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35. CoMPACT AND FREDHOLM OPERATORS AND THE SPECTRAL THEOREM

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

35.1. Compact Operators.

Proposition 35.1. Let M be a finite dimensional subspace of a Hilbert space H
then

(1) M is complete (hence closed).
(2) Closed bounded subsets of M are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonormal
basis {¢1,...,¢n} of M. Define U : M — C™ to be the unique unitary map such
that U¢; = e; where ¢; is the ith standard basis vector in C". It now follows that
M is complete and that closed bounded subsets of M are compact since the same
is true for C". m

Definition 35.2. A bounded operator K : H — B is compact if K maps bounded
sets into precompact sets, i.e. K(U) is compact in B, where U := {z € H : ||z| < 1}
is the unit ball in H. Equivalently, for all bounded sequences {x,}52; C H, the
sequence { Kz, }5° ; has a convergent subsequence in B.

Notice that if dim(H) = oo and T': H — B is invertible, then T is not compact.

Definition 35.3. K : H — B is said to have finite rank if Ran(K) C B is finite
dimensional.

Corollary 35.4. If K : H — B is a finite rank operator, then K is compact.
In particular if either dim(H) < oo or dim(B) < oo then any bounded operator
K : H — B is finite rank and hence compact.

Example 35.5. Let (X, 1) be a measure space, H = L?(X, ) and

,y) = Zfi(x)g ()

where
fiagi cL*(X,p)fori=1,...,n

Define (K f)(x) = [ k( (y)du(y), then K : L*(X,u) — L?(X,p) is a finite
rank operator and hence compact

Lemma 35.6. Let K := K(H, B) denote the compact operators from H to B.
Then K(H, B) is a norm closed subspace of L(H, B).

Proof. The fact that K is a vector subspace of L(H, B) will be left to the reader.
Now let K,, : H — B be compact operators and K : H — B be a bounded operator
such that lim,,_, || K, — K||op = 0. We will now show K is compact.

First Proof. Given € > 0, choose N = N(¢) such that |[Ky — K| < e
Using the fact that KyU is precompact, choose a finite subset A C U such that
mingea ||y — Knz|| < efor all y € Ky (U). Then for z = Kzg € K(U) and = € A,

2 — Kaf) = (K — Kx)zo + Kn(ao — ) + (Kn — K
< 2e+ HKN$0 — KN:EH



580 BRUCE K. DRIVER'

Therefore mingey ||z — Knz|| < 3¢, which shows K (U) is 3¢ bounded for all € > 0,
K(U) is totally bounded and hence precompact.

Second Proof. Suppose {xn}zozl is a bounded sequence in H. By compactness,
there is a subsequence {x;}zo:l of {z,,},7, such that {le}l}:}:l is convergent in
B. Working inductively, we may construct subsequences

{Zn}tney D {m’}t}r:ozl > {xi}f;l D {ap il D

such that {K,,z"} | is convergent in B for each m. By the usual Cantor’s diago-
nalization procedure, let y, := 2%, then {y,} - is a subsequence of {z,} -, such
that {K,,yn},-, is convergent for all m. Since

[EKyn — Kyl < (K = Kin) ynll + [ K (yn — yo) || + [|(Km — K) w1) |
<2 ”K - KmH + ”Km(yn - yl)H ’

lim sup ||Ky, — Ky <2||K — K| — 0 as m — oo,

n,l—oo

which shows {Ky,} -, is Cauchy and hence convergent. m

Proposition 35.7. A bounded operator K : H — B is compact iff there exists
finite rank operators, K, : H — B, such that |K — K,|| — 0 as n — oo.

Proof. Since K(U) is compact it contains a countable dense subset and from
this it follows that K (H) is a separable subspace of B. Let {¢,,} be an orthonormal
N

basis for K (H) C B and Pyy = . (y,$n)dn be the orthogonal projection of y
n=1
onto span{d, }Y_;. Then limy_ ||Pny —y|| = 0 for all y € K(H).

Define K,, = P,K — a finite rank operator on H. For sake of contradiction
suppose that limsup,, . [|[K — K,|| = € > 0, in which case there exists z,, € U
such that |[(K — K, )zy, || > € for all ny. Since K is compact, by passing to a
subsequence if necessary, we may assume { Kz, }20,6:1 is convergent in B. Letting
y = limg oo Kz,

1K = Ky )on, | = (1 = Po ) K, || < [|(1 = P ) (Kan, —y)ll + (1= Pyl
< Ezn, =yl + I(1 = Po)yll — 0 as k — oo.

But this contradicts the assumption that e is positive and hence we must have
lim,, o || — K|l =0, i.e. K is an operator norm limit of finite rank operators.
The converse direction follows from Corollary 35.4 and Lemma 35.6. m

Corollary 35.8. If K is compact then so is K*.

Proof. Let K,, = P, K be as in the proof of Proposition 35.7, then K} = K*P,
is still finite rank. Furthermore, using Proposition 12.16,

|K* = K| = | K = Kull — 0 as n — o0
showing K* is a limit of finite rank operators and hence compact. =
35.2. Hilbert Schmidt Operators.

Proposition 35.9. Let H and B be a separable Hilbert spaces, K : H — B be a
bounded linear operator, {e, }22, and {uy,},._, be orthonormal basis for H and B
respectively. Then:
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1) >0, |Ke,|* = S | K *um||? allowing for the possibility that the sums
are infinite. In particular the Hilbert Schmidt norm of K,

o

2 2

1K s =D 1 Keall”,
n=1

is well defined independent of the choice of orthonormal basis {e,}22,. We
say K : H — B is a Hilbert Schmidt operator if |K| ;¢ < oo and let
HS(H, B) denote the space of Hilbert Schmidt operators from H to B.

