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35. Compact and Fredholm Operators and the Spectral Theorem

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

35.1. Compact Operators.

Proposition 35.1. Let M be a finite dimensional subspace of a Hilbert space H
then

(1) M is complete (hence closed).
(2) Closed bounded subsets of M are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonormal
basis {φ1, . . . , φn} of M. Define U : M → Cn to be the unique unitary map such
that Uφi = ei where ei is the ith standard basis vector in Cn. It now follows that
M is complete and that closed bounded subsets of M are compact since the same
is true for Cn.

Definition 35.2. A bounded operatorK : H → B is compact ifK maps bounded
sets into precompact sets, i.e. K(U) is compact in B, where U := {x ∈ H : kxk < 1}
is the unit ball in H. Equivalently, for all bounded sequences {xn}∞n=1 ⊂ H, the
sequence {Kxn}∞n=1 has a convergent subsequence in B.

Notice that if dim(H) =∞ and T : H → B is invertible, then T is not compact.

Definition 35.3. K : H → B is said to have finite rank if Ran(K) ⊂ B is finite
dimensional.

Corollary 35.4. If K : H → B is a finite rank operator, then K is compact.
In particular if either dim(H) < ∞ or dim(B) < ∞ then any bounded operator
K : H → B is finite rank and hence compact.

Example 35.5. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) ≡
nX
i=1

fi(x)gi(y)

where
fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define (Kf)(x) =
R
X
k(x, y)f(y)dµ(y), then K : L2(X,µ) → L2(X,µ) is a finite

rank operator and hence compact.

Lemma 35.6. Let K := K(H,B) denote the compact operators from H to B.
Then K(H,B) is a norm closed subspace of L(H,B).

Proof. The fact that K is a vector subspace of L(H,B) will be left to the reader.
Now let Kn : H → B be compact operators and K : H → B be a bounded operator
such that limn→∞ kKn −Kkop = 0. We will now show K is compact.
First Proof. Given � > 0, choose N = N(�) such that kKN − Kk < �.

Using the fact that KNU is precompact, choose a finite subset Λ ⊂ U such that
minx∈Λ ky−KNxk < � for all y ∈ KN (U) . Then for z = Kx0 ∈ K(U) and x ∈ Λ,

kz −Kxk = k(K −KN )x0 +KN (x0 − x) + (KN −K)xk
≤ 2�+ kKNx0 −KNxk.



580 BRUCE K. DRIVER†

Therefore minx∈Λ kz −KNxk < 3�, which shows K(U) is 3� bounded for all � > 0,
K(U) is totally bounded and hence precompact.
Second Proof. Suppose {xn}∞n=1 is a bounded sequence in H. By compactness,

there is a subsequence
©
x1n
ª∞
n=1

of {xn}∞n=1 such that
©
K1x

1
n

ª∞
n=1

is convergent in
B. Working inductively, we may construct subsequences

{xn}∞n=1 ⊃
©
x1n
ª∞
n=1
⊃ ©x2nª∞n=1 · · · ⊃ {xmn }∞n=1 ⊃ . . .

such that {Kmx
m
n }∞n=1 is convergent in B for each m. By the usual Cantor’s diago-

nalization procedure, let yn := xnn, then {yn}∞n=1 is a subsequence of {xn}∞n=1 such
that {Kmyn}∞n=1 is convergent for all m. Since

kKyn −Kylk ≤ k(K −Km) ynk+ kKm(yn − yl)k+ k(Km −K) yl)k
≤ 2 kK −Kmk+ kKm(yn − yl)k ,

lim sup
n,l→∞

kKyn −Kylk ≤ 2 kK −Kmk→ 0 as m→∞,

which shows {Kyn}∞n=1 is Cauchy and hence convergent.
Proposition 35.7. A bounded operator K : H → B is compact iff there exists
finite rank operators, Kn : H → B, such that kK −Knk→ 0 as n→∞.

Proof. Since K(U) is compact it contains a countable dense subset and from
this it follows that K (H) is a separable subspace of B. Let {φn} be an orthonormal
basis for K (H) ⊂ B and PNy =

NP
n=1
(y, φn)φn be the orthogonal projection of y

onto span{φn}Nn=1. Then limN→∞ kPNy − yk = 0 for all y ∈ K(H).
Define Kn ≡ PnK — a finite rank operator on H. For sake of contradiction

suppose that lim supn→∞ kK − Knk = � > 0, in which case there exists xnk ∈ U
such that k(K − Knk)xnkk ≥ � for all nk. Since K is compact, by passing to a
subsequence if necessary, we may assume {Kxnk}∞nk=1 is convergent in B. Letting
y ≡ limk→∞Kxnk ,

k(K −Knk)xnkk = k(1− Pnk)Kxnkk ≤ k(1− Pnk)(Kxnk − y)k+ k(1− Pnk)yk
≤ kKxnk − yk+ k(1− Pnk)yk→ 0 as k →∞.

But this contradicts the assumption that � is positive and hence we must have
limn→∞ kK −Knk = 0, i.e. K is an operator norm limit of finite rank operators.
The converse direction follows from Corollary 35.4 and Lemma 35.6.

Corollary 35.8. If K is compact then so is K∗.

Proof. Let Kn = PnK be as in the proof of Proposition 35.7, then K∗n = K∗Pn
is still finite rank. Furthermore, using Proposition 12.16,

kK∗ −K∗nk = kK −Knk→ 0 as n→∞
showing K∗ is a limit of finite rank operators and hence compact.

35.2. Hilbert Schmidt Operators.

Proposition 35.9. Let H and B be a separable Hilbert spaces, K : H → B be a
bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for H and B
respectively. Then:
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(1)
P∞

n=1 kKenk2 =
P∞

m=1 kK∗umk2 allowing for the possibility that the sums
are infinite. In particular the Hilbert Schmidt norm of K,

kKk2HS :=
∞X
n=1

kKenk2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1. We
say K : H → B is a Hilbert Schmidt operator if kKkHS < ∞ and let
HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

(2) For all K ∈ L(H,B), kKkHS = kK∗kHS and

kKkHS ≥ kKkop := sup {kKhk : h ∈ H 3 khk = 1} .
(3) The set HS(H,B) is a subspace of K(H,B) and k·kHS is a norm on

HS(H,B) for which (HS(H,B), k·kHS) is a Hilbert space. The inner prod-
uct on HS(H,B) is given by

(35.1) (K1,K2)HS =
∞X
n=1

(K1en,K2en).

(4) Let PNx :=
PN

n=1(x, en)en be orthogonal projection onto span {ei : i ≤ N} ⊂
H and for K ∈ HS(H,B), let Kn := KPn. Then

kK −KNk2op ≤ kK −KNk2HS → 0 as N →∞,

which shows that finite rank operators are dense in (HS(H,B), k·kHS) .
(5) If L is another Hilbert space and A : L → H and C : B → L are bounded

operators, then

kKAkHS ≤ kKkHS kAkop and kCKkHS ≤ kKkHS kCkop .
Proof. Items 1. and 2. By Parsaval’s equality and Fubini’s theorem for sums,
∞X
n=1

kKenk2 =
∞X
n=1

∞X
m=1

|(Ken, um)|2 =
∞X

m=1

∞X
n=1

|(en,K∗um)|2 =
∞X

m=1

kK∗umk2 .

