35. Compact and Fredholm Operators and the Spectral Theorem

In this section H and B will be Hilbert spaces. Typically H and B will be separable, but we will not assume this until it is needed later.

35.1. Compact Operators.

Proposition 35.1. Let M be a finite dimensional subspace of a Hilbert space H

- (1) M is complete (hence closed).
- (2) Closed bounded subsets of M are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonormal basis $\{\phi_1,\ldots,\phi_n\}$ of M. Define $U:M\to\mathbb{C}^n$ to be the unique unitary map such that $U\phi_i = e_i$ where e_i is the ith standard basis vector in \mathbb{C}^n . It now follows that M is complete and that closed bounded subsets of M are compact since the same is true for \mathbb{C}^n .

Definition 35.2. A bounded operator $K: H \to B$ is **compact** if K maps bounded sets into precompact sets, i.e. $\overline{K(U)}$ is compact in B, where $U := \{x \in H : ||x|| < 1\}$ is the **unit ball** in H. Equivalently, for all bounded sequences $\{x_n\}_{n=1}^{\infty} \subset H$, the sequence $\{Kx_n\}_{n=1}^{\infty}$ has a convergent subsequence in B.

Notice that if $\dim(H) = \infty$ and $T: H \to B$ is invertible, then T is **not** compact.

Definition 35.3. $K: H \to B$ is said to have **finite rank** if $Ran(K) \subset B$ is finite dimensional.

Corollary 35.4. If $K: H \to B$ is a finite rank operator, then K is compact. In particular if either $\dim(H) < \infty$ or $\dim(B) < \infty$ then any bounded operator $K: H \rightarrow B$ is finite rank and hence compact.

Example 35.5. Let (X, μ) be a measure space, $H = L^2(X, \mu)$ and

$$k(x,y) \equiv \sum_{i=1}^{n} f_i(x)g_i(y)$$

where

$$f_i, g_i \in L^2(X, \mu) \text{ for } i = 1, \dots, n$$

 $f_i,g_i\in L^2(X,\mu)$ for $i=1,\ldots,n$. Define $(Kf)(x)=\int_X k(x,y)f(y)d\mu(y)$, then $K:L^2(X,\mu)\to L^2(X,\mu)$ is a finite rank operator and hence compact.

Lemma 35.6. Let $\mathcal{K} := \mathcal{K}(H, B)$ denote the compact operators from H to B. Then K(H,B) is a norm closed subspace of L(H,B).

Proof. The fact that K is a vector subspace of L(H, B) will be left to the reader. Now let $K_n: H \to B$ be compact operators and $K: H \to B$ be a bounded operator such that $\lim_{n\to\infty} ||K_n - K||_{op} = 0$. We will now show K is compact.

First Proof. Given $\epsilon > 0$, choose $N = N(\epsilon)$ such that $||K_N - K|| < \epsilon$. Using the fact that K_NU is precompact, choose a finite subset $\Lambda \subset U$ such that $\min_{x \in \Lambda} \|y - K_N x\| < \epsilon \text{ for all } y \in K_N(U). \text{ Then for } z = K x_0 \in K(U) \text{ and } x \in \Lambda,$

$$||z - Kx|| = ||(K - K_N)x_0 + K_N(x_0 - x) + (K_N - K)x||$$

$$\leq 2\epsilon + ||K_Nx_0 - K_Nx||.$$

Therefore $\min_{x \in \Lambda} ||z - K_N x|| < 3\epsilon$, which shows K(U) is 3ϵ bounded for all $\epsilon > 0$, K(U) is totally bounded and hence precompact.

Second Proof. Suppose $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence in H. By compactness, there is a subsequence $\{x_n\}_{n=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $\{K_1x_n^1\}_{n=1}^{\infty}$ is convergent in B. Working inductively, we may construct subsequences

$$\{x_n\}_{n=1}^{\infty} \supset \{x_n^1\}_{n=1}^{\infty} \supset \{x_n^2\}_{n=1}^{\infty} \cdots \supset \{x_n^m\}_{n=1}^{\infty} \supset \ldots$$

such that $\{K_m x_n^m\}_{n=1}^{\infty}$ is convergent in B for each m. By the usual Cantor's diagonalization procedure, let $y_n := x_n^n$, then $\{y_n\}_{n=1}^{\infty}$ is a subsequence of $\{x_n\}_{n=1}^{\infty}$ such that $\{K_m y_n\}_{n=1}^{\infty}$ is convergent for all m. Since

$$||Ky_n - Ky_l|| \le ||(K - K_m) y_n|| + ||K_m(y_n - y_l)|| + ||(K_m - K) y_l)||$$

$$\le 2 ||K - K_m|| + ||K_m(y_n - y_l)||,$$

$$\lim \sup_{n,l \to \infty} ||Ky_n - Ky_l|| \le 2 ||K - K_m|| \to 0 \text{ as } m \to \infty,$$

which shows $\{Ky_n\}_{n=1}^{\infty}$ is Cauchy and hence convergent.

Proposition 35.7. A bounded operator $K: H \to B$ is compact iff there exists finite rank operators, $K_n: H \to B$, such that $||K - K_n|| \to 0$ as $n \to \infty$.

Proof. Since $\overline{K(U)}$ is compact it contains a countable dense subset and from this it follows that $\overline{K(H)}$ is a separable subspace of B. Let $\{\phi_n\}$ be an orthonormal basis for $\overline{K(H)} \subset B$ and $P_N y = \sum_{n=1}^N (y, \phi_n) \phi_n$ be the orthogonal projection of y onto $\operatorname{span}\{\phi_n\}_{n=1}^N$. Then $\lim_{N\to\infty} \|P_N y - y\| = 0$ for all $y \in K(H)$.

Define $K_n \equiv P_n K$ – a finite rank operator on H. For sake of contradiction suppose that $\limsup_{n\to\infty} \|K - K_n\| = \epsilon > 0$, in which case there exists $x_{n_k} \in U$ such that $\|(K - K_{n_k})x_{n_k}\| \ge \epsilon$ for all n_k . Since K is compact, by passing to a subsequence if necessary, we may assume $\{Kx_{n_k}\}_{n_k=1}^{\infty}$ is convergent in B. Letting $y \equiv \lim_{k\to\infty} Kx_{n_k}$,

$$||(K - K_{n_k})x_{n_k}|| = ||(1 - P_{n_k})Kx_{n_k}|| \le ||(1 - P_{n_k})(Kx_{n_k} - y)|| + ||(1 - P_{n_k})y||$$

$$\le ||Kx_{n_k} - y|| + ||(1 - P_{n_k})y|| \to 0 \text{ as } k \to \infty.$$

But this contradicts the assumption that ϵ is positive and hence we must have $\lim_{n\to\infty} \|K - K_n\| = 0$, i.e. K is an operator norm limit of finite rank operators. The converse direction follows from Corollary 35.4 and Lemma 35.6.

Corollary 35.8. If K is compact then so is K^* .

Proof. Let $K_n = P_n K$ be as in the proof of Proposition 35.7, then $K_n^* = K^* P_n$ is still finite rank. Furthermore, using Proposition 12.16,

$$||K^* - K_n^*|| = ||K - K_n|| \to 0 \text{ as } n \to \infty$$

showing K^* is a limit of finite rank operators and hence compact.

35.2. Hilbert Schmidt Operators.

Proposition 35.9. Let H and B be a separable Hilbert spaces, $K: H \to B$ be a bounded linear operator, $\{e_n\}_{n=1}^{\infty}$ and $\{u_m\}_{m=1}^{\infty}$ be orthonormal basis for H and B respectively. Then:

(1) $\sum_{n=1}^{\infty} ||Ke_n||^2 = \sum_{m=1}^{\infty} ||K^*u_m||^2$ allowing for the possibility that the sums are infinite. In particular the **Hilbert Schmidt norm** of K,

$$\|K\|_{HS}^2 := \sum_{n=1}^{\infty} \|Ke_n\|^2$$
,

is well defined independent of the choice of orthonormal basis $\{e_n\}_{n=1}^{\infty}$. We say $K: H \to B$ is a **Hilbert Schmidt operator** if $||K||_{HS} < \infty$ and let HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

(2) For all $K \in L(H, B)$, $||K||_{HS} = ||K^*||_{HS}$ and

$$\|K\|_{HS} \ge \|K\|_{op} := \sup \left\{ \|Kh\| : h \in H \ \ni \ \|h\| = 1 \right\}.$$

(3) The set HS(H,B) is a subspace of $\mathcal{K}(H,B)$ and $\|\cdot\|_{HS}$ is a norm on HS(H,B) for which $(HS(H,B),\|\cdot\|_{HS})$ is a Hilbert space. The inner product on HS(H,B) is given by

(35.1)
$$(K_1, K_2)_{HS} = \sum_{n=1}^{\infty} (K_1 e_n, K_2 e_n).$$

(4) Let $P_N x := \sum_{n=1}^N (x, e_n) e_n$ be orthogonal projection onto span $\{e_i : i \leq N\} \subset H$ and for $K \in HS(H, B)$, let $K_n := KP_n$. Then

$$\|K - K_N\|_{op}^2 \le \|K - K_N\|_{HS}^2 \to 0 \text{ as } N \to \infty,$$

which shows that finite rank operators are dense in $(HS(H,B), \|\cdot\|_{HS})$.

