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5. Ordinary Differential Equations in a Banach Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) — Z
is to be interpreted as a time dependent vector-field on U ⊂ X. In this section we
will consider the ordinary differential equation (ODE for short)

(5.1) ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U.

The reader should check that any solution y ∈ C1(J, U) to Eq. (5.1) gives a solution
y ∈ C(J, U) to the integral equation:

(5.2) y(t) = x+

Z t

0

Z(τ, y(τ))dτ

and conversely if y ∈ C(J,U) solves Eq. (5.2) then y ∈ C1(J, U) and y solves Eq.
(5.1).

Remark 5.1. For notational simplicity we have assumed that the initial condition
for the ODE in Eq. (5.1) is taken at t = 0. There is no loss in generality in doing
this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (5.1) with Z(t, x) = Z̃(t+ t0, x).

5.1. Examples. Let X = R, Z(x) = xn with n ∈ N and consider the ordinary
differential equation

(5.3) ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R.
If y solves Eq. (5.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore up to
the first time y possibly hits 0, we must have

t =

Z t

0

ẏ(τ)

y(τ)n
dτ =

Z y(t)

0

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
¯̄̄
y(t)
x

¯̄̄
if n = 1

and solving these equations for y(t) implies

(5.4) y(t) = y(t, x) =

(
x

n−1√1−(n−1)txn−1 if n > 1

etx if n = 1.

The reader should verify by direct calculation that y(t, x) defined above does in-
deed solve Eq. (5.3). The above argument shows that these are the only possible
solutions to the Equations in (5.3).
Notice that when n = 1, the solution exists for all time while for n > 1, we must

require
1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1

(1− n) |x|n−1 if x
n−1 < 0.
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Moreover for n > 1, y(t, x) blows up as t approaches the value for which 1− (n −
1)txn−1 = 0. The reader should also observe that, at least for s and t close to 0,

(5.5) y(t, y(s, x)) = y(t+ s, x)

for each of the solutions above. Indeed, if n = 1 Eq. (5.5) is equivalent to the well
know identity, etes = et+s and for n > 1,

y(t, y(s, x)) =
y(s, x)

n−1
p
1− (n− 1)ty(s, x)n−1

=

x
n−1√1−(n−1)sxn−1

n−1

s
1− (n− 1)t

·
x

n−1√1−(n−1)sxn−1
¸n−1

=

x
n−1√1−(n−1)sxn−1

n−1
q
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
p
1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
p
1− (n− 1)(s+ t)xn−1

= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the ordinary
differential equation

(5.6) ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R.
Working as above we find, if x 6= 0 that

t =

Z t

0

ẏ(τ)

|y(t)|α dτ =
Z y(t)

0

|u|−α du = [y(t)]1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation im-
plies

sgn(x)(1− α)t = sgn(x)
h
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

i
= |y(t)|1−α − |x|1−α

and therefore,

(5.7) y(t, x) = sgn(x)
³
|x|1−α + sgn(x)(1− α)t

´ 1
1−α

is uniquely determined by this formula until the first time t where |x|1−α+sgn(x)(1−
α)t = 0. As before y(t) = 0 is a solution to Eq. (5.6), however it is far from being
the unique solution. For example letting x ↓ 0 in Eq. (5.7) gives a function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (5.6) for t > 0. Moreover if we define

y(t) :=

½
((1− α)t)

1
1−α if t > 0

0 if t ≤ 0 ,
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(for example if α = 1/2 then y(t) = 1
4 t
21t≥0) then the reader may easily check y

also solve Eq. (5.6). Furthermore, ya(t) := y(t − a) also solves Eq. (5.6) for all
a ≥ 0, see Figure 11 below.
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Figure 11. Three different solutions to the ODE ẏ(t) = |y(t)|1/2
with y(0) = 0.

With these examples in mind, let us now go to the general theory starting with
linear ODEs.

5.2. Linear Ordinary Differential Equations. Consider the linear differential
equation

(5.8) ẏ(t) = A(t)y(t) where y(0) = x ∈ X.

Here A ∈ C(J → L(X)) and y ∈ C1(J → X). This equation may be written in its
equivalent (as the reader should verify) integral form, namely we are looking for
y ∈ C(J,X) such that

(5.9) y(t) = x+

Z t

0

A(τ)y(τ)dτ.

In what follows, we will abuse notation and use k·k to denote the operator norm
on L (X) associated to k·k on X we will also fix J = (a, b) 3 0 and let kφk∞ :=
maxt∈J kφ(t)k for φ ∈ BC(J,X) or BC(J, L (X)).

