ANALYSIS TOOLS WITH APPLICATIONS 1

1. INTRODUCTION

Not written as of yet. Topics to mention.

(1) A better and more general integral.
(a) Convergence Theorems
(b) Integration over diverse collection of sets. (See probability theory.)
(c) Integration relative to different weights or densities including singular
weights.
(d) Characterization of dual spaces.
(e) Completeness.
(2) Infinite dimensional Linear algebra.
(3) ODE and PDE.
(4) Harmonic and Fourier Analysis.
(5) Probability Theory

2. LIMITS, SUMS, AND OTHER BASICS

2.1. Set Operations. Suppose that X is a set. Let P(X) or 2% denote the power
set of X, that is elements of P(X) = 2% are subsets of A. For A € 2% let

A=X\A={zec X :z ¢ A}
and more generally if A, B C X let
B\A={xe€B:x ¢ A}.
We also define the symmetric difference of A and B by
AAB =(B\A)U(A\ B).

As usual if {A,},; is an indexed collection of subsets of X we define the union
and the intersection of this collection by

Uaerdo :={z€X:Jael 5 x€ A,} and
NactAa i ={zeX iz e A,Vaell}.

Notation 2.1. We will also write [ ], .; Aa for UscrAq in the case that {As},c;

are pairwise disjoint, i.e. A, NAg =0 if a # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A4,}° | be a sequence of subsets from X and define

{Apio0} ={reX :#{n:zec A} =} and
{4, a.a.} :={x € X :z € A, for all n sufficiently large}.

(One should read {A, i.0.} as A, infinitely often and {4, a.a.} as A,, almost al-
ways.) Then z € {A, i.0.} if VN € N3n > N > x € A, which may be written
as

{An 10} = ﬂ})vozl Un>nN A,.
Similarly, z € {A, a.a.} if IN e N>V n > N, z € A, which may be written as

{An a.a.} = UJOVOZI MNp>N A,,.
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2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set R := RU{4o0}, i.e. it
is R with two new points called co and —oo. We use the following conventions,
+00-0=0, o0+ a =+oo for any a € R, 0o+ 00 = 0o and —0o — oo = —oo while
00 — 00 is not defined.

If A C R we will let sup A and inf A denote the least upper bound and greatest
lower bound of A respectively. We will also use the following convention, if A = (),
then sup ) = —oo and inf ) = +oo.

Notation 2.3. Suppose that {z,,},-; C R is a sequence of numbers. Then

(2.1) lim inf x, = lim inf{x;: k > n} and
n—oo n—oo

(2.2) lim sup z, = lim sup{zy : k > n}.
n—00 n— o0

We will also write lim for lim inf and lim for limsup .

Remark 2.4. Notice that if ay := inf{xy : k > n} and by := sup{zy : k > n},then
{ax} is an increasing sequence while {b;} is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist and

lim inf x, =supinf{z; : k> n} and

lim sup x, = inf sup{zy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let {a,}22, and {b,}52, be two sequences of real numbers.
Then
(1) liminf, o an, < limsup,, . an andlim, . a, exists in R iffliminf, o an =
limsup,,_, ., an € R.
(2) There is a subsequence {an,}52, of {an}S2, such that limy_ ap,
lim sup,,_, o @n.
(3)
(2.3) lim sup (a, +b,) <lim sup a, + lim sup b,
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.
(4) If ap, >0 and b, > 0 for alln € N, then

(2.4) lim sup (apby,) < lim sup a, -lim sup by,

n— o0 n—00 n—00

provided the right hand side of (2.4) is not of the form 0-oco or co - 0.

Proof. We will only prove part 1. and leave the rest as an exercise to the reader.
We begin by noticing that
inf{ay : k >n} <sup{ap:k>n}Vn
so that

lim inf a, <lim sup a,.
n—oo n— o0

Now suppose that liminf, .. a, = limsup,,_,., a, = a € R. Then for all € > 0,
there is an integer N such that

a—e<inf{ay: k> N} <sup{ap:k> N} <a+e,
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ie.
a—e<ar<a+eforal k> N.

Hence by the definition of the limit, limg_, o, ar = a.

If liminf,,_, o a, = 0o, then we know for all M € (0,00) there is an integer N
such that

M <inf{ay : k > N}

and hence lim,,_,~ a, = o0o. The case where limsup,,_, ., an, = —oo is handled
similarly.

Conversely, suppose that lim, . a, = A € R exists. If A € R, then for every
€ > 0 there exists N(e) € N such that |4 — a,| < e for all n > N(e), i.e.

A—e<a, <A+eforalln> N(e).
From this we learn that

A—¢e<lim inf a, <lim sup a, < A-+e
n—00 n—00

Since € > 0 is arbitrary, it follows that
A <lim inf a, <lim sup a, < A4,

ie. that A =liminf,,_, a, = limsup,,_, . an.
If A = oo, then for all M > 0 there exist N(M) such that a, > M for all
n > N(M). This show that
lim inf a, > M

n—oo

and since M is arbitrary it follows that

oo < lim inf a, <lim sup a,.
n—00 n—oo

The proof is similar if A = —co as well. m

2.3. Sums of positive functions. In this and the next few sections, let X and Y
be two sets. We will write &« CC X to denote that « is a finite subset of X.

Definition 2.6. Suppose that a : X — [0, 0] is a function and F C X is a subset,

then
Zaz Za(w):sup{Za(x):aCC F}

zeF TEQ
Remark 2.7. Suppose that X = N = {1,2,3,...}, then

[eS) N
Za = Z a(n) = A}gnoo a(n).
N n=1 n=1
Indeed for all N, Zﬁ:l a(n) < ) ya, and thus passing to the limit we learn that
>t < Yo
n=1 N

Conversely, if  CC N, then for all N large enough so that o C {1,2,..., N}, we
have 3 a < SN | a(n) which upon passing to the limit implies that

Zag Za(n)
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and hence by taking the supremum over o we learn that

Za<Z

n=1

Remark 2.8. Suppose that >y a < oo, then {x € X : a(x) > 0} is at most count-
able. To see this first notice that for any € > 0, the set {z : a(x) > €} must be finite
for otherwise ) a = co. Thus

{reX:a(z)>0}= U,;“;l{:zz ca(x) > 1/k}

which shows that {z € X : a(x) > 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that a,b: X — [0,00] are two functions, then

Za—i—b Za—&—Zband
Z)\a—)\Za

for all X > 0.
I will only prove the first assertion, the second being easy. Let « CC X be a

finite set, then
d(atb) =) at) b<) at) b
[eY «@ X X

«
which after taking sups over « shows that

d(a+b) <D a+> b

X
Similarly, if o, 3 CC X, then

Za+Zb< STa+d b= a+b) <> (a+h)
aup aup aups X

Taking sups over a and [ then shows that
dat+> <> (a+b).
X X X

Lemma 2.10. Let X and Y be sets, RC X x Y and suppose that a : R — R is a
function. Let ;R :={y €Y : (z,y) € R} and Ry :={z € X : (x,y) € R}. Then

sup a(z,y) = sup sup a(z,y) = sup sup a(zx,y) and
(z,y)ER z€X y€u R yEY zE€R,

f — inf inf = inf inf
wien Y = S B0 V) = 0 g, ey

(Recall the conventions: sup ) = —oo and inf ) = +00.)
Proof. Let M = sup(, ,)era(z,y), Ny = supyec_ga(z,y). Then a(z,y) < M
for all (z,y) € R implies N, = sup,¢_pa(r,y) < M and therefore that

(2.5) sup sup a(z,y) = sup N, < M.
rzeX yex R zeX

Similarly for any (x,y) € R,

a(l’,y) <N, < sup N, = Sup sup a(x,y)
reX ze€X yEx R
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and therefore

(2.6) sup a(z,y) < sup sup a(z,y) =M
(z,y)ER z€X yEL R

Equations (2.5) and (2.6) show that

sup a(z,y) = sup sup a(z,y).
(zy)ER r€X yEx R

The assertions involving infinums are proved analogously or follow from what we
have just proved applied to the function —a. =

Y

FiGURE 1. The = and y — slices of a set R C X x Y.

Theorem 2.11 (Monotone Convergence Theorem for Sums). Suppose that f, :
X — [0,00] is an increasing sequence of functions and

Then

WS o
X X

Proof. We will give two proves. For the first proof, let Py(X) = {A C X :
A cCc X}. Then

lim_ Z Ju = sup Z fo=sup sup > f,= sup sup Z fn

n aePp(X) g a€Ps(X) n
= sup lim fn= sup lim f, = sup f= f
ag€Py(X) "0 E a€Py (X za: e a€Ps(X) z(x: Z

(Second Proof.) Let S, = > fn and S = > f. Since f,, < f, < f for all
n < m, it follows that

Sp <Sm <S8

which shows that lim,,_. . S, exists and is less that S, i.e.

(2.7) A= lim Y fu<) f
X X
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Noting that ) fn <>y fn =Sn < Afor all o CC X and in particular,
anSAforallnandaCCX.

Letting n tend to infinity in this equation shows that

ngAforallaCCX

[e3%

and then taking the sup over all « CC X gives

(2:8) Y f<A=lim Y f
X

X
which combined with Eq. (2.7) proves the theorem. m

Lemma 2.12 (Fatou’s Lemma for Sums). Suppose that f, : X — [0,00] is a
sequence of functions, then

thniggo fo <lim inf_ > fn-
X X
Proof. Define g, = 1r>1fk fn so that g T liminf, . f, as k — oo. Since gi < f,
n>

for all k < n,

ngSanforallnzk
X X
and therefore
ng < lim nlilfc;o Z fn for all k.
X X
We may now use the monotone convergence theorem to let kK — oo to find
L . MCT .. L
St =3 im0 i o <1t 3
X X X X
]
Remark 2.13. If A=)y a < oo, then for all € > 0 there exists a. CC X such that
A> Z a>A—c¢

for all @« CC X containing «, or equivalently,
A— Z a
«

for all @« CC X containing .. Indeed, choose a, so that Zae a>A—c

(2.9) <e

2.4. Sums of complex functions.

Definition 2.14. Suppose that a : X — C is a function, we say that
=Y alo)
X reX

exists and is equal to A € C, if for all € > 0 there is a finite subset o C X such
that for all @« CC X containing «, we have

AfZa

<e.
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The following lemma is left as an exercise to the reader.

Lemma 2.15. Suppose that a,b: X — C are two functions such that )y a and
Yo x b exist, then ) (a+ Ab) exists for all X € C and

D (at+ab)=> a+Ar> b

Definition 2.16 (Summable). We call a function a : X — C summable if
Z la] < .
X

Proposition 2.17. Leta : X — C be a function, then ) y a exists iff Yy |a| < oo,
i.e. iff a is summable.

Proof. If )" |a| < oo, then ) (Rea)™ < oo and dx (Ima)* < oo and hence
by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by
Lemma 2.15, ) ¢ a exists and

Za = Z(Rea)+ — Z(Rea)_ +1 (Z (Ima)* — Z(Ima)_> .

X X X X

Conversely, if )" y |a| = oo then, because |a| < |Rea| + [Imal, we must have
Z |[Rea| = oo or Z [Im a| = oo.
X X

Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where
(2.10) at(z) = max(a(z),0) and a~ (z) = max(—a(x),0).