(2) Forall K € L(H,B), | K|l gg = [ K*||gg and

1Kl s = 1 Kllop :=sup{l[Kh|[: h € H > |[h]| =1}.
(3) The set HS(H,B) is a subspace of K(H,B) and ||| gg i a norm on

HS(H,B) for which (HS(H, B), ||| ;) is a Hilbert space. The inner prod-
uct on HS(H, B) is given by

(351) (Kl,KQ Z Klen;KQGn

(4) Let Pyx := Zi:r:l(:c, en)en be orthogonal projection onto span{e; : it < N} C

H and for K € HS(H, B), let K,, :== KP,,. Then
1K — Knll5, < IK — Knls — 0 as N — oo,

which shows that finite rank operators are dense in (HS(H,B), ||| yg) -
(5) If L is another Hilbert space and A : L — H and C : B — L are bounded
operators, then

KAl gs < [Kllgs 1Ally, and [CK|gs < [Kllms [Cll,,

Proof. Items 1. and 2. By Parsaval’s equality and Fubini’s theorem for sums,

Z ”Ken”2 = Z Z |(K€naum)‘2 = Z Z |(enaK*Um)|2 = Z ||K*um“2
n=1 m=1

n=1m=1 m=1n=1

This proves ||K| g is well defined independent of basis and that [|K|gq =
|K*|| g - For « € H\ {0}, z/||z| may be taken to be the first element in an
orthonormal basis for H and hence

<K grs -

Multiplying this inequality by [|z|| shows |[Kz|| < || K|| g [|2] and hence || K|

1K | s -
Item 3. For Ky, Ky € L(H, B),

op—

o0

1K+ Kall s = 4| D 1 K1en + Kaeq |

[eS)
2 0o
<\ D0 K enll + [Kaenll] = [ Kienll + [1Kzenl 3o I,
n=1
[eS) [eS)
< I enlly 2 N, + IHIE2enll} o2yl = 1K s + 12 s -
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From this triangle inequality and the homogeneity properties of ||-|| ;5 , we now eas-

ily see that HS(H, B) is a subspace of K(H, B) and ||| ;¢ is a norm on HS(H, B).
Since

Z |(Klean2en)‘ < Z HKlen” ”K?enH
n=1

n=1
oo 00
2 2
< Do el | D 1Kenll” = 1Kl s 1Ko s »
n=1

the sum in Eq. (35.1) is well defined and is easily checked to define an inner product
on HS(H, B) such that ||K||§{S = (K1, K2) g - To see that HS(H, B) is complete
in this inner product suppose {K,, } ~_, is a ||-|| ;¢ — Cauchy sequence in HS(H, B).
Because L(H, B) is complete, there exists K € L(H, B) such that || K, — K[|, — 0
as m — 00. Since

N

YO IE — K eal* = Jim Z (K7 — Kon) en]]” < lim sup 1K = Kl grs s

n=1

[ Km KHHS = ZH (K — Kp) en” = hm Z (K — K )enH

n=1

<lim sup ||K; — K| yg — 0 as m — oo.
l—o0

Item 4. Simply observe,
1K — Kl < 1K = Enlgs = Y [ Keal|* = 0as N — co.
n>N
Item 5. For C € L(B,L) and K € L(H, B) then

2 2 2 2 2 2
ICKlss =Y ICKenll” < ICll, Y 1Kenl” = IC5, 1K I7s

n=1 n=1
and for Ae L(L,H),
KAl gs = IA"K™ |l gs < 1A 1K s = [ Allop 1K N1 15 -
[

Remark 35.10. The separability assumptions made in Proposition 35.9 are unnec-
essary. In general, we define

1K 175 = Y I Kel®
ecl
where I' C H is an orthonormal basis. The same proof of Item 1. of Proposition 35.9
shows ||K|| ;¢ is well defined and ||K|| ;¢ = || K*| 5g- If HKH?LIS < 00, then there
exists a countable subset I’y C ' such that Ke = 0if e € T'\Ty. Let Hy := span(T)
and By := K(Hy). Then K (H) C By, K|y+ = 0 and hence by applying the results
of Proposition 35.9 to K|p, : Hy — By one easily sees that the separability of H
and B are unnecessary in Proposition 35.9.
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Exercise 35.1. Suppose that (X, ) is a o—finite measure space such that H =
L?(X, i) is separable and k : X x X — R is a measurable function, such that

Vo ) = / k() Pdu(e)duly) < oo.
XxX

Define, for f € H,
Kf(e) = [ ko) fw)dnt),

when the integral makes sense. Show:
(1) Kf(x) is defined for y—a.e. x in X.
(2) The resulting function K f is in H and K : H — H is linear.
3) 1K s = 15l p2(x  x peopy < 00~ (This implies K € HS(H, H).)

35.1. Since

[ auto) ([ st du()) < [auta) ([ e aun) ([ 1l aut)

(35.2) < [kI3 1£113 < oo,

we learn K f is almost everywhere defined and that K f € H. The linearity of K is
a consequence of the linearity of the Lebesgue integral. Now suppose {¢,}5°; is
an orthonormal basis for H. From the estimate in Eq. (35.2), k(z,-) € H for p —
a.e. z € X and therefore

HKHHS—Z / dn(a
= dp(x d)n,/% T, 3 ¢7la
Z/X (@) (G Fla ) = [ duta D3

2

k(2 y)dn(y)dp(y)

X
:/Xdﬂ(x)||/;(x,.)||if:/dex)/xdu(y)lk(x,y)\?= 1Kl -

Example 35.11. Suppose that 2 C R™ is a bounded set, @ < m, then the operator
K : L*(Q,m) — L?(Q, m) defined by

Kf@)= | =)y

is compact.

Proof. For € > 0, let

1
Kof@) = [ ety = foc + (10)) @)

where g.(x) = Iz‘a;ﬁlc(a;) with C' C R™ a sufficiently large ball such that Q@ —Q C
C. Since a < n, it follows that
9e < g0 =1|1""1c € L'(R", m).
Hence it follows by Proposition 11.12 ?? that
1K = K2 Fllueey < 1090 — 90) % (ol o,
< 1(g0 = gl Ly 2 f 1l p2rmy = (90 = gl 1 @y 111 22
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which implies
(35.3)

1K = Kl ez < 190 — ellpsgeny = /C

by the dominated convergence theorem. For any € > 0,

1 2
/ {701} dzdy < oo,
axa Lz —yl" +e

and hence K. is Hilbert Schmidt and hence compact. By Eq. (35.3), K. — K as
€ | 0 and hence it follows that K is compact as well. m

1 1
zldr—0ase |0

o[+ Jal

35.3. The Spectral Theorem for Self Adjoint Compact Operators.

Lemma 35.12. Suppose T : H — B is a bounded operator, then Nul(T*) =
Ran(T)* and Ran(T) = Nul(T*)*.

