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14. WAVE EQUATION ON R"™
(Ref Courant & Hilbert Vol II, Chap VI §12.)

We now consider the wave equation
(14.1) uy — Au = 0 with u(0,2) = f(z) and u(0,z) = g(x) for z € R".

According to Section 13, the solution (in the L? — sense) is given by

(14.2) u(t, ) = (cos(t/—A)f + %g.

To work out the results in Eq. (14.2) we must diagonalize A. This is of course
done using the Fourier transform. Let F denote the Fourier transform in the z —
variables only. Then

a(t, k) + |k|*a(t, k) = 0 with
@(0,k) = f(k) and a(t, k) = g(k).

Therefore el
alt, k) = cos(t/k|) f(k) + Sm(k| D 5.
and so
utt) =7 [aosteh i) + D gw)] o),
- sin(tv/—=A) __ [sin(t|k]) .
(14.3) Wg—]: ! [ ] g(k:)] and
(14.4) cos(tr/—D)f = F! [cos(tw) f(k)] = %}'*1 [Slnﬁ"k') g(k)] .

Our next goal is to work out these expressions in x — space alone.

14.1. n =1 Case. As we see from Eq. (14.4) it suffices to compute:
sin(by—A) oo (sinQE]) oo g e sin(tlg])
—/= ‘7 F (T g(f)) = Jim 7 (1|£|§M N 9(5))

(145) — ]\}ii)nooffl <1|€|<M Sln(£t|§|)> xg

This inverse Fourier transform will be computed in Proposition 14.2 below using
the following lemma.

Lemma 14.1. Let Cy; denote the contour shown in Figure 38, then for X\ # 0 we

have
eiNE

lim
M—oo
Cum

dé = 2milyso.

Proof. First assume that A > 0 and let I'j; denote the contour shown in Figure
38. Then

)

M

- 0
ez)\Me

df = 277/ dfe M0 () as M — oo.
0
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Therefore

eirE PRRYS GiNE
A/}linoo / £ d¢ = A/}linoo / £ d§ = 2mires¢—g (T) = 27i.
Cwm

Cyu+Tm

FIGURE 38. A couple of contours in C.

If A < 0, the same argument shows

i ei)\ﬁ 4 i ei)\ﬁd

Cm Cv+Twm

and the later integral is 0 since the integrand is holomorphic inside the contour
Cy+Ty. m

g . — sin(t|€ _ g
Proposition 14.2. ]\/}ligo]: ! (1‘5‘51\/1 %) () = sgn(t)% Lz <t -
Proof. Let
sin(? sin(t ;
Iy = V2nF ™! (hagM —(gf')) (z) = / —é & ciergg,

l€l<M

Then by deforming the contour we may write

: . 1 ité _ —ité )
Iy = / —SH;& e rde = —/ S e rde

2% ¢
Cum Cm
_ l / ei(:c-l—t)E _ ei(ac—t)& df
2 3
Cum

By Lemma 14.1 we conclude that

. 1.
dim Ty = =270 (Leiy>0 = Le—t)>0) = sg(t) Lizi<ps)

(For the last equality, suppose ¢t > 0. Then x — ¢ > 0 implies z + ¢ > 0 so we get 0
and if ¢ < —t, i.e. x +¢ <0 then x — ¢ < 0 and we get 0 again. If || < ¢ the first
term is 1 while the second is zero. Similar arguments work when ¢t < 0 as well.) m
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Theorem 14.3. Forn =1,

. T+t
(146 BOLD) 40) = 5 [ o) xw) ana
(14.7) cos(ty/=A)g(z) = % (@ + ) + g(z —t)].

In particular

x+t

(14.8) u(t.a) = 5@+ )+ S =)+ 5 [ 9w dy

r—t
is the solution to the wave equation (14.2).

