) Applying (Sé) to the function 1, shows

192 = l1elly < ¢ (12) Vil = ¢ (1£2])|042],
as desired. For the converse, we have by the co-area formula, the above in-

equality and the fact that ¢ is increasing for any f with supp(f) C £2 and
positive that

e e

va”le_/o [0{f > t}|dt > | ¢(\f>t|)dt
1 °° 1

Z¢(\Q|)/o u(f>t)dt—m“f”1~

(Sg) Clearly (Sé) , l.e.
1£lly < ¢ (121 [IVfl, for all supp(f) C £2
is equivalent to

A ; 1
/\1(9): su ( vaf) — su HVf!2 > 5 .
fisupp(f)C$2 ||fH2 fisupp(f)CR Hf||2 ¢ (‘QD

Now suppose that ¢ — Nash of Eq. (58.8) holds. Since

1T = (f12)* < IIF13 ILells = 120 1£13

so that |2] > H;Hi Since ¢ is increasing ¢ (|2]) > ¢ (H;”E) , so that ¢ — Nash
implies
112
Il <6 (”f— 1971 < 642D 1971,
2

which is (Si) .
Conversely suppose (S3) holds and let f € C2°(M,[0,00)) and t > 0 (¢ to
be chosen later). Then using f < 2(f —t) on f > 2t we find
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/f2+ f2§4/ F-t2vuf f
f>2t f<at Jf>ot Jf<ot

s4/(f—t>i+2t||f||1

/r

Now applying (S;) to (f —t)4 gives

/ =12 <6(f > ) IV — 1)<
< /(f — 2 <o (f > DIVAZ< 6 11 IV

and combining this with the last inequality implies

_ 2
[ £ <406 11 19 F13 + 211,
Letting € > 0 and taking t = ¢ Hf||§ /| fll; in this equation shows

1£13

fl3 < 46
171z (efné

) IV £1I5 +2€1£13

or equivalently that

s 4 (WY o
1713 < =50 (6” f”§> 19513

Taking € = 1/4, for example, in this equation shows

2
I < 80 (4f ”1> IV £

HE

which is ¢ — Nash up to constants. m

58.5 Semi-Group Theory

Definition 58.9. A one parameter semi group Ty on a Banach space X is
equicontinuos if ||T3|| < M for allt > 0.

Theorem 58.10. Let (X, ) measure space, Ty a semigroup of operators on

LP(X,p) for 1 <p<oo and A := —%|0th so that Ty, = e t4. Assume that

1Te]l, 1y S M < o0 and || T|| oosoo < M < 00 for all t. Also that there exists

fh: JII€€+ — Ry such that [ % < oo and [y % = oo for all € € (0,00) such
a
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0 (IF13) < Re(Af,f) forall f€D(A) > Ifl, <M. (58.10)

Then T; is ultracontractive, i.e. ||T;
have

I o < 00 forallt >0, and moreover we

T2l o oe < m(t) for allt >0

f / * dx
m(t) 0(3?) .
Remark 58.11. This type of result appears implicitly in Nash 1958. Also see
Carlen, Kusuoka and Stroock 1986 and Tmisoki in 1990.

where m satisfies

Proof. Let f € L' with | f||; = 1 and so by assumption ||T;f||, < M for
all t > 0. Letting I(¢) := ||th||§ we have using Eq. (58.10) to find

I'(t) = —2Re (AT, 7o) < —20 (ITLf[3) = —20(1(2)).

Thus —%;((i% > 2 and upon integration gives
oo 1(0) T /
/ dx > / dzx _ I'(t) gt
1) (@) ~ Jir) 0(2)) o 0U()
T oo
> / 2dt = 2T = / r
0 m(2T) 0(%’)

and therefore we have I(T) < m(27T) for all T. From this we conclude that
2 2
T flly = 1() <m(2t) || fIly

showing || Ty||7_, < m(2t).
We will now apply this same result to T} using the following comments:

1. A* = —%|0Tt* and Re (A*f, f) = Re(f, Af) = Re (Af, f) we have
0 (I£13) < Re(Af, ) = Re(A"f, f) forall f € D(A") 3 ||f]; < M.
(Actually T am little worried about domain issues here but I do not pause
to worry about them now.)

2. We also have

1T/l =y = sup ITFflly = sup sup [(T}'f,9)]

£l =1 1711, =1 gl =1
= sup sup [(f,Tig)l = sup [Tigll,, <M.
lglloe=11171,=1 gll=1
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Using these comments we have ||Tt*HfH2 < m(2t) and hence by duality
again,

Tl = sup [ Tiflloo = sup sup [(Tif,9)|
1£11,=1 1£11,=1 llgll, =1

= sup sup |(f,T;g)|
gl =1 11,1

= sup [T7glly = IT7 [l,me < vV'm(20).

llgll,=1

Hence

ITell1 oo = 1 Ter2Teall oo < [ Tes2

< /m(t)/m(t) = m(t)

Tl

H24»00|

as desired. m




Part XVII

Heat Kernels on Vector Bundles




1141

These notes are on the construction and the asymptotic expansion for heat
kernels on vector bundles over compact manifolds using Levi’s method. The
construction described here follows closely the presentation given in Berline,
Getzler, and Vergne, “Heat Kernels and Dirac Operators.”
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Heat Equation on R"

Let A =Y"" , 8%/0x? be the usual Laplacian on R™ and consider the Heat
Equation

(at - %A) w =0 with u(0,z) = f(x), (59.1)

where f is a given function on R™. By Fourier transforming the equation in
the x — variables one finds that (59.1) implies that

(204 5161} . = 0 with 2(0,6) = f©) (592

and hence that i(t,&) = e !€I°/2f(¢). Inverting the Fourier transform then
shows that

u(t) = F1 (P2 () (@) = (F71 (12) w ) (@),
Now by well known Gaussian integral formulas one shows that
FH (e ) (@) = (2m) " / el 2t g — (2t) 2 e le /2,
R
Let us summarize the above computations in the following Theorem.
Theorem 59.1. Let
p(t,z,y) = (27rt)7"/2 e le—ul?/2t (59.3)
be the heat kernel on R". Then
1
where d, is the 0 — function at x in R™. More precisely, if f is a contin-

uous bounded (can be relaxed considerably) function on R™, then u(t,z) =
Jon P&, 3,9) f(y)dy is a solution to Eq. (59.1) where u(0, ) = limy o u(t, x).
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Proof. Direct computations show that (8; — %Am)p(t,x,y) = 0, see
Proposition 63.1 and Remark 63.2 below. The main issue is to prove that
limy o p(¢, z,y) = d,(y) or equivalently that lim;|o fRn p(t,z,y) f(y)dy = f(x).
To show this let p,(v) := (2t) "™/ e~ II’/2¢ and notice

'/R p(t,z,y) f(y)dy — f(x)

< [ olta) 1) = @)l dy
- / (o) |f(z+v) - f@)|dy.  (59.5)
Now for a bounded function g on R™ we have that
[ swina = [ lg@lp@do+ [ @l
Rn B(3) B(§)°
< swp g +laly [ plo)as
vEB() B(8)°

52
< sup |g(v)| +Cllgllye™" /%, (59.6)
veB(4)

where ||g||, denotes the supremum norm of g. Applying this estimate to Eq.
(59.5) implies,

52
< sup [f(z+v) = f(@)| +Cllflge™" /"
veB(J)

‘/ (t.z,y)f(y)dy — f(z)

Therefore if K is a compact subset of R™, then

| stta s f@)

< sup sup|f(z+v)— f(z)] —>0asd—0
vEB(§) zEK

limy | sup
zeK

by uniform continuity. This shows that lim¢jou(t,z) = f(z) uniformly on
compact subsets of R”. m

Notation 59.2 We will write (em/zf) (z) for Jp. p(t,z,y)f(y)dy.
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An Abstract Version of E. Levi’s Argument

The idea for the construction of the heat kernel for more general heat equations
will be based on a method due to E. Levi. Let us illustrate the method with
the following finite dimensional analogue. Suppose that L is a linear operator
on a finite dimensional vector space V and let P, := e*%, i.e. P, is the unique
solution to the ordinary differential equation

d

P = LP, with Py = 1. (60.1)

In this finite dimensional setting it is very easy to solve Eq. (60.1), namely

one may take
Lk
ok
k=0

Such a series solution will in general not converge when L is an unbounded
operator on an infinite dimensional space as are differential operators. On the
other hand for the heat equation we can find quite good parametrix (approx-
imate solution) to Eq. (60.1). Let us model this by a map t € Ry — Ky €
End(V) such that Ko = I and

d
—Kt - LKt = 7Rt7 (602)
dt
where || R;|| = O(t®) for some a > —1. Using du Hamell’s principle (or varia-
tion of parameters if you like) we see that K; is given by

t
K, =P — / Pi_.R.ds = P, — (QP),, (60.3)
0

where , ,
= / ftstst = / sttfsd& (604)
0 0

We may rewrite Eq. (60.3) as K = (I — Q) P and hence we should have that
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[ee]
P=(I-Q 'K=>) Q"K. (60.5)
m=0

Now a simple change of variables shows that (Qf);—s = f ft—rRr_sdr and

by induction one shows that
(me)t = / Jt—sm Bsp—spm 1 -+ Rsy—s; Ry ds (60.6)

tAm,
where

tA,, = {S = (51a525 .. ~75m) 0<s1 <82+ <5 < t} (607)

and ds = dsy1dss . .. ds,,. Alternatively one also shows that

(QK), = Ky Ry, Rey—sy ... R Ri_,, ds. (60.8)

tAm

Sm—8m—1

Equation (60.6) implies that

(me)z:/o fi-s (Q™'R) ds. (60.9)

=

Using this result, we may write Eq. (60.5) as
t ¢
P =K, +/ Ky JVids = K, +/ KV ds (60.10)
0 0

where

i Q"R *RWZ/ Ry_s Ry s . ...Ry,_s Ry ds.

(60.11)
Let us summarize these results in the following proposition.

Proposition 60.1. Let « > 0, K, P, R = LK — K, Q and V be as above.
Then the series in Eq. (60.5) and Eq. (60.11) are convergent and Eq. (60.10)
holds, where P, = e*F is the unique solution to Eq. (60.1). Moreover,

C atl e a
IP— K|, < a—HffCt 1Kt = o), (60.12)

where |[fl, := maxo<s<i | fs-
Remark 60.2. In the finite dimensional case or where L is a bounded operator,

we may take K = I in the previous proposition. Then Ry = L is constant

independent of s and
o0

tnl +1
Vi=) —L

m=0
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which used in Eq. (60.10) gives the standard formula:

P I+/t S U gy gy g
= - s = _ EXal
t o m! (m+1)!

m=0 m=0

Proof. From Eq. (60.6),

(Q™R),| =

/ Rt*Sm RSm*Sm—l s RSzfissl ds
LA,

(m+1)a £ m+1
<
(Ct) «/t - ds —(C ) mt!

Therefore the series in Eq. (60.11) is absolutely convergent and

oo 1 3
‘Vf| < Ct Z _'(Cta+1)nz _ CeCt Hta.
m!

m=0
Using this bound on V' and the uniform boundedness of K,

C a+1
6Ct

t t
KV ds < Ce”"" | K / — 5)ds =
[V as < e g, o= as = 5

15, 2+

(60.13)
and hence P; defined in Eq. (60.10) is well defined and is continuous in ¢.
Moreover, (60.13) implies Eq. (60.12) once we shows that P, = et’. This is
checked as follows,

d t t . t
—/mew:w+/mem:Wﬁ/@mﬂ—mymw
dt 0 0 0
t t
=W+L/lﬂﬂ%%*“W%:L/}Qﬂ%%+R#
0 0
Thus we have,
dt

d . t
—R:m+L/KHwM+m
0

t
=LK; + L/ Ki_;Vsds = LP,.
0
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Statement of the Main Results

Let M be a compact Riemannian Manifold of dimension n and A denote the
Laplacian on C*°(M). We again wish to solve the heat equation (59.1). It is
natural to define a kernel p(t, z,y) in analogy with the formula for p(t,z,y)
in Eq. (59.3), namely let

plt,,y) = (2mt) "2 em /2, (61.1)

where d(z,y) is the Riemannian distance between two point x,y € M. We
may then define the operator T; on C°°(M) by

T,f(x) = /A pl.2.3) f(5)AAw), (61.2)

where A is the volume measure on M. Although, limy|o T3 f = f, it is not the
case that u(t,z) = T;f(z) is a solution to the heat equation on M. This is
because p does not satisfy the Heat equation. Nevertheless, p is an approximate
solution as will be seen Proposition 63.1 below. Moreover, p will play a crucial
role in constructing the true heat kernel p(t, z, y) for M. Let us now summarize
the main theorems to be proved.

61.1 The General Setup: the Heat Eq. for a Vector
Bundle

Let 7 : E — M be a Vector bundle with connection V. We will usually
denote the covariant derivatives on 7'M and E all by V. For a section S €
I[(E), let OS = tr (VI"M@EYES) be the rough or Bochner Laplacian on
E and let

L:= %D +R,
where R is a section of End(E). We are interested in solving
(0 — L)u =0 with u(0,z) = f(x), (61.3)
where u(t,-) and f(-) are section of I'(F).
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61.2 The Jacobian (J — function)

Definition 61.1. Let D : TM — R be defined so that for each y € M,
expy A = DAy where A = A is the volume form on M and A, is the volume
form on Ty M. More explicitly, if {e;};_, is an oriented orthonormal basis for
TyM, then and v € T,M, then

D(v) = A(exp.(e1)v; exp,(€2)y - -, exp,(en)v)
= \Jdet {(exp. (e)us expy.(e)a) 1 (61.4)
where exp, w, = Lo exp(v + tw). Further define J(x,y) = D(exp, *(x)).
Notice that J(-,y) satisfies

. 1
exp, (—J(-7y) )\) =Ny

Alternatively we have that J(z,y) = det (exp,.(-),) where v = exp,(z). To
be more explicit, let {e;};_; be an orthonormal basis for T}, M, then

J(@,y) = \Jdet {(expy. (i), expyu(e;)u) )

ig=1"

Remark 61.2 (Symmetry of J). It is interesting to notice that J is a symmetric
function. We will not need this fact below so the proof may be skipped. We
will also be able to deduce the symmetry of J using the asymptotic expansion
of the heat kernel along with the symmetry of the heat kernel.

Proof. Let w, € T, M, then
wde(m, ) =2(V(z,y),wy) = —2 (exp;l(:c),wy)
where V(z,y) = £|i—1exp(texp;!(y)) = —exp,*(x). Thus if u, € T, M,

then
upwyd®(z,y) = —2 ((exp;l)* uz,wy> .
Now
1 n
J(x,y) = det [(exp;l)*} = det [{—5uiwjd2(x,y)} :|
ij=1

where {u;} and {w;} is an orthonormal basis of T, M and T, M respectively.
From this last formula it is clear from the fact that d(z,y) = d(y,z) that
J(z,y) = J(y,z). m

Lemma 61.3 (Expansion of D). The function J is symmetric, J(x,y) =
J(y,x). Moreover

D) =1— é(Ric v,0) + O(v?)
and hence

J(x,y) = (Ric exp;l(m),expgl(r)) + O(ds(x,y)).
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The proof of this result will be given in the Appendix below since the
result is not really needed for our purposes.

61.3 The Approximate Heat Kernels
Theorem 61.4 (Approximate Heat Kernel). For x,y € M, let
Vy,z(t) := exp, (t expy_l(x))
50 that 7,y is the geodesic connecting y to x. Also let //i(Vz,y) denote parallel

translation along vz . (Read vz y as Yory.) Define, for (x,y) near the diagonal
ACMxM andk=0,1,2..., up(z,y) : E, — E, inductively by

1
ugy1(z,y) = uo(:w)/0 5" U0 (Y (5),¥) " (Lotin) (Yary(s),y)ds for k=0,1,2...

(61.5)
and 1
uo(z,y) = \/Ty)//l(%,y) (61.6)
Forq=0,1,2... let
q
Syt,y) = pltw,y) > tFu(e,y), (61.7)
k=0
where ,
pt,z,y) = (2nt) V24 @v)/2 (61.8)
Then
(0 — Ly) Zq(t,2,y) = —tp(t, 2, y) Lyug(2, y). (61.9)

Definition 61.5 (Cut off function). Let € > 0 be less than the injectivity
radius of M and choose W € C°(—¢2,€?) such that 0 < ¥ <1 and ¥ is 1 in
a neighborhood of 0. Set y(z,y) = W(d?(x,y)), a cutoff function which is one
in a neighborhood of the diagonal and such that ¥ (z,y) =0 if d(x,y) > e.

Corollary 61.6 (Approximate Heat Kernel). Let ky(t, z,y) := ¢(z,y) Zq(t,
Define
T'Q(t>x7 y) = (at - L:c) kQ(t7x7 y):
then
|0Fr(t, -, )], < Ccto/271/2=k, (61.10)

where ||r||; denotes the supremum norm of v and all of its derivatives up to
order .
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Theorem 61.7 (Existence of Heat Kernels). There exists a heat kernel
p(t,z,y) : Ey — E, for L, i.e. p is a C* ~function in t and C? in (z,y) such
that

(0 = L) p(t.2,9) = 0 with Tmp(t.,9) = b (y)id. (61.11)

Remark 61.8. The explicit formula for p(¢, z,y) is derived by a formal appli-
cation of equations (60.10) and (60.11) above. The results are:

¢
p(t,z,y) = kq(t, z,y) +/ / kqy(t — s, @, 2)vg(s, z,y)dA(2)ds (61.12)
0 Ju

where
oo

vg(s,2,y) = Y 1™ (s,3,9) (61.13)
m=1

1

and the kernels r™ are defined inductively by where r* = r and for m > 2

m _ [ r(s—r,z,2)rm Y r, 2 z)dr
r (s,x,y)—/o /M ( Ty Z) (r,z,y)d\(z)dr. (61.14)

Corollary 61.9 (Uniqueness of Heat Kernels). The heat equation (61.8)
has a unique solution. Moreover, there is exactly one solution to (61.11).

Proof. Let u(t,z) := [, p(t,z,y) f(y)dA(y), then u solves the heat equa-
tion (61.3). We will prove uniqueness of u using the existence of the adjoint
problem. In order to carry this out we will need to know that L' = $0g«+R? :
I'(E*) — I'(E*) is the formal transpose of L in the sense that

/M<Lf7 g)dA = /M<f, Ltg)dx (61.15)

for all sections f € I'(E) and g € I'(E*). Here Og- is the rough Laplacian on
E*. Indeed, let X be the vector field on M such that (X,v) = (V,f,g) for all
v € T,, M. Then

(VoX,-) = Vu(V.f,9) = (Vo (V.£),9) +(V.f, Vug),
so that in particular
(VoX,0) = (Vigyf.9) + (Vo f, Vug).