Notation 5.2. For t ∈ R and n ∈ N, let

∆n(t) =

½ {(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn andZ
∆n(t)

f(τ1, . . . τn)dτ : = (−1)n·1t<0
Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1f(τ1, . . . τn).

Lemma 5.3. Suppose that ψ ∈ C (R,R) , then

(5.10) (−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

µZ t

0

ψ(τ)dτ

¶n
.
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Proof. Let Ψ(t) :=
R t
0
ψ(τ)dτ. The proof will go by induction on n. The case

n = 1 is easily verified since

(−1)1·1t<0
Z
∆1(t)

ψ(τ1)dτ1 =

Z t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (5.10) for n− 1 for some n ≥ 2, then

(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=

Z t

0

dτn
Ψn−1(τn)
(n− 1)! ψ(τn) =

Z t

0

dτn
Ψn−1(τn)
(n− 1)! Ψ̇(τn)

=

Z Ψ(t)
0

un−1

(n− 1)!du =
Ψn(t)

n!
,

wherein we made the change of variables, u = Ψ(τn), in the second to last equality.

Remark 5.4. Eq. (5.10) is equivalent toZ
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

ÃZ
∆1(t)

ψ(τ)dτ

!n

and another way to understand this equality is to view
R
∆n(t)

ψ(τ1) . . . ψ(τn)dτ as
a multiple integral (see Section 8 below) rather than an iterated integral. Indeed,
taking t > 0 for simplicity and letting Sn be the permutation group on {1, 2, . . . , n}
we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}
with the union being “essentially” disjoint. Therefore, making a change of variables
and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations, we findµZ t

0

ψ(τ)dτ

¶n
=

Z
[0,t]n

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!

Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 5.5. Let φ ∈ BC(J,X), then the integral equation

(5.11) y(t) = φ(t) +

Z t

0

A(τ)y(τ)dτ

has a unique solution given by

(5.12) y(t) = φ(t) +
∞X
n=1

(−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ
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and this solution satisfies the bound

kyk∞ ≤ kφk∞ e
R
J
kA(τ)kdτ .

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =

Z t

0

A(τ)y(τ)dτ.

Then y solves Eq. (5.9) iff y = φ+ Λy or equivalently iff (I − Λ)y = φ.
An induction argument shows

(Λnφ)(t) =

Z t

0

dτnA(τn)(Λ
n−1φ)(τn)

=

Z t

0

dτn

Z τn

0

dτn−1A(τn)A(τn−1)(Λn−2φ)(τn−1)

...

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1A(τn) . . . A(τ1)φ(τ1)

= (−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ.

Taking norms of this equation and using the triangle inequality along with Lemma
5.3 gives,

k(Λnφ)(t)k ≤ kφk∞ ·
Z
∆n(t)

kA(τn)k . . . kA(τ1)kdτ

≤kφk∞ · 1
n!

ÃZ
∆1(t)

kA(τ)kdτ
!n

≤kφk∞ · 1
n!

µZ
J

kA(τ)kdτ
¶n

.

Therefore,

(5.13) kΛnkop ≤ 1

n!

µZ
J

kA(τ)kdτ
¶n

and ∞X
n=0

kΛnkop ≤ e
R
J
kA(τ)kdτ <∞

where k·kop denotes the operator norm on L (BC(J,X)) . An application of Propo-

sition 3.69 now shows (I − Λ)−1 =
∞P
n=0
Λn exists and°°(I − Λ)−1°°
op
≤ e

R
J
kA(τ)kdτ .

It is now only a matter of working through the notation to see that these assertions
prove the theorem.

Corollary 5.6. Suppose that A ∈ L(X) is independent of time, then the solution
to

ẏ(t) = Ay(t) with y(0) = x
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is given by y(t) = etAx where

(5.14) etA =
∞X
n=0

tn

n!
An.

Proof. This is a simple consequence of Eq. 5.12 and Lemma 5.3 with ψ = 1.
We also have the following converse to this corollary whose proof is outlined in

Exercise 5.11 below.

Theorem 5.7. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies
(1) (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
(2) (Norm Continuity) t → Tt is continuous at 0, i.e. kTt − IkL(X) → 0 as

t ↓ 0.
Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.

(5.14).

5.3. Uniqueness Theorem and Continuous Dependence on Initial Data.

Lemma 5.8. Gronwall’s Lemma. Suppose that f, �, and k are non-negative
functions of a real variable t such that

(5.15) f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)f(τ)dτ

¯̄̄̄
.

Then

(5.16) f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)�(τ)e|
R t
τ
k(s)ds|dτ

¯̄̄̄
,

and in particular if � and k are constants we find that

(5.17) f(t) ≤ �ek|t|.

Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived by
applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and �̃(t) = �(−t).
Set F (t) =

R t
0
k(τ)f(τ)dτ . Then by (5.15),

Ḟ = kf ≤ k�+ kF.

Hence,
d

dt
(e−

R t
0
k(s)dsF ) = e−

R t
0
k(s)ds(Ḟ − kF ) ≤ k�e−

R t
0
k(s)ds.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
R t
0
k(s)ds ·

Z t

0

dτk(τ)�(τ)e−
R τ
0
k(s)ds =

Z t

0

dτk(τ)�(τ)e
R t
τ
k(s)ds.

But by the definition of F we have that

f ≤ �+ F,

and hence the last two displayed equations imply (5.16). Equation (5.17) follows
from (5.16) by a simple integration.

Corollary 5.9 (Continuous Dependence on Initial Data). Let U ⊂o X, 0 ∈ (a, b)
and Z : (a, b)×U → X be a continuous function which is K—Lipschitz function on U,
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i.e. kZ(t, x)−Z(t, x0)k ≤ Kkx−x0k for all x and x0 in U. Suppose y1, y2 : (a, b)→ U
solve

(5.18)
dyi(t)

dt
= Z(t, yi(t)) with yi(0) = xi for i = 1, 2.

Then

(5.19) ky2(t)− y1(t)k ≤ kx2 − x1keK|t| for t ∈ (a, b)
and in particular, there is at most one solution to Eq. (5.1) under the above Lip-
schitz assumption on Z.

Proof. Let f(t) ≡ ky2(t)−y1(t)k. Then by the fundamental theorem of calculus,

f(t) = ky2(0)− y1(0) +

Z t

0

(ẏ2(τ)− ẏ1(τ)) dτk

≤ f(0) +

¯̄̄̄Z t

0

kZ(τ, y2(τ))− Z(τ, y1(τ))k dτ
¯̄̄̄

= kx2 − x1k+K

¯̄̄̄Z t

0

f(τ) dτ

¯̄̄̄
.

Therefore by Gronwall’s inequality we have,

ky2(t)− y1(t)k = f(t) ≤ kx2 − x1keK|t|.

5.4. Local Existence (Non-Linear ODE).

Theorem 5.10 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0 and

C(x0, r) := {x ∈ X : kx− x0k ≤ r}
be the closed r — ball centered at x0 ∈ X. Assume

(5.20) M = sup {kZ(t, x)k : (t, x) ∈ J × C(x0, r)} <∞
and there exists K <∞ such that

(5.21) kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ C(x0, r) and t ∈ J.

Let T0 < min {r/M,T} and J0 := (−T0, T0), then for each x ∈ B(x0, r−MT0) there
exists a unique solution y(t) = y(t, x) to Eq. (5.2) in C (J0, C(x0, r)) . Moreover
y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t, ẏ(t, x) is jointly
continuous for all (t, x) ∈ J0 ×B(x0, r −MT0) and satisfies Eq. (5.1).

Proof. The uniqueness assertion has already been proved in Corollary 5.9. To
prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

(5.22) Sx(y)(t) := x+

Z t

0

Z(τ, y(τ))dτ.

With this notation, Eq. (5.2) becomes y = Sx(y), i.e. we are looking for a fixed
point of Sx. If y ∈ Y, then

kSx(y)(t)− x0k ≤ kx− x0k+
¯̄̄̄Z t

0

kZ(τ, y(τ))k dτ
¯̄̄̄
≤ kx− x0k+M |t|

≤ kx− x0k+MT0 ≤ r −MT0 +MT0 = r,
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showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

kSx(y)(t)− Sx(z)(t)k =
°°°°Z t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ

°°°°
≤
¯̄̄̄Z t

0

kZ(τ, y(τ))− Z(τ, z(τ))k dτ
¯̄̄̄

≤ K

¯̄̄̄Z t

0

ky(τ)− z(τ)k dτ
¯̄̄̄
.(5.23)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by

(5.24) yn(·, x) := Sx(yn−1(·, x)) = x+

Z t

0

Z(τ, yn−1(τ, x))dτ.

Using the estimate in Eq. (5.23) repeatedly we find

kyn+1(t)− yn(t)k ≤ K

¯̄̄̄Z t

0

kyn(τ)− yn−1(τ)k dτ
¯̄̄̄

≤ K2

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 kyn−1(t2)− yn−2(t2)k
¯̄̄̄¯̄̄̄

. . .

≤ Kn

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 . . .

¯̄̄̄Z tn−1

0

dtn ky1(tn)− y0(tn)k
¯̄̄̄
. . .

¯̄̄̄¯̄̄̄
≤ Kn ky1(·, x)− y0(·, x)k∞

Z
∆n(t)

dτ

=
Kn |t|n

n!
ky1(·, x)− y0(·, x)k∞ ≤ 2r

Kn |t|n
n!