Proof. An element y € B is in Nul(T*) iff 0 = (T"y,z) = (y, Az) for all
x € H which happens iff y € Ran(T)*. Because Ran(T) = Ran(T)**, Ran(T) =
Nul(T%)-. m

For the rest of this section, T' € KC(H) := K(H, H) will be a self-adjoint compact
operator or S.A.C.O. for short.

Example 35.13 (Model S.A.C.0O.). Let H = /{5 and T be the diagonal matrix

A0 0
0 X O
T={ 0 0 X - |
where lim,_, [A\,] = 0 and A\, € R. Then T is a self-adjoint compact operator.

(Prove!)

The main theorem of this subsection states that up to unitary equivalence, Ex-
ample 35.13 is essentially the most general example of an S.A.C.O.

Theorem 35.14. Suppose T € L(H) := L(H, H) is a bounded self-adjoint opera-
tor, then

LTS
7 = sup LLLOL
0 ISl
Moreover if there exists a non-zero element g € H such that
(To.0) _
5 =Tl
gl

then g is an eigenvector of T with Tg = A\g and A € {£||T|}

Proof. Let
T
M = sup LTI
20 N fll
We wish to show M = ||T|. Since |(f, Tf)| < [[FINTFII < TN f]?, we see M <
-
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Conversely let f,g € H and compute
(f+9.T(f+9)—(f—9.T(f—9)
=(£\Tg)+ (9, Tf)+ (f,Tg) + (9, Tf)
=2((f,Tg) + (Tg, /)] = 2[(f,Tg) + (f,Tg)]
=4Re(f,Tg).
Therefore, if ||f|| = |lg]| = 1, it follows that

M M
Re(f, To)l < 5 {I1f + I +11f — oI’} = = {21711 + 20gl*} = M.
By replacing f be € f where @ is chosen so that e?(f,Tg) is real, we find
|(f, Tg)| < M for all |[f[| = [lgl| = 1.

Hence
ITl=sup |(f,Tg)| <M.
IflI=llgll=1

If g€ H\{0} and ||T|| = |(Tg,9)|/|lg]|* then, using the Cauchy Schwarz inequal-
ity,

(Tg, 9)l _ [T

gl = gl
This implies |(Tg,q)| = || Tg|||lg|]| and forces equality in the Cauchy Schwarz in-
equality. So by Theorem 12.2, T'g and g are linearly dependent, i.e. Tg = Ag
for some A € C. Substituting this into (35.4) shows that |[A\| = ||T||. Since T is
self-adjoint,

(35.4) 1Tl = <71l

Mgll* = (\g,9) = (Tg,9) = (9. Tg) = (9, A9) = A9, 9);
which implies that A € R and therefore, A € {£||T||}. =

Theorem 35.15. Let T be a S.A.C.O., then either A = ||T|| or A = —||T|| is an
etgenvalue of T.

Proof. Without loss of generality we may assume that 7' is non-zero since
otherwise the result is trivial. By Theorem 35.14, there exists f, € H such that
[fnll =1 and

|(fn: Tfn)|

1fnll?
By passing to a subsequence if necessary, we may assume that A := limy, 00 (fn, T'fn)
exists and A € {£||T||}. By passing to a further subsequence if necessary, we may
assume, using the compactness of T, that T'f,, is convergent as well. We now com-
pute:

0 < T fn = Mall* = ITfull® = 2M(T fus fu) +A°
SN 2NTfus fr) + A2 = A2 =222 + A2 =0 as n — oo.

(35.5) =|(fn,Tfn)| — |IT] as n — occ.

Hence
(35.6) Tfn—Afn —>0asn— oo

and therefore )
f= lim f, == lim Tf,

n—oo )\ n— oo
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exists. By the continuity of the inner product, ||f|| = 1 # 0. By passing to the limit
in Eq. (35.6) we find that Tf = \f. m

Lemma 35.16. LetT : H — H be a self-adjoint operator and M be aT — invariant
subspace of H, i.e. T(M) C M. Then M* is also a T — invariant subspace, i.e.
T(M*)C M*.

Proof. Let x € M and y € M+, then Tz € M and hence
0= (Tz,y) = (z,Ty) for all z € M.
Thus Ty € M+. m

Theorem 35.17 (Spectral Theorem). Suppose that T : H — H is a non-zero
S.A.C.O., then

(1) there exists at least one eigenvalue A € {£]|T||}.

(2) There are at most countable many non-zero eigenvalues, {\, }\_;, where
N = oo is allowed. (Unless T is finite rank, N will be infinite.)

(3) The A\’s (including multiplicities) may be arranged so that |A\,| > |Ant1]
for all n. If N = oo then lim, o |An| = 0. (In particular any eigenspace
for T with non-zero eigenvalue is finite dimensional.)

(4) The eigenvectors {¢, })_, can be chosen to be an O.N. set such that H =
span{ ¢, } & Nul(T).

(5) Using the {¢n}N_; above,

N
T =" An(Wh, én)én for all ¥ € H.
n=1

(6) The spectrum of T is o(T) = {0} UUSL,{\,}.

Proof. We will find A,,’s and ¢,,’s recursively. Let A\; € {£||T||} and ¢1 € H
such that T'¢p; = A1¢1 as in Theorem 35.15. Take My = span(¢y) so T'(My) C M.
By Lemma 35.16, TMi- C Mj-. Define Ty : M- — Mi- via Ty = T|pse- Then T
is again a compact operator. If T} = 0, we are done.

If Ty # 0, by Theorem 35.15 there exists Ay € {£||T|1} and ¢ € Mji- such that
||¢)2H =1 and T1¢s = Tpa = Aago. Let My = span(gbl,gbg). Again T(Mg) C My
and hence T, = T|M2L : Ms- — M3- is compact. Again if T = 0 we are done.

