23. Sobolev Spaces

Definition 23.1. For $p \in [1, \infty]$, $k \in \mathbb{N}$ and Ω an open subset of \mathbb{R}^d , let

$$W_{loc}^{k,p}(\Omega) := \left\{ f \in L^p(\Omega) : \partial^{\alpha} f \in L_{loc}^p(\Omega) \text{ (weakly) for all } |\alpha| \le k \right\},$$

$$W^{k,p}(\Omega) := \{ f \in L^p(\Omega) : \partial^{\alpha} f \in L^p(\Omega) \text{ (weakly) for all } |\alpha| \le k \},$$

(23.1)
$$||f||_{W^{k,p}(\Omega)} := \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} f||_{L^{p}(\Omega)}^{p}\right)^{1/p} \text{ if } p < \infty$$

and

In the special case of p=2, we write $W_{loc}^{k,2}\left(\Omega\right)=:H_{loc}^{k}\left(\Omega\right)$ and $W^{k,2}\left(\Omega\right)=:H^{k}\left(\Omega\right)$ in which case $\left\|\cdot\right\|_{W^{k,2}\left(\Omega\right)}=\left\|\cdot\right\|_{H^{k}\left(\Omega\right)}$ is a Hilbertian norm associated to the inner product

(23.3)
$$(f,g)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} \partial^{\alpha} f \cdot \overline{\partial^{\alpha} g} \ dm.$$

Theorem 23.2. The function, $\|\cdot\|_{W^{k,p}(\Omega)}$, is a norm which makes $W^{k,p}(\Omega)$ into a Banach space.

Proof. Let $f, g \in W^{k,p}(\Omega)$, then the triangle inequality for the p – norms on $L^p(\Omega)$ and $l^p(\{\alpha : |\alpha| \le k\})$ implies

$$\begin{aligned} \|f+g\|_{W^{k,p}(\Omega)} &= \left(\sum_{|\alpha| \le k} \|\partial^{\alpha} f + \partial^{\alpha} g\|_{L^{p}(\Omega)}^{p}\right)^{1/p} \\ &\le \left(\sum_{|\alpha| \le k} \left[\|\partial^{\alpha} f\|_{L^{p}(\Omega)} + \|\partial^{\alpha} g\|_{L^{p}(\Omega)}\right]^{p}\right)^{1/p} \\ &\le \left(\sum_{|\alpha| \le k} \|\partial^{\alpha} f\|_{L^{p}(\Omega)}^{p}\right)^{1/p} + \left(\sum_{|\alpha| \le k} \|\partial^{\alpha} g\|_{L^{p}(\Omega)}^{p}\right)^{1/p} \\ &= \|f\|_{W^{k,p}(\Omega)} + \|g\|_{W^{k,p}(\Omega)}. \end{aligned}$$

This shows $\|\cdot\|_{W^{k,p}(\Omega)}$ defined in Eq. (23.1) is a norm. We now show completeness. If $\{f_n\}_{n=1}^{\infty} \subset W^{k,p}(\Omega)$ is a Cauchy sequence, then $\{\partial^{\alpha} f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^p(\Omega)$ for all $|\alpha| \leq k$. By the completeness of $L^p(\Omega)$, there exists $g_{\alpha} \in L^p(\Omega)$ such that $g_{\alpha} = L^{p-} \lim_{n \to \infty} \partial^{\alpha} f_n$ for all $|\alpha| \leq k$. Therefore, for all $\phi \in C_c^{\infty}(\Omega)$,

$$\langle f, \partial^{\alpha} \phi \rangle = \lim_{n \to \infty} \langle f_n, \partial^{\alpha} \phi \rangle = (-1)^{|\alpha|} \lim_{n \to \infty} \langle \partial^{\alpha} f_n, \phi \rangle = (-1)^{|\alpha|} \lim_{n \to \infty} \langle g_{\alpha}, \phi \rangle.$$

This shows $\partial^{\alpha} f$ exists weakly and $g_{\alpha} = \partial^{\alpha} f$ a.e. This shows $f \in W^{k,p}(\Omega)$ and that $f_n \to f \in W^{k,p}(\Omega)$ as $n \to \infty$.

Example 23.3. Let $u(x) := |x|^{-\alpha}$ for $x \in \mathbb{R}^d$ and $\alpha \in \mathbb{R}$. Then

$$\int_{B(0,R)} |u(x)|^p dx = \sigma \left(S^{d-1}\right) \int_0^R \frac{1}{r^{\alpha p}} r^{d-1} dr = \sigma \left(S^{d-1}\right) \int_0^R r^{d-\alpha p-1} dr$$
(23.4)
$$= \sigma \left(S^{d-1}\right) \cdot \begin{cases} \frac{R^{d-\alpha p}}{d-\alpha p} & \text{if } d-\alpha p > 0\\ \infty & \text{otherwise} \end{cases}$$

and hence $u \in L^p_{loc}\left(\mathbb{R}^d\right)$ iff $\alpha < d/p$. Now $\nabla u(x) = -\alpha \left|x\right|^{-\alpha-1} \hat{x}$ where $\hat{x} := x/\left|x\right|$. Hence if $\nabla u(x)$ is to exist in $L^p_{loc}\left(\mathbb{R}^d\right)$ it is given by $-\alpha \left|x\right|^{-\alpha-1} \hat{x}$ which is in $L^p_{loc}\left(\mathbb{R}^d\right)$ iff $\alpha+1 < d/p$, i.e. if $\alpha < d/p-1 = \frac{d-p}{p}$. Let us not check that $u \in W^{1,p}_{loc}\left(\mathbb{R}^d\right)$ provided $\alpha < d/p-1$. To do this suppose $\phi \in C^\infty_c(\mathbb{R}^d)$ and $\epsilon > 0$, then

$$-\langle u, \partial_i \phi \rangle = -\lim_{\epsilon \downarrow 0} \int_{|x| > \epsilon} u(x) \partial_i \phi(x) dx$$
$$= \lim_{\epsilon \downarrow 0} \left\{ \int_{|x| > \epsilon} \partial_i u(x) \phi(x) dx + \int_{|x| = \epsilon} u(x) \phi(x) \frac{x_i}{\epsilon} d\sigma(x) \right\}.$$

Since

$$\left| \int_{|x|=\epsilon} u(x)\phi(x) \frac{x_i}{\epsilon} d\sigma(x) \right| \leq \|\phi\|_{\infty} \, \sigma\left(S^{d-1}\right) \epsilon^{d-1-\alpha} \to 0 \text{ as } \epsilon \downarrow 0$$

and $\partial_i u(x) = -\alpha |x|^{-\alpha-1} \hat{x} \cdot e_i$ is locally integrable we conclude that

$$-\langle u, \partial_i \phi \rangle = \int_{\mathbb{R}^d} \partial_i u(x) \phi(x) dx$$

showing that the weak derivative $\partial_i u$ exists and is given by the usual pointwise derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let Ω be an open subset of \mathbb{R}^d , $k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, $p \in [1, \infty)$ and $u \in W_{loc}^{k,p}(\Omega)$. Then there exists $u_n \in C_c^{\infty}(\Omega)$ such that $u_n \to u$ in $W_{loc}^{k,p}(\Omega)$.

Proof. Apply Proposition 19.12 with polynomials, $p_{\alpha}(\xi) = \xi^{\alpha}$, for $|\alpha| \leq k$. **Proposition 23.5.** $C_c^{\infty}(\mathbb{R}^d)$ is dense in $W^{k,p}(\mathbb{R}^d)$ for all $1 \leq p < \infty$.

Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2 in place of Proposition 19.12. ■

Proposition 23.6. Let Ω be an open subset of \mathbb{R}^d , $k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $p \geq 1$, then

- (1) for any α with $|\alpha| \leq k$, $\partial^{\alpha} : W^{k,p}(\Omega) \to W^{k-|\alpha|,p}(\Omega)$ is a contraction.
- (2) For any open subset $V \subset \Omega$, the restriction map $u \to u|_V$ is bounded from $W^{k,p}(\Omega) \to W^{k,p}(V)$.
- (3) For any $f \in C^k(\Omega)$ and $u \in W^{k,p}_{loc}(\Omega)$, the $fu \in W^{k,p}_{loc}(\Omega)$ and for $|\alpha| \le k$,

(23.5)
$$\partial^{\alpha} (fu) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \partial^{\beta} f \cdot \partial^{\alpha - \beta} u$$

$$where {\alpha \choose \beta} := \frac{\alpha!}{\beta!(\alpha - \beta)!}.$$

(4) For any $f \in BC^k(\Omega)$ and $u \in W_{loc}^{k,p}(\Omega)$, the $fu \in W_{loc}^{k,p}(\Omega)$ and for $|\alpha| \le k$ Eq. (23.5) still holds. Moreover, the linear map $u \in W^{k,p}(\Omega) \to fu \in W^{k,p}(\Omega)$ is a bounded operator.

Proof. 1. Let $\phi \in C_c^{\infty}(\Omega)$ and $u \in W^{k,p}(\Omega)$, then for β with $|\beta| \leq k - |\alpha|$,

$$\langle \partial^{\alpha} u, \partial^{\beta} \phi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \partial^{\beta} \phi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha+\beta} \phi \rangle = (-1)^{|\beta|} \langle \partial^{\alpha+\beta} u, \phi \rangle$$

from which it follows that $\partial^{\beta}(\partial^{\alpha}u)$ exists weakly and $\partial^{\beta}(\partial^{\alpha}u) = \partial^{\alpha+\beta}u$. This shows that $\partial^{\alpha}u \in W^{k-|\alpha|,p}(\Omega)$ and it should be clear that $\|\partial^{\alpha}u\|_{W^{k-|\alpha|,p}(\Omega)} \leq \|u\|_{W^{k,p}(\Omega)}$. Item 2. is trivial.