This proves kKkHS is well defined independent of basis and that kKkHS =
kK∗kHS . For x ∈ H \ {0} , x/ kxk may be taken to be the first element in an
orthonormal basis for H and hence°°°°K x

kxk
°°°° ≤ kKkHS .

Multiplying this inequality by kxk shows kKxk ≤ kKkHS kxk and hence kKkop ≤
kKkHS .
Item 3. For K1,K2 ∈ L(H,B),

kK1 +K2kHS =

vuut ∞X
n=1

kK1en +K2enk2

≤
vuut ∞X

n=1

[kK1enk+ kK2enk]2 = k{kK1enk+ kK2enk}∞n=1kc2

≤ k{kK1enk}∞n=1kc2 + k{kK2enk}∞n=1kc2 = kK1kHS + kK2kHS .
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From this triangle inequality and the homogeneity properties of k·kHS , we now eas-
ily see that HS(H,B) is a subspace of K(H,B) and k·kHS is a norm on HS(H,B).
Since

∞X
n=1

|(K1en,K2en)| ≤
∞X
n=1

kK1enk kK2enk

≤
vuut ∞X

n=1

kK1enk2
vuut ∞X

n=1

kK2enk2 = kK1kHS kK2kHS ,

the sum in Eq. (35.1) is well defined and is easily checked to define an inner product
on HS(H,B) such that kKk2HS = (K1,K2)HS . To see that HS(H,B) is complete
in this inner product suppose {Km}∞m=1 is a k·kHS — Cauchy sequence inHS(H,B).
Because L(H,B) is complete, there existsK ∈ L(H,B) such that kKm −Kkop → 0
as m→∞. Since

NX
n=1

k(K −Km) enk2 = lim
l→∞

NX
n=1

k(Kl −Km) enk2 ≤ lim sup
l→∞

kKl −KmkHS ,

kKm −Kk2HS =
∞X
n=1

k(K −Km) enk2 = lim
N→∞

NX
n=1

k(K −Km) enk2

≤ lim sup
l→∞

kKl −KmkHS → 0 as m→∞.

Item 4. Simply observe,

kK −KNk2op ≤ kK −KNk2HS =
X
n>N

kKenk2 → 0 as N →∞.

Item 5. For C ∈ L(B,L) and K ∈ L(H,B) then

kCKk2HS =
∞X
n=1

kCKenk2 ≤ kCk2op
∞X
n=1

kKenk2 = kCk2op kKk2HS

and for A ∈ L (L,H) ,

kKAkHS = kA∗K∗kHS ≤ kA∗kop kK∗kHS = kAkop kKkHS .

Remark 35.10. The separability assumptions made in Proposition 35.9 are unnec-
essary. In general, we define

kKk2HS =
X
e∈Γ

kKek2

where Γ ⊂ H is an orthonormal basis. The same proof of Item 1. of Proposition 35.9
shows kKkHS is well defined and kKkHS = kK∗kHS . If kKk2HS < ∞, then there
exists a countable subset Γ0 ⊂ Γ such that Ke = 0 if e ∈ Γ\Γ0. Let H0 := span(Γ0)

and B0 := K(H0). Then K (H) ⊂ B0, K|H⊥0 = 0 and hence by applying the results
of Proposition 35.9 to K|H0 : H0 → B0 one easily sees that the separability of H
and B are unnecessary in Proposition 35.9.
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Exercise 35.1. Suppose that (X,µ) is a σ—finite measure space such that H =
L2(X,µ) is separable and k : X ×X → R is a measurable function, such that

kkk2L2(X×X,µ⊗µ) ≡
Z
X×X

|k(x, y)|2dµ(x)dµ(y) <∞.

Define, for f ∈ H,

Kf(x) =

Z
X

k(x, y)f(y)dµ(y),

when the integral makes sense. Show:
(1) Kf(x) is defined for µ—a.e. x in X.
(2) The resulting function Kf is in H and K : H → H is linear.
(3) kKkHS = kkkL2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

35.1. SinceZ
X

dµ(x)

µZ
X

|k(x, y)f(y)| dµ(y)
¶2
≤
Z
X

dµ(x)

µZ
X

|k(x, y)|2 dµ(y)
¶µZ

X

|f(y)|2 dµ(y)
¶

≤ kkk22 kfk22 <∞,(35.2)

we learn Kf is almost everywhere defined and that Kf ∈ H. The linearity of K is
a consequence of the linearity of the Lebesgue integral. Now suppose {φn}∞n=1 is
an orthonormal basis for H. From the estimate in Eq. (35.2), k(x, ·) ∈ H for µ —
a.e. x ∈ X and therefore

kKk2HS =
∞X
n=1

Z
X

dµ(x)

¯̄̄̄Z
X

k(x, y)φn(y)dµ(y)

¯̄̄̄2
=
∞X
n=1

Z
X

dµ(x)
¯̄
(φn, k̄(x, ·))

¯̄2
=

Z
X

dµ(x)
∞X
n=1

¯̄
(φn, k̄(x, ·))

¯̄2
=

Z
X

dµ(x)
°°k̄(x, ·)°°2

H
=

Z
X

dµ(x)

Z
X

dµ(y) |k(x, y)|2 = kkk22 .

Example 35.11. Suppose that Ω ⊂ Rn is a bounded set, α < n, then the operator
K : L2(Ω,m)→ L2(Ω,m) defined by

Kf(x) :=

Z
Ω

1

|x− y|α f(y)dy
is compact.

Proof. For � ≥ 0, let
K�f(x) :=

Z
Ω

1

|x− y|α + �
f(y)dy = [g� ∗ (1Ωf)] (x)

where g�(x) = 1
|x|α+�1C(x) with C ⊂ Rn a sufficiently large ball such that Ω−Ω ⊂

C. Since α < n, it follows that

g� ≤ g0 = |·|−α 1C ∈ L1(Rn,m).
Hence it follows by Proposition 11.12 ?? that

k(K −K�) fkL2(Ω) ≤ k(g0 − g�) ∗ (1Ωf)kL2(Rn)
≤ k(g0 − g�)kL1(Rn) k1ΩfkL2(Rn) = k(g0 − g�)kL1(Rn) kfkL2(­)
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which implies
(35.3)

kK −K�kB(L2(Ω)) ≤ kg0 − g�kL1(Rn) =
Z
C

¯̄̄̄
1

|x|α + �
− 1

|x|α
¯̄̄̄
dx→ 0 as � ↓ 0

by the dominated convergence theorem. For any � > 0,Z
Ω×Ω

·
1

|x− y|α + �

¸2
dxdy <∞,

and hence K� is Hilbert Schmidt and hence compact. By Eq. (35.3), K� → K as
� ↓ 0 and hence it follows that K is compact as well.