If T, # 0. Then by Theorem 35.15 there exists A3 € {£||T||2} and ¢3 € M- such
that ||¢s]| = 1 and Thps = T'ps = Asz¢ps. Continuing this way indefinitely or until we
reach a point where T;, = 0, we construct a sequence {\,})_; of eigenvalues and
orthonormal eigenvectors {¢,, }_; such that |\;| > |\;;1| with the further property
that

174l

(35.7) |)\Z| =
o L{p1,02,...0i-1} H¢||

If N = oo then lim; o |A;] = 0 for if not there would exist € > 0 such that
|Ai] > € > 0 for all i. In this case {¢;/)\;};—, is sequence in H bounded by e !.
By compactness of T, there exists a subsequence iy such that ¢;, = T, /N, is
convergent. But this is impossible since {¢;, } is an orthonormal set. Hence we
must have that e = 0.
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Let M = span{¢;}}¥, with N = oo possible. Then T(M) C M and hence
T(M*) c M*. Using Eq. (35.7),

ITar | < T | = [An] — O as n — o0

showing T|M+ = 0.
Define Py, to be orthogonal projection onto M. Then for ¢ € H,

N
= Pop+ (1= Po)p = Potp + Y _ (¢, 6:) b

=1

and

T = TPow+TZ¢¢ ZA (¥, 0i)¢

i=1
Since {\,} C o(T) and o(T) is closed, it follows that 0 € o(T) and hence {\,, }>2, U
{0} C o(T). Suppose that z ¢ {A\,}52; U {0} and let d be the distance between
z and {\,}52; U {0}. Notice that d > 0 because lim,_,oc A, = 0. A few simple
computations show that:

N

(T — 2D =Y (1, 6:)(Ni — 2)¢i — 2Po,

i=1

(T — 2)~! exists,

N
(T —2D) 7= (1, ¢i)(Ai — 2) "¢ — 2~ Pogp,

=1
and
al 1
(T =20 ) = (. 60) i ||2HPW||2

=1

2 N 1
<(3) (Z (4.60) |2+|Pow||2> = Ll

1

We have thus shown that (7' — 21)~! exists, |[(T — 2I)7!|| < d~! < oo and hence
z¢o(T). m

35.4. Structure of Compact Operators.

Theorem 35.18. Let K : H — B be a compact operator. Then there exists N €
NU{co}, orthonormal subsets {%}L C H and {wn}gzl C B and a sequences
{An}ivzl C C such that lim, oo A\p, =0 if N = oo and

N
Kf = Au(f ¢n)tn for all f € H.

n=1

Proof. The operator K*K € K(H) is self-adjoint and hence by Theorem 35.17,
there exists an orthonormal set {¢,, })_; C H and {u,},-, C (0,00) such that

N
K*Kf =" pin(f,¢n)¢n for all f € H.

n=1



588 BRUCE K. DRIVER'

Let A\, := /tt, and VK*K € KC(H) be defined by

N
VE*Kf = Au(f, én)én for all f € H.

n=1

Define U € L(H, B) so that U =“K (K*K) /%" or more precisely by

N
(35.8) Uf = N (f,60) K.

n=1

The operator U is well defined because
M Kb, M K dm) = A A0 (6ny K* K ) = A A0 AL n = G
which shows {;; 'K ¢y, } _ is an orthonormal subset of B. Moreover this also shows

N

IO =D 1(f el = I1PFI

n=1

where P = Pyu(k).- Replacing f by (K*K)1/2 f in Eq. (35.8) shows

N N
(85.9) U(K'K)* f =" MUK E)Y? f,02)Kén =D (f,00)Kn = KT,
n=1 n=1

since f = 32,0, (f, 6n)¢n + Pf.
From Eq. (35.9) it follows that

N N
Kf = Z )\n(fa ¢n)U¢n = Z An(fa d)n)wn
n=1 n=1

where {wn}nNzl is the orthonormal sequence in B defined by

VY = Uy = A\, Kby
| |

35.4.1. Trace Class Operators. We will say K € IC(H) is trace class if

N
:Z)\n<oo
n=1

in which case we define
N
tr(K) = Z An (Vn; On).-
n=1

Notice that if {e, },-_, is any orthonormal basis in H (or for the Ran(K) if H is
not separable) then

N N
(Kemaem = Z Z em7¢n T/Jme = ZAn Z ema¢n ¢n76m)
n=1

m=1

=
i

M
m=

1

Il
MZ il

3
Il
—
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where Py is orthogonal projection onto Span(ey, ..., epr). Therefore by dominated
convergence theorem ,

oo

N N
(Kemaem) = ]\/}gnoo Z;AH(PMT/}T”Q/)") = Z_:l>\n A}ILHOO(PMq/}naQSn)

m=1 N
= Z /\n(q;[}na ¢n) = tI‘(K).
n=1

35.5. Fredholm Operators.

Lemma 35.19. Let M C H be a closed subspace and'V C H be a finite dimensional
subspace. Then M +V is closed as well. In particular if codim(M) = dim(H/M) <
oo and W C H is a subspace such that M C W, then W is closed and codim(W) <
0.

Proof. Let P: H — M be orthogonal projection and let Vp := (I — P) V. Since
L
dim(Vp) < dim(V) < oo, Vj is still closed. Also it is easily seen that M+V = M &V,
1
from which it follows that M + V is closed because {z, = m, +v,} C M & Vj is
convergent iff {m,,} C M and {v,} C V, are convergent.
If codim(M) < oo and M C W, there is a finite dimensional subspace V C H

such that W = M + V and so by what we have just proved, W is closed as well. It
should also be clear that codim(W) < codim(M) < co. m

Lemma 35.20. If K : H — B is a finite rank operator, then there exists
{on}r_, C H and {n}f_, C B such that
(1) Kz = Zﬁzl(:ﬂ,@l)wn forall v € H.
(2) K*y = Zﬁzl(y, Yn)on for all y € B, in particular K* is still finite rank.
For the next two items, further assume B = H.
(3) dimNul(7 + K) < oc.
(4) dim coker(I + K) < 00, Ran(I + K) is closed and

Ran(I + K) = Nul( + K*)*.