3 - 4. Given $u \in W_{loc}^{k,p}(\Omega)$, by Proposition 23.4 there exists $u_n \in C_c^{\infty}(\Omega)$ such that $u_n \to u$ in $W_{loc}^{k,p}(\Omega)$. From the results in Appendix A.1, $fu_n \in C_c^k(\Omega) \subset W^{k,p}(\Omega)$ and

(23.6)
$$\partial^{\alpha} (f u_n) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} \partial^{\beta} f \cdot \partial^{\alpha - \beta} u_n$$

holds. Given $V \subset_o \Omega$ such that \bar{V} is compactly contained in Ω , we may use the above equation to find the estimate

$$\|\partial^{\alpha} (f u_n)\|_{L^p(V)} \leq \sum_{\beta \leq \alpha} {\alpha \choose \beta} \|\partial^{\beta} f\|_{L^{\infty}(V)} \|\partial^{\alpha-\beta} u_n\|_{L^p(V)}$$
$$\leq C_{\alpha}(f, V) \sum_{\beta \leq \alpha} \|\partial^{\alpha-\beta} u_n\|_{L^p(V)} \leq C_{\alpha}(f, V) \|u_n\|_{W^{k, p}(V)}$$

wherein the last equality we have used Exercise 23.1 below. Summing this equation on $|\alpha| \leq k$ shows

(23.7)
$$||fu_n||_{W^{k,p}(V)} \le C(f,V) ||u_n||_{W^{k,p}(V)} \text{ for all } n$$

where $C(f,V) := \sum_{|\alpha| \leq k} C_{\alpha}(f,V)$. By replacing u_n by $u_n - u_m$ in the above inequality it follows that $\{fu_n\}_{n=1}^{\infty}$ is convergent in $W^{k,p}(V)$ and since V was arbitrary $fu_n \to fu$ in $W^{k,p}_{loc}(\Omega)$. Moreover, we may pass to the limit in Eq. (23.6) and in Eq. (23.7) to see that Eq. (23.5) holds and that

$$\|fu\|_{W^{k,p}(V)} \le C(f,V) \|u\|_{W^{k,p}(V)} \le C(f,V) \|u\|_{W^{k,p}(\Omega)}$$

Moreover if $f \in BC(\Omega)$ then constant C(f, V) may be chosen to be independent of V and therefore, if $u \in W^{k,p}(\Omega)$ then $fu \in W^{k,p}(\Omega)$.

Alternative direct proof of 4. We will prove this by induction on $|\alpha|$. If $\alpha = e_i$ then, using Lemma 19.9,

$$-\langle fu, \partial_i \phi \rangle = -\langle u, f \partial_i \phi \rangle = -\langle u, \partial_i [f \phi] - \partial_i f \cdot \phi \rangle$$

= $\langle \partial_i u, f \phi \rangle + \langle u, \partial_i f \cdot \phi \rangle = \langle f \partial_i u + \partial_i f \cdot u, \phi \rangle$

showing $\partial_i(fu)$ exists weakly and is equal to $\partial_i(fu) = f\partial_i u + \partial_i f \cdot u \in L^p(\Omega)$. Supposing the result has been proved for all α such that $|\alpha| \leq m$ with $m \in [1, k)$. Let $\gamma = \alpha + e_i$ with $|\alpha| = m$, then by what we have just proved each summand in Eq. (23.5) satisfies $\partial_i \left[\partial^{\beta} f \cdot \partial^{\alpha - \beta} u \right]$ exists weakly and

$$\partial_{i} \left[\partial^{\beta} f \cdot \partial^{\alpha - \beta} u \right] = \partial^{\beta + e_{i}} f \cdot \partial^{\alpha - \beta} u + \partial^{\beta_{i}} f \cdot \partial^{\alpha - \beta + e} u \in L^{p} (\Omega).$$

Therefore $\partial^{\gamma}(fu) = \partial_i \partial^{\alpha}(fu)$ exists weakly in $L^p(\Omega)$ and

$$\partial^{\gamma}\left(fu\right) = \sum_{\beta < \alpha} \binom{\alpha}{\beta} \left[\partial^{\beta + e_i} f \cdot \partial^{\alpha - \beta} u + \partial^{\beta} f \cdot \partial^{\alpha - \beta + e_i} u \right] = \sum_{\beta < \gamma} \binom{\gamma}{\beta} \left[\partial^{\beta} f \cdot \partial^{\gamma - \beta} u \right].$$

For the last equality see the combinatorics in Appendix A.1.

Theorem 23.7. Let Ω be an open subset of \mathbb{R}^d , $k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Proof. Let $\Omega_n := \{x \in \Omega : \operatorname{dist}(x,\Omega) > 1/n\} \cap B(0,n)$, then

$$\bar{\Omega}_n \subset \{x \in \Omega : \operatorname{dist}(x,\Omega) \ge 1/n\} \cap \overline{B(0,n)} \subset \Omega_{n+1},$$

 $\bar{\Omega}_n$ is compact for every n and $\Omega_n \uparrow \Omega$ as $n \to \infty$. Let $V_0 = \Omega_3$, $V_j := \Omega_{j+3} \setminus \bar{\Omega}_j$ for $j \ge 1$, $K_0 := \bar{\Omega}_2$ and $K_j := \bar{\Omega}_{j+2} \setminus \Omega_{j+1}$ for $j \ge 1$ as in figure 41. Then $K_n \sqsubseteq \sqsubseteq V_n$

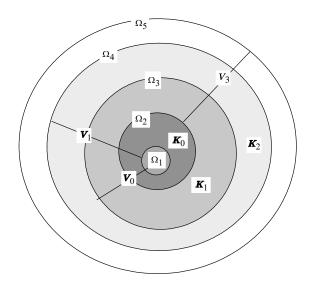


FIGURE 41. Decomposing Ω into compact pieces. The compact sets K_0 , K_1 and K_2 are the shaded annular regions while V_0 , V_1 and V_2 are the indicated open annular regions.

for all n and $\cup K_n = \Omega$. Choose $\phi_n \in C_c^{\infty}(V_n, [0, 1])$ such that $\phi_n = 1$ on K_n and set $\psi_0 = \phi_0$ and

$$\psi_j = (1 - \psi_1 - \dots - \psi_{j-1}) \,\phi_j = \phi_j \prod_{k=1}^{j-1} (1 - \phi_k)$$

for $j \geq 1$. Then $\psi_j \in C_c^{\infty}(V_n, [0, 1])$,

$$1 - \sum_{k=0}^{n} \psi_k = \prod_{k=1}^{n} (1 - \phi_k) \to 0 \text{ as } n \to \infty$$

so that $\sum_{k=0}^\infty \psi_k = 1$ on Ω with the sum being locally finite.

Let $\epsilon > 0$ be given. By Proposition 23.6, $u_n := \psi_n u \in W^{k,p}(\Omega)$ with $\sup_{n \in \mathbb{N}} (u_n) \sqsubseteq U_n$. By Proposition 23.4, we may find $v_n \in C_c^{\infty}(V_n)$ such that

 $||u_n - v_n||_{W^{k,p}(\Omega)} \le \epsilon/2^{n+1}$ for all n. Let $v := \sum_{n=1}^{\infty} v_n$, then $v \in C^{\infty}(\Omega)$ because the sum is locally finite. Since

$$\sum_{n=0}^{\infty} \|u_n - v_n\|_{W^{k,p}(\Omega)} \le \sum_{n=0}^{\infty} \epsilon/2^{n+1} = \epsilon < \infty,$$

the sum $\sum_{n=0}^{\infty} (u_n - v_n)$ converges in $W^{k,p}(\Omega)$. The sum, $\sum_{n=0}^{\infty} (u_n - v_n)$, also converges pointwise to u - v and hence $u - v = \sum_{n=0}^{\infty} (u_n - v_n)$ is in $W^{k,p}(\Omega)$. Therefore $v \in W^{k,p}(\Omega) \cap C^{\infty}(\Omega)$ and

$$||u - v|| \le \sum_{n=0}^{\infty} ||u_n - v_n||_{W^{k,p}(\Omega)} \le \epsilon.$$

Notation 23.8. Given a closed subset $F \subset \mathbb{R}^d$, let $C^{\infty}(F)$ denote those $u \in C(F)$ that extend to a C^{∞} – function on an open neighborhood of F.

Remark 23.9. It is easy to prove that $u \in C^{\infty}(F)$ iff there exists $U \in C^{\infty}(\mathbb{R}^d)$ such that $u = U|_F$. Indeed, suppose Ω is an open neighborhood of F, $f \in C^{\infty}(\Omega)$ and $u = f|_F \in C^{\infty}(F)$. Using a partition of unity argument (making use of the open sets V_i constructed in the proof of Theorem 23.7), one may show there exists $\phi \in C^{\infty}(\Omega, [0, 1])$ such that $\sup(\phi) \sqsubseteq \Omega$ and $\phi = 1$ on a neighborhood of F. Then $U := \phi f$ is the desired function.

Theorem 23.10 (Density of $W^{k,p}(\Omega) \cap C^{\infty}(\bar{\Omega})$ in $W^{k,p}(\Omega)$). Let $\Omega \subset \mathbb{R}^d$ be a manifold with C^0 – boundary, then for $k \in \mathbb{N}_0$ and $p \in [1, \infty)$, $W^{k,p}(\Omega^o) \cap C^{\infty}(\bar{\Omega})$ is dense in $W^{k,p}(\Omega^0)$. This may alternatively be stated by assuming $\Omega \subset \mathbb{R}^d$ is an open set such that $\bar{\Omega}^o = \Omega$ and $\bar{\Omega}$ is a manifold with C^0 – boundary, then $W^{k,p}(\Omega) \cap C^{\infty}(\bar{\Omega})$ is dense in $W^{k,p}(\Omega)$.