Then |a| = a™ 4+ a~ and
0022\64 :Ea"’—i—Z(f
X X X

which shows that either > a® = oo or Yy a~ = oco. Suppose, with out loss of
generality, that > at = co. Let X’ := {z € X : a(z) > 0}, then we know that
>_x» @ = 00 which means there are finite subsets a;, C X’ C X suchthat >, a>n
for all n. Thus if & CC X is any finite set, it follows that lim, o >
and therefore > a can not exist as a number in R. ®

anUa a = 0Q,

Remark 2.18. Suppose that X = N and a : N — C is a sequence, then it is not
necessarily true that

o0

(2.11) a(n) = Za(n).

n=1 neN

This is because
s} N

depends on the ordering of the sequence a where as ) a(n) does not. For
example, take a(n) = (—1)"/n then Y _yla(n)| = co ie. > .ya(n) does not
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exist while >°>° | a(n) does exist. On the other hand, if

Y lam)] =" la(n)| < oo

neN
then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem for Sums). Suppose that f, :
X — C is a sequence of functions on X such that f(x) =lim,_,o fn(z) € C ezists
for all x € X. Further assume there is a dominating function g : X — [0,00)
such that

(2.12) |fn(z)| < g(z) for allz € X andn € N
and that g is summable. Then
(2.13) lm 3 fule) = Y fl@).

recX reX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in the
case where f is real. By Fatou’s Lemma,

D (gEH =) lim inf (9% fp) <lim inf > (g9 fa)
X X

X
=Y g+lim inf (ian> :
X

X

Since lim inf,, . (—ay,) = — limsup,,_, ., a,, we have shown,
liminf, o >« f
< n—oo 2.X Jn

and therefore

lim sup an < Zf < limniilgton.
X X

n—oo _X
This shows that lim )", f,exists and is equal to Y f. ®
n—oo

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that |f| < g
and in particular that f is summable. Given € > 0, let & CC X such that

EQSG.

X\«
Then for 8 CC X such that o C 3,

Zf*an = Z(f*fn)
B B

B

Y U= fal =D = Fal £ D1 =
B o B\
<> f-fal+2> g

B\
< Uf — fal + 26
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and hence that
STF=D T Fa DI fal + 26
B B o

Since this last equation is true for all such 5 CC X, we learn that

SF=D Il DI = fal 426
X X a

which then implies that

lim sup Zf—an < lim sup Z|f—fn|—|—2e
X X

n—oo n—oo
[e%

= 2e.

Because € > 0 is arbitrary we conclude that

lim sup Zf—an =0.
X X

n—oo

which is the same as Eq. (2.13). =

2.5. Iterated sums. Let X and Y be two sets. The proof of the following lemma
is left to the reader.

Lemma 2.20. Suppose that a : X — C is function and F' C X is a subset such
that a(z) =0 for all x ¢ F. Show that Y . a exists iff > y a exists, and if the sums

exist then
Sa=Ya
X F

Theorem 2.21 (Tonelli’s Theorem for Sums). Suppose that a : X x Y — [0, o0],
then
D =) > a=) > a
XxY X Y Y X
Proof. It suffices to show, by symmetry, that
D> =) > 0
XxY X Y
Let A CC X x Y. The for any o CC X and § CC Y such that A C a x 3, we have
Doasd a=3>as)y dasd > a
A axf a B a Y X Y
ie. Y pa <) ¢ >y a. Taking the sup over A in this last equation shows
Y asy Y
XxY X v

We must now show the opposite inequality. If >y , a = oo we are done so
we now assume that a is summable. By Remark 2.8, there is a countable set
{(z},, )} ooy C€ X x Y off of which a is identically 0.

n?
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Let {yn},-, be an enumeration of {y,} -, then since a(z,y) = 0 if y ¢

{yn}zo:l , Zer a(z,y) = 220:1 a(z,yy,) for all z € X. Hence

oo N
> S awa) = X 3 alep) = ¥ Jim 3 aes)
n=1

zeX yey zeX n=1 rzeX
N

(2.14) = J\}gnoo Z Z a(, Yn),
rzeX n=1

wherein the last inequality we have used the monotone convergence theorem with
Fn(z) := 22[21 a(z,y,). If @« CC X, then

S aem= Y e

r€an=1 ax{yn}N_, XxY

and therefore,

(2.15) A}gnoo Z Za(w,yn) < Z a.

reX n=1 XxXY

Hence it follows from Eqgs. (2.14) and (2.15) that

(2.16) Z Z a(z,y) < Z a

rzeX yey XXY

as desired.

Alternative proof of Eq. (2.16). Let A = {2/, : n € N} and let {z,,},- | be an
enumeration of A. Then for z ¢ A, a(xz,y) =0 forally € Y.

Given € > 0, let § : X — [0, 00) be the function such that > 0 = € and §(z) > 0
for x € A. (For example we may define § by 6(z,,) = ¢/2™ for all n and §(z) = 0 if
x ¢ A.) For each x € X let 3, CC X be a finite set such that

> alz,y) <> alw,y) +6(x).

yey YELB,
Then
Y>3 a<d> N a@wy)+ D o)
X Y ze€X yEPy zeX
=3 Y alwy)+e= s Y aley) +e
z€X yEPay X rcayep,
(2.17) <Y a+e
XxY

wherein the last inequality we have used
> Y aley)-Yas Yo
€ yeB, A X XY
with
Ay ={(z,y) e XxY:z€aandye B} C X xY.
Since € > 0 is arbitrary in Eq. (2.17), the proof is complete. m
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Theorem 2.22 (Fubini’s Theorem for Sums). Now suppose that a : X x Y — C
is a summable function, i.e. by Theorem 2.21 any one of the following equivalent
conditions hold:

(1) D xuy lal < oo,
(2) Xox 2y la|l <ooor

(3) Xy 2oxlal < oo
I HRE B

Then
XXY X

Proof. If a : X — R is real valued the theorem follows by applying Theorem
2.21 to a* — the positive and negative parts of a. The general result holds for
complex valued functions a by applying the real version just proved to the real and
imaginary parts of a. m

2.6. P — spaces, Minkowski and Holder Inequalities. In this subsection, let
i X — (0,00] be a given function. Let F denote either C or R. For p € (0, 00)
and f: X — F, let

1l = Q1 @)Pu(a)/?
zeX
and for p = oo let
[flloo = sup{|f(z)] : € X}
Also, for p > 0, let
() ={f: X = F:[|fll <oo}.
In the case where p(z) =1 for all z € X we will simply write ¢7(X) for ¢P(u).
Definition 2.23. A norm on a vector space L is a function ||-|| : L — [0, 00) such
that
(1) (Homogeneity) |Af]| = |A|[|f|| for all A € F and f € L.
(2) (Triangle inequality) [|f + gl < [[f| + [lg] for all f,g € L.
(3) (Positive definite) || f|| = 0 implies f = 0.
A pair (L,||-|]]) where L is a vector space and ||| is a norm on L is called a
normed vector space.
The rest of this section is devoted to the proof of the following theorem.
Theorem 2.24. Forp € [1,00], (¢P(p), ] - |Ip) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 2.30 below. m

2.6.1. Some inequalities.

Proposition 2.25. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = oo. Let g = f~! and
for s,t >0 let

F(s) = /0 " H(s)ds' and G(t) = /O o)t

Then for all s,t > 0,
st < F(s)+ G(t)
and equality holds iff t = f(s).
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Proof. Let

As:={(o,7): 0< 7 < f(o) for 0 < o < s} and
B :={(o,7):0< 0 <g(r) for 0 <7 <t}

then as one sees from Figure 2, [0, s] x [0,¢] C As U B;. (In the figure: s =3, ¢t =1,
Ag is the region under ¢t = f(s) for 0 < s < 3 and Bj is the region to the left of the
curve s = ¢(t) for 0 < ¢ < 1.) Hence if m denotes the area of a region in the plane,
then

st =m ([0,s] x [0,t]) < m(As) +m(B;) = F(s) + G(t).

As it stands, this proof is a bit on the intuitive side. However, it will become rig-
orous if one takes m to be Lebesgue measure on the plane which will be introduced
later.

We can also give a calculus proof of this theorem under the additional assumption
that f is C!. (This restricted version of the theorem is all we need in this section.)
To do this fix t > 0 and let

mgzm—nng%—ﬂ@ma

If o > g(t) = f~1(t), then t — f(0) < 0 and hence if s > g(t), we have

S

s g(t)
h@=A@—ﬂWM=A @—ﬂww+/dw¢wa

g(t)
gA(pﬂmw=ww)

Combining this with hA(0) = 0 we see that h(s) takes its maximum at some point
s € (0,t] and hence at a point where 0 = h/(s) =t — f(s). The only solution to this
equation is s = g(t) and we have thus shown

g(t)
%fﬂwﬁ®§A(Fﬂww:w@)

with equality when s = g(t). To finish the proof we must show fog(t)(t — f(o))do =
G(t). This is verified by making the change of variables 0 = g(7) and then inte-

grating by parts as follows:
g(t) t t
| = stondr = [~ s eiar = [ =g e
:Agmm:mw

Definition 2.26. The conjugate exponent g € [1,00] to p € [1,00] is q := ﬁ with
the convention that ¢ = oo if p = 1. Notice that ¢ is characterized by any of the
following identities:

1 1 q

(2.18) ——I——:l,1+—:q,p—£:1andq(p—1):p.
P q p q
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FIGURE 2. A picture proof of Proposition 2.25.

Lemma 2.27. Let p € (1,00) and q := % € (1,00) be the conjugate exponent.
Then

s tP
st<—+ — foralls,t >0
q p
with equality if and only if s = tP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~! =t and g(t) = 5T = a1,
wherein we have used ¢ — 1 =p/(p—1)— 1 =1/(p—1). Therefore G(t) = t%/q
and hence by Proposition 2.25,

with equality iff t = s»~1. m

Theorem 2.28 (Holder’s inequality). Let p,q € [1,00] be conjugate exponents. For
all f,g: X — T,

(2.19) 19l < 1fllp - llgllg-
If p € (1,00), then equality holds in Eq. (2.19) iff
f g
Ly = (A

T = T,

Proof. The proof of Eq. (2.19) for p € {1,000} is easy and will be left to
the reader. The cases where ||f|l, = 0 or oo or ||g||, = 0 or co are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 < |[fllg:lgllp < o0. Letting s = [f[/[|f]l, and ¢ = |g|/[|gll; in Lemma 2.27 implies

[fol L 1P 1 gl
Ifllpllglle = 2 1A, q llglle
Multiplying this equation by p and then summing gives

If9lla Sl 1
Ifllpllglle — 2 @

=1
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with equality iff

lq] |flP1 lg|  |f|P/e
= — = = <= gl fII5 = llgllZ]f]P.
lglle | £~ 0 lglla |75/ P 7

Definition 2.29. For a complex number A € C, let
2 if A#0
on(\) = ™1
sen(}) { 0 if A=0.
Theorem 2.30 (Minkowski’s Inequality). If 1 < p < oo and f,g € £(u) then
If +gllp < 1fllp + llgllp,
with equality iff
segn(f) = sgn(g) when p=1 and
f =cg for some ¢ > 0 when p € (1,00).
Proof. For p=1,
149l =D 1f+aln <D (flu+lgls) =D 1w+ lgln
X X X X
with equality iff
[f1+1gl =1f +9l < sgn(f) = sgn(g).
For p = o0,
I/ + glloe = sup|f + g| < sup (|| + lg1)
< sup [ f +suplg| = [[flloc + [[9lc-
X X

Now assume that p € (1, 00). Since

|f +gl” < (2max (| f],|g]))" = 2P max (| f|", ]g]") < 2P (£ + lg]")
it follows that
I1f+ gl <22 (II£1I5 + llglB) < oo.

