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13. ABSTRACT WAVE EQUATION
In the next section we consider
(13.1) ugy — Au = 0 with u(z,0) = f(z) and u(x,0) = g(x) for z € R™.

Before working with this explicit equation we will work out an abstract Hilbert
space theory first.

Theorem 13.1 (Existence). Suppose A : H — H is a self-adjoint non-positive
operator, i.e. A*=A and A<0 and f € D(A) andg€ g€ D (\/—A) are given.

Then
(13.2) u(t) = cos(tv/—A) f + %g
satisfies:

(1) a(t) = cos(tv—A)WV—A f +sin(tv/—A)g exists and is continuous.

(2) u(t) exists and is continuous
(13.3) i(t) = Au with w(0) = f and 4(0) = g.
(3) 4 /=A u(t) = —cos(tv/—A)A f + sin(tv'—A)V/—Ag ezists and is contin-

uous.

Eq. (13.3) is Newton’s equation of motion for an infinite dimensional harmonic
oscillation. Given any solution u to Eq. (13.3) it is natural to define its energy by

1.
E(t,u) := B [[Ja(t)]|> + [wu(t)|?] = K.E. + P.E.
where w := /—A. Notice that Eq. (13.3) becomes i + w?u = 0 with this definition
of w.

Lemma 13.2 (Conservation of Energy). Suppose u is a solution to Eq. (13.3)
such that & \/—Au(t) exists and is continuous. Then E(t) = 0.

Proof.

E(t) = Re(u, i) + Re(wu, wt) = Re(w, —w?u) — Re(w?u, @) = 0.

[

Theorem 13.3 (Uniqueness of Solutions). The only function u € C*(R, H) satis-
fying 1) u(t) € D(A) for allt and 2)

i = Au with u(0) = 0 = 4(0)
is the u(t) = 0 for all t.

Proof. Let xu(x) = 15/<a and define Pys = xar(A) so that Py is orthogonal
projection onto the spectral subspace of H where —M < A < 0. Then for all
f € D(A) we have PyyAf = APy f and for all f € H we have Py f € D((—A)%)
for any o > 0. Let ups(t) := Ppru(t), then ups € C3(R, H), up(t) € D((—A)®) for
all t and «, t — v/—Auy(t) is continuous and

2

d
’UJM = w(PMU) = PMﬁ = PMAU = APMU = AuM

with ups(0) = 0 = 4ps(0). By Lemma 13.2,

[laar (I + Nl (8)]7] = % [l[@ar(0)]1% + [lwuar (0)[|*] = 0

N~
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for all ¢t. In particular this implies @y (¢) = 0 and hence Pyu(t) = ups(t)
Letting M — oo then shows u(t) =0. m

Corollary 13.4. Any solution to i = Au with u(0) € D(A) and 4 (0) € D(v/—A)
must satisfy t — /—Au(t) is CL.

13.1. Corresponding first order O.D.E.. Let v(t) = u(¢), and
_(u® Y_(wu
- ()~ (2

then

where

Note formally that
OB FN [ u®)\ [ coswtf+ Sin%g
g ) \al) ) \ —wsinwt f+coswt g
coswt % f
(13.4) o < —wsinwt coswt > ( g )

and this suggests that
B = cos w.t %
—wsinwt coswt

which is formally correct since

d g _ [ —wsinwt coswt
at’ T\ —w?coswt —wsinwt

0 I coswt sin tw B
= w = B .
( —w? 0 ) ( —wsinwt coswt ) €

Since the energy form E(t) = ||u|? + |lw u|? is conserved, it is reasonable to let

K =D(~-A) & H = ( Dv=4) )

with inner product }
(T1EY =+ @reh,

For simplicity we assume Nul(v/—A) = Nul(w) = {0} in which case K becomes a
Hilbert space and et? is a unitary evolution on K. Indeed,

[|et? < g > % = || coswtg — wsinwtf||> + |lw(cos +wf) + sinwtg||?

= || coswitg||® + |lwsinwt f||* + ||wcoswtf||* + || sinwtg||®
= llwfI* + llgl*.
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From Eq. (13.4), it easily follows that %

(g ) ex1st81ffg€D( ) and
= D(A

f € D(—w?) = D(A). Therefore we define D(B) (w) = D(A) &
D (\/—A)and
D(w)
0 I -
B= ( e > D(B) — 2 - K

Since B is the infinitesimal generator of a unitary semigroup, it follows that B*X =
—B, i.e. B is skew adjoint. This may be checked directly as well as follows.
Alternate Proof that B*¥ = —B. For

<u )( Z ) € D(B) = D(A) @ D(w),

(A

and similarly
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D=1 ) (M ) = tws + a0

= (—Au, D) + (v, Ait) _<B< v )(

>€D(B*)andB*<g>:<

(v,9) + (wu, wf)
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which shows —B C B*. Conversely if <
then

(13.5) (B( . ) ‘

(Au, 0) + (wv,wt) for all uw € D(A),v € D(w). Take u = 0 implies (wv,wt) =
(v,g) for all v € D(w) which then implies w@t € D(w*) = D(w) and hence —At =
w21] =g. (Noteu € D(A).) Taking v = 0in Eq. (13.5) implies (Au,?) = (wu,wf) =
(fAu,f). Since

< 2

‘ f

Ran(A) = Nul(4)* = {0} =
we find that f = —0 € D(w) since f € D(w). Therefore D(B*) C D(B) and for

U ES D!

13.2. Du Hamel’s Principle. Consider

(13.6) i = Au+ f(t) with u(0) = g and 4(0) = h.
Eq. (13.6) implies, with v = 4, that

£0)-()- ()= (A D))

< 2
<
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Therefore
t( 0 I) t (t )( 0 I)
u B A0 g Ao 0
()w= (7)) [ (st )

hence

B sin(tyv/—A) b sin((t — 7)vV—A)
u(t) = cos(tv/—A)g + Wh + /o N f(r)dr.

Theorem 13.5. Suppose f(t) € D(v/—A) for all t and that f(t) is continuous
relative to || f|la == ||fI| + [V—A f||. Then

(" sin((t—1)V=A)
u(t) = /0 =
solves it = Au + f with u(0) = 0,4(0) = 0.

Proof. u(t) = [; cos((t — 7)v/—A) f(r)dr.
a(t) = f(t) —/O sin((t — 7)V—A)V—A f(r)dr

= ft) - A/o sin((t\;%ﬂ) f(r)dr.

f(r)dr

So &= Au+ f. Note u(0) = 0 = @(0).
Alternate. Let w := +/—A, then
u(t) = /Ot sin((t — 7)w) f(r)dr

w

t . .
sin wt cos WwT — SIN w7 cos wt
= / f(r)dr
0

w
and hence
) sin wt cos wt — sin wt cos wt
a(t) = f@)
w
t
+ / (coswt coswTt + sinwTsinwt) f(7)dr
0
t
= / (coswt coswT + sinwT sinwt) f(7)dr.
0
Similarly,

i(t) = (coswt coswt + sinwt sinwt) f(t)
¢
+ / w (—sinwt coswt + sinwr coswt) f(7)dr
0

= f(t) — /0 sin((t — 7)w) wf(r)dr = f(t) — w?u(t)
= Au(t) + f(¢).