Before going into the proof, let us point out that some restriction on the boundary of Ω is needed for assertion in Theorem 23.10 to be valid. For example, suppose

$$\Omega_0 := \{ x \in \mathbb{R}^2 : 1 < |x| < 2 \} \text{ and } \Omega := \Omega_0 \setminus \{ (1, 2) \times \{0\} \}$$

and $\theta: \Omega \to (0, 2\pi)$ is defined so that $x_1 = |x| \cos \theta(x)$ and $x_2 = |x| \sin \theta(x)$, see Figure 42. Then $\theta \in BC^{\infty}(\Omega) \subset W^{k,\infty}(\Omega)$ for all $k \in \mathbb{N}_0$ yet θ can not be

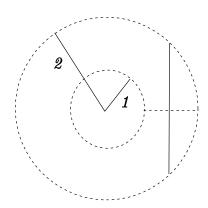


FIGURE 42. The region Ω_0 along with a vertical in Ω .

approximated by functions from $C^{\infty}(\bar{\Omega}) \subset BC^{\infty}(\Omega_0)$ in $W^{1,p}(\Omega)$. Indeed, if this were possible, it would follows that $\theta \in W^{1,p}(\Omega_0)$. However, θ is not continuous (and hence not absolutely continuous) on the lines $\{x_1 = \rho\} \cap \Omega$ for all $\rho \in (1,2)$ and so by Theorem 19.30, $\theta \notin W^{1,p}(\Omega_0)$.

The following is a warm-up to the proof of Theorem 23.10.

Proposition 23.11 (Warm-up). Let $f: \mathbb{R}^{d-1} \to \mathbb{R}$ be a continuous function and $\Omega := \{x \in \mathbb{R}^d : x_d > f(x_1, \dots, x_{d-1})\}$ and $C^{\infty}(\bar{\Omega})$ denote those $u \in C(\bar{\Omega})$ which are restrictions of C^{∞} – functions defined on an open neighborhood of $\bar{\Omega}$. Then for $p \in [1, \infty), C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

Proof. By Theorem 23.7, it suffices to show than any $u \in C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ may be approximated by elements of $C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$. For s > 0 let $u_s(x) := u(x + se_d)$. Then it is easily seen that $\partial^{\alpha} u_s = (\partial^{\alpha} u)_s$ for all α and hence

$$u_{s}\in W^{k,p}(\Omega-se_{d})\cap C^{\infty}\left(\Omega-se_{d}\right)\subset C^{\infty}\left(\bar{\Omega}\right)\cap W^{k,p}\left(\Omega\right).$$

These observations along with the strong continuity of translations in L^p (see Proposition 11.13), implies $\lim_{s\downarrow 0} \|u-u_s\|_{W^{k,p}(\Omega)} = 0$.

23.1.1. Proof of Theorem 23.10. **Proof.** By Theorem 23.7, it suffices to show than any $u \in C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ may be approximated by elements of $C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$. To understand the main ideas of the proof, suppose that Ω is the triangular region in Figure 43 and suppose that we have used a partition of unity relative to the cover shown so that $u = u_1 + u_2 + u_3$ with $\sup(u_i) \subset B_i$. Now concentrating on

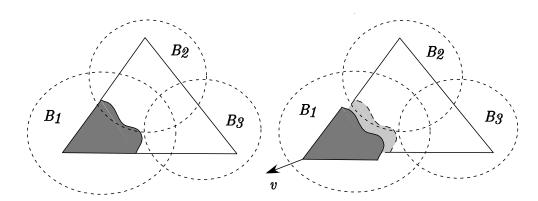


FIGURE 43. Splitting and moving a function in $C^{\infty}(\Omega)$ so that the result is in $C^{\infty}(\bar{\Omega})$.

 u_1 whose support is depicted as the grey shaded area in Figure 43. We now simply translate u_1 in the direction v shown in Figure 43. That is for any small s>0, let $w_s(x):=u_1(x+sv)$, then v_s lives on the translated grey area as seen in Figure 43. The function w_s extended to be zero off its domain of definition is an element of $C^{\infty}(\bar{\Omega})$ moreover it is easily seen, using the same methods as in the proof of Proposition 23.11, that $w_s\to u_1$ in $W^{k,p}(\Omega)$.

The formal proof follows along these same lines. To do this choose an at most countable locally finite cover $\{V_i\}_{i=0}^{\infty}$ of $\bar{\Omega}$ such that $\bar{V}_0 \subset \Omega$ and for each $i \geq 1$,

after making an affine change of coordinates, $V_i = (-\epsilon, \epsilon)^d$ for some $\epsilon > 0$ and

$$V_i \cap \bar{\Omega} = \{(y, z) \in V_i : \epsilon > z > f_i(y)\}$$

where $f_i: (-\epsilon, \epsilon)^{d-1} \to (-\epsilon, \epsilon)$, see Figure 44 below. Let $\{\eta_i\}_{i=0}^{\infty}$ be a partition of

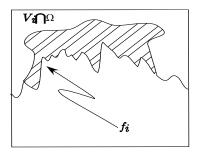


FIGURE 44. The shaded area depicts the support of $u_i = u\eta_i$.

unity subordinated to $\{V_i\}$ and let $u_i := u\eta_i \in C^{\infty} (V_i \cap \Omega)$. Given $\delta > 0$, we choose s so small that $w_i(x) := u_i(x + se_d)$ (extended to be zero off its domain of definition) may be viewed as an element of $C^{\infty}(\bar{\Omega})$ and such that $\|u_i - w_i\|_{W^{k,p}(\Omega)} < \delta/2^i$. For i = 0 we set $w_0 := u_0 = u\eta_0$. Then, since $\{V_i\}_{i=1}^{\infty}$ is a locally finite cover of $\bar{\Omega}$, it follows that $w := \sum_{i=0}^{\infty} w_i \in C^{\infty}(\bar{\Omega})$ and further we have

$$\sum_{i=0}^{\infty} ||u_i - w_i||_{W^{k,p}(\Omega)} \le \sum_{i=1}^{\infty} \delta/2^i = \delta.$$

This shows

$$u - w = \sum_{i=0}^{\infty} (u_i - w_i) \in W^{k,p}(\Omega)$$

and $\|u-w\|_{W^{k,p}(\Omega)} < \delta$. Hence $w \in C^{\infty}(\bar{\Omega}) \cap W^{k,p}(\Omega)$ is a δ – approximation of u and since $\delta > 0$ arbitrary the proof is complete.

23.2. Difference quotients. Recall from Notation 19.14 that for $h \neq 0$

$$\partial_i^h u(x) := \frac{u(x + he^i) - u(x)}{h}.$$

Remark 23.12 (Adjoints of Finite Differences). For $u \in L^p$ and $g \in L^q$,

$$\int_{\mathbb{R}^d} \partial_i^h u(x) \ g(x) \ dx = \int_{\mathbb{R}^d} \frac{u(x + he_i) - u(x)}{h} \ g(x) \ dx = -\int_{\mathbb{R}^d} u(x) \ \frac{g(x - he_i) - g(x)}{-h} \ dx \\
= -\int_{\mathbb{R}^d} u(x) \partial_i^{-h} g(x) \ dx.$$

We summarize this identity by $(\partial_i^h)^* = -\partial_i^{-h}$.

Theorem 23.13. Suppose $k \in \mathbb{N}_0$, Ω is an open subset of \mathbb{R}^d and V is an open precompact subset of Ω .

(1) If
$$1 \leq p < \infty$$
, $u \in W^{k,p}(\Omega)$ and $\partial_i u \in W^{k,p}(\Omega)$, then

(23.8)
$$\|\partial_i^h u\|_{W^{k,p}(V)} \le \|\partial_i u\|_{W^{k,p}(\Omega)}$$

for all
$$0 < |h| < \frac{1}{2} \operatorname{dist}(V, \Omega^c)$$
.

(2) Suppose that $1 , <math>u \in W^{k,p}(\Omega)$ and assume there exists a constant $C(V) < \infty$ such that

$$\|\partial_i^h u\|_{W^{k,p}(V)} \le C(V) \text{ for all } 0 < |h| < \frac{1}{2} \operatorname{dist}(V, \Omega^c).$$

Then $\partial_i u \in W^{k,p}(V)$ and $\|\partial_i u\|_{W^{k,p}(V)} \leq C(V)$. Moreover if $C := \sup_{V \subset \subset \Omega} C(V) < \infty$ then in fact $\partial_i u \in W^{k,p}(\Omega)$ and there is a constant $c < \infty$ such that

$$\|\partial_i u\|_{W^{k,p}(\Omega)} \le c \left(C + \|u\|_{L^p(\Omega)}\right).$$

Proof. 1. Let $|\alpha| \leq k$, then

$$\|\partial^{\alpha}\partial_{i}^{h}u\|_{L^{p}(V)} = \|\partial_{i}^{h}\partial^{\alpha}u\|_{L^{p}(V)} \le \|\partial_{i}\partial^{\alpha}u\|_{L^{p}(\Omega)}$$

wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily follows.

