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23. SOBOLEV SPACES

Definition 23.1. For p € [1,00], k € N and Q an open subset of R?, let
WEP(Q) ;= {f € LP(Q) : 8°f € LP (Q) (weakly) for all |a| <k},

loc loc

WEP(Q) = {f € LP(Q) : 8°f € LP(Q) (weakly) for all |a| < K},

1/p
(23.1) ey = | S 1010y | ifp< oo
lee| <k
and
(23.2) Hf”wfc,p(g) = Z ||aafHLoo(Q) if p = oo.
la|<k

In the special case of p = 2, we write W,>2 (Q) =: Hf_(Q) and W"2 (Q) =: H* ()

loc

in which case |||[yy2(q) = [l zrx(q) 15 a Hilbertian norm associated to the inner
product
(23.3) (f9)mee) = Y /Qaaf . 9%g dm.

|| <k

Theorem 23.2. The function, ||[lyyx.r(q) » is @ norm which makes WkP(Q) into a
Banach space.

Proof. Let f,g € W*P(Q), then the triangle inequality for the p — norms on
LP () and I? ({« : |of < k}) implies

1/p
1 + gl = | D 10%F + 09l 0 0y
|| <K
1/p
p

< X 197 llaey + 107l oo

la|<k

1/p 1/p

= Z 10 f 170 () + Z 1091170 (02

|| <K |l <k

= Hf”wkm(g) + ||9||Wk,p(g) .

This shows [|-||yyr.» (g, defined in Eq. (23.1) is a norm. We now show completeness.
If {fu}o2, C WFP(Q) is a Cauchy sequence, then {9*f,} —, is a Cauchy

n=1
sequence in LP(Q) for all || < k. By the completeness of LP(2), there exists
Jo € LP(Q) such that g, = LP— lim, . 0%f, for all |a| < k. Therefore, for all
¢ € (@),
(£,0°¢) = lim (fn,0%¢) = (—1)!°! lim (0% f,¢) = (=1)!°! lim (g0, ¢).
This shows 0% f exists weakly and g, = 0“f a.e. This shows f € W*P?(Q2) and that
fon—fEWFP(Q)asn —oco. m
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Example 23.3. Let u(z) := |z| * for z € R? and o € R. Then

R 1 R
/ '“("”)'pdha(sd’l)/ —rdfldr:a(sdfl)/ pd—ap-1,
B(0,R) v ;

o T
d—ap .
(23.4) =0 (5971 . Tdap if d—ap>0
00 otherwise

and hence u € L} (R?) iff o < d/p. Now Vu(z) = —a lz| "' & where & :=z/ || .
Hence if Vu(z) is to exist in LY  (RY) it is given by —a|z|”* ' & which is in
Ly (Rd) iff a+1<d/fp,ie ifa<d/p-—1-= %. Let us not check that

ue WP (R?) provided o < d/p — 1. To do this suppose ¢ € C°(R?) and € > 0,
then

—(u, 0;¢) = —lim u(x)0;¢(x)dx

€l0 Jiz|>e

= 161%1 {/z|>e Ou(x)o(z)dx + /:El_€ u(w)¢(x)?da(x)} .

Since

<|éllwo (S e "> s 0asel 0

‘ [ e dote)

and dyu(z) = —a|z|~* & - e; is locally integrable we conclude that

~(0.0.0) = [ du(a)o@)ds

showing that the weak derivative J;u exists and is given by the usual pointwise
derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let € be an open subset of R%, k € Ny =
NU{0}, p € [1,00) and u € WZIZCP(Q) Then there exists u, € C(Q) such that

Up — U N VV;ZCP(Q)

Proof. Apply Proposition 19.12 with polynomials, p, (§) = £%, for |a| < k. m
Proposition 23.5. C°(R?) is dense in W*P(R?) for all 1 < p < .

Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2
in place of Proposition 19.12. =

Proposition 23.6. Let Q be an open subset of RY, k € Ny := NU{0} and p > 1,
then

(1) for any o with |a| < k, 9% : WP (Q) — WF=1elr (Q) is a contraction.

(2) For any open subset V' C Q, the restriction map u — u|y is bounded from

Wk (Q) — WhP (V).

(3) For any f € C*(Q) and u € VVZZf(Q), the fu € VVZIZCP (Q) and for |a| <k,

(23.5) o (fu) =" <O‘) 8% f - 9By
B p

where (g) = ﬁlﬁ)'



438 BRUCE K. DRIVER'

(4) For any f € BC* (Q) and u € WEP(Q), the fu € WP (Q) and for o] < k
Eq. (23.5) still holds. Moreover, the linear map u € WhP(Q) — fu €
WHP (Q) is a bounded operator.