Proof. From Eq. (14.5) and Proposition 14.2 we find

sin(ty/—A) 1
———9(@) =sgn(t)5 [ Lz—y/>1 9(y) dy
0 =i |
] @+ |t] 1 T+t
=sgu(t)3 /g(y)dy=§ /g(y)dy-
x—|t] —t

Differentiating this equation in ¢ gives Eq. (14.7). =
If we have a forcing term, so i = uy 5 + h, with u(0,-) = 0 and u(0,-) = 0, then

THt—T7

)= [ " sin(e ;%m> rrayir =3 [ t " /+ i)
_ %/Oth 7 drh(r, @ +1).
—(i+7)

14.1.1. Factorization method for n = 1. Writing the wave equation as
0= (63 — 8§) w= (0 + 0;)(0r — Oz )u = (O + Oz )v
with v := (0y — 0, )u implies v(t,z) = v(0,2 — t) with

'U(Oax) = ut(ovx) - ’U,I(O,ZL') = g(.’E) - f/(:L')
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Now u solves (0 — 0, )u = v, i.e. dyu = O,u + v. Therefore

t
u(t,z) = e (0, x) Jr/ =% (7, 2)dr
0
t
=u(0,z+1) +/ o(r,x+t—T)dr
0

t
:u(O,:zr—I—t)—i—/ v(0,z 4+t — 27)dr
0 N

s
t

1
:u(O,:zr+t)+§ / v(0,z + s)ds

—t

S0+ [ (o) = flors)ds

s=t

1
+ = / g(x + s)ds
s=—t 2 ¢

:f(x—”);f(x_t)+%/tg(:1c+s)ds

:f(:v—&—t)—%f(w—&-s)

which is equivalent to Eq. (14.8).

14.2. Solution for n = 3. Given a function f: R™ — R and ¢t € R let
Fezt) = [ v wpio) = f [ st gty
y|=|t
SZ

Theorem 14.4. For f € L* (R3),

sin (vV—-At) o [Sin|§|t

- f<s>} () = tF(xs)

and
cos (Mt) g= % [tf (z;1)] .

In particular the solution to the wave equation (14.1) for n = 3 is given by

u(t,) = o(¢ Fa:0) + ¢ 5(as0)
L (tg(z + tw) + f(x + tw) + tV f(z + tw) - w)do(w).

47
|w]=1
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Proof. Let gy := F 1 [%hﬁlSM} , then by symmetry and passing to spher-

ical coordinates,

9)3/2 _ sin |£|t i&xge sin [£]¢ ilzlés g
@ o) = [ Hffetrae= [ gk e

|§1<M |€|<M

2m
¢
/ dpp/ d@/ dgbsmp etPlzleosd i ¢

zp\:c\cow x
=27 dpsin pt
/o PO TR o
M iplz| _ o—iplzl 4
e e
:27r/ dpsin pt - -7 sin ptsin p |z| dp.
0 il ||

Using
sin Asin B = % [cos(A — B) — cos(A + B)]

in this last equality, shows
—3/227 M
gm(x) = (2m) e [cos((t — |z])p) — cos((t + |z|)p)ldp

= <2w>-3/2%hM<|x|>

where

an odd function in 7. Since

7 [Sir|l§|§|t f(g)} = F (€ F(€) = Jim (gar % f)(x)

we need to compute gy x f. To this end

o+ 1) = () = [ ohsatid e vy
= (%):ﬂ/owdphMTfp) /ly_pf(w—y)da(y)
:(%) w/(]ood hp s p? ][fx— Vo (y)

lyl=p

oo o

L o ha (p)pf(x;p) = ﬁ/ dp har(p)pf(w; p)

2 oo

where the last equality is a consequence of the fact that hps(p)pf (z; p) is an even
function of p. Continuing to work on this expression suing p — pf(z;p) is odd
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implies
o) M
mxf@) = 3= [ dp [ leos((t = p)o) —cos((t-+ plalldarpap)
o) M
=5 [ do [ coslit=palpfasp)ia

1 M o0 . _ _
= —Re/ dp/ dae™ =Py f(x; p)do — tf(z;t) as M — oo
27 —-M —00
using the 1 — dimensional Fourier inversion formula. m

14.2.1. Alternate Proof of Theorem 1.4.
Lemma 14.5. N}im fi\/[M cos(pA)dp = 2md(N).

Proof.
M M
/ cos(pN)dp :/ e \dp
-M -M
so that
M . .
/¢(/\) l/ e””\dp] d\ — /dp/d)\(b()\)eup = 27p(0)
-M
R R R

by the Fourier inversion formula. m
Proof. of Theorem 14.4 again.