(5) If L is another Hilbert space and $A: L \to H$ and $C: B \to L$ are bounded operators, then

$$||KA||_{HS} \le ||K||_{HS} ||A||_{op} \text{ and } ||CK||_{HS} \le ||K||_{HS} ||C||_{op}.$$

Proof. Items 1. and 2. By Parsaval's equality and Fubini's theorem for sums,

$$\sum_{n=1}^{\infty} \left\| Ke_n \right\|^2 = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left| (Ke_n, u_m) \right|^2 = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \left| (e_n, K^*u_m) \right|^2 = \sum_{m=1}^{\infty} \left\| K^*u_m \right\|^2.$$

This proves $||K||_{HS}$ is well defined independent of basis and that $||K||_{HS} = ||K^*||_{HS}$. For $x \in H \setminus \{0\}$, x/||x|| may be taken to be the first element in an orthonormal basis for H and hence

$$\left\| K \frac{x}{\|x\|} \right\| \le \|K\|_{HS} \,.$$

Multiplying this inequality by $\|x\|$ shows $\|Kx\| \le \|K\|_{HS} \|x\|$ and hence $\|K\|_{op} \le \|K\|_{HS}$.

Item 3. For $K_1, K_2 \in L(H, B)$,

$$\begin{aligned} \|K_1 + K_2\|_{HS} &= \sqrt{\sum_{n=1}^{\infty} \|K_1 e_n + K_2 e_n\|^2} \\ &\leq \sqrt{\sum_{n=1}^{\infty} \left[\|K_1 e_n\| + \|K_2 e_n\| \right]^2} = \|\{\|K_1 e_n\| + \|K_2 e_n\| \}_{n=1}^{\infty} \|_{\ell_2} \\ &\leq \|\{\|K_1 e_n\| \}_{n=1}^{\infty} \|_{\ell_2} + \|\{\|K_2 e_n\| \}_{n=1}^{\infty} \|_{\ell_2} = \|K_1\|_{HS} + \|K_2\|_{HS}. \end{aligned}$$

From this triangle inequality and the homogeneity properties of $\|\cdot\|_{HS}$, we now easily see that HS(H,B) is a subspace of $\mathcal{K}(H,B)$ and $\|\cdot\|_{HS}$ is a norm on HS(H,B). Since

$$\begin{split} \sum_{n=1}^{\infty} \left| \left(K_1 e_n, K_2 e_n \right) \right| &\leq \sum_{n=1}^{\infty} \left\| K_1 e_n \right\| \left\| K_2 e_n \right\| \\ &\leq \sqrt{\sum_{n=1}^{\infty} \left\| K_1 e_n \right\|^2} \sqrt{\sum_{n=1}^{\infty} \left\| K_2 e_n \right\|^2} = \left\| K_1 \right\|_{HS} \left\| K_2 \right\|_{HS}, \end{split}$$

the sum in Eq. (35.1) is well defined and is easily checked to define an inner product on HS(H,B) such that $\|K\|_{HS}^2 = (K_1,K_2)_{HS}$. To see that HS(H,B) is complete in this inner product suppose $\{K_m\}_{m=1}^{\infty}$ is a $\|\cdot\|_{HS}$ – Cauchy sequence in HS(H,B). Because L(H,B) is complete, there exists $K \in L(H,B)$ such that $\|K_m - K\|_{op} \to 0$ as $m \to \infty$. Since

$$\sum_{n=1}^{N} \| (K - K_m) e_n \|^2 = \lim_{l \to \infty} \sum_{n=1}^{N} \| (K_l - K_m) e_n \|^2 \le \lim \sup_{l \to \infty} \| K_l - K_m \|_{HS},$$

$$||K_m - K||_{HS}^2 = \sum_{n=1}^{\infty} ||(K - K_m) e_n||^2 = \lim_{N \to \infty} \sum_{n=1}^{N} ||(K - K_m) e_n||^2$$

$$\leq \lim \sup_{l \to \infty} ||K_l - K_m||_{HS} \to 0 \text{ as } m \to \infty.$$

Item 4. Simply observe,

$$||K - K_N||_{op}^2 \le ||K - K_N||_{HS}^2 = \sum_{n > N} ||Ke_n||^2 \to 0 \text{ as } N \to \infty.$$

Item 5. For $C \in L(B, L)$ and $K \in L(H, B)$ then

$$\|CK\|_{HS}^2 = \sum_{n=1}^{\infty} \|CKe_n\|^2 \le \|C\|_{op}^2 \sum_{n=1}^{\infty} \|Ke_n\|^2 = \|C\|_{op}^2 \|K\|_{HS}^2$$

and for $A \in L(L, H)$,

$$\left\|KA\right\|_{HS} = \left\|A^*K^*\right\|_{HS} \leq \left\|A^*\right\|_{op} \left\|K^*\right\|_{HS} = \left\|A\right\|_{op} \left\|K\right\|_{HS}.$$

Remark 35.10. The separability assumptions made in Proposition 35.9 are unnecessary. In general, we define

$$||K||_{HS}^2 = \sum_{e \in \Gamma} ||Ke||^2$$

where $\Gamma \subset H$ is an orthonormal basis. The same proof of Item 1. of Proposition 35.9 shows $||K||_{HS}$ is well defined and $||K||_{HS} = ||K^*||_{HS}$. If $||K||_{HS}^2 < \infty$, then there exists a countable subset $\Gamma_0 \subset \Gamma$ such that Ke = 0 if $e \in \Gamma \setminus \Gamma_0$. Let $H_0 := \overline{\operatorname{span}(\Gamma_0)}$ and $B_0 := \overline{K(H_0)}$. Then $K(H) \subset B_0$, $K|_{H_0^{\perp}} = 0$ and hence by applying the results of Proposition 35.9 to $K|_{H_0} : H_0 \to B_0$ one easily sees that the separability of H and B are unnecessary in Proposition 35.9.

Exercise 35.1. Suppose that (X, μ) is a σ -finite measure space such that $H = L^2(X, \mu)$ is separable and $k: X \times X \to \mathbb{R}$ is a measurable function, such that

$$||k||_{L^2(X\times X,\mu\otimes\mu)}^2 \equiv \int_{X\times X} |k(x,y)|^2 d\mu(x) d\mu(y) < \infty.$$

Define, for $f \in H$,

$$Kf(x) = \int_{Y} k(x, y) f(y) d\mu(y),$$

when the integral makes sense. Show:

- (1) Kf(x) is defined for μ -a.e. x in X.
- (2) The resulting function Kf is in H and $K: H \to H$ is linear.
- (3) $||K||_{HS} = ||k||_{L^2(X\times X,\mu\otimes\mu)} < \infty$. (This implies $K \in HS(H,H)$.)

35 1 Since

$$\int_{X} d\mu(x) \left(\int_{X} |k(x,y)f(y)| d\mu(y) \right)^{2} \le \int_{X} d\mu(x) \left(\int_{X} |k(x,y)|^{2} d\mu(y) \right) \left(\int_{X} |f(y)|^{2} d\mu(y) \right)
\le ||k||_{2}^{2} ||f||_{2}^{2} < \infty,$$

we learn Kf is almost everywhere defined and that $Kf \in H$. The linearity of K is a consequence of the linearity of the Lebesgue integral. Now suppose $\{\phi_n\}_{n=1}^{\infty}$ is an orthonormal basis for H. From the estimate in Eq. (35.2), $k(x,\cdot) \in H$ for μ – a.e. $x \in X$ and therefore

$$\begin{split} \left\| K \right\|_{HS}^2 &= \sum_{n=1}^{\infty} \int_X d\mu(x) \left| \int_X k(x,y) \phi_n(y) d\mu(y) \right|^2 \\ &= \sum_{n=1}^{\infty} \int_X d\mu(x) \left| (\phi_n, \bar{k}(x,\cdot)) \right|^2 = \int_X d\mu(x) \sum_{n=1}^{\infty} \left| (\phi_n, \bar{k}(x,\cdot)) \right|^2 \\ &= \int_X d\mu(x) \left\| \bar{k}(x,\cdot) \right\|_H^2 = \int_X d\mu(x) \int_X d\mu(y) \left| k(x,y) \right|^2 = \| k \|_2^2 \,. \end{split}$$

Example 35.11. Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded set, $\alpha < n$, then the operator $K: L^2(\Omega, m) \to L^2(\Omega, m)$ defined by

$$Kf(x) := \int_{\Omega} \frac{1}{|x-y|^{\alpha}} f(y) dy$$

is compact.

Proof. For $\epsilon \geq 0$, let

$$K_{\epsilon}f(x) := \int_{\Omega} \frac{1}{|x - y|^{\alpha} + \epsilon} f(y) dy = \left[g_{\epsilon} * (1_{\Omega}f)\right](x)$$

where $g_{\epsilon}(x) = \frac{1}{|x|^{\alpha} + \epsilon} 1_{C}(x)$ with $C \subset \mathbb{R}^{n}$ a sufficiently large ball such that $\Omega - \Omega \subset C$. Since $\alpha < n$, it follows that

$$g_{\epsilon} \le g_0 = \left| \cdot \right|^{-\alpha} 1_C \in L^1(\mathbb{R}^n, m).$$

Hence it follows by Proposition 11.12?? that

$$\begin{aligned} \|(K - K_{\epsilon}) f\|_{L^{2}(\Omega)} &\leq \|(g_{0} - g_{\epsilon}) * (1_{\Omega} f)\|_{L^{2}(\mathbb{R}^{n})} \\ &\leq \|(g_{0} - g_{\epsilon})\|_{L^{1}(\mathbb{R}^{n})} \|1_{\Omega} f\|_{L^{2}(\mathbb{R}^{n})} = \|(g_{0} - g_{\epsilon})\|_{L^{1}(\mathbb{R}^{n})} \|f\|_{L^{2}(\mathcal{A})} \end{aligned}$$

which implies (35.3)

$$||K - K_{\epsilon}||_{B(L^{2}(\Omega))} \le ||g_{0} - g_{\epsilon}||_{L^{1}(\mathbb{R}^{n})} = \int_{C} \left| \frac{1}{|x|^{\alpha} + \epsilon} - \frac{1}{|x|^{\alpha}} \right| dx \to 0 \text{ as } \epsilon \downarrow 0$$

by the dominated convergence theorem. For any $\epsilon > 0$,

$$\int_{\Omega\times\Omega}\left[\frac{1}{\left|x-y\right|^{\alpha}+\epsilon}\right]^{2}dxdy<\infty,$$

and hence K_{ϵ} is Hilbert Schmidt and hence compact. By Eq. (35.3), $K_{\epsilon} \to K$ as $\epsilon \downarrow 0$ and hence it follows that K is compact as well.