Proof. 1. Let ¢ € C°(Q) and u € WP (Q), then for 8 with |8] < k — |af,
(07w, 0°¢) = (=1)1*N(u,0°0° ¢) = (1)1 (u, 0°FP ) = (=1)IP1 (9>, )
from which it follows that % (0%u) exists weakly and 9°(9%u) = 9*+Pu. This shows
that 0%u € Wk~12l? (Q) and it should be clear that [0%ullyi-ta10 ) < Nullwrn) -

Item 2. is trivial.
3-4. Given u € Wl]f)’cp (©), by Proposition 23.4 there exists u, € C2° (2) such

that u, — wu in I/Vllch (). From the results in Appendix A.1, fu, € C¥(Q) C
WkP(Q) and

(23.6) 0 (fun) = > <o‘> o8 f 0o Pu,

BLa p

holds. Given V' C, Q such that V is compactly contained in €2, we may use the
above equation to find the estimate

107 (Fun)llogy < D2 (Z) 1071 oe ) 0% tn

BLa

< Cal£,V) D 10 Punll poyry < Calls V) lnllrn ey

BLa

wherein the last equality we have used Exercise 23.1 below. Summing this equation
on |a| < k shows

(23.7) HfunHWk,p(m <C(f,V) ||unHWk,p(v) for all n

where C(f,V) = Z\a|§k Cu(f,V). By replacing u,, by u, — u,, in the above
inequality it follows that {fu,} ., is convergent in W*P?(V) and since V was

arbitrary fu, — fu in VVZIZCP(Q) Moreover, we may pass to the limit in Eq. (23.6)
and in Eq. (23.7) to see that Eq. (23.5) holds and that

||fu||Wk=P(V) <C(f,V) ”uHWka(V) <C(f,V) ”u”kaP(Q)

Moreover if f € BC () then constant C(f,V) may be chosen to be independent
of V and therefore, if u € WP (Q) then fu € WP (Q).

Alternative direct proof of 4. We will prove this by induction on |af. If
a = e; then, using Lemma 19.9,

—(fu, 0;0) = —(u, f0;¢) = —(u,0; [f$] — Oi.f - &)
= (0w, o) + (w, 0; f - ¢) = (fOu+ O;f - u, )
showing 0; (fu) exists weakly and is equal to 0; (fu) = fOu+ 0;f -u € LP ().
Supposing the result has been proved for all & such that |o| < m with m € [1,k).

Let v = @ + e; with |a] = m, then by what we have just proved each summand in
Eq. (23.5) satisfies 9; [0° f - 0 Pu] exists weakly and

0; [0°f- 0% Pu) = 9°teif.0° Pu+ 9% f.9° Pteu e LP (Q).
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Therefore 97 (fu) = 9;0% (fu) exists weakly in LP (2) and
7 (=3 () e s ot e = 3 () 90,
BLa B<y
For the last equality see the combinatorics in Appendix A.1. =

Theorem 23.7. Let 2 be an open subset of R, k € Ny := NU{0} and p € [1,00).
Then C*(Q) N WHFP(Q) is dense in WP ().
Proof. Let Q,, := {x € Q: dist(z,Q) > 1/n} N B(0,n), then

Q, C{r € Q:dist(x,Q) > 1/n}NB(0,n) C Ly,

Q,, is compact for every n and €2, T Q as n — oo. Let Vo = Q3, Vj 1= Q43 \ Qj for
j>1, Ko:=Q and K := Q19 \ Q41 for j > 1 as in figure 41. Then K,, CC V,,

FIGURE 41. Decomposing €2 into compact pieces. The compact
sets Ky, K1 and K> are the shaded annular regions while Vg, V
and V5 are the indicated open annular regions.

for all n and UK,, = Q. Choose ¢, € C*(V,,,[0,1]) such that ¢, = 1 on K,, and
set Yoy = ¢o and
j—1
by = (L=t == -1) 65 = &5 [ (1 - o)
k=1
for j > 1. Then ¢; € C°(V,,[0,1]),
n n
1= =] (1 —¢r) »0asn— oo
k=0 k=1
so that Y72 (¢, = 1 on Q with the sum being locally finite.
Let ¢ > 0 be given. By Proposition 23.6, w, = ,u € WFkP(Q) with
supp(u,) CC V,. By Proposition 23.4, we may find v, € C* (V,,) such that
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[tn = vnllyr) < €/2"F" for all n. Let v := 3777 | v, then v € C*°(Q2) because
the sum is locally finite. Since

(o) oo
Dt = vnllyrsy < D €/2"T =€ < o0,
n=0 n=0

the sum Y7 (un — v,) converges in WH? (). The sum, Y o (un — vy,), also
converges pointwise to u — v and hence u — v = Y07 (u, — vy,) is in WEP(Q).
Therefore v € WP (Q) N C>(Q) and

o0
u—vl < Z l[tn — 'UnHwk,p(Q) Se

n=0

Notation 23.8. Given a closed subset F' C RY, let C* (F) denote those u € C (F)
that extend to a C'*° — function on an open neighborhood of F.

Remark 23.9. It is easy to prove that u € C° (F) iff there exists U € C* (R?)
such that u = U|p. Indeed, suppose {2 is an open neighborhood of F, f € C* ()
and u = f|p € C*° (F). Using a partition of unity argument (making use of the
open sets V; constructed in the proof of Theorem 23.7), one may show there exists
¢ € C*(€Q,]0,1]) such that supp(¢) C Q and ¢ = 1 on a neighborhood of F. Then
U := ¢f is the desired function.

Theorem 23.10 (Density of W7 (Q) N C* (Q) in W*P (Q)). Let Q C R? be a
manifold with C° — boundary, then for k € Ny and p € [1,00), Wh? (Q°) N C*> (Q)
is dense in Wk» (QO). This may alternatively be stated by assuming Q C R? is
an open set such that Q° = Q and Q is a manifold with C° — boundary, then
WEP(Q) N C> (Q) is dense in WFP (Q).