The theorem is easily verified if ||f + g[|, = 0, so we may assume || f + g|, > 0.
Now

(2.20) [f+glP =If +gllf + 9P < (IfI+1aDIf + 9P~

with equality iff sgn(f) = sgn(g). Multiplying Eq. (2.20) by x and then summing
and applying Holder’s inequality gives

SUF+alPu < 1A F+gP w4+ 1ol If + 9l 'n
X X X

(2.21) < (£ s+ lgllo) 11 + 91" g

with equality iff
<|f| >:< f + gl >:< B )
[1£1lp 11+ glP~llq gl

and sgn(f) = sgn(g).
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By Eq. (2.18), g(p — 1) = p, and hence

(2.22) IF+glP 8= (1 + 9P =Y If + 9l
X X

Combining Eqs. (2.21) and (2.22) implies

(2.23) 1F + glp < WFUpILF + glln/ e + Ngllp L f + gllz/?

with equality iff
sgn(f) = sgn(g) and

/] )p: f +gI” :( 9] )p
(2.24) (Ifllp 7ol = \Tal)

Solving for || f + g||, in Eq. (2.23) with the aid of Eq. (2.18) shows that ||f + g, <
I fllp + llgll, with equality iff Eq. (2.24) holds which happens iff f = cg with ¢ > 0.
|

2.7. Exercises .

2.7.1. Set Theory. Let f : X — Y be a function and {4;};c; be an indexed family
of subsets of Y, verify the following assertions.

Exercise 2.1. (N;cr4;)° = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;er4;) = Nier(B\ A).
Exercise 2.3. f~1(UjerA;) = Uierf1(A;).

Exercise 2.4. f~1(NierA;) = Nierf 1 (A;).

Exercise 2.5. Find a counter example which shows that f(CND) = f(C)N f(D)
need not hold.

Exercise 2.6. Now suppose for each n € N = {1,2,...} that f, : X - Ris a
function. Let
D={zeX: lim f,(z)=+oc0}

show that
(2.25) D =N%_1 Ux=1 Mn>n{z € X : fo(z) > M},
Exercise 2.7. Let f, : X — R be as in the last problem. Let
C={zeX: nlin;o fn(z) exists in R}.

Find an expression for C similar to the expression for D in (2.25). (Hint: use the
Cauchy criteria for convergence.)
2.7.2. Limit Problems.
Exercise 2.8. Prove Lemma 2.15.
Exercise 2.9. Prove Lemma 2.20.

Let {a,}2°,; and {b,}22; be two sequences of real numbers.
Exercise 2.10. Show liminf,, . (—a,) = —limsup,,_, . ax.

Exercise 2.11. Suppose that limsup,,_,. a, = M € R, show that there is a
subsequence {an, }72, of {a,}ne, such that limy_ o an, = M.
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Exercise 2.12. Show that
(2.26) limsup(a,, + b,) < limsup a,, + limsup b,

n—oo n—oo n—oo
provided that the right side of Eq. (2.26) is well defined, i.e. no oo — 0o or —oo+ 0o
type expressions. (It is OK to have 0o + 00 = 00 or —00 — 00 = —00, etc.)
Exercise 2.13. Suppose that a,, > 0 and b,, > 0 for all n € N. Show

(2.27) lim sup(a,by,) < limsup ay, - limsup b,

n— oo n—00 n— oo

provided the right hand side of (2.27) is not of the form 0 - oo or oo - 0.
2.7.3. Dominated Convergence Theorem Problems.

Notation 2.31. For ug € R™ and ¢ > 0, let B,,(0) := {x € R" : |z — up| < &} be
the ball in R™ centered at ug with radius 4.

Exercise 2.14. Suppose U C R”™ is a set and uyg € U is a point such that
U N (By(0) \ {uo}) # 0 for all 6 > 0. Let G : U\ {up} — C be a function on
U\ {uop}. Show that lim, .., G(u) exists and is equal to A € C,' iff for all se-
quences {u,},-; C U\ {uo} which converge to ug (i.e. lim,_ oo up = ug) we have
limy, 00 G(un) = A.

Exercise 2.15. Suppose that YV isaset, U CR"isaset,and f: U xY — Cisa
function satisfying:

(1) For each y € Y, the function u € U — f(u,y) is continuous on U.>
(2) There is a summable function g : Y — [0, 00) such that

|f(u,y)| < g(y) forally € Y and u € U.
Show that
(2.29) Flu) =3 fluy)
yey

is a continuous function for u € U.

Exercise 2.16. Suppose that Y is a set, J = (a,b) C R is an interval, and f :
J xY — C is a function satisfying:

(1) For each y € Y, the function u — f(u,y) is differentiable on J,
(2) There is a summable function ¢ : Y — [0, c0) such that

<g(y) for ally € Y.

0

(3) There is a ug € J such that >° .y [f(uo,y)| < 0.
Show:
a) for all u € J that >y |f(u,y)| < occ.

More explicitly, limy—uq G(u) = A means for every every € > 0 there exists a § > 0 such that

|G(u) — A| < e whenerver u € U N (Bug () \ {uo}) -

270 say g := f(-,y) is continuous on U means that g : U — C is continuous relative to the
metric on R"™ restricted to U.



ANALYSIS TOOLS WITH APPLICATIONS 17

b) Let F(u) := 3, cy f(u,y), show F is differentiable on .J and that

Fu)= Y - fuy).
yey

(Hint: Use the mean value theorem.)

Exercise 2.17 (Differentiation of Power Series). Suppose R > 0 and {a,}, ., is
a sequence of complex numbers such that Y7 |a,|r" < oo for all r € (0,R).
Show, using Exercise 2.16, f(z) := Y .~ ;a,z" is continuously differentiable for

z € (—R, R) and
f(z) = Znanaz"_l = Znanx”_l.
n=0 n=1

Exercise 2.18. Let {a,} - be a summable sequence of complex numbers, i.e.

n—=—oo

S lan| < co. For t > 0 and x € R, define

n=—oo

F(t,z) = Z anefmgem"”,
where as usual ' = cos(x) + isin(z). Prove the following facts about F :

(1) F(t,x) is continuous for (¢,z) € [0,00) x R. Hint: Let Y = Z and u = (¢, )
and use Exercise 2.15.

(2) OF(t,x)/0t, OF (t,x)/0x and 9*F(t,z)/0x? exist for t > 0 and z € R.
Hint: Let Y = Z and u = t for computing 0F(¢t,z)/0t and u = x for
computing OF (t,z)/0z and 0*F(t,z)/0x?. See Exercise 2.16.

(3) F satisfies the heat equation, namely

OF(t,z)/0t = 0*F(t,z)/0x* for t > 0 and = € R.
2.7.4. Inequalities.

Exercise 2.19. Generalize Proposition 2.25 as follows. Let a € [—c0,0] and f : RN
[a,00) — [0,00) be a continuous strictly increasing function such that lim f(s) =

00, f(a) = 0if a > —oo or limg_,_ f(s) = 0 if a = —o0. Also leit]m: =
b= f(0) =0,
F(s) = / " f(s')ds’ and G(t) = / gt
Then for all s,t > 0, ’ ’
st < F(s)+ Gt Vb) < F(s)+G(¥)

and equality holds iff ¢ = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+(tVv1)In(tvl) —(tvl) <e’+tlnt—t.
Hint: Refer to the following pictures.
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FicUrRg 3. Comparing areas when ¢ > b goes the same way as in
the text.

3757

257

1257

FIGURE 4. When ¢ < b, notice that g(¢t) < 0 but G(¢) > 0. Also
notice that G(t) is no longer needed to estimate st.

3. METRIC, BANACH AND TOPOLOGICAL SPACES

3.1. Basic metric space notions.

Definition 3.1. A function d: X x X — [0,00) is called a metric if
(1) (Symmetry) d(z,y) = d(y,z) for all z,y € X
(2) (Non-degenerate) d(x,y) =0if and only if c =y € X
(3) (Triangle inequality) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.
As primary examples, any normed space (X, ||-||) is a metric space with d(z,y) :=
||z — y|| . Thus the space ¢”(u) is a metric space for all p € [1, 00]. Also any subset

of a metric space is a metric space. For example a surface ¥ in R? is a metric space
with the distance between two points on ¥ being the usual distance in R3.

Definition 3.2. Let (X, d) be a metric space. The open ball B(z,d) C X centered
at ¢ € X with radius 6 > 0 is the set

B(z,0) :={y € X : d(z,y) < ¢}.
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We will often also write B(x,d) as B,(0). We also define the closed ball centered
at € X with radius 6 > 0 as the set Cy(§) :={y € X : d(z,y) < d}.

Definition 3.3. A sequence {z,},, in a metric space (X, d) is said to be conver-
gent if there exists a point © € X such that lim, . d(z,z,) = 0. In this case we
write lim,,_, o £, =  of x,, — x as n — oo.

Exercise 3.1. Show that x in Definition 3.3 is necessarily unique.

Definition 3.4. A set F C X is closed iff every convergent sequence {z,} -,
which is contained in F' has its limit back in F. A set V' C X is open iff V¢ is
closed. We will write F' C X to indicate the F' is a closed subset of X and V C, X
to indicate the V is an open subset of X. We also let 75 denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {F}},_; are
closed sets then U}_, Fj, is closed. (By taking complements, this shows that the
collection of open sets, 74, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset A C X, let da(z) = inf{d(z,a)la € A},
then

(3.1) |da(z) — da(y)| < d(z,y) Yo,y € X.
Moreover the set Fe = {x € X|da(z) > €} is closed in X.
Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) + d(y,a).
Take the inf over a in the above equation shows that
da(r) < d(z,y) +daly) Yo,y € X.

Therefore, d4(x) —da(y) < d(x,y) and by interchanging = and y we also have that
da(y) — da(z) < d(z,y) which implies Eq. (3.1). Now suppose that {z,},-, C F.
is a convergent sequence and = = lim,,_,, z, € X. By Eq. (3.1),

e—da(z) <da(z,) —da(z) < d(z,z,) — 0 as n — oo,
so that € < d4(x). This shows that « € F, and hence F is closed. m
Corollary 3.6. The function d satisfies,
ld(z,y) — d(z’,y")| < d(y,y) + d(x,2)
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 3.5 for single point sets and the triangle inequality for the
absolute value of real numbers,

ld(z,y) = d(=",y)| < |d(z,y) — d(z,y")| + |d(z,y) — d(z’,y")]
< d(y, y/) + d(z, x/)'
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Exercise 3.3. Show that V' C X is open iff for every x € V there is a § > 0 such
that B,(d) C V. In particular show B,(d) is open for all z € X and ¢ > 0.

Lemma 3.7. Let A be a closed subset of X and F. C X be as defined as in Lemma
3.5. Then F. T A¢ ase | 0.

Proof. It is clear that da(z) = 0 for z € A so that F, C A° for each ¢ > 0 and
hence UesoF. C A°. Now suppose that © € A¢ C, X. By Exercise 3.3 there exists
an € > 0 such that B,(e) C A°, i.e. d(x,y) > € for all y € A. Hence = € F, and we
have shown that A C UcsoF.. Finally it is clear that F, C F.. whenever ¢ <e. m

Definition 3.8. Given a set A contained a metric space X, let A C X be the
closure of A defined by

A={zeX: I{z,} CA>z= lim x,}.
That is to say A contains all limit points of A.
Exercise 3.4. Given A C X, show A is a closed set and in fact
(3.2) A=n{F:ACF C X with F closed}.
That is to say A is the smallest closed set containing A.

3.2. Continuity. Suppose that (X,d) and (Y, p) are two metric spaces and f :
X — Y is a function.

Definition 3.9. A function f: X — Y is continuous at x € X if for all € > 0 there
is a § > 0 such that

d(f(z), f(z")) < e provided that p(z,z") < 4.
The function f is said to be continuous if f is continuous at all points = € X.
The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that (X, p) and (Y,d) are two metric
spaces and f: X —'Y is a function. Then the following are equivalent:

Y V) €T, for all V € 14, i.e. f71(V) is open in X if V is open in'Y.
FYHCO) is closed in X if C is closed in Y.
For all convergent sequences {z,} C X, {f(x,)} is convergent in' Y and

lim f(z,)=7f ( lim xn) .

n—oo n—oo

Proof. 1. = 2. For all z € X and € > 0 there exists § > 0 such that
d(f(z), f(2") < e if p(x,2") < 4. ie.
B.(6) C f7H(Bay(e))

Soif V C, Y and € f~(V) we may choose € > 0 such that By(,)(e) C V then
By(8) € fH( By (e)) € f7HV)

showing that f~1(V) is open.
2. = 1. Let e > 0 and 2 € X, then, since f~!(Bj,)(€)) Co X, there exists § > 0
such that B, (6) C f~ (B (€)) i-e. if p(z,2’) < & then d(f(2'), f(z)) < e
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2. <= 3. If C is closed in Y, then C¢ C, Y and hence f~1(C¢) C, X. Since
f7HCe) = (f71(C))°, this shows that f~!(C) is the complement of an open set
and hence closed. Similarly one shows that 3. = 2.