35.3. The Spectral Theorem for Self Adjoint Compact Operators.

Lemma 35.12. Suppose T : H → B is a bounded operator, then Nul(T ∗) =
Ran(T )⊥ and Ran(T ) = Nul(T ∗)⊥.

Proof. An element y ∈ B is in Nul(T ∗) iff 0 = (T ∗y, x) = (y,Ax) for all
x ∈ H which happens iff y ∈ Ran(T )⊥. Because Ran(T ) = Ran(T )⊥⊥, Ran(T ) =
Nul(T ∗)⊥.
For the rest of this section, T ∈ K(H) := K(H,H) will be a self-adjoint compact

operator or S.A.C.O. for short.

Example 35.13 (Model S.A.C.O.). Let H = c2 and T be the diagonal matrix

T =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

. . .

 ,

where limn→∞ |λn| = 0 and λn ∈ R. Then T is a self-adjoint compact operator.
(Prove!)

The main theorem of this subsection states that up to unitary equivalence, Ex-
ample 35.13 is essentially the most general example of an S.A.C.O.

Theorem 35.14. Suppose T ∈ L(H) := L(H,H) is a bounded self-adjoint opera-
tor, then

kTk = sup
f 6=0

|(f, Tf)|
kfk2 .

Moreover if there exists a non-zero element g ∈ H such that

|(Tg, g)|
kgk2 = kTk,

then g is an eigenvector of T with Tg = λg and λ ∈ {±kTk}.
Proof. Let

M ≡ sup
f 6=0

|(f, Tf)|
kfk2 .

We wish to show M = kTk. Since |(f, Tf)| ≤ kfkkTfk ≤ kTkkfk2, we see M ≤
kTk.
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Conversely let f, g ∈ H and compute

(f + g, T (f + g))− (f − g, T (f − g))

= (f, Tg) + (g, Tf) + (f, Tg) + (g, Tf)

= 2[(f, Tg) + (Tg, f)] = 2[(f, Tg) + (f, Tg)]

= 4Re(f, Tg).

Therefore, if kfk = kgk = 1, it follows that
|Re(f, Tg)| ≤ M

4

©kf + gk2 + kf − gk2ª = M

4

©
2kfk2 + 2kgk2ª =M.

By replacing f be eiθf where θ is chosen so that eiθ(f, Tg) is real, we find

|(f, Tg)| ≤M for all kfk = kgk = 1.
Hence

kTk = sup
kfk=kgk=1

|(f, Tg)| ≤M.

If g ∈ H \{0} and kTk = |(Tg, g)|/kgk2 then, using the Cauchy Schwarz inequal-
ity,

(35.4) kTk = |(Tg, g)|
kgk2 ≤ kTgkkgk ≤ kTk.

This implies |(Tg, g)| = kTgkkgk and forces equality in the Cauchy Schwarz in-
equality. So by Theorem 12.2, Tg and g are linearly dependent, i.e. Tg = λg
for some λ ∈ C. Substituting this into (35.4) shows that |λ| = kTk. Since T is
self-adjoint,

λkgk2 = (λg, g) = (Tg, g) = (g, Tg) = (g, λg) = λ̄(g, g),

which implies that λ ∈ R and therefore, λ ∈ {±kTk}.
Theorem 35.15. Let T be a S.A.C.O., then either λ = kTk or λ = − kTk is an
eigenvalue of T.

Proof. Without loss of generality we may assume that T is non-zero since
otherwise the result is trivial. By Theorem 35.14, there exists fn ∈ H such that
kfnk = 1 and

(35.5)
|(fn, Tfn)|
kfnk2 = |(fn, Tfn)| −→ kTk as n→∞.

By passing to a subsequence if necessary, we may assume that λ := limn→∞(fn, Tfn)
exists and λ ∈ {±kTk}. By passing to a further subsequence if necessary, we may
assume, using the compactness of T, that Tfn is convergent as well. We now com-
pute:

0 ≤ kTfn − λfnk2 = kTfnk2 − 2λ(Tfn, fn) + λ2

≤ λ2 − 2λ(Tfn, fn) + λ2 → λ2 − 2λ2 + λ2 = 0 as n→∞.

Hence

(35.6) Tfn − λfn → 0 as n→∞
and therefore

f ≡ lim
n→∞ fn =

1

λ
lim
n→∞Tfn
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exists. By the continuity of the inner product, kfk = 1 6= 0. By passing to the limit
in Eq. (35.6) we find that Tf = λf.

Lemma 35.16. Let T : H → H be a self-adjoint operator andM be a T — invariant
subspace of H, i.e. T (M) ⊂ M. Then M⊥ is also a T — invariant subspace, i.e.
T (M⊥) ⊂M⊥.

Proof. Let x ∈M and y ∈M⊥, then Tx ∈M and hence

0 = (Tx, y) = (x, Ty) for all x ∈M.

Thus Ty ∈M⊥.

Theorem 35.17 (Spectral Theorem). Suppose that T : H → H is a non-zero
S.A.C.O., then

(1) there exists at least one eigenvalue λ ∈ {±kTk}.
(2) There are at most countable many non-zero eigenvalues, {λn}Nn=1, where

N =∞ is allowed. (Unless T is finite rank, N will be infinite.)
(3) The λn’s (including multiplicities) may be arranged so that |λn| ≥ |λn+1|

for all n. If N = ∞ then limn→∞ |λn| = 0. (In particular any eigenspace
for T with non-zero eigenvalue is finite dimensional.)

(4) The eigenvectors {φn}Nn=1 can be chosen to be an O.N. set such that H =

span{φn}⊕Nul(T ).
(5) Using the {φn}Nn=1 above,

Tψ =
NX
n=1

λn(ψ, φn)φn for all ψ ∈ H.

(6) The spectrum of T is σ(T ) = {0} ∪ ∪∞n=1{λn}.
Proof. We will find λn’s and φn’s recursively. Let λ1 ∈ {±kTk} and φ1 ∈ H

such that Tφ1 = λ1φ1 as in Theorem 35.15. Take M1 = span(φ1) so T (M1) ⊂M1.
By Lemma 35.16, TM⊥1 ⊂ M⊥1 . Define T1 : M

⊥
1 → M⊥1 via T1 = T |M⊥1 . Then T1

is again a compact operator. If T1 = 0, we are done.
If T1 6= 0, by Theorem 35.15 there exists λ2 ∈ {±kTk1} and φ2 ∈M⊥1 such that

kφ2k = 1 and T1φ2 = Tφ2 = λ2φ2. Let M2 ≡ span(φ1, φ2). Again T (M2) ⊂ M2

and hence T2 ≡ T |M⊥2 :M⊥2 →M⊥2 is compact. Again if T2 = 0 we are done.
If T2 6= 0. Then by Theorem 35.15 there exists λ3 ∈ {±kTk2} and φ3 ∈M⊥2 such

that kφ3k = 1 and T2φ3 = Tφ3 = λ3φ3. Continuing this way indefinitely or until we
reach a point where Tn = 0, we construct a sequence {λn}Nn=1 of eigenvalues and
orthonormal eigenvectors {φn}Nn=1 such that |λi| ≥ |λi+1| with the further property
that