Before going into the proof, let us point out that some restriction on the boundary
of Q is needed for assertion in Theorem 23.10 to be valid. For example, suppose

Qo :={zeR?:1<|z] <2} and Q:= Qo \ {(1,2) x {0}}

and 0 : Q — (0,27) is defined so that z; = |z|cosf(z) and z2 = |z|siné(z),
see Figure 42. Then § € BC> (Q) C W*>(Q) for all k € Ny yet 6 can not be

FIGURE 42. The region 2y along with a vertical in 2.
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approximated by functions from C* (€2) € BC* (Qg) in W'* (Q). Indeed, if this
were possible, it would follows that § € W1 (Qq). However, 6 is not continuous
(and hence not absolutely continuous) on the lines {1 = p} N Q for all p € (1,2)
and so by Theorem 19.30, 6 ¢ W17 (Q).

The following is a warm-up to the proof of Theorem 23.10.

Proposition 23.11 (Warm-up). Let f : R™! — R be a continuous function and
Q:={zeR: zg> f(z1,...,2a-1)} and C*(Q) denote those u € C () which
are restrictions of C™ — functions defined on an open neighborhood of Q. Then for
p € [1,00), C=(Q) N WP (Q) is dense in WFP (Q).

Proof. By Theorem 23.7, it suffices to show than any u € C* (Q) N W*» (Q)
may be approximated by elements of C> () N W7 (Q). For s > 0 let us(z) :=
u(x + seq). Then it is easily seen that 0%us = (0%u), for all o and hence

us € WHP(Q = seq) N C% (2 = seq) € C% (2) NWHP(Q).

These observations along with the strong continuity of translations in LP (see Propo-
sition 11.13), implies limg g ||u — u5||W,€,p(Q) =0. m

23.1.1. Proof of Theorem 23.10. Proof. By Theorem 23.7, it suffices to show than
any u € C* (Q)NWH? (Q) may be approximated by elements of C> (Q)NW*? (Q) .
To understand the main ideas of the proof, suppose that 2 is the triangular region
in Figure 43 and suppose that we have used a partition of unity relative to the
cover shown so that v = uj + uz + ug with supp(w;) C B;. Now concentrating on

FIGURE 43. Splitting and moving a function in C*° (£2) so that
the result is in C'* (Q) .

u1 whose support is depicted as the grey shaded area in Figure 43. We now simply
translate u; in the direction v shown in Figure 43. That is for any small s > 0,
let ws(z) := uy(x + sv), then v, lives on the translated grey area as seen in Figure
43. The function w, extended to be zero off its domain of definition is an element
of C'*° (Q) moreover it is easily seen, using the same methods as in the proof of
Proposition 23.11, that ws — uy in WP ().

The formal proof follows along these same lines. To do this choose an at most
countable locally finite cover {V;};-, of Q such that Vy C Q and for each i > 1,



442 BRUCE K. DRIVER'

after making an affine change of coordinates, V; = (—¢, €)¢ for some € > 0 and
VinQ={(y,2) € Vi:e>z> fi(y)}

where f; : (—€,€)971 — (—¢,€), see Figure 44 below. Let {n;};°, be a partition of

Za%

fi

F1GURE 44. The shaded area depicts the support of u; = u;.

unity subordinated to {V;} and let u; := un; € C* (V; N Q). Given ¢ > 0, we choose
s so small that w;(x) := u;(z+seq) (extended to be zero off its domain of definition)
may be viewed as an element of C*°(€2) and such that |lu; — willyyr.p o) < §/2t. For

1 = 0 we set wg := ug = ung. Then, since {Vi}fil is a locally finite cover of Q, it
follows that w := Y_;° w; € C* (Q) and further we have

D i = willwiniy <Y _8/2' =0,
=0 i=1

This shows

U—w = Z(ul —w;) € WhP(Q)
i=0
and [lu — w|lyr.p ) < 6. Hence w € C* (Q) N WP (Q) is a § — approximation of
u and since § > 0 arbitrary the proof is complete. m
23.2. Difference quotients. Recall from Notation 19.14 that for h # 0
() = u(x + he') — u(x)
h
Remark 23.12 (Adjoints of Finite Differences). For u € LP and g € L9,

OMu(x) g(z) de = /Rd u(@ + he];-) —u(x) g(z) do = — /Rd () gl — hfliz —g(x) s

= —/ u(x)afh g(x) dx.
R

We summarize this identity by (0)* = —0; h

R4

Theorem 23.13. Suppose k € Ny, Q is an open subset of RY and V is an open
precompact subset of 2.

(1) If1 <p < oo, u € WEP(Q) and O;u € WFP(Q), then
(23.8) 10} wllwre vy < 105ullyen
for all 0 < || < &dist(V, Q°).
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(2) Suppose that 1 < p < oo, u € W*P(Q) and assume there exists a constant
C(V) < oo such that

1
[0 ul[yyrn vy < C(V) for all 0 < |h| < S dist(V, Q).