1. = 4. If f is continuous and z,, — x in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2’)) < € when p(x,z’) < §. There exists an N > 0 such that
p(x,x,) < § for all n > N and therefore d(f(x), f(z,)) < € for all n > N. That is
to say lim, o f(2,) = f(x) as n — oo.

4. = 1. We will show that not 1. = not 4. Not 1 implies there exists ¢ > 0,
a point € X and a sequence {z,},., C X such that d(f(z), f(z,)) > € while
p(z,x,) < . Clearly this sequence {z,,} violates 4. m

There is of course a local version of this lemma. To state this lemma, we will
use the following terminology.

Definition 3.11. Let X be metric space and « € X. A subset A C X is a neigh-
borhood of x if there exists an open set V C, X such that z € V C A. We will
say that A C X is an open neighborhood of z if A is open and x € A.

Lemma 3.12 (Local Continuity Lemma). Suppose that (X, p) and (Y,d) are two
metric spaces and f: X — Y is a function. Then following are equivalent:
(1) f is continuous as x € X.
(2) For all neighborhoods A C'Y of f(z), f~1(A) is a neighborhood of x € X.
(3) For all sequences {xzn} C X such that x = lim, oo @y, {f(zn)} is conver-
gent in'Y and

lim f(z,)=f ( lim :rn) .

n—oo n—o0

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.

Example 3.13. The function d4 defined in Lemma 3.5 is continuous for each
A C X. In particular, if A = {z}, it follows that y € X — d(y, ) is continuous for
each ¢ € X.

Exercise 3.5. Show the closed ball Cy(d) := {y € X : d(z,y) < §} is a closed
subset of X.

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.14. A collection of subsets 7 of X is a topology if

(1) 0, X er
(2) 7 is closed under arbitrary unions, i.e. if V, € 7, for a € I then |J V,, € 7.
acl
(3) 7 is closed under finite intersections, i.e. if Vy,...,V,, € 7 then ViN---NV,, €
.

A pair (X, 7) where 7 is a topology on X will be called a topological space.

Notation 3.15. The subsets V' C X which are in 7 are called open sets and we
will abbreviate this by writing V' C, X and the those sets F' C X such that F° € 7
are called closed sets. We will write F' C X if F' is a closed subset of X.

Example 3.16. (1) Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 74 is a topology, see Exercise
3.2.
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(2) Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {0, X} . In this topology only the empty set and X are open
(closed).

(3) Let X = {1,2,3}, then 7 = {0, X,{2,3}} is a topology on X which does
not come from a metric.

(4) Againlet X = {1,2,3}. Then 7 = {{1},{2,3},0, X }. is a topology, and the
sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and {1,3} are
neither open nor closed.

.Y

F1GURE 5. A topology.

Definition 3.17. Let (X, 7) be a topological space, A C X and iq : A — X be
the inclusion map, i.e. i4(a) = a for all a € A. Define

Ta=i, (1) ={ANV V e},
the so called relative topology on A.

Notice that the closed sets in Y relative to 7y are precisely those sets of the form

CNY where C is close in X. Indeed, B C Y is closed iff Y\ B =Y NV for some
V € 7 which is equivalent to B=Y \ (Y NV) =Y NV for some V € 7.

Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d) is
a metric space and T = 74 is the topology coming from d, then (74) , is the topology
induced by making A into a metric space using the metric d|ax .

Notation 3.18 (Neighborhoods of z). An open neighborhood of a point z € X
is an open set V' C X such that x € V. Let 7, = {V € 7 : z € V} denote the
collection of open neighborhoods of z. A collection 1 C 7, is called a neighborhood
base at x € X if for all V € 7, there exists W € n such that W C V.

The notation 7, should not be confused with
Ty = iTh (1) = {2} NV V e 7} = {0, {}}.

When (X, d) is a metric space, a typical example of a neighborhood base for z is
n = {B.(¢) : € € D} where D is any dense subset of (0, 1].

Definition 3.19. Let (X, 7) be a topological space and A be a subset of X.
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(1) The closure of A is the smallest closed set A containing A4, i.e.
A=n{F:ACFrCX}.

(Because of Exercise 3.4 this is consistent with Definition 3.8 for the closure
of a set in a metric space.)
(2) The interior of A is the largest open set A° contained in A, i.e.

A°=u{Ver:VCA}.
(3) The accumulation points of A is the set
acc(A)={z e X : VNA\{z}#Dforall V e 7, }.

(4) The boundary of A is the set A := A\ A°.
(5) A is a neighborhood of a point z € X if € A°. This is equivalent to
requiring there to be an open neighborhood of V' of x € X such that V' C A.

Remark 3.20. The relationships between the interior and the closure of a set are:

(A")C:ﬂ{VC:VGTandVCA}:ﬂ{C:CisclosedCDAC}:F

and similarly, (A)¢ = (A°)°. Hence the boundary of A may be written as
(3.3) 0A=A\A° = AN (A°)° = AN Ac,
which is to say 0A consists of the points in both the closure of A and A°.

Proposition 3.21. Let AC X and z € X.

(1) If VCo X and ANV =0 then ANV =

(2) € AiffVNA#AD for allV € 7.

(3) x€ DA VNAZ£D and VN ASAD for all V € 1.
4)

(4) A= AUacc(A).
Proof. 1. Since ANV =0, A C V¢ and since V¢ is closed, A C Ve That is to
say ANV = 0.

2. By Remark 3.20°, A = ((A°)°)° so z € A iff z ¢ (A°)° which happens iff
VZAforall Ve, ie it VNA#(Dforall Ve r,.

3. This assertion easily follows from the Item 2. and Eq. (3.3).

4. Ttem 4. is an easy consequence of the definition of acc(A) and item 2. m

Lemma 3.22. Let ACY C X, AY denote the closure of A in'Y with its relative
topology and A = AX be the closure of A in X, then AY = AXNY.

Proof. Using the comments after Definition 3.17,
AY =n{BCY:AcB}=n{CnY:AcCcCC X}
=YNn(n{C:AcCrC X})=YnA~.
Alternative proof. Let x € Y then z € AY iff forall V € 7Y, VN A # (). This

happens iff for all U € 7,5, UNY NA = UN A # () which happens iff z € A*. That
is tosay AY = AXNY. m

3Here is another direct proof of item 2. which goes by showing ¢ A iff there exists V € 7
such that VN A=0. Iffz ¢ Athen V= Ac €7, and VNA CVNA=0. Conversely if there
exists V € 7, such that VN A =0 then by Item 1. ANV = 0.
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Definition 3.23. Let (X, 7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if i/ is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact.

Proposition 3.24. Suppose that K C X is a compact set and F C K is a closed
subset. Then F is compact. If {K;}._, is a finite collections of compact subsets of
X then K = U} K; is also a compact subset of X.

Proof. Let U C 7 is an open cover of F, then YU {F°} is an open cover of K.
The cover UU {F} of K has a finite subcover which we denote by UyU { F°} where
Uy CC U. Since FN F¢ = (), it follows that Uy is the desired subcover of F.

For the second assertion suppose U C 7 is an open cover of K. Then U covers
each compact set K; and therefore there exists a finite subset ; CC U for each 4
such that K; C UlY;. Then Uy := U}, U; is a finite cover of K. m

Definition 3.25. We say a collection F of closed subsets of a topological space
(X, 7) has the finite intersection property if NFy # () for all 7y CC F.

The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.26. A topological space X is compact iff every family of closed sets
F C P(X) with the finite intersection property satisfies (| F # (.

Proof. (=) Suppose that X is compact and F C P(X) is a collection of closed
sets such that (| F = (). Let

U=F"={C:CeF}Cr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fy = U5 CC F,
then NFy = 0 so that F does not have the finite intersection property.

(<) If X is not compact, there exists an open cover U of X with no finite sub-
cover. Let F = U°, then F is a collection of closed sets with the finite intersection
property while (F =0. =

Exercise 3.7. Let (X, 7) be a topological space. Show that A C X is compact iff
(A, 74) is a compact topological space.

Definition 3.27. Let (X,7) be a topological space. A sequence {z,} -, C X
converges to a point z € X if for all V € 7, x, € V almost always (abbreviated
a.a.),le. #({n:z, ¢ V}) < co. We will write z,, — zasn — oo or lim, oo p, =
when z,, converges to x.

Example 3.28. Let Y = {1,2,3} and 7 = {¥, 0, {1,2},{2,3},{2}} and y,, = 2 for
all n. Then y,, — y for every y € Y. So limits need not be unique!

Definition 3.29. Let (X,7x) and (Y, 7y) be topological spaces. A function f :
X — Y is continuous if f~1(1y) C 7x. We will also say that f is 7x /7y —
continuous or (7x,Ty) — continuous. We also say that f is continuous at a point
x € X if for every open neighborhood V' of f(x) there is an open neighborhood U
of z such that U C f~!(V). See Figure 6.

Definition 3.30. A map f: X — Y between topological spaces is called a home-
omorphism provided that f is bijective, f is continuous and f=! : Y — X is
continuous. If there exists f : X — Y which is a homeomorphism, we say that
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§7(v)

FicURE 6. Checking that a function is continuous at z € X.

X and Y are homeomorphic. (As topological spaces X and Y are essentially the
same.)

Exercise 3.8. Show f : X — Y is continuous iff f is continuous at all points
reX.

Exercise 3.9. Show f : X — Y is continuous iff f=(C) is closed in X for all
closed subsets C of Y.

Exercise 3.10. Suppose f : X — Y is continuous and K C X is compact, then
f(K) is a compact subset of Y.

Exercise 3.11 (Dini’s Theorem). Let X be a compact topological space and f, :
X — [0,00) be a sequence of continuous functions such that f,(z) | 0 as n — oo
for each x € X. Show that in fact f,, | 0 uniformly in z, i.e. sup,cx fo(z) | 0 as
n — oo. Hint: Given ¢ > 0, consider the open sets V;, := {x € X : f,(z) < €}.

Definition 3.31 (First Countable). A topological space, (X, 7), is first countable
iff every point € X has a countable neighborhood base. (All metric space are
first countable.)

When 7 is first countable, we may formulate many topological notions in terms
of sequences.

Proposition 3.32. If f : X — Y is continuous at x € X andlim, oz, =z € X,
then lim, o f(zn) = f(x) € Y. Moreover, if there exists a countable neighborhood
base n of x € X, then f is continuous at x iff lim f(xz,) = f(x) for all sequences

{zn},2, C X such that x, — x as n — oo.

Proof. If f: X — Y is continuous and W € 7y is a neighborhood of f(z) € Y,
then there exists a neighborhood V' of z € X such that f(V) C W. Since z,, — z,
z, € V a.a. and therefore f(x,) € f(V) C W aa., ie. f(z,) — f(z)asn — oo.

Conversely suppose that n = {W,,}5°, is a countable neighborhood base at = and
nan;o f(zn) = f(z) for all sequences {z,} -, C X such that z,, — x. By replacing
W, by Wi N ---N W, if necessary, we may assume that {W,} - is a decreasing
sequence of sets. If f were not continuous at z then there exists V' € 74, such
that © ¢ f=1(V)°. Therefore, W, is not a subset of f~*(V) for all n. Hence for
each n, we may choose =, € W, \ f~1(V). This sequence then has the property
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that x,, — x as n — oo while f(x,) ¢ V for all n and hence lim,,_,, f(z,) # f(z).
|

Lemma 3.33. Suppose there exists {xn},.; C A such that x, — z, then x € 14_17.
Conversely if (X,7) is a first countable space (like a metric space) then if x € A
there exists {x,},-; C A such that z, — x.