/Slnt|§| eié";dﬁ :/ M efp\w|cosesin9d9 dcp P2 dp
P

€]
B sintp erlzld 1
_277/ o o] ‘A:_l dp
= % sintp sinp|z| dp
0
:|2?7T| [ leos(o(e —[a) = cos(o(t + [2])] o
- % _OO [cos(p(t — [a])) = cos(p(t + |x[))] dp
_ % (8(¢ — |2]) — 8(¢ + |z))
Therefore
_1 (sintl¢] v oz
d ( g ) o
(AN s [ —ly) =+ ly))
_<2W> 277R[ 7l g9(z —y) dA(y)
= 4i Oo(é(t —p) = 3(t + p)gle + p) = dp do(w)
T Jo P

= lyso t g(xit) — 1o (=) Glz; —1)
= tg(z;t)
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14.3. Du Hamel’s Principle. The solution to
uge = Au~+ f with u(0,2) =0 and u(0,2) =0
is given by

(149)  u(t,x) /ft—y—w M/ft—Z'“Z)clz,

ly — | ||
B(a: t) |z|<t

Indeed, by Du Hamel’s principle,

(" sin((t — 1)V=D) (" sin(rV/=D)
u(t, x) —/0 Wiy f(T,:r)dT—/O ﬁ fit —7,2)dr

= /t T7f(t — 1,2 7)dT = L dT t2 / fltzrnetrw) do(w)
0

ar T
Jw]=1
1 t—|y—
- wdy(lety:z+z)
dm ly — |
B(t,x)
1 _
_L [ f=ldats),
47 2]
|z|<t

Thinking of u(t, x) as pressure (14.9) says that the pressure at z at time ¢ is the
“average" of the disturbance at time ¢ — |y — x| at location y.

14.4. Spherical Means. Let n > 2 and suppose u solves uy; = Au. Since A is
invariant under rotations, i.e. for R € O(n) we have A(uo R) = (Au)o R, it follows
that u o R is also a solution to the wave equation. Indeed,

(u(t,-) o R)yt = u(t,-) o R = Au(t, ) o R = A(u(t,-) o R).
By the linearity of the wave equation, this also implies, with d R denoting normalized
Haar measure on O(n), that
U(t,|z|) := / (u(t, Rz) o R)dR
O(n)

must be a radial solution of the Wave equation. This implies

Un = 800 Jol) = g 0™ 10,007,y = BV (1) + "o DU (1)
r=|z|

Now

Ut |2]) = / u(t, Rz)dR = ][ u(t, y)do(y).
0(n) B(0,|=|)

Using the translation invariance of A the same argument as above gives the following
theorem.

Theorem 14.6. Suppose uyr = Au and x € R™ and let

U(t,r) =a(t,z;r) = ][ u(t,y)do(y) = ][ u(t,z + rw)do(w).

OB (z,r) 0B(0,1)
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Then U solves

Utt = 8T(7"n_1Ur)

Tnfl
with

U,r) = ][ uw(0,x + rw)do(w) = f(x;7)
aB(0,1)
Ui(0,7) = g(; 7).

Proof. This has already been proved, nevertheless, let us give another proof
which does not rely on using integration over O(n). To this hence we compute

o-U(t,r) =0, ][ u(t, z + rw)do(w)

8B(0,1)
= ][ Vu(t,z + rw) - wdo(w)
aB(0,1)
1 N
= Gyt /Iy—r Vu(t,z +y) - gdo(y)
|
g (5T e ( y)dy
1 /T
= dp Au(t,z + y)do(y
G—(Snfl)rnfl 0 lyl=p ( ) ( )
so that
1 . 1 1 r
(1" r) = T A )
Tn_la (r"U,) rn_lﬁ [0(5”—1) /0 dp s u(t,x + y)do(y)
1
= A
e (Sn_l) pn—1 lyl=r U(t, T+ y)dO’(y)
= ][ Au(t,z + y)do(y)
ly|=r
= ][ ug(t, x + y)do(y) = Uy.
ly|=r
| |