2. If $\|\partial_i^h u\|_{W^{k,p}(V)} \leq C(V)$ then for all $|\alpha| \leq k$,

$$\|\partial_i^h \partial^\alpha u\|_{L^p(V)} = \|\partial^\alpha \partial_i^h u\|_{L^p(V)} \le C(V).$$

So by Theorem 19.22, $\partial_i \partial^{\alpha} u \in L^p(V)$ and $\|\partial_i \partial^{\alpha} u\|_{L^p(V)} \leq C(V)$. From this we conclude that $\|\partial^{\beta} u\|_{L^p(V)} \leq C(V)$ for all $0 < |\beta| \leq k+1$ and hence $\|u\|_{W^{k+1,p}(V)} \leq c \left[C(V) + \|u\|_{L^p(V)}\right]$ for some constant c.

Notation 23.14. Given a multi-index α and $h \neq 0$, let

$$\partial_h^{\alpha} := \prod_{i=1}^d \left(\partial_i^h\right)^{\alpha_i}.$$

The following theorem is a generalization of Theorem 23.13.

Theorem 23.15. Suppose $k \in \mathbb{N}_0$, Ω is an open subset of \mathbb{R}^d , V is an open precompact subset of Ω and $u \in W^{k,p}(\Omega)$.

- (1) If $1 \le p < \infty$ and $|\alpha| \le k$, then $\|\partial_h^{\alpha} u\|_{W^{k-|\alpha|}(V)} \le \|u\|_{W^{k,p}(\Omega)}$ for h small.
- (2) If $1 and <math>\|\partial_h^{\alpha} u\|_{W^{k,p}(V)} \le C$ for all $|\alpha| \le j$ and h near 0, then $u \in W^{k+j,p}(V)$ and $\|\partial^{\alpha} u\|_{W^{k,p}(V)} \le C$ for all $|\alpha| \le j$.

Proof. Since $\partial_h^{\alpha} = \prod_i \partial_h^{\alpha_i}$, item 1. follows from Item 1. of Theorem 23.13 and induction on $|\alpha|$.

For Item 2., suppose first that k=0 so that $u \in L^p(\Omega)$ and $\|\partial_h^{\alpha} u\|_{L^p(V)} \leq C$ for $|\alpha| \leq j$. Then by Proposition 19.16, there exists $\{h_l\}_{l=1}^{\infty} \subset \mathbb{R} \setminus \{0\}$ and $v \in L^p(V)$ such that $h_l \to 0$ and $\lim_{l \to \infty} \langle \partial_{h_\ell}^{\alpha} u, \phi \rangle = \langle v, \phi \rangle$ for all $\phi \in C_c^{\infty}(V)$. Using Remark 23.12,

$$\langle v, \phi \rangle = \lim_{l \to \infty} \langle \partial_{h_{\ell}}^{\alpha} u, \phi \rangle = (-1)^{|\alpha|} \lim_{l \to \infty} \langle u, \partial_{-h_{\ell}}^{\alpha} \phi \rangle = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \phi \rangle$$

which shows $\partial^{\alpha} u = v \in L^p(V)$. Moreover, since weak convergence decreases norms,

$$\|\partial^{\alpha} u\|_{L^{p}(V)} = \|v\|_{L^{p}(V)} \le C.$$

For the general case if $k \in \mathbb{N}$, $u \in W^{k,p}(\Omega)$ such that $\|\partial_h^{\alpha} u\|_{W^{k,p}(V)} \leq C$, then (for $p \in (1, \infty)$, the case $p = \infty$ is similar and left to the reader)

$$\sum_{|\beta| \leq k} \|\partial_h^\alpha \partial^\beta u\|_{L^p(V)}^p = \sum_{|\beta| \leq k} \|\partial^\beta \partial_h^\alpha u\|_{L^p(V)}^p = \|\partial_h^\alpha u\|_{W^{k,p}(V)}^p \leq C^p.$$

As above this implies $\partial^{\alpha}\partial^{\beta}u \in L^{p}(V)$ for all $|\alpha| \leq j$ and $|\beta| \leq k$ and that

$$\|\partial^{\alpha} u\|_{W^{k,p}(V)}^{p} = \sum_{|\beta| < k} \|\partial^{\alpha} \partial^{\beta} u\|_{L^{p}(V)}^{p} \le C^{p}.$$

23.3. Sobolev Spaces on Compact Manifolds.

Theorem 23.16 (Change of Variables). Suppose that U and V are open subsets of \mathbb{R}^d , $T \in C^k(U,V)$ be a C^k - diffeomorphism such that $\|\partial^{\alpha}T\|_{BC(U)} < \infty$ for all $1 \leq |\alpha| \leq k$ and $\epsilon := \inf_U |\det T'| > 0$. Then the map $T^* : W^{k,p}(V) \to W^{k,p}(U)$ defined by $u \in W^{k,p}(V) \to T^*u := u \circ T \in W^{k,p}(U)$ is well defined and is bounded.

Proof. For $u \in W^{k,p}(V) \cap C^{\infty}(V)$, repeated use of the chain and product rule implies,

$$(u \circ T)' = (u' \circ T) T'$$

$$(u \circ T)'' = (u' \circ T)' T' + (u' \circ T) T'' = (u'' \circ T) T' \otimes T' + (u' \circ T) T''$$

$$(u \circ T)^{(3)} = (u^{(3)} \circ T) T' \otimes T' \otimes T' + (u'' \circ T) (T' \otimes T')'$$

$$+ (u'' \circ T) T' \otimes T'' + (u' \circ T) T^{(3)}$$

$$\vdots$$

(23.9)

$$(u \circ T)^{(l)} = \left(u^{(l)} \circ T\right) \overbrace{T \otimes \cdots \otimes T}^{l \text{ times}} + \sum_{j=1}^{l-1} \left(u^{(j)} \circ T\right) p_j \left(T', T'', \dots, T^{(l+1-j)}\right).$$

This equation and the boundedness assumptions on $T^{(j)}$ for $1 \leq j \leq k$ implies there is a finite constant K such that

$$\left| (u \circ T)^{(l)} \right| \le K \sum_{j=1}^{l} \left| u^{(j)} \circ T \right| \text{ for all } 1 \le l \le k.$$

By Hölder's inequality for sums we conclude there is a constant K_p such that

$$\sum_{|\alpha| \le k} \left| \partial^{\alpha} \left(u \circ T \right) \right|^{p} \le K_{p} \sum_{|\alpha| \le k} \left| \partial^{\alpha} u \right|^{p} \circ T$$

and therefore

$$||u \circ T||_{W^{k,p}(U)}^p \le K_p \sum_{|\alpha| < k} \int_U |\partial^{\alpha} u|^p (T(x)) dx.$$

Making the change of variables, y = T(x) and using

$$dy = |\det T'(x)| dx \ge \epsilon dx,$$

we find

$$\|u \circ T\|_{W^{k,p}(U)}^{p} \leq K_{p} \sum_{|\alpha| \leq k} \int_{U} |\partial^{\alpha} u|^{p} (T(x)) dx$$

$$\leq \frac{K_{p}}{\epsilon} \sum_{|\alpha| \leq k} \int_{V} |\partial^{\alpha} u|^{p} (y) dy = \frac{K_{p}}{\epsilon} \|u\|_{W^{k,p}(V)}^{p}.$$

This shows that $T^*: W^{k,p}(V) \cap C^{\infty}(V) \to W^{k,p}(U) \cap C^{\infty}(U)$ is a bounded operator. For general $u \in W^{k,p}(V)$, we may choose $u_n \in W^{k,p}(V) \cap C^{\infty}(V)$ such that $u_n \to u$ in $W^{k,p}(V)$. Since T^* is bounded, it follows that T^*u_n is Cauchy in $W^{k,p}(U)$ and hence convergent. Finally, using the change of variables theorem again we know,

$$||T^*u - T^*u_n||_{L^p(V)}^p \le \epsilon^{-1} ||u - u_n||_{L^p(U)}^p \to 0 \text{ as } n \to \infty$$

and therefore $T^*u = \lim_{n\to\infty} T^*u_n$ and by continuity Eq. (23.10) still holds for $u \in W^{k,p}(V)$.

Let M be a compact C^k – manifolds without boundary, i.e. M is a compact Hausdorff space with a collection of charts x in an "atlas" \mathcal{A} such that $x:D(x)\subset_o M\to R(x)\subset_o \mathbb{R}^d$ is a homeomorphism such that

$$x \circ y^{-1} \in C^k \left(y \left(D(x) \cap D(y) \right) \right), x \left(D(x) \cap D(y) \right) \right)$$
 for all $x, y \in \mathcal{A}$.

Definition 23.17. Let $\{x_i\}_{i=1}^N \subset \mathcal{A}$ such that $M = \bigcup_{i=1}^N D(x_i)$ and let $\{\phi_i\}_{i=1}^N$ be a partition of unity subordinate do the cover $\{D(x_i)\}_{i=1}^N$. We now define $u \in W^{k,p}(M)$ if $u: M \to \mathbb{C}$ is a function such that

(23.11)
$$||u||_{W^{k,p}(M)} := \sum_{i=1}^{N} ||(\phi_i u) \circ x_i^{-1}||_{W^{k,p}(R(x_i))} < \infty.$$

Since $\|\cdot\|_{W^{k,p}(R(x_i))}$ is a norm for all i, it easily verified that $\|\cdot\|_{W^{k,p}(M)}$ is a norm on $W^{k,p}(M)$.

Proposition 23.18. If $f \in C^k(M)$ and $u \in W^{k,p}(M)$ then $fu \in W^{k,p}(M)$ and

$$||fu||_{W^{k,p}(M)} \le C ||u||_{W^{k,p}(M)}$$

where C is a finite constant not depending on u. Recall that $f: M \to \mathbb{R}$ is said to be C^j with $j \leq k$ if $f \circ x^{-1} \in C^j(R(x), \mathbb{R})$ for all $x \in A$.