(35.7) |λi| = sup
φ⊥{φ1,φ2,...φi−1}

kTφk
kφk

If N = ∞ then limi→∞ |λi| = 0 for if not there would exist � > 0 such that
|λi| ≥ � > 0 for all i. In this case {φi/λi}∞i=1 is sequence in H bounded by �−1.
By compactness of T, there exists a subsequence ik such that φik = Tφik/λik is
convergent. But this is impossible since {φik} is an orthonormal set. Hence we
must have that � = 0.
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Let M ≡ span{φi}Ni=1 with N = ∞ possible. Then T (M) ⊂ M and hence
T (M⊥) ⊂M⊥. Using Eq. (35.7),

kT |M⊥k ≤ kT |M⊥n k = |λn| −→ 0 as n→∞
showing T |M⊥ ≡ 0.
Define P0 to be orthogonal projection onto M⊥. Then for ψ ∈ H,

ψ = P0ψ + (1− P0)ψ = P0ψ +
NX
i=1

(ψ, φi)φi

and

Tψ = TP0ψ + T
NX
i=1

(ψ, φi)φi =
NX
i=1

λi(ψ, φi)φi.

Since {λn} ⊂ σ(T ) and σ(T ) is closed, it follows that 0 ∈ σ(T ) and hence {λn}∞n=1∪
{0} ⊂ σ(T ). Suppose that z /∈ {λn}∞n=1 ∪ {0} and let d be the distance between
z and {λn}∞n=1 ∪ {0}. Notice that d > 0 because limn→∞ λn = 0. A few simple
computations show that:

(T − zI)ψ =
NX
i=1

(ψ, φi)(λi − z)φi − zP0ψ,

(T − z)−1 exists,

(T − zI)−1ψ =
NX
i=1

(ψ, φi)(λi − z)−1φi − z−1P0ψ,

and

k(T − zI)−1ψk2 =
NX
i=1

|(ψ, φi)|2 1

|λi − z|2 +
1

|z|2 kP0ψk
2

≤
µ
1

d

¶2Ã NX
i=1

|(ψ, φi)|2 + kP0ψk2
!
=
1

d2
kψk2.

We have thus shown that (T − zI)−1 exists, k(T − zI)−1k ≤ d−1 < ∞ and hence
z /∈ σ(T ).

35.4. Structure of Compact Operators.

Theorem 35.18. Let K : H → B be a compact operator. Then there exists N ∈
N∪ {∞} , orthonormal subsets {φn}Nn=1 ⊂ H and {ψn}Nn=1 ⊂ B and a sequences
{λn}Nn=1 ⊂ C such that limn→∞ λn = 0 if N =∞ and

Kf =
NX
n=1

λn(f, φn)ψn for all f ∈ H.

Proof. The operator K∗K ∈ K(H) is self-adjoint and hence by Theorem 35.17,
there exists an orthonormal set {φn}Nn=1 ⊂ H and {µn}∞n=1 ⊂ (0,∞) such that

K∗Kf =
NX
n=1

µn(f, φn)φn for all f ∈ H.
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Let λn :=
√
µn and

√
K∗K ∈ K(H) be defined by
√
K∗Kf =

NX
n=1

λn(f, φn)φn for all f ∈ H.

Define U ∈ L(H,B) so that U =“K (K∗K)−1/2 ,” or more precisely by

(35.8) Uf =
NX
n=1

λ−1n (f, φn)Kφn.

The operator U is well defined because

(λ−1n Kφn, λ
−1
m Kφm) = λ−1n λ−1m (φn,K

∗Kφm) = λ−1n λ−1m λ2mδm,n = δm,n

which shows
©
λ−1n Kφn

ª∞
n=1

is an orthonormal subset of B.Moreover this also shows

kUfk2 =
NX
n=1

|(f, φn)|2 = kPfk2

where P = PNul(K)⊥ . Replacing f by (K∗K)
1/2 f in Eq. (35.8) shows

(35.9) U (K∗K)1/2 f =
NX
n=1

λ−1n ((K∗K)1/2 f, φn)Kφn =
NX
n=1

(f, φn)Kφn = Kf,

since f =
PN

n=1(f, φn)φn + Pf.
From Eq. (35.9) it follows that

Kf =
NX
n=1

λn(f, φn)Uφn =
NX
n=1

λn(f, φn)ψn

where {ψn}Nn=1 is the orthonormal sequence in B defined by

ψn := Uφn = λ−1n Kφn.

35.4.1. Trace Class Operators. We will say K ∈ K(H) is trace class if

tr(
√
K∗K) :=

NX
n=1

λn <∞

in which case we define

tr(K) =
NX
n=1

λn(ψn, φn).

Notice that if {em}∞m=1 is any orthonormal basis in H (or for the Ran(K) if H is
not separable) then

MX
m=1

(Kem, em) =
MX
m=1

(
NX
n=1

λn(em, φn)ψn, em) =
NX
n=1

λn

MX
m=1

(em, φn)(ψn, em)

=
NX
n=1

λn(PMψn, φn)
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where PM is orthogonal projection onto Span(e1, . . . , eM ). Therefore by dominated
convergence theorem ,

∞X
m=1

(Kem, em) = lim
M→∞

NX
n=1

λn(PMψn, φn) =
NX
n=1

λn lim
M→∞

(PMψn, φn)

=
NX
n=1

λn(ψn, φn) = tr(K).

35.5. Fredholm Operators.

Lemma 35.19. LetM ⊂ H be a closed subspace and V ⊂ H be a finite dimensional
subspace. Then M+V is closed as well. In particular if codim(M) ≡ dim(H/M) <
∞ and W ⊂ H is a subspace such that M ⊂W, then W is closed and codim(W ) <
∞.

Proof. Let P : H →M be orthogonal projection and let V0 := (I − P )V. Since

dim(V0) ≤ dim(V ) <∞, V0 is still closed. Also it is easily seen thatM+V =M
⊥⊕V0

from which it follows that M + V is closed because {zn = mn + vn} ⊂ M
⊥⊕ V0 is

convergent iff {mn} ⊂M and {vn} ⊂ V0 are convergent.
If codim(M) < ∞ and M ⊂ W, there is a finite dimensional subspace V ⊂ H

such that W =M + V and so by what we have just proved, W is closed as well. It
should also be clear that codim(W ) ≤ codim(M) <∞.

Lemma 35.20. If K : H → B is a finite rank operator, then there exists
{φn}kn=1 ⊂ H and {ψn}kn=1 ⊂ B such that

(1) Kx =
Pk

n=1(x, φn)ψn for all x ∈ H.

(2) K∗y =
Pk

n=1(y, ψn)φn for all y ∈ B, in particular K∗ is still finite rank.
For the next two items, further assume B = H.

(3) dimNul(I +K) <∞.
(4) dim coker(I +K) <∞, Ran(I +K) is closed and

Ran(I +K) = Nul(I +K∗)⊥.

