1. 2%° ORDER DIFFERENTIAL OPERATORS

Notations 1.1. Let Q be a precompact open subset of R?, Aij = Aji, Ay, Ag €

BC>=(Q) fori,j =1,...,d,

d d
p(@,8) == Y Ay&i&+ > A+ 4

ij=1 i=1
and
d d
L= p(m,@) = — Z Aijﬁic‘?j + ZA,@Z + Ap.
ij—1 i—1
We also let
d d
LT = — Z aiajMAij - ZazMAl + Ao.
Q=1 i=1

Remark 1.2. The operators L and LT have the following properties.
(1) The operator L' is the formal adjoint of L, i.e.
(Lu,v) = (u, LTv) for all u,v € D(Q) = C°(N).
(2) We may view L as an operator on D’'(2) via the formula v € D'(Q) — Lu €
D'(Q2) where
(Lu, ¢) := (u, LT¢) for all ¢ € C>(Q).
(3) The restriction of L to H*+2(f2) gives a bounded linear transformation
L: H"2(Q) — H*(Q) for k € Ny.
Indeed, L may be written as
d d
L=—" M, 0:0; + > Ma,0i+ Ma,.
i,j=1 i=1
Now §; : H*(Q) — H*1(Q) is bounded and My : H*(Q) — H®(Q) is
bounded where 1) € BC>®(Q). Therefore, for k € Ny, L : HF2(Q) —
H*(Q) is bounded.

Definition 1.3. For u € D'(Q0), let
[(u, 9)|

lullg-1Q):= sup ———
@ ssen@) 191l 113 ()
and
H Q) = {ueD' Q) : |lulg-q) <o}

Example 1.4. Let Q@ = R? and S C Q be the unit sphere in R Then define
o €D () by

(0, 8) = /S bdo.

Let us shows that o € H~'(Q). For this let T : H*(Q2) — L?(S,do) denote the
trace operator, i.e. the unique bounded linear operator such that T'¢ = ¢|g for all
¢ € C° (R?) . Since T is bounded,

(. 0) < o (S)* 1Tl 125y < o ()2 IT 1o ez 10l -1 -
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This shows 0 € H~' (Q) and ||o| g-1(q) < 0 (8)'/? 1T e o), p2cs)) -

Lemma 1.5. Suppose § is an open subset of R? such that Q is a manifold with
C® - boundary and Q = Q°, then the map u € [H&(Q)]* — ulpy € H 1) is a
unitary map of Hilbert spaces.

Proof. By definition C2° (Q) is dense in H{ (Q), and hence it follows that the
map u € [H{(Q)] i ulp(a) € H™ () is isometric. If uw € H~1(Q), it has a unique

———H"(Q
extension to H} () = C> (Q) “ and this provides the inverse map.

If we identify L?(Q) = H°(2) with elements of D’'(Q2) via u — (u,-)2(q), then
D'(Q) > HYQ) D> HY(Q) =L*(Q) > HY(Q) D H*(Q)D...
Proposition 1.6. The following mapping properties hold:
(1) If x € BCY(Q). Then M, : H-1(Q) — H~1(Q) is a bounded operator.
(2) If V. =0, Ma,d; + Ma, with A;, Ay € BCY(), then V : L2(Q) —
H=Y(Q) is a bounded operator.
(3) The map L : D'(Q) — D'(Q) restricts to a bounded linear map from
HY(Q) to HY(Q). Also
Proof. Let us begin by showing M, : H}(Q) — H{ () is a bounded linear map.
In order to do this choose x,, € C° (R?) such that x,, — x in BC'(Q). Then for
€ CP(Q), xnd € CZ () C HE(Q) and there is a constant K < oo such that
eIz < K Il s @y 19008
By density this estimate holds for all ¢ € H}(Q2) and by replacing X, by Xn — Xm
we also learn that
[(xn = Xom) ¢H§{3(Q) < Kllxn — XmHBcl(ﬁ) H¢||ilé(ﬂ) — 0 asm,n — oo.

By completeness of HE(Q) it follows that x¢ € H}(Q2) for all ¢ € H}(Q) and

2 2
X030y < K Xl per @) 1015 @) -

(1) fue H 1 () and ¢ € HJ (), then by definition, (M, u, #) = (u, x¢) and

therefore,
[(Myu, ¢)| = [(u, x9)| < llullz-10) X0l m2 ) < K Xl per@y lullm-19) 9l o)
which implies M,u € H~! (Q) and
[Myullg-10) < KlIxllper @ 1ullz-10)-

(2) For u € L?(Q) and ¢ € C°(Q)

[(O5u, §)| = [(u, 9;8)| < HU||L2(Q) : ||ai¢||L2(Q) < HU||L2(Q) H¢||H1(Q)
0

and therefore [|0;ull -1 () < [[ullz2(q) - For general V' = Zle My, 0; +
My, , we have

d
[Au]l g1y < DK 1 Aill por @y 100l -1y + [ Aolloo ull 2
i=1
d
< DK Aill ey + 1ol | 1l 2@ -
=1
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(3) Since V : HY(Q) — L3(Q) and i : L?(Q) — H~(N) are both bounded
maps, to prove L = _z;‘i,jzl My,;0;0; + V is bounded from H'(Q) —
H=1(Q) it suffices to show My, 8;0; : H'(Q) — H~*(Q) is a bounded.
But My,,9;0; : H'(2) — H~'(12) is bounded since it is the composition of
the following bounded maps:

B % 2@ % E Q) " H Q).