Proof. Since $[f \circ x_i^{-1}]$ has bounded derivatives on $\operatorname{supp}(\phi_i \circ x_i^{-1})$, it follows from Proposition 23.6 that there is a constant $C_i < \infty$ such that

$$\left\| (\phi_i f u) \circ x_i^{-1} \right\|_{W^{k,p}(R(x_i))} = \left\| \left[f \circ x_i^{-1} \right] (\phi_i u) \circ x_i^{-1} \right\|_{W^{k,p}(R(x_i))} \le C_i \left\| (\phi_i u) \circ x_i^{-1} \right\|_{W^{k,p}(R(x_i))}$$

and summing this equation on i shows Eq. (23.12) holds with $C := \max_i C_i$.

Theorem 23.19. If $\{y_j\}_{j=1}^K \subset \mathcal{A} \text{ such that } M = \bigcup_{j=1}^K D(y_j) \text{ and } \{\psi_j\}_{j=1}^K \text{ is a partition of unity subordinate to the cover } \{D(y_j)\}_{j=1}^K, \text{ then the norm}$

(23.13)
$$|u|_{W^{k,p}(M)} := \sum_{j=1}^{K} ||(\psi_j u) \circ y_j^{-1}||_{W^{k,p}(R(y_j))}$$

is equivalent to the norm in Eq. (23.11). That is to say the space $W^{k,p}(M)$ along with its topology is well defined independent of the choice of charts and partitions of unity used in defining the norm on $W^{k,p}(M)$.

Proof. Since $|\cdot|_{W^{k,p}(M)}$ is a norm,

$$|u|_{W^{k,p}(M)} = \left| \sum_{i=1}^{N} \phi_{i} u \right|_{W^{k,p}(M)} \leq \sum_{i=1}^{N} |\phi_{i} u|_{W^{k,p}(M)}$$

$$= \sum_{j=1}^{K} \left\| \sum_{i=1}^{N} (\psi_{j} \phi_{i} u) \circ y_{j}^{-1} \right\|_{W^{k,p}(R(y_{j}))}$$

$$\leq \sum_{j=1}^{K} \sum_{i=1}^{N} \left\| (\psi_{j} \phi_{i} u) \circ y_{j}^{-1} \right\|_{W^{k,p}(R(y_{j}))}$$

$$(23.14)$$

and since $x_i \circ y_j^{-1}$ and $y_j \circ x_i^{-1}$ are C^k diffeomorphism and the sets y_j (supp $(\phi_i) \cap \text{supp}(\psi_j)$) and x_i (supp $(\phi_i) \cap \text{supp}(\psi_j)$) are compact, an application of Theorem 23.16 and Proposition 23.6 shows there are finite constants C_{ij} such that

$$\left\| (\psi_j \phi_i u) \circ y_j^{-1} \right\|_{W^{k,p}(R(y_j))} \le C_{ij} \left\| (\psi_j \phi_i u) \circ x_i^{-1} \right\|_{W^{k,p}(R(x_i))} \le C_{ij} \left\| \phi_i u \circ x_i^{-1} \right\|_{W^{k,p}(R(x_i))}$$

which combined with Eq. (23.14) implies

$$|u|_{W^{k,p}(M)} \le \sum_{j=1}^K \sum_{i=1}^N C_{ij} \|\phi_i u \circ x_i^{-1}\|_{W^{k,p}(R(x_i))} \le C \|u\|_{W^{k,p}(M)}$$

where $C := \max_i \sum_{j=1}^K C_{ij} < \infty$. Analogously, one shows there is a constant $K < \infty$ such that $\|u\|_{W^{k,p}(M)} \le K \|u\|_{W^{k,p}(M)}$.

Lemma 23.20. Suppose $x \in \mathcal{A}(M)$ and $U \subset_o M$ such that $U \subset \overline{U} \subset D(x)$, then there is a constant $C < \infty$ such that

Conversely a function $u: M \to \mathbb{C}$ with $\operatorname{supp}(u) \subset U$ is in $W^{k,p}(M)$ iff $\|u \circ x^{-1}\|_{W^{k,p}(x(U))} < \infty$ and in any case there is a finite constant such that

(23.16)
$$||u||_{W^{k,p}(M)} \le C ||u \circ x^{-1}||_{W^{k,p}(x(U))}.$$

Proof. Choose charts $y_1 := x, y_2, \ldots, y_K \in \mathcal{A}$ such that $\{D(y_i)\}_{j=1}^K$ is an open cover of M and choose a partition of unity $\{\psi_j\}_{j=1}^K$ subordinate to the cover $\{D(y_j)\}_{j=1}^K$ such that $\psi_1 = 1$ on a neighborhood of \bar{U} . To construct such a partition of unity choose $U_j \subset_o M$ such that $U_j \subset \bar{U}_j \subset D(y_j), \ \bar{U} \subset U_1$ and $\bigcup_{j=1}^K U_j = M$ and for each j let $\eta_j \in C_c^k(D(y_j), [0, 1])$ such that $\eta_j = 1$ on a neighborhood of \bar{U}_j . Then define $\psi_j := \eta_j (1 - \eta_0) \cdots (1 - \eta_{j-1})$ where by convention $\eta_0 \equiv 0$. Then $\{\psi_j\}_{j=1}^K$ is the desired partition, indeed by induction one shows

$$1 - \sum_{j=1}^{l} \psi_j = (1 - \eta_1) \cdots (1 - \eta_l)$$

and in particular

$$1 - \sum_{j=1}^{K} \psi_j = (1 - \eta_1) \cdots (1 - \eta_K) = 0.$$

Using Theorem 23.19, it follows that

$$\begin{aligned} \|u \circ x^{-1}\|_{W^{k,p}(x(U))} &= \|(\psi_1 u) \circ x^{-1}\|_{W^{k,p}(x(U))} \\ &\leq \|(\psi_1 u) \circ x^{-1}\|_{W^{k,p}(R(y_1))} \leq \sum_{j=1}^K \|(\psi_j u) \circ y_j^{-1}\|_{W^{k,p}(R(y_j))} \\ &= |u|_{W^{k,p}(M)} \leq C \|u\|_{W^{k,p}(M)} \end{aligned}$$

which proves Eq. (23.15).

Using Theorems 23.19 and 23.16 there are constants C_j for $j = 0, 1, 2 \dots, N$ such that

$$||u||_{W^{k,p}(M)} \leq C_0 \sum_{j=1}^K ||(\psi_j u) \circ y_j^{-1}||_{W^{k,p}(R(y_j))} = C_0 \sum_{j=1}^K ||(\psi_j u) \circ y_1^{-1} \circ y_1 \circ y_j^{-1}||_{W^{k,p}(R(y_j))}$$

$$\leq C_0 \sum_{j=1}^K C_j ||(\psi_j u) \circ x^{-1}||_{W^{k,p}(R(y_1))} = C_0 \sum_{j=1}^K C_j ||\psi_j \circ x^{-1} \cdot u \circ x^{-1}||_{W^{k,p}(R(y_1))}.$$

This inequality along with K – applications of Proposition 23.6 proves Eq. (23.16).

Theorem 23.21. The space $(W^{k,p}(M), \|\cdot\|_{W^{k,p}(M)})$ is a Banach space.

Proof. Let $\{x_i\}_{i=1}^N \subset \mathcal{A}$ and $\{\phi_i\}_{i=1}^N$ be as in Definition 23.17 and choose $U_i \subset_o M$ such that $\operatorname{supp}(\phi_i) \subset U_i \subset \bar{U}_i \subset D(x_i)$. If $\{u_n\}_{n=1}^\infty \subset W^{k,p}(M)$ is a Cauchy sequence, then by Lemma 23.20, $\{u_n \circ x_i^{-1}\}_{n=1}^\infty \subset W^{k,p}(x_i(U_i))$ is a Cauchy sequence for all i. Since $W^{k,p}(x_i(U_i))$ is complete, there exists $v_i \in W^{k,p}(x_i(U_i))$ such that $u_n \circ x_i^{-1} \to \tilde{v}_i$ in $W^{k,p}(x_i(U_i))$. For each i let $v_i := \phi_i \ (\tilde{v}_i \circ x_i)$ and notice by Lemma 23.20 that

$$||v_i||_{W^{k,p}(M)} \le C ||v_i \circ x_i^{-1}||_{W^{k,p}(x_i(U_i))} = C ||\tilde{v}_i||_{W^{k,p}(x_i(U_i))} < \infty$$

so that $u := \sum_{i=1}^{N} v_i \in W^{k,p}(M)$. Since supp $(v_i - \phi_i u_n) \subset U_i$, it follows that

$$\|u - u_n\|_{W^{k,p}(M)} = \left\| \sum_{i=1}^N v_i - \sum_{i=1}^N \phi_i u_n \right\|_{W^{k,p}(M)}$$

$$\leq \sum_{i=1}^N \|v_i - \phi_i u_n\|_{W^{k,p}(M)} \leq C \sum_{i=1}^N \| [\phi_i \left(\tilde{v}_i \circ x_i - u_n \right)] \circ x_i^{-1} \|_{W^{k,p}(x_i(U_i))}$$

$$= C \sum_{i=1}^N \| [\phi_i \circ x_i^{-1} \left(\tilde{v}_i - u_n \circ x_i^{-1} \right)] \|_{W^{k,p}(x_i(U_i))}$$

$$\leq C \sum_{i=1}^N C_i \| \tilde{v}_i - u_n \circ x_i^{-1} \|_{W^{k,p}(x_i(U_i))} \to 0 \text{ as } n \to \infty$$

wherein the last inequality we have used Proposition 23.6 again.