(5.25)

wherein we have also made use of Lemma 5.3. Combining this estimate with

ky1(t, x)− y0(t, x)k =
°°°°Z t

0

Z(τ, x)dτ

°°°° ≤ ¯̄̄̄Z t

0

kZ(τ, x)k dτ
¯̄̄̄
≤M0,

where

M0 = T0max

(Z T0

0

kZ(τ, x)k dτ,
Z 0

−T0
kZ(τ, x)k dτ

)
≤MT0,

shows

kyn+1(t, x)− yn(t, x)k ≤M0
Kn |t|n

n!
≤M0

KnTn
0

n!
and this implies
∞X
n=0

sup
n
kyn+1(·, x)− yn(·, x)k∞,J0

: t ∈ J0

o
≤
∞X
n=0

M0
KnTn

0

n!
=M0e

KT0 <∞

where

kyn+1(·, x)− yn(·, x)k∞,J0
:= sup {kyn+1(t, x)− yn(t, x)k : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (5.21) we
also have

sup {kZ(t, y(t))− Z(t, yn−1(t))k : t ∈ J0} ≤ K ky(·, x)− yn−1(·, x)k∞,J0
→ 0 as n→∞.
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Now passing to the limit in Eq. (5.24) shows y solves Eq. (5.2). From this equation
it follows that y(t, x) is differentiable in t and y satisfies Eq. (5.1).
The continuity of y(t, x) follows from Corollary 5.9 and mean value inequality

(Corollary 4.10):

ky(t, x)− y(t0, x0)k ≤ ky(t, x)− y(t, x0)k+ ky(t, x0)− y(t0, x0)k

= ky(t, x)− y(t, x0)k+
°°°°Z t

t0
Z(τ, y(τ, x0))dτ

°°°°
≤ ky(t, x)− y(t, x0)k+

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
≤ kx− x0keKT +

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
(5.26)

≤ kx− x0keKT +M |t− t0| .
The continuity of ẏ(t, x) is now a consequence Eq. (5.1) and the continuity of y

and Z.

Corollary 5.11. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

(5.27) kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ X and t ∈ J.

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (5.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0, X) . By compactness, M := supt∈J̄0 kZ(t, 0)k < ∞ which combined with
Eq. (5.27) implies

sup
t∈J̄0

kZ(t, x)k ≤M +K kxk for all x ∈ X.

Using this estimate and Lemma 4.4 one easily shows Sx(Y ) ⊂ Y for all x ∈ X. The
proof of Theorem 5.10 now goes through without any further change.

5.5. Global Properties.

Definition 5.12 (Local Lipschitz Functions). Let U ⊂o X, J be an open interval
and Z ∈ C(J × U,X). The function Z is said to be locally Lipschitz in x if for
all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) < ∞ and
� = �(x, I) > 0 such that B(x, �(x, I)) ⊂ U and
(5.28)
kZ(t, x1)− Z(t, x0)k ≤ K(x, I)kx1 − x0k for all x0, x1 ∈ B(x, �(x, I)) and t ∈ I.

For the rest of this section, we will assume J is an open interval containing 0, U
is an open subset of X and Z ∈ C(J × U,X) is a locally Lipschitz function.

Lemma 5.13. Let Z ∈ C(J ×U,X) be a locally Lipschitz function in X and E be
a compact subset of U and I be a compact subset of J. Then there exists � > 0 such
that Z(t, x) is bounded for (t, x) ∈ I × E� and and Z(t, x) is K — Lipschitz on E�

for all t ∈ I, where

E� := {x ∈ U : dist(x,E) < �} .
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Proof. Let �(x, I) and K(x, I) be as in Definition 5.12 above. Since E is com-
pact, there exists a finite subset Λ ⊂ E such that E ⊂ V := ∪x∈ΛB(x, �(x, I)/2). If
y ∈ V, there exists x ∈ Λ such that ky − xk < �(x, I)/2 and therefore

kZ(t, y)k ≤ kZ(t, x)k+K(x, I) ky − xk ≤ kZ(t, x)k+K(x, I)�(x, I)/2

≤ sup
x∈Λ,t∈I

{kZ(t, x)k+K(x, I)�(x, I)/2} =:M <∞.