Lemma 1.7. Suppose x € BO>®(Q) then

(1) [L,My] =V s a first order differential operator acting on D'() which
necessarily satisfies V : H*(Q) — H*=Y(Q) for k=0,1,2,... etc.
(2) Ifu € H*(Q), then

L, MyJu e H*1(Q) fork=0,1,2,...
[ , My, s Ly 4y
and

I[Z, My Jull gy < CrOOullmxo)-

Proof. On smooth functions u € C* (Q),

d d d
L (XU) = XLu —2 Z AU&-X . aju + (Z AZ&X — Z Awalajx) 7

ij=1 i=1 i,j=1

and therefore

(L, M,] :—QZAmﬁx dju + (ZA@X— ZA”anX) cu=: Vu.

i,7=1 i=1 i,7=1
Similarly,
d d
Lt (xu) = Z 0;0; [xAiju] — Z 0i(xA;u) + Aoxu
i,j=1 i=1
d
(1.1) = xLiu -2 Z dix - 0 [Aiju] — ZA Oix-u— | Y Ai0io;x | u.
1,7=1 7,7=1

Noting that

d
Viu=2>"9;[0:x - Ajul + (ZA Aix — Z A0, ajx)

4,5=1 4,5=1

d
=2 Oix- 05 [Ayu] + (ZA@XJFZA”MJX)

3,j=1 j=1

Eq. (1.1) may be written as

(LT, M,] = -VT.
Now suppose k = 0, then in this case for ¢ € D (),
(L, Mo Ju, 6)] = [, [My, LT8)| = [(u, VIg)]

< lull2 @IV T8l L2 @) < Cllullz2@) ¢l m @
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This implies ||[L, My ]ullg-1(0) < C|lul|r2 and in particular [L, M,]Ju € H™ ().
For k > 0, [L, My|u = Vu with V as above and therefore by Proposition26.6, there
exists C' < oo such that [|Vul|gr-1(0) < Cllullgr) - ®

Definition 1.8. The operator L is uniformly elliptic on 0 if there exists € > 0
such that (A;j(x)) > el for all z € Q, i.e. A;;(x)&E > el¢]? for all z € Q and

¢ € R

Suppose now that L is uniformly elliptic. Let us outline the results to be proved

below.

1.1. Outline of future results.

(1)

We consider L with Dirichlet boundary conditions meaning we will view L
as a mapping from Hg(Q) — H~1(Q) = [H}(Q)]" . Proposition 2.13 below
states there exists C = C(L) < oo such that (L + C) : H}(2) — H~Y(Q)
is an isomorphism of Hilbert spaces. The proof uses the Dirichlet form

E(u,v) := (Lu,v) for u,v € Hy(Q).
Notice for v € D(2) and u € H} (1),
E(u,v) = (Lu,v) = (u, LTv)

= / U (—8i8j(Aijv) — 0; (A,U) + Ao’l}) dm
Q

= / [@u . 8j (Aijv) — u0; (A,U) + UAQU} dm
Q

= / [A”&u . 6jv + (Al + 8JA”) 8iu - U+ AQUU] dm.
Q

Since the last expression is continuous for (u,v) € H () x H (), we have
shown

5(U, ’U) = / [A,J&u . 8j’U + (Az + 8]AU) Oyu-v+ Aouv] dm
Q

for all u,v € H} ().

To implement other boundary conditions, we will need to consider L acting
on subspaces of H?(Q2) which are determined by the boundary conditions.
Rather than describe the general case here, let us consider an example where
L = —A and the boundary condition is % = pu on Jf2 where 0,,u = Vu-n,
n is the outward normal on 92 and p : 92 — R is a smooth function. In
this case, let

D:—{uGHQ(Q):%—puOHGQ}.

We will eventually see that D is a dense subspace of H!(Q). For u € D and
ve HY(Q),

(—Au,v) = / Vu - Vv dm — / vOpu do
Q 00

:/VU-VU dmf/ puv do =: E(u,v).
Q o0
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The latter expression extends by continuity to all u € H*(£2). Given € as in
Eq. (1.2) let —Ag : H' (Q) — [H'(Q)]" be defined by —Agu := E(u, ) so
that —Agu is an extension of —Aw as a linear functional on Hg () to one
on HY(Q) D H}(Q). It will be shown below that there exists C' < oo such
that (—Ag +C) : HY(Q) — [HY(Q)] " is an isomorphism of Hilbert spaces.

(3) The Dirichlet form &£ in Eq. (1.2) may be rewritten in a way as to avoid the
surface integral term. To do this, extend the normal vector field n along
99 to a smooth vector field on Q. Then by integration by parts,

/ puv do = / n?puv do = / 0 [n;puv] dm
o0 o0 Q
= {/Q V- (pn) wo+ pn;O;u - v+ pnyu - v | dm.
In this way we see that the Dirichlet form £ in Eq. (1.2) may be written as
(1.3) E(u,v) = /Q [Vu - Vv + a;00;u - v + agiud;v + agouv] dm

with ago = V- (pn) , a;o = pn; = ag;. This should motivate the next section
where we consider generalizations of the form £ in Eq. (1.3).
2. DIRICHLET FORMS

In this section Q will be an open subset of R<.
2.1. Basics.

Notation 2.1 (Dirichlet Forms). For «, 8 € N& with |af,|8] < 1, suppose a5 €

BC®> (Q) and p € BC* (Q) with p > 0, let
(2.1) E(u,v) = Z /aaﬂa@u 0Py dp
‘alvlﬁlglﬂ

where dp := pdm. We will also write (u,v) := [, uv dp and L? for L*(€2, ). In the
sequel we will often write a; g for a, g, aqa,j for aq.e; and a;; for ae, ;-

Proposition 2.2. Let £ be as in Notation 2.1 then
1€ (u,v)| < Cllullg |vllgr for all u,v € H'
where C is a constant depending on d and upper bounds for {Haaﬁ”Bc(Q) el 18] < 1} .
Proof. To simplify notation in the proof, let ||-|| denote the L?(£2, 1) — norm.
Then
€@, 0)| < C Y {lsull 950] + I0ull [[oll + l[ull 9:0l] + [lu] [[o]}

ij
< Cllull g - (vl -
]

Notation 2.3. Let £ be a Dirichlet form as in Proposition 2.2, then we define
bounded linear operators Lg and L} from H'(€) — [H'(Q)]" by

Leu =& (u,-) and E:rgu =E(u).



It follows directly from the definitions that (Leu,v) = (u, E;—l]> for all w,v €
H'(Q). The Einstein summation convention will be used below when convenient.