Let v = e;, where {e;} an orthonormal frame, and sum this equation on i to
find that
+(X) =(0f.9) +(Vf, Vg). (61.16)

Using the Riemannian metric on M to identify one forms with vector fields,
we may write this equality as:
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HV.f,9) =(0Of,9) +{Vf,Vg).
Similarly one shows that

+(f,V.g) = (f,0g) + (V [, Vg),

which subtracted from the previous equation gives “Green’s identity,

(f,09) = Of,9) =+ ({f,V.9) = (V.f£,9) (61.17)

Integrating equations (61.16) and (61.17) over M, we find, using the divergence
theorem, that

/A (Of.9)dA = /M<f7 Dg)d = /A (V1. Vg)ax

”

Thus
1
[ wrain=3 [ ©rgire [ ®fgan
Jm Jm M
1
—5 [ wogars [ (g Rgi= [ (grgan
2 Ju M M
proving Eq. (61.15).
Suppose that u is a solution to Eq. (61.3) with «(0,z) = 0 for all .

By applying Theorem 61.7, we can construct a heat kernel ¢; for L*. Given
g € I'(E*), let

v(t,x) == /M ar—+(z,y)g(y)dA(y)

for t < T. Now consider

d
dt /M<u(t7 ), v(t, x))dA(x)

:/ (Lu(t,x),v(t,m))d)\(x)—/ (u(t,z), L'v(t, z))dA(z) = 0,
M

M

and therefore, [, (u(t,z),v(t,z))d\(x) is constant in . Considering this ex-
pression in the limit that ¢ tends to 0 and 7" implies that

0=/M(0,U(O,x))d)\(m)=/M<1L(T,yc),g(9c))d)\(x).

Since ¢ is arbitrary, this implies that u(T,z) = 0 for all 2. Hence the solution
to equation (61.3) is unique. It is now easy to use this result to show that
p(t, z,y) must be unique as well. m

Theorem 61.10 (Assymptotics of the Heat Kernel). Let p(t, z,y) be the
heat kernel described by Eq. (61.11), then p is smooth in (t,z,y) for t > 0.
Moreover if K% is as in Corollary 61.6, then

0F (p(t,-,) — K(t,-, )|, = O@r—/271/2=F) (61.18)
provided that ¢ > n/2+1/2+ k.
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Proof of Theorems 61.7 and 61.10

In this section we will give the proof of Theorems 61.7 and 61.10 assuming
Theorem 61.4 and Corollary 61.6.

62.1 Proof of Theorem 61.7

Let [ and k be given and fix ¢ > n/2+1/2+ k.. Let k(t,z,y) = kq(t, z,y) and
r(t,x,y) = rq(t,z,y) as in Corollary 61.6. Let

K. f(z) = /Mut,:c,y)f(y)dA(y) and R, f(z) = /Mr<t,x7y>f<y>dx<y>.

Following the strategy described in Section 60, we will let v(t,z,y) be the
kernel of the operator Y -_) Q™ R, where Q is as in Eq. (60.4). That is

o0
U(S7I7y) = Z T"L(S7Qj7y) (621)
m=1
where ! = 7 and for m > 2
" (s,3,9)

= / / T(S 75m71a$7ym71)7"(5m71 - 5m727ym713ym72)~-~7'(517
§Ap_1 J Mm—1

=/S/ r(s —rx, 2)r™ L (r, 2, y)d\(2)dr (62.2)
0 Jm

and dy =d\(y1) . ..dA(ym). The kernel r™ is easy to estimate using (61.10) to
find that

Jotrm (s, < (Cs1=7/2) " sV ol(ary=1sm f(m 1)
— C7VLS7'L<q7,L/2)7l/27kVOl(M)7VL7137VL71/(7771 _ 1)| (623)
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and from this it follows that > ||0Fr™ (s, -, )”l = O(sle—n/2-1/2=ky,
Therefore, v is well defined with 0¥v(s,z,y) in 3.
Proof. Let p(t, z,y) be the kernel of the operator P, defined in Eq. (60.10)
ie.
t
o) =Ktag)+ [ [ he— s snGes (@2
0o Jm
t
ko) + [ [ kol s i@ (©25)
0o Jm
Using Eq. (62.5), we find (since 9,v(0, z,y) = 0) that
t
Op(t,x,y) = Otk(t, x,y) +/ / k(s,x,2)0w(t — s,z,y)d\(z)ds
0o Jm
= ka(tv Z, y) - T(ta z, y)

+/0 /M k(s,z,2)0w(t — s, z,y)d\(2)ds (62.6)

More generally,

it
Opt.ay) = Oib(ta) + [ [ ks 2)0u(t - s,z p)aA )i,
0 JM
from which it follows that 8Zp is continuous in I for all ¢ < k. Furthermore,
t .
< C/ (t_s)qfn/2fl/27zd8
0

= O(ta—n/271/2miy, (62.7)

To finish the proof of Theorem 61.7, we need only verify Eq. (61.11). The
assertion that lim; o p(t,z,y) = 0,(y)id follows from the previous estimate
and the analogous property of k(t, z,y). Fubini’s theorem and integration by
parts shows that
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ot p
/ k(s,x,2)0w(t — s, 2,y)d\(2)ds
€ M

= k(s7x,z)v(tfs,z,y)d/\(z) |;zi
M

+ /t Osk(s,z, z)v(t — s, 2,y)d\(2)ds
e JM
=/ ke, z, z)v(t — €, 2,y)d\(2)
M
+ /6 /M (Lyk(s,z,2) —r(s,z,2)) v(t — s, z,y)dA\(z)ds
/ k(e,z, z)v(t — €, z,y)d\(2)
M

—|—Lz/E /M k(s,x,2)v(t — s, z,y)dA(z)ds
f/ / r(s,x, 2)v(t — s, 2,y)d\(2)ds.
e JM

Making use of the fact that K is uniformly bounded on I and that the strong—

limjo K = I, we may pass to the limit, e — 0, in this last equality to find
that

/t/ k(s,x,2)0w(t — s, 2z,y)d\(2)ds
0 JMm
=v(t,z,y) + Ly /0 /M k(s,x,2)v(t — s, z,y)d\(z)ds
— / / r(s,z, z)v(t — s, 2z,y)d\(2)ds
0o Jum

=r(t,z,y) + Ly /0 /M k(s,x, 2)v(t — s, z,y)dA(2)ds,
(62.8)

wherein the last equality we have made use of equations (62.1) and (62.2) to
conclude that

v(t,z,y) — /t/ r(s,z, 2)v(t — s, 2,y)d\(2)ds = r(t, z,y).
0 Jum

Combining (62.6) and (62.8) implies that (0; — L,) p(t,z,y) =0. =

62.2 Proof of Theorem 61.10

Because ¢ in the above proof was arbitrary, we may construct a kernel p(t, z, y)
as in the previous section which is CV for any N we desire. By the uniqueness
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of p, Corollary 61.9, the kernel p(t, z,y) constructed in the proof of Theorem
61.7 is independent of the parameter ¢q. Therefore, by choosing ¢ as large, we
see that p is in fact infinitely differentiable in (¢, z,y) with ¢ > 0. Finally the
estimate in Eq. (61.18) has already been proved in Eq. (62.7).
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Properties of p

For the time being let y € M be a fixed point and r(z) := d(z,y). Also let
v(z) = exp, 1 (x), 7. (t) := exp(tv(z)) and V be the “radial” vector field,

V() = Vy(z) = %\1 exp(to(z)) = //1(vz)v(2), (63.1)

where //:(7z) is used to denote parallel translation along 7, up to time ¢.
Notice that V is a smooth vector field on a neighborhood of y. To simplify
notation we will write p(t, x) for p(t,z,y), i.e.

p(t,x) = (2mt) /2 e @)/2 (63.2)
The main proposition of this section is as follows.

Proposition 63.1. Fiz y € M,let J(z) = J(z,y) (see Definition 61.1 above)
and p(t,x) be as in Eq. (63.2), then

1

1 1
<0t - §A> p= 2—tr81nJ/8rp =% (VInlJ)p

1
=% (V-V —n)p. (63.3)

Remark 63.2. If M = R™ with the standard metric, then V(z) =2,V-V =n
(and J =1) so that

p(t,x) = (27rt)7n/2 e~ /2
is an exact solution to the heat equation as is seen from Eq. (63.3). Moreover,
the constants have been chosen such that [, p(t,z)dz =1 for all ¢ > 0. From

this fact and the fact that (271'15)7"/2 e=7"/2 has most of its mass within a
radius of size order v/, it follows that lims o p(t, ) = (z). Similar statements
hold for p(¢,z) given in Eq. (63.2).
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In order to prove the Proposition we will need to introduce some more
notation which will allow us to compute the Laplacian on radial functions
f(r), see Lemma 65.3 below.

Notation 63.3 (Geodesic Polar Coordinates) Let y € M be fized,
r(x) := d(z,y) and 0(z) = exp,'(z)/r(x). So that (r,0) : M — Ry x S,
where S = S, is the unit sphere in TyM. We also write Of/0r = g.(r,0)
when f = g(r,0). Alternatively,where

0 /0r = TV = 1 S flep, (texp; () (63.4)
= Zlof(e, (7 +1)0) (635)

and V' is the vector field given in Eq. (65.2) above.

Notice that with this notation exp,'(z) = r(z)0(z) and J(z,y) =
D(r(x)6(x),y)-

63.0.1 Proof of Proposition 63.1

We begin with the logaritheoremic derivatives of p,

2

n o
1 =+ —
Olnplt;z) = =50 + o
and oy .
T
Therefore,
1
Ap =V (pVInp(t,z)) = =5V - (pV)
1, 1 21,
== - = A
g VI =gev-V p(ﬁ 2 )
and hence

1 n r? r2 1
—Alp=p|l——=+—=—— +—=Ar?
(at 2 )p p( TR TR r)
1 /1, .,
—2—t(§AT fn)p

1 1
= Q—t(V-an)p— Q—t(raan/ar)p.
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63.0.2 On the Operator Associated to the Kernel p

We now modify the definition of T} in Eq. (61.2) by inserting the cutoff func-
tion ¢ as in Definition 61.5, that is let

T,f(a / W y)p(t, 2, 9) F(5)AA (). (63.6)

We will end this section with some basic properties of T3.

Theorem 63.4. Let T, f be as in Eq. (63.6). Then fort >0, T, : C(M) —
C>(M), for each 1, there is a constant C; such that | Ty f||, < Ci || f|l, for all
0<t<1andfe C(M) and moreover limy o ||T:f — f|, = 0. Here, ||fl|,
denotes the sup—norm of f and all of its derivatives up to order l.

Proof. First off, since ¢ (z,y)p(t,z,y) is a smooth function in (z,y), it
is clear that Ti f(x) is smooth. To prove the remaining two assertions, let us
make the change of variables, y = exp, (v) in the definition of T; f. This gives,

TG = [ e @)ptt . exp ), () D)y
- / (o) (2mt) /% e/ fexp, (v) D(v)dv
T, M
where B (€) be the ball of radius e centered at 0, € T,,M. Now let u(x) be
a local orthonormal frame on M, so that u(x) : R® — T, M is a smoothly
varying orthogonal isomorphism for x in some neighborhood of M. We now

make the change of variables v — u(z)v and v — v/Iu(z)v with v € R” in the
above displayed equation to find,

Tof(a) = | #(ul)fexp, (u(o)o) Dluta)op(o)do (63.7)
_ / (o) f(exp, (u(@) Vi) D) Vv o)do (63.8)
where py(v) i= (2rt) /2 e~ lvI*/2t,

Suppose that L is a [ 'th order differential operator on M, then from Eq.
(63.7) we find that

(LT f) (z) = /}Rn @ (|v]*) Ly [f (exp, (u(@)v)) D(u(x)v)] pe(v)dv
from which we see that
(LT f) (x)] < Cu(L) || f1l, /w pe(v)dv = C(L) || f]); -

This shows that |T:f|, < Ci || fl]; -
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Using the product and the chain rule,

L [f(expy (u(@)v) D(u(z)v,2)] = Y (e, v) (Lif) (expy (u(z)v)),
k

where ax(z,v) are smooth functions of (x,v) with |v| < € and £, are differ-
ential operators of degree at most . Noting that

Lf(x) = ak(@,0) (Lrf) (@),
k

we find that
| (LT:f) () — Lf(z)|

<Z/

Applying the estimate in Eq. (59.6) to the previous equation implies that

) (Lxf) (exp, (u(z)v))

_ak(w 0) (Lif) (z) (|v|")pt(v)dv

IILT:f — Lfllo

<Clfl e/ 43 sup sup
L VEB(S) =

ar(x,v) (Lxf) (exp, (u(z)v)) ‘
—ay(x,0) (Ly.f) (x)

and therefore

Timyo| [T f — Lf\|0<2 sup sup
L VEB(@) T

ag(x,v) (Lr.f) (exp, (u(z)v)) ‘
—ax(,0) (Lr.f) (z)

which tends to zero as § — 0 by uniform continuity. From this we conclude
that hmtlg Hth — f||] =0. m
To conclude this section we wish to consider limo(d; — %A)Tt

Theorem 63.5. Let T} be as above and S be the scalar curvature on M. Then

0Ty = (%A — %S)Tt + O(\/E) So if we used Ty for K in the construction in

Proposition 60.1, we would construct e!(4/2=5/6) rather than et4/2.

Proof. We will start by computing,
(815 - %A)th(x)
= [ 0= 3400 0ot 25)f )ING)
M
Y )(0 — A0l ,)()aN) + O(),

M

= [ vz (@ I )plen) SN +06). (639)
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Using Lemma 61.3, we find when = = exp, (v), that

(Vy(@)InJ(-,y)) = 0y InD(v) = 9, In(1 — % (Ric v,v) + O(v*))

- av(_é (Ric v,v) + O(v?))
1
3

(Ric oxp;I(x), CXp;l(I)) + 0(613(3:7 Y)).
Using the symmetry of J or by direct means one may conclude that

(Ric expy_l(x), eXp;l(fL’)) = (Ric exp,'(y),exp, '(y)) + O(d*(z,y)) (63.10)
so that

1

(Vy(@)InJ (-, y)) = —5 (Ric exp, ' (), exp, ' (1)) + O(d(z,y)).

To check Eq. (63.10) directly, let 7, (t) = exp(tv) and notice that

D (Ric (1), 4(1)) = (V300 Ric 5(1)),4(1) = O@?).

Integrating this expression implies that (Ric 4(1),%(1)) = (Ric v,v) + O(v3).
Taking v = exp, 1(y) implies Eq. (63.10).

Using this result in (63.9) and making the change of variables y = exp, v
as above we find that

(0 — %A)th(x)

11 e—1vl?/

=33 TDMW(\U\ )(2 t"/2 { (Ric v,v) + O(v* }f(eXpL(U )D(v)dv
+ O(t™)
1

= = {s@ @+ o) = %S(x)f(x) L O#2).

Therefore, 0,T; = (3A — 29T, + O(V1). =
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Proof of Theorem 61.4 and Corollary 61.6

64.1 Proof of Corollary 61.6

We will begin with a Proof of Corollary 61.6 assuming Theorem 61.4. Using
Eq. (61.9) and the product rule,

TQ(tv x,y) = (af - LT) Kq(t7 Ivy)
= ¢(Ivy) (at - Lﬂr) Eq(tvxv y)

1
— §Azw(i’ y)Eq(tv €, y) - vaw(z,y)zq(tv T, y)
= —tqw(% y)p(ta T, y)Lﬂiu(I(m? y)

1
- §Az¢(»b, y) Eq(t7 €, y) - VVzw(I,y)Eq(tv xz, y)

Let € > 0 be chosen such that (x,y) = 1 if d(z,y) < e. It is easy to see for
any [ that

— 0(675/315)7

1
atk <§Azw($a Z/) Eq(tv x, y) + vva-w(z,y)zq(tv z, y))

l

where || f||, denotes the supremum norm of f along with all of its derivatives
in (x,y) up to order I. We also have that

[[t9) (2, ) p(t, @, y) Loug ()| < CL27"/2.
Furthermore, if W is a vector field on M, then by Lemma 65.4,

‘er—d2/2t’ _ ’ (V, W) o—d/2t < |W|%l€—d2/2t

d 2 e~ 1/2
W|—=e 4/t < ——|W|.
| I\/ze \/Z‘ |

1
Y
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2 .
—d*/ Qt‘. Let us now consider

Similarly we have the same estimate for ‘Wye
higher order spatial derivatives, for example

UyWIe—dQ/Qt =-U, ((V»tW)e—dz/m) _ (Uy(‘? W)e—d2/2t + (Vth) Uye—cﬂ/:

from which we find that
2
d eﬂf /2t < Q

—d?/2t C 2/

Continuing in this way we learn that

He*d2/2tH <,
1

Let us consider the t—derivatives of p(t,z,y),

d2

52| < ct—/2t,

n
Ol = | — p(—
0| = | P(2t+

Similarly,

2 n o & no 4 —n/2,-2
= —_ —_ — —_ < (Ct t—~.
0F0l = ol + )+ plas + 30 <€

Continuing this way, one learns that |8Fp| < CCt~(*/2+k)_ Putting this all
together gives Eq. (61.10).