Then d;u € WHP(V) and |0;ullwrrpy < C(V). Moreover if C :=
supy cco C(V) < oo then in fact d;u € WP () and there is a constant
¢ < oo such that
Orllsy < e (C+ el oy ) -
Proof. 1. Let |a| < k, then
1007 ull Lo vy = 107 0% ull Lo vy < 110:0%ull o (o)
wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily
follows.
2. If |0Pullyyrn vy < C(V) then for all |af <k,
102 0%ul| Lo vy = 00} ull Lo vy < C(V).
So by Theorem 19.22, 9;0%u € LP(V') and [0;0%u|L»(vy < C(V). From this we
conclude that [|[0%ul| vy < C(V) for all 0 < |8] < k+1 and hence [|u|yr+1.0(1) <
c[C(V) + ||lul|»(v] for some constant c. m

Notation 23.14. Given a multi-index o and h # 0, let
d

on =11

i=1

The following theorem is a generalization of Theorem 23.13.
Theorem 23.15. Suppose k € Ny, Q is an open subset of R%, V is an open

precompact subset of Q and u € W*P(Q).
(1) If 1 <p<oo and |a| <k, then ||0fullwr-iai(vy < [[ullwerq) for h small.
(2) If 1 < p < o0 and [|07ullwerny < C for all |af < j and h near 0, then
u € WEHIP(V) and [|0%u|lwrnqry < C for all o] < j.
Proof. Since 0; =[] 0;", item 1. follows from Item 1. of Theorem 23.13 and
i

induction on | .

For Item 2., suppose first that k = 0 so that v € L(Q) and [|0ju||rr(v) < C for
|| < j. Then by Proposition 19.16, there exists {h;};>;, C R\ {0} and v € LP(V)
such that iy — 0 and lim;_, (95, u, ¢) = (v, ¢) for all ¢ € C° (V). Using Remark
93.12,

(v,9) = lim (95,1, ¢) = (~1)*! lim (u,8,6) = (=)' (u,8"9)
which shows 0%u = v € LP(V). Moreover, since weak convergence decreases norms,
||3QUHLP(V) = HU”LP(V) <C.

For the general case if k € N, u € W*?(Q) such that ||0fullwrrny < C, then
(for p € (1,00), the case p = oo is similar and left to the reader)

Z Ha aﬂuHLP ) = Z ||363§fu||’£p(v ||ahuHWk P(V) <CP.
|B|<k 18|<k
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As above this implies 9%0%u € LP(V) for all |a| < j and |5| < k and that
10 ullyin iy = D 10%0°ull, ) <
IBI<k
[

23.3. Sobolev Spaces on Compact Manifolds.

Theorem 23.16 (Change of Variables). Suppose that U and V are open subsets
of R4, T € C* (U, V) be a C* — diffeomorphism such that ||0“T| Bow) < o° for all
1 < |a| €k and € := infy |[det T'| > 0. Then the map T* : WFP (V) — Wk (U)
defined by u € WP (V) — T*u :=uoT € W*P (U) is well defined and is bounded.

Proof. For u € W*»? (V)N C> (V), repeated use of the chain and product rule
implies,

(woT) = (' oT)T’
(woT) =@ oT) T + (W oT)T" = (" o T)T' T + (v o T)T"
(woT)® = (u(?’) o T) T'RT T + W' oT)(T' 0T
+ W o)T @T" + (W o T)T®

(23.9)

l times

(o) = (u® oT) To ®T+ Z (w9 o) py (7,77, D)

This equation and the boundedness assumptions on TG for 1 < 7 < k implies there
is a finite constant K such that

l
(won) V| < K3 [u? o T| forall 1 <1<k
=

By Holder’s inequality for sums we conclude there is a constant K, such that

S0 o) < K, 3 |orul o T

| <k lee| <k
and therefore

||u OTHW"P(U) < K Z / |8Oéu‘P ))
|| <k
Making the change of variables, y = T'(x) and using
dy = |det T'(z)| dx > edz,

we find
[0 Ty < 5y 3 [ 107l (Ta)) o
la|<k
(23.10) % Z / 10%u|” (y) dy = pHUHWkp(v

la|<k
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This shows that T* : Wk? (V)N C>® (V) — Wk? (U) N C* (U) is a bounded
operator. For general u € W*? (V) we may choose u,, € Wk? (V)N C> (V) such
that u, — u in W*? (V). Since T* is bounded, it follows that 7w, is Cauchy
in Wk (U) and hence convergent. Finally, using the change of variables theorem
again we know,

||T*’LL - T*un”ip(v) < 6_1 Hu - un“I[),p(U) —0asn — o0

and therefore T*u = lim,_,o, T*u, and by continuity Eq. (23.10) still holds for
ueWrP (V). m

Let M be a compact C* — manifolds without boundary, i.e. M is a compact
Hausdorff space with a collection of charts  in an “atlas” A such that x : D(x) C,
M — R(x) C, R? is a homeomorphism such that

zoy teCF(y(D(x)ND(y))),z(D(x)ND(y))) for all z,y € A.