23.4. **Trace Theorems.** For many more general results on this subject matter, see E. Stein [7, Chapter VI].

Lemma 23.22. Suppose $k \geq 1$, $\mathbb{H}^d := \{x \in \mathbb{R}^d : x_d > 0\} \subset_o \mathbb{R}^d$, $u \in C_c^k\left(\overline{\mathbb{H}^d}\right)$ and D is the smallest constant so that $\operatorname{supp}(u) \subset \mathbb{R}^{d-1} \times [0, D]$. Then there is a constant C = C(p, k, D, d) such that

$$||u||_{W^{k-1,p}(\partial \mathbb{H}^d)} \le C(p, D, k, d) ||u||_{W^{k,p}(\mathbb{H}^d)}.$$

Proof. Write $x \in \overline{\mathbb{H}^d}$ as $x = (y, z) \in \mathbb{R}^{d-1} \times [0, \infty)$, then by the fundamental theorem of calculus we have for any $\alpha \in \mathbb{N}_0^{d-1}$ with $|\alpha| \le k-1$ that

(23.18)
$$\partial_y^{\alpha} u(y,0) = \partial_y^{\alpha} u(y,z) - \int_0^z \partial_y^{\alpha} u_t(y,t) dt.$$

Therefore, for $p \in [1, \infty)$

$$\begin{aligned} \left| \partial_y^{\alpha} u(y,0) \right|^p &\leq 2^{p/q} \cdot \left[\left| \partial_y^{\alpha} u(y,z) \right|^p + \left| \int_0^z \partial_y^{\alpha} u_t(y,t) dt \right|^p \right] \\ &\leq 2^{p/q} \cdot \left[\left| \partial_y^{\alpha} u(y,z) \right|^p + \int_0^z \left| \partial_y^{\alpha} u_t(y,t) \right|^p dt \cdot |z|^{q/p} \right] \\ &\leq 2^{p-1} \cdot \left[\left| \partial_y^{\alpha} u(y,z) \right|^p + \int_0^D \left| \partial_y^{\alpha} u_t(y,t) \right|^p dt \cdot z^{p-1} \right] \end{aligned}$$

where $q := \frac{p}{p-1}$ is the conjugate exponent to p. Integrating this inequality over $\mathbb{R}^{d-1} \times [0, D]$ implies

$$D\left\|\partial^{\alpha}u\right\|_{L^{p}(\partial\mathbb{H}^{d})}^{p}\leq 2^{p-1}\left[\left\|\partial^{\alpha}u\right\|_{L^{p}(\mathbb{H}^{d})}^{p}+\left\|\partial^{\alpha+e_{d}}u\right\|_{L^{p}(\mathbb{H}^{d})}^{p}\frac{D^{p}}{p}\right]$$

or equivalently that

$$\|\partial^{\alpha} u\|_{L^{p}(\partial \mathbb{H}^{d})}^{p} \leq 2^{p-1} D^{-1} \|\partial^{\alpha} u\|_{L^{p}(\mathbb{H}^{d})}^{p} + 2^{p-1} \frac{D^{p-1}}{p} \|\partial^{\alpha + e_{d}} u\|_{L^{p}(\mathbb{H}^{d})}^{p}$$

from which implies Eq. (23.17).

Similarly, if $p = \infty$, then from Eq. (23.18) we find

$$\|\partial^{\alpha}u\|_{L^{\infty}(\partial\mathbb{H}^{d})}=\|\partial^{\alpha}u\|_{L^{\infty}(\mathbb{H}^{d})}+D\left\|\partial^{\alpha+e_{d}}u\right\|_{L^{\infty}(\mathbb{H}^{d})}$$

and again the result follows.

Theorem 23.23 (Trace Theorem). Suppose $k \geq 1$ and $\Omega \subset_o \mathbb{R}^d$ such that $\bar{\Omega}$ is a compact manifold with C^k – boundary. Then there exists a unique linear map $T: W^{k,p}(\Omega) \to W^{k-1,p}(\partial \Omega)$ such that $Tu = u|_{\partial \Omega}$ for all $u \in C^k(\bar{\Omega})$.

Proof. Choose a covering $\{V_i\}_{i=0}^N$ of $\bar{\Omega}$ such that $\bar{V}_0 \subset \Omega$ and for each $i \geq 1$, there is C^k – diffeomorphism $x_i : V_i \to R(x_i) \subset_o \mathbb{R}^d$ such that

$$x_i (\partial \Omega \cap V_i) = R(x_i) \cap \mathrm{bd}(\mathbb{H}^d)$$
 and $x_i (\Omega \cap V_i) = R(x_i) \cap \mathbb{H}^d$

as in Figure 45. Further choose $\phi_i \in C_c^{\infty}(V_i, [0, 1])$ such that $\sum_{i=0}^N \phi_i = 1$ on a

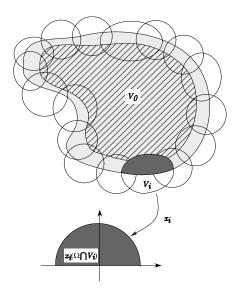


FIGURE 45. Covering Ω (the shaded region) as described in the text.

neighborhood of $\bar{\Omega}$ and set $y_i := x_i|_{\partial\Omega\cap V_i}$ for $i \geq 1$. Given $u \in C^k(\bar{\Omega})$, we compute

$$\begin{aligned} \|u\|_{\partial\bar{\Omega}}\|_{W^{k-1,p}(\partial\bar{\Omega})} &= \sum_{i=1}^{N} \|(\phi_{i}u)|_{\partial\bar{\Omega}} \circ y_{i}^{-1}\|_{W^{k-1,p}(R(x_{i})\cap\mathrm{bd}(\mathbb{H}^{d}))} \\ &= \sum_{i=1}^{N} \|[(\phi_{i}u)\circ x_{i}^{-1}]|_{\mathrm{bd}(\mathbb{H}^{d})}\|_{W^{k-1,p}(R(x_{i})\cap\mathrm{bd}(\mathbb{H}^{d}))} \\ &\leq \sum_{i=1}^{N} C_{i} \|[(\phi_{i}u)\circ x_{i}^{-1}]\|_{W^{k,p}(R(x_{i}))} \\ &\leq \max C_{i} \cdot \sum_{i=1}^{N} \|[(\phi_{i}u)\circ x_{i}^{-1}]\|_{W^{k,p}(R(x_{i})\cap\mathbb{H}^{d})} + \|[(\phi_{0}u)\circ x_{0}^{-1}]\|_{W^{k,p}(R(x_{0}))} \\ &\leq C \|u\|_{W^{k,p}(\Omega)} \end{aligned}$$

where $C = \max\{1, C_1, \dots, C_N\}$. The result now follows by the B.L.T. Theorem 4.1 and the fact that $C^k(\bar{\Omega})$ is dense inside $W^{k,p}(\Omega)$.

Notation 23.24. In the sequel will often abuse notation and simply write $u|_{\partial\bar{\Omega}}$ for the "function" $Tu \in W^{k-1,p}(\partial\bar{\Omega})$.

Proposition 23.25 (Integration by parts). Suppose $\Omega \subset_o \mathbb{R}^d$ such that $\bar{\Omega}$ is a compact manifold with C^1 – boundary, $p \in [1, \infty]$ and $q = \frac{p}{p-1}$ is the conjugate exponent. Then for $u \in W^{k,p}(\Omega)$ and $v \in W^{k,q}(\Omega)$,

(23.19)
$$\int_{\Omega} \partial_i u \cdot v dm = -\int_{\Omega} u \cdot \partial_i v dm + \int_{\partial \bar{\Omega}} u|_{\partial \bar{\Omega}} \cdot v|_{\partial \bar{\Omega}} n_i d\sigma$$

where $n: \partial \bar{\Omega} \to \mathbb{R}^d$ is unit outward pointing norm to $\partial \bar{\Omega}$.

Proof. Equation 23.19 holds for $u,v\in C^2\left(\bar{\Omega}\right)$ and therefore for $(u,v)\in W^{k,p}\left(\Omega\right)\times W^{k,q}\left(\Omega\right)$ since both sides of the equality are continuous in $(u,v)\in W^{k,p}\left(\Omega\right)\times W^{k,q}\left(\Omega\right)$ as the reader should verify. \blacksquare

Definition 23.26. Let $W_0^{k,p}(\Omega) := \overline{C_c^{\infty}(\Omega)}^{W^{k,p}(\Omega)}$ be the closure of $C_c^{\infty}(\Omega)$ inside $W^{k,p}(\Omega)$.

Remark 23.27. Notice that if $T: W^{k,p}(\Omega) \to W^{k-1,p}(\partial \bar{\Omega})$ is the trace operator in Theorem 23.23, then $T\left(W_0^{k,p}(\Omega)\right) = \{0\} \subset W^{k-1,p}(\partial \bar{\Omega})$ since $Tu = u|_{\partial \bar{\Omega}} = 0$ for all $u \in C_c^{\infty}(\Omega)$.

Corollary 23.28. Suppose $\Omega \subset_o \mathbb{R}^d$ such that $\bar{\Omega}$ is a compact manifold with C^1 –boundary, $p \in [1, \infty]$ and $T : W^{1,p}(\Omega) \to L^p(\partial\Omega)$ is the trace operator of Theorem 23.23. Then $W_0^{1,p}(\Omega) = \operatorname{Nul}(T)$.