35.3. The Spectral Theorem for Self Adjoint Compact Operators.

Lemma 35.12. Suppose $T: H \to B$ is a bounded operator, then $\operatorname{Nul}(T^*) = \operatorname{Ran}(T)^{\perp}$ and $\overline{Ran(T)} = \operatorname{Nul}(T^*)^{\perp}$.

Proof. An element $y \in B$ is in $\operatorname{Nul}(T^*)$ iff $\underline{0} = (T^*y, x) = (y, Ax)$ for all $x \in H$ which happens iff $y \in \operatorname{Ran}(T)^{\perp}$. Because $\overline{\operatorname{Ran}(T)} = \operatorname{Ran}(T)^{\perp \perp}$, $\overline{\operatorname{Ran}(T)} = \operatorname{Nul}(T^*)^{\perp}$.

For the rest of this section, $T \in \mathcal{K}(H) := \mathcal{K}(H, H)$ will be a self-adjoint compact operator or **S.A.C.O.** for short.

Example 35.13 (Model S.A.C.O.). Let $H = \ell_2$ and T be the diagonal matrix

$$T = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots \\ 0 & \lambda_2 & 0 & \cdots \\ 0 & 0 & \lambda_3 & \cdots \\ \vdots & \vdots & \ddots & \ddots \end{pmatrix},$$

where $\lim_{n\to\infty} |\lambda_n| = 0$ and $\lambda_n \in \mathbb{R}$. Then T is a self-adjoint compact operator. (Prove!)

The main theorem of this subsection states that up to unitary equivalence, Example 35.13 is essentially the most general example of an S.A.C.O.

Theorem 35.14. Suppose $T \in L(H) := L(H, H)$ is a bounded self-adjoint operator, then

$$||T|| = \sup_{f \neq 0} \frac{|(f, Tf)|}{||f||^2}.$$

Moreover if there exists a non-zero element $g \in H$ such that

$$\frac{|(Tg,g)|}{\|g\|^2} = \|T\|,$$

then g is an eigenvector of T with $Tg = \lambda g$ and $\lambda \in \{\pm ||T||\}$.

Proof. Let

$$M \equiv \sup_{f \neq 0} \frac{|(f, Tf)|}{\|f\|^2}.$$

We wish to show M = ||T||. Since $|(f, Tf)| \le ||f|| ||Tf|| \le ||T|| ||f||^2$, we see $M \le ||T||$.

Conversely let $f, g \in H$ and compute

$$\begin{split} (f+g,T(f+g)) - (f-g,T(f-g)) \\ &= (f,Tg) + (g,Tf) + (f,Tg) + (g,Tf) \\ &= 2[(f,Tg) + (Tg,f)] = 2[(f,Tg) + (\overline{f,Tg})] \\ &= 4\text{Re}(f,Tg). \end{split}$$

Therefore, if ||f|| = ||g|| = 1, it follows that

$$|\operatorname{Re}(f, Tg)| \le \frac{M}{4} \{ ||f + g||^2 + ||f - g||^2 \} = \frac{M}{4} \{ 2||f||^2 + 2||g||^2 \} = M.$$

By replacing f be $e^{i\theta}f$ where θ is chosen so that $e^{i\theta}(f,Tg)$ is real, we find

$$|(f, Tg)| \le M$$
 for all $||f|| = ||g|| = 1$.

Hence

$$||T|| = \sup_{||f|| = ||g|| = 1} |(f, Tg)| \le M.$$

If $g \in H \setminus \{0\}$ and $||T|| = |(Tg,g)|/||g||^2$ then, using the Cauchy Schwarz inequality,

(35.4)
$$||T|| = \frac{|(Tg,g)|}{||g||^2} \le \frac{||Tg||}{||g||} \le ||T||.$$

This implies |(Tg,g)| = ||Tg|| ||g|| and forces equality in the Cauchy Schwarz inequality. So by Theorem 12.2, Tg and g are linearly dependent, i.e. $Tg = \lambda g$ for some $\lambda \in \mathbb{C}$. Substituting this into (35.4) shows that $|\lambda| = ||T||$. Since T is self-adjoint,

$$\lambda ||g||^2 = (\lambda g, g) = (Tg, g) = (g, Tg) = (g, \lambda g) = \bar{\lambda}(g, g),$$

which implies that $\lambda \in \mathbb{R}$ and therefore, $\lambda \in \{\pm ||T||\}$.

Theorem 35.15. Let T be a S.A.C.O., then either $\lambda = ||T||$ or $\lambda = -||T||$ is an eigenvalue of T.

Proof. Without loss of generality we may assume that T is non-zero since otherwise the result is trivial. By Theorem 35.14, there exists $f_n \in H$ such that $||f_n|| = 1$ and

(35.5)
$$\frac{|(f_n, Tf_n)|}{\|f_n\|^2} = |(f_n, Tf_n)| \longrightarrow \|T\| \text{ as } n \to \infty.$$

By passing to a subsequence if necessary, we may assume that $\lambda := \lim_{n\to\infty} (f_n, Tf_n)$ exists and $\lambda \in \{\pm ||T||\}$. By passing to a further subsequence if necessary, we may assume, using the compactness of T, that Tf_n is convergent as well. We now compute:

$$0 \le ||Tf_n - \lambda f_n||^2 = ||Tf_n||^2 - 2\lambda (Tf_n, f_n) + \lambda^2$$

$$\le \lambda^2 - 2\lambda (Tf_n, f_n) + \lambda^2 \to \lambda^2 - 2\lambda^2 + \lambda^2 = 0 \text{ as } n \to \infty.$$

Hence

(35.6)
$$Tf_n - \lambda f_n \to 0 \text{ as } n \to \infty$$

and therefore

$$f \equiv \lim_{n \to \infty} f_n = \frac{1}{\lambda} \lim_{n \to \infty} T f_n$$

exists. By the continuity of the inner product, $||f|| = 1 \neq 0$. By passing to the limit in Eq. (35.6) we find that $Tf = \lambda f$.

Lemma 35.16. Let $T: H \to H$ be a self-adjoint operator and M be a T - invariant subspace of H, i.e. $T(M) \subset M$. Then M^{\perp} is also a T - invariant subspace, i.e. $T(M^{\perp}) \subset M^{\perp}$.

Proof. Let $x \in M$ and $y \in M^{\perp}$, then $Tx \in M$ and hence

$$0 = (Tx, y) = (x, Ty)$$
 for all $x \in M$.

Thus $Ty \in M^{\perp}$.

Theorem 35.17 (Spectral Theorem). Suppose that $T: H \to H$ is a non-zero S.A.C.O., then

- (1) there exists at least one eigenvalue $\lambda \in \{\pm ||T||\}$.
- (2) There are at most countable many **non-zero** eigenvalues, $\{\lambda_n\}_{n=1}^N$, where $N = \infty$ is allowed. (Unless T is finite rank, N will be infinite.)
- (3) The λ_n 's (including multiplicities) may be arranged so that $|\lambda_n| \geq |\lambda_{n+1}|$ for all n. If $N = \infty$ then $\lim_{n \to \infty} |\lambda_n| = 0$. (In particular any eigenspace for T with **non-zero** eigenvalue is finite dimensional.)
- (4) The eigenvectors $\{\phi_n\}_{n=1}^N$ can be chosen to be an O.N. set such that $H = \overline{span\{\phi_n\}} \oplus \text{Nul}(T)$.
- (5) Using the $\{\phi_n\}_{n=1}^N$ above,

$$T\psi = \sum_{n=1}^{N} \lambda_n(\psi, \phi_n) \phi_n \text{ for all } \psi \in H.$$

(6) The spectrum of T is $\sigma(T) = \{0\} \cup \bigcup_{n=1}^{\infty} \{\lambda_n\}.$

Proof. We will find λ_n 's and ϕ_n 's recursively. Let $\lambda_1 \in \{\pm ||T||\}$ and $\phi_1 \in H$ such that $T\phi_1 = \lambda_1\phi_1$ as in Theorem 35.15. Take $M_1 = \operatorname{span}(\phi_1)$ so $T(M_1) \subset M_1$. By Lemma 35.16, $TM_1^{\perp} \subset M_1^{\perp}$. Define $T_1 : M_1^{\perp} \to M_1^{\perp}$ via $T_1 = T|_{M_1^{\perp}}$. Then T_1 is again a compact operator. If $T_1 = 0$, we are done.

If $T_1 \neq 0$, by Theorem 35.15 there exists $\lambda_2 \in \{\pm \|T\|_1\}$ and $\phi_2 \in M_1^{\perp}$ such that $\|\phi_2\| = 1$ and $T_1\phi_2 = T\phi_2 = \lambda_2\phi_2$. Let $M_2 \equiv \operatorname{span}(\phi_1, \phi_2)$. Again $T(M_2) \subset M_2$ and hence $T_2 \equiv T|_{M_2^{\perp}} : M_2^{\perp} \to M_2^{\perp}$ is compact. Again if $T_2 = 0$ we are done.