Definition 23.17. Let {xi}fil C A such that M = UY, D(x;) and let {sz}f\il
be a partition of unity subordinate do the cover {D(a?i)}ﬁvzl . We now define u €
WkP(M) if u: M — C is a function such that

N
_7 -1
(23.11) [ ; 1($10) © 277 |k (s < O
Since [|[lyyr.n (s, 1S @ norm for all 4, it easily verified that ||-[lyx.s (5 is a norm

on WkP(M).
Proposition 23.18. If f € C*(M) and u € W*P? (M) then fu € W*? (M) and

(23.12) ||fu||Wk,p(M) < C”UHWIW(M)

where C' is a finite constant not depending on u. Recall that f : M — R is said to
be C7 with j < k if fox™! € C/(R(x),R) for all z € A.

Proof. Since [f o x;l} has bounded derivatives on supp(¢; o x;1)7 it follows
from Proposition 23.6 that there is a constant C; < oo such that

||(¢ifu) ° $;1||WksP(R(:ci)) = H Lf 037;1} (¢iu) o x;1||Wk’P(R(xi)) <G H(@“) © $;1||Wk’p(R(~'ci))

and summing this equation on 7 shows Eq. (23.12) holds with C' := max; C;. =

K

Theorem 23.19. If {y;},_, C A such that M = UK, D(y;) and {z/Jj}fil is a

partition of unity subordinate to the cover {D(yj)}jl.(:1 , then the norm

K
(23.13) [ulweson = D105 055 e,
j=1

is equivalent to the norm in Eq. (23.11). That is to say the space W*P (M) along
with its topology is well defined independent of the choice of charts and partitions
of unity used in defining the norm on W*P (M) .
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Proof. Since |~\Wk,,,(M) is a norm,

N
= > diu

N
<D lbiulwrsan

|“‘Wkwp(M)
i=1 Wk (M) =1
K N
=D 1D W) oyt
j=1|li=1 WkP(R(y;))
K N
(23.14) < 2D N1@isi) 0 55 i gy

=11=1

<.

and since xioyj_l and y;ox; ! are C* diffeomorphism and the sets y; (supp(¢;) N supp(¢);))
and z; (supp(¢;) Nsupp(¢;)) are compact, an application of Theorem 23.16 and
Proposition 23.6 shows there are finite constants C;; such that

[ diu) o yj_levk,p(R(yj)) < Cij [|(ws¢iu) o xi_lHkaP(R( 0 =Gy ¢ 0 27 ||y, »(R(z;))
which combined with Eq. (23.14) implies

‘U|Wk=p( ZZCU H(bluom 1”Wkp (R(z:)) < C”“HW’»p

where C' := max; Z i1 C;j < 0o. Analogously, one shows there is a constant K < oo
such that [|ullyrsary < K ulyeonsy - ®

Lemma 23.20. Suppose x € A(M) and U C, M such that U C U C D(x), then
there is a constant C' < oo such that

(23.15) |uoa™ < Cllullyyrnar for allu e WHhP(M).

e, p(a(U)) =
Conversely a function u : M — C with supp(u) C U is in WEP(M) iff
Hu ox~” HW’“P(:E(U)) < 0o and in any case there is a finite constant such that

(23.16) lellwroary < Cllwe ™ |y

Proof. Choose charts y; := z, y2,...,yx € A such that {D (yz)} _, is an
open cover of M and choose a partition of unity {Q/JJ} _, subordinate to the cover
{D(yj)} _, such that ¢); = 1 on a neighborhood of U. To construct such a partltlon
of unity choose U; C, M such that U; C U C D(y;), U c U; and U]:1U =
and for each j let n; € C* (D(y;),[0,1]) such that n; = 1 on a neighborhood of
Uj. Then define 1; := n; (1 —19)--- (1 — nj—1) where by convention 79 = 0. Then
{7,/)]} _, is the desired partition, indeed by induction one shows

l

1= "y =(1—m)-(1—m)

j=1

and in particular

1—2% (1= (1= ) = 0.
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Using Theorem 23.19, it follows that

leo e lwh @y = 1@10) 0™ yan o)

=

< @) o 2™ [ i gy Z u)oy; }W’Cvz’(myj))

= |ulwrrary < Cllullywrran

which proves Eq. (23.15).
Using Theorems 23.19 and 23.16 there are constants C; for j = 0,1,2..., N such
that

K
lellwscary < Co 2 W) 005 ey = Co 2 N 03 01 0957 g
j=1 Jj=1

K K
< Cy ZCJ ||(¢Ju) Ox71|iwk,p(R(yl)) = Co ZCj ||1/JJ oz ' uo $71||Wk,P(R(yl)) :
j=1

j=1
This inequality along with K — applications of Proposition 23.6 proves Eq. (23.16).
|

Theorem 23.21. The space (WP (M), [llyr.0(ar)) is @ Banach space.