Proposition 2.4. Suppose Q is a precompact open subset of R such that Q is a
manifold with C* — boundary, Then for allu € H*(Q) and v € H' (Q),

(2.2) (Leu,v) = E(u,v) = (Lu,v) +/Bu v pdo
o9
and for allw € H(Q) and v € H% (Q),

(2.3) (u, ££v> = &E(u,v) = (u, LTv) + /u - B pdo,
o0

where

(24) B = njaijai +njag; =n - aV+n- ag,.,

(25) Bf =n; [aijaj +ai0] :an-V+n~a.,0,

(2.6) Lu=p"" > (=1)"'0% [panp0™u]
lal,181<1

and

(2.7) Lty :=p~1 Z (=1)lelge [paa,gaﬁv]
lal,181<1

We may also write L, Lt as
(28) L = —aijajai + (aio — aoj — p_laj [paij]) c’)l + (aoo — p_laj [paoj]) s
(2.9) Lt = —aijaiaj + (aoj —ajo — p_lai [paij]) c’)j + (aoo - p_lai [paio}) .

Proof. Suppose u € H?(Q)) and v € H! (), then by integration by parts,

Z / Iﬁ\ —198 [paas0™u] - v du + Z Z/ [aq;0%u] - v pdo

lal|BI<1 g la <1 5=15¢,
= (Lu,v) +/Bu v pdo,
o0
where
Lu=p! Z (-1 )lBl 9° [pans0*u) = —p~* Z Z@ (paa;0%u) Z aa00%u
lal,1I<1 jal<1 =1 <1
d d d
= —p_l Z 8j (pa”(’)zu) — p_l 28] (paoju) + Zaioaiu + agou
ij=1 j=1 i=1
d d
=— Z aij0;0iu — p~* Z (05 [paiz]) Zaoja u
i,j=1 i,j=1
d d

—p IZ i [pao;] u—i—Zazoau—i—aoou

j=1 i=1



and
d
Bu = Z an (@a;0%u) Z njaljau—&-anan
la|<1j=1 i,j=1
Similarly for u € H'(Q) and v € H? (),

Z / 1lelp=tye [paa 58’6 | dp+ Z Z /u n; | algaﬁ | pdo
lal,181<1 g i=18|<1g
= (u, L'v) —I—/u - B pdo,
o0
where Bfv = n; [a;;0; + aio] and
Ltv = —p~ 19, (paija-v) + ag;0jv — p~ 105 (paiv) + agov
= —a;;0;0;v — p~ Lo, [pai;]) O;v + ag;0;v — ainOiv — 0~ (05 [paio]) v + agov
= [—ai;0:0; + (aoj —ajo — p~ 10 [pas]) 8; + aoo — p~ " 0; [paio]] v
|
Proposition 2.4 shows that to the Dirichlet form £ there is an associated second
order elliptic operator L along with boundary conditions B as in Egs. (2.6) and

(2.4). The next proposition shows how to reverse this procedure and associate a
Dirichlet form £ to a second order elliptic operator L with boundary conditions.

Proposition 2.5 (Following Folland p. 240.). Let A;, Agp € BC™ () and A;; =
Aj; € BC™ (Q) with (A;;) >0 and p > 0 and let

(2.10) L =—-4;;0,0; + Ai0; + Ao

and (u,v) := [, uvpdm. Also suppose a : 9Q — R and V : 9Q — R? are smooth
functions such that V(z)-n(z) > 0 for all x € 9 and let Bou :=V -Vu+au. Then
there exists a Dirichlet form £ as in Notation 2.1 and € C* (02 — (0,00)) such
that Eq. (2.2) holds with Bu = 3Boyu. In particular if u € H*(), then Bu = 0 iff
Bou =0 on 09.

Proof. Since mixed partial derivatives commute on H?(£), the term a;;0;0; in
Eq. (2.8) may be written as
1
5 (aij + ;i) 9;0;.

With this in mind we must find coefficients {aq 5 : |, |8] < 1} as in Notation 2.1,
such that

1
(2.11) Aij = 5 (aij +aj)
(2.12) Ai = (aio — agj — p~19; [pais])
(2.13) Ao = ago — p~ 195 [pag]
(2.14) a™n = BV and
(2.15) niag; = Pov.

Eq. (2.11) will be satisfied if
aij = Aij + cij
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where ¢;; = —cj; are any functions in BC*(Q2). Dotting Eq. (2.14) with n shows

that

an-n nm-an  n-An
2.1 = = —
(2.16) p V-n V-n V-n

and Eq. (2.14) may now be written as

n-AnV:cn

2.1 = An —
(2.17) w n -

which means we have to choose ¢ = (¢;;) so that Eq. (2.17) holds. This is easily
done, since w-n = 0 by construction we may define c£ := w(n-&) —n(w-£) for £ € R4,
Then c is skew symmetric and cn = w as desired. Since ¢;; are smooth functions
on 0f), a partition of unity argument shows that c¢;; = —c;j; may be extended to
element of C*° (). (These extensions are highly non-unique but it does not matter.)
With these choices, Eq. (2.11) and Eq. (2.14) now hold with 5 as in Eq. (2.16).
We now choose ag; € C™ (Q) such that ag; = Ban; on 0L2. Once these choices are
made, it should be clear that Eqgs. (2.13) and (2.14) may be solved uniquely for the
functions ag; and agp. ™

2.2. Weak Solutions for Elliptic Operators. For the rest of this subsection we
will assume p = 1. This can be done here by absorbing p into the coeflicient ag.

Definition 2.6. The Dirichlet for £ is uniformly elliptic on € if there exists
€ > 0 such that (a;;(x)) > el for all z € Q, i.e. a;;(x)&E > € £|? for all z € Q and
£ e R%

Assumption 1. For the remainder of this chapter, it will be assumed that £ is
uniformly elliptic on €.

Lemma 2.7. If 2 < Af + B then €2 < A? 4+ 2B.
Proof. ¢? < 1A%+ 1¢% + B. Therefore 36> < 1A’ + Bor (< A>+2B. m

Theorem 2.8. Keeping the notation and assumptions of Proposition 2.2 along with
Assumption 1, then

€
(2.18) E(u,u) + CellullL2() = 5”“”H1(Q)a

where C. = g—i—C—l—%.
Proof. To simplify notation in the proof, let ||-|| denote the L?(£2) — norm. Since
/aijaiu -Oju dm > e/ |Vul*de = €||Vul|3 .,
Q Q
E(u,u) > €| Vulzo — CIVull [lull + [lul?)
and so

C 1 C
IVl < Vel + (£ + Tlul?).