64.2 Proof of Theorem 61.4
Proposition 64.1. Let y € M be fized, r(z) = d(x,y), J(z) = J(z,y), V and

p(t,x) be as above. Suppose that g(t,x) : E, — E, is a time dependent section
of hom(E, — E) and u(t,z) = p(t,x)g(t,z). Then

(&—L)u:p(@ —L—|—% (Vv-l—%r@lnj/ar))g

1
=p <8t — L+ ;S) g, (64.1)
where 1
S=Vy+ §r6 InJ/or. (64.2)
Proof. First let us recall that

O(pg) = trV2(pg) = tr (V2pg +2Vp @ Vg + pV?g)
= Apg+2Vy,g+ plg
=Apg+2pVvipg+ pdg
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and that ) v
_ o2
Vlnp—V( 2tr) e
Hence
1
(O —L)u= (& - §D) (pg) — PRy
1
= ((‘Jz - 5A) pg—pPVvmpg+p (O —L)g
1 1
=5, O J/0r)pg+2pVvg+p(0 —L)g
=p (8,5 —L+ % <Vv + %r@an/@r)) g
]
Now let
q
gq(tsw) =D tui(w) and y(t, ) = p(t,x)gy(t, @) (64.3)
k=0

where ug(z) : E, — E, are to be determined. Then

1 q
(8t + ES — L) g= Z {tk_l (kug + Suy) — tkLuk}

k=0
q—1
= —Sug + Ztk k + 1)uk+1 + Sugy1 — Luk) — thuq
k=0

Thus if we choose ug such that
1
Sug(x) = (VV + EVln J) up(z) = 0. (64.4)

and wuy such that
(S+k+1Dugsr — Lup =0 (64.5)

then (9, + %S — L) g = —t9Lu, or equivalently by Eq. (64.1),
(00— L) ky = (0 — L) (pg) = —t9pLus (64.6)

Let us begin by solving (64.4) for ug. For z,y € M, let y(t) = v2,4(t) ==
exp, (t exp, L(x)) so that 7, is the geodemc connecting y to x. Notice that
V(v(t)) = t7(t) and therefore Vv =tV . Therefore, the equation Sug = 0
is implies that

b 1ea0) + 5t | 10T (0] ol () =0
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or equivalently that

(57 0 T0mal)) /) M)} =0 (047)

We may solve this last equation to find that
//t(Wz,y)71u0(71,y(t)) = ———=uo(y)

and hence that
ug(z) = //1(’Yx,y)—yuo(y)-

Since we are going to want u to be a fundamental solution, it is natural to
require the uo(y) = Idg,. This gives a first order parametrix,

1
ko(taxay) = —p(t,l’,y)T(I, y) : Ey - Em:
J(z,y)
where
7(2,y) == //1(Yay) and plt,z,y) = p(t, z) = (2mt) /2 e~ @0)/21,

This kernel satisfies,

(0 — L) kolt, 2,y) = —plt, 2, y) La <ﬁmw>.

Proposition 64.2. Let y € M be fized and set, for x near vy,

1
uo(z,y) = //1(Vay) ——=- (64.8)
I (z,y)
Then uo(z,y) is smooth for (x,y) near the diagonal in M x M and
Syuo(z,y) = 0.

Proof. Because of smooth dependence of differential equations on initial
conditions and parameters, it follows that ug(z,y) is smooth for (z, y) near the
diagonal in M x M. To simplify notation, let ug(z) := uo(z,y), 7(x) = 7(, y),
and J(z) = J(z,y). We must verify that Suy = 0. This is seen as follows:

1
Vvug(x) =V —7’;1:

1

1
= (VInJ) ()7 (z Vyr(x
W— )<>+m («)
1
= m {VVT(:U) ~3 (VinJ) (x)T(x)}

_ _% (VInJ) (z)uo(z),
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Virr(@) = 1) e (0) = 7)1/ o) = 0
Hence 1
Sug(z) = Vyug(z) + 3 (VInJ) (x)up(z) = 0.
|

We now consider solving Eq. (64.5). Fixing = and y and letting () :=
Ye,y(t), Eq. (64.5) may be written as

(tz + gt (D) +h+ 1) w1 (Y(1) = Lux(3(1) = 0

or equivalently that

dt  2dt

(G + 5 m IO + ) 1) a0~ /40 Lot =

(64.9)
Letting f be a solution to

d 1d k+1
(5 - 5mI0O) -2 10 =0

it follows that Eq. (64.9) may be written as

O w60 - L2 0 By = 0. (6410)

We now let f be given by

f(t) =exp (/ [than( (t ))+$} dt)
—exp (% InJ(y(£) + (k + 1) lnt) — VTR,

Integrating (64.10) over [0,¢] implies that

t
£0/1:0) ws60@) = [ 1007 o ey
0 T
Evaluating this equation at ¢ = 1 and solving for ux1(z) gives:

U x :—1 T(x I—J(’Y(t))S(kH) “ru s))ds
o) = Zmtle) [ ST o) T (o)
1

- @) / STty 500/ + ()™ Ltk (e (5)) .
(64.11)
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Theorem 64.3. Let ug(z,y) be given as in Equation (64.8), and define the
smooth sections uy(x,y) inductively by

Uk+1(w7y):1m(wvy)/o "0 (Y25 (5),9) T Loun (o (5) y)ds - (64.12)

fork=0,1,2,.... Then uy solves Eq.(64.5).

Proof. Let us begin by noting that Eq. (64.11) and (64.12) are the same
equation because

uo(Va,y (8),y) = W// s(Vay)-

Let ,y € M be fixed and set y(t) = 7z,4(t). Since v, 1)(s) = v(ts) and
//3(%,7(,5)) = //is(7),it follows that

up1(7(t),y) =uO(W(t),y)/0 s\ T((t), )/ [1s(7) " Lok (y(ts), y)ds
=t’(k“)uo(7(t)7y)/0 " T (), 9) /] /o(v) " Lau(y(r), y)dr.

From this equation we learn that

(Vyuo(z) + % (VInJ) (z) + k + Dugya(z, v)

\Y%

(tﬁ 4 ;t%l Jy@) +k+ 1) [t=1un41((1))

= u(e ) g [ PVTEED ) Eanr (e )i
= uo(2,y)VJ(1(r),9)/1(7) " Loun(@,y) = Loun(z,y),

wherein the second equality we have used the product rule and the fact that

vV 1.d
(tdt +ot— an(fy(t))—&-k—&-l) =" g (y(t),y) = 0

which is verified using Eq. (64.7). m
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Appendix: Gauss’ Lemma & Polar Coordinates

Lemma 65.1 (Gauss’ Lemma). Let y € M,v,w € Ty, M, then

(€XPuy Vo €XDLy wo) = (0, 0),y

Proof. Let X(t,s) := exp(t(v + sw)), then

L(9(.0), 5'(1,0) = (25 u (1)) + (5(,0), % 7'(1,0)
= (5(.0), 2o (t:5)) = 5 lo(S(t.5), 5 )
= % d lo |v+sw\ (v, w).

Combining this equation with the observation that (3(¢,0), £’(¢,0))|i=0 = 0
implies that )
(2(1,0), E/(l, 0)) = (v, w)o-

Corollary 65.2. Suppose that y € M and choose 6 > 0 such that exp, is
a diffeomorphism on B(0y,06). Then d(z,y) = ‘exp;l(ac)| forallx € V =
€XPy (B(Oyv 5)) .

Proof. Let o(t) be a curve in M such that o(0) = y and o(1) = x. Suppose
for the moment that o(t) is contained in V' and write o(t) = exp,(c(t)). Set
u = ¢(1)/|e(1)] and decompose ¢(t) = (c(t),uw)u + d(t) where (d(t),u) =
0.Then

60 = lexp, é(t)en|” = |expy. ((6(0) wuegy +dt)eqr )|
XDy, (d(t)c<t)) ‘2
= 1(e(t), )l + fexpy. (dt)eco )| > I(ete), .

= Jexpy. (¢(?),

1172 65 Appendix: Gauss’ Lemma & Polar Coordinates

From this we learn that
.1
Length(o / I t)|dt>/ It |dt>/ (e(t), w)dt = |e(1)].
0

That is Length(o) > |exp,*(z)|. It is casily to use the same argument to
show that if o leaves the open set V then Length(c) > 6 > |exp, '(z)| and
hence Length(c) > |exp, ! ()| for all path o such that 0(0) = y and o(1) = z.
Moreover we have equality if o(t) is the geodesic joining y to x. This shows
that
d(z,y) = igf Length(c) = ’exp;l(x)’ .
|
For more on geodesic coordinates, see Appendix 67.

65.1 The Laplacian of Radial Functions

Lemma 65.3. Let r(x) := d(z,y) and J(x) = J(x,y) as in Definition 61.1.
Then

Af(r) =

AL ey (A4 B ) . (o)

We also have that
Af(r) = ["(r) + ———/'(r) (65.2)

and that

Ar2:2V~V:2(n+raan>.
or

Proof. We will give two proofs of this result. For the first proof recall that
if {#'} is a chart on M, then

1 0 . 0
AF = —— YU—F 65.3
a5 (Vi 35T ). (653
where ds® = g;;jdz'dz’, g* is the inverse of (gi;) and /g = \/det(gi;) We
now choose the coordinate system z to be z" := r, and z' := o' o 6, where

{0/’}?;11 is a chart on S = S, C T, M. We now need to compute g;; in this

case. Let us begin by noting that 8/9z° = expy, (7 ( a7l0 ) fori=1,2,...,n—1

and 9/0z" = 0/0r = exp,, (%]o(r +t)0) . By Gauss’ lemma, it follows that
i 107 s h 0 -1

ds® = dr® + hi;(r,0)d0'd¢, ie. g = [0 1 0 1} and

Vg =Vh.Soif F = f(r) = f(z"), it follows from Eq. (65.3) that

}. Therefore g—* = {h
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a10) = (Vi 55 ) = e (Vi)
— )+ 2 . (65.4)

So to finish the proof we need to describe /g = VI in terms of J. In order to
do this, let us notice that D in Eq. (61.4) may also be expressed as

Aexp, (w1)y, exp,(wa)y - . ., exp, (Wn)y)
)\y(wh W2, .y w'n)
. det {(expy* (wi)v’ eXPU*(w])U)}?le
det {(w;, wj)}zjzl '

where now {w;} is any oriented basis for T, M. From this expression it follows
that

D(v) =

(65.5)

Vg = D(r0)y/det { (’“%‘“%'9) }H = J(,y)r" K(0)

i,j=1

9 9 n—1
K(0) = \/det { (@\9, W\a) }i"j:{

Using these expression in Eq. (65.4) along with the observation that
K (0)/0r = 0 proves Eq. (65.1).
(Second more direct Proof.) Let (p,w) denote a generic point in Ry x S
and dw denote the volume form on S = S, C T, M. Then

where

/ fr0)dr= [ fDay,
M TyM
:/ f(p,w)D(pw)p"~*dpduw,
JRL XS
where f(pw) := f(p,w). Therefore,
[ Arwatr.0)an=~ [ (950 Vatr.0)) x
M M
- [ rwag(r6)/0r ax
M
= —/}R Sf’(ﬂ)ﬁg(p,w)/apD(pw)p”’ldpdw

:/ 9 (f'(p) D(pw)p™"*) /Op
Ry xS D(pw)pn—t

-/, QI DI gy

9(p,w) D(pw)p" ' dpdw

Jrn—1
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which proves Eq. (65.1).
To prove Eq. (65.2), we compute more directly:

Af(r) =V -Vi(r) =V (f(r)d/or) =V - (@v)
(38 (30) 220
— - L0 I Og .y

r r
which proves Eq. (65.2).
In particular we have that Ar? =2V -V and

Aoy n71+81nJ 9r — 9 n_’_rc’?an
r ar ar

]
Lemma 65.4. Let r(z) := d(x,y) as above, then
Vri(z) = 2r(2),

vr? =2v

and

V-V(y) =n.

Proof. We first claim that |V| = r. Moreover,

V(@) = (1)) = i (@) = 20°().

That is to say Vr? = 2r2. Moreover, if w € T, M is perpendicular to V(z),
then wr? = 0 so that Vr? is proportional to V. One way to argue this is
that V(x) points in the direction of maximum increase of 72 by the triangle
inequality. Hence

(Vr V) 2r2
V) V= 2 V=2V
If we do not like this explanation, then use Gauss’s lemma I guess. Come back
to this point.
Now we wish to compute Ar? = 2V -V. We would like to at least do this at
x = y. To this end, let us work out V,,V for w € T, M. Setting o(t) = exp(tw),
we find that

Vr? =

VaV = 2o/ [TV (o(0) = 2o/ /o) ot = w.

Therefore V- V(y) = > (Ve,V,€;) = n and hence Ar?(y) =2n. ®
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The Dirac Equation a la Roe’s Book

In this section, we consider the Dirac equation:
0yS = iDS with S;—¢p = Sp given. (66.1)

Here D = ., V., is the Dirac operator on some spinor bundle over M. The
most interesting statement made by Roe about the Dirac equation is it’s finite
speed of propagation property. Given a compact region 2 C M with smooth
boundary and a solution to Eq. (66.1), let

Ba(t):= [ [Sia)Pdrz)
2
be the energy of S; in the region 2. Let us begin by computing the derivative
of E_Q.

Lemma 66.1. Let 2 C M be a compact region with smooth boundary, and S
be a solution to Eq. (66.1). Then

4 o :i/ v-X, d/\=z'/ (X, N) do, (66.2)
dt Q EYe)

where X, is the smooth vector field on M such that (Xy,Y) = (vy Si, St) for
all vector fields Y on M and N is the outward pointing normal to 2 and o is
surface measure on (2.

Proof. Differentiating under the integral sign implies that

C;ltEQ(t) /Q {(st St> + (st, s't) } X

/ ‘ {(iDS, S) + (S,iDS)} dA
2

i / {(DS, S) — (S, DS)} dA (66.3)
2

- / Im (DS, S) dA (66.4)
(]
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We also have,

(VoX,") = Vau(X, ) = V.(7.5,9)
= ((V.7).5,8) + (7.V..5,8) + (7.5, V.S)
= (7.V.S5,5) = (5,7.V.9),

where we have made use of the fact that Vy = 0 and 7% = —vyx. Taking
* = e; and - = e; and summing on 7 in the above equation implies that

V- X = (DS,S) - (S,DS). (66.5)

Combining Eq. (66.3) and (66.5) along with the divergence (Stoke’s) theorem
proves Eq. (66.2). m

Corollary 66.2. The total energy E(t) = Ep(t) remains constant and solu-
tions to Eq. (66.1) are unique if they exist.

We now want to examine how E(¢) depends on 2.

Lemma 66.3. Suppose that 2 C M is as above and ¢, : 2 — M is a one
parameter family of smooth injective local diffeomorphisms depending smoothly
on t and let 2y := ¢,(£2). Also define a vector field Y, on 2, by ¢y = Y; 0 ¢y,
i.e. Yy = ¢ 0 qb;l. If f: M — R is a smooth function, then

a [ sir= / V- (fY0) dA = / f(YiN)do,  (66.6)

where again N is the outward pointing normal to 082, and o is surface measure
on 2.

Proof. Since
Qtfd/\:LL(mfA:/chﬁt (fA):/Qfoastaﬁm,

=/!'2fo<z>t¢;fx

qi f O = f ¢y and

L i3 = 6 ((div, +iv,d) ) = 67 (V- V),

it follows that

G| gan= [ vireodns [ foosi(v vy
= 'th/\+/ fV-Y A

2 2

= [ VA
2,
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from which Eq. (66.6) follows. m

Fix a point m € M and let B(m,R) be the geodesic ball centered at
m € M with radius R. If we believe that the speed of propagation of the
Dirac equation is 1, then we should have

e(t) == / 1942 d (66.7)
B(m,R—t)

is non-increasing as ¢ increases to R. The reason is that, we are shrinking the
ball at a rate equal to the speed of propagation, so no energy which was in the
wave at time T outside the ball B(m, R—1T') can enter the region B(m, R —t)
for ¢ <T. We will now verify that e(t) is non-increasing.

Proposition 66.4. For R smaller than the injectivity radius of M, the func-
tion e(t) in Eq. (66.7) is non-increasing as t increases to R.

Proof. Let ¢; : T,, M — M be given by ¢:(v) = exp(tv) and Y; be
the locally defined vector field on M such that ¢, (v) = ¥; o ¢(v) for all v
small. Since ¢;(D) = B(m,t), where D is the unit disc in 7}, M, we have that
(Y;, N) = 1, by Gauss’s lemma. So By Lemmas 66.1 and 66.3,

Lo :i/ (Xt,N)daf/ 1S (Vi_s, N) dor
dt OB (m,R—t) OB (m,R—t)

:i/ (Xt,N)da—/ S| do.
9B(m,R—t) OB(m,R—t)

|(Xe, N)| = (7S, S)| < | S]1S] < |87

since N is a unit vector and vy is an isometry. (Recall that vy is skew adjoint
and 7% = —I.). This shows that

Now

%e(t) =—Tm (X4, N)do f/ |S)? do

OB (m,R—t) 9B(m,R—t)

< / 1S do —/ 15,2 do = 0.
dB(m,R—t) dB(m,R—t)

Corollary 66.5. Suppose that the support of So is contained in §2. Then the
support of St is contained in

2y :={x €M :d(z,m) <t for all m € 2}.

Proof. By repeating the argument and using the semi-group property of
e*P, we may and do assume that ¢ is positive and less than the injectivity
radius of M. Let = ¢ (2, so that there exists R > ¢ such that B(z, R)N2 = 0.

By the previous proposition, () := [ (2. R—7) |ST|2 d\ is decreasing and hence
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/ 1S:|% dA = e(t) < e(0) = / 1So|* dA = 0.
B(z,R—t) J B(z,R)

This shows that S; =0 on B(x, R —t) and in particular at z. m

66.1 Kernel Construction

Lemma 66.6. Suppose that U C RN is a open set and A : L*(E) — C™1(U)
is bounded linear map. For each x € U, let T, € L*(E) such that (T}, S) =
AS(z) for all S € L*(E). Then the map x € U — T, € L*(E) is C" -
smooth. Moreover, we have estimates of the derivatives of x — T, in terms of
the operator norm ||A|,, of A as an operator from A : L?(E) — C™Y(U).

Remark 66.7. The above Lemma may has well been formulated with L?(E)
replaced by an abstract Hilbert space H. The proof given below would still
go through without any change.

Proof. First notice that
(T2 = Ty, S)| = |[AS(z) — AS(y)| < [VAS|u|z -y
< |AS|ov@ylz =yl < C|S|r2mylz — 9yl

which shows that [T, — T,|z2(g) < Clz — yl, so the T is continuous. Let us
now consider the directional derivatives of T,. For 2 € U and v € RV let
BS(z,v) := 9,AS(z). As above there exists T,., € L?(E) such (T} ,,S) =
0,AS(z) = BS(z,v) for all S € L?(E) and moreover (z,v) — Ty, is locally
Lipschitz continuous and linear in v. Indeed,

[(Teo = Ty, ) = 10, AS () — 0, AS(y)| < [AS|c2 vy 12 = yllv]
< 1Al 1512 () [z = yl[vl.
That is to say, z € U — T,,. € B(RY, L*(E)) is a Lipschitz continuous map.
Now let 2 € U and v € RV, then

1
(Tygn — T, S) = AS(x +v) — AS(2z) = / Oy AS(z + tv)dt
0

1
= / (Tx+tv,v75)dt7
JO

which shows that

1 1
\THFTFTMS/ |Tz+w,v7:rz1v|dtg0|v\/ o] dt
0 0
= [l4]l,, lv[*/2.