If $T_2 \neq 0$. Then by Theorem 35.15 there exists $\lambda_3 \in \{\pm ||T||_2\}$ and $\phi_3 \in M_2^{\perp}$ such that $||\phi_3|| = 1$ and $T_2\phi_3 = T\phi_3 = \lambda_3\phi_3$. Continuing this way indefinitely or until we reach a point where $T_n = 0$, we construct a sequence $\{\lambda_n\}_{n=1}^N$ of eigenvalues and orthonormal eigenvectors $\{\phi_n\}_{n=1}^N$ such that $|\lambda_i| \geq |\lambda_{i+1}|$ with the further property that

(35.7)
$$|\lambda_i| = \sup_{\phi \perp \{\phi_1, \phi_2, \dots \phi_{i-1}\}} \frac{\|T\phi\|}{\|\phi\|}$$

If $N=\infty$ then $\lim_{i\to\infty}|\lambda_i|=0$ for if not there would exist $\epsilon>0$ such that $|\lambda_i|\geq\epsilon>0$ for all i. In this case $\{\phi_i/\lambda_i\}_{i=1}^\infty$ is sequence in H bounded by ϵ^{-1} . By compactness of T, there exists a subsequence i_k such that $\phi_{i_k}=T\phi_{i_k}/\lambda_{i_k}$ is convergent. But this is impossible since $\{\phi_{i_k}\}$ is an orthonormal set. Hence we must have that $\epsilon=0$.

Let $M \equiv \operatorname{span}\{\phi_i\}_{i=1}^N$ with $N = \infty$ **possible**. Then $T(M) \subset M$ and hence $T(M^{\perp}) \subset M^{\perp}$. Using Eq. (35.7),

$$||T|_{M^{\perp}}|| \leq ||T|_{M^{\perp}}|| = |\lambda_n| \longrightarrow 0 \text{ as } n \to \infty$$

showing $T|M^{\perp} \equiv 0$.

Define P_0 to be orthogonal projection onto M^{\perp} . Then for $\psi \in H$,

$$\psi = P_0 \psi + (1 - P_0) \psi = P_0 \psi + \sum_{i=1}^{N} (\psi, \phi_i) \phi_i$$

and

$$T\psi = TP_0\psi + T\sum_{i=1}^{N} (\psi, \phi_i)\phi_i = \sum_{i=1}^{N} \lambda_i(\psi, \phi_i)\phi_i.$$

Since $\{\lambda_n\} \subset \sigma(T)$ and $\sigma(T)$ is closed, it follows that $0 \in \sigma(T)$ and hence $\{\lambda_n\}_{n=1}^{\infty} \cup \{0\} \subset \sigma(T)$. Suppose that $z \notin \{\lambda_n\}_{n=1}^{\infty} \cup \{0\}$ and let d be the distance between z and $\{\lambda_n\}_{n=1}^{\infty} \cup \{0\}$. Notice that d > 0 because $\lim_{n \to \infty} \lambda_n = 0$. A few simple computations show that:

$$(T - zI)\psi = \sum_{i=1}^{N} (\psi, \phi_i)(\lambda_i - z)\phi_i - zP_0\psi,$$

 $(T-z)^{-1}$ exists,

$$(T - zI)^{-1}\psi = \sum_{i=1}^{N} (\psi, \phi_i)(\lambda_i - z)^{-1}\phi_i - z^{-1}P_0\psi,$$

and

$$\|(T - zI)^{-1}\psi\|^2 = \sum_{i=1}^N |(\psi, \phi_i)|^2 \frac{1}{|\lambda_i - z|^2} + \frac{1}{|z|^2} \|P_0\psi\|^2$$
$$\leq \left(\frac{1}{d}\right)^2 \left(\sum_{i=1}^N |(\psi, \phi_i)|^2 + \|P_0\psi\|^2\right) = \frac{1}{d^2} \|\psi\|^2.$$

We have thus shown that $(T-zI)^{-1}$ exists, $\|(T-zI)^{-1}\| \le d^{-1} < \infty$ and hence $z \notin \sigma(T)$.

35.4. Structure of Compact Operators.

Theorem 35.18. Let $K: H \to B$ be a compact operator. Then there exists $N \in \mathbb{N} \cup \{\infty\}$, orthonormal subsets $\{\phi_n\}_{n=1}^N \subset H$ and $\{\psi_n\}_{n=1}^N \subset B$ and a sequences $\{\lambda_n\}_{n=1}^N \subset \mathbb{C}$ such that $\lim_{n\to\infty} \lambda_n = 0$ if $N = \infty$ and

$$Kf = \sum_{n=1}^{N} \lambda_n(f, \phi_n) \psi_n \text{ for all } f \in H.$$

Proof. The operator $K^*K \in \mathcal{K}(H)$ is self-adjoint and hence by Theorem 35.17, there exists an orthonormal set $\{\phi_n\}_{n=1}^N \subset H$ and $\{\mu_n\}_{n=1}^\infty \subset (0,\infty)$ such that

$$K^*Kf = \sum_{n=1}^{N} \mu_n(f, \phi_n)\phi_n$$
 for all $f \in H$.

Let $\lambda_n := \sqrt{\mu_n}$ and $\sqrt{K^*K} \in \mathcal{K}(H)$ be defined by

$$\sqrt{K^*K}f = \sum_{n=1}^N \lambda_n(f,\phi_n)\phi_n$$
 for all $f \in H$.

Define $U \in L(H, B)$ so that $U = K(K^*K)^{-1/2}$, or more precisely by

(35.8)
$$Uf = \sum_{n=1}^{N} \lambda_n^{-1}(f, \phi_n) K \phi_n.$$

The operator U is well defined because

$$(\lambda_n^{-1} K \phi_n, \lambda_m^{-1} K \phi_m) = \lambda_n^{-1} \lambda_m^{-1} (\phi_n, K^* K \phi_m) = \lambda_n^{-1} \lambda_m^{-1} \lambda_m^2 \delta_{m,n} = \delta_{m,n}$$

which shows $\left\{\lambda_n^{-1}K\phi_n\right\}_{n=1}^{\infty}$ is an orthonormal subset of B. Moreover this also shows

$$||Uf||^2 = \sum_{n=1}^{N} |(f, \phi_n)|^2 = ||Pf||^2$$

where $P = P_{\text{Nul}(K)^{\perp}}$. Replacing f by $(K^*K)^{1/2} f$ in Eq. (35.8) shows

(35.9)
$$U(K^*K)^{1/2} f = \sum_{n=1}^{N} \lambda_n^{-1} ((K^*K)^{1/2} f, \phi_n) K \phi_n = \sum_{n=1}^{N} (f, \phi_n) K \phi_n = Kf,$$

since $f = \sum_{n=1}^{N} (f, \phi_n) \phi_n + Pf$. From Eq. (35.9) it follows that

$$Kf = \sum_{n=1}^{N} \lambda_n(f, \phi_n) U \phi_n = \sum_{n=1}^{N} \lambda_n(f, \phi_n) \psi_n$$

where $\{\psi_n\}_{n=1}^N$ is the orthonormal sequence in B defined by

$$\psi_n := U\phi_n = \lambda_n^{-1} K\phi_n.$$

35.4.1. Trace Class Operators. We will say $K \in \mathcal{K}(H)$ is trace class if

$$\operatorname{tr}(\sqrt{K^*K}) := \sum_{n=1}^{N} \lambda_n < \infty$$

in which case we define

$$\operatorname{tr}(K) = \sum_{n=1}^{N} \lambda_n(\psi_n, \phi_n).$$

Notice that if $\{e_m\}_{m=1}^{\infty}$ is any orthonormal basis in H (or for the $\overline{\text{Ran}(K)}$ if H is

$$\sum_{m=1}^{M} (Ke_m, e_m) = \sum_{m=1}^{M} (\sum_{n=1}^{N} \lambda_n(e_m, \phi_n) \psi_n, e_m) = \sum_{n=1}^{N} \lambda_n \sum_{m=1}^{M} (e_m, \phi_n) (\psi_n, e_m)$$
$$= \sum_{n=1}^{N} \lambda_n (P_M \psi_n, \phi_n)$$

where P_M is orthogonal projection onto $\mathrm{Span}(e_1,\ldots,e_M)$. Therefore by dominated convergence theorem,

$$\sum_{m=1}^{\infty} (Ke_m, e_m) = \lim_{M \to \infty} \sum_{n=1}^{N} \lambda_n (P_M \psi_n, \phi_n) = \sum_{n=1}^{N} \lambda_n \lim_{M \to \infty} (P_M \psi_n, \phi_n)$$
$$= \sum_{n=1}^{N} \lambda_n (\psi_n, \phi_n) = \operatorname{tr}(K).$$

35.5. Fredholm Operators.

Lemma 35.19. Let $M \subset H$ be a closed subspace and $V \subset H$ be a finite dimensional subspace. Then M+V is closed as well. In particular if $\operatorname{codim}(M) \equiv \dim(H/M) < \infty$ and $W \subset H$ is a subspace such that $M \subset W$, then W is closed and $\operatorname{codim}(W) < \infty$.

Proof. Let $P: H \to M$ be orthogonal projection and let $V_0 := (I - P) V$. Since $\dim(V_0) \le \dim(V) < \infty$, V_0 is still closed. Also it is easily seen that $M + V = M \overset{\perp}{\oplus} V_0$ from which it follows that M + V is closed because $\{z_n = m_n + v_n\} \subset M \overset{\perp}{\oplus} V_0$ is convergent iff $\{m_n\} \subset M$ and $\{v_n\} \subset V_0$ are convergent.

If $\operatorname{codim}(M) < \infty$ and $M \subset W$, there is a finite dimensional subspace $V \subset H$ such that W = M + V and so by what we have just proved, W is closed as well. It should also be clear that $\operatorname{codim}(W) \leq \operatorname{codim}(M) < \infty$.