Therefore by Lemma 2.7 with A = €|ju||, B = (2€(u,u) + £|[u||?) and £ = ||Vu,

€

C? 2 C 2 c? 2C
IVl < Sl + 2(eu ) + ZhlP) = 2ot + (G + 25



Hence
2072

€
Sl < &)+ (2= +.0)

which, after adding § lu]|® to both sides of this equation, gives Eq. (2.18). m
The following theorem is an immediate consequence of Theorem 2.8 and the
Lax-Milgram Theorem 29.9.

Corollary 2.9. The quadratic form
Q(u,v) = E(u,v) + Ce(u, v)

satisfies the assumptions of the Lax Milgram Theorem 29.9 on H'(Q) or any closed
subspace X of H(Q).

Theorem 2.10 (Weak Solutions). Let £ be as in Notation 2.1 and C. be as in
Theorem 2.8,
Qu,v) == E(u,v) + Ce(u,v) for u,v € H(Q)

and X be a closed subspace of H*($)). Then the maps L : X — X* and L X — X+
defined by

Lv:=Q(v,")=(Le+C)v and
Lty :=Q(,v) = (L‘g + C) v
are linear isomorphisms of Hilbert spaces satisfying

2 2
-1 z =1 z
HE HL(X*,X) < c and ||<£) HL(X*,X) < ¢
In particular for f € X*, there exist a unique solution v € X to
solution satisfies the estimate

Lu = f and this

2
ey < 21l
Remark 2.11. If X D H}(Q) and u € X then for ¢ € C°(Q) C X,

(Lu, ¢) = Q(u, ¢) = (u, (LT + C) ¢) = (L + C)u, ¢).
That is to say Lu|ce() = (L + C)u. In particular any solution u € X to Lu =
f € X* solves
(L+C)u= flox@) €D (D).
Remark 2.12. Suppose that I' C 99 is a measurable set such that o (I') > 0
and Xp = {u€ H'(Q) : lrulopg =0} . If u € H?*(Q) solves Lu = [ for some
f € L?(Q) C X*, then by Proposition 15.6,

(2.19) (f,u) := (Lu,v) = E(u,v) + Clu,v) = (L + C)u,v) +/Bu ‘v do

[219]

for all v € X C HY(Q). Taking v € D (Q) C Xr in Eq. (2.19) shows (L +C)u = f
a.e. and

/BU"l}dU:OfOI'aHUEX[‘.
o0
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Therefore we may conclude, u solves
(L+ C)u = f a.e. with
Bu(z) =0 for 0 —a.e. x € 02\ T and
u(z) =0for o —ae xz el
The following proposition records the important special case of Theorem 2.10
when X = H}(Q) and hence X* = H~1(2). The point to note here is that Lu =

(L+ C)u when X = H}(Q), i.e. Lu equals [(L + C)u] extended by continuity to
a linear functional on X* = [H{} (9] "

Proposition 2.13. Assume L is elliptic as above. Then there exist C > 0 suffi-
ciently large such that (L+C) : H(2) — H~Y(Q) is bijective with bounded inverse.
Moreover

-1

or equivalently
2
[ull 3 ) < ;H(L + O)ull gr-1(e) for all w € Hy ().

Our next goal, see Theorem 3.13, is to prove the elliptic regularity result, namely
if X = H}(Q) or X = H(Q) and u € X satisfies Lu € H*(Q), then u € H*2(Q)N
X.
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3. ELLIPTIC REGULARITY

Assume that €2 is a compact manifold with C? — boundary and satisfying Q° = Q
and let £ be the Dirichlet form defined in Notation 15.3 and L be as in Eq. (15.12)
or Eq. (15.14). We will assume £ or equivalently that L is uniformly elliptic on €.
This section is devoted to proving the following elliptic regularity theorem.

Theorem 3.1 (Elliptic Regularity Theorem). Suppose X = H} () or H*(Q) and
& is as above. If u € X such that Leu € H*(Q) for some k € Ng U {—1}, then
u € H*2(Q) and

(3.1) [ull gre+2 () < C(|Leull @) + llullz2(e))-

3.1. Interior Regularity.

Theorem 3.2. To each x € C°(Q) there exist a constant C = C(x) such that
(32 Ixullae < CDula- ) + lullzo)} for allu e H(Q).

In particular, if W is a precompact open subset of (), then

(3.3) [ull g owy < C{IILulla—1 @) + llullz2 @) }-

Proof. Foru € H'(Q), xyu € H} (Q) and hence by Proposition 2.13, Proposition
1.6 and Lemma 1.7,

2 2
Il @) < ZI(L+ Ce) (xu) l-10) = ZlIX(L + Ce)u+ [L, MyJul g-1(0)
2
< =CO{IIL + Cullar(e) + llullrzie }

2
< EC(X) {I1Lull 1) + Cellullz—1 () + lull2)}

from which Eq. (3.2) follows. To prove Eq. (3.3), choose x € C2°(€,[0,1]) such
that x = 1 on a neighborhood of W in which case

lullerrowy = lIxullarowy < lIxullar @) < C{ILullg-1 ) + llullz2@) }-
| ]

Exercise 3.1. Let v € R? with [v| = 1, u € L? () and W be an open set such
that W CC Q. Show, for all h # 0 sufficiently small, that 9"u € H~1(W) and

3.1. Let W, be a precompact open subset of  such that W c W, ¢ W; C Q.
Then for ¢ € D (W) and h close to zero,

’(81]}u7¢>’ = ’(ua a;h¢>’ S Hu||L2(W1) Haqjhd)HLQ(Wl)
< HU||L2(W1) ||3v¢||L2(Q) (Theorem 26.13)
< HU||L2(Q) ||¢HH1(Q) :
Hence
Hai}JLUHH—l(W) = sup{|<3gu’ ¢>| 1 ¢ € D(W) with ||¢HH1(Q) = 1} < Hu||L2(Q)'
[ |
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Theorem 3.3 (Interior Regularity). Suppose L is 2'¢ order uniformly elliptic op-
erator on Q and u € HY(Q) satisfies Lu € H*(Q)! for some k = —1,0,1,2,...,
then u € H"2(Q). Moreover, if W CC Q then there exists C = Cx(W) < 0o such
that

(3-4) [ull ey < CULull v @) + llullL2@))-

Proof. The proof is by induction on k with Theorem 3.2 being the case k = —1.
Suppose that the interior regularity theorem holds for —1 < k < ky. We will now
complete the induction proof by showing it holds for & = kg + 1.

