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13. Abstract Wave Equation

In the next section we consider

(13.1) utt −4u = 0 with u(x, 0) = f(x) and ut(x, 0) = g(x) for x ∈ Rn.
Before working with this explicit equation we will work out an abstract Hilbert
space theory first.

Theorem 13.1 (Existence). Suppose A : H → H is a self-adjoint non-positive
operator, i.e. A∗ = A and A ≤ 0 and f ∈ D(A) and g ∈ g ∈ D

¡√−A¢ are given.
Then

(13.2) u(t) = cos(t
√−A)f + sin(t

√−A)√−A g

satisfies:
(1) u̇(t) = cos(t

√−A)√−A f + sin(t
√−A)g exists and is continuous.

(2) ü(t) exists and is continuous

(13.3) ü(t) = Au with u(0) = f and u̇(0) = g.

(3) d
dt

√−A u(t) = − cos(t√−A)A f + sin(t
√−A)√−Ag exists and is contin-

uous.

Eq. (13.3) is Newton’s equation of motion for an infinite dimensional harmonic
oscillation. Given any solution u to Eq. (13.3) it is natural to define its energy by

E(t, u) :=
1

2
[ku̇(t)k2 + kωu(t)k2] = K.E.+ P.E.

where ω :=
√−A. Notice that Eq. (13.3) becomes ü+ω2u = 0 with this definition

of ω.

Lemma 13.2 (Conservation of Energy). Suppose u is a solution to Eq. (13.3)
such that d

dt

√−Au(t) exists and is continuous. Then Ė(t) = 0.

Proof.

Ė(t) = Re(u̇, ü) + Re(ωu, ωu̇) = Re(u̇,−ω2u)−Re(ω2u, u̇) = 0.

Theorem 13.3 (Uniqueness of Solutions). The only function u ∈ C2(R,H) satis-
fying 1) u(t) ∈ D(A) for all t and 2)

ü = Au with u(0) = 0 = u̇(0)

is the u(t) ≡ 0 for all t.
Proof. Let χM (x) = 1|x|≤M and define PM = χM (A) so that PM is orthogonal

projection onto the spectral subspace of H where −M ≤ A ≤ 0. Then for all
f ∈ D(A) we have PMAf = APMf and for all f ∈ H we have PMf ∈ D((−A)α)
for any α ≥ 0. Let uM (t) := PMu(t), then uM ∈ C2(R,H), uM (t) ∈ D((−A)α) for
all t and α, t→√−AuM (t) is continuous and

üM =
d2

dt2
(PMu) = PM ü = PMAu = APMu = AuM

with uM (0) = 0 = u̇M (0). By Lemma 13.2,
1

2
[ku̇M (t)k2 + kωuM (t)k2] = 1

2
[ku̇M (0)k2 + kωuM (0)k2] = 0
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for all t. In particular this implies u̇M (t) = 0 and hence PMu(t) = uM (t) ≡ 0.
Letting M →∞ then shows u(t) ≡ 0.
Corollary 13.4. Any solution to ü = Au with u(0) ∈ D(A) and u̇ (0) ∈ D(

√−A)
must satisfy t→√−Au(t) is C1.
13.1. Corresponding first order O.D.E.. Let v(t) = u̇(t), and

x(t) =

µ
u(t)
v(t)

¶
=

µ
u
u̇

¶
then

ẋ =

µ
u̇
ü

¶
=

µ
v
Au

¶
=

µ
0 I
A 0

¶
x = Bx with

x(0) =

µ
f
g

¶
,

where

B :=

µ
0 I
A 0

¶
=

µ
0 I

−ω2 0

¶
.

Note formally that

etB
µ

f
g

¶
=

µ
u(t)
u̇(t)

¶
=

µ
cosωt f + sin tω

ω g
−ω sinωt f + cosωt g

¶
=

µ
cosωt sin tω

ω−ω sinωt cosωt

¶µ
f
g

¶
(13.4)

and this suggests that

etB =

µ
cosωt sin tω

ω−ω sinωt cosωt

¶
which is formally correct since

d

dt
etB =

µ −ω sinωt cosωt
−ω2 cosωt −ω sinωt

¶
=

µ
0 I

−ω2 0

¶µ
cosωt sin tω

ω−ω sinωt cosωt

¶
= BetB.

Since the energy form E(t) = ku̇k2 + kω uk2 is conserved, it is reasonable to let

K = D(
√−A)⊕H :=

µ
D(
√−A)
H

¶
with inner product ¿

f
g

¯̄̄
f̃
g̃

À
= (g, g̃) + (ωf, ωf̃).