Lemma 35.20. If $K: H \to B$ is a finite rank operator, then there exists $\{\phi_n\}_{n=1}^k \subset H$ and $\{\psi_n\}_{n=1}^k \subset B$ such that

- (1) $Kx = \sum_{n=1}^{k} (x, \phi_n) \psi_n$ for all $x \in H$.
- (2) $K^*y = \sum_{n=1}^k (y, \psi_n)\phi_n$ for all $y \in B$, in particular K^* is still finite rank. For the next two items, further assume B = H.
- (3) dim Nul $(I+K) < \infty$.
- (4) dim $coker(I+K) < \infty$, Ran(I+K) is closed and

$$\operatorname{Ran}(I+K) = \operatorname{Nul}(I+K^*)^{\perp}.$$

Proof.

(1) Choose $\{\psi_n\}_1^k$ to be an orthonormal basis for Ran(K). Then for $x \in H$,

$$Kx = \sum_{n=1}^{k} (Kx, \psi_n)\psi_n = \sum_{n=1}^{k} (x, K^*\psi_n)\psi_n = \sum_{n=1}^{k} (x, \phi_n)\psi_n$$

where $\phi_n \equiv K^* \psi_n$.

- (2) Item 2. is a simple computation left to the reader.
- (3) Since $\operatorname{Nul}(I+K) = \{x \in H \mid x = -Kx\} \subset \operatorname{Ran}(K) \text{ it is finite dimensional.}$
- (4) Since $x = (I + K)x \in \text{Ran}(I + K)$ for $x \in \text{Nul}(K)$, $\text{Nul}(K) \subset \text{Ran}(I + K)$. Since $\{\phi_1, \phi_2, \dots, \phi_k\}^{\perp} \subset \text{Nul}(K)$, $H = \text{Nul}(K) + \text{span}(\{\phi_1, \phi_2, \dots, \phi_k\})$ and thus codim $(\text{Nul}(K)) < \infty$. From these comments and Lemma 35.19, Ran(I + K) is closed and codim $(\text{Ran}(I + K)) \leq \text{codim}(\text{Nul}(K)) < \infty$. The assertion that $\text{Ran}(I + K) = \text{Nul}(I + K^*)^{\perp}$ is a consequence of Lemma 35.12 below.

Definition 35.21. A bounded operator $F: H \to B$ is **Fredholm** iff the $\dim \operatorname{Nul}(F) < \infty$, $\dim \operatorname{coker}(F) < \infty$ and $\operatorname{Ran}(F)$ is closed in B. (Recall: $\operatorname{coker}(F) \equiv B/\operatorname{Ran}(F)$.) The **index** of F is the integer,

(35.10)
$$\operatorname{index}(F) = \dim \operatorname{Nul}(F) - \dim \operatorname{coker}(F)$$

$$(35.11) = \dim \operatorname{Nul}(F) - \dim \operatorname{Nul}(F^*)$$

Notice that equations (35.10) and (35.11) are the same since, (using Ran(F) is closed)

$$B = \operatorname{Ran}(F) \oplus \operatorname{Ran}(F)^{\perp} = \operatorname{Ran}(F) \oplus \operatorname{Nul}(F^*)$$

so that $\operatorname{coker}(F) = B/\operatorname{Ran}(F) \cong \operatorname{Nul}(F^*)$.

Lemma 35.22. The requirement that Ran(F) is closed in Defintion 35.21 is redundant.

Proof. By restricting F to $\operatorname{Nul}(F)^{\perp}$, we may assume without loss of generality that $\operatorname{Nul}(F) = \{0\}$. Assuming dim $\operatorname{coker}(F) < \infty$, there exists a finite dimensional subspace $V \subset B$ such that $B = \operatorname{Ran}(F) \oplus V$. Since V is finite dimensional, V is closed and hence $B = V \oplus V^{\perp}$. Let $\pi : B \to V^{\perp}$ be the orthogonal projection operator onto V^{\perp} and let $G \equiv \pi F : H \to V^{\perp}$ which is continuous, being the composition of two bounded transformations. Since G is a linear isomorphism, as the reader should check, the open mapping theorem implies the inverse operator $G^{-1}: V^{\perp} \to H$ is bounded.

Suppose that $h_n \in H$ is a sequence such that $\lim_{n\to\infty} F(h_n) =: b$ exists in B. Then by composing this last equation with π , we find that $\lim_{n\to\infty} G(h_n) = \pi(b)$ exists in V^{\perp} . Composing this equation with G^{-1} shows that $h := \lim_{n\to\infty} h_n = G^{-1}\pi(b)$ exists in H. Therefore, $F(h_n) \to F(h) \in \text{Ran}(F)$, which shows that Ran(F) is closed. \blacksquare

Remark 35.23. It is essential that the subspace $M \equiv \operatorname{Ran}(F)$ in Lemma 35.22 is the image of a bounded operator, for it is not true that every finite codimensional subspace M of a Banach space B is necessarily closed. To see this suppose that B is a separable infinite dimensional Banach space and let $A \subset B$ be an **algebraic** basis for B, which exists by a Zorn's lemma argument. Since $\dim(B) = \infty$ and B is complete, A must be uncountable. Indeed, if A were countable we could write $B = \bigcup_{n=1}^{\infty} B_n$ where B_n are finite dimensional (necessarily closed) subspaces of B. This shows that B is the countable union of nowhere dense closed subsets which violates the Baire Category theorem.

By separability of B, there exists a countable subset $A_0 \subset A$ such that the closure of $M_0 \equiv \operatorname{span}(A_0)$ is equal to B. Choose $x_0 \in A \setminus A_0$, and let $M \equiv \operatorname{span}(A \setminus \{x_0\})$. Then $M_0 \subset M$ so that $B = \overline{M}_0 = \overline{M}$, while $\operatorname{codim}(M) = 1$. Clearly this M can not be closed.

Example 35.24. Suppose that H and B are finite dimensional Hilbert spaces and $F: H \to B$ is Fredholm. Then

$$(35.12) \qquad \operatorname{index}(F) = \dim(B) - \dim(H).$$

The formula in Eq. (35.12) may be verified using the rank nullity theorem,

$$\dim(H) = \dim \operatorname{Nul}(F) + \dim \operatorname{Ran}(F),$$

and the fact that

$$\dim(B/\operatorname{Ran}(F)) = \dim(B) - \dim\operatorname{Ran}(F).$$

Theorem 35.25. A bounded operator $F: H \to B$ is Fredholm iff there exists a bounded operator $A: B \to H$ such that AF - I and FA - I are both compact operators. (In fact we may choose A so that AF - I and FA - I are both finite rank operators.)

Proof. (\Rightarrow) Suppose F is Fredholm, then F: $\operatorname{Nul}(F)^{\perp} \to \operatorname{Ran}(F)$ is a bijective bounded linear map between Hilbert spaces. (Recall that $\operatorname{Ran}(F)$ is a closed subspace of B and hence a Hilbert space.) Let \tilde{F} be the inverse of this map—a bounded map by the open mapping theorem. Let $P: H \to \operatorname{Ran}(F)$ be orthogonal projection and set $A \equiv \tilde{F}P$. Then $AF - I = \tilde{F}PF - I = \tilde{F}F - I = -Q$ where Q is the orthogonal projection onto $\operatorname{Nul}(F)$. Similarly, $FA - I = F\tilde{F}P - I = -(I - P)$. Because I - P and Q are finite rank projections and hence compact, both AF - I and FA - I are compact.

(\Leftarrow) We first show that the operator $A: B \to H$ may be modified so that AF - I and FA - I are both finite rank operators. To this end let $G \equiv AF - I$ (G is compact) and choose a finite rank approximation G_1 to G such that $G = G_1 + \mathcal{E}$ where $\|\mathcal{E}\| < 1$. Define $A_L: B \to H$ to be the operator $A_L \equiv (I + \mathcal{E})^{-1}A$. Since $AF = (I + \mathcal{E}) + G_1$,

$$A_L F = (I + \mathcal{E})^{-1} A F = I + (I + \mathcal{E})^{-1} G_1 = I + K_L$$

where K_L is a finite rank operator. Similarly there exists a bounded operator $A_R: B \to H$ and a finite rank operator K_R such that $FA_R = I + K_R$. Notice that $A_LFA_R = A_R + K_LA_R$ on one hand and $A_LFA_R = A_L + A_LK_R$ on the other. Therefore, $A_L - A_R = A_LK_R - K_LA_R =: S$ is a finite rank operator. Therefore $FA_L = F(A_R + S) = I + K_R + FS$, so that $FA_L - I = K_R - FS$ is still a finite rank operator. Thus we have shown that there exists a bounded operator $\tilde{A}: B \to H$ such that $\tilde{A}F - I$ and $F\tilde{A} - I$ are both finite rank operators.

We now assume that A is chosen such that $AF - I = G_1$, $FA - I = G_2$ are finite rank. Clearly $\text{Nul}(F) \subset \text{Nul}(AF) = \text{Nul}(I + G_1)$ and $\text{Ran}(F) \supseteq \text{Ran}(FA) = \text{Ran}(I + G_2)$. The theorem now follows from Lemma 35.19 and Lemma 35.20.

Corollary 35.26. If $F: H \to B$ is Fredholm then F^* is Fredholm and index $(F) = -index(F^*)$.

Proof. Choose $A: B \to H$ such that both AF - I and FA - I are compact. Then $F^*A^* - I$ and $A^*F^* - I$ are compact which implies that F^* is Fredholm. The assertion, index $(F) = -\text{index}(F^*)$, follows directly from Eq. (35.11).

Lemma 35.27. A bounded operator $F: H \to B$ is Fredholm if and only if there exists orthogonal decompositions $H = H_1 \oplus H_2$ and $B = B_1 \oplus B_2$ such that

- (1) H_1 and B_1 are closed subspaces,
- (2) H_2 and B_2 are finite dimensional subspaces, and
- (3) F has the block diagonal form

$$(35.13) F = \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix} : \begin{array}{c} H_1 & B_1 \\ \oplus & \longrightarrow & \oplus \\ H_2 & B_2 \end{array}$$

with $F_{11}: H_1 \to B_1$ being a bounded invertible operator.