So suppose that u € H'(Q) such that Lu € H*+1(Q) and W = W, C Q is fixed.
Choose open sets Wi, Wy and Wy such that Wy ¢ Wy ¢ Wy C Wo C Wo C W3 C
W5 C Q as in Figure 1. The idea now is to apply the induction hypothesis to the

F1GURE 1. The sets W; for i =0,1,2.

function 07u where v € R? and 9" is the finite difference operator in Definition
22.14. For the remainder of the proof h # 0 will be assumed to be sufficiently small
so that the following computations make sense. To simplify notation let D" = 9.

For h small, D"u € H'(W;) and D"Lu € H**'(W,) and by Exercise 3.1 for
ko = —1 and Theorem 26.13 for kg > 0,

(3.5) 1D Lul| greo (wyy < 1Ll o+ sy -
We now compute LD"u as

(3.6) LD"u = D"Lu + [L, D"u,
where

[L,D"u = LD"u — D"Lu
= P(z,0)D"u(z) — D"P(z,d)u(x)
(x + hv) — u(x)) _ P(z+ h,d)u(z + hv) — P(z,d)u()

= P(z,0) <“ - -

_ P9 - ];(ac + o, D) u(x + hv) = L"rMu(z),

() = u(z + ho)

LA priori, Lu € H=1(Q) ¢ D’ ().
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and

LM = Z Aa(@) — X;ta(x + he) 0%“u.
Ja]<2

The meaning of Eq. (3.6) and the above computations require a bit more ex-
planation in the case kg = —1 in which case Lu € L*(Q). What is being claimed is
that

LD"u = D"Lu + L't
as elements of H~!(W3). By definition this means that
—(u, D7"L1¢) = (LD"u, ¢) = (D" Lu+ L"7]'u, ¢)
— —(u, LID7"g) + (v, (L) 9).
So the real identity which needs to be proved here is that [D‘h, LT] ¢ =

—7;h (Lh)T ¢ for all ¢ € D (W3). This can be done as above or it can be inferred
(making use of the properties L' is the formal adjoint of L and —D~" is the formal
adjoint of D") from the computations already done in the previous paragraph with
u being a smooth function.

Since L" is a second order differential operator with coefficients which have
bounded derivatives to all orders with bounds independent of h small, [L, D"]u =
Lhrhu € H* (W7) and there is a constant C' < oo such that
(3.7

L, DMl greo (wyy = 1L T ull o (wryy < Cllimdull oz wyy < Cllull gro+2wsy)-
Combining Eqgs. (3.5 — 3.7) implies that LD"u € H* (W3) and
ILD"ul| grro (wyy S 1Ll rvo e wy) + ull vov2 v -
Therefore by the induction hypothesis, D"u € H**2(WW) and

D" ull ynos2awyy S D"l oy + 1Dl 22 onry
S Ll o+ wry)y + 1wl mro+2owryy + 1wl o sy
S Ll oy wryy + 1l mrro+2(wy)
S 1wl gro+1(0y + 1wl o @) + lull 12y (by induction hypothesis)

S 1wl gro+10y + llullp2q) -
So by Theorem 26.13, d,u € H*+2(W,) for all v = e; with i = 1,2,...,d and
10sull g2y = 105ull prroa gy S I1Lwll rrovr ) + lull p2(q) -
Thus u € H*+3(Wy) and Eq. (3.4) holds. m

Corollary 3.4. Suppose L is as above and u € H'(Q) such that Lu € BC>(Q)
then u € C>*(Q).

Proof. Choose €y CC Q so Lu € BC™®(€)y). Therefore Lu € H*(Qp) for all
k =0,1,2,.... Hence u € Hk+2(§20) for all £ = 0,1,2,.... Then by Sobolev

loc

embedding Theorem 28.18, u € C*°({)y). Since €y is an arbitrary precompact open
subset of Q, u € C>®(Q2). m
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3.2. Boundary Regularity Theorem.

Example 3.5. Let Q = D(0,1) and u(z) = (1 + 2z)log(1 + 2). Then Au = 0 and
moreover % = log(1+2) + 1 50 u, = 1 +log(1 + 2) and u, = (1 +log(1 + 2)) and
hence u € H'(Q) with Au =0 € H*(Q) for all k but u ¢ H?(£2). Indeed,

U —8—2u——1
927 142
Now
1 ]? 1 1
— | dx dy > dr dy= | —= dx d
/’Hz ’ y*/(uz)? S P e
Q Q
T FO) T/2 r=£(6)
%2/ / —2rdrd9:2/ df In(r) =00
0=2Jr=0 T z r=0
sou ¢ H*(Q).

This example shows that in order to get an elliptic regularity result which is valid
all the way up to the boundary, it is necessary to impose some sort of boundary
conditions on the solution which will rule out the bad behavior of the example.
Since the Dirichlet form contains boundary information, we will do this by working
with £ rather than the operator L on D’ (2) associated to £. Having to work with
the quadratic form makes life a bit more difficult.

Notations 3.6. Let
(1) Np:={z eH": |z| < r}.
2) X = H}(N,) or X be the closed subspace H!(N,) given by

(
(3.8) X ={ue H'(N,) : ulpgnny, =0} .
(3) For s <rlet X ={ue X :u=0onH"\N, for some p < s}.

Ny

Np
.

FIGURE 2. Nested half balls.

Remark 3.7. (1) If ¢ € C>°(H") and vanishes on H" \ N, for some p < r then
¢ou € X, for all u € X.
(2) If w € X, then 0fu € X, for all a such that ay = 0 and |h| sufficiently
small.