Proof.
(1) Choose {1, }¥ to be an orthonormal basis for Ran(K). Then for x € H,
k k k
Ko = (Kw,gn)tn = Y (&, K )tbn = Y (2, 6n)¥n
n=1 n=1 n=1

where ¢, = K*,,.

(2) Item 2. is a simple computation left to the reader.

(3) Since Nul(/+ K)={z € H | x = —Kz} C Ran(K) it is finite dimensional.
(4) Since z = (I + K)x € Ran(I + K)for z € Nul(K), Nul(K) C Ran(I + K).
Since {¢1, ¢2,..., 0} C Nul(K), H = Nul(K) + span ({¢1, ¢2,...,dr})
and thus codim (Nul(K)) < co. From these comments and Lemma 35.19,
Ran(I + K) is closed and codim (Ran(I 4+ K)) < codim (Nul(K)) < oc.
The assertion that Ran(I + K) = Nul(I + K*)* is a consequence of Lemma
35.12 below.
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Definition 35.21. A bounded operator F' : H — B is Fredholm iff the
dimNul(F) < oo, dimcoker(F) < oo and Ran(F) is closed in B. (Recall:
coker(F) = B/Ran(F).) The index of F is the integer,

(35.10) index(F') = dim Nul(F') — dim coker(F')
(35.11) = dim Nul(F') — dim Nul(F™)

Notice that equations (35.10) and (35.11) are the same since, (using Ran(F) is
closed)
B = Ran(F) @ Ran(F)* = Ran(F) @ Nul(F*)
so that coker(F) = B/Ran(F) = Nul(F*).

Lemma 35.22. The requirement that Ran(F) is closed in Defintion 35.21 is re-
dundant.

Proof. By restricting F to Nul(F)=+, we may assume without loss of generality
that Nul(F") = {0}. Assuming dim coker(F') < oo, there exists a finite dimensional
subspace V' C B such that B = Ran(F') @ V. Since V is finite dimensional, V is
closed and hence B = V @ V=+. Let 7 : B — V' be the orthogonal projection
operator onto V' and let G = 7F : H — V= which is continuous, being the
composition of two bounded transformations. Since G is a linear isomorphism, as
the reader should check, the open mapping theorem implies the inverse operator
G~':V+ — H is bounded.

Suppose that h, € H is a sequence such that lim,,_,, F'(h,) =: b exists in B.
Then by composing this last equation with 7, we find that lim, . G(h,) = 7(b)
exists in V+. Composing this equation with G~1 shows that h := lim, o hy =
G~ 'n(b) exists in H. Therefore, F(h,) — F(h) € Ran(F), which shows that
Ran(F) is closed. m

Remark 35.23. It is essential that the subspace M = Ran(F) in Lemma 35.22 is
the image of a bounded operator, for it is not true that every finite codimensional
subspace M of a Banach space B is necessarily closed. To see this suppose that B
is a separable infinite dimensional Banach space and let A C B be an algebraic
basis for B, which exists by a Zorn’s lemma argument. Since dim(B) = oo and B
is complete, A must be uncountable. Indeed, if A were countable we could write
B = U2, B, where B,, are finite dimensional (necessarily closed) subspaces of B.
This shows that B is the countable union of nowhere dense closed subsets which
violates the Baire Category theorem.

By separability of B, there exists a countable subset Ag C A such that the closure
of My = span(Ay) is equal to B. Choose zg € A\ Ao, and let M = span(A\ {z0}).
Then My C M so that B = My = M, while codim(M) = 1. Clearly this M can
not be closed.

Example 35.24. Suppose that H and B are finite dimensional Hilbert spaces and
F : H — B is Fredholm. Then

(35.12) index(F) = dim(B) — dim(H).
The formula in Eq. (35.12) may be verified using the rank nullity theorem,
dim(H) = dim Nul(F') + dim Ran(F),
and the fact that
dim(B/Ran(F)) = dim(B) — dim Ran(F).
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Theorem 35.25. A bounded operator F' : H — B is Fredholm iff there exists
a bounded operator A : B — H such that AF — I and FA — I are both compact
operators. (In fact we may choose A so that AF — I and FA — I are both finite
rank operators.)

Proof. (=) Suppose F is Fredholm, then F : Nul(F)+ — Ran(F) is a bijec-
tive bounded linear map between Hilbert spaces. (Recall that Ran(F) is a closed
subspace of B and hence a Hilbert space.) Let F be the inverse of this map—a
bounded map by the open mapping theorem. Let P : H — Ran(F') be orthogonal
projection and set A = FP. Then AF — = FPF — ] = FF — I = —Q where Q is
the orthogonal projection onto Nul(F'). Similarly, FA—1T = FFP—IT=—(I— P).
Because I — P and @ are finite rank projections and hence compact, both AF — I
and F'A — I are compact.

(<) We first show that the operator A : B — H may be modified so that
AF — I and FA — I are both finite rank operators. To this end let G = AF — I (G
is compact) and choose a finite rank approximation G; to G such that G = G; +&
where ||| < 1. Define Ay, : B — H to be the operator Ay, = (I + £)"!A. Since
AF =(I+€&)+ Gy,

AP =(I+&E) AR =T+ I+ &) G =1+ Ky,

where K, is a finite rank operator. Similarly there exists a bounded operator
Agr : B — H and a finite rank operator K such that FFAr = I + K. Notice that
A FAr = Ar + K1 Ag on one hand and A, FAr = A; + AL KRk on the other.
Therefore, A;, — Ar = AL Kr — K Agr =: S is a finite rank operator. Therefore
FAp, =F(Ar+S)=I1+Kgr+FS,sothat FA, —I = Kr— FS is still a finite rank
operator. Thus we have shown that there exists a bounded operator A : B — H
such that AF — I and FA — I are both finite rank operators.