Proof. Suppose {z,},-, C A and z,, — = € X. Since A° is an open set, if
x € A° then z,, € A° C A® a.a. contradicting the assumption that {z,} -, C A.
Hence z € A.

For the converse we now assume that (X, 7) is first countable and that {V,,},2 | is
a countable neighborhood base at x such that V; D Vo, D V53 D .... By Proposition
3.21, 2z € Aif VNA # (Qforall V € 7,. Hence z € A implies there exists z, € V,NA
for all n. It is now easily seen that x, — x asn — co. m

Definition 3.34 (Support). Let f : X — Y be a function from a topological space
(X, 7x) to a vector space Y. Then we define the support of f by

supp(f) :={z € X : f(z) # 0},

a closed subset of X.

Example 3.35. For example, let f(x) = sin(z)1jg4x () € R, then
{5 # 0} = (0,4m) \ {m, 27, 3}

and therefore supp(f) = [0, 47].

Notation 3.36. If X and Y are two topological spaces, let C(X,Y’) denote the
continuous functions from X to Y. If Y is a Banach space, let

BOX,Y):={f e C(X,Y): sup 1f(@)lly < oo}

and

C.(X,Y):={f € C(X,Y) : supp(f) is compact}.
If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

The next result is included for completeness but will not be used in the sequel
so may be omitted.

Lemma 3.37. Suppose that f : X — Y is a map between topological spaces. Then
the following are equivalent:

(1) f is continuous.
(2) f(A) C f(A) forall AC X
(3) f~Y(B) C f~YB) forall BC X.

Proof. If f is continuous, then f~1 (f(A)) is closed and since A C f~1 (f(A)) C

! (f(A)) it follows that A C f~! (f(A)) . From this equation we learn that
f(ﬁ) f(A) so that (1) implies (2) Now assume (2), then for B C Y (taking
A= f~1(B)) we have

fFUHB)) C f(fHB) C f(f71(B) B
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and therefore
(3.4) f~1(B) C f71(B).

This shows that (2) implies (3) Finally if Eq. (3.4) holds for all B, then when B is
closed this shows that

fYB) c fH(B) = f71(B) C f~1(B)

which shows that

[7H(B)=11(B).
Therefore f~!(B) is closed whenever B is closed which implies that f is continuous.
]

3.4. Completeness.

Definition 3.38 (Cauchy sequences). A sequence {z,} - ; in a metric space (X, d)
is Cauchy provided that

lim d(z,,zm) =0.
m,n— o0

Exercise 3.12. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(z,y) = |z — y|. Choose a sequence {z,}oo, C Q which converges to v2 € R,
then {z,} - is (Q,d) — Cauchy but not (Q,d) — convergent. The sequence does
converge in R however.

Definition 3.39. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.13. Let (X, d) be a complete metric space. Let A C X be a subset of
X viewed as a metric space using d|ax 4. Show that (A, d|ax) is complete iff A is
a closed subset of X.

Definition 3.40. If (X, ||-||) is a normed vector space, then we say {z,} -, C X
is a Cauchy sequence if limy, p— oo ||Zm — Zyn|| = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,},~, C X which is Cauchy is
convergent where {z,},—, C X is convergent iff there exists © € X such that
limy, o0 |2, — 2|| = 0. As usual we will abbreviate this last statement by writing
lim,, o T, = T.

Lemma 3.41. Suppose that X is a set then the bounded functions £>°(X) on X is
a Banach space with the norm

Il =1lfllee = sup [f(2)]-
reX

Moreover if X is a topological space the set BC(X) C £°(X) = B(X) is closed
subspace of £°(X) and hence is also a Banach space.

Proof. Let {f,},, C ¢*°(X) be a Cauchy sequence. Since for any z € X, we
have

(3-5) [fn(@) = (@) <[ fn = finlloo

which shows that {f,(z)},—; C F is a Cauchy sequence of numbers. Because F
(F =R or C) is complete, f(z) := lim, o fn(x) exists for all z € X. Passing to
the limit n — oo in Eq. (3.5) implies

|f(@) = fm(2)] < lim sup || fy — meoo

n—oo
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and taking the supremum over x € X of this inequality implies

n—oo

showing f,, — f in £>°(X).

For the second assertion, suppose that {f,},-; C BC(X) C {*°(X) and f,, —
f € £>(X). We must show that f € BC(X), i.e. that f is continuous. To this end
let z,y € X, then

[f(@) = FW) < 1f(@) = fa (@) + | fu(@) = Fay)] + | fuly) = F(W)]
<2 = fallso + [fn(z) = fa(y)]-

Thus if € > 0, we may choose n large so that 2| f — f,||,, < €/2 and then for this
n there exists an open neighborhood V,, of x € X such that |f,(z) — fn(y)] < €/2
for y € V. Thus |f(z) — f(y)| < € for y € V, showing the limiting function f is
continuous. ®

Remark 3.42. Let X be a set, ¥ be a Banach space and ¢*°(X,Y) denote
the bounded functions f : X — Y equipped with the norm ||f|| = [|f|l. =
sup,cx || f(z)|ly - If X is a topological space, let BC(X,Y) denote those f €
£>*(X,Y) which are continuous. The same proof used in Lemma 3.41 shows that
{>*(X,Y) is a Banach space and that BC(X,Y) is a closed subspace of £>°(X,Y).

Theorem 3.43 (Completeness of ¢P(u)). Let X be a set and p: X — (0,00] be a
given function. Then for any p € [1,00], (€P(n), |I-l,) is a Banach space.

Proof. We have already proved this for p = co in Lemma 3.41 so we now assume
that p € [1,00). Let {fn}o—; C £’(1) be a Cauchy sequence. Since for any z € X,
1
fn(@) = f(2)| < —= || fu — fmll, = 0 as m,n — oo
@) = Fu@)| < s 1 = ol
it follows that {f,(z)},—, is a Cauchy sequence of numbers and f(z) :=
lim,, o fn(x) exists for all x € X. By Fatou’s Lemma,

e — T Cr P < Tim i e e p
1fn = £ §u Jim inf | £, — fl _W}gnoomf§u [ fo =
= lim inf || f, — fml[) — 0 as n — oc.

This then shows that f = (f— fn)+ fn € (1) (being the sum of two P — functions)
Kp
and that f, — f. =

Example 3.44. Here are a couple of examples of complete metric spaces.

(1) X =R and d(z,y) = |z — y|-

(2) X =R" and d(z,y) = [z —yll, = 1, (z: — i)

(3) X =4P(u) for p € [1,00] and any weight function p.

(4) X = C([0,1],R) — the space of continuous functions from [0, 1] to R and
d(f,g) := max;cpoq17 | f(t) — g(t)|. This is a special case of Lemma 3.41.

(5) Here is a typical example of a non-complete metric space. Let X =
C([0,1],R) and

1
d(f.g) == / () — a(t)| dt.
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3.5. Compactness in Metric Spaces. Let (X, p) be a metric space and let
Bi(€) = By(e) \ {z}.

Definition 3.45. A point z € X is an accumulation point of a subset £ C X if
04 ENV\{z} forall V C, X containing z.

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.46. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

(1) z € X is an accumulation point of E.

(2) Bi(e)NE # 0 for all e > 0.

(3) B.(e) N E is an infinite set for all € > 0.

(4) There exists {xy},-, C E\ {z} with lim, . z,, = .

Definition 3.47. A metric space (X, p) is said to be ¢ — bounded (¢ > 0) provided
there exists a finite cover of X by balls of radius €. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.48. Let X be a metric space. The following are equivalent.
(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(¢) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b= ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists £ C X, such
that #(E) = oo and E has no accumulation points. Then for all z € X there exists
d; > 0 such that V, := B,(0,) satisfies (V; \ {z})NE = 0. Clearly V = {V,.} y is
a cover of X, yet V has no finite sub cover. Indeed, for each x € X, V,, N E consists
of at most one point, therefore if A CC X, UzecpV, can only contain a finite number
of points from FE, in particular X # U,caV;. (See Figure 7.)

b

FIGURE 7. The construction of an open cover with no finite sub-cover.
(b = ¢) To show X is complete, let {z,} -, C X be a sequence and
E := {z, :n e N}. If #(F) < oo, then {z,},-; has a subsequence {x, } which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.46 implies that {x,} has a convergence
subsequence.
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We now show that X is totally bounded. Let € > 0 be given and choose z; € X. If
possible choose z2 € X such that d(z2,z1) > €, then if possible choose 3 € X such
that d(xs,{z1,22}) > € and continue inductively choosing points {:Ej};;l c X
such that d(z,,{x1,...,2n-1}) > €. This process must terminate, for otherwise
we could choose E = {xj};}; and infinite number of distinct points such that
d(zj,{x1,...,zj_1}) > eforall j =2,3,4,.... Since for all z € X the B,(¢/3)NE
can contain at most one point, no point € X is an accumulation point of E. (See
Figure 8.)

FiGUure 8. Constructing a set with out an accumulation point.

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Va}aca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X=J B.(i/m)c |J Cu(i/m).

TEA, TEA,
Choose x1 € A; such that no finite subset of V covers K; := C,, (1). Since K; =
Uzen, K1 NC(1/2), there exists zo € Ay such that Ky := K1 NC,,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, =K,_-1NC,, (1/n) with x,, € A, such no K,, can be covered by a finite subset
of V. Now choose y,, € K,, for each n. Since {K,,} -, is a decreasing sequence of
closed sets such that diam (K, ) < 2/n, it follows that {y,} is a Cauchy and hence
convergent with

Y= nh_)n;oyn eny_ 1 K.

Since V is a cover of X, there exists V' € V such that € V. Since K,, | {y} and
diam(K,,) — 0, it now follows that K, C V for some n large. But this violates the
assertion that K, can not be covered by a finite subset of V.(See Figure 9.)

|

Remark 3.49. Let X be a topological space and Y be a Banach space. By combining
Exercise 3.10 and Theorem 3.48 it follows that C.(X,Y) C BC(X,Y).

Corollary 3.50. Let X be a metric space then X is compact iff all sequences
{zn} C X have convergent subsequences.

Proof. Suppose X is compact and {z,} C X.
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FIGURE 9. Nested Sequence of cubes.

(1) If #({zn:n=1,2,...}) < oo then choose x € X such that z,, = x i.o.
and let {n;} C {n} such that x,, =z for all k. Then z,, — =

(2) I #{zn:n=1,2,...}) = co. We know E = {z,} has an accumulation
point {z}, hence there exists x,, — z.