Proof. It has already been observed in Remark 23.27 that $W_0^{1,p}(\Omega) \subset \operatorname{Nul}(T)$. Suppose $u \in \operatorname{Nul}(T)$ and $\operatorname{supp}(u)$ is compactly contained in Ω . The mollification $u_{\epsilon}(x)$ defined in Proposition 23.4 will be in $C_c^{\infty}(\Omega)$ for $\epsilon > 0$ sufficiently small and by Proposition 23.4, $u_{\epsilon} \to u$ in $W^{1,p}(\Omega)$. Thus $u \in W_0^{1,p}(\Omega)$. We will now give two proofs for $\operatorname{Nul}(T) \subset W_0^{1,p}(\Omega)$.

Proof 1. For $u \in \text{Nul}(T) \subset W^{1,p}(\Omega)$ define

$$\tilde{u}(x) = \begin{cases} u(x) & \text{for } x \in \bar{\Omega} \\ 0 & \text{for } x \notin \bar{\Omega}. \end{cases}$$

Then clearly $\tilde{u} \in L^p(\mathbb{R}^d)$ and moreover by Proposition 23.25, for $v \in C_c^{\infty}(\mathbb{R}^d)$,

$$\int_{\mathbb{R}^d} \tilde{u} \cdot \partial_i v dm = \int_{\Omega} u \cdot \partial_i v dm = -\int_{\Omega} \partial_i u \cdot v dm$$

from which it follows that $\partial_i \tilde{u}$ exists weakly in $L^p(\mathbb{R}^d)$ and $\partial_i \tilde{u} = 1_{\Omega} \partial_i u$ a.e.. Thus $\tilde{u} \in W^{1,p}(\mathbb{R}^d)$ with $\|\tilde{u}\|_{W^{1,p}(\mathbb{R}^d)} = \|u\|_{W^{1,p}(\Omega)}$ and $\operatorname{supp}(\tilde{u}) \subset \Omega$.

Choose $V \in C_c^1(\mathbb{R}^d, \mathbb{R}^d)$ such that $V(x) \cdot n(x) > 0$ for all $x \in \partial \bar{\Omega}$ and define

$$\tilde{u}_{\epsilon}(x) = T_{\epsilon}\tilde{u}(x) := \tilde{u} \circ e^{\epsilon V}(x).$$

Notice that $\operatorname{supp}(\tilde{u}_{\epsilon}) \subset e^{-\epsilon V}(\bar{\Omega}) \sqsubset \Box \Omega$ for all ϵ sufficiently small. By the change of variables Theorem 23.16, we know that $\tilde{u}_{\epsilon} \in W^{1,p}(\Omega)$ and since $\operatorname{supp}(\tilde{u}_{\epsilon})$ is a compact subset of Ω , it follows from the first paragraph that $\tilde{u}_{\epsilon} \in W_0^{1,p}(\Omega)$.

To so finish this proof, it only remains to show $\tilde{u}_{\epsilon} \to u$ in $W^{1,p}(\Omega)$ as $\epsilon \downarrow 0$. Looking at the proof of Theorem 23.16, the reader may show there are constants $\delta > 0$ and $C < \infty$ such that

(23.20)
$$||T_{\epsilon}v||_{W^{1,p}(\mathbb{R}^d)} \le C ||v||_{W^{1,p}(\mathbb{R}^d)} \text{ for all } v \in W^{1,p}(\mathbb{R}^d).$$

By direct computation along with the dominated convergence it may be shown that

(23.21)
$$T_{\epsilon}v \to v \text{ in } W^{1,p}\left(\mathbb{R}^d\right) \text{ for all } v \in C_c^{\infty}(\mathbb{R}^d).$$

As is now standard, Eqs. (23.20) and (23.21) along with the density of $C_c^{\infty}(\mathbb{R}^d)$ in $W^{1,p}(\mathbb{R}^d)$ allows us to conclude $T_{\epsilon}v \to v$ in $W^{1,p}(\mathbb{R}^d)$ for all $v \in W^{1,p}(\mathbb{R}^d)$ which completes the proof that $\tilde{u}_{\epsilon} \to u$ in $W^{1,p}(\Omega)$ as $\epsilon \to 0$.

Proof 2. As in the first proof it suffices to show that any $u \in W_0^{1,p}(\Omega)$ may be approximated by $v \in W^{1,p}(\Omega)$ with $\operatorname{supp}(v) \sqsubseteq \Omega$. As above extend u to Ω^c

by 0 so that $\tilde{u} \in W^{1,p}\left(\mathbb{R}^d\right)$. Using the notation in the proof of 23.23, it suffices to show $u_i := \phi_i \tilde{u} \in W^{1,p}\left(\mathbb{R}^d\right)$ may be approximated by $u_i \in W^{1,p}\left(\Omega\right)$ with $\operatorname{supp}(u_i) \sqsubseteq \Omega$. Using the change of variables Theorem 23.16, the problem may be reduced to working with $w_i = u_i \circ x_i^{-1}$ on $B = R(x_i)$. But in this case we need only define $w_i^{\epsilon}(y) := w_i^{\epsilon}(y - \epsilon e_d)$ for $\epsilon > 0$ sufficiently small. Then $\operatorname{supp}(w_i^{\epsilon}) \subset \mathbb{H}^d \cap B$ and as we have already seen $w_i^{\epsilon} \to w_i$ in $W^{1,p}\left(\mathbb{H}^d\right)$. Thus $u_i^{\epsilon} := w_i^{\epsilon} \circ x_i \in W^{1,p}\left(\Omega\right)$, $u_i^{\epsilon} \to u_i$ as $\epsilon \downarrow 0$ with $\operatorname{supp}(u_i) \sqsubseteq \Omega$.

23.5. Extension Theorems.

Lemma 23.29. Let R > 0, $B := B(0,R) \subset \mathbb{R}^d$, $B^{\pm} := \{x \in B : \pm x_d > 0\}$ and $\Gamma := \{x \in B : x_d = 0\}$. Suppose that $u \in C^k(B \setminus \Gamma) \cap C(B)$ and for each $|\alpha| \leq k$, $\partial^{\alpha}u$ extends to a continuous function v_{α} on B. Then $u \in C^k(B)$ and $\partial^{\alpha}u = v_{\alpha}$ for all $|\alpha| \leq k$.

Proof. For $x \in \Gamma$ and i < d, then by continuity, the fundamental theorem of calculus and the dominated convergence theorem,

$$u(x + \Delta e_i) - u(x) = \lim_{\substack{y \to x \\ y \in B \setminus \Gamma}} \left[u(y + \Delta e_i) - u(y) \right] = \lim_{\substack{y \to x \\ y \in B \setminus \Gamma}} \int_0^{\Delta} \partial_i u(y + se_i) ds$$
$$= \lim_{\substack{y \to x \\ y \in B \setminus \Gamma}} \int_0^{\Delta} v_{e_i}(y + se_i) ds = \int_0^{\Delta} v_{e_i}(x + se_i) ds$$

and similarly, for i = d,

$$\begin{split} u(x + \Delta e_d) - u(x) &= \lim_{\substack{y \to x \\ y \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}} \left[u(y + \Delta e_d) - u(y) \right] = \lim_{\substack{y \to x \\ y \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}} \int_0^\Delta \partial_d u(y + s e_d) ds \\ &= \lim_{\substack{y \to x \\ u \in B^{\operatorname{sgn}(\Delta)} \backslash \Gamma}} \int_0^\Delta v_{e_d}(y + s e_d) ds = \int_0^\Delta v_{e_d}(x + s e_d) ds. \end{split}$$

These two equations show, for each i, $\partial_i u(x)$ exits and $\partial_i u(x) = v_{e_i}(x)$. Hence we have shown $u \in C^1(B)$.

Suppose it has been proven for some $l \geq 1$ that $\partial^{\alpha}u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq l < k$. Then applying the results of the previous paragraph to $\partial^{\alpha}u(x)$ with $|\alpha| = l$ shows that $\partial_{i}\partial^{\alpha}u(x)$ exists and is given by $v_{\alpha+e_{i}}(x)$ for all i and $x \in B$ and from this we conclude that $\partial^{\alpha}u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq l+1$. So by induction we conclude $\partial^{\alpha}u(x)$ exists and is given by $v_{\alpha}(x)$ for all $|\alpha| \leq k$, i.e. $u \in C^{k}(B)$.

Lemma 23.30. Given any k+1 distinct points, $\{c_i\}_{i=0}^k$, in $\mathbb{R}\setminus\{0\}$, the $(k+1)\times(k+1)$ matrix C with entries $C_{ij}:=(c_i)^j$ is invertible.

Proof. Let $a \in \mathbb{R}^{k+1}$ and define $p(x) := \sum_{j=0}^k a_j x^j$. If $a \in \text{Nul}(C)$, then

$$0 = \sum_{i=0}^{k} (c_i)^j a_j = p(c_i) \text{ for } i = 0, 1, \dots, k.$$

Since $\deg(p) \leq k$ and the above equation says that p has k+1 distinct roots, we conclude that $a \in \operatorname{Nul}(C)$ implies $p \equiv 0$ which implies a = 0. Therefore $\operatorname{Nul}(C) = \{0\}$ and C is invertible.