Proof. Let {"El}@ ; C Aand {(;5,}1 1 be as in Definition 23.17 and choose U; C,
M such that supp(¢;) C U; C U; C D(x;). If {u,}ro; € WFP(M) is a Cauchy
sequence, then by Lemma 23.20, {u,, oxfl}:il C W’f’p(mi(Ui)) is a Cauchy se-
quence for all 4. Since W*»(z;(U;)) is complete, there exists v; € WP (x;(U;)) such
that wu,, o x;l — ; in WkP(2;(U;)). For each i let v; := ¢; (¥; o z;) and notice by
Lemma 23.20 that

il e ary < € v oxﬁ“wkm(zi(m)) = Cloillwrr(ayw,yy <0

so that u := Zf\’:1 v; € W’”’(M). Since supp(v; — ¢;uy,) C U;, it follows that

Z¢zun

l[w— wn |y, (M)

Wk.p (M)

N
< Z llvi — ﬁbiunuwk,p(M) < CZ H[@ (D 05 — up)] 0 ‘/E;lek,P(xi(Ui))

i=1 i=1
—CZH giowy (Ui —upoay )]HW’“vP(zi(Ui))
< CZQ ||171 — Up, oxileW,c,p(M(Ui)) —0asn— oo
i=1

wherein the last inequality we have used Proposition 23.6 again. m

23.4. Trace Theorems. For many more general results on this subject matter,
see E. Stein [7, Chapter VI].
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Lemma 23.22. Suppose k > 1, H? := {x eR?: x4 > O} Co R4, u € CF (W)

and D is the smallest constant so that supp(u) C R?~! x [0, D]. Then there is a
constant C = C(p, k, D,d) such that

(23.17) Hu”kal,p(aHd) <C(p, Dk, d) ”uHWk,p(Hd) .

Proof. Write z € H? as z = (y,2) € R4 x [0,00), then by the fundamental
theorem of calculus we have for any a € Ngfl with |a] < k — 1 that

(23.18) 9y u(y,0) = 0y u(y, z / Oy ur(y,t)

Therefore, for p € [1,00)

|8§‘u(y,0)|p < or/a. [’(’);u(y7z)|p + ’/0 Oy ue(y, t)dt

]
< 217/‘1 . |:|ayau(y,z)|p +/ |8§ut(yvt)|p dt - Z|q/P:|
0
D -1
< op—L. [|8;j‘u(y,z)‘p -I-/ |8;jut(yat)’pdt 23 ]
0
D

where ¢ := T is the conjugate exponent to p. Integrating this inequality over
R~ x [0, D] implies

(0% (03 1€ Dp
D |0 ull G oy < 27 [na ullZo ey + 1070 o e ﬂ
or equivalently that

pr1
107 gy < 277" D710Vl ggay + 277 1—||5“+€dUHLp(Hd

from which implies Eq. (23.17).
Similarly, if p = oo, then from Eq. (23.18) we find

10%ul| oo (gr1) = [10%t| oo (ggay + D Haa+ed“HLw(Hd)
and again the result follows. m

Theorem 23.23 (Trace Theorem). Suppose k > 1 and Q C, R? such that ) is

a compact manifold with C* — boundary. Then there exists a unique linear map
T : Wk (Q) — WELP (0Q) such that Tu = u|aq for all u € C* ().

Proof. Choose a covering {Vi}fio of  such that Vy C Q and for each i > 1,
there is C* — diffeomorphism z; : V; — R(z;) C, R? such that

z; (00N V;) = R(x;) N bd(H?) and
z; (ANV;) = R(z;) N H?

as in Figure 45. Further choose ¢; € C° (V;,[0,1]) such that Zfio ¢; =1lona
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o —ay
i 5

FIGURE 45. Covering €2 (the shaded region) as described in the text.

neighborhood of Q and set y; := Ziloany; for i > 1. Given u € c* (Q) , we compute

N
||u|80||Wk*1,p(3Q) Z ||(¢1u) |8Q o y;1 ||Wk71,p(R(xi)ﬂbd(Hd))

©
Il
A

hE

1[(@i12) © 2] Toaceze) |y g baaey)
=1

s
Il

<) Cill[@w) o2 i (rany

-

©
I
—

N
<maxCi- || (@) 0 27 lywnronyomay + 11000) © 55 s gy
=1

< Cllullyrn o)

where C' = max{1,C1,...,Cn}. The result now follows by the B.L.T. Theorem
4.1 and the fact that C* (Q) is dense inside W*? (). m

Notation 23.24. In the sequel will often abuse notation and simply write u) g for
the “function” Tu € W*~1P(9Q).

Proposition 23.25 (Integration by parts). Suppose Q@ C, R? such that Q is a

compact manifold with C* — boundary, p € [1,00] and q = ﬁ is the conjugate
exponent. Then for u € W*P (Q) and v € Wk (Q),
(23.19) /&-uovdm: f/ u-@wdm+/ Ul - V|ganido

Q Q a0

where n : 0 — R? is unit outward pointing norm to 0.
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Proof. Equation 23.19 holds for u,v € C?(Q) and therefore for (u,v)
WkP () x Wk (Q) since both sides of the equality are continuous in (u,v)
WHP (Q) x Wk (Q) as the reader should verify. m

WhP(Q)

S
S

Definition 23.26. Let W7 (Q) := C (Q)
Wk (Q).

Remark 23.27. Notice that if T : WkP (Q) — W*=17 (9Q) is the trace operator in
Theorem 23.23, then T (Wf’p(ﬂ)) = {0} ¢ WE-17 (990)

all uw € C2°(9).

Corollary 23.28. Suppose Q C, R? such that Q is a compact manifold with C* —

boundary, p € [1,00] and T : WP (Q) — LP(0) is the trace operator of Theorem
23.23. Then Wy P () = Nul(T).