Conversely if E is an infinite set let {z,}32; C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z, — = € X as
n — 00. Now = € X is an accumulation point of £ by Theorem 3.48 and hence X
is compact. ®

Corollary 3.51. Compact subsets of R™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M]™ for some positive integer M.
For 6 > 0, let

As=0Z"N[-M,M]" :={0x:x € Z" and 0|z;| < M for i =1,2,...,n}.
We will show, by choosing § > 0 sufficiently small, that
(3.6) K C[-M,M]" C Ugen,B(z,€)

which shows that K is totally bounded. Hence by Theorem 3.48, K is compact.
Suppose that y € [-M, M]™, then there exists x € Ay such that |y; — ;| < ¢ for
1=1,2,...,n. Hence
P(w,y) = (4 —:)° < nd”
i=1
which shows that d(z,y) < y/nd. Hence if choose § < €¢//n we have shows that
d(z,y) < ¢, ie. Eq. (3.6) holds. m

Example 3.52. Let X = ¢?(N) with p € [1,00) and p € X such that p(k) > 0 for
all k£ € N. The set

K:={zeX:|zk)| <p(k) for all k € N}
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is compact. To prove this, let {z,} -, C K be a sequence. By compactness of
closed bounded sets in C, for each k € N there is a subsequence of {z,(k)},-, C C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence {yn}oo, of {z,}7, such that y(k) := lim, o y, (k) exists for all k € N.4
Since |y, (k)| < p(k) for all n it follows that |y(k)| < p(k), i.e. y € K. Finally

dim ly =yl = lim Y Jy(k) = ya(B)" = lim [y(k) —ya(k)]” =0
k=1 k=1

where we have used the Dominated convergence theorem. (Note |y(k) — y, (k)" <
2P pP (k) and pP is summable.) Therefore y,, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and totally
bounded. It is simple to show K is closed, for if {xn}flozl C K is a convergent
sequence in X, x := lim,_,o Tp, then |z(k)| < lim, o |z, (k)| < p(k) for all k € N.
This shows that z € K and hence K is closed. To see that K is totally bounded, let
¢ > 0 and choose N such that (32 .4 \p(k)|p)1/p < e Since [[_; Cpy(0) € CN
is closed and bounded, it is compact. Therefore there exists a finite subset A C
Hszl C(ry(0) such that

N
1 Cotr)(0) € U.caBY(e)
k=1

where BY (¢) is the open ball centered at z € CV relative to the ¢/({1,2,3,...,N})
—norm. For each z € A, let Z € X be defined by Z(k) = z(k) if k < N and 2(k) =0
for Kk > N 4+ 1. I now claim that

(37) K C UzeABg(Qe)

which, when verified, shows K is totally bounced. To verify Eq. (3.7), let z € K
and write © = u + v where u(k) = z(k) for k < N and u(k) = 0 for k¥ < N. Then
by construction u € B;(e) for some Z € A and

'] 1/p
||v|p<< > |p(k>|?> <e.

k=N+1
So we have
|z — 2|, = [lu+v — 2], < llu—Z[|, + [lv]l, < 2e.

Exercise 3.14 (Extreme value theorem). Let (X, 7) be a compact topological space
and f : X — R be a continuous function. Show —oo < inf f < sup f < oo and

1y oo
jdi=1
lim; o0 1 (1) exists. Now choose a subsequence {n?}?‘;l of {n}};‘;l such that lim;_ 2 (2)

4The argument is as follows. Let {n be a subsequence of N={n}>?; such that

oo

exists and similalry {nf}jzl of {n?}j‘;l such that lim;_, o 25 (8) exists. Continue on this way

inductively to get
ol D {nj}521 D {12 D {nf}2 D

such that lim;_, . Tyl (k) exists for all k € N. Let m; := nz so that eventually {m;}?2, is a

subsequnce of {n?};";l for all k. Therefore, we may take y; := @m;.
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there exists a,b € X such that f(a) = inf f and f(b) = sup f. > Hint: use Exercise
3.10 and Corollary 3.51.

Exercise 3.15 (Uniform Continuity). Let (X, d) be a compact metric space, (Y, p)
be a metric space and f : X — Y be a continuous function. Show that f is
uniformly continuous, i.e. if € > 0 there exists § > 0 such that p(f(y), f(z)) < € if
x,y € X with d(z,y) < 0. Hint: I think the easiest proof is by using a sequence
argument.

Definition 3.53. Let L be a vector space. We say that two norms, |-| and ||-||, on
L are equivalent if there exists constants «, 8 € (0,00) such that

I/l < e|f] and [f| < B]f|| for all f € L.

Lemma 3.54. Let L be a finite dimensional vector space. Then any two norms
|| and ||-]| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}!", be a basis for L and define a new norm on L by

Zn:aifi Ezn:\cm for a; € F.
i=1

1 i=1
By the triangle inequality of the norm |-|, we find

n n n

S aifi| <3 ail |fil <MD ai| = M
i=1 i=1 i=1

where M = max; |f;|. Thus we have

[fl < MIIfly

for all f € L. This inequality shows that || is continuous relative to ||-||;. Now
let S:={feL:|f|, =1}, a compact subset of L relative to |-||; . Therefore by
Exercise 3.14 there exists fy € S such that

m=inf{|f]: f € S} = [fol > 0.
Hence given 0 # f € L, then {— € S so that

n
> aifi
i=1

1

17114
! 1
m < = |/l
‘|f||1 /11y
or equivalently
1
171, < 151
This shows that |-| and [-||; are equivalent norms. Similarly one shows that ||-|| and
||I-|; are equivalent and hence so are |-| and ||-[|. m

Definition 3.55. A subset D of a topological space X is dense if D = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.56. The following are examples of countable dense sets.

SHere is a proof if X is a metric space. Let {zn}p~1 C X be asequence such that f(z,) 7 sup f.
By compactness of X we may assume, by passing to a subsequence if necessary that z,, — b€ X
as n — 00. By continuity of f, f(b) = sup f.
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(1) The rational number Q are dense in R equipped with the usual topology.

(2) More generally, Q? is a countable dense subset of R? for any d € N.

(3) Even more generally, for any function p : N — (0, 00), ¢P(p) is separable for
all 1 < p < oco. For example, let I' C F be a countable dense set, then

D:={zelP(p):a; € 5 for all i and #{j : z; # 0} < co}.

The set I" can be taken to be Qif F=R or Q +iQ if F = C.
(4) If (X, p) is a metric space which is separable then every subset ¥ C X is
also separable in the induced topology.

To prove 4. above, let A = {z,}52; C X be a countable dense subset of X.
Let p(z,Y) = inf{p(z,y) : y € Y} be the distance from z to Y. Recall that
p(+,Y) : X — [0,00) is continuous. Let €, = p(z,,Y) > 0 and for each n let
Yn € Bx"(%) NY if €, = 0 otherwise choose y,, € By, (2¢,,) NY. Then if y € Y and
e > 0 we may choose n € N such that p(y,z,) < €, < ¢/3 and = < ¢/3. If €, > 0,
P(Yn, xn) < 26, < 2¢/3 and if €, = 0, p(yn,xn) < €/3 and therefore

Py, yn) < p(Ys 2n) + p(Tn, yn) < €.
This shows that B = {y, }5°; is a countable dense subset of Y.

Lemma 3.57. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A,, CC X such that X = Ugen, B(z,1/n).
Let D := U2 Ay, — a countable subset of X. Moreover, it is clear by construction
that D =X. m

3.6. Compactness in Function Spaces. In this section, let (X, 7) be a topolog-
ical space.

Definition 3.58. Let F C C(X).

(1) F is equicontinuous at x € X iff for all € > 0 there exists U € 7, such that
|f(y) — f(z)| <eforally e U and f € F.

(2) F is equicontinuous if F is equicontinuous at all points x € X.

(3) F is pointwise bounded if sup{|f(z)|:|f € F} < oo for all x € X.

Theorem 3.59 (Ascoli-Arzela Theorem). Let (X, 7) be a compact topological space
and F C C(X). Then F is precompact in C(X) iff F is equicontinuous and point-
wise bounded.

Proof. (<) Since B(X) is a complete metric space, we must show F is totally
bounded. Let € > 0 be given. By equicontinuity there exists V, € 7, for all
x € X such that |f(y) — f(z)| < ¢/2if y € V, and f € F. Since X is compact
we may choose A CC X such that X = UgcaV,. We have now decomposed X
into “blocks” {V},c, such that each f € F is constant to within € on V,. Since
sup{|f(z)]:z € A and f € F} < o0, it is now evident that

M =sup{|f(z)|:ze€ X and f € F} <sup{|f(z)|:z € Aand f € F} +¢e < 0.

Let D= {ke/2: k€ Z}N[-M,M]. If f € Fand ¢ € D (ie. ¢: A — Disa

function) is chosen so that |p(x) — f(x)] < €/2 for all z € A, then
[f(y) = ¢@)| < |f(y) = f(@)[ +[f(z) = ¢(z)| < eV e Aandy € V.
From this it follows that F = {.7:(;5 NS ]D)A} where, for ¢ € DA,

Fo={feF:|fly) —¢(z)| <eforyeV,and x € A}.
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Let T := {¢ € D* : F, # 0} and for each ¢ € T choose fy € FyNF. For f € Fy,
x € A and y € V,, we have

1f (W) = sl < 1Y) — o)) + |o(z) — foly)] < 2e.
So [|f — fsll < 2e for all f € Fy showing that Fy C By, (2¢). Therefore,

F = UgerFy C U¢EFBf¢ (26)

and because € > 0 was arbitrary we have shown that F is totally bounded.

(=) Since ||| : C(X) — [0,00) is a continuous function on C'(X) it is bounded
on any compact subset F C C(X). This shows that sup {||f| : f € F} < oo which
clearly implies that F is pointwise bounded.® Suppose F were not equicontinuous
at some point z € X that is to say there exists € > 0 such that for all V € 7,,
sup sup |f(y) — f(z)| > . Equivalently said, to each V € 7, we may choose
yeVvV feF

(3.8) fv € F and zy € V such that |fy(z) — fy(zv)| > e

Set Cy ={fw : W er, and W C V}".”oo C F and notice for any V CC 7, that

NyvevCy 2 Chy # 0,

so that {Cv},, € 7, C F has the finite intersection property.® Since F is compact,
it follows that there exists some

fe ﬂ Cv # 0.

VETm

Since f is continuous, there exists V' € 7, such that |f(z) — f(y)| < ¢/3 for all
y € V. Because f € Cy, there exists W C V such that ||f — fw| < ¢/3. We now
arrive at a contradiction;

e <|fw(@) = fwew)| < [fw(x) = @) +[f (@) = flaw)] + [f(ew) — fw(@w)]
<e/3+¢€¢/3+¢/3=c¢

60ne could also prove that F is pointwise bounded by considering the continuous evaluation
maps ez : C(X) — R given by e (f) = f(z) for all z € X.

"If X is first countable we could finish the proof with the following argument. Let {Vp}52
be a neighborhood base at x such that V3 D Vo D V3 D .... By the assumption that F is not
equicontinuous at z, there exist f, € F and z, € V,, such that |fn(z) — fn(zn)| > € V n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that f,
converges uniformly to some f € F. Because z,, — x as n — co we learn that

¢ < |fn(@) = fr(@n)l < |fu(@) = f@)| + (@) = fl@n)| + [f(zn) = falzn)l
<2l fn = fll +1f(z) — f(zn)] — 0 as n — oo

which is a contradiction.

8If we are willing to use Net’s described in Appendix D below we could finish the proof as
follows. Since F is compact, the net {fy }ver, C F has a cluster point f € F C C(X). Choose a
subnet {ga Yaca of {fv }very such that go — f uniformly. Then, since xy — x implies zy, — =,
we may conclude from Eq. (3.8) that

€ < |g9a () = ga(mv, )| — lg(x) — g(z)| =0

which is a contradiction.
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3.7. Bounded Linear Operators Basics.

Definition 3.60. Let X and Y be normed spaces and T' : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
T ()] < C|lz||x for all z € X. We denote the best constant by |7, i.e.

T(x
170 = sup PO _ o tim@) )+ Jall = 13-
40 |z #0

a20 |zl 2
The number ||T']| is called the operator norm of 7.
Proposition 3.61. Suppose that X and Y are normed spaces and T : X — Y is a
linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.
(¢) T is bounded.

Proof. (a) = (b) trivial. (b) = (c¢) If T continuous at 0 then there exist 6 > 0
such that ||T'(z)|| < 1if ||z|| < ¢. Therefore for any x € X, ||T (6z/||z||) || < 1 which
implies that ||T'(z)|| < |z|| and hence ||T]| < § < oc. (c) = (a) Let € X and
€ > 0 be given. Then

IT(y) = T(@) = 1Ty =) < ITIl ly =l <e

provided ||y —z| < ¢/||T|| =¢. m
In the examples to follow all integrals are the standard Riemann integrals, see
Section 4 below for the definition and the basic properties of the Riemann integral.