We now assume that A is chosen such that AFF — I = G1, FA— 1 = G5 are
finite rank. Clearly Nul(F') C Nul(AF) = Nul(I + G1) and Ran(F) 2 Ran(FA) =
Ran(I 4+ G3). The theorem now follows from Lemma 35.19 and Lemma 35.20. m

Corollary 35.26. IfF : H — B is Fredholm then F* is Fredholm and index(F) =
—index(F™).

Proof. Choose A : B — H such that both AF — I and FA — I are compact.
Then F*A* — I and A*F* — [ are compact which implies that F* is Fredholm. The
assertion, index(F') = —index(F™), follows directly from Eq. (35.11). m

Lemma 35.27. A bounded operator F': H — B is Fredholm if and only if there
exists orthogonal decompositions H = Hy & Hy and B = By & By such that

(1) Hy and By are closed subspaces,
(2) Hs and Bs are finite dimensional subspaces, and
(3) F has the block diagonal form

H B
(35.13) p=( fn T2, @1 - @1
Fyy Fo i, By

with Fy1 : H — By being a bounded invertible operator.

Furthermore, given this decomposition, index(F) = dim(Hs) — dim(Bs).



592 BRUCE K. DRIVER'

Proof. If F is Fredholm, set H; = Nul(F), Hy = Nul(F),B; = Ran(F),

and By = Ran(F)*. Then F = < 511 8 ), where Fiy = Flg, : H — By is

invertible.

—1
For the converse, assume that F is given as in Eq. (35.13). Let A = < 511 8 )

(1 F'Fio\ _ (I 0 0 Fi'Fis
Al = ( o o J=\or)T o -1 )
so that AF — I is finite rank. Similarly one shows that F'A — I is finite rank, which

shows that F'is Fredholm.
Now to compute the index of F, notice that ( il ) € Nul(F) iff
2

then

Fiiz1 + Fiaza =0
o1y + Faxo =0

which happens iff z; = —FfllFlgxg and (—F21F1711F12 + Fy)axa = 0. Let D =
(Foo — F21F1_11F12) : Hy — Bs, then the mapping

—1
_Fll F122132

x9 € Nul(D) — (
To

) € Nul(F)

is a linear isomorphism of vector spaces so that Nul(F') = Nul(D). Since
F* — < Fll F21 ) @1 N @1
F1*2 F2*2 B2 H2

similar reasoning implies Nul(F*) 2 Nul(D*). This shows that index(F) =
index(D). But we have already seen in Example 35.24 that index(D) = dim Hy —
dimB;. =

)

Proposition 35.28. Let F' be a Fredholm operator and K be a compact operator
from H — B. Further assume T : B — X (where X is another Hilbert space) is
also Fredholm. Then

(1) the Fredholm operators form an open subset of the bounded operators. More-
over if € : H — B is a bounded operator with ||E|| sufficiently small we have
index(F) =index(F + £).

(2) F+ K is Fredholm and index(F) = index(F + K).

(3) TF is Fredholm and index(TF) = index(T) + index(F)

Proof.

(1) We know F may be written in the block form given in Eq. (35.13) with
Fy1 : Hy — B, being a bounded invertible operator. Decompose £ into the

block form as
En &
g =
< & Ea >

and choose ||€|| sufficiently small such that ||€11]| is sufficiently small to
guarantee that Fy; + &1 is still invertible. (Recall that the invertible op-
Fa+é&n I ) has the block

erators form an open set.) Thus FF + & = ( .
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form of a Fredholm operator and the index may be computed as:
index(F + &) = dim Hy — dim By = index(F").

Given K : H — B compact, it is easily seen that F + K is still Fredholm.
Indeed if A: B — H is a bounded operator such that G; = AF — I and
Gy = FA — I are both compact, then A(F + K) — I = G; + AK and
(F+ K)A—1 = Gy + KA are both compact. Hence F + K is Fredholm
by Theorem 35.25. By item 1., the function f(¢) = index(F + tK) is a
continuous locally constant function of ¢ € R and hence is constant. In
particular, index(F 4+ K) = f(1) = f(0) = index(F).
It is easily seen, using Theorem 35.25 that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3.

For this let H; = Nul(F)*, Hy = Nul(F), B; = Ran(T) = T(H,), and
By = Ran(T)* = Nul(T*). Then F decomposes into the block form:

= H,y By
(53) 8%
Hy By
where F = F|g, : Hi — By is an invertible operator. Let Y7 = T(B;)
and Yo = Yt = T(B;)*. Notice that Y; = T(B;) = TQ(B1), where
@ : B — B; C B is orthogonal projection onto By. Since Bj is closed
and B, is finite dimensional, @) is Fredholm. Hence T'Q is Fredholm and
Y1 = TQ(By) is closed in Y and is of finite codimension. Using the above
decompositions, we may write T in the block form:

B Y;
T:<T11 T12): @1_>@1.

To1 Too By Y,
. 0 T . .
Since R = : B — Y is a finite rank operator and hence
Tor Tao

RF : H — Y is finite rank, index(T'—R) = index(T) and index(TF—RF') =
index(TF). Hgnce without loss of generality we may assume that 7" has the

form T = < %; 8 >, (T = Ty1) and hence
= = H,y Yy
TF = ( TOF 8 ) e — &
H, Ys

We now compute the index(T'). Notice that Nul(T) = Nul(T) @ B, and

Ran(T) =T(B;) = Y3. So
index(T) = index(T) + dim(Bs) — dim(Y5).
Similarly,
index(TF) = index(TF) + dim(Hy) — dim(Y3),
and as we have already seen

index(F) = dim(H;) — dim(Bs).
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Therefore,
index(TF) — index(T) — index(F) = index(TF) — index(T).
Since I*i‘ is invertible, Ran(T) = Ran(TF) and Nul(T) 2 Nul(TF). Thus
index(T'F) — index(T) = 0 and the theorem is proved.
]

35.6. Tensor Product Spaces . References for this section are Reed and Simon
[?] (Volume 1, Chapter VL.5), Simon [?], and Schatten [?]. See also Reed and Simon
[?] (Volume 2 § IX.4 and §XIIL.17).

Let H and K be separable Hilbert spaces and H ® K will denote the usual
Hilbert completion of the algebraic tensors H ®; K. Recall that the inner product
on H® K is determined by (h®k, ' ®k") = (h,h')(k, k"). The following proposition
is well known.