This shows that T}, is differentiable and that T,v = T, ,. We have already
seen that 77 is continuous. This shows that 7T}, is C'. We may continue this
way inductively to finish the proof of the lemma. m
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Proposition 66.8. Suppose that A : L?(E) — C"™Y(E) is a bounded oper-
ator, then AA* has an integral kernel which is C" — smooth. Moreover the

C" — norm of the kernel is bounded by the square of the operator norm for
A:L*(E) — C™tY(E).

Proof. Let z € M the map S € L?(E) — AS(z) € E, is a bounded linear
map and hence there is a unique element T'(z,-) € L?(End(E, E,)) such that

AS(z) = /M T, 4)S(y)dy.

Notice that if £ € I'(E), then
(6@, 45() = [ (66 T(w0)Sw) dy
- [ @ @e).sw)d,
M
which by the previous lemma shows that z — T*(x,-)é(x) € L3(E) is a C" -
map with bounds determined by [l 4]|,,, -
(Surely one can show that there is a version of T'(z,y) such that (z,y) —

T(x,y) is jointly measurable. We will avoid this issue here however.) Ignoring
measurability issues, we know that

A5 = [ TSy
so the
AA*S(z) = /M MT(a:, y)T™(z,9)S(z)dydz

= /M k(z,2)S(2)dz,

where

k(z,z) = /M T(z,y)T*(z,y)dy.

Even though the derivation of k above was suspect because of measurability
questions, the formula make perfect sense. Indeed suppose that & and 7 are
in I'(E), then

(n(x), k(z,2)¢(2)) g, = /M (), T (2, y)T" (2,9)$(2) , dy

= /A (@ y)n(e), T (2, y)€()) s, dy
= (T (2, (@), T*(2, )€(2)) 12 i) -
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Furthermore this shows that (z,z) — (n(%), k(, 2)¢(2)) g, is C" in (z,y) with
a C" norm which is controlled by the C" — norms of 7, £, and HAHip. Since
n and £ are arbitrary, we find that k(z, z) is C” as well and the C" — norm is
bounded by a constant times ||A||i .

So the only thing left to check is that

AA™S(z) = /M k(z,z)S(2)dA(z).

Letting &,n € I'(E) as before, then

(n(z), k(z, 2)E(2)) 5, = / (). T )T o)) s,
= (), (AT* (2, )E(2)) (),

so that
[ la) ke ), da = [ (ofe) (AT (0602 (@), do
M M
= | @) 1 (), do
= / (T'(z,2)A™n(x), .f(z))ET dx.
M
Integrating this last expression over z shows that
| (o). b D), dods = (A E)ro) = (1. ALy,
Since 7 is arbitrary we conclude that

AA*E(x) = /M k(x,2)¢(z)dz.

|

Using the above results, one can show that f(D) has a smooth kernel for
any function f : R — C which has rapid decrease. To see this, by writing f in
its real and imaginary parts, we may assume that f is real valued. Further-
more, by decomposing f into its positive and negative parts we may assume
that f > 0. Let g = f1/2, a function with rapid decrease still, we see that g(D)
is a self-adjoint smoothing operator. Therefore f(D) = ¢?(D) has a smooth
integral kernel. In this way we find that e~tP*/2 has a smooth integral kernel.
Let ky(z,y) = e~*P°/2(2,y) denote the smooth kernel.

Proposition 66.9. The function ki(x,y) — 0 in C*>° as t — 0 off of any
neighborhood of the diagonal x =y in M x M.
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Proof. Let § > 0 be given, and let ¢ and ¢ be smooth functions on R such
that ¢+ = 1, the support of ¢ is contained in (=4, ) and 1 is supported in
{z: |z > 6/2}. Also let p;(\) = (2rt)~1/2¢=>*/2t Then

e = [P = [ poePir+ [ psePan
R R R

This can be written as e tP°/2 = R (D) + g(D), where hy(£) :=
JapeNp(N)e*edX and g4(€) = [ pe(N)(N)e*$dA. Now we notice that

€790 = |i™" /}R Pz(A)iﬁ()\)afeMgd)\‘
=i [ eox v an
< Kan(t)
where lims|g K,,(t) = 0 for each n. From this it follows for any n that

D"gy(D) : L}(E) — L?(E) tends to zero in the operator norm as ¢t — 0.
This fact, elliptic regularity, and the Sobolev embedding theorems implies
that g;(D) : L?(E) — C"(E) tends to zero in operator norm for any r > 0.
Using the previous proposition, this shows that the integral kernel of g.(D)
goes to 0 in C*°. (Note, Roe proves some of this by appealing to the closed
graph theorem for Frechet spaces.) Finally, hy(D) = [ pi(A)$(A)e*Pd) is an
operator which does not increase the support of a section by more than size
0. This implies that the support of the integral kernel of h:(D) is contained
{(z,y) : d(z,y) < 30}. Since § is arbitrary, we are done. ®

66.2 Asymptotics by Sobolev Theory
Let me end this section by explaining how Roe shows that the formal asymp-

totic expansions of the heat kernel are close to the heat kernel.
Let ¢ € E,, and let wy(z) := e’ (x, m)&, then

(8¢ + D*) wy = 0 and lim wy = £8,n. (66.8)

Conversely, if w; solves Eq. (66.8), then for all smooth sections S of FE,
8t(e*(T*t)DQS, wt) = 0. Therefore

(S,wr) = ltilrg(e_(T_t>D2S, wy) = ((e_TD2S) (m),f)

= / (S(:r)7 [e*TDQ(m,x)]* §> dr = / (S(m),eiTDQ(a:, m)f) dz,

which shows that wy(z) 1= e~*P” (z, m)¢. since S is arbitrary.
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Now suppose that S; is an approximate fundamental solution at &, € E,,,
so that
(0 + D?) S; = t*ry and lim S = o
where r; is a smooth section of I'(F). Let «; denote the solution to

(at + Dz) o = tkT't with Qp = 0,

which can be written by du Hamel’s principle as oy = fot e*t*T)DQTkerT.
Since wy := S; — o satisfies

(3t + D2) wy = 0 with limw; = &6y,
t10
we find the w; = e~*P” (m, ). Therefore, for any k > n/2,

t .
P ) = il = laul = | [ Pk ar
0

t
< Cy /ef(th)DszerT
0

Li(E)

< Ch + Ck

t
Dk/ 67<t7T)D2TkT7-dT
0 L2(B)

t
(4 2
/ e~ t=TID kg
0

wherein the second to last inequality we have used the Sobozlev embedding
theorem and in the last we use elliptic regularity. Since e *P" is a bounded
+ Cy,

operator, we find that
t 2
/ e~ (t=T)D TkTTd
L2(E) 0

k+1 k _ k+1
= Ot oiﬂt{”D elgag) + el § = KE

t -
|e_tD2(m, ) =S < Cy / e_(t_T)DszDkerT
0
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Appendix: VanVleck Determinant Properties

67.1 Proof of Lemma 61.3

The first step is to get a more explicit expression for D. To this end, fix
v € TyM and for any w € T, M, let

Y (t) = %b exp(t (v + sw)) = exp, (tw),, (67.1)

and ~y(t) = exp(tv). Then Y,, solves Jacobi’s equation:

V2 V2 d
@Yw(t) = ﬁ%‘o exp(t (v + sw))
VvV d .
- EE‘OE exp(t (v + sw)) (No Torsion)
vV Vv, 1]d Vd
= {E, E‘O:| 7 exp(t (v + sw)) (aa exp(t (v + sw)) = 0)

= R(¥(t), Y (£))5(t). (Definition of R)
Y. obeys the initial conditions
d
Yu(0) = E‘O exp(0 (v +sw)) =0
and
\Y V. d
E‘OYU)(O) = E|oa\o exp(t (v + sw))
= Z| (v+sw) =w
T ds” o

Notice that Y, (t) € T, M for each t, so by using parallel translation u(t) :=
//+(7y) along ~ we may pull this back to T, M. Set

Zw(t) = u" (1) Yy (t).
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Using the fact that %u(t) = 0, the previous equations imply that Z,, satisfies:
Zw(t) = A (1) Zy(t) with Z,(0) = 0 and Z,,(0) = w, (67.2)

where

A, (t)w = w” ()R (E), u(t)w)F(t)
= u () R(u(t)v, u(t)w)u(t)v. (67.3)

Since u(t) is orthogonal for all ¢, we may now compute D(v) as
D) = Ay(Zw, (1), ..., Zw, (1)) /Ay (wr, ..., wy,) = det Z,(1), (67.4)
where Z, is the matrix solution to the differential equation
Z.,(t) = A, (t)Z,(t) with Z,(0) = 0 and Z,(0) = I. (67.5)
By Taylor’s theorem,

Z(0) =1+ %Zw(o) + ézgfﬂ(o) + / L 29 W), (67.6)

where 1 is a positive measure such that u([0,1]) = 1/4!. Now from the differ-
ential equation Z,(0) = 0,

Z§3> t) = A’Y(t)Z’Y(t) + Av(t)Zv(t) and
Z§4) (t) = A’Y (t)Z,(t) + 2A’Y (t)ZW (t)+ A"/(t)Zv (t).

In particular Zﬂ(,a)(O) = A,(0) = R(v,-)v, and

ZE(8) = Ay (8)Z, (1) + 24, (8) 2 (1) + Ay (D Ay () Zu (1)
Now A, (t) = O(?),

A () = u™H (1) (Vu@oR) (u(t)v, u(t)w)u(t)o = O(°),

A1) = w (0) (Pyusuc ) (O, ultwyuty = 00)
and hence ZS,4) (t) = O(v?). Using these estimates in Eq. (67.6) shows that
Z,(1) =1+ %R(v,-)v+0 (v*). (67.7)
Taking the determinant of this equation shows that
D) =1+ étr (w — R(v,w)v) + O(v?)
=1- %(Ric v,0) + O(v?).

Before finishing this section, let us write out Eq. (67.7) in detail.
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Lemma 67.1. Let v,w € T),M, then
1
//1_1(%) exp, (wy) = w + ER(U, w)v + O (v3) w. (67.8)
In particular we have for v,w,u € TyM that

(exp, (wy), exp,.(wy))
= (w+ %R(v, w)v+0 (v*) w,u+ éR(v7 u)v + O (v*) u)

= (w,u) + é(w7 R(v,u)v) + é(R(v7 w)v,u) + O (vd) (w,u)

= (w,u) — %(R(w, v)v,u) + O (v*) (w,u). (67.9)

67.2 Another Proof of Remark 61.2: The Symmetry of
J(z,y).

Recall that A denotes the Riemannian volume form on M and
J(z,y) = (expi N), / Az

where exp,(v) = y. Also recall that D(v) := (exp} \), /A where z = 7(v)
and 7 : TM — M is the canonical projection map. The precise meaning of
this equation is, given any basis {w; }—, for T, M, then

D(v) = Mexp, (w1)v, - - -, eXPy (Wn)v) [ Az (w1, . .., wy) = det(Z,(1)),

where w, = d—‘i\o (v+sw) € T,T, M and Z, is defined in Eq. (67.2) above. In
particular,
d
exp,, Wy = E\O exp(v + sw).
Notice that
J(,y) = D(exp; ' (y))-

Let ¢ : TM — TM denote the involution given by i(v) = —54(1), where
~(t) = exp(tv) is the geodesic determined by v. Alternatively we may describe
i(v) = —//1(y)v. Now if v = exp;'(y), i.e. y = exp,(v) = exp(v), then
exp(i(v)) = x. That is to say, i(v) = exp, ! (z). Hence to show J(z,y) = J(y, z)
if and only if D(v) = D(i(v)). This is what is proved in A. L. Bess, “Manifolds
all of whose Geodesics are Closed,” see Lemma 6.12 on p. 156.

Now let us work out D(i(v)). Let o(t) = y(1 —t) = exp(ti(v)). Since
//i(0) = //1-¢(7)//1(y)71, it follows after a short calculation that A, (t) =
uw(1)A,(1 — u(1)~L. Let W(t) := u(1)"1Z,(1 — t)u(1), then W(1) = 0,
W(1) = —TI and

W(t) =u(1) " A, (1 — ) Z, (1 — t)u(l) = W(t) = A, ()W (t).
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Notice that
D(i(v)) = det Z,(1) = det [u(1) "' Z,(1)u(1)] = det W(0).

So to finish the proof, we must show that det W (0) = det Z(1). For this
observe that A, (t) is a symmetric operator (by symmetry properties of the
curvature tensor) and hence

% {Z*(t)W(t) - Z*(t)W(t)} = ZOW () — Z*O)W (1)
= Z* (A (W () - Z* () A, ()W (1) = 0
and hence

{Z*(t)W(t) - Z*(t)W(t)} b =0.
This implies that
W(0) = Z*(0)W(0) — Z*(0)W(0) = Z* ()W (1) — Z*(1)W (1) = Z*(1).

Therefore det W (0) = det Z*(1) = det Z(1) as desired.

67.3 Normal Coordinates

Notation 67.2 Suppose that o € M is given and let x(m) = exp,l(m) €
ToM for m in a neighborhood of o. The chart x is called a geodesic normal
coordinate system near o.

In geodesic coordinates, t — tx is a geodesic, therefore if I" is the Christofel
symbols in the this coordinate system, we have

0= 3500 = (5 + T00)@)) 1 (00) = F(e)a)a

for all x near 0. Since V has zero Torsion we also have that

for all x,y, z. From the previous two equations it follows that
0 = I'(0)(z)y for all z,y,
i.e. that I'(0) = 0 and that
0, T'(0){z)x = 0.
Let B(z,y,2) := 0,I'(0)(y)z, then we have shown that

B(z,y,z) = B(x,2,y) and B(z,z,z) =0 for all z,y, 2. (67.10)
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Thus
d
0= TloBla +ty,a + 1y, + 1y) = By, ,2) +2B(z,,9)
and therefore,
d
0= E‘O {B(y,z+tz,x +12) + 2B(z + tz,x + tz,9)}

=2B(y,z,2) +2B(z,z,y) + 2B(z, 2,9)
=2(B(y,2,%) + B(z,2,y) + B(z,y,2))

wherin the last equality we use Eq. (67.10). Hence we have shown that
0, (0)(y)z + cyclic = 0. (67.11)
So at © = 0 the curvature tensor is given by R = dI" and hence

R(z,y)z = 0, I'(0)(y)x — 9,'(0)(x)x
= 0. I'(0)(y)x + 0. I"(0)(y)x + 9. I'(0) (x)y
=30, I'(0)(y)x = 30,1°(0)(z)y

and hence
0.7(0) (x)y = 5 R(z, ) or
1
I(&)(a)y = 3 R y)e + 0(a){zy).
Therefore, if
(2, y)|s=0 = 0-(I(2)x,y)|2=0 + 0= (2, I'(2)y)| =0
1 1
= g(R(Z, :U)Z, y) + g(ma R(Zv y)Z)
2
= 2(R(z,2)%9)
and therefore by Taylor’s theorem we learn that
12
23
(R(z,2)z,y) +O(z°)

(@2,92) = (2,9) + 555 (R(2,2)2,y) + O(2%)

1
- (33 ) y) - g
and hence we have reproved Lemma 67.1.

We now change notation a bit. Let £ — M be a vector bundle with

connection V.
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Notation 67.3 Let = be a chart on M such that z(o) = 0 and let v,(t) =
==Y tw) for all v € RE™M) = V. Let uw u : D(z) — GI(E) be the local
orthonormal frame given by

u(m) = //1(Vao(m)), i-e u(z™ () = //i(w) : Eo = Em (67.12)

for all v € V sufficiently small. Also let I' = I' = u~'Vu be the associated
connection one form.

From Eq. (67.12) it follows that

v o \Y
@ @) = =/ /() = 0
and in particular at ¢ = 0 this shows that
0= 0'Va,uly, ) = 0'u (7(8)) T(Dily, (1) = v (30(t) T(©0' iy, 1))-

That is to say _
I'(v' 04y, ) =0 forallve V.

In particular at ¢ = 0 we learn that I'(9;|,) = 0 and

0= E|0F(Ulai o)) = V'V 0;1(0;)|, for all v € V.
This shows that 8;1'(9;)|, = —9;'(9;)],. Since

RE(81,67)|0 = u71v20¢/\8j’““’
=u"(0) {0 (0;) — 0;(8;) + [I'(9:), T'(9)]} o
= —-20;I(9)]o

from which it follows that
1
6J'F(ai)‘o = 7§RE(82'78]')|0-
From Taylor’s theorem we find
1 . 1 .
I(0:)|m = *§xj(m)RE(9¢,3j)|o+0(\x(m)\2) = *gRE(@,w](m)f’j)\oﬂ(lx(m)lz)
This result is summarized as follows.

Proposition 67.4. Keeping the notation as above and let w € R | then
I(w'd;) = —§RE(wla1;|0, 279;],) + o(2?)(w) (67.13)

near o € M. In particular if x(m) = exp, ' (m) are normal coordinates on M,
then



67.3 Normal Coordinates 1189

. d d
W' O|m = E|0x_1(m(m) +tw) = E'O exp(xz(m) + tw)
= eXp*(wz(m))

Therefore, Eq. (67.13) may be written as

F(exp, (wagm)) = 5 R (w,2(m) + O (m) w).

Proof. The quick proof of these results is as follows. We work in the local
frame u. Write //;(0) = u(o(t))P;(o) and recall the formula

Llop(z / RE, 5 (5u(r), ZL(r))dr — D(ZL(8)Pi(Ss).

Apply this to X(t) = 271 (t(z(m) + sv)) and use that fact that in the frame
defined by u, P,(Xs) = id so that

t

0= / RE,(50)(S0(r), Z(7))dr — I(Zh(t).

Therefore, at t = 1,
. 1 hd
[(0ih]m) = / R, 5y (E0(r), Zh(r))dr

1

= —/0 R/E/T(EU)(T'Ulai|z*1(‘rz(m))7xj(m)a”z*l(‘f'z(m)))dT
1

_/0 R (5) W' 0ilo=1 (ra(m))s & (1) o= (rar(amy) ) TdT
1 5, i 2
= 7§R (1} 8i|o,xj(m)5j\o) + O(x (m))

= —%RE(vic’%lm a(m)) + O(2*(m))(v).
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Miscellaneous

68.1 Jazzed up version of Proposition 68.1

Proposition 68.1. Let « > —1, R, K, P, Q and V be as above. Then the
series in Eq. (60.5) and Eq. (60.11) is convergent and is equal to P, = e*F~
the unique solution to Eq. (60.1). Moreover,

1P = K[, < s(t) [| K[|t = O), (68.1)
where || f||, == maxo<s<t | fs| and k(t) is an increasing function of t, see Eq.
(68.4).