Lemma 3.8 (Commutator). If v € C®°(N,) then for v € N3~ ' x {0} there exists
C,(¢) < oo such that

(3.9) 16, 001 f Il 2,y < Co (@) Y 110° FllLo .-

a<ly
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for all f € L*(N,).
Proof. The proof will be by induction on |v|. If v = e; for some i < d, then

Y(x + he;) f(x + he;) — () f(x)
h
[Y(x + hei) —P(@)] f(z + hei) + () [f(z + he;) — f()]
h
= 0hv(a) f (@ + he;) + ¥ ()0}, f(z)

a;, (V) () =

which gives
(3.10) 05, 01f = (Bj)7h ]
This then implies that
[, 04 fllL2 v,y < COONFll2 (v,

Now suppose |y| > 1 with v = ¢; + 9/ so that 9] = 8;:/8,’; with|y'| = |y] — 1.
Then
[, 03] = 4,0, 10, + 0 [v, ;]
and therefore by the induction hypothesis and Theorems 26.13 and 26.15,

1, 021 fllz2 < Cor (@) D 10705 fllnz + 107 [, 041 f 1 2

a<y’
(3.11) < Cyr() Y 11077 fll g2 + 107 [(Bh) 7] Il e-
a<y’
But
! i il 7'! i 061 i 982
a7 [(3h¢)7hf] _51%:_7/ 51!52!(3h8 lf})Tha f
and hence
(3.12) 107" (@) f] 11 < C S 107 fll e

By

Combining Egs. (3.11) and (3.12) gives the desired result,
1%, 831Nl < C5() D 110° F 2.

a<ly
]

Lemma 3.9 (Warmup for Proposition 3.10). Let aqg € BC™ (H?) with (a;;) >
€dy; for some € >0,
(3.13) (Lu,v) = E(u,v) = Z aap0%u - 0%v d,

Hd ‘alv‘ﬁlgl

X = H}HY) or H'(HY). There exists C < oo such that if u € X such that
Lu=: f € L*(HY), then

(3.14) [ull 2y < C(f N2 gey + llullx-)-
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Proof. If Lu = f € X* then (L+C)u = f + Cu, so by the Lax-Milgram
method,
lull x S I+ Cullxe <[Ifllx-+Cllullx- S N1Lullx- + llullx- -
Suppose first & = 0, in which case we wish to prove d;u € H'(H?) for all i < d and
105wl 2 ey S 1 Lwll 2y + [l
To do this consider

(LOMu,v) = Z Aol 0%u - OPv da

Hd laf,18]<1

= [ > {0 (aapd™u) + [aap, 0] 0°u} - 070 da
Hd |, B1<1
= —(Lu,0; ") — Z (0} aup) T 0% - 9P dx
[a lablBl<1
= 7<‘Cuv 8@‘_hv> - 58};11(7—;;“5 U= 7(f7 ai_hv) - g@;la(T}iLua U)
= (azhfa U) - gﬁia(T}l‘Lua ’U)

wherein we have made use of Eq. (3.10) in the third equality. From this it follows
that

L= 8 Lu— Eyi o (Thu,-) € X*
and
|£otully. < |00 Cull . + |[Eopa (i )| . S 120l 2+ lull
S Lullpe + [1Lull o + llullxe S ILull gz + [lullx- -
Therefore,
l0Fullx S 1£07ull . + 07 ull xS 10l pa + llulx- + flul
i U x S i W)l x« i U e S Ul 2 Ul x = Ull g2
S Lull gz + flull x- -
Since h is small but arbitrary we conclude that 0;u € X and
vl S Iull e+ [l for alli < d.

Finally if ¢ = d, we have that f = Lu = Za;@ed A, 0%u+0%u which implies (writing
Ad,d fOI‘ A2ed)

Gu=Agy | f— D Aad®u| € L?
a#2eq

because we have shown that 9;0;u € L? if {i,j} # {d}. Moreover we have the
estimate that

103ull . S (F = D0 Aadul|  SUfll+ D 10%ull,s

a#2eq L2 a#2eq

S e + D 1107ull o S 1Ll 2y + [l x-
j<d
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Thus we have shown that v € X N H?(H?) and
ol sy S 1ol oy + e x-

]
If we try to use the above proof inductively to get higher regularity we run into
a snag. To see this suppose now that f € H'.Then as above

E@?u = Byﬁu - Eaia(ﬁ;u, )= 8jhf - Eaia(n{u, ).
Let 8{;0, = b and T,Zu = w and consider
E(w,v) = / ba,30%w - DPvdm.
Hd
Since w € H? we may integrate by parts to find
Ep(w,v) = / (—l)lﬁl 9 (bo,30%w) - vdm — ba,d0%w - vdo.
Hd OHd
This shows that &,(w,-) is representable by (fl)w| 0P (ba,50%w) € L? plus the
boundary term

v— ba,a0%w - vdo.
OH4
To continue on by this method, we would have to show that the boundary term is
representable by an element of L?. This should be the case since v|gza € H —1/2 (Hd)
while 0“w € H'/? (H*) with bounds. However we have not proven such statements
so we will proceed by a different but closely related approach.

Proposition 3.10 (Local Tangential Boundary Regularity). Let aqn 3 € C*™ (Nt)
with aij & & > 2€[€[?,

(3.15) Qu,v) = Z Uapd®u - 0%v d,
¥, lalIBI<1

X = HY(Ny) or X be the closed subspace of H' (Ny) defined in Eq. (3.8) of Notation
3.6. Suppose k € No, u € X and f € H*(N;) satisfy,

(3.16) Q(u,v) = fv dx for all v € X;.
Ny
Given p < t, there exists C < oo such that for all v € N&™' x {0} with |y| < k+1,
Ou € HY(N,) and
(3.17) 107 ull v,y < CUL N re vy + lullzovy)

Proof. Let p < r < s < t and consider the half nested balls as in Figure 3
below. The proof will be by induction on j = |y|. When j = 0 the assertion is
trivial. Assume now there exists j € [1,k + 1] N N such that 07u € H'(Nj) for all
|v] < 7 with 74 =0 and

107wl (v, < CUfllr vy + llullmar(vg))-

__Fixg¢e C>(N;) such that ¢ = 0 on N; \ N, and ¢ = 1 in a neighborhood of
N ,. Suppose 7 is a multi-index such that |y| = j and 4 = 0. Then 9] (¢u) € X,
for h sufficiently small.
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r s t

AN
az JZP%‘)\

FI1GURE 3. A collection of nested half balls along with the cutoff
function ¢.