Furthermore, given this decomposition, $index(F) = dim(H_2) - dim(B_2)$.

Proof. If F is Fredholm, set $H_1 = \operatorname{Nul}(F)^{\perp}$, $H_2 = \operatorname{Nul}(F)$, $B_1 = \operatorname{Ran}(F)$, and $B_2 = \operatorname{Ran}(F)^{\perp}$. Then $F = \begin{pmatrix} F_{11} & 0 \\ 0 & 0 \end{pmatrix}$, where $F_{11} \equiv F|_{H_1} : H_1 \to B_1$ is invertible.

For the converse, assume that F is given as in Eq. (35.13). Let $A \equiv \begin{pmatrix} F_{11}^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ then

$$AF = \begin{pmatrix} I & F_{11}^{-1}F_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} + \begin{pmatrix} 0 & F_{11}^{-1}F_{12} \\ 0 & -I \end{pmatrix},$$

so that AF - I is finite rank. Similarly one shows that FA - I is finite rank, which shows that F is Fredholm.

Now to compute the index of F, notice that $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \text{Nul}(F)$ iff

$$F_{11}x_1 + F_{12}x_2 = 0$$
$$F_{21}x_1 + F_{22}x_2 = 0$$

which happens iff $x_1 = -F_{11}^{-1}F_{12}x_2$ and $(-F_{21}F_{11}^{-1}F_{12} + F_{22})x_2 = 0$. Let $D \equiv (F_{22} - F_{21}F_{11}^{-1}F_{12}) : H_2 \to B_2$, then the mapping

$$x_2 \in \text{Nul}(D) \to \begin{pmatrix} -F_{11}^{-1}F_{12}x_2 \\ x_2 \end{pmatrix} \in \text{Nul}(F)$$

is a linear isomorphism of vector spaces so that $Nul(F) \cong Nul(D)$. Since

$$F^* = \begin{pmatrix} F_{11}^* & F_{21}^* \\ F_{12}^* & F_{22}^* \end{pmatrix} \quad \begin{array}{c} B_1 & H_1 \\ \oplus & \longrightarrow & \oplus \\ B_2 & H_2 \end{array},$$

similar reasoning implies $\operatorname{Nul}(F^*) \cong \operatorname{Nul}(D^*)$. This shows that $\operatorname{index}(F) = \operatorname{index}(D)$. But we have already seen in Example 35.24 that $\operatorname{index}(D) = \dim H_2 - \dim B_2$.

Proposition 35.28. Let F be a Fredholm operator and K be a compact operator from $H \to B$. Further assume $T: B \to X$ (where X is another Hilbert space) is also Fredholm. Then

- (1) the Fredholm operators form an open subset of the bounded operators. Moreover if $\mathcal{E}: H \to B$ is a bounded operator with $\|\mathcal{E}\|$ sufficiently small we have $index(F) = index(F + \mathcal{E})$.
- (2) F + K is Fredholm and index(F) = index(F + K).
- (3) TF is Fredholm and index(TF) = index(T) + index(F)

Proof

(1) We know F may be written in the block form given in Eq. (35.13) with $F_{11}: H_1 \to B_1$ being a bounded invertible operator. Decompose \mathcal{E} into the block form as

$$\mathcal{E} = \left(egin{array}{cc} \mathcal{E}_{11} & \mathcal{E}_{12} \ \mathcal{E}_{21} & \mathcal{E}_{22} \end{array}
ight)$$

and choose $\|\mathcal{E}\|$ sufficiently small such that $\|\mathcal{E}_{11}\|$ is sufficiently small to guarantee that $F_{11} + \mathcal{E}_{11}$ is still invertible. (Recall that the invertible operators form an open set.) Thus $F + \mathcal{E} = \begin{pmatrix} F_{11} + \mathcal{E}_{11} & * \\ * & * \end{pmatrix}$ has the block

form of a Fredholm operator and the index may be computed as:

$$\operatorname{index}(F + \mathcal{E}) = \dim H_2 - \dim B_2 = \operatorname{index}(F).$$

- (2) Given $K: H \to B$ compact, it is easily seen that F+K is still Fredholm. Indeed if $A: B \to H$ is a bounded operator such that $G_1 \equiv AF I$ and $G_2 \equiv FA I$ are both compact, then $A(F+K) I = G_1 + AK$ and $(F+K)A I = G_2 + KA$ are both compact. Hence F+K is Fredholm by Theorem 35.25. By item 1., the function $f(t) \equiv \operatorname{index}(F+tK)$ is a continuous locally constant function of $t \in \mathbb{R}$ and hence is constant. In particular, $\operatorname{index}(F+K) = f(1) = f(0) = \operatorname{index}(F)$.
- (3) It is easily seen, using Theorem 35.25 that the product of two Fredholm operators is again Fredholm. So it only remains to verify the index formula in item 3.

For this let $H_1 \equiv \operatorname{Nul}(F)^{\perp}$, $H_2 \equiv \operatorname{Nul}(F)$, $B_1 \equiv \operatorname{Ran}(T) = T(H_1)$, and $B_2 \equiv \operatorname{Ran}(T)^{\perp} = \operatorname{Nul}(T^*)$. Then F decomposes into the block form:

$$F = \left(\begin{array}{cc} \tilde{F} & 0 \\ 0 & 0 \end{array} \right) : \quad \begin{array}{ccc} H_1 & & B_1 \\ \oplus & & \oplus \\ H_2 & & B_2 \end{array} ,$$

where $\tilde{F} = F|_{H_1} : H_1 \to B_1$ is an invertible operator. Let $Y_1 \equiv T(B_1)$ and $Y_2 \equiv Y_1^{\perp} = T(B_1)^{\perp}$. Notice that $Y_1 = T(B_1) = TQ(B_1)$, where $Q: B \to B_1 \subset B$ is orthogonal projection onto B_1 . Since B_1 is closed and B_2 is finite dimensional, Q is Fredholm. Hence TQ is Fredholm and $Y_1 = TQ(B_1)$ is closed in Y and is of finite codimension. Using the above decompositions, we may write T in the block form:

$$T = \left(\begin{array}{cc} T_{11} & T_{12} \\ T_{21} & T_{22} \end{array} \right) : \quad \begin{array}{ccc} B_1 & & Y_1 \\ \oplus & \longrightarrow & \oplus \\ B_2 & & Y_2 \end{array} .$$

Since $R = \begin{pmatrix} 0 & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$: $B \to Y$ is a finite rank operator and hence $RF: H \to Y$ is finite rank, $\operatorname{index}(T-R) = \operatorname{index}(T)$ and $\operatorname{index}(TF-RF) = \operatorname{index}(TF)$. Hence without loss of generality we may assume that T has the form $T = \begin{pmatrix} \tilde{T} & 0 \\ 0 & 0 \end{pmatrix}$, $(\tilde{T} = T_{11})$ and hence

$$TF = \left(\begin{array}{cc} \tilde{T}\tilde{F} & 0 \\ 0 & 0 \end{array} \right) : \begin{array}{cc} H_1 & & Y_1 \\ \oplus & \longrightarrow & \oplus \\ H_2 & & Y_2 \end{array}.$$

We now compute the index(T). Notice that $Nul(T) = Nul(\tilde{T}) \oplus B_2$ and $Ran(T) = \tilde{T}(B_1) = Y_1$. So

$$\operatorname{index}(T) = \operatorname{index}(\tilde{T}) + \dim(B_2) - \dim(Y_2).$$

Similarly,

$$\operatorname{index}(TF) = \operatorname{index}(\tilde{T}\tilde{F}) + \dim(H_2) - \dim(Y_2),$$

and as we have already seen

$$index(F) = dim(H_2) - dim(B_2).$$

Therefore,

$$\operatorname{index}(TF) - \operatorname{index}(T) - \operatorname{index}(F) = \operatorname{index}(\tilde{T}\tilde{F}) - \operatorname{index}(\tilde{T}).$$

Since \tilde{F} is invertible, $\operatorname{Ran}(\tilde{T}) = \operatorname{Ran}(\tilde{T}\tilde{F})$ and $\operatorname{Nul}(\tilde{T}) \cong \operatorname{Nul}(\tilde{T}\tilde{F})$. Thus $\operatorname{index}(\tilde{T}\tilde{F}) - \operatorname{index}(\tilde{T}) = 0$ and the theorem is proved.

35.6. **Tensor Product Spaces** . References for this section are Reed and Simon [?] (Volume 1, Chapter VI.5), Simon [?], and Schatten [?]. See also Reed and Simon [?] (Volume 2 \S IX.4 and \S XIII.17).

Let H and K be separable Hilbert spaces and $H \otimes K$ will denote the usual Hilbert completion of the algebraic tensors $H \otimes_f K$. Recall that the inner product on $H \otimes K$ is determined by $(h \otimes k, h' \otimes k') = (h, h')(k, k')$. The following proposition is well known.

Proposition 35.29 (Structure of $H \otimes K$). There is a bounded linear map $T : H \otimes K \to B(K, H)$ determined by

$$T(h \otimes k)k' \equiv (k, k')h \text{ for all } k, k' \in K \text{ and } h \in H.$$

Moreover $T(H \otimes K) = HS(K, H)$ — the Hilbert Schmidt operators from K to H. The map $T: H \otimes K \to HS(K, H)$ is unitary equivalence of Hilbert spaces. Finally, any $A \in H \otimes K$ may be expressed as

(35.14)
$$A = \sum_{n=1}^{\infty} \lambda_n h_n \otimes k_n,$$

where $\{h_n\}$ and $\{k_n\}$ are orthonormal sets in H and K respectively and $\{\lambda_n\} \subset \mathbb{R}$ such that $||A||^2 = \sum |\lambda_n|^2 < \infty$.