Proof. By making the change of variables r = s + u(t — s) we find that

/ (t —7)2(r — s)Pdr = C(a, B)(t — 5)* A1 (68.2)

where

Cla,B) = /1 u*(1 = u)’du = B(a+1,5+1),
0

and B is the beta function. From Eq. (1.5.5) of Lebedev, “Special Functions
and Their Applications”, p.13,

e+ 1)I'(B+ 1).

Cla, ) =B(a+1,8+1) = RCEYE)

(68.3)

(See below for a proof of Eq. (68.3).)
By repeated use of Eq. (68.2),
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‘(QmRM = Ri—s, Rsy—s,0 1 - - Bsy—s, Rsy ds

JtA,

< Cm/ (t—8m)" (8m — Sm—1)" .. (52 — 51)" s{ds
tAm

=C"0(a, a)/ {(t o) (o~ m2)” X} ds
tAm_1

(s — 1) 88

=C"C(a,a)C(o,2a+ 1)C(o, 300+ 2) ...

t
.Cla,(m—1)a+m— 2)/ (t—s1)™ ™ dsy
0
=C"C(a,a)C(a,2a+ 1)C(o, 30+ 2) ...
.. Cla, (m — D)o+ m — 2)C(a, ma 4+ m — 1)tmTDetm,
Now from Eq. (68.3) we find that

Clo,a)Cla,2a+1)C(a,3a+2)...Cla,ma+m — 1)
_ F(a+1)F(a+1)F(a+1)F(2a+2)X

I'2a+2) I'(3a+3)
I'la+1)I'(3a+3) I'a+1)I'(ma+1)
I'(4da+4) T I((m+Da+m+1)
I'la+1)™

'((m+1la+m+1)
Therefore,

I'la+1)™

tatm(a+1)
(m+1a+m+1)

|(QWLR)t‘ S C"L F

and thus the series in Eq. (60.11) is absolutely convergent and |V;| < (a +
1)k(¢)t™ where

I'a+1)™ gm(a+1)
I'((m+1)a+m+1)

k() = (a+1)7! i cm (68.4)
m=0

which is seen to be finite by Stirlings formula,

F(m(a + 1) + 1) - (27r)1/267(m(a+1)+1) (TI’L(OL + 1) + 1)(m(a+1)+1/2) ,
see Eq. (1.4.12) of Lebedev. m

Using the bound on V' and the uniform boundedness of K,

/ K. Viea ds < w(t) | K], (@ + 1) / (t— 8)ds = s(t) | K, 12 (68.5)
0 0

and hence P; defined in Eq. (60.10) is well defined and is continuous in ¢.
Moreover, (68.5) implies Eq. (68.1) once we shows that P, = e'f. This is
checked as follows,
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d [t t L
G [ Eevas=vir [ Rovids=Vis [ (LK~ R Vids
dt Jo 0 0

t t

=Vi+ L/ K, Vids — (QV), = L/ K,_,Vyds + R
0 0
Thus we have,

d . t
—P =Kt+L/ K sVids + R:

t
= LK, + L/ K Vids = LP,.
0

68.1.1 Proof of Eq. (68.3)

Let us recall that I'(z) := f t®e~tdt/t and hence let z = z + y and then
z = uz we derive,

Nla+1)I'(B+1) = / 2%yl e™ Y dady
[0,00)2

oo oo
=/ dl’/ dzz®(z — x)Pe*
0 T

= /dzdzlo<l<z<OO 2%(z — x)Pe?

o] 1
=/ dz/ duu® (1 —u)P 0P He2
0 0

=Cla, ) (a+ B +2),
e Ie+1)I(B+1)

Clh)=—Fra35+9)

68.1.2 Old proof of Proposition 60.1

Proof. Taking norms of Eq. (60.8) shows that

HQmKHt = ”K”f Cm/ (52— Sl)a (53— 52)a oo (8m — smfl)a (t— sm)a ds,

tAm

where ds = dsidss . ..dsy,. To evaluate this last integral, we will make use
Eq. (68.2) to find of Repeated use of Eq. (68.2) gives,
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/ (s2—51)% (53— 82)" .. (8m — 8m—1)" (t — 8)" ds
JtA,

—C(a,a) /mm 1 [ ( (82 —51)% (35 = 52)" )QQH} ds

. Sm—l_sm—Q) (t_sm—l
_ . @ %
= C(o,0)C(e2 +1/ [ (o2 — a1)" (g5 ~ 22)
(a a) (05 @ ) tAp_o ~(5m—2_5m—3) (t_sm—2)

=C(o, a)C(a, 200+ 1)C(a, 3a + 2) x

ds

3a+2

t
.. C(a, (mfl)ochme)/ (t—s1)™ " sy
0

=C(o, a)C(a, 200+ 1)Cla, 3o+ 2) X
tma+7n

Now from Eq. (68.3) we find that

C(a,a)C(a,2a +1)C(a,3a+2)...C(a, (m — Da+m —2)
(a+1)? F(a+1)F(2a+2)
F(2a +2) I'(3a+3)
la+1D)I((m—-1Da+m—1)
I'(mo +m)

_ I'a+1)™
- I'(ma+m)’

Combining these results gives the estimate,

(CF(O[ + ))m t7na+nl
I'(ma+m) ma+m

(CI(a+ 1te+t)™
I'(m(a+1)+1)

@™ K|, < I[K1l;

= [IK[l,
em(at1)+1
(2m)1/2 (m(a + 1) + 1)(m@+DF1/2)
(cr+1 (et)““y
(2m)1/2e (m(a+1) + 1)(m(a+1>+1/2) '

~ |E|l, (CL(a+ 1)t +)™

= 1K1,

where the second to last expression is a result of Stirlings formula, Eq. (1.4.12)
of Lebdev.

From this estimate we learn that > _) Q™K is uniformly convergent on
compact subsets of [0,00) and that
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Y QU'E-K| <> QK]
m=0 t m=1
. (CT(a+ 1)tet)™
< il 3 GO I — o)

m=1

So it only remains to prove that P := 3" Q™K solves (60.1).
Now by the chain rule and the fundamental theorem of calculus, 4 (Qf); =

fot fi—sRsds + foRy or equivalently

d .
= Q) =Qf + /o

Applying this formula inductively using the fact that (Q™ K)o =0 if m > 1
implies that

d d .
S (@Q"K) = QIS Q) = QUK + Q" (o)
=Q" (LK -R)+Q™ 'R
LQmK _ QmR + QmilR,
wherein the last equality we have used the fact that L commutes with Q.
Setting PN := ZZ:O Q™ K, we find using the previous equation that
d N N N
EP =LP" — (Q R) :

or equivalently that

t t
PN =T+ / LPNds — / (QVR), ds. (68.6)
0 0

Since,

N (CT(a+ 1)ta+l)
Q™ All, < IRl “Fna DT~

we may pass to the limit, N — oo, in Eq. (68.6) to conclude that

0as N — oo,

ot
P=1+ / LP;ds.
0
This completes the proof.

For later purposes, let us rework the above derivative aspects of the proof.
Let

Rm(s) = / Rsfsmf1Rsm,1fsm,2 cee R82781 Rslds
0<51<52<-<5,,—1<s

= @"'R),.
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then by Eq. (60.6)
t
(QmK)t:/ K Ry (s)ds
0

Hence

(QmK /dth sRm )d

= Rm( ) / (LKt s — R 5)Rm(3)

= Ru®) + LQE), — Ria (1)

=L(Q"K), +(Q"'R), - (Q"R),.
as before. m

Taking norms of this equation implies that

|(me)t‘ < Cm/ [ fs1] (52 — Sl)a (83— SZ)Q o (5m — Smfl)a (t— sm)a ds

m

mypom myom ' (t — Sl)m71
scmem [ pads=cren g s
AL (m—1)!
C’t“” ctite)™
>~ / |fb| dum(s) S ( ' ) Orgai(t ‘fb| ’ (687)

m—1

where dpy,(s) = m(t—s t~™ds, a probability measure on [0,¢]. This
shows that |Q™f||, < (Ct***)™||f||, /m!. From this estimate we learn that
S o @™ K is uniformly convergent on compact subsets of [0,00) and that

oo
1+a
<> IQmE]), < &

t m=0

dt/ Kt deS*l g (/ Kt+5 gV ds — / Kt Svd‘i)

¢
< Kiys- anS'f‘/ (Kiys—s — Ky b)Vds>

Y Q'K -K 1= O(t'+).

m=0

l
5
1 (o N
= (}LO (g ) K;_Vids + 3 /f (Kit5-s — Kts)Vst>
d t
e K —sVs
+ a0 /0 t+6 Vids
t . t
—Vi+ / Ko Veds =V + / (LEK,_ — Ri_) Vds
0 0

t t
V4L / Ki_JVids — (QV), = L / K\ Vids + R,
0 0
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68.1.3 Old Stuff related to Theorem 61.7 O F(t,x,y) = Ly F(t,x,y) + r(t, z,y).
Proof. Let Hence
t
F(t,z,y) = / / k(t — s,z, z)v(s, z,y)dA(2)ds Op(t,x,y) = Oik(t, ,y) + O F (L, x,y)
0 M = Lok(t,z,y) = r(t,2,y) + Lo F(t, 2, y) + r(t, z,y)
so that p(t’ x,y) = k(t,l‘7y) + F(t,l’,y) For § > 0 set = La) (k(t7 CU,?J) + F(twray)) = pr(thay)
¢
Bt = [ [ K40 s 2)ols s )dre)ds, For s <1, le
0o Jm
then b(t, s, z,y) := /M k(t —s,x, z)v(s, z,y)dA(2).
OpFs(t, m,y) = /M k(S z, 2)v(t, z,y)dA(2) It is clear the b is smooth in ¢ and s and is C' in (z, %), moreover
¢ .
+/ Ok(t + 6 — s,z,2)v(s, z,y)dN\(z)ds 151%1 b, 5,2,y) = vt &, 9)ll 1z, = O-
o Jm
_ / k(0,2 2)u(t, 2, y)dA(2) Hence we set b(t, tl, x, y). = o(t, z, y). so that b(t, s, -, -) is continuous for s € [0, ¢]
M in the space of C* sections I;. Similarly, for s < ¢,
t
# ) f b 8= st Gl Oblt,sa,) = [ kit = 5.2, 20(s,20)dN2)
t
=) [ e st v = [ (Lt 5..2) = 1t = 52,2 v(s, 2. ) )
M
= /M k(6, 2, 2)v(t, z,y)d\(z) + Lo F5(t, x,y) = L,b(t,s,z,y) — /M r(t —s,x,2)v(s, z,y)d\(2).
t
- /0 /M r(t+6 —s,z,2)v(s, z,y)dA(2)ds. From this last expression and our previous comments, limgyo Lyb(¢, s, 2,y) =

Lyv(t,z,y) in I;_o and hence
We may let 6 — 0 in this last expression using the fact that K; is uniformly
bounded on I to find that 1%1 b(t, s, x,y) = Lev(t,z,y) in C'72.

1511101 Bt z,y) = F(t2,y) More precisely, we will construct p(t, z,y) as

and

p(t717y) = Z / k(tfsmwraym)r(sm78m717ymaymfl) (688)
%E‘} atFﬁ(tv T, y) = U(tv I??/) + LIF(t7 T, y) m=0"tAm J M™

T(Sm—l — Sm—-2,Ym—1, ym—2) <. 7"(517 Y1, y)deya

_ /Ot /M r(t —s,z,2)v(s, z,y)d\(z)ds

with the limits being uniform in ¢. Also by equation (62.1) and (62.2),

Consider,

¢
. 3tp(t,sc,y) = atk(taxay) +/ / k(t_ S,.’L‘,Z)'U(S,y, Z)de)‘(y)
0 JMm

wtag) = [ [ vl sz 000 2N s = o)
o Jm is a bounded operator and its derivatives in s up to order k is a convergent

and therefore 0, F exists and sum in converge. W
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Remarks on Covariant Derivatives on Vector
Bundles

Let m : E — M be a vector bundle with fiber W. A local frame v on F is a
local section of the bundle Aut(V,E) — M, i.e. for m € D(u) (the domain
of u) u(m) : W — E,, = n~%(m) is a linear isomorphism of vector spaces.
Notice that any local section S of E may be written as S(m) = u(m)s(m),
where s € C°(M,W). Suppose that V is a covariant derivative on F, define
for v € T,,, M, a linear transformation V,u: W — E,, by

(Vou) w := V,(u(-)w) for each w € W.

With this notation and the basic properties of V, given s € C*® (M, W), we
have that
V(us) = (Vyu) s(m) + u(m)dys,

where 9,5 := 2|os(c(t)) provided that ¢(0) = v. In particular this shows that
w(m) "IV, (us) = dys + A(v)s(m),

where A(v) = A%(v) := u(m)~! (V,u). So the local representation of V is
V =d+ A, where A is a one form with values in End(W).
Given a path S(t) € E, let o(t) = 7(S(t)) and s(t) = u(co(t))~15(¢). Then
define
VS(t)/dt :==u(o(t)) (5(t) + A(a(¢))s(t)) , (69.1)
i.e. the local version of ¥ = 4 + A(6(¢t)). Notice that if S = us is a local
section of F, then

VS(o(0)/di = uo(0) ( 7s(o(t) + AGO)s(a () )

= u(o(t)) (955 + A(6(1))s(a(?)))
= Vg,(t)S.

This explains why V/dt is independent of the local frame u used in Eq. (69.1),
a property which follows by direct computation as well.
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We say that a path S(t) € E is parallel provided that VS(t)/dt = 0 for
all t. Given a curve o(t) in M and a point Sy € Eq(g), there is a unique path
S(t) € E such that 7(S(t)) = o(t) and VS(¢)/dt = 0. This path is constructed
by solving (locally) the linear equation

5(t) + A(o(t))s(t) = 0 with s(0) = u(c(0)) 1Sy

and then setting S(t) = u(o(¢))s(t). It is easy to check that the map Sy €
Eqy) — S(t) € E,) is linear. In fact S(t) = //+(0)So, where //i(0) =
u(o(t))g(t)u(c(0))~! and g(t) € End(W) is the unique solution to the linear
differential equation,

g(t) + A(6(t))g(t) = 0 with g(0) = id € End(W).

We will call //;(o) parallel translation along o. It is uniquely characterized as
the solution to the differential equation

V//i(0)/dt = 0 with //o(0) = id € End(Eq),

(If U(t) € End(Ey0), Esq)) for each t, then VU(t)/dt is by definition the
linear transformation from FE, ) to Ey(;) determined by (VU(t)/dt)& =
V (U(t)§) /dt for all £ € Ey.) We have the following properties of parallel
translation which follow from the uniqueness theorem for ordinary differen-
tial equations and the chain rule for covariant derivatives. Namely if S(¢) is a
smooth path in E and ¢ = 7(s), then

VS(r(s))/ds = 7'(s) VS(t) /it —r(s).
This property is easily verified from Eq. (69.1).

Proposition 69.1. Let o(t) € M be a smooth curve for t € [0,T] and
let 7 :[0,S] — [0,T] be a smooth function such that 7(0) = 0. Then
//s(od oT) = //r(s(0), i.e. parallel translation does mot depend on how
the underlying curve is parametrized. Secondly, let 5(t) = o(T — t), then

[11(&) = /[r-(0)//r(0)~ . In particular //7(0)~" = //7(5).
Proof. We have that
V//s(ooT)/ds =0 with //o(0 07) = id € End(E, ()
and

T/ /oo (0)/ds = ¥/ /(0)/dt]r—r 57" (5) = 0 with
//7(5)(0)|s=0 = id € End(Ey0))

and hence by uniqueness of solutions to O.D.E.’s we must have that //s(c o
T) = //+(s)(c). Similarly,
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V//u(&)/dt = 0 with //o(5) = id € Eycr)
and

V//r-i(0)/ /(o) Jdt = =V /[ (0)/ /(o) " /ds|s=—1 = O with
//7-+(0)//7(0)  |i=0 = id € Eqr).

Hence again by uniqueness of solutions to O.D.E.’s we must have that //;(¢) =

//r-t(0)//r(0)"". m
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Spin Bundle Stuff

Let M™ be a Riemannian manifold, V' = R", CI(V) be the Clifford algebra
over V such that v?> = —(v,v)1. Let Spin(n) C CI(V) be the spin group,
p :Spin(n) — SO(n) be the spin representation and W be a left CI(V') module.
The following compatibility condition is need below in the construction of
Spinor bundles S over M such that CI(T'M) acts on S.

Assumption 7 For h €Spin(n), v € V and w € W, h(vw) = (p(h)v) (hw).

Now for the construction of spinor bundles. Let {Ua},,c 4 be an open cover
of M such that there exists ug : Uy — Hom(R"™,TU,) which are isometries.
For m € Uy NUg let gops(m) := uq(m) tug(m) € O(n). Notice that the for
m e U, NUgNUs,

9ap(m)gps(m) = ua(m) " ug(m)us(m) ™ us(m) = ua(m) ™ us(m) = gas(m).

We now assume that M is orientable which means that we may choose
uq such that gog(m) € SO(n). Now if M is spin as well, we may choose
Jap(m) €Spin(n) such that

1. gag(m) = p(Gap(m)) for all m € U, NUg and all o and S.
2. Gap(m)3a5(m) = Gas(m).

Given this data, it is now possible to build a spin bundle over M as follows.
For m € M, let

S i={(m,a,w):weWanda € Ast. meU,} /-

where (m, o, w) « (m, o/, w’) if and only if W' = oo (m)w. Let S := UpmenrSm
and 7 : S — M be the projection map which takes S, to m for all m € M.
Given a € A, let iy : Uy — Sy, == 7 Y(Us) = Umev,Sm be given by
U (m)w is the equivalence class containing (m,a,w). Notice that @, (m) :
W — S, is a bijective map and that @, (m) ' dg(m)w = Gas(m)w. One may
now easily check that we may make S, in a well defined way into a linear
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space by defining @, (m)w + cio(m)w’ := G4 (m) (w+ cw’), i.e. by requiring
each G, (m): W — Sy, to be linear.

Let us now show that we can make S, into a Cl(T,,, M) module. For
n € T,,M and £ € S,, choose a € A such that m € U, and choose v € R"
and w € W such that n = ua(m)v and £ = Gn(m)w. We then define n¢ :=
Uo(m)(vw). To see this is well defined choose o’ € A such that m € U, and
choose v/ € R"™ and w’ € W such that 7' = uq/(m)v' and & = o (Mm)w'.
Then w = Goor(M)w’ and v = gaor (M)V" = p(Gaar (M))v’, and hence

VW = (Jaar (m)vl) (Gaer (m)w’) = (p(Jae (m))v/) (gaa’(m)w/) = Jao’ (U,wl) .