For simplicity we assume Nul(
√−A) = Nul(ω) = {0} in which case K becomes a

Hilbert space and etB is a unitary evolution on K. Indeed,

ketB
µ

f
g

¶
k2K = k cosωtg − ω sinωtfk2 + kω(cos+ωf) + sinωtgk2

= k cosωtgk2 + kω sinωtfk2 + kω cosωtfk2 + k sinωtgk2
= kωfk2 + kgk2.
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From Eq. (13.4), it easily follows that d
dt

¯̄̄
0
etB

µ
f
g

¶
exists iff g ∈ D(ω) and

f ∈ D(−ω2) = D(A). Therefore we define D(B) := D(A) ⊕ D(ω) = D(A) ⊕
D
¡√−A¢and

B =

µ
0 I
A 0

¶
: D(B)→

D(ω)
⊕
H

= K

Since B is the infinitesimal generator of a unitary semigroup, it follows that B∗K =
−B, i.e. B is skew adjoint. This may be checked directly as well as follows.
Alternate Proof that B∗K = −B. Forµ

u
v

¶
,

µ
ũ
ṽ

¶
∈ D(B) = D(A)⊕D(ω),

hB
µ

u
v

¶
,

µ
ũ
ṽ

¶
i = h

µ
v
Au

¶
,

µ
ũ
ṽ

¶
i = (Au, ṽ) + (ωv, ωũ)

= (Au, ṽ)− (Av, ũ) = (u,Aṽ)− (v,Aũ)
and similarly

h
µ

u
v

¶
, B

µ
ũ
ṽ

¶
i = h

µ
u
v

¶
,

µ
ṽ
Aũ

¶
i = (ωu, ωṽ) + (v,Aũ)

= (−Au, ṽ) + (v,Aũ) = −hB
µ

u
v

¶
,

µ
ũ
ṽ

¶
i

which shows −B ⊂ B∗. Conversely if
µ

ũ
ṽ

¶
∈ D(B∗) and B∗

µ
ũ
ṽ

¶
=

µ
f
g

¶
,

then

(13.5) hB
µ

u
v

¶ ¯̄̄
ũ
ṽ
i = h u

v

¯̄̄
f
g
i = (v, g) + (ωu, ωf)

(Au, ṽ) + (ωv, ωũ) for all u ∈ D(A), v ∈ D(ω). Take u = 0 implies (ωv, ωũ) =
(v, g) for all v ∈ D(ω) which then implies ωũ ∈ D(ω∗) = D(ω) and hence −Aũ =
ω2ũ = g. (Note ũ ∈ D(A).) Taking v = 0 in Eq. (13.5) implies (Au, ṽ) = (ωu, ωf) =
(−Au, f). Since

Ran(A) = Nul(A)⊥ = {0}⊥ = H,

we find that f = −ṽ ∈ D(ω) since f ∈ D(ω). Therefore D(B∗) ⊂ D(B) and for
(ũ, ṽ) ∈ D(B∗) we have

B∗
µ

ũ
ṽ

¶
= −

µ −ṽ
−Aũ

¶
= −B

µ
ũ
ṽ

¶
.

13.2. Du Hamel’s Principle. Consider

(13.6) ü = Au+ f(t) with u(0) = g and u̇(0) = h.

Eq. (13.6) implies, with v = u̇, that

d

dt

µ
u
v

¶
=

µ
v
ü

¶
=

µ
v

Au+ f

¶
=

µ
0 I
A 0

¶µ
u
v

¶
+

µ
0
f

¶
.
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Thereforeµ
u
v

¶
(t) = e

t

 0 I
A 0

 µ
g
h

¶
+

Z t

0

e
(t−τ)

 0 I
A 0

 µ
0

f(τ)

¶
dτ

hence

u(t) = cos(t
√−A)g + sin(t

√−A)√−A h+

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ.

Theorem 13.5. Suppose f(t) ∈ D(
√−A) for all t and that f(t) is continuous

relative to kfkA := kfk+ k
√−A fk. Then

u(t) :=

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ

solves ü = Au+ f with u(0) = 0, u̇(0) = 0.

Proof. u̇(t) =
R t
0
cos((t− τ)

√−A)f(τ)dτ .

ü(t) = f(t)−
Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ

= f(t)−A

Z t

0

sin((t− τ)
√−A)√−A f(τ)dτ.

So u̇ = Au+ f . Note u(0) = 0 = u̇(0).
Alternate. Let ω :=

√−A, then

u(t) =

Z t

0

sin((t− τ)ω)

ω
f(τ)dτ

=

Z t

0

sinωt cosωτ − sinωτ cosωt
ω

f(τ)dτ

and hence

u̇(t) =
sinωt cosωt− sinωt cosωt

ω
f(t)

+

Z t

0

(cosωt cosωτ + sinωτ sinωt) f(τ)dτ

=

Z t

0

(cosωt cosωτ + sinωτ sinωt) f(τ)dτ.

Similarly,

ü(t) = (cosωt cosωt+ sinωt sinωt) f(t)

+

Z t

0

ω (− sinωt cosωτ + sinωτ cosωt) f(τ)dτ

= f(t)−
Z t

0

sin((t− τ)ω) ωf(τ)dτ = f(t)− ω2u(t)

= Au(t) + f(t).