We can now use the above result to solve the wave equation. For simplicity,
assume n = 3 and let V(¢,7) = ra(t,z;r) = rU(t,r). Then for r > 0 we have

2
Vir =20, + 71Uy = T(Urr + - Ur)
T
=1rUy = Vis.

This is also valid for » < 0 because V(¢,7) is odd in 7. Indeed for r < 0, let
v(t,r) = V(t,—r), then V..(t,7) = Vi (t,—1) = Vie(t,—r) = Vu(t,r). By our
solution to the one dimensional wave equation we find
1 1 r+t
Vit,r)= §(V(O,t +7r)+V(0,r—1)+ 5 / V4(0,y)dy.

r—t
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Now suppose that u(0,z) = 0 and u:(0,2) = g(x), in which case
V(0,7) =0 and V; (0,7) = rg(z, )

and the previous equation becomes
Then

and noting that
0 _
E ‘Ov(tz T) - u(ta Z; 0) - U(t, IE)

we learn

[y

ult, ) = 5 [tg(z;t) — (=) gla; —t)] = tg(z; 1)

as before.
14.5. Energy methods.

Theorem 14.7 (Uniqueness on Bounded Domains). Let Q be a bounded domain
such that Q is a submanifold with C? — boundary and consider the boundary value
problem

gy — Au="h onQr

u=f on (092 x [0,T])U (Q x {t =0})

ur =g on 2 x {t =0}

If u € C%(Qr) then u is unique.

Proof. As usual, using the linearity of the equation, it suffices to consider the
special case where f =0, g =0 and A = 0 and to show this implies u = 0. Let

1
Fo(t) = & / [it,2)? + [Vu(t, )] do.
2 Ja
Clearly by assumption, Eq(0) = 0 while the usual computation shows
EQ (t) = (u, U)L2(Q) + (Vu(t), Vu(t))L2(Q)

= (U, AU)LQ(Q) + (Vu(t), v'l‘t(t))LQ(Q)

— (Vi) uO)o + [ i) do(o)

+ (Vu(t), Vu(t))Lz(Q)
=0

wherein we have used u(t,z) = 0 implies u(t, z) = 0 for « € 9.

From this we conclude that Eq(t) = 0 and therefore (¢, z) = 0 and hence u = 0.
|

The following proposition is expected to hold given the finite speed of propaga-
tion we have seen exhibited above for solutions to the wave equation.

Proposition 14.8 (Local Energy). Let x € R", T > 0, uyy = Au and define

1 .
e(t) := Ep(pr—o)(ut) := 5/3( - [[a(t,y)|* + [Vu(t,y)?] dy.
x, T'—t

Then e(t) is decreasing for 0 <t <T.
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Proof. First recall that

d d ("
w, / REaE- L] swatw

| s

OB (z,r)

Hence
. d . 2 2
ey =5 [ it + 1Vutt, )y
B(z,R—t)
1
=3 / (Ja)* + |Vul*)do + / [¢ @+ Vu- Vi dm
OB(z,R—t) B(z,R—t)
1
=5 / (il + |Vul)do + / i Au+ V- Vil dm
OB(z,R—t) B(z,R—t)
1 .19 9 . Ou
=-3 (|a]* + |Vu|*)do + 2 U %da
OB(z,R—t) OB(z,R—t)
1
=5 | 2aFuen - (i + [VuP)d <o
OB (a2, R—t)

wherein we have used the elementary estimate,
2(Vu-n) u < 2|Vu| [a| < (Ju* + [Vul?).
Therefore e(t) < e(0) =0 for all ¢ i.e. e(t):=0. m

Corollary 14.9 (Uniqueness of Solutions). Suppose that u is a classical solution
to the wave equation with u(0,-) = 0 = u.(0,-). Then u = 0.

Proof. Proposition 14.8 shows

1

5[ )P+ Vu)P] dy = Eper (0) =0
B(z,T—t)

for all 0 <t < T and = € R™. This then implies that (¢, y) = 0 for all y € R™ and
0<t¢t<Tand henceu=0. m

Remark 14.10. This result also applies to certain class of weak type solutions in x
by first convolving v with an approximate (spatial) delta function, say u.(t,z) =
u(t, ) % c(x). Then u, satisfies the hypothesis of Corollary 14.9 and hence is 0. Now
let € | 0 to find u = 0.