From this it follows that @, (m)(vw) = e (m)(v'w’) so that ng is well defined

independent of the choice of a € A. Since £ € T, M 2, L¢ € End(Sp) (Le
denotes left multiplication by ¢) satisfies ¢(€)? = —(&, €)1, it follows that
the action of T}, M on S, extends uniquely to an action of CI(T,,,M) on S,,.

Hence if M is a spin manifold, we have produced a vector bundle S — M
such that each fiber of S,, of S is a CI(T,, M) Clifford module.
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The Case where M = R"

71.1 Formula involving p

Let L:= $A+ B+c¢, Lo := 3A+ B and B(z) := b(z) - « where and B =

b-V =" b0 and with b;(z) and c(z) in RV*V. Let g be an RVXN —

valued function of (¢,z) with ¢ > 0 and x € R™ and set

u(t,z) = p(t,z)g(t, x).

Then
(0r —L)u= (9 —L)pg
=0 —Lo)p-g+p(0:—L)g—Vp-Vyg
=-Bp-g+p(@ —L)g—Vp-Vyg
=p{-Blnp+9d;— L—Vinp-V}g.
Now

Vinp =V (—2%/2t) = —%

so the above equation may be written as:
1 1
(O —L)u=p ;b~x+8th+?$-V g

1
:p<6th+¥S>g

where

S=0,+b-x
and

B(x) = b(x) - x.
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71.2 Asymptotics of a perturbed Heat Eq. on R"

Let L := $A+ B +c, Ly := A+ B and B(z) := b(z) - @ where and B =

b-V =>" b8 and with b;(x) and c(z) in RV*N. As above let
p(t,x) = (271't)7n/2 e~ /2t
be the heat kernel with pole at 0 for R™.

Lemma 71.1. Let ug € RVN*N be given, then there is a unique solution to the
O.D.FE

Ut,z) = —%B(ta:)U(t,x) with U(0,2) = ug € RV*V, (71.1)
Moreover, U(t,x) is smooth in (t,z) and

U(t,sz) =Ul(ts,x) (71.2)
for all s,t € R and z € R™.

Proof. Since 3(0) =0,

¢ 1
%B(t:r) = %/0 0,0(Tx)dr = ./0 0B (utz)du

and hence the matrix function (t,#) — 18(tz) is smooth even for ¢ near 0.
By basic O.D.E. theory this shows that U exists and is smooth. Since

%U(ts,x) = sU(ts,m) = fséﬁ(tsx)U(ts,x)

= —%5(tsac)U(tS, z),

it follows that U (ts, z) satisfies the same O.D.E. as U(¢, sz). Hence by unique-
ness of solutions to O.D.E.’s we find that Eq. (71.2) holds. m

Remark 71.2. If [B(x), B (y)] = 0 for all z and y, then the solution to Eq.
(71.1) is given by

1
1
U(l,z) = exp (— / gﬁ(t:c) dt.) . (71.3)
Jo
The rest of this section is devoted to the proof of the following Theorem.
Theorem 71.3. Let U be defined as in Lemma 71.1 and defined
uo(z) = U(1, 2), (71.4)

and uy, inductively by
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w1 (2) = o) /0 ' hug(rz) Lug (ra)dr. (71.5)
Jor allk=0,1,2.... If
Z,(t,x) = p(t, x) zq: tRug (), (71.6)
then -
(0 — L) Z,(t,2) = —tTp(t, 2) L (1, ). (711.7)

The proof of this theorem could be given by direct computation. However,
we will take a longer route however and derive the formulas in the Theorem.
Let g be an RV*Y — valued function of (¢, x) with ¢ > 0 and = € R™ and
set
u(t7 .23') = p(tv x)g(t> $)

Then
(0y = L)u = (0, — L) pg
=0 —Lo)p-g+p(0:—L)g—Vp-Vyg
=<p%8 an—Bp>~g+p(3t—L)g—Vp-Vg
t
p{2ta InJ— Blnp+d — L—Vlnp.v}g
Now

Vinp =V (-z?/2t) = —
so the above equation may be written as:

(6t—L)u:p(b~§+8t—L+§~V>g

:p<8th+%S)g (71.8)
where
S:=z-V+b) z=0,+p(x), (71.9)
and B(z) := b(z) - x as above.
Now let
g(t,x) = gq(t,x) = Ztkuk (71.10)

and consider

1 q
(@ + ;S - L) g= Z {t"* (kuk + Suy) — t"Luy, }
k=0
g—1
= —Suo + Ztk ((k 4+ 1)ugs1 + Sug+1 — Lug) — t?Lug.
k=0
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Thus if we choose ug such that
Sug(z) = (z- V. + B(x)) uo(x) = 0. (71.11)

and uy such that
(k+ Dugs1 + Sugsr — Lug =0 (71.12)

then (8, + %S — L) g = —t?Lug or equivalently by Eq. (71.8),

(0 = L) Xy = (0 — L) (pg) = —t"Luy
which then proves Theorem 71.3 show that uj defined in the theorem solve

Equations (71.11) and (71.12).
Suppose that ug is a solution to Eq. (71.11). If U(t, x) := ug(tz), then

Ult,z) =z - Vug(te) = %taz - Vug(tx)
_ %amuo(t:c) - —%ﬂ(tm) o)
= f%B(tyc)U(m x)

and hence up(z) must be given by U(1,z) as in Eq. (71.4). Conversely if ug
is defined by Eq. (71.4) then from Lemma 71.1, uo(sz) = U(s, x) and hence

d d
dzuo(x) = —=l1uo(sz) = —=LU(s, z)
= —B@)U(, z) = —B(z)uo(x).
Thus we have shown that ug solves Eq. (71.11).
We now turn our attention to solving Eq. (71.12). Assuming ug4q is a
solution to Eq. (71.12), then Vi1 (¢, ©) := upy1(tx) satisfies
tViey1 (8, 2)(t) = ta - Vg1 (t2)

=— (%B(tw) +Ek+ 1) Viet1(t, ) + Lug(tx)
or equivalently
Vig1(t, @) = — <16( x) + kL) Vi1 (t, ) + = Luk(tx) (71.13)

This equation may be solved by introducing an integrating factor, i.e. let
U1 (t, ) = tF g (ta) Wiy (8, ).

Then Uy solves



71.2 Asymptotics of a perturbed Heat Eq. on R™ 1209

U}H_l(t,l‘) = tk+1u0(tm)71Vk+1(t, I) + (k + 1) tkuO(tI)71Vk+1 (t,l’)

+ tk+luo(t$)71@Vk+1(tv x)

= tFug(tz) "  Lug (tz).

Hence
t
Urhs(t,2) = Ukia(0,2) + [ 7*ua(ro) ™ Lu(rair
0
t
:/ TkuO(T$)71Luk(T$)dT.
0

Therefore if up41 exists it must be given by Eq. (71.5).
Conversely if uy1 is defined by Eq. (71.5) then

1
ugt1(sx) = uo(sm)/ T*uo(rsx) ™t Lug, (s )dr
0
= uo(sm)/ s~ DRy (b2) = Lug (tz)dt
0
and hence
P o d
o1 (2) = E‘lulﬁ»l(sx)
= —B(z)ugs1(x) + uo(z)di\l / s~ Ry (b)Y Lug, (tz)dt
s Jo
1
= —B(x)ugs1(x) + Lug(z) — (k+ 1)u0(x)/ tRug (t) Y Luy (tx)dt
0

= —(B(x) + k+ 1)) upr1 () + Lug(z)

which is shows that w1 solves Eq. (71.12). This finishes the proof of Theorem
71.3.




Part XVIII

PDE Extras




72

Higher Order Elliptic Equations

Definition 72.1. H*(R?,CV) := {u € S'(R4,CN) : |a| € L*((1 + |¢]?)*ds)}.

Note For s =0, 1,2, ... this agrees with our previous Notations of Sobolev
spaces.
Lemma 72.2. (4) C¥ (R4, CY) is dense in H*(R?, CN).
(B) If s > 0 then ||ul|_s = |[ul|g-- = sup L%e=l
¢eCee

el-s

Proof. (A) We first rate that S(R?, C") is dense in H*(R?,CV) because
FS =8 and S is dense in L2(1 + |£]2)*d€) for all s € R. Tt is easily seen that
C is dense in S for all s =0,1,2,... relative to H*-norm. But this enough
to prove (A) since for all s € R|| - ||s < || - ||« for some k € N.

(B)
1(@, ¢) |

||UH2—‘ = |lall L2 ((141¢)2)-2as) = Sup
s ((1+¢]2)—2ds) ses H¢”—

LD+ 1) ]
25 VBIOEP( T 1EP) &

Let §(€) = @(€)(a + |€[2) 7%, the arbitrary element of S still to find

_ | a(©)d(e)de]
Jull s = sup
ves /[ 1 §>| 1+|§\ e
g LSt cus
vl el T Tl

Since Cg° is dense as well. ®

Definition 72.3. H*(R4, CY) := {u € &' (R%,CV) : 4| € L2((1 + |¢]?)%d€)}.
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Proposition 72.4. Suppose L = Lo has constant coefficients then |ulls <
C(||Lu||s—k + ||lulls—1) for all s € R.

Proof.

o — o —

Lu(s)“ = ”L/u(x)eiszdx = /J(LO)(xf)u(x)emfgdx
= /U(&)U(m)e”'ida: = o(&)a(s).
Therefore
@l = lo(©)~ o @©a@)l < o€~ llo©a@)|l
mkHU( Ja(&)]-

Therefore .
lo(€)i <>||>'§‘

Notice there exist C' > 0 such that
k
1 1
1<C| g + )
: (5' () * o

[P+ [E[2)? < CUER 1+ €)M al? + (1 + [g2)al?)
< O (1L + Ig) Mo (il + (1 + 2 (@()?)
< C (1 +1e®) M@ + (1 + |2 @(©)?)

Integrate this on £ to get the desired inequality. m

el

Then

Notation 72.5 Suppose 2 C R? is an open set and ao, € C®(£2,CN) for
some N and |a| < k. Set L : C®(2,CN) — C>(£2,CN) to be the operator
L= 3 aq0" and Ly := ) an0"

U(LO)(&) = Z aa(ig)(‘z = Z‘(" Z aaga
o=k laf=k

for € € R, Notice that Loe's® = a(Lo)(x,&)e?.

Definition 72.6. L is elliptic at = € 2 if a(Lo)(x, €)1 exists for all § # 0
and L is elliptic on 2 if o(Lo)(z, €)™ ewist for all € #0, x € 1.

Remark 72.7. If L is elliptic on {2 then there exist €> 0 and C > 0 such that
lo(Lo)(z, )l > e\ﬁ\k for all z € 2,¢ € R Also ||o(Lo)(z, &)~ < C|€|F for
all z € 2,¢ € RY\ {0}.
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Indeed for [¢| = 1,(z,§) — [lo(Lo)(x,&)~!| is a continuous function of
(x,€) on 2 x S91. Therefore it has a global maximum say C. Then for

€] =t #0.
-1
llo(Lo) (:c %) | < C implies

—1
< C or

(1) oL, 0]

[|o(Lo)(x, &)t < Ct™ = Cl¢g| ="
Given {2 as above let
H(02,CN) .= Cx(2,CN)H* (R, CN).

Theorem 72.8 (A priori Estimates). For all s € R there exist C > 0 such
that V u € HO(£2)

ulls < CU[Lulls—k + [lulls—1)- (72.1)
Reference Theorem (6.28) of Folland p. 210 chapter 6.

Proof. I will only prove the inequality (72.1) for s = 0. (However, negative
s are needed to prove desired elliptic regularity results. This could also be done
using the Theory of pseudo differential operators.) With out loss of generality
we may assume u € C2°(£2,CN).

Step (1) The inequality holds if L = Ly with constant coefficients by
above proposition.

Step (2) Suppose now L = Lo but does not have constant coefficients.
Define Ly, = Y. aa(x0)0* for all zy € £2. Then there exist Cy independent

al=k
of gy such tha‘t |
lullo < Co(llLagull -k + lJull-1)

for all zy € £2. Suppose supp (u) C B(zo,d) with § small. Consider

(L = Loy )ul—s = sup M
beCe llolls

Now
((L = Lag)u, 8) = (=1)" 3 (4,0 (g = aa(w0))9)
= (=1)" (w3 (0 — aa(20)9¢ + 59).
Where s¢p = > [0%a}]¢ is a k — 1 order differential operator. Therefore

la|=Fk
(L = Lay)u, 9)] < |(s¥u, ) \+Z\ ag — aa(0))0"9)|

< 18%ull- kII¢Hk
+Y . sup aa(@) = aa(@o)l |lulloli¢llx

alz—zo|<8

fel0))
< kllull-1llolle + CO)[lullolldllx-
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Therefore
(L = Lag )ull-x < C(0)lullo + K[ul[-1-

Choose 4 small such that CoC(8) < 3 by unit continuous. Therefore

1
(L = Laoull-k < 5llullo + Kllu-1-

Hence
l[ullo < Co(l| Lagull—& + [lull-1)
< Co(lIL — Lagull -k + || Lul[—& + [lul|-1)
< Co(C(8)l[ullo + [[Lull -k + (1 + K)|ul-1)
1
< g llullo + Co(1 + K) (Il Lull -k + fJull-1)-
Therefore

l[ullo < 2Co(1 + K) (| Lull -k + [[ull-1)
provided suppu C B(zp,d) for some 2y € R. Now cover {2 by finite collection
of balls with radius § and choose a partition of unity subordinate to this cover.
{z;}. Therefore if u € C2°(£2), then )" ¥;u = u and
l[ullo < C(1Lull -k + llsull -k + [Ju]-1)
< O Lull -k + lJull-1)-
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Abstract Evolution Equations

73.1 Basic Definitions and Examples

Let (X, |- ||) be a normed vector space. A linear operator L on X consists of
a subspace D(L) of X and a linear map L : D(L) — X.

Notation 73.1 Given a function v : [0,00) — X, we write v(t) = etv(0),
provided that v € C([0,00) — X) N CY((0,00) — X), v(t) € D(L) for all
t >0, and v(t) = Lo(t).

Example 73.2. Suppose that L is an n X n matrix (thought of as a linear
transformation on C") and vy € C™. Let v(t) :=> o o L5 L ["p, then the sum
converges and v(t) = ey,

The following proposition generalizes the above example.

Proposition 73.3 (Evolution). Suppose that (X, | - ||) ¢s a Banach space
and L € B(X)-the Banach space of bounded operators on X with the operator

norm. Then
o0 tn
et =" =" (73.1)

!
=0 n:

is convergent in the norm topology on B(X). Moreover, if vo € X and
v(t) := ey, then v is the unique function in C*(R, X) solving the differential
equation:

0(t) = Lu(t) with v(0) = vp. (73.2)

Proof. First notice that Y - HEL|™ = elIEl < oo so that the sum

n=0 nl

in (73.1) exists in B(X) and [[e'L| < ellIZl. Let us now check that Le'l =
Lett = etL L. Using the mean value theorem we have,
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oo
1
e(t+h)L _ etL — Z m{(t + h)n _ tn}Ln

- Z n! 7’; 1 h)th = hLZ n! n+1 Ln:

n=1 n=0
where ¢, (h) is some number between t and ¢ + h for each n. Hence
(t+h)L _ tL
e e
T Lt - LY e

and thus
e(t+h)L _

etk ‘L =1,
—— = Le' | < |ILI Y —lehia () = £ [IZ]" = 0,

as n — oo by the dominated convergence theorem.
Before continuing, let us prove the basic group property of et’, namely:

etlesl = ltHs)L, (73.3)

To prove this equation, notice that

%e—tLe(tJrs)L — e—tL(iL + L)e(t+s)L —0.

Thus e tLe(+3)L is independent of ¢ and hence
e—tLe(t+s)L —_ GSL. (73.4)
By choosing s = 0 we find that e *Fe!l = I, and by replacing ¢t by —t we
can conclude that et = (e!*)~1. This last observation combined with (73.4)
proves (73.3).
Alternate Proof of Eq. (73.3).

t+ tkLk n— kLn k
e S S

n=0 n=0 k=0
krkolre
_ 1" LYs" L tL _sL
> > =ttt
TR
n= 0k+l o

where the above manipulations are justified since,

[EFISNENFIENS — qeerspicl
Z Z L =€ < oo

n= Ok+[ n

Now clearly if
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tL o "
— e Y orn
o(t) == ey = Z n!L Vo
n=0

we have that v € C1(R — X) and © = Lv. Therefore v does solve Eq. (73.2).
To see that this solution is unique, suppose that v(t) is any solution to (73.2).
Then

d

Ee*mv(t) =e M (—L+ Lw(t) =0,

so that e *Fv(t) is constant and thus et u(t) = vy. Therefore v(t) = eFuy.
|

Theorem 73.4 (The Diagonal Case). Consider t > 0 only now. Let p €
[1,00), (£2,F, m) be a measure space and a : 2 — R be a measurable function
such that a is bounded above by a constant C < oo . Define D(L) = {f €
LP(m) : af € LP}, and for f € D(L) set Lf = af = Myf. (In general L is
an unbounded operator.) Define et = M_taf. (Note that |e'®| < e!® < oo, so
el is a bounded operator.) by D.C.T. So one has et — I strongly ast | 0.

1. €'’ is a strongly continuous semi-group of bounded operators.

2.If f € D(L) then Letr f = el Lf in L (m).

8. For all f € LP and t > 0, %eth = Letr f in Lr (m).

Proof. By the dominated convergence theorem,

Hethfinpzf (e — 1) £[Pdm — 0 as t | 0,
2

which proves item 1. For item 2 we see using the fundamental theorem of
calculus that

(t+h)L __ _tL 1 h
Ry —
h Lp h 0 p
1 h
=% / (elt+mae _ela)dr . af (73.5)

0 p

Since af € LP,

1

h
E/ (e(H»-r)a _etu)dT < 2€(t+\h\)c’
0

and

1 rh

Z/ (et _eta)dr — 0 as h — 0,

L Jo
the Dominated convergence shows that the last term in Eq. (73.5) tends to
zero as h — 0. The above computations also work at ¢ = 0 provided h is
restricted to be positive.
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Item 3 follows by the same techniques as item 2. We need only notice that
by basic calculus if ¢ > 0 and 7 € (¢/2, 3t/2) then

‘ae(HT)a < max{(t/2)7t, Ce3°/?),

Ezample 73.5 (Nilpotent Operators). Let L : X — X be a nilpotent operator,
i.e., Vv € D(L) there exists n = n(v) such that L™v = 0 Then

0(t) = Lu(t) with v(0) = v € D(L)

has a solution (in D(L)) given by
e tn
v(t) = etfv = 2_0 HL”?).