Proof.
(1) Choose {ψn}k1 to be an orthonormal basis for Ran(K). Then for x ∈ H,

Kx =
kX

n=1

(Kx,ψn)ψn =
kX

n=1

(x,K∗ψn)ψn =
kX

n=1

(x, φn)ψn

where φn ≡ K∗ψn.
(2) Item 2. is a simple computation left to the reader.
(3) Since Nul(I+K) = {x ∈ H | x = −Kx} ⊂ Ran(K) it is finite dimensional.
(4) Since x = (I +K)x ∈ Ran(I +K)for x ∈ Nul(K), Nul(K) ⊂ Ran(I +K).

Since {φ1, φ2, . . . , φk}⊥ ⊂ Nul(K), H = Nul(K) + span ({φ1, φ2, . . . , φk})
and thus codim (Nul(K)) < ∞. From these comments and Lemma 35.19,
Ran(I + K) is closed and codim (Ran(I +K)) ≤ codim (Nul(K)) < ∞.
The assertion that Ran(I+K) = Nul(I+K∗)⊥ is a consequence of Lemma
35.12 below.
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Definition 35.21. A bounded operator F : H → B is Fredholm iff the
dimNul(F ) < ∞, dim coker(F ) < ∞ and Ran(F ) is closed in B. (Recall:
coker(F ) ≡ B/Ran(F ).) The index of F is the integer,

index(F ) = dimNul(F )− dim coker(F )(35.10)

= dimNul(F )− dimNul(F ∗)(35.11)

Notice that equations (35.10) and (35.11) are the same since, (using Ran(F ) is
closed)

B = Ran(F )⊕Ran(F )⊥ = Ran(F )⊕Nul(F ∗)
so that coker(F ) = B/Ran(F ) ∼= Nul(F ∗).
Lemma 35.22. The requirement that Ran(F ) is closed in Defintion 35.21 is re-
dundant.

Proof. By restricting F to Nul(F )⊥, we may assume without loss of generality
that Nul(F ) = {0}. Assuming dim coker(F ) <∞, there exists a finite dimensional
subspace V ⊂ B such that B = Ran(F ) ⊕ V. Since V is finite dimensional, V is
closed and hence B = V ⊕ V ⊥. Let π : B → V ⊥ be the orthogonal projection
operator onto V ⊥ and let G ≡ πF : H → V ⊥ which is continuous, being the
composition of two bounded transformations. Since G is a linear isomorphism, as
the reader should check, the open mapping theorem implies the inverse operator
G−1 : V ⊥ → H is bounded.
Suppose that hn ∈ H is a sequence such that limn→∞ F (hn) =: b exists in B.

Then by composing this last equation with π, we find that limn→∞G(hn) = π(b)
exists in V ⊥. Composing this equation with G−1 shows that h := limn→∞ hn =
G−1π(b) exists in H. Therefore, F (hn) → F (h) ∈ Ran(F ), which shows that
Ran(F ) is closed.

Remark 35.23. It is essential that the subspace M ≡ Ran(F ) in Lemma 35.22 is
the image of a bounded operator, for it is not true that every finite codimensional
subspace M of a Banach space B is necessarily closed. To see this suppose that B
is a separable infinite dimensional Banach space and let A ⊂ B be an algebraic
basis for B, which exists by a Zorn’s lemma argument. Since dim(B) = ∞ and B
is complete, A must be uncountable. Indeed, if A were countable we could write
B = ∪∞n=1Bn where Bn are finite dimensional (necessarily closed) subspaces of B.
This shows that B is the countable union of nowhere dense closed subsets which
violates the Baire Category theorem.
By separability of B, there exists a countable subset A0 ⊂ A such that the closure

of M0 ≡ span(A0) is equal to B. Choose x0 ∈ A \A0, and let M ≡ span(A \ {x0}).
Then M0 ⊂ M so that B = M̄0 = M̄, while codim(M) = 1. Clearly this M can
not be closed.

Example 35.24. Suppose that H and B are finite dimensional Hilbert spaces and
F : H → B is Fredholm. Then

(35.12) index(F ) = dim(B)− dim(H).
The formula in Eq. (35.12) may be verified using the rank nullity theorem,

dim(H) = dimNul(F ) + dimRan(F ),

and the fact that

dim(B/Ran(F )) = dim(B)− dimRan(F ).
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Theorem 35.25. A bounded operator F : H → B is Fredholm iff there exists
a bounded operator A : B → H such that AF − I and FA − I are both compact
operators. (In fact we may choose A so that AF − I and FA − I are both finite
rank operators.)

Proof. (⇒) Suppose F is Fredholm, then F : Nul(F )⊥ → Ran(F ) is a bijec-
tive bounded linear map between Hilbert spaces. (Recall that Ran(F ) is a closed
subspace of B and hence a Hilbert space.) Let F̃ be the inverse of this map–a
bounded map by the open mapping theorem. Let P : H → Ran(F ) be orthogonal
projection and set A ≡ F̃P . Then AF − I = F̃PF − I = F̃F − I = −Q where Q is
the orthogonal projection onto Nul(F ). Similarly, FA− I = FF̃P − I = −(I −P ).
Because I − P and Q are finite rank projections and hence compact, both AF − I
and FA− I are compact.
(⇐) We first show that the operator A : B → H may be modified so that

AF − I and FA− I are both finite rank operators. To this end let G ≡ AF − I (G
is compact) and choose a finite rank approximation G1 to G such that G = G1+ E
where kEk < 1. Define AL : B → H to be the operator AL ≡ (I + E)−1A. Since
AF = (I + E) +G1,

ALF = (I + E)−1AF = I + (I + E)−1G1 = I +KL

where KL is a finite rank operator. Similarly there exists a bounded operator
AR : B → H and a finite rank operator KR such that FAR = I +KR. Notice that
ALFAR = AR + KLAR on one hand and ALFAR = AL + ALKR on the other.
Therefore, AL − AR = ALKR − KLAR =: S is a finite rank operator. Therefore
FAL = F (AR+S) = I+KR+FS, so that FAL−I = KR−FS is still a finite rank
operator. Thus we have shown that there exists a bounded operator Ã : B → H
such that ÃF − I and FÃ− I are both finite rank operators.
We now assume that A is chosen such that AF − I = G1, FA − I = G2 are

finite rank. Clearly Nul(F ) ⊂ Nul(AF ) = Nul(I +G1) and Ran(F ) ⊇ Ran(FA) =
Ran(I +G2). The theorem now follows from Lemma 35.19 and Lemma 35.20.

Corollary 35.26. If F : H −→ B is Fredholm then F ∗ is Fredholm and index(F ) =
−index(F ∗).
Proof. Choose A : B → H such that both AF − I and FA − I are compact.

Then F ∗A∗−I and A∗F ∗−I are compact which implies that F ∗ is Fredholm. The
assertion, index(F ) = −index(F ∗), follows directly from Eq. (35.11).