Proof. It has already been observed in Remark 23.27 that W, * (Q) ¢ Nul(T).
Suppose u € Nul(T') and supp(u) is compactly contained in 2. The mollification
ue(x) defined in Proposition 23.4 will be in C2° () for € > 0 sufficiently small and
by Proposition 23.4, u, — u in W7 (). Thus u € Wy"* (Q). We will now give
two proofs for Nul(T') ¢ W™ ().

Proof 1. For u € Nul(T) ¢ W'? (Q) define

o [ ou(x) for x€Q
u(m)—{ 0 for z¢Q.

Then clearly @ € LP (Rd) and moreover by Proposition 23.25, for v € C2°(R?),

/ ﬁ-@ivdm:/u-@-vdm:—/Biu-vdm
Rd Q Q

from which it follows that 9;u exists weakly in L? (Rd) and 0, = 1q0;u a.e.. Thus
@€ Whr (RY) with @10 ray = llullyyi0 ) and supp(@) C Q. )

Choose V € C! (R?,R?) such that V(z) - n(z) > 0 for all z € 9Q and define

Ge(x) = Toai(z) == @ o eV (z).

Notice that supp(a.) C e~V (Q) CC Q for all € sufficiently small. By the change
of variables Theorem 23.16, we know that @i, € W1 (Q) and since supp(i.) is a
compact subset of €, it follows from the first paragraph that . € I/VO1 Q).

To so finish this proof, it only remains to show @, — u in WP () as € | 0.

Looking at the proof of Theorem 23.16, the reader may show there are constants
6 > 0 and C < oo such that

(23.20) [Tev]lyngay < Cllvllypga forallve wtep (Rd) .

be the closure of C'2° () inside

since Tu = u|gq = 0 for

By direct computation along with the dominated convergence it may be shown
that

(23.21) Tov — v in WH? (R?) for all v € C°(RY).

As is now standard, Egs. (23.20) and (23.21) along with the density of C2°(R9) in
whp (Rd) allows us to conclude T.v — v in WP (Rd) for allv e WP (Rd) which
completes the proof that i, — u in WP () as € — 0.

Proof 2. As in the first proof it suffices to show that any u € I/VO1 P(Q) may
be approximated by v € WP (Q) with supp(v) C Q. As above extend u to Q°
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by 0 so that @ € W» (R?) . Using the notation in the proof of 23.23, it suffices
to show u; := ¢;i € W'P (R?) may be approximated by u; € W' (Q) with
supp(u;) T Q. Using the change of variables Theorem 23.16, the problem may be
reduced to working with w; = u; ox;1 on B = R(z;). But in this case we need only
define w$(y) := wi(y — eeq) for € > 0 sufficiently small. Then supp(ws) C H? N B
and as we have already seen w§ — w; in WP (H%) . Thus u§ := wox; € WP (Q),
uf — u; as € | 0 with supp(u;) C Q. =

23.5. Extension Theorems.

Lemma 23.29. Let R > 0, B := B(0,R) C RY, B* := {z € B: £x4 > 0} and
I':={x € B:xqy=0}. Suppose that u € C*(B\T)NC(B) and for each |a| < k,
0%u extends to a continuous function v, on B. Then u € C*(B) and 0%u = v, for
all o] < k.

Proof. For z € T and i < d, then by continuity, the fundamental theorem of
calculus and the dominated convergence theorem,

A
u(z + Ae;) —u(z) = lim [u(y + Ae;) —u(y)] = lim Oiu(y + se;)ds
y—x y—z
yeB\T yeB\T
A A
= lim Ve, (Y + se;)ds = / Ve, (x + se;)ds
y—T
yeB\T' 0 0
and similarly, for i = d,
A
u(x + Aeg) —u(z) = lim  |u(y + Aeq) — u(y)] = lim / Oqu(y + seq)ds
y—x y—x
y€Bsen (AN yeBsen (AT
A A
= lim / Ve, (Y + seq)ds = / Ve, (z + seq)ds.
y—x
y€Bsen(AN\T 0

These two equations show, for each i, d;u(x) exits and d;u(z) = v, (z). Hence we
have shown v € C! (B).

Suppose it has been proven for some [ > 1 that 0“u(x) exists and is given by
vo(z) for all |o| <1 < k. Then applying the results of the previous paragraph to
0%u(x) with |a| = [ shows that 9;0%u(x) exits and is given by vqe,(x) for all ¢
and x € B and from this we conclude that 0“u(z) exists and is given by v, (z) for
all || <1+ 1. So by induction we conclude 0%u(z) exists and is given by v, (x) for
all |a| <k, ie ueCFB). =

Lemma 23.30. Given any k+1 distinct points, {ci}fzo , in R\ {0}, the (k+1) x
(k + 1) matriz C with entries Cyj := (¢;)” is invertible.