A special case of the last example would be to take X = D(L) to be the
space of polynomial functions on R% and Lp = Ap.

Ezxample 73.6 (Eigenvector Case). Let L : X — X be a linear operator and
suppose that D(L) =spanXy, where X is a subset of X consisting of eigen-
vectors for L, ie., Vv € Xy there exists A(v) € C such the Lv = A(v)v.
Then

0(t) = Lu(t) with v(0) =v € D(L)

has a solution in D(L) given by
tL t n
v(t) = e = —L".
n!
n=0

n

More explicitly, if v ="' _, v; with v; € Xo, then
n
ety = Zet’\(”")vi.
i=1

The following examples will be covered in more detail in the exercises.

Ezample 73.7 (Translation Semi-group). Let X := L?(R9,d)), w € R? and
(Tw®) ) (@) == flz +1).

Then T, (t) is a strongly continuous contraction semi-group. In fact Ty, (t) is
unitary for all t € R.

Ezample 73.8 (Rotation Semi-group). Suppose that X := L?*(R? d\) and
O : R — O(d) is a one parameter semi-group of orthogonal operators. Set
(To) f)(z) :== f(O(t)x) for all f € X and = € R Then Tp is also a strongly
continuous unitary semi-group.
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73.2 General Theory of Contraction Semigroups
For this section, let (X, ||-||) be a Banach space with norm | - ||. Also let
T :={T(t)}+>0 be a collection of bounded operators on X.
Definition 73.9. Let X and T be as above.

1. T is a semi-group if T(t+ s) =T (t)T'(s) for all s,t > 0.

2. A semi-group T is strongly continuous if lim; o T(t)v = v for all
v € X. By convention if T is strongly continuous, set T'(0) = I—the identity
operator on X.

3. A semi-group T is a contraction semi-group if |T(t)|| <1 fort > 0.

Definition 73.10. Suppose that T is a contraction semi group. Set
d
DL):={veX: £|O+T(t)v exists in X}
and for v € D(L) set Lv := £[o+T(t)v. L is called the infinitesimal gen-
erator of T.

Proposition 73.11. Let T be a strongly continuous contraction semi-group,
then

1. Forallve X, t€0,00) = T(t)v € X is continuous.

2. D(L) is dense linear subspace of X.

3. Suppose that v : [0,00) — X is a continuous, then w(t) := T(t)v(t) is
also continuous on [0, 00).

Proof. By assumption v(t) := T'(¢)v is continuous at ¢t = 0. For ¢t > 0 and
h>0,

o(t +h) =v@)[| = 1T@)(T(h) = Do < [lv(h) —v|]| — 0as h | 0.
Similarly if h € (0,t),
[o(t —h) —v@®)|| = Tt - h)I =T ()| < [lv—v(h)]| — 0as h | 0.

This proves the first item.
Let v € X set v, := [; T(0)vdo, where, since 0 — T(c)v is continuous,
the integral may be interpreted as X -valued Riemann integral. Note

1 1 [ 1 s
120, — o) = |12 / (T(0) - v)do]) < = / IT(o)o — vlldo| — 0
S S Jo |5| 0

as s | 0, so that D := {vs: s >0 and v € X} is dense in X. Moreover,

d d
E T(t)US = E

d

dt

/ T(t+o)vdo
0+ 0+ J0

i+s
/ T(T)vdr =T(s)v —v.
0+ Jt
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Therefore vy € D(L) and Lvs = T'(s)v —v. In particular, D C D(L) and hence
D(L) is dense in X. It is easily checked that D(L) is a linear subspace of X.

Finally if v : [0,00) — X is a continuous function and w(t) := T'(¢)v(t),
then for ¢t > 0 and h € (—t, c0),

w(t+ h) —w(t) = (T(t+ h) — T(£))o(t) + Tt + h) (vt + h) — v(t))

The first term goes to zero as h — 0 by item 1 and the second term goes to
zero since v is continuous and ||T'(t+h)|| < 1. The above argument also works
witht=0and h>0. m

Definition 73.12 (Closed Operators). A linear operator L on X is said
to be closed if I'(L) := {(v, Lv) € X x X :v € D(L)} is closed in the Banach
space X x X. Equivalently, L is closed iff for all sequences {vy,}>, C D(L)
such that lim,_,,, v, =: v exists and lim,_, ., Lv, =: w exists implies that
v € D(L) and Lv = w.

Roughly speaking, a closed operator is the next best thing to a bounded
(i.e. continuous) operator. Indeed, the definition states that L is closed iff

lim Lv, = L lim v, (73.6)

n—oo n—oo

provided both limits in (73.6) exist. While L is continuous iff Eq. (73.6) holds
whenever lim,, ., v, exists: part of the assertion being that the limit on the
left side of Eq. (73.6) should exist.

Proposition 73.13 (L is Closed). Let L be the infinitesimal generator of a
contraction semi-group, then L is closed.

Proof. Suppose that v, € D(L), v, — v, and Lv,, — w in X as n — oc.
Then, using the fundamental theorem of calculus,

T(t)v — T(t)vy, — vn 1 [t
TOv=v iy T =0 o Ly Ldr

t n—o00 t n—oo t 0

1/t
- = / T(T)wdr.
tJo

Therefore v € D(L) and Lv = w. &

Theorem 73.14 (Solution Operator).
1. For any t >0 and v € D(L), T(t)v € D(L) and LT (t)v = LT(t)v.
2. Moreover if v € D(L), then %T(t)v = T(t)Lv.

Proof. T(t) : D(L) — D(L) and 47T(t)v = LT(t)v = T(t)Lv. Suppose
that v € D(L), then

Tt+h) =T _ (Th) -1 _ T -1)
h v = W T(t)v = W v.
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Letting h | 0 in the last set of equalities show that T'(¢)v € D(L) and
d
%\mT(t + h)v = LT (t)v =T(t)Lv.

For the derivative from below we will use,

T(t—h) T, L-Th)y, o DW= Tk)

h h h ’
which is valid for ¢ > 0 and h € [0,00). Set u(h) := h=Y(I — T(h))v if b > 0
and 4(0) := Lv. Then u : [0,00) — X is continuous. Hence by same argument

as in the proof of item 3 of Proposition 73.11), h — T'(t—h)w(h) is continuous
at h = 0 and hence

T(t—h)I—-T(h))
h

Thus it follows from Eq. (73.7) that, for all ¢ > 0,

(73.7)

v=T(—h)wh) — T({t—0)w(0) =T()Lvas h | 0.

%bj(t + h)o = LT(t)o = T(t) Lo
| |

Definition 73.15 (Evolution Equation). Let T be a strongly continuous
contraction semi-group with infinitesimal generator L. A function v : [0,00) —
X is said to solve the differential equation

o(t) = Lo(t) (73.8)
if
1. v(t) € D(L) for all t > 0,

2.v € C([0,00) — X)NC((0,00) — X), and
3. Eq. (73.8) holds for all t > 0.

Theorem 73.16 (Evolution Equation). Let T be a strongly continuous
contraction semi-group with infinitesimal generator L. The for all vo € D(L),
there is a unique solution to (73.8) such that v(0) = vo.

Proof. We have already shown existence. Namely by Theorem 73.14 and
Proposition 73.11, v(t) := T'(t)vy solves (73.8.

For uniqueness let v be any solution of (73.8). Fix 7 > 0 and set w(t) :=
T(r —t)v(t). By item 3 of Proposition 73.11, w is continuous for ¢ € [0, 7]. We
will now show that w is also differentiable on (0,7) and that w := 0.

To simplify notation let P(t) := T'(t —t) and for fixed t € (0,7) and h > 0
sufficiently small let e(h) := h~L(v(t+h)—v(t))—(t). Since v is differentiable,
€(h) — 0 as h — 0. Therefore,
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L) =0 _ 2 [P+ Wyele+ )~ P (0)
_ (Plt+h) -~ Plt)
h

_ M}wv(w + P(t + h)(0(t) + €(h))

— —P(t)Lv(t) + P(t)o(t) as h — 0,

v(t) + P(t + h)—(”(t + hlz —v(®)

wherein we have used ||P(t + h)e(h)|| < |le(h)|] — 0 as h — 0. Hence we have
shown that

W(t) = —P(t)Lo(t) + P(t)o(t) = —P(t)Lu(t) + P(t)Lu(t) = 0

Therefore w(t) = T'(t — t)v(t) is constant or (0,t) and hence by continuity of
w(T) = w(0), ie.

(1) = w(r) = w(0) = T(1)v(0) = T(7)vp.
This proves uniqueness. ®

Corollary 73.17. Suppose that T and T are two strongly continuous con-
traction semi-groups on a Banach space X which have the same infinitesimal
generators L. Then T =T.

Proof. Let vy € D(L) then v(t) = T(t)v and ©(t) = T'(t) both solve Eq.
(73.8 with initial condition vg. By Theorem 73.16, v = ¢ which implies that
T(t)vo = T (t)vo, i.e., T =1T.

Because of the last corollary the following notion is justified. m

Notation 73.18 If T is a strongly continuous contraction semi-group with
tL

infinitesimal generator L, we will write T'(t) as e**.
Remark 73.19. Since T is a contraction, L should be “negative.” Thus, work-
ing informally,

=(\-L0)".

> tA tL 1 t(L—X
/0 e e dt:ﬁ6(7)|ﬁ0:m

Theorem 73.20. Suppose T = et is a strongly continuous contraction semi-
group with infinitesimal generator L. For any A > 0 the integral

/ e etldt =: Ry, (73.9)
J0O

exists as a B(X)-valued improper Riemann integral. Moreover, (A — L)
D(L) — X is an invertible operator, (\ — L)™' = Ry, and |Ry|| < A\~%

! This may also be interpreted as a Bochner integral, since T'(t) is continuous and
thus has separable range in B(X).
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Proof. First notice that
oo n OO
/ e~ et dt < / =t = 1/A.
0 0

Therefore the integral in Eq. (73.9) exists and the result, Ry, satisfies
AL So we now must show that Ry = (A — L)~L.
Let v € X and h > 0, then

[BAll <

oo oo oo
G}LLR)\U _ / €7t>\€(t+h)L’Udt — / ef(tfh)/\etLvdt _ eh/\ eft)\etLvdt.
0 h

h
(73.10)
Therefore

d

oo
o "Ry = —v +/ e Petlydt = —v + ARy,

0+ 0

which shows that Ryv € D(L) and that LRy\v = —v+AR)v. So (A-L)R\ = I.
Similarly,

oo
Ryetv = eh)‘/ e"tetludt (73.11)
h

and hence if v € D(L), then

Rye"v = —v + ARyw.
0+

d
R,\L’U = E

Hence R)\()\ — L) = ID(L)~ |

Before continuing it will be useful to record some properties of the resolvent
operators Ry := (A — L)~!. Again working formally for the moment, if A, u €
(0, 00), then we expect

1 1 pu—L-(\-1L)

B N Ty S 6 Ny gy

= (# - )\)R,\R,,,.

For each A > 0 define L) := ALR),. Working again formally we have that

Y 7)\(L7/\+/\)7 9
L,\—)\iL— -7 = -+ ARy

and d L(A—L)— AL L2
— Ly = T = —LR\LR,.
ax (A—L)? (A—L)2 RALRy

These equations will be verified in the following lemma.

Lemma 73.21. Let L : X — X be an operator on X such that for all A > 0,
X\ — L is invertible with a bounded inverse Ry or (A\— L)™1. Set Ly := ALR,.
Then
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1. for A\, p € (0, 00),
R)\ - RM = (u — )\)R)\RM, (73.12)

and in particular Ry and R, commute,
2. Ly=—-X+ AR, and
3. & Ly=—LR\LR,.

Proof. Since A — L is invertible, A — L is injective. So in order to verify
Eq. (73.12 it suffices to verify:

(A= L)(Rx — R,) = (1= VA~ L)RaR,. (73.13)
Now
(A=L)(Br—R,) = I~ (A= p+p—L)R, = I~ (A— )R, —I = (A~ p)R,,

while
(=)A= L)BxR, = (1 — AR,y
Clearly the last two equations show that Eq. (73.13) holds. The second item
is easily verified since, Ly = A\(L — A+ A)Ry = —\ + \2Ry.
For the third item, first recall that A — R, is continuous in the operator
norm topology (in fact analytic). To see this let us first work informally,

1 1 1

R)\+h:)\+h7L:()\,L+h) A=L)YI+h(A=L)"1)

(73.14)
To verify this last equation, first notice that for sufficiently small h, ||hRy|| <
1, so that > 07 || = hRA||™ < oo and hence (I + hR,) is invertible and

[}

(I+hRy)™" =Y (=hRy)".

n=0

To verify the ends of Eq. (73.14) are equal it suffices to verify that Ry, (I +
hR)) = Ry, i.e., Ryyp — Ry = —hRjypRy. But this last equation follows
directly form (73.12). Therefore, we have shown that for h sufficiently close

to zero,
oo

Rain=Ra > (—hR\)"
n=0
Differentiating this last equation at h = 0 shows that
d d
—Ry\ = —|oRysn = —F3. 73.15
I = grloRoan A (73.15)

We now may easily compute:

d d
o= ﬁ(*’\ +A2Ry) = —T +2\Ry — N’R2 = —(ARy — I)%.

= = Ry\(I+hRy)"".
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This finishes the proof since,
ARy —I=MARy— (A—L)R),=LR),
We now show that L is a good approximation to L when A — co. m

Proposition 73.22. Let L be an operator on X such that for each X € (0, c0),
Ry := (A= L)7! exists as a bounded operator and ||(A — L)71|| < A~L. Then
AR\ — I strongly as A — oo and for all v € D(L)

lim Lyv = L. (73.16)
A—00

Proof. First notice, informally, that

A A-L+L

i vy N

=1+ R,L.
So we expect that
/\RA‘D(L) =1+ R)L. (73.17)

(This last equation is easily verified by applying (A — L) to both sides of the
equation.) Hence, for v € D(L),

AR v = v + Ry L,

and ||RyLv| < ||Lv||/A. Thus limy_,oc ARyv = v for all v € D(L). Using
the fact that |[AR,|| < 1 and a standard 3e-argument, it follows that ARy
converges strongly to I as A\ — oo. Finally, for v € D(L),

Lyv=ALRyv = AR\Lv — Lv as A — oo.
See Dynkin, m

Lemma 73.23. Suppose that A and B are commuting bounded operators on
a Banach space, X, such that ||e**|| and ||e'®|| are bounded by 1 for all t > 0,
then

l(et — eBYv|| < ¢]|(A — B)vl| for all v € X. (73.18)

Proof. The fundamental theorem of calculus implies that

t t
eftAetB _I= / ;€7TACTBdT _ / 77—A( A + B)ETBdT
0

T 0

and hence, by multiplying on the left by et

t
etB _ etA :/ 6(t_T>A(7A+ B)eTBdT
0

¢
:/ et=AeB(_ A 4 B)dr,
0

wherein the last line we have used the fact that A and B commute. Eq. (73.18)
is an easy consequence of this equation. m
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Theorem 73.24 (Hile-Yosida). A closed linear operator L or a Banach
space X generates a contraction semi-group iff for all X € (0, 00),

1. (A\— L)™' exists as a bounded operator and
2. [((A=L)7H < A7 for all A > 0.

Proof.

T\(t) := e'Fr = etfr = Z(tlo\)"/n!.
n=0
The outline of the proof is: i) show that T)(¢) is a contraction for all ¢t > 0,
ii) show for ¢ > 0 that T)\(t) converges strongly to an operator T'(¢), iii) show
T(t) is a strongly continuous contraction semi-group, and iv) show that L is
the generator of T
Step i) Using Ly = —A + A2R,, we find that e!l> = e=*Aet**Rr_ Hence

Ty (2] = ||etL*|| < e—tAet)\2HRAI\ < 6—t/\et/\2)\‘l -1

Step ii) Let o, p > 0 and v € D(L), then by Lemma 73.23 and Proposition
73.22,
|(Ta(t) — Tu())v|| < tl|Lav — Lyv|| — 0 as a, pp — oo.
This shows, for all v € D(L), that lim,_. T, (t)v exists uniformly for ¢ in
compact subsets of [0, 00) For general v € X, w € D(L), 7 > 0,and 0 < ¢ < 7,
we have

I(Ta(t) = Tu@)vll < [(Ta(t) = Tu@)wl + [1(Ta(t) = Tu(®) (v — w)]|

< (Talt) = T (O]l + 2w — w].
< 7]l Low — L] + 2o — ]|

Thus
limsup sup |[(Tw(t) —T.(t))v|| < 2llv —w| — 0 as w — wv.
a,u—00 te[0,7]
Hence for each v € X, T(¢)v := limy— oo T (t)v exists uniformly for ¢ in

compact sets of [0, 00).
Step iii) It is now easily follows that |T(¢)|| < 1 and that ¢t — T'(¢) is
strongly continuous. Moreover,

T(t+s)v= hm To(t+s)v= hm To(t)To(s)v.
Letting e(a) := T, (s)v — T(s)v, it follows that

T(t+ s)v= alLHolo T.)(T(s)v + e(a)) =T#®)T(s)v+ lim T,(t)e(a).

a—00

This shows that T is also satisfies the semi-group property, since || T (t)e()|| <
lle(e)|] and lim,— o0 €(a) = 0.
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Step iv) Let L denote the infinitesimal generator of T. We wish to show
that L = L. To this end, let v € D(L), then

t
Th(t)v=wv —1—/ e IrLyvdr.
0
Letting A\ — oo in this last equation shows that
t
T(t)v=v+ / T(r)Lvdr,
0

and hence 4o+ T'(t)v exists and is equal to Lv. That is D(L) C D(L) and
L =L on D(L).

To finish the proof we must show that D(L) C D(L). Suppose that & €
D(L) and A > 0 and let v := (A—L) "' (A=L)#. Since D(L) € D(L), (A\—L)# =
(A= L)v = (A — L)v and because A — L is invertible, = v € D(L). m

Theorem 73.25. Let L be a closed operator or Hilbert space H. Then L

generates a contraction semi-group T(t) iff there exits \g > 0 such that
Ran(L + X\g) = H and Re(Lv,v) <0 for all v € D(L).