Lemma 23.31. Let B, B^{\pm} and Γ be as in Lemma 23.29 and $\{c_i\}_{i=0}^k$, be k+1 distinct points in $(\infty, -1]$ for example $c_i = -(i+1)$ will work. Also let $a \in \mathbb{R}^{k+1}$ be the unique solution (see Lemma 23.30 to $C^{tr}a = 1$ where 1 denotes the vector of all ones in \mathbb{R}^{k+1} , i.e. a satisfies

(23.22)
$$1 = \sum_{i=0}^{k} (c_i)^j a_i \text{ for } j = 0, 1, 2 \dots, k.$$

For $u \in C^k(\mathbb{H}^d) \cap C_c(\overline{\mathbb{H}^d})$ with $\operatorname{supp}(u) \subset B$ and $x = (y, z) \in \mathbb{R}^d$ define

(23.23)
$$\tilde{u}(x) = \tilde{u}(y,z) = \begin{cases} u(y,z) & \text{if } z \ge 0 \\ \sum_{i=0}^{k} a_i u(y,c_i z) & \text{if } z \le 0. \end{cases}$$

Then $\tilde{u} \in C_c^k(\mathbb{R}^d)$ with $\operatorname{supp}(\tilde{u}) \subset B$ and moreover there exists a constant M independent of u such that

$$\|\tilde{u}\|_{W^{k,p}(B)} \le M \|u\|_{W^{k,p}(B^+)}.$$

Proof. By Eq. (23.22) with j = 0,

$$\sum_{i=0}^{k} a_i u(y, c_i 0) = u(y, 0) \sum_{i=0}^{k} a_i = u(y, 0).$$

This shows that \tilde{u} in Eq. (23.23) is well defined and that $\tilde{u} \in C\left(\mathbb{H}^d\right)$. Let $K^- := \{(y,z): (y,-z) \in \operatorname{supp}(u)\}$. Since $c_i \in (\infty,-1]$, if $x=(y,z) \notin K^-$ and z<0 then $(y,c_iz) \notin \operatorname{supp}(u)$ and therefore $\tilde{u}(x)=0$ and therefore $\sup(\tilde{u})$ is compactly contained inside of B. Similarly if $\alpha \in \mathbb{N}_0^d$ with $|\alpha| \leq k$, Eq. (23.22) with $j=\alpha_d$ implies

$$v_{\alpha}(x) := \begin{cases} (\partial^{\alpha} u) \left(y, z \right) & \text{if} \quad z \ge 0 \\ \sum_{i=0}^{k} a_{i} c_{i}^{\alpha_{d}} \left(\partial^{\alpha} u \right) \left(y, c_{i} z \right) & \text{if} \quad z \le 0. \end{cases}$$

is well defined and $v_{\alpha} \in C\left(\mathbb{R}^d\right)$. Differentiating Eq. (23.23) shows $\partial^{\alpha} \tilde{u}(x) = v_{\alpha}(x)$ for $x \in B \setminus \Gamma$ and therefore we may conclude from Lemma 23.29 that $u \in C_c^k(B) \subset C^k\left(\mathbb{R}^d\right)$ and $\partial^{\alpha} u = v_{\alpha}$ for all $|\alpha| \leq k$.

We now verify Eq. (23.24) as follows. For $|\alpha| \leq k$,

$$\begin{split} \|\partial^{\alpha} \tilde{u}\|_{L^{p}(B^{-})}^{p} &= \int_{\mathbb{R}^{d}} 1_{z < 0} \left| \sum_{i=0}^{k} a_{i} c_{i}^{\alpha_{d}} \left(\partial^{\alpha} u \right) (y, c_{i} z) \right|^{p} dy dz \\ &\leq C \int_{\mathbb{R}^{d}} 1_{z < 0} \sum_{i=0}^{k} \left| \left(\partial^{\alpha} u \right) (y, c_{i} z) \right|^{p} dy dz \\ &= C \int_{\mathbb{R}^{d}} 1_{z > 0} \sum_{i=0}^{k} \frac{1}{|c_{i}|} \left| \left(\partial^{\alpha} u \right) (y, z) \right|^{p} dy dz \\ &= C \left(\sum_{i=0}^{k} \frac{1}{|c_{i}|} \right) \|\partial^{\alpha} u\|_{L^{p}(B^{+})}^{p} \end{split}$$

where $C := \left(\sum_{i=0}^k |a_i c_i^{\alpha_d}|^q\right)^{p/q}$. Summing this equation on $|\alpha| \le k$ shows there exists a constant M' such that $\|\tilde{u}\|_{W^{k,p}(B^-)} \le M' \|u\|_{W^{k,p}(B^+)}$ and hence Eq. (23.24) holds with M = M' + 1.

Theorem 23.32 (Extension Theorem). Suppose $k \geq 1$ and $\Omega \subset_o \mathbb{R}^d$ such that $\bar{\Omega}$ is a compact manifold with C^k – boundary. Given $U \subset_o \mathbb{R}^d$ such that $\bar{\Omega} \subset U$, there exists a bounded linear (extension) operator $E: W^{k,p}(\Omega) \to W^{k,p}(\mathbb{R}^d)$ such that

- (1) Eu = u a.e. in Ω and
- (2) $\operatorname{supp}(Eu) \subset U$.

Proof. As in the proof of Theorem 23.23, choose a covering $\{V_i\}_{i=0}^N$ of $\bar{\Omega}$ such that $\bar{V}_0 \subset \Omega$, $\bigcup_{i=0}^N \bar{V}_i \subset U$ and for each $i \geq 1$, there is C^k – diffeomorphism $x_i : V_i \to R(x_i) \subset_{\mathcal{O}} \mathbb{R}^d$ such that

$$x_i(\partial\Omega\cap V_i)=R(x_i)\cap\mathrm{bd}(\mathbb{H}^d)$$
 and $x_i(\Omega\cap V_i)=R(x_i)\cap\mathbb{H}^d=B^+$

where B^+ is as in Lemma 23.31, refer to Figure 45. Further choose $\phi_i \in C_c^{\infty}(V_i, [0, 1])$ such that $\sum_{i=0}^N \phi_i = 1$ on a neighborhood of $\bar{\Omega}$ and set $y_i := x_i|_{\partial\Omega\cap V_i}$ for $i \geq 1$. Given $u \in C^k(\bar{\Omega})$ and $i \geq 1$, the function $v_i := (\phi_i u) \circ x_i^{-1}$ may be viewed as a function in $C^k(\mathbb{H}^d) \cap C_c(\overline{\mathbb{H}^d})$ with $\mathrm{supp}(u) \subset B$. Let $\tilde{v}_i \in C_c^k(B)$ be defined as in Eq. (23.23) above and define $\tilde{u} := \phi_0 u + \sum_{i=1}^N \tilde{v}_i \circ x_i \in C_c^{\infty}(\mathbb{R}^d)$ with $\mathrm{supp}(u) \subset U$. Notice that $\tilde{u} = u$ on $\bar{\Omega}$ and making use of Lemma 23.20 we learn

$$\|\tilde{u}\|_{W^{k,p}(\mathbb{R}^d)} \leq \|\phi_0 u\|_{W^{k,p}(\mathbb{R}^d)} + \sum_{i=1}^N \|\tilde{v}_i \circ x_i\|_{W^{k,p}(\mathbb{R}^d)}$$

$$\leq \|\phi_0 u\|_{W^{k,p}(\Omega)} + \sum_{i=1}^N \|\tilde{v}_i\|_{W^{k,p}(R(x_i))}$$

$$\leq C(\phi_0) \|u\|_{W^{k,p}(\Omega)} + \sum_{i=1}^N \|v_i\|_{W^{k,p}(B^+)}$$

$$= C(\phi_0) \|u\|_{W^{k,p}(\Omega)} + \sum_{i=1}^N \|(\phi_i u) \circ x_i^{-1}\|_{W^{k,p}(B^+)}$$

$$\leq C(\phi_0) \|u\|_{W^{k,p}(\Omega)} + \sum_{i=1}^N C_i \|u\|_{W^{k,p}(\Omega)}.$$

This shows the map $u \in C^k(\bar{\Omega}) \to Eu := \tilde{u} \in C^k_c(U)$ is bounded as map from $W^{k,p}(\Omega)$ to $W^{k,p}(U)$. As usual, we now extend E using the B.L.T. Theorem 4.1 to a bounded linear map from $W^{k,p}(\Omega)$ to $W^{k,p}(U)$. So for general $u \in W^{k,p}(\Omega)$, $Eu = W^{k,p}(U) - \lim_{n \to \infty} \tilde{u}_n$ where $u_n \in C^k(\bar{\Omega})$ and $u = W^{k,p}(\Omega) - \lim_{n \to \infty} u_n$. By passing to a subsequence if necessary, we may assume that \tilde{u}_n converges a.e. to Eu from which it follows that Eu = u a.e. on $\bar{\Omega}$ and $\sup(Eu) \subset U$.

23.6. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

$$|f|_{W^{k,p}(\Omega)} := \sum_{|\alpha| \le k} \|\partial^{\alpha} f\|_{L^p(\Omega)}.$$

Solution. 23.1This is a consequence of the fact that all norms on $l^p\left(\{\alpha:|\alpha|\leq k\}\right)$ are equivalent. To be more explicit, let $a_\alpha=\|\partial^\alpha f\|_{L^p(\Omega)}$, then

$$\sum_{|\alpha| \le k} |a_{\alpha}| \le \left(\sum_{|\alpha| \le k} |a_{\alpha}|^p\right)^{1/p} \left(\sum_{|\alpha| \le k} 1^q\right)^{1/q}$$

while

$$\left(\sum_{|\alpha| \le k} |a_{\alpha}|^p\right)^{1/p} \le \left(\sum_{|\alpha| \le k}^p \left[\sum_{|\beta| \le k} |a_{\beta}|\right]^p\right)^{1/p} \le \left[\#\left\{\alpha : |\alpha| \le k\right\}\right]^{1/p} \sum_{|\beta| \le k} |a_{\beta}|.$$