Lemma 35.27. A bounded operator F : H → B is Fredholm if and only if there
exists orthogonal decompositions H = H1 ⊕H2 and B = B1 ⊕B2 such that

(1) H1 and B1 are closed subspaces,
(2) H2 and B2 are finite dimensional subspaces, and
(3) F has the block diagonal form

(35.13) F =

µ
F11 F12
F21 F22

¶
:
H1 B1
⊕ −→ ⊕
H2 B2

with F11 : H1 → B1 being a bounded invertible operator.

Furthermore, given this decomposition, index(F ) = dim(H2)− dim(B2).



592 BRUCE K. DRIVER†

Proof. If F is Fredholm, set H1 = Nul(F )⊥,H2 = Nul(F ), B1 = Ran(F ),

and B2 = Ran(F )⊥. Then F =

µ
F11 0
0 0

¶
, where F11 ≡ F |H1

: H1 → B1 is

invertible.

For the converse, assume that F is given as in Eq. (35.13). Let A ≡
µ

F−111 0
0 0

¶
then

AF =

µ
I F−111 F12
0 0

¶
=

µ
I 0
0 I

¶
+

µ
0 F−111 F12
0 −I

¶
,

so that AF − I is finite rank. Similarly one shows that FA− I is finite rank, which
shows that F is Fredholm.

Now to compute the index of F, notice that
µ

x1
x2

¶
∈ Nul(F ) iff

F11x1 + F12x2 = 0
F21x1 + F22x2 = 0

which happens iff x1 = −F−111 F12x2 and (−F21F−111 F12 + F22)x2 = 0. Let D ≡
(F22 − F21F

−1
11 F12) : H2 → B2, then the mapping

x2 ∈ Nul(D)→
µ −F−111 F12x2

x2

¶
∈ Nul(F )

is a linear isomorphism of vector spaces so that Nul(F ) ∼= Nul(D). Since

F ∗ =
µ

F ∗11 F ∗21
F ∗12 F ∗22

¶ B1 H1

⊕ −→ ⊕
B2 H2

,

similar reasoning implies Nul(F ∗) ∼= Nul(D∗). This shows that index(F ) =
index(D). But we have already seen in Example 35.24 that index(D) = dimH2 −
dimB2.

Proposition 35.28. Let F be a Fredholm operator and K be a compact operator
from H → B. Further assume T : B → X (where X is another Hilbert space) is
also Fredholm. Then

(1) the Fredholm operators form an open subset of the bounded operators. More-
over if E : H → B is a bounded operator with kEk sufficiently small we have
index(F ) =index(F + E).

(2) F +K is Fredholm and index(F ) = index(F +K).
(3) TF is Fredholm and index(TF ) = index(T ) + index(F )

Proof.
(1) We know F may be written in the block form given in Eq. (35.13) with

F11 : H1 → B1 being a bounded invertible operator. Decompose E into the
block form as

E =
µ E11 E12
E21 E22

¶
and choose kEk sufficiently small such that kE11k is sufficiently small to
guarantee that F11 + E11 is still invertible. (Recall that the invertible op-
erators form an open set.) Thus F + E =

µ
F11 + E11 ∗
∗ ∗

¶
has the block
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form of a Fredholm operator and the index may be computed as:

index(F + E) = dimH2 − dimB2 = index(F ).

(2) Given K : H → B compact, it is easily seen that F +K is still Fredholm.
Indeed if A : B → H is a bounded operator such that G1 ≡ AF − I and
G2 ≡ FA − I are both compact, then A(F + K) − I = G1 + AK and
(F +K)A − I = G2 +KA are both compact. Hence F +K is Fredholm
by Theorem 35.25. By item 1., the function f(t) ≡ index(F + tK) is a
continuous locally constant function of t ∈ R and hence is constant. In
particular, index(F +K) = f(1) = f(0) = index(F ).

(3) It is easily seen, using Theorem 35.25 that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3.
For this let H1 ≡ Nul(F )⊥, H2 ≡ Nul(F ), B1 ≡ Ran(T ) = T (H1), and

B2 ≡ Ran(T )⊥ = Nul(T ∗). Then F decomposes into the block form:

F =

µ
F̃ 0
0 0

¶
:

H1 B1
⊕ −→ ⊕
H2 B2

,

where F̃ = F |H1 : H1 → B1 is an invertible operator. Let Y1 ≡ T (B1)
and Y2 ≡ Y ⊥1 = T (B1)

⊥. Notice that Y1 = T (B1) = TQ(B1), where
Q : B → B1 ⊂ B is orthogonal projection onto B1. Since B1 is closed
and B2 is finite dimensional, Q is Fredholm. Hence TQ is Fredholm and
Y1 = TQ(B1) is closed in Y and is of finite codimension. Using the above
decompositions, we may write T in the block form:

T =

µ
T11 T12
T21 T22

¶
:

B1 Y1
⊕ −→ ⊕
B2 Y2

.

Since R =

µ
0 T12
T21 T22

¶
: B → Y is a finite rank operator and hence

RF : H → Y is finite rank, index(T−R) = index(T ) and index(TF−RF ) =
index(TF ). Hence without loss of generality we may assume that T has the

form T =

µ
T̃ 0
0 0

¶
, (T̃ = T11) and hence

TF =

µ
T̃ F̃ 0
0 0

¶
:
H1 Y1
⊕ −→ ⊕
H2 Y2

.

We now compute the index(T ). Notice that Nul(T ) = Nul(T̃ ) ⊕ B2 and
Ran(T ) = T̃ (B1) = Y1. So

index(T ) = index(T̃ ) + dim(B2)− dim(Y2).
Similarly,

index(TF ) = index(T̃ F̃ ) + dim(H2)− dim(Y2),
and as we have already seen

index(F ) = dim(H2)− dim(B2).



594 BRUCE K. DRIVER†

Therefore,

index(TF )− index(T )− index(F ) = index(T̃ F̃ )− index(T̃ ).
Since F̃ is invertible, Ran(T̃ ) = Ran(T̃ F̃ ) and Nul(T̃ ) ∼= Nul(T̃ F̃ ). Thus
index(T̃ F̃ )− index(T̃ ) = 0 and the theorem is proved.

35.6. Tensor Product Spaces . References for this section are Reed and Simon
[?] (Volume 1, Chapter VI.5), Simon [?], and Schatten [?]. See also Reed and Simon
[?] (Volume 2 § IX.4 and §XIII.17).
Let H and K be separable Hilbert spaces and H ⊗ K will denote the usual

Hilbert completion of the algebraic tensors H ⊗f K. Recall that the inner product
on H⊗K is determined by (h⊗k, h0⊗k0) = (h, h0)(k, k0). The following proposition
is well known.

Proposition 35.29 (Structure of H ⊗ K). There is a bounded linear map T :
H ⊗K → B(K,H) determined by

T (h⊗ k)k0 ≡ (k, k0)h for all k, k0 ∈ K and h ∈ H.

Moreover T (H ⊗K) = HS(K,H) – the Hilbert Schmidt operators from K to H.
The map T : H⊗K → HS(K,H) is unitary equivalence of Hilbert spaces. Finally,
any A ∈ H ⊗K may be expressed as

(35.14) A =
∞X
n=1

λnhn ⊗ kn,

where {hn} and {kn} are orthonormal sets in H and K respectively and {λn} ⊂ R
such that kAk2 =P |λn|2 <∞.