This shows Z is bounded on I × V.
Let

� := d(E, V c) ≤ 1
2
min
x∈Λ

�(x, I)

and notice that � > 0 since E is compact, V c is closed and E ∩ V c = ∅. If y, z ∈ E�

and ky − zk < �, then as before there exists x ∈ Λ such that ky − xk < �(x, I)/2.
Therefore

kz − xk ≤ kz − yk+ ky − xk < �+ �(x, I)/2 ≤ �(x, I)

and since y, z ∈ B(x, �(x, I)), it follows that

kZ(t, y)− Z(t, z)k ≤ K(x, I)ky − zk ≤ K0ky − zk
where K0 := maxx∈ΛK(x, I) <∞. On the other hand if y, z ∈ E� and ky − zk ≥ �,
then

kZ(t, y)− Z(t, z)k ≤ 2M ≤ 2M
�
ky − zk .

Thus if we let K := max {2M/�,K0} , we have shown
kZ(t, y)− Z(t, z)k ≤ Kky − zk for all y, z ∈ E� and t ∈ I.

Proposition 5.14 (Maximal Solutions). Let Z ∈ C(J×U,X) be a locally Lipschitz
function in x and let x ∈ U be fixed. Then there is an interval Jx = (a(x), b(x))
with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1—function y : J → U with the following
properties:

(1) y solves ODE in Eq. (5.1).
(2) If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (5.1) (we assume that

0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .
The function y : J → U is called the maximal solution to Eq. (5.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to Eq.
(5.1). We will start by showing the y1 = y2 on J1 ∩ J2. To do this9 let J0 = (a0, b0)
be chosen so that 0 ∈ J0 ⊂ J1 ∩ J2, and let E := y1(J0) ∪ y2(J0) — a compact
subset of X. Choose � > 0 as in Lemma 5.13 so that Z is Lipschitz on E�. Then
y1|J0 , y2|J0 : J0 → E� both solve Eq. (5.1) and therefore are equal by Corollary 5.9.

9Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.
(T is the first positive time after which y1 and y2 disagree.
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) = y2(T ) =: x0.

Applying the local uniqueness theorem to y1(· − T ) and y2(· − T ) thought as function from
(−δ, δ)→ B(x0, �(x0)) for some δ sufficiently small, we learn that y1(·−T ) = y2(·−T ) on (−δ, δ).
But this shows that y1 = y2 on [0, T + δ) which contradicts the definition of T. Hence we must
have the T = min{b1, b2}, i.e. y1 = y2 on J1 ∩J2 ∩ [0,∞). A similar argument shows that y1 = y2
on J1 ∩ J2 ∩ (−∞, 0] as well.
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Since J0 = (a0, b0) was chosen arbitrarily so that [a, b] ⊂ J1 ∩ J2, we may conclude
that y1 = y2 on J1 ∩ J2.
Let (yα, Jα = (aα, bα))α∈A denote the possible solutions to (5.1) such that 0 ∈

Jα. Define Jx = ∪Jα and set y = yα on Jα. We have just checked that y is well
defined and the reader may easily check that this function y : Jx → U satisfies all
the conclusions of the theorem.

Notation 5.15. For each x ∈ U, let Jx = (a(x), b(x)) be the maximal interval on
which Eq. (5.1) may be solved, see Proposition 5.14. Set D(Z) ≡ ∪x∈U (Jx×{x}) ⊂
J × U and let φ : D(Z) → U be defined by φ(t, x) = y(t) where y is the maximal
solution to Eq. (5.1). (So for each x ∈ U, φ(·, x) is the maximal solution to Eq.
(5.1).)

Proposition 5.16. Let Z ∈ C(J×U,X) be a locally Lipschitz function in x and y :
Jx = (a(x), b(x))→ U be the maximal solution to Eq. (5.1). If b(x) < b, then either
lim supt↑b(x) kZ(t, y(t))k = ∞ or y(b(x)−) ≡ limt↑b(x) y(t) exists and y(b(x)−) /∈
U. Similarly, if a > a(x), then either lim supt↓a(x) ky(t)k = ∞ or y(a(x)+) ≡
limt↓a y(t) exists and y(a(x)+) /∈ U.

Proof. Suppose that b < b(x) and M ≡ lim supt↑b(x) kZ(t, y(t))k < ∞. Then
there is a b0 ∈ (0, b(x)) such that kZ(t, y(t))k ≤ 2M for all t ∈ (b0, b(x)). Thus, by
the usual fundamental theorem of calculus argument,

ky(t)− y(t0)k ≤
¯̄̄̄
¯
Z t0

t

kZ(t, y(τ))k dτ
¯̄̄̄
¯ ≤ 2M |t− t0|

for all t, t0 ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) = limt↑b(x) y(t)
exists. Now if y(b(x)−) ∈ U, by the local existence Theorem 5.10, there exists δ > 0
and w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).
Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t) if t ∈ (b(x)− δ, b(x) + δ)

.