Proof. Let $A \equiv \sum a_{ji}h_j \otimes k_i$, where $\{h_i\}$ and $\{k_j\}$ are orthonormal bases for H and K respectively and $\{a_{ji}\} \subset \mathbb{R}$ such that $||A||^2 = \sum |a_{ji}|^2 < \infty$. Then evidently, $T(A)k \equiv \sum a_{ji}h_j(k_i,k)$ and

$$||T(A)k||^2 = \sum_{i} |\sum_{i} a_{ji}(k_i, k)|^2 \le \sum_{i} \sum_{i} |a_{ji}|^2 |(k_i, k)|^2 \le \sum_{i} \sum_{i} |a_{ji}|^2 ||k||^2.$$

Thus $T: H \otimes K \to B(K, H)$ is bounded. Moreover,

$$||T(A)||_{HS}^2 \equiv \sum ||T(A)k_i||^2 = \sum_{ij} |a_{ji}|^2 = ||A||^2,$$

which proves the T is an isometry.

We will now prove that T is surjective and at the same time prove Eq. (35.14). To motivate the construction, suppose that Q = T(A) where A is given as in Eq. (35.14). Then

$$Q^*Q = T(\sum_{n=1}^{\infty} \lambda_n k_n \otimes h_n) T(\sum_{n=1}^{\infty} \lambda_n h_n \otimes k_n) = T(\sum_{n=1}^{\infty} \lambda_n^2 k_n \otimes k_n).$$

That is $\{k_n\}$ is an orthonormal basis for $(\text{nul}Q^*Q)^{\perp}$ with $Q^*Qk_n=\lambda_n^2k_n$. Also $Qk_n=\lambda_nh_n$, so that $h_n=\lambda_n^{-1}Qk_n$.

We will now reverse the above argument. Let $Q \in HS(K, H)$. Then Q^*Q is a self-adjoint compact operator on K. Therefore there is an orthonormal basis $\{k_n\}_{n=1}^{\infty}$

for the $(\text{nul}Q^*Q)^{\perp}$ which consists of eigenvectors of Q^*Q . Let $\lambda_n \in (0, \infty)$ such that $Q^*Qk_n = \lambda_n^2k_n$ and set $h_n = \lambda_n^{-1}Qk_n$. Notice that

 $(h_n, h_m) = (\lambda_n^{-1}Qk_n, \lambda_m^{-1}Qk_m) = (\lambda_n^{-1}k_n, \lambda_m^{-1}Q^*Qk_m) = (\lambda_n^{-1}k_n, \lambda_m^{-1}\lambda_m^2k_m) = \delta_{mn},$ so that $\{h_n\}$ is an orthonormal set in H. Define

$$A = \sum_{n=1}^{\infty} \lambda_n h_n \otimes k_n$$

and notice that $T(A)k_n = \lambda_n h_n = Qk_n$ for all n and T(A)k = 0 for all $k \in \text{nul}Q = \text{nul}Q^*Q$. That is T(A) = Q. Therefore T is surjective and Eq. (35.14) holds.

Recall that $\sqrt{1-z} = 1 - \sum_{i=1}^{\infty} c_i z^i$ for |z| < 1, where $c^i \ge 0$ and $\sum_{i=1}^{\infty} c_i < \infty$. For an operator A on H such that $A \ge 0$ and $||A||_{B(H)} \le 1$, the square root of A is given by

$$\sqrt{A} = I - \sum_{i=1}^{\infty} c_i (A - I)^i.$$

See Theorem VI.9 on p. 196 of Reed and Simon [?]. The next proposition is problem 14 and 15 on p. 217 of [?]. Let $|A| \equiv \sqrt{A^*A}$.

Proposition 35.30 (Square Root). Suppose that A_n and A are positive operators on H and $||A-A_n||_{B(H)} \to 0$ as $n \to \infty$, then $\sqrt{A_n} \to \sqrt{A}$ in B(H) also. Moreover, A_n and A are general bounded operators on H and $A_n \to A$ in the operator norm then $|A_n| \to |A|$.

Proof. With out loss of generality, assume that $||A_n|| \le 1$ for all n. This implies also that that $||A|| \le 1$. Then

$$\sqrt{A} - \sqrt{A_n} = \sum_{i=1}^{\infty} c_i \{ (A_n - I)^i - (A - I)^i \}$$

and hence

(35.15)
$$\|\sqrt{A} - \sqrt{A_n}\| \le \sum_{i=1}^{\infty} c_i \|(A_n - I)^i - (A - I)^i\|.$$

For the moment we will make the additional assumption that $A_n \geq \epsilon I$, where $\epsilon \in (0,1)$. Then $0 \leq I - A_n \leq (1-\epsilon)I$ and in particular $||I - A_n||_{B(H)} \leq (1-\epsilon)$.

Now suppose that Q, R, S, T are operators on H, then QR - ST = (Q - S)R + S(R - T) and hence

$$||QR - ST|| < ||Q - S|| ||R|| + ||S|| ||R - T||.$$

Setting $Q = A_n - I$, $R \equiv (A_n - I)^{i-1}$, $S \equiv (A - I)$ and $T = (A - I)^{i-1}$ in this last inequality gives

$$||(A_n - I)^i - (A - I)^i|| \le ||A_n - A|| ||(A_n - I)^{i-1}|| + ||(A - I)|| ||(A_n - I)^{i-1} - (A - I)^{i-1}||$$

$$(35.16) \qquad \le ||A_n - A|| (1 - \epsilon)^{i-1} + (1 - \epsilon) ||(A_n - I)^{i-1} - (A - I)^{i-1}||.$$

It now follows by induction that

$$||(A_n - I)^i - (A - I)^i|| \le i(1 - \epsilon)^{i-1}||A_n - A||.$$

Inserting this estimate into (35.15) shows that

$$\|\sqrt{A} - \sqrt{A_n}\| \le \sum_{i=1}^{\infty} c_i i (1 - \epsilon)^{i-1} \|A_n - A\| = \frac{1}{2} \frac{1}{\sqrt{1 - (1 - \epsilon)}} \|A - A_n\| = \frac{1}{2} \frac{1}{\sqrt{\epsilon}} \|A - A_n\| \to 0.$$

Therefore we have shown if $A_n \ge \epsilon I$ for all n and $A_n \to A$ in norm then $\sqrt{A_n} \to \sqrt{A}$ in norm.

For the general case where $A_n \geq 0$, we find that for all $\epsilon > 0$

(35.17)
$$\lim_{n \to \infty} \sqrt{A_n + \epsilon} = \sqrt{A + \epsilon}.$$

By the spectral theorem⁵⁴

$$\|\sqrt{A+\epsilon} - \sqrt{A}\| \le \max_{x \in \sigma(A)} |\sqrt{x+\epsilon} - \sqrt{x}| \le \max_{0 \le x \le \|A\|} |\sqrt{x+\epsilon} - \sqrt{x}| \to 0 \text{ as } \epsilon \to 0.$$

Since the above estimates are uniform in $A \ge 0$ such that ||A|| is bounded, it is now an easy matter to conclude that Eq. (35.17) holds even when $\epsilon = 0$.

Now suppose that $A_n \to A$ in B(H) and A_n and A are general operators. Then $A_n^* A_n \to A^* A$ in B(H). So by what we have already proved,

$$|A_n| \equiv \sqrt{A_n^* A_n} \to |A| \equiv \sqrt{A^* A}$$
 in $B(H)$ as $n \to \infty$.

Notation 35.31. In the future we will identify $A \in H \otimes K$ with $T(A) \in HS(K, H)$ and drop T from the notation. So that with this notation we have $(h \otimes k)k' = (k, k')h$.

Let
$$A \in H \otimes H$$
, we set $||A||_1 \equiv \operatorname{tr}\sqrt{A^*A} \equiv \operatorname{tr}\sqrt{T(A)^*T(A)}$ and we let $H \otimes_1 H \equiv \{A \in H \otimes H : ||A||_1 < \infty\}.$

We will now compute $||A||_1$ for $A \in H \otimes H$ described as in Eq. (35.14). First notice that $A^* = \sum_{n=1}^{\infty} \lambda_n k_n \otimes h_n$ and

$$A^*A = \sum_{n=1}^{\infty} \lambda_n^2 k_n \otimes k_n.$$

Hence $\sqrt{A^*A} = \sum_{n=1}^{\infty} |\lambda_n| k_n \otimes k_n$ and hence $||A||_1 = \sum_{n=1}^{\infty} |\lambda_n|$. Also notice that $||A||^2 = \sum_{n=1}^{\infty} |\lambda_n|^2$ and $||A||_{op} = \max_n |\lambda_n|$. Since

$$||A||_1^2 = \{\sum_{n=1}^{\infty} |\lambda_n|\}^2 \ge \sum_{n=1}^{\infty} |\lambda_n|^2 = ||A||^2,$$

we have the following relations among the various norms,

$$||A||_{op} \le ||A|| \le ||A||_1.$$

Proposition 35.32. There is a continuous linear map $C: H \otimes_1 H \to \mathbb{R}$ such that $C(h \otimes k) = (h, k)$ for all $h, k \in H$. If $A \in H \otimes_1 H$, then

(35.19)
$$CA = \sum (e_m \otimes e_m, A),$$

where $\{e_m\}$ is any orthonormal basis for H. Moreover, if $A \in H \otimes_1 H$ is positive, i.e. T(A) is a non-negative operator, then $||A||_1 = CA$.

$$\|(A+\epsilon)^{i} - A^{i}\| \leq \sum_{k=1}^{i} {i \choose k} \epsilon^{k} \|A^{i-k}\| \leq \sum_{k=1}^{i} {i \choose k} \epsilon^{k} \|A\|^{i-k} = (\|A\| + \epsilon)^{i} - \|A\|^{i},$$

so that $\|\sqrt{A+\epsilon} - \sqrt{A}\| \le \sqrt{\|A\|+\epsilon} - \sqrt{\|A\|} \to 0$ as $\epsilon \to 0$ uniformly in $A \ge 0$ such that $\|A\| \le \alpha < 1$.