Remark 14.11. Proposition 14.8 also exhibits the finite speed of propagation of the
wave equation.

14.6. Wave Equation in Higher Dimensions.

14.6.1. Solution derived from the heat kernel. Let
1 1
P(a) = e

' (27rt)n/2

||

and simply write p; for p;. Then

o0
2/ coswt py(t)dt = / e™py (t)dt = e_’\afz/2€itw|t:0 — /2
0 R
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Taking w = +/—A and writing u(t,z) := cos (vV—At) g(x) the previous identity
gives

o0 1 1 o0
2/ u(t, x) et gt = 2/ u(t, ) px(t)dt
0 0

n

1 12
e
n (2

= M 2g(z) = / Px()g(z —y)dy

1 o0 1 2
= dpe™2xP / x—y)do
@) /0 P ‘ylng( y)do(y)

o(sn1 o 2 g
27(2;A)n/)2/0 dpe= 757" p" g (x; p),

and so

o0 1 axo(SVY) [ e
u(t, x)e” 2x* dt:\/——/ dpe” 37 p" g (w; p
/0 2 2e0)"2 Jo )

1 o
_ _%}((n—l)ﬂ/ e—%ﬁt”_lg(x;t)dt.
27m)" 0

E0_(Sn—1)
2 (27r)n/2 ’

e

Suppose n = 2k + 1 and let ¢, := then the above equation reads

> — 12 —k > — o t? 2k —
u(t,z)e 23" dt = e, A e Xt g(x; t)dt
0 0

k
> 1
= Cn/ <¥3t> eiﬁﬁt%g(z;t)dt
0
PP Cn/ e (atMt—l)k [t%é_](m;t)] dt.
0
By the injectivity of the Laplace transform (after making the substitution t — v/,
this implies
cos (\/fAt) 9(@) = u(t, ) = c, (O My—1)* [125(x; 1))
= Cp (8tMt715'tMt71 e atMt—l) [tng(ZE, t)]

k—1 times

= Cnat Mt—l atMt—l ce Mt—l 3t [t2k71§(l’; t)]

1 k-1
= Cnat <¥8t> [tQkilg(i',t)] .

Hence we have derived the following theorem.

_ : — /mo(s"h)
Theorem 14.12. Suppose n = 2k + 1 is odd and let ¢, := \/; 27 then

cos (\/Et) g(x) = 0 <%8t>k1 [t%*lg(x; )]
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'—f(x) —/O oS (\/_T) x)dr = ¢, <13t>k_1 [t g(xs1)] -

t

Proof. For the last equality we have used

k-1
1
(;@) t2#=1 = const. * t2F~ 12— = const. * ¢

so that (%&)kil [t?*=1g(x;t)] = O(t) and in particular is 0 at t =0. m

14.6.2. Solution derived from the Poisson kernel. Suppose we want to write

e 1ol — / " o(s)ps(a)ds

. o0 ) 1 2
—l|z| i x _ —x _i\x _ _
/ReHe dm—QRe/O e %e dx—2Re<1_i/\)—l+>\2

. 2 . a2
/ps(x)e”‘md:r _ esam/2ez/\m|x:0 —e sAZ/2
R

Since

and

¢ must satisfy

> —5A2/2 _ 2 _ /OO 75(1+)\2)/2 _ /OO —s/2 —s)\2/2
s)e ds = = e ds = e e ds.

from which it follows that ¢(s) = e~%/2. Thus we have derived the formula

(o)
(14.10) e 17 =/ (2ms) "1/ 2e /2™ 2% ds
0

Let : H — H such that A = A* and A < 0. By the spectral theorem, we may
“substitute” x = ty/—A into Eq. (14.10) to learn

oo t2
e VA = / (278)71/2678/26g14d8
0

and in particular taking A = A one finds

etV / (27s) —1/2¢-5/2 e2<Ads

from which we conclude the convolution kernel Q;(z) for e *V=2 is given by
)= [ me) e g (s = [ (o) e
Qi (x :/ 2ms A ds:/ 2ns) et — s
' 0 e 0 (2mt2s—1)"/?