Proof. Let a € R¥*! and define p(x) := Z?:o ajz?. If a € Nul(C), then

k
0:Z(Ci)jaj =p(¢g) fori=0,1,...,k.
§=0
Since deg (p) < k and the above equation says that p has k + 1 distinct roots, we
conclude that @ € Nul(C') implies p = 0 which implies a = 0. Therefore Nul(C) =
{0} and C is invertible. m
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Lemma 23.31. Let B, B* and T be as in Lemma 23.29 and {ci}fzo, be k+1
distinct points in (oo, —1] for example ¢; = — (i + 1) will work. Also let a € RFH!
be the unique solution (see Lemma 23.30 to C'a = 1 where 1 denotes the vector
of all ones in RFt1 ji.e. a satisfies

k
(23.22) 1= (¢;) a; forj=0,1,2... k.
7=0
For uw € C*(HY) N C,(HY) with supp(u) C B and = = (y,z) € R? define
) — _ u(y, z) if 2>0
(23.23) u(z) = aly,z) = { Zf:o (g ciz) if 2 <0,

Then @ € CFR?) with supp(@a) C B and moreover there exists a constant M
independent of u such that

(23.24) llyenz < M lullysnge, -
Proof. By Eq. (23.22) with j =0,

k k
Z a/iu’(ya Cio) = U’(y? O) Z a5 = U’(ya O)
=0 1=0

This shows that @ in Eq. (23.23) is well defined and that @ € C' (H?) . Let K~ :=
{(y,2) : (y,—z) € supp(u)}. Since ¢; € (o0,—1],if x = (y,2) ¢ K~ and 2 < 0
then (y, c;z) ¢ supp(u) and therefore 4(z) = 0 and therefore supp(%) is compactly
contained inside of B. Similarly if o € N¢ with |a| < k, Eq. (23.22) with j = ag4
implies

va () = { (0°u) (y, ) if 2>0

e Zf:o a;ci (0%u) (y,¢iz) if 2z <O.
is well defined and v, € C (R?) . Differentiating Eq. (23.23) shows 8u(z) = v (z)
for z € B\T and therefore we may conclude from Lemma 23.29 that u € C*(B) C
C* (R?) and 9%u = v, for all |a| < k.
We now verify Eq. (23.24) as follows. For |a| <k,

0%l 5y = [ oo Zaz w) (9 ci2)
<c / Lo S 100 (g c02) Py
R i=0

k
1
=C 1z>0 Z ‘C| |(aau) (ya Z)‘p dde
i=0 '

P
dydz

Rd
LS|
=C (Z c_|> |aauHLp(B+
i=0 '

p/q
where C := (Zl o laic o‘d|q) . Summing this equation on || < k shows there ex-

ists a constant M’ such that [|@[lyye,p-) < M [[ullyyssp+) and hence Eq. (23.24)
holds with M =M'+1. m
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Theorem 23.32 (Extension Theorem). Suppose k > 1 and Q C, R? such that Q
is a compact manifold with C* — boundary. Given U C, R? such that Q C U, there
exists a bounded linear (extension) operator E : WFP (Q) — Wkp (Rd) such that

(1) Bu=wu a.e. in ) and
(2) supp(Fu) C U.

Proof. As in the proof of Theorem 23.23, choose a covering {Vi}ZN:O of  such
that ¥ C Q, Uf\io\_/i C U and for each i > 1, there is C* — diffeomorphism z; :
V; — R(x;) Co R? such that

z; (02 NV;) = R(x;) Nbd(H?) and z; (RN V;) = R(z;) NHY = BT

where BT is as in Lemma 23.31, refer to Figure 45. Further choose ¢; €
C° (Vi,[0,1]) such that Zil\io ¢; = 1 on a neighborhood of ) and set y; := z;|s0nv;
for i > 1. Given u € C* (Q) and i > 1, the function v; := (¢;u) o z; " may be
viewed as a function in C*(H?) N C.(H?) with supp(u) C B. Let ©; € C¥(B) be
defined as in Eq. (23.23) above and define @ := ¢ou + Zfll v om; € C° (R?) with
supp(u) C U. Notice that @ = u on {2 and making use of Lemma 23.20 we learn

N

Hﬁ”Wk,p(Rd) < ||¢0u||wk=p(Rd) + Z [[9; xi”w’v,p(Rd)
i=1

N
< ||¢OU||Wk,p(Q) + Z ||1~’z'HWk,y(R(xi))
i=1
N

< C(¢o) ”’U‘HW’%P(Q) + Z Hvi”Wk'aP(BJr)

=1

N
= C (90) lullywrniy + Y 1(@i) 0 &7 |y gy
=1

N
< C(¢o) llullyr.nq) + ZCz‘ [l () -

i=1

This shows the map u € C*(Q) — Eu = @ € C¥(U) is bounded as map from
WP (Q) to WFP (U). As usual, we now extend E using the B.L.T. Theorem 4.1
to a bounded linear map from W (Q) to W*» (U). So for general u € WP (Q),
Eu = Wk? (U) — lim, .o @, where u,, € C*(Q) and u = WP (Q) — lim,, o0 tp,.
By passing to a subsequence if necessary, we may assume that 4, converges a.e. to
Eu from which it follows that Fu = u a.e. on  and supp(Eu) C U. m

23.6. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

‘f|Wk,P(Q) = Z ||8afHLP(Q) .

lee| <k
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Solution. 23.1This is a consequence of the fact that all norms on i ({a : |a| < k})

are equivalent. To be more explicit, let a, = ||8af\|Lp(Q) , then
1/p 1/q
> laal = | D laal” >
la|<k la|<k la|<k
while
1/p » py\ 1/p
1
Saal”] < 1Y lagl <[#{atlal KNP Y Jagl.
la| <k lal<k [IBI<K IBI<k