Proposition 35.29 (Structure of H ® K). There is a bounded linear map T :
H® K — B(K, H) determined by

T(h® k)k' = (k,k')h for all k,k' € K and h € H.

Moreover T(H ® K) = HS(K, H) — the Hilbert Schmidt operators from K to H.
The map T : H® K — HS(K, H) is unitary equivalence of Hilbert spaces. Finally,
any A € H® K may be expressed as

(35.14) A= " Ahy @ ki,

n=1
where {hy} and {k,} are orthonormal sets in H and K respectively and {\,} C R
such that ||A|? = Y |\ |? < .

Proof. Let A=) a;;h; ®k;, where {h;} and {k;} are orthonormal bases for H
and K respectively and {aj;} C R such that ||A]|?> =" |aj;|* < cc. Then evidently,

T(A)k =3 ajhj(ki, k) and
IT(A)k|* = Z Zaﬂ ki k)|* < EZ\GM |(ki, k)| < ZZ|%| 1112
Thus T': H® K — B(K, H) is bounded. Moreover,
IT(A)IEs =D IT(Ak|* = Z|%zl2 [

which proves the T is an isometry.

We will now prove that T is surjective and at the same time prove Eq. (35.14).
To motivate the construction, suppose that @ = T'(A) where A is given as in Eq.
(35.14). Then

o0
Q Q=T Aukn® hy)T Z/\ h @ ) Zv kin @ k)
n=1
That is {k,} is an orthonormal basis for (nulQ*Q)* with Q*Qk, = A\2k,. Also
Qkyn = Aphy, so that h, = A\, 1Qk,.
We will now reverse the above argument. Let Q@ € HS(K, H). Then Q*Q is a self-
adjoint compact operator on K. Therefore there is an orthonormal basis {k, }>2 ;
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for the (nulQ*Q)* which consists of eigenvectors of Q*Q. Let A\, € (0,00) such
that Q*Qk,, = A\2k,, and set h,, = X\, Qk,,. Notice that

(P hm) = (Angkna lek )=(A lkm)\le*ka) = ( 1kn,>‘ml)‘3nk ) = mn,
so that {h,} is an orthonormal set in H. Define

A= Ahn @y
n=1
and notice that T'(A)k, = A\ h, = Qky, for all n and T(A)k = 0 for all k& € nul@ =
nul@Q*@. That is T(A) = Q. Therefore T is surjective and Eq. (35.14) holds. m
Recall that /T —2=1— 372, ¢;2" for |z| < 1, where ¢/ > 0 and > ;- ¢; < o0.
For an operator A on H such that A > 0 and HAHB y < 1, the square root of A is
given by

VA=T- c(A-1)"
i=1
See Theorem VI.9 on p. 196 of Reed and Simon [?]. The next proposition is
problem 14 and 15 on p. 217 of [?]. Let |4| = vV A*A.

Proposition 35.30 (Square Root). Suppose that A, and A are positive operators
on H and ||A— Ay ey — 0 asn — oo, then /A, — VA in B(H) also. Moreover,
A, and A are general bounded operators on H and A, — A in the operator norm
then |A,| — |A|.

Proof. With out loss of generality, assume that ||A,| <1 for all n. This implies
also that that ||A]| < 1. Then

VA=A =Y e (An - 1) - (A= 1))

and hence

(35.15) VA = /A, <ZCZ|\ (A, — D) — (A—=T)7|.
i=1
For the moment we will make the additional assumption that A, > eI, where
€€ (0,1). Then 0 < I — A, < (1 —¢)I and in particular || — A,/ ) < (1 —¢).
Now suppose that @, R, S, T are operators on H, then QR — ST = (Q — S)R+
S(R —T) and hence

QR — ST|| < [|Q = SIHIE| + SR — T

Setting @ = A, — I, R= (A, — 1)1, S=(A—1I)and T = (A —1)""! in this last
inequality gives

I(An = I)" = (A= I)'|| < [|[ 4 = Alll[(An = DM + (A = DI (An = D)'F = (A= 1)
(35.16) <JAn = A1 -e 7+ (1= (An =D = (A=D)'H.
It now follows by induction that
I(An =)' = (A= D)'|| <i(1 — €)' An — Al
Inserting this estimate into (35.15) shows that

IVA-vA ||<Zcz (1= [ An—All =

11
Ayl = =—==||A—A,| — 0.
[ A=A, | 2\/EII [

\/7
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Therefore we have shown if A,, > €I for all n and A,, — A in norm then \/4,, — v/A

in norm.
For the general case where A,, > 0, we find that for all € >0

(35.17) lim /A, +e=VA+e

n—oo

By the spectral theorem??

IVA+e—VA| < m&?)é)\\/x—l—e—\/ﬂg max |[vVz+e— x| —0ase— 0.
reo

0<z<|| Al

Since the above estimates are uniform in A > 0 such that || A is bounded, it is now
an easy matter to conclude that Eq. (35.17) holds even when e =0. m

Now suppose that A,, — A in B(H) and A,, and A are general operators. Then
A A, — A*A in B(H). So by what we have already proved,

|A,| = ALA, — |A| =V A*Ain B(H) as n — oo.
Notation 35.31. In the future we will identify A € H® K with T'(A) € HS(K, H)
and drop 7T from the notation. So that with this notation we have (h ® k)&’ =
(k,k")h.
Let A€ H® H, we set |A||; = trvVA*A = try/T(A)*T(A) and we let
Hoi1H={Ac H®H : ||A]1 < oo}

We will now compute || A||; for A € H® H described as in Eq. (35.14). First notice
that A* =3 A\, k, @ h,, and

A*A = i A2k, @ k.

n=1

Hence VA*A =377 | |An|kn ® ky, and hence ||Al; = 3,7, [A\n]. Also notice that
A2 =500 [Aa)? and || Al|op = max, [A,]. Since

o0 o0
HANT = D Pl =D Il = [14)%,
n=1 n=1
we have the following relations among the various norms,
(35.18) [Allop < Al < | A]l1-

Proposition 35.32. There is a continuous linear map C : H ®1, H — R such that
Ch®k)=(hk) forallh,k € H. If A€ H®, H, then

(35.19) CA=) (em @ em, A),

where {e;,} is any orthonormal basis for H. Moreover, if A € H ® H s positive,
i.e. T(A) is a non-negative operator, then ||Al; = CA.