By uniqueness of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + δ) , X)
and ỹ solves the ODE in Eq. 5.1. But this violates the maximality of y and hence
we must have that y(b(x)−) /∈ U. The assertions for t near a(x) are proved similarly.

Remark 5.17. In general it is not true that the functions a and b are continuous.
For example, let U be the region in R2 described in polar coordinates by r > 0 and
0 < θ < 3π/4 and Z(x, y) = (0,−1) as in Figure 12 below. Then b(x, y) = y for all
x, y > 0 while b(x, y) =∞ for all x < 0 and y ∈ R which shows b is discontinuous.
On the other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}
is an open set for all t > 0.

Theorem 5.18 (Global Continuity). Let Z ∈ C(J × U,X) be a locally Lipschitz
function in x. Then D(Z) is an open subset of J ×U and the functions φ : D(Z)→
U and φ̇ : D(Z) → U are continuous. More precisely, for all x0 ∈ U and all
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Figure 12. An example of a vector field for which b(x) is discon-
tinuous. This is given in the top left hand corner of the figure.
The map ψ would allow the reader to find an example on R2 if so
desired. Some calculations shows that Z transfered to R2 by the
map ψ is given by

Z̃(x, y) = −e−x
µ
sin

µ
3π

8
+
3

4
tan−1 (y)

¶
, cos

µ
3π

8
+
3

4
tan−1 (y)

¶¶
.

open intervals J0 such that 0 ∈ J0 @@ Jx0 there exists δ = δ(x0, J0) > 0 and
C = C(x0, J0) <∞ such that J0 ⊂ Jy and

(5.29) kφ(·, x)− φ(·, x0)kBC(J0,U) ≤ C kx− x0k for all x ∈ B(x0, δ).

Proof. Let |J0| = b0 − a0, I = J̄0 and E := y(J̄0) — a compact subset of U and
let � > 0 and K < ∞ be given as in Lemma 5.13, i.e. K is the Lipschitz constant
for Z on E�. Suppose that x ∈ E�, then by Corollary 5.9,

(5.30) kφ(t, x)− φ(t, x0)k ≤ kx− x0keK|t| ≤ kx− x0keK|J0|
for all t ∈ J0 ∩ Jx such that φ(t, x) ∈ E�. Letting δ := �e−K|J0|/2, and assuming
x ∈ B(x0, δ), the previous equation implies

kφ(t, x)− φ(t, x0)k ≤ �/2 < � for all t ∈ J0 ∩ Jx.
This estimate further shows that φ(t, x) remains bounded and strictly away from
the boundary of U for all t ∈ J0 ∩ Jx. Therefore, it follows from Proposition 5.14
that J0 ⊂ Jx and Eq. (5.30) is valid for all t ∈ J0. This proves Eq. (5.29) with
C := eK|J0|.
Suppose that (t0, x0) ∈ D(Z) and let 0 ∈ J0 @@ Jx0 such that t0 ∈ J0 and δ be

as above. Then we have just shown J0 × B(x0, δ) ⊂ D(Z) which proves D(Z) is
open. Furthermore, since the evaluation map

(t0, y) ∈ J0 ×BC(J0, U)
e→ y(t0) ∈ X



ANALYSIS TOOLS WITH APPLICATIONS 67

is continuous (as the reader should check) it follows that φ = e ◦ (x→ φ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous maps.
The continuity of φ̇(t0, x) is a consequences of the continuity of φ and the differential
equation 5.1
Alternatively using Eq. (5.2),

kφ(t0, x)− φ(t, x0)k ≤ kφ(t0, x)− φ(t0, x0)k+ kφ(t0, x0)− φ(t, x0)k

≤ C kx− x0k+
¯̄̄̄Z t0

t

kZ(τ, φ(τ, x0))k dτ
¯̄̄̄
≤ C kx− x0k+M |t0 − t|

where C is the constant in Eq. (5.29) and M = supτ∈J0 kZ(τ, φ(τ, x0))k <∞. This
clearly shows φ is continuous.

5.6. Semi-Group Properties of time independent flows. To end this chapter
we investigate the semi-group property of the flow associated to the vector-field Z.
It will be convenient to introduce the following suggestive notation. For (t, x) ∈
D(Z), set etZ(x) = φ(t, x). So the path t→ etZ(x) is the maximal solution to

d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 5.19. We write f : X → X to mean a function defined on some open
subset D(f) ⊂ X. The open set D(f) will be called the domain of f. Given two
functions f : X → X and g : X → X with domains D(f) and D(g) respectively,
we define the composite function f ◦ g : X → X to be the function with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g iff
D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write f ⊂ g
iff D(f) ⊂ D(g) and g|D(f) = f.