With out loss of generality we may assume v; > 0 and write 7 = e; + 7' and
9] =0;9) . Forv € X,,

Q9] (¢u),v / a0p0*0) (pu) - 9°v = Z aap0) 0% (¢u) - 0
N Jal,1g1<1 Nt jal|81<1
Eq
= > |, Ohlaapd® (6u) )-0%v+ Y / [aas, 9710 (¢u) - 0
lad,|BI<1 lal,B]<1
Es

A

/ (aap[0, ¢lu) - 0%v + By
Ny

Z/ P (Gappd™u) - 090+
Ny

leef,B]1<1 leef,|8]<1

= > N /N aap0®u-¢0°07 v+ Ey + By
lal,|BI<1 ‘

= Y (—1)‘”‘/Naaﬂaau.aﬂ (607 ,0] + By + By
lal, I8 <1 ‘
E3

+ Z |’Y| /Nt a0 - [(b’ 36] 9"

lel,|B]<1

= (‘1)”' Q(u, 90 ,v) + E1 + Es + E3

= (_1)”' ¢f07 v+ Ey + Ex+ Es
Ny
Ey

=FE1 + Ey+ E3— (—1)M /N 571/ [0f]- 0" pv.

=F+ Ey+ Es + Ey.

To summarize,
Q(Bg(gbu),v) = E1 + EQ + E3 + E4
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where

E= Y /aa/g,maa du) - 0
Ny

lal,I8I<1
By= Y 9) (aapl0®, dlu) - 0°v
lal,|8]<1 /e
E; = Z (—1)“‘/ aap0®u- [¢,0°] 97, v and
lal,181<1 Ne

N

Bui= =0 [ o or)- 0

To finish the proof we will estimate each of the terms FE; for i = 1,...,4. Using
Lemma 3.8,

B < ) / [aap, 310%(du) - %] <lollmin,y Y llaas, 10 (du)llr2n,)

lel,[B]<1 Ia\,IB\SI

<wlmw,y D D Cylaas)0°0(¢u)l| 12w,

lee],|B1<16<y

S ”v”Hl(Nr) Z ||86u||H1(Nr)
o<y

S ol e vy (HfHHk(NS) + Hu||H1(NS)) (by the induction hypothesis).

For EQ,
Bao = 9} (aas (0°¢)u) - 9%
|B1<1,la|=1" Nt
<lollarvy Y. 107 [aap(@O)ulll L2y,
IBI<1,lal=1
<Clolmww,y Y. 10[aas@ @)ulll 2w,
18I<1,lal=1
< Clvlla(w,) Z 0% 2w,
o<y
<Clollmw,y Y. 10%ullmrw,) (18] < —1since L* (N,) — H' (N,))
[6]<j—1,6n=0

S COlvll g vy UL fl m vy + lull 1 (av,)) (by the induction hypothesis).
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For Eg,

|Bs| < Z

la|<1,]8]=1

/ aap0%u - (3’%5) AN
Ny

/ O [aasd®u- (0°9)] - 0 v
Ny

le|<1,|8]=1

< Y Il aolloY [aapdu- (976)] llz2v,)

la|<1,]8]=1

<Clollan,y > Y 107 ull 2w,

[a|<16<y"

< Clvllar(n,) Z 10%ul| 11 (v,

o<y’
< Ol vy ([ e v,y + lullmr(v,)) (by the induction hypothesis).

Finally for Ej,
Bl =| [ o or- oo

< |ollar vy 197 ()22,
< wllar v,y loflai-1n,) < Cllvllar )

< 10"yl 2w,y 107 ()l L2,

Fllere(n,)-
Putting all of these estimates together proves, whenever |y| = j,
(3.18) Q9 (9u), v)| < Cllollmr vy (£l mx v + lullerv.))

for all v € X. In particular we may take v = 9) (¢pu) € X, in the above inequality
to learn

(3.19) Q (0 (¢u), 0y, (¢u)) < Cl0y (dw) |z v,y N f e vy + el 22 v,))-
But by coercivity of @,
187 (4w |31 (v, < C [Q(a}l(éu)ﬁZ(M)) + 107 (¢w) 172w
S 0 (@)l vy N Ty + el a2 v,))
+ 105 (0wl 1 (N 107 (9| L2 (v,

(3.20) SN (@ vy N 1 re v,y + [l 2 v,y + 19) (du) L2 (wv,))
and hence

(3.21) 105 (pw) | e vy S W ey + lull v,y + 110 (@u)l L2 (.-

Now

107 (o) 2 v,y = 1010) (9| p2(v.y < 10) (9wl (vyy < 107 ()] mrr (v,
<C Z |0%ul| 71 (n,) by the chain rule

asy’
< C(Iflar(n,) + llull zr(v,)) by the induction hypothesis.

This last estimated combined with Eq. (3.21) shows
107 (pu)l| vy S I ek vy + 1wl o)
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and therefore 87 (¢u) € H' (N,) and
107 (W)l (v S Wl e vy + el v, -
This proves the proposition since ¢ =1 on N, so
107wl (v, = 1107 (du) | 2 v,y < 1107 (0w) || 2 (v,
Sl ae gy + lullzr vy
|

Theorem 3.11 (Local Boundary Regularly). As in Proposition 3.10, let an,p €
C> (Ny) with a;j & &5 > 2el€]?,

Q(u,v) = Z /aa/g@au 0% dx
lal,1B1<1p,

and X = H}(N;) or X C HY(Ny) as in Eq. (3.8) . If f € HX(Ny) for some k >0
and u € X solves Q)

Q(u,v) = (f,v) for allv e X
then for all p < t, w € H**2(N,) and there exists C < oo such that
ull a2 v,y < CULF e v + el gy, )

Proof. The theorem will be proved by showing 87u € L?(N,) for all |y| < k+2
and

(3.22) 107 ullL2 v,y S A s vy + lull )