1t s possible to give a more elementary proof here. Indeed, assume further that [|A|| < o < 1,

then for € € (0,1 — a), [[VA+ e —VA| <32, ¢il|(A + €)' — AY||. But
. . 1 - 1 . . .
I+t -4 <3 (e na < 3 (1) 1A = (14l + o — 1AIF,
k=1 k=1

so that |[vVA+e— VA < /TA+e— /I[A]] — 0 as € — 0 uniformly in A > 0 such that

Al <a< 1.
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Proof. Let A € H® H be given as in Eq. (35.14) with >°>° | [A,| = [|4][1 < o0.
Then define CA =37 | A, (hn, ky) and notice that [CA| < > |A,| = [|A]|1, which
shows that C' is a contraction on H ®, H. (Using the universal property of H @y H
it is easily seen that C' is well defined.) Also notice that for M € Z, that

M co M
(35.20) D em @em, A) =D (em @ em, Anhn @ ki, ),
m=1 n=1m=1

NE

(35.21) = > Aa(Parha, kn),

n=1

where P); denotes orthogonal projection onto span{e,, }X_;. Since |\, (Pashn, k)| <
[An] and 3°0°  |As] = [|A]j1 < oo, we may let M — oo in Eq. (35.21) to find that

oo

> (em @ em, A) Z (hn, kn) = CA.

m=1 n=1

8

This proves Eq. (35.19).

For the final assertion, suppose that A > 0. Then there is an orthonormal basis
{k, }2_, for the (nulA)+ which consists of eigenvectors of A. That is A = > A\, k, ®
kn and )\ >0 for all n. Thus CA =3 A, and [|A]|1 = > M.

Proposition 35.33 (Noncommutative Fatou’ s Lemma). Let A,, be a sequence of
positive operators on a Hilbert space H and A, — A weakly as n — oo, then

(35.22) trA < liminf tr4,.

n—oo

Also if A, € H®1 H and A,, — A in B(H), then
(35.23) Al < liminf | A,

]

Proof. Let A, be a sequence of positive operators on a Hilbert space H and
A, — A weakly as n — oo and {ej}?°, be an orthonormal basis for H. Then by
Fatou’s lemma for sums,

trd = Z(Aek,ek) = ani_)rr;o(Anek, k)
k=1

k=1

< lim ian(Anek, er) = liminf trA,.

Now suppose that A, € H®, H and A, — A in B(H). Then by Proposi-
tion 35.30, |A,| — |A| in B(H) as well. Hence by Eq. (35.22), ||Allz =tr|4]| <
liminf, otr|4,| < liminf, o ||An|1- ®

Proposition 35.34. Let X be a Banach space, B : H x K — X be a bounded
bi-linear form, and ||B|| = sup{|B(h,k)| : [|h[[[k| < 1}. Then there is a unique
bounded linear map B : H ®1 K — X such that B(h ® k) = B(h, k). Moreover
1Bllop = 1 B]]-
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Proof. Let A= 3", \h, ®k, € H®1 K as in Eq. (35.14). Clearly, if B is
to exist we must have B(A) = 3.°° | A, B(fn, k»). Notice that

S MallB(hn, )| < IAGlIB] = [[ A1 - [|B]-
n=1 n=1

This shows that B(A) is well defined and that || B||,, < ||B]|. The opposite inequality
follows from the trivial computation:
IB]| = sup{|B(h, k)| : [|All[|k] = 1} = sup{|B(h @ k)| : [|[h @1 k[l = 1} < [|Blop-
|
Lemma 35.35. Suppose that P € B(H) and Q € B(K), then PR Q : H® K —
H ® K is a bounded operator. Moreover, P ® Q(H ®1 K) C H ®; K and we have
the norm equalities
1P ®Qllpex) = 1Pl lQlsx)
and
1P @ Qllame.x) = 1Plaamn|Qllsux)-
We will give essentially the same proof of [|P ® Q|| puer) = |Pllam|Qllsx)

as the proof on p. 299 of Reed and Simon [?]. Let A € H ® K as in Eq. (35.14).
Then

(PRIA=> X,Ph, @k,

n=1

and hence

(P® DA{(P®I)A}* = > A\Ph, ® Ph,.
n=1

Therefore,

I(P & DA|* = tx(P & DA{(P ® ) A}*
=" N2 (Phy, Phy) < PP S N2
n=1 n=1

=IPI*[lA]13,

which shows that Thus [P ® I|prgr) < ||P|. By symmetry, [[I ® Q|lprer) <
|Q|l. Since P® Q = (P®I)(I ® Q), we have

P ®Qllprak) < IPllamQlBxk)-

The reverse inequality is easily proved by considering P ® @ on elements of the
foom h@ ke H® K.
Proof. Now suppose that A € H ®, K as in Eq. (35.14). Then

(P @ Q)AllL < Y Il Pha ® Qknllr < PRI Al = IPIIQIIAIL
n=1

n=1
which shows that
1P @ Qllamex) < |1PlaamlQllsux)-
Again the reverse inequality is easily proved by considering P ® @ on elements of
the form h@ke H® K. m
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Lemma 35.36. Suppose that P, and Q,, are orthogonal projections on H and K
respectively which are strongly convergent to the identity on H and K respectively.

Then P, @ Qn : H®1 K — H ®1 K also converges strongly to the identity in
H® K.

Proof. Let A = Zzozl Anhn @ ky, € H®1 K as in Eq. (35.14). Then

1P ® QA = Ally < [Anll|Prbin @ Quibin — iy @ ki1

n=1
n=1

< al{l1Pmbn =l || Quaen | + 1 || @i, — Fen |}
n=1

< ST Pl Pt — bl + 1Qunkn — K|} — 0 as m — o0
n=1

by the dominated convergence theorem. m