Theorem 5.20. For fixed t ∈ R we consider etZ as a function from X to X with
domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(φ) = D(Z) ⊂ R×U, D(Z) and
φ are defined in Notation 5.15. Conclusions:

(1) If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
(2) If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).

(3) For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left to
the reader. Suppose that x ∈ D(etZ ◦ esZ). Then by assumption x ∈ D(esZ) and
esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =

½
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since, eτZ(x) is
the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t+ s) = e(t+s)Z(x).
That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that etZ ◦ esZ ⊂ e(t+s)Z .
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To finish the proof of item 1. it suffices to show that D(e(t+s)Z) ⊂ D(etZ ◦ esZ).
Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set y(τ) = e(τ+s)Z(x) defined for
0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued prob-
lem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ = t, e(t+s)Z(x) =
etZ(esZ(x)). This shows that x ∈ D(etZ ◦ esZ) and in fact e(t+s)Z ⊂ etZ ◦ esZ .
Item 2. Let x ∈ D(e−tZ) — again assume for simplicity that t ≥ 0. Set y(τ) =

e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x) and ẏ(τ) = Z(y(τ)).
This shows that y(τ) = eτZ(e−tZ(x)) and in particular that x ∈ D(etZ ◦ e−tZ) and
etZ ◦ e−tZ(x) = x. This proves item 2.
Item 3. I will only consider the case that s < 0 and t + s ≥ 0, the other

cases are handled similarly. Write u for t + s, so that t = −s + u. We know that
etZ = euZ ◦ e−sZ by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .
Notice in general, one has (f ◦ g) ◦ h = f ◦ (g ◦ h) (you prove). Hence, the above
displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial converse to
Theorem 5.20.

Proposition 5.21 (Flows and Complete Vector Fields). Suppose U ⊂o X, φ ∈
C(R× U,U) and φt(x) = φ(t, x). Suppose φ satisfies:

(1) φ0 = IU ,
(2) φt ◦ φs = φt+s for all t, s ∈ R, and
(3) Z(x) := φ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then φt = etZ .

Proof. Let x ∈ U and y(t) ≡ φt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0φ(t+s)(x) = d

ds
|0φs ◦ φt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 5.9) that φt(x) = y(t) = etZ(x).

5.7. Exercises.

Exercise 5.1. Find a vector field Z such that e(t+s)Z is not contained in etZ ◦ esZ .
Definition 5.22. A locally Lipschitz function Z : U ⊂o X −→ X is said to be a
complete vector field if D(Z) = R×U. That is for any x ∈ U, t −→ etZ(x) is defined
for all t ∈ R.
Exercise 5.2. Suppose that Z : X −→ X is a locally Lipschitz function. Assume
there is a constant C > 0 such that

kZ(x)k ≤ C(1 + kxk) for all x ∈ X.

Then Z is complete. Hint: use Gronwall’s Lemma 5.8 and Proposition 5.16.
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Exercise 5.3. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0. Show there
exists a, b ∈ [0,∞] such that

y(t) =


1
4 (t− b)2 if t ≥ b

0 if −a < t < b
−14 (t+ a)2 if t ≤ −a.

Exercise 5.4. Using the fact that the solutions to Eq. (5.3) are never 0 if x 6= 0,
show that y(t) = 0 is the only solution to Eq. (5.3) with y(0) = 0.

Exercise 5.5. Suppose that A ∈ L(X). Show directly that:

(1) etA define in Eq. (5.14) is convergent in L(X) when equipped with the
operator norm.

(2) etA is differentiable in t and that d
dte

tA = AetA.

Exercise 5.6. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A with
eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that X = Rn and A
is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn).

Exercise 5.7. Suppose that A,B ∈ L(X) and [A,B] ≡ AB −BA = 0. Show that
e(A+B) = eAeB.

Exercise 5.8. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all s, t ∈ R.
Show

y(t) := e(
R t
0
A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 5.9. Compute etA when

A =

µ
0 1
−1 0

¶
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.
Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 5.10. Compute etA when

A =

 0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is the 3×3
identity matrix. Hint: Sum the series.

Exercise 5.11. Prove Theorem 5.7 using the following outline.

(1) First show t ∈ [0,∞)→ Tt ∈ L(X) is continuos.
(2) For � > 0, let S� := 1

�

R �
0
Tτdτ ∈ L(X). Show S� → I as � ↓ 0 and conclude

from this that S� is invertible when � > 0 is sufficiently small. For the
remainder of the proof fix such a small � > 0.
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(3) Show

TtS� =
1

�

Z t+�

t

Tτdτ

and conclude from this that

lim
t↓0

t−1 (Tt − I)S� =
1

�
(T� − IdX) .