Proof. (=) If T(t) = e'* is a contraction semigroup, then, for all
v € D(L), |let*v||? < ||v||?> with equality at ¢ = 0. So it is permissible to
differentiate the inequality at ¢ = 0 to find 2Re(Lv,v) < 0. The remaining
assertions in this direction follows from Theorem 73.24. (<=) If Re(Lv,v) <0
and A > 0 then

(A = L)vl* = N|[vl* = 2ARe(Lv, v) + [[Lo]* > 32||v||?

which implies A — L is 1-1 on D(L) and Ran(X — L) is closed. m
Theorem 73.26. Let P, : X — X be a contraction semi-group. D(L) =
{ve X|Lv=%L|o,Pw} exists Then for allv € D(L) v(t) = Py is the unique
solution to

0(t) = Lu(t)v(0) = v.
Lemma 73.27. D(L) is dense in X.

Proof. Let ¢ € C2°((0,00)) set
Pyv = / o(s)Psvds
0

then

oo

PPy = / o(8)Prysvds = / @(s —t)Psvds = Pyo_yv
Jo Jo
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P,P,v— P, e —t) —
t1pV i :/ (s —t) (p(s)Psvds
0

t t

e d
— / —w'(s)Psvds%thP@v =—P,v
0

so P,v € D(L) and LP,v = —Pyv Now ¢ — dp. W

Proof of Theorem Key point is to prove uniqueness. Let P = transpose
semi group. Let B = %‘O—FP: denote the adjoint generator.

Claim B = L*.

d *
v € D(B)= E‘O(pt o,v) = (B, v)
d
E‘O@’ Pw) = (p,Lv)  Yve D(Lt

= ¢ € D(L*) and By = Ly so that B C L*. Suppose ¢ € D(L*) =
I > L*p = 1. For example (L*p,v) = (¢, v) Yv € D(L) for example
(o, Lv) = (¥, v)

d
a“pv Ptv> = <¢’ Ptv>'

So (0, Pv) — {p,v) = [s(Pr,v)dt Yo € D(L). So Pro = ¢+ [} Prpdt.
So Lo Pfo =1 =€ D(L*)and L*¢p = ¢.
Uniqueness: Let 0 = Lv, v(0) =vg. Let ¢ € D(L*),T > 0.

d * * * *
S \Provp,v(t) = (~L"Pr_yp,v(1)) + (Pr_sp, Lv) = 0

= (P}_,p,v(T)) = construction therefore (Prp,vo) = (p,v(T)) Yo €
D(L*){¢", Pruvy). Since D(L*) is dense v(T) = Pruy.
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Multinomial Theorems and Calculus Results

Given a multi-index a € Z%, let |a| = oy 4+ - 4+ ap, ol := !+ ),
\* o \%
@ = 2P and 0% = =) = —
H ! ¢ (833) H (6%)
j=1 Jj=1

A.1 Multinomial Theorems and Product Rules

For a = (a1,a2,...,a,) € C*, m € N and (i1,...,%m) € {1,2,...,n}"™ let
G (11, yim) = #{k i = j}. Then

(i a¢> = i .a;, = Z Cla
i=1

i1yenyim =1 |a|=
where
Cla) = #{(t1,...,im) 1 &5 (i1,...,im) =q; for j =1,2,...,n}
I claim that C(a) = %L,' Indeed, one possibility for such a sequence
(a1,...,a;,) for a given « is gotten by choosing
(63} a2 Qn
—— —— m——
(alv"walaaQa'"7a25~"7an7"~7an)~

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permuta-
tions we must divide by the number of permutation which just rearrange the
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groups of a;’s among themselves for each i. There are a! := a3!---ay,! such
permutations. Therefore, C'(«) = m!/al as advertised. So we have proved

n m m'
(Z ai> = Z Ja (A1)
i=1 |a|=m
Now suppose that a,b € R™ and « is a multi-index, we have
(@b =) — Z -0 (A.2)
B<a 6 ( B+é=a /8 6

Indeed, by the standard Binomial formula,

D D e s A

Bi<a;

from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

al
(014 +an)* = > BT ™ ai' . alk (A.3)
BitABr=a
where a1, az,...,a; € R® and a € Z7} .

Now let us consider the product rule for derivatives. Let us begin with the
one variable case (write d” f for f(") = din f) where we will show by induction
that

d'(fg) =Y (’;) dif-d"ry. (a.4)

k=0

Indeed assuming Eq. (A.4) we find

A" (fg) = Xn: (k)d’““f "= kg+z< ) Ldr R

k=0
n+1 n

n+1

F()- e

=1

(k . 1) + (Z) “ o k+7i!)!(k TR fnl!c)!k!

. n! 1 1
CEICETD] {(n—k+1)+ﬁ]

n! n+1 n+1
B (k—l)!(n—k)!(n—k—i—l)k:( k )

Since
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the result follows.
Now consider the multi-variable case

0 (fg) = (Ha'%) fg>_f[[i (::)aflf-af"'“g}

i=1 Lk;=0

=SS I()er o= X (3ot

k1=0  kn,=0i=1 k<o

where k = (k1, ko, ..., k,) and

() -11G) -

() =Y (g)aﬁf Lor=Py. (A.5)

B

So we have proved

A.2 Taylor’s Theorem

Theorem A.1. Suppose X C R"™ is an open set, © : [0,1] — X is a C* -
path, and f € CN(X,C). Let v, := x(1) —z(s) and v = v; = z(1) —x(0), then

Fe) = Y 5 @00 @) + Ry (A.6)
m=0 .
where
RN:ﬁ/O (D500 f )(m(s))ds:%/o (— 4 o )(m(s))ds
(A7)
and 0! := 1.

Proof. By the fundamental theorem of calculus and the chain rule,
falt) = () + " a(s))ds = F(2(0)) + / (B0 ) () (AS)
- o ds a 0 @(s) '
and in particular,
1
F@(1) = F((0)) + /0 (O, f) ((s))ds

This proves Eq. (A.6) when N = 1. We will now complete the proof using
induciton on N.
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Applying Eq. (A.8) with f replaced by ﬁ (Bi(s)aﬁflf) gives

ﬁ(aﬂs)(z{i* ) (a(s)) = ﬁ(maﬁ £) (2(0))

+ ﬁ / (0a()O0 100 f) ((t))dt

:,L<d Nf)(()) ]\1,./ (jsaﬁaz“f>

wherein we have used the fact that mixed partial derivatives commute to show
%aﬁf = N@i(@@x*lf. Integrating this equation on s € [0,1] shows, using
the fundamental theorem of calculus,
d
Ry =57 050) GO) - 35 [ (00w s ) oy
N! 0<t<s<1 ds
1 1
=— (9 0 —_— t))dt
31 (02 9) 6O + gy [ OXuo) @0)

1
=N (027 f) (2(0)) + R41
which completes the inductive proof. m

Remark A.2. Using Eq. (A.1) with a; replaced by v;9; (although {v;0;};_; are
not complex numbers they are commuting symbols), we find

- " m!
=1 |a]=m
Using this fact we may write Eqs. (A.6) and (A.7) as
1
fa@)= > —v 0 f(@(0)) + Ry

la|<N-1

my= X L[ (<ot s

|a|=N

and

Corollary A.3. Suppose X C R™ is an open set which contains z(s) = (1 —
8)zo + sw1 for 0 < s <1 and f € CN(X,C). Then

N—-1

o) = X o O ) )+ 55 [ 085) et (s (A9)
= > a(?”f(x(o))(xl —x0)" + [/ 0% f(z(s))dvn(s)| (z1 —
|a|<N \a| N

(A.10)
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where v :=x1 — o and dvy is the probability measure on [0,1] given by
dun(s) :== N(1 — s)NV~1ds. (A.11)

If we let x = xg andy = x1 — g (so z+y = x1) Eq. (A.10) may be written
as

oo f 1 !
favn= 3 EDe i ¥ S [orse i) v
|a|<N a:|lal=N
(A.12)
Proof. This is a special case of Theorem A.1. Notice that
=z(1)—z(s) = (1 —s)(x1 —x0) = (1 — s)v

and hence

1 1
Ry =7 [ (S350 =970 ) taloas = 57 [ @) (oG-

Ezample A.4. Let X = (—=1,1) CR, B € R and f(z) = (1 — 2)?. The reader
should verify

F(@) = (~)™mBB—1)...(B—m+1)(1—z)*™

and therefore by Taylor’s theorem (Eq. (?7) with z = 0 and y = )

1-z)f =1+ 2:: %(—1)’”[3([5 —1)...(8—m+1z™+ Ry(z) (A.13)
where

CCN 1
Rn(e) = 57 [ D83 = 1) (8= N+ 1)(1 = 5)" Vi)
)N 1
(1 —sx)N-8

xN
= 3. - [ R

Now for z € (—1,1) and N > §,

0§/0 %d =/, %db’*/{) N(I—S)ﬂ’lds:%

and therefore,

N
R (@)] < g 9 = (5= N + 1) = g,
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Since

-8

lim sup PN+

=|z| <1
N—oo PN

= |z| - lim sup
N—

and so by the Ratio test, |[Ry(z)| < py — 0 (exponentially fast) as N — oo.
Therefore by passing to the limit in Eq. (A.13) we have proved

Q-2 =1+ ——B(F—1)...(F—m+ 1)z (A.14)
m=1
which is valid for |z| < 1 and 8 € R. An important special cases is § = —
in which case, Eq. (A.14) becomes 2= = >">°_ ™, the standard geometric

series formula. Another another useful special case is § = 1/2 in which case
Eq. (A.14) becomes

1—x:1+§:( 1)'"1(1—1) (A e

m! 2
m=1
oo
B @2m =31
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Zorn’s Lemma and the Hausdorff Maximal
Principle

Definition B.1. A partial order < on X is a relation with following properties

(i) Ifx <y andy < z then x < z.
(iW)Ifx <y andy < x then z =y.
(iiif <z for allz € X.

Ezample B.2. Let Y be a set and X = P(Y"). There are two natural partial
orders on X.

1. Ordered by inclusion, A < B'is A C B and
2. Ordered by reverse inclusion, A < B if B C A.

Definition B.3. Let (X, <) be a partially ordered set we say X is linearly a
totally ordered if for all v,y € X either x <y ory < x. The real numbers R
with the usual order < is a typical example.

Definition B.4. Let (X, <) be a partial ordered set. We say x € X is a
mazimal element if for all y € X such that y > x implies y = x, i.e. there is
no element larger than x. An upper bound for a subset E of X is an element
x € X such that x >y for ally € E.

FEzample B.5. Let
X={a={1}b={1,2} c={3}d={2,4} e={2} }

ordered by set inclusion. Then b and d are maximal elements despite that fact
that b £ a and a £ b. We also have

o If F ={a,e,c}, then E has no upper bound.

Definition B.6. ¢ If E = {a,e}, then b is an upper bound.
e FE =/{e}, then b and d are upper bounds.

Theorem B.7. The following are equivalent.
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1. The axiom of choice: to each collection, {Xa},c4, of non-empty sets
there exists a “choice function,” x: A — [] Xa such that x(a) € X, for

acA
ala € A, e [T,cn Xa #0.
2. The Hausdorff Maximal Principle: Every partially ordered set has a
maximal (relative to the inclusion order) linearly ordered subset.
8. Zorn’s Lemma: If X is partially ordered set such that every linearly
ordered subset of X has an upper bound, then X has a maximal element."

Proof. (2= 3) Let X be a partially ordered subset as in 3 and let F =
{E C X : E is linearly ordered} which we equip with the inclusion partial
ordering. By 2. there exist a maximal element £ € F. By assumption, the
linearly ordered set E has an upper bound x € X. The element x is maximal,
forify € Y and y > x, then EU {y} is still an linearly ordered set containing
E. So by maximality of E, E = EU{y}, i.e. y € E and therefore y < z
showing which combined with y > z implies that y = .2

(3=1) Let {X4},ca be a collection of non-empty sets, we must show
[T,ca Xao is not empty. Let G denote the collection of functions g : D(g) —
[lea Xo such that D(g) is a subset of A, and for all a € D(g), g(a) € Xa.
Notice that G is not empty, for we may let oy € A and zy € X, and then
set D(g) = {ao} and g(ag) = zo to construct an element of G. We now put
a partial order on G as follows. We say that f < ¢ for f,g € G provided
that D(f) € D(g) and f = g|p(). If & C G is a linearly ordered set, let
D(h) = UgeaD(g) and for o € D(g) let h(a) = g(cv). Then h € G is an upper
bound for @. So by Zorn’s Lemma there exists a maximal element h € G. To
finish the proof we need only show that D(h) = A. If this were not the case,
then let ap € A\ D(h) and zy € X,,. We may now define D(h) = D(h)U{ao}
and

Pa) = {h(a) %foz €7D(h)
zo if a=ag.

' If X is a countable set we may prove Zorn’s Lemma by induction. Let {z,}°

be an enumeration of X, and define E, C X inductively as follows. For n = 1
let By = {x1}, and if E, have been chosen, let Fny1 = En U {Znt1} if znt1
is an upper bound for E, otherwise let E,11 = E,. The set £ = Uy, FE, is a
linearly ordered (you check) subset of X and hence by assumption E has an upper
bound, x € X. I claim that his element is maximal, for if there exists y = xm € X
such that y > x, then z, would be an upper bound for E,,_1 and therefore
Yy = Tm € E, C E. That is to say if y > z, then y € F and hence y < z, so
y = x. (Hence we may view Zorn’s lemma as a “ jazzed” up version of induction.)
Similalry one may show that 3 = 2. Let F = {E C X : E is linearly ordered}

and order F by inclusion. If M C F is linearly ordered, let E=UM = |J A.
AEM
If 2,y € F then x € A and y € B for some A, B C M. Now M is linearly ordered

by set inclusion so A C Bor B C Aie. z,y € Aor x,y € B. Sinse A and B are
linearly order we must have either x < y or y < z, that is to say E is linearly
ordered. Hence by 3. there exists a maximal element £ € F which is the assertion
in 2.

V]
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Then h < h while h + h violating the fact that h was a maximal element.

(1= 2) Let (X, <) be a partially ordered set. Let F be the collection of
linearly ordered subsets of X which we order by set inclusion. Given zy € X,
{z0} € F is linearly ordered set so that F # 0.

Fix an element Py € F. If Py is not maximal there exists P; € F such
that Py & Pi. In particular we may choose x ¢ Py such that Py U {z} € F.
The idea now is to keep repeating this process of adding points x € X until
we construct a maximal element P of F. We now have to take care of some
details.

We may assume with out loss of generality that F = {P € F : P is not maxima

is a non-empty set. For P € F, let P*={ze X:PU{x} € F}. Astheabove

argument shows, P* # () for all P € F. Using the axiom of choice, there exists
[ € 1lpes P*- We now define g : ¥ — F by

P if P is maximal

9(P) = {P U{f(z)} if P is not maximal. (B.1)

The proof is completed by Lemma B.8 below which shows that g must have
a fixed point P € F. This fixed point is maximal by construction of g. m

Lemma B.8. The function g : F — F defined in Eq. (B.1) has a fized point.?

Proof. The idea of the proof is as follows. Let Py € F be chosen
arbitrarily. Notice that @ = { g™ (Py) }ZO:O C F is a linearly ordered set and it

o0
is therefore easily verified that P, = |J ¢(™(Py) € F. Similarly we may repeat
0

o0 - o0
the process to construct Py = |J g™ (P)) € F and P3 = |J g™ (R) € F,

etc. etc. Then take Py, = UZO:;LP,? and start again with Ponreoplaced by Pu.
Then keep going this way until eventually the sets stop increasing in size, in
which case we have found our fixed point. The problem with this strategy is
that we may never win. (This is very reminiscent of constructing measurable
sets and the way out is to use measure theoretic like arguments.)

Let us now start the formal proof. Again let Py € F and let 73 = {P €
F : Py C P}. Notice that F; has the following properties:

1. Pye F.
2. If @ C F; is a totally ordered (by set inclusion) subset then U € F;.
3. If P € F; then g(P) € Fi.

Let us call a general subset 7' C F satisfying these three conditions a
tower and let

3 Here is an easy proof if the elements of F happened to all be finite sets and
there existed a set P € F with a maximal number of elements. In this case the
condition that P C g(P) would imply that P = g(P), otherwise g(P) would have
more elements than P.
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Fo=nN{F":F is a tower}.

Standard arguments show that Fy is still a tower and clearly is the smallest
tower containing Py. (Morally speaking Fy consists of all of the sets we were
trying to constructed in the “idea section” of the proof.)

We now claim that Fp is a linearly ordered subset of F. To prove this let
I' C Foy be the linearly ordered set

I'={CeFy: forall Ae Fyeither AC Cor C C A}.

Shortly we will show that I" C Fy is a tower and hence that Fy = I'. That is
to say JFp is linearly ordered. Assuming this for the moment let us finish the
proof. Let P = UFy which is in Fy by property 2 and is clearly the largest
element in Fy. By 3. it now follows that P C ¢g(P) € Fy and by maximality of
P, we have g(P) = P, the desired fixed point. So to finish the proof, we must
show that I" is a tower.

First off it is clear that Py € I" so in particular I" is not empty. For each
Cellet

Do :={A e Fy:either AC C or g(C)C A}.

We will begin by showing that & C Fy is a tower and therefore that ¢ = F.
1. Py € &¢ since Py C Cforall C e I' C Fy. 2. If @ C & C Fy is totally
ordered by set inclusion, then Ag := UP € Fy. We must show Ag € P¢, that
is that Ag C C or C C Ag. Now if A C C for all A € &, then Ag C C and
hence Ag € P¢. On the other hand if there is some A € & such that g(C) C A
then clearly g(C') C Ag and again Ag € Pc.
3. Given A € ¢ we must show g(A) € D¢, i.e. that

g(A) C C or g(C) C g(A). (B.2)

There are three cases to consider: either A ¢ C, A = C, or g(C') C A. In the
case A= C, g(C) = g(A) C g(A) and if g(C) C A then g(C) C A C g(A) and
Eq. (B.2) holds in either of these cases. So assume that A ¢ C. Since C € I
either g(A) C C (in which case we are done) or C' C g(A). Hence we may
assume that

A G CCg(A).

Now if C' were a proper subset of g(A) it would then follow that g(A)\ A would
consist of at least two points which contradicts the definition of g. Hence we
must have g(A) = C' C C and again Eq. (B.2) holds, so @¢ is a tower.

It is now easy to show I is a tower. It is again clear that Py € I' and
Property 2. may be checked for I' in the same way as it was done for @¢
above. For Property 3., if C' € I' we may use ®¢ = Fy to conclude for all
A € Fy, either A C C C g(C) or g(C) C A, ie. g(C) € I. Thus I is a tower
and we are done. m
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