The proof of Eq. (3.22) will be by induction on j = 4. The case j = 0,1 follows
from Proposition 3.10. Suppose j =74 > 2 and 7/ = v — 2¢e4 s0 97 = 87,83. Now

letting
L= Z (*1)|ﬁ|aﬁaab’8a = Z An0%,

laf,18]<1 || <2

then Lu = f in the distributional sense. Writing A for A0,0,..,0,2)»

f= flé)ﬁu + Z A,0%

|| <2,04<2
so that
1 (83
8§uzz(ff > A0%u)
|| <2,000<2
and
/ 1 A,
(3.23) Du="u=0" | =f— Y =0
A
la|<2,a4<2

Now by the product rule

/
(3.24) Z v (%aau) = Z (’Zs)a(’yl_6+a) (%) L9+,

|| <2,04<2 la]<2,04<2,0<7
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Since (7' + )4 < 7, the induction hypothesis (i.e. Eq. (3.22) is valid for |y| < j)
shows the right member of Eq. (3.24) is in L?(N,) and gives the estimate

NIRAC 0 IET I

s , L2(N,)
al<2,a4<2 L2(N,) || <2,000<2,6 <y
S ||fHHk(Nt) + HUHHI(N‘)'
Combining this with Eq. (3.23) gives 97u € L?(N,) and
. < 2 (Aa oo
107 ull 2 v,y S WA g1t v,y + >0 75’ u
la|<2,04<2 L2(N,)
(3.25) < W flre vy + iy + Tl s S W ey + e, -

]
The following assumptions an notation will be in force for the remainder of this
chapter.

Assumption 2. Let Q be a bounded open subset such that Q° = Q and Q is a C*
— manifold with boundary, X be either H} () or H!(Q) and € be a Dirichlet form
as in Notation 15.3 which is assumed to be elliptic. Also if W is an open subset of
R? let
Xw = {v € X :supp(v) CC W N QL

Lemma 3.12. For each p € 0L there exists precompact open neighborhoods V' and
W in R? such that V C W, for each k € N there is a constant Cy, < 0o such that if
u€ X and f € H*(Q) satisfies

(3.26) E(u,v) = /fv dx for all v € Xy
Q
then u € H*2(V N Q) and
(3.27) ull grrzqvnn) < CULf k@) + [ullmr@)
Proof. Let W be an open neighborhood of p such that there exists a chart
¥ : W — B(0,r) with inverse ¢ := ¢~ : B(0,r) — W satisfying:
(1) The maps ¢ and ¢ has bounded derivatives to all orders.
(2) Y(WNQ) =B(0,r)NH? = N, and ¥ (W Nbd(Q)) = B(0,r) N bd(H)).
Now let p < r and define V := ¢(B(0, p)), see Figure 4.

Suppose that v € X satisfies Eq. (3.26) and v € Xy. Then making the change
of variables x = ¢(

v),
/ﬂM:/NMW@@N@@;AﬂW@@
Q N, "

where J(y) := |det &' ()], f(y) == J(y)f (¢(y)) and 5(y) = v ((y)) . By the change
of variables theorem, ¢*v := vo¢ is the generic element of X,.(N,.) and f € H*(N,.).
We also define a quadratic form on X (N,) by

Qi ) = Y /W 00 (G0 - 87 (0 0 1h) dm.

laef,]B]<1
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F1GURE 4. Flattening out the boundary of € in a neighborhood of p.

Again by making change of variables (using Theorem 26.16 along with the change of
variables theorem for integrals) this quadratic form may be written in the standard

form,
Z / (o 307U - 8% dm.

leef, 811
This new form is still elliptic. To see this let I" denote the matrix (a;;), then

Z ai;0; (o) - 0; (o) =TV (o) - V (@0 )
,j=1
=T [y Viioy- [ Vioy
which shows
aij =T W] e [0 e

and 4
tr tr 2
> auie =TWI7 ¢ W17 ¢ 2 | W17 ¢] = eolel
ij=1
where

o =i { [0 ¢
Then Eq. (3.26) implies

2
:|§|:1&er}>O

/ f y)dy for all v € X,

Therefore by local boundary regularity Theorem 3.11, @ € H**2(N,) and there
exists C' < oo such that

(3.28) 18l w2,y < CUFlEx vy + 1@l 51 )
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Invoking the change of variables Theorem 26.16 again shows u € H*(V) and the
estimate in Eq. (3.28) implies the estimated in Eq. (3.27). m

Theorem 3.13 (Elliptic Regularity). Let Q be a bounded open subset such that
Q° = Q and Q is a C® — manifold with boundary, X be either H} () or H*(Q)
and € be a Dirichlet form as in Notation 15.3. If k € N and uw € X such that
Leu € HE(Q) then u € H*2(Q) and

(3.29) 1wl g2y < CUfllEr@) + lullx+) < CUfllax@) + lullzz@)-

Proof. Cover 9Q with {V;}¥, and {Wl}i\[:1 as in the above Lemma 3.12 such
that V; CC W;. Also choose a precompact open subset V{) contained in 2 such that
{Vi}i]io covers €. Choose Wy such that Vo € Wy and Wy C Q. If Leu =: f €
HF (), then by Lemma 3.12 for 4 > 1 and Theorem 3.3 for i = 0, u € H*2(V;)
and there exist C; < oo such that

(3.30) lullerzving) < Cillfllaswine) + lullm (wine))-
Summing Eq. (3.30) on i implies u € H**2(Q) and

(3.31) [ull rvzo) < CUf e @) + [lullx)-
Finally

Jull% < CE(u,u) + lull3-1(0))
= C((f,w) 2@ + lullF-1(0))
< C(If 2@ llull @) + llullz-1 ()
1 5
< Clgzlflla@ + Gllull L) + lullf-10)

1 1
< 0(2—5||f|\%2(9) + 5”“”%{ + llullF-1(q))
for any § > 0. Choosing § so that C'§ = 1, we find
1 1
Sl < OOzl + Nell -+ )

which implies with a new constant C' that

(3.32) lullx < C (Ifllz2@) + lullm-1(2)) -
Combining Egs. (3.31) and (3.32) implies Eq. (3.29). =