(4) Using the fact that S� is invertible, conclude A = limt↓0 t−1 (Tt − I) exists
in L(X) and that

A =
1

�
(T� − I)S−1� .

(5) Now show using the semigroup property and step 4. that d
dtTt = ATt for

all t > 0.
(6) Using step 5, show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 5.12 (Higher Order ODE). Let X be a Banach space, , U ⊂o Xn and
f ∈ C (J × U ,X) be a Locally Lipschitz function in x = (x1, . . . , xn). Show the nth
ordinary differential equation,
(5.31)
y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t)) with y(k)(0) = yk0 for k = 0, 1, 2 . . . , n− 1

where (y00, . . . , y
n−1
0 ) is given in U , has a unique solution for small t ∈ J. Hint: let

y(t) =
¡
y(t), ẏ(t), . . . y(n−1)(t)

¢
and rewrite Eq. (5.31) as a first order ODE of the

form
ẏ(t) = Z(t,y(t)) with y(0) = (y00, . . . , y

n−1
0 ).

Exercise 5.13. Use the results of Exercises 5.10 and 5.12 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2 × 2 matrix associated to this system, A, has only one eigenvalue 1
and may be written as A = I +B where B2 = 0.

Exercise 5.14. Suppose that A : R → L(X) is a continuous function and U, V :
R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I

and

(5.32) U̇(t) = −U(t)A(t) with U(0) = I.

Prove that V (t) is invertible and that V −1(t) = U(t).Hint: 1) show d
dt [U(t)V (t)] =

0 (which is sufficient if dim(X) <∞) and 2) show compute y(t) := V (t)U(t) solves
a linear differential ordinary differential equation that has y ≡ 0 as an obvious
solution. Then use the uniqueness of solutions to ODEs. (The fact that U(t) must
be defined as in Eq. (5.32) is the content of Exercise 22.2 below.)

Exercise 5.15 (Duhamel’ s Principle I). Suppose that A : R→ L(X) is a contin-
uous function and V : R → L(X) is the unique solution to the linear differential
equation in Eq. (22.28). Let x ∈ X and h ∈ C(R, X) be given. Show that the
unique solution to the differential equation:

(5.33) ẏ(t) = A(t)y(t) + h(t) with y(0) = x



ANALYSIS TOOLS WITH APPLICATIONS 71

is given by

(5.34) y(t) = V (t)x+ V (t)

Z t

0

V (τ)−1h(τ) dτ.

Hint: compute d
dt [V

−1(t)y(t)] when y solves Eq. (5.33).

Exercise 5.16 (Duhamel’ s Principle II). Suppose that A : R → L(X) is a con-
tinuous function and V : R→ L(X) is the unique solution to the linear differential
equation in Eq. (22.28). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be given. Show that
the unique solution to the differential equation:

(5.35) Ẇ (t) = A(t)W (t) +H(t) with W (0) =W0

is given by

(5.36) W (t) = V (t)W0 + V (t)

Z t

0

V (τ)−1H(τ) dτ.

Exercise 5.17 (Non-Homogeneous ODE). Suppose that U ⊂o X is open and
Z : R× U → X is a continuous function. Let J = (a, b) be an interval and t0 ∈ J.
Suppose that y ∈ C1(J, U) is a solution to the “non-homogeneous” differential
equation:

(5.37) ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U.

Define Y ∈ C1(J − t0,R× U) by Y (t) ≡ (t+ t0, y(t+ t0)). Show that Y solves the
“homogeneous” differential equation

(5.38) Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0),

where Z̃(t, x) ≡ (1, Z(x)). Conversely, suppose that Y ∈ C1(J − t0,R × U) is a
solution to Eq. (5.38). Show that Y (t) = (t + t0, y(t + t0)) for some y ∈ C1(J, U)
satisfying Eq. (5.37). (In this way the theory of non-homogeneous ode’s may be
reduced to the theory of homogeneous ode’s.)

Exercise 5.18 (Differential Equations with Parameters). Let W be another Ba-
nach space, U ×V ⊂o X ×W and Z ∈ C(U ×V,X) be a locally Lipschitz function
on U × V. For each (x,w) ∈ U × V, let t ∈ Jx,w → φ(t, x, w) denote the maximal
solution to the ODE

(5.39) ẏ(t) = Z(y(t), w) with y(0) = x.

Prove

(5.40) D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}
is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (5.39), then v(t) ≡ (y(t), w)

solves the differential equation,

(5.41) v̇(t) = Z̃(v(t)) with v(0) = (x,w),

where Z̃(x,w) ≡ (Z(x,w), 0) ∈ X ×W and let ψ(t, (x,w)) := v(t). Now apply the
Theorem 5.18 to the differential equation (5.41).