Proof. Let A ≡P ajihj⊗ki, where {hi} and {kj} are orthonormal bases for H
and K respectively and {aji} ⊂ R such that kAk2 =

P |aji|2 <∞. Then evidently,
T (A)k ≡P ajihj(ki, k) and

kT (A)kk2 =
X
j

|
X
i

aji(ki, k)|2 ≤
X
j

X
i

|aji|2|(ki, k)|2 ≤
X
j

X
i

|aji|2kkk2.

Thus T : H ⊗K → B(K,H) is bounded. Moreover,

kT (A)k2HS ≡
X

kT (A)kik2 =
X
ij

|aji|2 = kAk2,

which proves the T is an isometry.
We will now prove that T is surjective and at the same time prove Eq. (35.14).

To motivate the construction, suppose that Q = T (A) where A is given as in Eq.
(35.14). Then

Q∗Q = T (
∞X
n=1

λnkn ⊗ hn)T (
∞X
n=1

λnhn ⊗ kn) = T (
∞X
n=1

λ2nkn ⊗ kn).

That is {kn} is an orthonormal basis for (nulQ∗Q)⊥ with Q∗Qkn = λ2nkn. Also
Qkn = λnhn, so that hn = λ−1n Qkn.
We will now reverse the above argument. LetQ ∈ HS(K,H). ThenQ∗Q is a self-

adjoint compact operator on K. Therefore there is an orthonormal basis {kn}∞n=1
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for the (nulQ∗Q)⊥ which consists of eigenvectors of Q∗Q. Let λn ∈ (0,∞) such
that Q∗Qkn = λ2nkn and set hn = λ−1n Qkn. Notice that

(hn, hm) = (λ
−1
n Qkn, λ

−1
m Qkm) = (λ

−1
n kn, λ

−1
m Q∗Qkm) = (λ−1n kn, λ

−1
m λ2mkm) = δmn,

so that {hn} is an orthonormal set in H. Define

A =
∞X
n=1

λnhn ⊗ kn

and notice that T (A)kn = λnhn = Qkn for all n and T (A)k = 0 for all k ∈ nulQ =
nulQ∗Q. That is T (A) = Q. Therefore T is surjective and Eq. (35.14) holds.
Recall that

√
1− z = 1−P∞i=1 cizi for |z| < 1, where ci ≥ 0 and P∞i=1 ci <∞.

For an operator A on H such that A ≥ 0 and kAkB(H) ≤ 1, the square root of A is
given by

√
A = I −

∞X
i=1

ci(A− I)i.

See Theorem VI.9 on p. 196 of Reed and Simon [?]. The next proposition is
problem 14 and 15 on p. 217 of [?]. Let |A| ≡ √A∗A.
Proposition 35.30 (Square Root). Suppose that An and A are positive operators
on H and kA−AnkB(H) → 0 as n→∞, then

√
An →

√
A in B(H) also. Moreover,

An and A are general bounded operators on H and An → A in the operator norm
then |An|→ |A|.
Proof. With out loss of generality, assume that kAnk ≤ 1 for all n. This implies

also that that kAk ≤ 1. Then
√
A−

p
An =

∞X
i=1

ci{(An − I)i − (A− I)i}

and hence

(35.15) k
√
A−

p
Ank ≤

∞X
i=1

cik(An − I)i − (A− I)ik.

For the moment we will make the additional assumption that An ≥ �I, where
� ∈ (0, 1). Then 0 ≤ I −An ≤ (1− �)I and in particular kI −AnkB(H) ≤ (1− �).
Now suppose that Q, R, S, T are operators on H, then QR−ST = (Q−S)R+

S(R− T ) and hence

kQR− STk ≤ kQ− SkkRk+ kSkkR− Tk.
Setting Q = An − I, R ≡ (An − I)i−1, S ≡ (A− I) and T = (A− I)i−1 in this last
inequality gives

k(An − I)i − (A− I)ik ≤ kAn −Akk(An − I)i−1k+ k(A− I)kk(An − I)i−1 − (A− I)i−1k
≤ kAn −Ak(1− �)i−1 + (1− �)k(An − I)i−1 − (A− I)i−1k.(35.16)

It now follows by induction that

k(An − I)i − (A− I)ik ≤ i(1− �)i−1kAn −Ak.
Inserting this estimate into (35.15) shows that

k
√
A−

p
Ank ≤

∞X
i=1

cii(1−�)i−1kAn−Ak = 1

2

1p
1− (1− �)

kA−Ank = 1

2

1√
�
kA−Ank→ 0.
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Therefore we have shown if An ≥ �I for all n and An → A in norm then
√
An →

√
A

in norm.
For the general case where An ≥ 0, we find that for all � > 0

(35.17) lim
n→∞

p
An + � =

√
A+ �.

By the spectral theorem54

k√A+ �−
√
Ak ≤ max

x∈σ(A)
|√x+ �−√x| ≤ max

0≤x≤kAk
|√x+ �−√x|→ 0 as �→ 0.

Since the above estimates are uniform in A ≥ 0 such that kAk is bounded, it is now
an easy matter to conclude that Eq. (35.17) holds even when � = 0.
Now suppose that An → A in B(H) and An and A are general operators. Then

A∗nAn → A∗A in B(H). So by what we have already proved,

|An| ≡
p
A∗nAn → |A| ≡

√
A∗A in B(H) as n→∞.

Notation 35.31. In the future we will identify A ∈ H⊗K with T (A) ∈ HS(K,H)
and drop T from the notation. So that with this notation we have (h ⊗ k)k0 =
(k, k0)h.

Let A ∈ H ⊗H, we set kAk1 ≡ tr
√
A∗A ≡ trpT (A)∗T (A) and we let

H ⊗1 H ≡ {A ∈ H ⊗H : kAk1 <∞}.
We will now compute kAk1 for A ∈ H⊗H described as in Eq. (35.14). First notice
that A∗ =

P∞
n=1 λnkn ⊗ hn and

A∗A =
∞X
n=1

λ2nkn ⊗ kn.

Hence
√
A∗A =

P∞
n=1 |λn|kn ⊗ kn and hence kAk1 =

P∞
n=1 |λn|. Also notice that

kAk2 =P∞n=1 |λn|2 and kAkop = maxn |λn|. Since
kAk21 = {

∞X
n=1

|λn|}2 ≥
∞X
n=1

|λn|2 = kAk2,

we have the following relations among the various norms,

(35.18) kAkop ≤ kAk ≤ kAk1.
Proposition 35.32. There is a continuous linear map C : H ⊗1H → R such that
C(h⊗ k) = (h, k) for all h, k ∈ H. If A ∈ H ⊗1 H, then

(35.19) CA =
X
(em ⊗ em, A),

where {em} is any orthonormal basis for H. Moreover, if A ∈ H ⊗1 H is positive,
i.e. T (A) is a non-negative operator, then kAk1 = CA.