 $^{^{54}\}text{It}$ is possible to give a more elementary proof here. Indeed, assume further that $\|A\| \leq \alpha < 1$, then for $\epsilon \in (0, 1-\alpha)$, $\|\sqrt{A+\epsilon} - \sqrt{A}\| \leq \sum_{i=1}^{\infty} c_i \|(A+\epsilon)^i - A^i\|$. But

Proof. Let $A \in H \otimes_1 H$ be given as in Eq. (35.14) with $\sum_{n=1}^{\infty} |\lambda_n| = ||A||_1 < \infty$. Then define $CA \equiv \sum_{n=1}^{\infty} \lambda_n(h_n, k_n)$ and notice that $|CA| \leq \sum |\lambda_n| = ||A||_1$, which shows that C is a contraction on $H \otimes_1 H$. (Using the universal property of $H \otimes_f H$ it is easily seen that C is well defined.) Also notice that for $M \in \mathbb{Z}_+$ that

(35.20)
$$\sum_{m=1}^{M} (e_m \otimes e_m, A) = \sum_{\substack{n=1 \ \infty}}^{\infty} \sum_{m=1}^{M} (e_m \otimes e_m, \lambda_n h_n \otimes k_n,),$$

$$= \sum_{n=1}^{\infty} \lambda_n(P_M h_n, k_n),$$

where P_M denotes orthogonal projection onto span $\{e_m\}_{m=1}^M$. Since $|\lambda_n(P_M h_n, k_n)| \le |\lambda_n|$ and $\sum_{n=1}^{\infty} |\lambda_n| = ||A||_1 < \infty$, we may let $M \to \infty$ in Eq. (35.21) to find that

$$\sum_{m=1}^{\infty} (e_m \otimes e_m, A) = \sum_{n=1}^{\infty} \lambda_n(h_n, k_n) = CA.$$

This proves Eq. (35.19).

For the final assertion, suppose that $A \geq 0$. Then there is an orthonormal basis $\{k_n\}_{n=1}^{\infty}$ for the $(\text{nul}A)^{\perp}$ which consists of eigenvectors of A. That is $A = \sum \lambda_n k_n \otimes k_n$ and $\lambda_n \geq 0$ for all n. Thus $CA = \sum \lambda_n$ and $\|A\|_1 = \sum \lambda_n$.

Proposition 35.33 (Noncommutative Fatou's Lemma). Let A_n be a sequence of positive operators on a Hilbert space H and $A_n \to A$ weakly as $n \to \infty$, then

$$(35.22) trA \le \liminf_{n \to \infty} trA_n.$$

Also if $A_n \in H \otimes_1 H$ and $A_n \to A$ in B(H), then

(35.23)
$$||A||_1 \le \liminf_{n \to \infty} ||A_n||_1.$$

Proof. Let A_n be a sequence of positive operators on a Hilbert space H and $A_n \to A$ weakly as $n \to \infty$ and $\{e_k\}_{k=1}^{\infty}$ be an orthonormal basis for H. Then by Fatou's lemma for sums,

$$\operatorname{tr} A = \sum_{k=1}^{\infty} (Ae_k, e_k) = \sum_{k=1}^{\infty} \lim_{n \to \infty} (A_n e_k, e_k)$$
$$\leq \liminf_{n \to \infty} \sum_{k=1}^{\infty} (A_n e_k, e_k) = \liminf_{n \to \infty} \operatorname{tr} A_n.$$

Now suppose that $A_n \in H \otimes_1 H$ and $A_n \to A$ in B(H). Then by Proposition 35.30, $|A_n| \to |A|$ in B(H) as well. Hence by Eq. (35.22), $||A||_1 \equiv \operatorname{tr}|A| \leq \liminf_{n \to \infty} \operatorname{tr}|A_n| \leq \liminf_{n \to \infty} ||A_n||_1$.

Proposition 35.34. Let X be a Banach space, $B: H \times K \to X$ be a bounded bi-linear form, and $||B|| \equiv \sup\{|B(h,k)| : ||h|| ||k|| \le 1\}$. Then there is a unique bounded linear map $\tilde{B}: H \otimes_1 K \to X$ such that $\tilde{B}(h \otimes k) = B(h,k)$. Moreover $||\tilde{B}||_{op} = ||\tilde{B}||$.

Proof. Let $A = \sum_{n=1}^{\infty} \lambda_n h_n \otimes k_n \in H \otimes_1 K$ as in Eq. (35.14). Clearly, if \tilde{B} is to exist we must have $\tilde{B}(A) \equiv \sum_{n=1}^{\infty} \lambda_n B(h_n, k_n)$. Notice that

$$\sum_{n=1}^{\infty} |\lambda_n| |B(h_n, k_n)| \le \sum_{n=1}^{\infty} |\lambda_n| ||B|| = ||A||_1 \cdot ||B||.$$

This shows that $\tilde{B}(A)$ is well defined and that $\|\tilde{B}\|_{op} \leq \|\tilde{B}\|$. The opposite inequality follows from the trivial computation:

$$||B|| = \sup\{|B(h,k)| : ||h|| ||k|| = 1\} = \sup\{|\tilde{B}(h \otimes k)| : ||h \otimes_1 k||_1 = 1\} \le ||\tilde{B}||_{op}.$$

Lemma 35.35. Suppose that $P \in B(H)$ and $Q \in B(K)$, then $P \otimes Q : H \otimes K \to H \otimes K$ is a bounded operator. Moreover, $P \otimes Q(H \otimes_1 K) \subset H \otimes_1 K$ and we have the norm equalities

$$||P \otimes Q||_{B(H \otimes K)} = ||P||_{B(H)} ||Q||_{B(K)}$$

and

$$||P \otimes Q||_{B(H \otimes_1 K)} = ||P||_{B(H)} ||Q||_{B(K)}.$$

We will give essentially the same proof of $||P \otimes Q||_{B(H \otimes K)} = ||P||_{B(H)} ||Q||_{B(K)}$ as the proof on p. 299 of Reed and Simon [?]. Let $A \in H \otimes K$ as in Eq. (35.14). Then

$$(P \otimes I)A = \sum_{n=1}^{\infty} \lambda_n P h_n \otimes k_n$$

and hence

$$(P \otimes I)A\{(P \otimes I)A\}^* = \sum_{n=1}^{\infty} \lambda_n^2 Ph_n \otimes Ph_n.$$

Therefore,

$$\begin{split} \|(P \otimes I)A\|^2 &= \operatorname{tr}(P \otimes I)A\{(P \otimes I)A\}^* \\ &= \sum_{n=1}^{\infty} \lambda_n^2(Ph_n, Ph_n) \le \|P\|^2 \sum_{n=1}^{\infty} \lambda_n^2 \\ &= \|P\|^2 \|A\|_1^2, \end{split}$$

which shows that Thus $||P \otimes I||_{B(H \otimes K)} \leq ||P||$. By symmetry, $||I \otimes Q||_{B(H \otimes K)} \leq ||Q||$. Since $P \otimes Q = (P \otimes I)(I \otimes Q)$, we have

$$||P \otimes Q||_{B(H \otimes K)} \le ||P||_{B(H)} ||Q||_{B(K)}.$$

The reverse inequality is easily proved by considering $P \otimes Q$ on elements of the form $h \otimes k \in H \otimes K$.

Proof. Now suppose that $A \in H \otimes_1 K$ as in Eq. (35.14). Then

$$\|(P \otimes Q)A\|_1 \le \sum_{n=1}^{\infty} |\lambda_n| \|Ph_n \otimes Qk_n\|_1 \le \|P\| \|Q\| \sum_{n=1}^{\infty} |\lambda_n| = \|P\| \|Q\| \|A\|,$$

which shows that

$$||P \otimes Q||_{B(H \otimes_1 K)} \le ||P||_{B(H)} ||Q||_{B(K)}.$$

Again the reverse inequality is easily proved by considering $P \otimes Q$ on elements of the form $h \otimes k \in H \otimes_1 K$.

Lemma 35.36. Suppose that P_m and Q_m are orthogonal projections on H and K respectively which are strongly convergent to the identity on H and K respectively. Then $P_m \otimes Q_m : H \otimes_1 K \to H \otimes_1 K$ also converges strongly to the identity in $H \otimes_1 K$.

Proof. Let
$$A = \sum_{n=1}^{\infty} \lambda_n h_n \otimes k_n \in H \otimes_1 K$$
 as in Eq. (35.14). Then $\|P_m \otimes Q_m A - A\|_1 \leq \sum_{n=1}^{\infty} |\lambda_n| \|P_m h_n \otimes Q_m k_n - h_n \otimes k_n\|_1$
$$= \sum_{n=1}^{\infty} |\lambda_n| \|(P_m h_n - h_n) \otimes Q_m k_n + h_n \otimes (Q_m k_n - k_n)\|_1$$

$$\leq \sum_{n=1}^{\infty} |\lambda_n| \{ \|P_m h_n - h_n\| \|Q_m k_n\| + \|h_n\| \|Q_m k_n - k_n\| \}$$

$$\leq \sum_{n=1}^{\infty} |\lambda_n| \{ \|P_m h_n - h_n\| + \|Q_m k_n - k_n\| \} \to 0 \text{ as } m \to \infty$$

by the dominated convergence theorem.