—n/2

= (2m) 712 (2rt?) 25t 70 H%')

= (27r)71/2 2mt?)

i
n/2 /OO o (1+5F) ds
0
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Making the substitution, u = 52 ( + | ‘ ) in the previous integral shows

Qt($) _ (27T)_1/2 (27Tt2)*n/2

= (2m) 1225 (2m) 20 (12) T (H|f_2> F(”T“)

n _ntl 1 t
= 2" (2) 3’1F<”+ —

Theorem 14.13. Let

. (:_%11)
(1) *
then
(14.12) eVTR@) = [ Qe =y fW)dy.

Notice that if u(t,z) := e V=2 f(z), we have d2u(t,z) = (\/I)Qu(t,m) =
—Au(t,z) with u(0,2) = f(z). This explains why @ is the same Poisson kernel
which we already saw in Eq. (9.36) of Theorem 9.31 above. To match the two
results, observe Theorem 9.31 is for “spatial dimension” n — 1 not n as in Theorem
14.13.

Integrating Eq. (14.12) from ¢ to oo then implies

V() =

eV @),
= [ e Bt

[ [ #race-nsw

ow
00 ') l1-n
/ Q'r(m - y>d7- = Cn/ u il dr = 1 = (T2 + ‘.’E|2> ’ ‘iozt
2 —n
t t (7_2 n mz) 2

n—1
n—1

Cn (2 2)*7
=—|t
— (& +lal

e V@) = [ B ()T Sy

g
l>

and hence

g
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and by analytic continuation,

Le(itfﬁ)\/ *Af(x) — \/i_Aef(efit)\/fAf(m)

i

n—1

S / ((e—it)2+|y\2)7 T @ —y)dy

n—1

n—1

_ le/R (IvP - (t—=i0®) T f(—y)dy

n
and hence
\/i—A sin (tx/ﬂ) flx) =<, lellrgl /Rn Im (|y|2 —(t— ie)2>7n771 flz —y)dy.

Now if |y| > |¢| then

n—1 n—1

tim (ol — (0 —i)*) 7 = (wf-) 7

is real so

n—1

lim I (|y|2 - (t—z'e)2) TS 0if Jy > |t

n—1

_n_1 _n_l
Similarly if n is odd lim. g (|y\2 —(t— ie)2> = (|y\2 - t2) * €R and so

n—1

2

lim I (|y|” — (¢ — ic)*)

is a distribution concentrated on the sphere |y| = |¢| which is the sharp propagation
again. See Taylor Vol. 1., p. 221— 225 for more on this approach. Let us examine
here the special case n = 3,

1 1 —2et
Im (—2 - 2) =Im ( T 3 - ) = 5
|y| - (t—le) |y| — 1%+ €” + 2iet (‘y|2 —t2 +€2) +4€2t2

SO

I :=lim Im (%) flz —y)dy

ol fen "\ WP (0
. —2et
= 1§f3 5 flz —y)dy
R™ (\y|2 _2 g 62) + 46242
o —2¢t -
= 47 lim 2 f(z; p)dp
€l0 Jo g (p? — 12 4 2)* + 4e2t? (=)
. e 2 € K
= ctlim P f(z; p)dp.

o o U (p2— 12+ €2)% 44242
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Make the change of variables p =t + s above to find

oo t 2 2 _
I = ctlim (t+es) 62 fx;t+ es)ds
€l0 J i/ (2est 4 €252 + €2)7 + 4€3t?
00 2
t _
= ctlim (£ +cs) flz;t+es)ds

el0 Jy/e (2t + €52 + €)* 4 42

— o t2 ¢,z < 1

C —
=17 tf(z;t)
which up to an overall constant is the result that we have seen before.

14.7. Explain Method of descent n = 2.

1 ][ tg(y) + 2 hy) +tVg(y) - (y — )

t = -
=3 R

dy.
B(z,t)

See constant coefficient PDE notes for more details on this.