Example 3.62. Suppose that K : [0,1] x [0,1] — C is a continuous function. For

7 € C([0,1]), let
1
- / K(z,y)f()dy

|Tf(96)—Tf(Z)|§/0 [K(z,y) = K(z,9)|f(y)| dy
(3.9) < [1Flloo max [ K (2, y) — K(z,y)|

Since

and the latter expression tends to 0 as  — z by uniform continuity of K. Therefore
Tf € C([0,1]) and by the linearity of the Riemann integral, T : C([0, 1]) — C([0,1])
is a linear map. Moreover,

1 1
ITf(z)] < / K ()| £ ()| dy < / K@ y)ldy- [l < Alfll

where
1
(3.10) A:= sup / | K (x,y)| dy < co.
z€[0,1] Jo

This shows ||T]| < A < oo and therefore T is bounded. We may in fact show
IT| = A. To do this let =g € [0,1] be such that

sup / |ny|dy—/ | K (x0,y)| dy.

z€[0,1]
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Such an xg can be found since, using a similar argument to that in Eq. (3.9),
x — fol | K (z,y)| dy is continuous. Given € > 0, let
K(any)

fe(y) =
e+|K(zo,y)|?

and notice that lim. g || fe| ., = 1 and
|K Zo,Y |

ve+ |K(xo,y

ITS o > ITfe(wo)] = Tf(zo) = /

Therefore,
1 K(
7)) > lim / [ o, y ‘
€l0 ”fe”oo 0 /et |K z0,Y
. ! |K Zo,Y
= lim
cl0 \/6+ ‘K ZL’(),
since
K(xg, 2 K(xo,
0.< |K(e0,p)] - —iotll ___1K(@o,p) [ e+ G, )l = K Coos )]

Vet K@o ) et Koy

e + | K (wo,9)|* = |K (w0, )

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L* ([0,1]) denote

C(]0,1]) with the norm
1
1l = / (@) d,

then T : L'([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)| : 2,y € [0,1]}, then

1
(TF)()| < / K (2 9)f@)| dy < M| £,

which shows ||Tf[|,, < M ||f]|; and hence,
1Tl 1~ < max{|K(z,y)| : 2,y € [0,1]} < o0.

We can in fact show that ||T|| = M as follows. Let (zg,%0) € [0,1]? satisfying
|K(x0,90)] = M. Then given € > 0, there exists a neighborhood U = I x J of
(20, y0) such that |K(z,y) — K(xo,y0)| < € for all (z,y) € U. Let f € C.(I,[0,00))
such that fo z)dz = 1. Choose a € C such that |a] = 1 and aK(zg,%0) = M,
then

(Taf)(a0)] = \ / K(wo,y)af(y)dy‘ _ ' [ Ktzovastidy
> Re / oK (20,) f(y)dy > / (M — &) f(y)dy = (M — &) [laf ||

I
and hence

ITaflle = (M =€) [efll
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showing that || T|| > M — e. Since € > 0 is arbitrary, we learn that || T|| > M and
hence || T|| = M.

One may also view 7' as a map from T : C([0,1]) — L'([0, 1]) in which case one
may show

1
Tl < [ max Kyl de < oc.

For the next three exercises, let X =R?” and Y =R™and T : X — Y be a linear
transformation so that 7" is given by matrix multiplication by an m x n matrix. Let
us identify the linear transformation 7" with this matrix.

Exercise 3.16. Assume the norms on X and Y are the ¢! — norms, i.e. for z € R”,

||| = >=7_; |z;| . Then the operator norm of T'is given by
m
T = Tiil.
1Tl lI%ljaIS)(’nZ| i1

=1

Exercise 3.17. ms on X and Y are the > — norms, ie. for x € R", ||z]| =
maxi<j<p |¢;|. Then the operator norm of T is given by

n
ITl = 12%}%21 51
p

Exercise 3.18. Assume the norms on X and Y are the /2 — norms, i.e. for z € R",

|z = >y xF. Show | T||? is the largest eigenvalue of the matrix T T : R™ — R™.

Exercise 3.19. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.63. Let L(X,Y") denote the bounded linear operators from X to Y. If
Y =F we write X* for L(X,F) and call X* the (continuous) dual space to X.

Lemma 3.64. Let X, Y be normed spaces, then the operator norm ||-|| on L(X,Y)
is a norm. Moreover if Z is another normed space andT : X —Y and S:Y — Z
are linear maps, then |ST|| < ||S|||T||, where ST := SoT.

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If A, B €
L(X,Y) then the triangle inequality is verified as follows:

| Az + Ba| _ |l As] +[Ba

|A+ B|| = sup <
z#£0 [l || x#0 [l
|| Az|| | Bz||
< + sup = [|All + IB]]-
a£0 Izl wz0 [

For the second assertion, we have for x € X, that
[1ST|| < [IS[[[|T]| < ST []l]]-
From this inequality and the definition of ||ST|, it follows that ||ST|| < [|S|||T||- =

Proposition 3.65. Suppose that X is a normed vector space and Y is a Banach
space. Then (L(X,Y),| - |lop) is a Banach space. In particular the dual space X*
is always a Banach space.
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We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.66. A normed space (X, ||-||) is a Banach space iff for every sequence

e N

{zn}.2 ) such that Y ||x,|| < 0o then imy_oo Y. z, = S emists in X (that is to
n=1 n=1

say every absolutely convergent series is a convergent series in X ). As usual we

will denote S by > xy.

n=1

o) N
Proof. (=)If X is complete and > ||z, || < oo then sequence Sy = > x,, for

n= n=1
N € N is Cauchy because (for N > M)

N
ISnv — Sum|l < Z |zn]] — 0 as M, N — oo.
n=M+1

0o N
Therefore S = > @y, :=limy 00 Y Xy exists in X.
n=1 n=1

(<=) Suppose that {z,,} - is a Cauchy sequence and let {y, = z,, }7>; be a

&)
subsequence of {x,},; such that > [|yn+1 — yn| < 0o. By assumption

n=1
N )
YN+1 — Y1 = Z(ynﬂ —yp) — S = Z(ynH —yn) € X as N — oc.
n=1 n=1

This shows that limy_. yn exists and is equal to z := y; + S. Since {z,,},, is
Cauchy,

[ =2l < llz =gkl + llys — @all = 0 as k,n — oo

showing that lim,, .~ , exists and is equal to z. m
Proof. (Proof of Proposition 3.65.) We must show (L(X,Y), ||-||op) is complete.

o0
Suppose that T,, € L(X,Y) is a sequence of operators such that . ||T,] < oc.

n=1
Then
STl < ITall 2l < oo
n=1 n=1
and therefore by the completeness of Y, Sz := Y T,a = limy_,oo Sy exists in
n=1
N
Y, where Sy := > T,. The reader should check that S : X — Y so defined in
n=1
linear. Since,
N 00
ISz = Jim Sy < lim 3 [Toal < 3 Tl
n=1 n=1

S is bounded and

(3.11) IS <> Tl
n=1
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Similarly,
N 0o
Sz~ Saal = Jim_[[Sya— Syl < Jim S° [ Tullal = Y Il lla]
n=M+1 n=M+1
and therefore,
oo
IS — Sl < Z T — 0 as M — oo.
n=M

|
Of course we did not actually need to use Theorem 3.66 in the proof. Here is
another proof. Let {T},} - ; be a Cauchy sequence in L(X,Y"). Then for each z € X,

Tz — Tzl < ||Tn — Tl ||2]] — 0 as m,n — oo

showing {T,,z},- , is Cauchy in Y. Using the completeness of Y, there exists an
element Tx € Y such that

nlLrI;O | Tnx — Tx|| = 0.
It is a simple matter to show T': X — Y is a linear map. Moreover,
[Tx = Tox|| < | Tz — Tzl + [| T — Toz|| < T2 — Tonal| + (| T — Tl ||z
and therefore
T2 = Tyall < lim sup (T = Tnall + T = Toll2]) = ol im sup [T, T,

Hence

IT —T,|| <lim sup ||Ty, —Tn| — 0 as n — oo.

m—0o0

Thus we have shown that T,, — T in L(X,Y) as desired.

3.8. Inverting Elements in L(X) and Linear ODE.

Definition 3.67. A linear map T : X — Y is an isometry if | Tz|y = ||z| x for
all z € X. T is said to be invertible if T is a bijection and T~' is bounded.

Notation 3.68. We will write GL(X,Y) for those T' € L(X,Y’) which are invert-
ible. If X =Y we simply write L(X) and GL(X) for L(X,X) and GL(X, X)
respectively.

Proposition 3.69. Suppose X is a Banach space and A € L(X) = L(X,X)
satisfies Y ||A™|| < co. Then I — A is invertible and
n=0

1 o0 oo
(I=8)" =7 =D A and [[(T-M)7H[ < (A"
n=0 n=0

In particular if |A|| < 1 then the above formula holds and

1
I-ANY < ——0.
H( ) H =T A
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Proof. Since L(X) is a Banach space and i |A™|| < oo, it follows from Theo-
rem 3.66 that "
N
S i 5w i 3o
exists in L(X). Moreover, by Exercise 3.38 belovv,n_0

(I—K)S=(I-A) lim Sy= lim (I-A)Sy

= lim (I—A) A"— lim (I — ANt =T

N~>oo N*’OO

and similarly S (I —A) = I. This shows that (I — A)~! exists and is equal to S.
Moreover, (I — A)~! is bounded because

1T =27 =181 < Y 1Am.
n=0

If we further assume ||A]| < 1, then ||A"| < \|A||” and

Z A" < Z 1AL HAII

Corollary 3.70. Let X and Y be Banach spaces. Then GL(X,Y) is an open
(possibly empty) subset of L(X,Y). More specifically, if A € GL(X,Y) and B €
L(X,Y) satisfies

(3.12) 1B —All <A™
then B € GL(X,Y)

(3.13) B =) [Ix-A"'B]"A™" € L(V, X)
n=0
and 1
B~ < 11477

L— A=Y lA-B|
Proof. Let A and B be as above, then
B=A—-(A-B)=A[Ix —A""(A-B))] = A(Ix — A)
where A : X — X is given by
A=A A-B)=Ix-A'B.
Now
Al = [[A7H A= B)[| < |ATYIA - Bl < AT IIATH 7 = 1.

Therefore I — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(I-AN"'A" = [Ix - A7Y(A- B))]

For the last assertion we have,

A

1
L— A=A =Bl

[B7H < I(0x = A)7H AT < A7 <l

IIAH -
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For an application of these results to linear ordinary differentiatl equations, see
Section 5.2.

3.9. Supplement: Sums in Banach Spaces.

Definition 3.71. Suppose that X is a normed space and {v, € X : a € A} is a
given collection of vectors in X. We say that s = Y, v, € X if for all € > 0
there exists a finite set I'c C A such that ||s — > cpva|| < € for all A cC A
such that I'. C A. (Unlike the case of real valued sums, this does not imply that
Y aen llvall < 0o. See Proposition 12.19 below, from which one may manufacture
counter-examples to this false premise.)

Lemma 3.72. (1) When X is a Banach space, ) .4 Va evists in X iff for all
€ > 0 there exists I'. CC A such that HZaeAvaH < e forall A cC A\T..
Also if ) c4vVa exists in X then {a € A:v, # 0} is at most countable. (2) If
5= neaVa € X evists and T : X — Y is a bounded linear map between normed
spaces, then ) s Tv, exists in'Y and

TSZTZUa: ZTUQ.
acA acA

Proof. (1) Suppose that s = >, v, exists and € > 0. Let I'. CC A be as in

Definition 3.71. Then for A cC A\ T,

E Vol < E va—&—g Vo — S|| + E Vo — 8
acA a€EA ael'. acl'.
= g Vo — S|| + € < 2e.
ael’ cUA

Conversely, suppose for all € > 0 there exists I'c CC A such that HZaEA Ua” <e€
for all A cC A\ T.. Let v, := Up_I'1/;, C A and set s, := > Vq. Then for
m > n,

aEYn

I$m — snll = Z V|| < 1/n — 0 as m,n — oo.
ae'Wn\'Yn

Therefore {s,}.. , is Cauchy and hence convergent in X. Let s := lim,,_. S, then
for A CC A such that v, C A, we have

sfgva

1
<|Is — sall + Z Vo || < HS*SnH*FE
aEA

OtEA\'Yn

Since the right member of this equation goes to zero as n — oo, it follows that
> acA Vo €xists and is equal to s.