54It is possible to give a more elementary proof here. Indeed, assume further that kAk ≤ α < 1,

then for � ∈ (0, 1− α), k√A+ �−√Ak ≤P∞
i=1 cik(A+ �)i −Aik. But

k(A+ �)i −Aik ≤
iX

k=1

³ i
k

´
�kkAi−kk ≤

iX
k=1

³ i
k

´
�kkAki−k = (kAk+ �)i − kAki,

so that k√A+ � − √Ak ≤ pkAk+ � − pkAk → 0 as � → 0 uniformly in A ≥ 0 such that
kAk ≤ α < 1.
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Proof. Let A ∈ H⊗1H be given as in Eq. (35.14) with
P∞

n=1 |λn| = kAk1 <∞.
Then define CA ≡P∞n=1 λn(hn, kn) and notice that |CA| ≤P |λn| = kAk1, which
shows that C is a contraction on H ⊗1H. (Using the universal property of H ⊗f H
it is easily seen that C is well defined.) Also notice that for M ∈ Z+ that

MX
m=1

(em ⊗ em, A) =
∞X
n=1

MX
m=1

(em ⊗ em, λnhn ⊗ kn, ),(35.20)

=
∞X
n=1

λn(PMhn, kn),(35.21)

where PM denotes orthogonal projection onto span{em}Mm=1. Since |λn(PMhn, kn)| ≤
|λn| and

P∞
n=1 |λn| = kAk1 <∞, we may let M →∞ in Eq. (35.21) to find that

∞X
m=1

(em ⊗ em, A) =
∞X
n=1

λn(hn, kn) = CA.

This proves Eq. (35.19).
For the final assertion, suppose that A ≥ 0. Then there is an orthonormal basis

{kn}∞n=1 for the (nulA)⊥ which consists of eigenvectors of A. That is A =
P

λnkn⊗
kn and λn ≥ 0 for all n. Thus CA =

P
λn and kAk1 =

P
λn.

Proposition 35.33 (Noncommutative Fatou’ s Lemma). Let An be a sequence of
positive operators on a Hilbert space H and An → A weakly as n→∞, then

(35.22) trA ≤ lim inf
n→∞ trAn.

Also if An ∈ H ⊗1 H and An → A in B(H), then

(35.23) kAk1 ≤ lim inf
n→∞ kAnk1.

Proof. Let An be a sequence of positive operators on a Hilbert space H and
An → A weakly as n → ∞ and {ek}∞k=1 be an orthonormal basis for H. Then by
Fatou’s lemma for sums,

trA =
∞X
k=1

(Aek, ek) =
∞X
k=1

lim
n→∞(Anek, ek)

≤ lim inf
n→∞

∞X
k=1

(Anek, ek) = lim inf
n→∞ trAn.

Now suppose that An ∈ H ⊗1 H and An → A in B(H). Then by Proposi-
tion 35.30, |An| → |A| in B(H) as well. Hence by Eq. (35.22), kAk1 ≡tr|A| ≤
lim infn→∞tr|An| ≤ lim infn→∞ kAnk1.
Proposition 35.34. Let X be a Banach space, B : H × K → X be a bounded
bi-linear form, and kBk ≡ sup{|B(h, k)| : khkkkk ≤ 1}. Then there is a unique
bounded linear map B̃ : H ⊗1 K → X such that B̃(h ⊗ k) = B(h, k). Moreover
kB̃kop = kB̃k.
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Proof. Let A =
P∞

n=1 λnhn ⊗ kn ∈ H ⊗1 K as in Eq. (35.14). Clearly, if B̃ is
to exist we must have B̃(A) ≡P∞n=1 λnB(hn, kn). Notice that

∞X
n=1

|λn||B(hn, kn)| ≤
∞X
n=1

|λn|kBk = kAk1 · kBk.

This shows that B̃(A) is well defined and that kB̃kop ≤ kB̃k. The opposite inequality
follows from the trivial computation:

kBk = sup{|B(h, k)| : khkkkk = 1} = sup{|B̃(h⊗ k)| : kh⊗1 kk1 = 1} ≤ kB̃kop.

Lemma 35.35. Suppose that P ∈ B(H) and Q ∈ B(K), then P ⊗Q : H ⊗K →
H ⊗K is a bounded operator. Moreover, P ⊗Q(H ⊗1 K) ⊂ H ⊗1 K and we have
the norm equalities

kP ⊗QkB(H⊗K) = kPkB(H)kQkB(K)
and

kP ⊗QkB(H⊗1K) = kPkB(H)kQkB(K).
We will give essentially the same proof of kP ⊗QkB(H⊗K) = kPkB(H)kQkB(K)

as the proof on p. 299 of Reed and Simon [?]. Let A ∈ H ⊗K as in Eq. (35.14).
Then

(P ⊗ I)A =
∞X
n=1

λnPhn ⊗ kn

and hence

(P ⊗ I)A{(P ⊗ I)A}∗ =
∞X
n=1

λ2nPhn ⊗ Phn.

Therefore,

k(P ⊗ I)Ak2 = tr(P ⊗ I)A{(P ⊗ I)A}∗

=
∞X
n=1

λ2n(Phn, Phn) ≤ kPk2
∞X
n=1

λ2n

= kPk2kAk21,
which shows that Thus kP ⊗ IkB(H⊗K) ≤ kPk. By symmetry, kI ⊗ QkB(H⊗K) ≤
kQk. Since P ⊗Q = (P ⊗ I)(I ⊗Q), we have

kP ⊗QkB(H⊗K) ≤ kPkB(H)kQkB(K).
The reverse inequality is easily proved by considering P ⊗ Q on elements of the
form h⊗ k ∈ H ⊗K.
Proof. Now suppose that A ∈ H ⊗1 K as in Eq. (35.14). Then

k(P ⊗Q)Ak1 ≤
∞X
n=1

|λn|kPhn ⊗Qknk1 ≤ kPkkQk
∞X
n=1

|λn| = kPkkQkkAk,

which shows that
kP ⊗QkB(H⊗1K) ≤ kPkB(H)kQkB(K).

Again the reverse inequality is easily proved by considering P ⊗Q on elements of
the form h⊗ k ∈ H ⊗1 K.
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Lemma 35.36. Suppose that Pm and Qm are orthogonal projections on H and K
respectively which are strongly convergent to the identity on H and K respectively.
Then Pm ⊗ Qm : H ⊗1 K −→ H ⊗1 K also converges strongly to the identity in
H ⊗1 K.

Proof. Let A =
P∞

n=1 λnhn ⊗ kn ∈ H ⊗1 K as in Eq. (35.14). Then

kPm ⊗QmA−Ak1 ≤
∞X
n=1

|λn|kPmhn ⊗Qmkn − hn ⊗ knk1

=
∞X
n=1

|λn|k(Pmhn − hn)⊗Qmkn + hn ⊗ (Qmkn − kn)k1

≤
∞X
n=1

|λn|{kPmhn − hnkkQmknk+ khnkkQmkn − knk}

≤
∞X
n=1

|λn|{kPmhn − hnk+ kQmkn − knk}→ 0 as m→∞

by the dominated convergence theorem.