Let y := US2 47, — a countable subset of A. Then for « ¢ v, {a} C A\ v, for all
n and hence

[vall = Z vg|| <1/n—0asn— oo.
pe{a}
Therefore v, =0 for all @ € A\ 7.
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(2) Let T'c be as in Definition 3.71 and A CC A such that I C A. Then

TszTva szva

aEN a€A

< ||| <7 e

which shows that >~ __, T, exists and is equal to T's. m

acA

3.10. Word of Caution.

Example 3.73. Let (X, d) be a metric space. It is always true that B, (e) C Cy(e)
since Cy(€) is a closed set containing B, (¢). However, it is not always true that
B,(e) = Cy(e). For example let X = {1,2} and d(1,2) = 1, then B;(1) = {1},
B;(1) = {1} while C;(1) = X. For another counter example, take

X={(z,y) eR*>:z2=00rz =1}

with the usually Euclidean metric coming from the plane. Then

Bo,0)(1) = {(O,y) eER?: |yl < 1},
Bo,oy(1) = {(0,y) eR?: |y| <1}, while

C0,0)(1) = B(o,0)(1) U{(0,1)}.

In spite of the above examples, Lemmas 3.74 and 3.75 below shows that for
certain metric spaces of interest it is true that B,(e) = Cy(e).

Lemma 3.74. Suppose that (X,|]) is a normed vector space and d is the metric
on X defined by d(x,y) = |x — y|. Then

B, (e) = Cy(e) and
0Bg(e) ={y € X : d(z,y) = €}.

Proof. We must show that C' := C,(¢) C B.(e) =: B. Fory € C, let v =y — ,
then
ol = |y — 2| = d(z,y) < e
Let @, = 1—1/n so that o, T 1 as n — oo. Let y, =  + a,v, then d(z,y,) =
and(z,y) < €, so that y, € By(e) and d(y,yn) = 1 —a,, — 0 as n — oo. This shows

that y, — y as n — oo and hence that y € B. m

3.10.1. Riemannian Metrics. This subsection is not completely self contained and
may safely be skipped.

Lemma 3.75. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) =inf {l(0) : 0(0) =2 and o(1) =y}

where (o) is the length of the curve o. We define (o) = oo if o is not piecewise
smooth.
Then
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F1GURE 10. An almost length minimizing curve joining z to y.

_ Proof. Let C := Cy(¢) C _Bm( €) = B. We will show that C' C B by
B¢ C C°. Suppose that y € B¢ and choose § > 0 such that By(6) N B = (. In
particular this implies that

By(d) N

Ba(e

We will finish the proof by showing that d(z,

This will be accomplished by showing: if d(z,y) < € + d then B, (d) N By (e) # 0.
If d(z,y) < max(e, §) then either x € B, (J) or y € By(e). In e1ther case By (d) N

B.(¢) # (). Hence we may assume that max( 0) <d(z,y) < e+ 4. Let o > 0 be a

number such that

) =
y) €+ 6 > ¢ and hence that y € C°.

max(e,0) < d(z,y) <a<e+§
and choose a curve o from z to y such that £(o) < a. Also choose 0 < ¢’ < § such
that 0 < « — ¢’ < € which can be done since & — § < €. Let k(t) = d(y,0(t)) a
continuous function on [0, 1] and therefore k(]0,1]) C R is a connected set which
contains 0 and d(z,y). Therefore there exists to € [0,1] such that d(y,o(tg)) =
k(to) = 0'. Let z = o(to) € By(d) then
d(z,2) < Loljo,40]) = (o) = L(0]1) <a—d(z,y) =a—08 <e

and therefore z € B,(€) N B,(6) #0. m

Remark 3.76. Suppose again that X is a Riemannian (or sub-Riemannian) manifold
and

d(z,y) =inf {£(c) : 0(0) = z and o(1) = y} .
Let o be a curve from = to y and let € = £(0) — d(z,y). Then for all 0 <u < v <1,

d(o(u),0(v)) < (o) + €
So if ¢ is within € of a length minimizing curve from x to y that o, .| is within
e of a length minimizing curve from o(u) to o(v). In particular if d(z,y) = £(o)
then d(o(u),o(v)) = £(0][u,.]) for all 0 <u < v <1, ie. if o is a length minimizing
curve from z to y that ol ) is a length minimizing curve from o(u) to o(v).

To prove these assertions notice that
d(z,y) + € = (o) = L(o]0,u) + £(0u]) + €ow,1)

> d(z,0(u)) + U0 |w,v) + d(o(v), y)
and therefore
d(z,y) + € — d(z,0(u)) — d(o(v),y)
d(o(u),o(v)) + €.

e(ahu,v]) <
<
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3.11. Exercises.
Exercise 3.20. Prove Lemma 3.46.

Exercise 3.21. Let X = C([0,1],R) and for f € X, let

1£ly = /|f )/ dt.

Show that (X, ||-||;) is normed space and show by example that this space is not
complete.

Exercise 3.22. Let (X,d) be a metric space. Suppose that {z,}52; C X is a
sequence and set €, := d(xy, n41). Show that for m > n that

(T, Tm) Z €k < Zek

k=n
Conclude from this that if

o0 o0
Zek = Zd(mn,an) < 0
k=1 n=1

then {z,}52, is Cauchy. Moreover, show that if {z,}52 is a convergent sequence

and x = lim,,_, x,, then
o0

d(z,z,) < Zek.
k=n
Exercise 3.23. Show that (X,d) is a complete metric space iff every sequence
{z,}52, C X such that > 2 | d(2pn,2nt1) < 00 is a convergent sequence in X. You
may find it useful to prove the following statements in the course of the proof.
(1) If {z,,} is Cauchy sequence, then there is a subsequence y; = x,,; such that
> ie1 AYj41,95) < oo
(2) If {z,}52, is Cauchy and there exists a subsequence y; = x,; of {x,} such
that © = lim; . y; exists, then lim, . %, also exists and is equal to .

Exercise 3.24. Suppose that f : [0,00) — [0,00) is a C? — function such that
f(0) =0, f/ >0and f” <0 and (X, p) is a metric space. Show that d(z,y) =
f(p(z,y)) is a metric on X. In particular show that

p(x,y)
dey) =1 + p(z,y)

is a metric on X. (Hint: use calculus to verify that f(a +b) < f(a) + f(b) for all
a,b € [0,00).)

Exercise 3.25. Let d : C(R) x C(

R) —
o If — glln
d(f,9) =) 27" —=7— >
9= 22" T,
where [|f|ln = sup{|f(2)] : 2| < n} = max{[f(2)] : |z < n}.
(1) Show that d is a metric on C(R).
(2) Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — o0
iff f,, converges to f uniformly on compact subsets of R.
(3) Show that (C(R),d) is a complete metric space.

[0,00) be defined by
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Exercise 3.26. Let {(X,,,d,)} -, be a sequence of metric spaces, X = [[°2 | X,
and for z = (z(n));—, and y = (y(n)),—, in X let

=l da(z(n),y(n)
d(z,y) = ;2 T+ dn(2(n), y(n)

Show: 1) (X,d) is a metric space, 2) a sequence {zy},-,; C X converges to x € X
iff zx(n) — z(n) € X,, as k — oo for every n = 1,2,..., and 3) X is complete if
X, is complete for all n.

Exercise 3.27 (Tychonoff’s Theorem). Let us continue the notation of the previous
problem. Further assume that the spaces X,, are compact for all n. Show (X, d) is
compact. Hint: Either use Cantor’s method to show every sequence {zy, },-_, C X
has a convergent subsequence or alternatively show (X, d) is complete and totally
bounded.

Exercise 3.28. Let (X;,d;) for i = 1,...,n be a finite collection of metric spaces
and for 1 <p < oo and z = (z1,22,...,%,) and y = (y1,...,ys) in X :=[[1-, X;,

let
n 1 .
_ (Zi:l [di(ifi,yi)}p) / if p#oo
pp(,y) .
max; d; (2, yi) if p=o0
(1) Show (X, p,) is a metric space for p € [1, 0o]. Hint: Minkowski’s inequality.
(2) Show that all of the metric {p, : 1 <p < oo} are equivalent, i.e. for any
p,q € [1,00] there exists constants ¢, C' < oo such that

pp(2,y) < Cpg(z,y) and py(z,y) < cpp(z,y) for all 7,y € X.

Hint: This can be done with explicit estimates or more simply using
Lemma 3.54.

(3) Show that the topologies associated to the metrics p, are the same for all
p € [1,00].

Exercise 3.29. Let C be a closed proper subset of R” and « € R™\ C. Show there
exists a y € C such that d(z,y) = do(z).
Exercise 3.30. Let F = R in this problem and A C ¢?(N) be defined by
A= {x € *N):x(n)>1+1/n for some n € N}
=U {zx € A(N):z(n) > 1+1/n}.

Show A is a closed subset of £2(N) with the property that d4(0) = 1 while there
is no y € A such that da(y) = 1. (Remember that in general an infinite union of
closed sets need not be closed.)

3.11.1. Banach Space Problems.

Exercise 3.31. Show that all finite dimensional normed vector spaces (L, ||-||) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.32. Let (X, |||) be a normed space over F (R or C). Show the map
Nz, EFx X xX —sz+dyeX
is continuous relative to the topology on F x X x X defined by the norm

1 2 )l xxx o= AL+ Mzl + -
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(See Exercise 3.28 for more on the metric associated to this norm.) Also show that
I]l : X — [0, 00) is continuous.

Exercise 3.33. Let p € [1,00] and X be an infinite set. Show the closed unit ball
in /P(X) is not compact.

Exercise 3.34. Let X =N and for p,q € [1,00) let -], denote the ¢’(N) — norm.
Show ||+, and |||, are inequivalent norms for p # ¢ by showing

/1l
20 111,

=0 ifp<q.

Exercise 3.35. Folland Problem 5.5. Closure of subspaces are subspaces.
Exercise 3.36. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.
Exercise 3.37. Folland Problem 5.11. Showing Holder spaces are Banach spaces.
Exercise 3.38. Let X, Y and Z be normed spaces. Prove the maps
(S,2) e L(X,)Y)x X — Sz €Y
and
(S,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)
are continuous relative to the norms
105, 2) M L vyxx = ISl x,v) + lzllx and

1S, D)l xevyxrvzy) = IS nxyy T 1T vz
on L(X,Y) x X and L(X,Y) x L(Y, Z) respectively.
3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.39. Let T € (0,00) and F C C([0,7]) be a family of functions such
that:

(1) f(t) exists for all t € (0,T) and f € F.
(2) SUPfcr [7(0)] < oo and

(8) M i=supje  subye 0.1 | F(1)] < o0.
Show F is precompact in the Banach space C([0,T]) equipped with the norm
£l = SUDy¢(0,T] |f()]-
Exercise 3.40. Folland Problem 4.63.
Exercise 3.41. Folland Problem 4.64.
3.11.3. General Topological Space Problems.

Exercise 3.42. Give an example of continuous map, f : X — Y, and a compact
subset K of Y such that f~1(K) is not compact.

Exercise 3.43. Let V' be an open subset of R. Show V' may be written as a disjoint
union of open intervals J,, = (an, by,), where a,,, b, € RU{+oco} forn=1,2,--- < N
with N = oo possible.



