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12. HEAT EQUATION

The heat equation for a function u : Ry x R™ — C is the partial differential
equation

(12.1) <8t - %A) u =0 with u(0,2) = f(z),

where f is a given function on R™. By Fourier transforming Eq. (12.1) in the = —
variables only, one finds that (12.1) implies that

(12.2) <8t + % |§|2> a(t, &) = 0 with 4(0,¢) = f(g)

and hence that a(t, &) = e~1€I°/2f(¢). Inverting the Fourier transform then shows
that
u(t,w) = F (PR (e)) (@) = (£ (e712) ) (@) = 22 f (a).
From Example 77,
F-1 (e—t\£\2/2> (z) = pi(z) = t /231l
and therefore,
ut.a) = [ oo =) 7wy,
This suggests the following theorem.
Theorem 12.1. Let

(12.3) Pl —y) = (2mt) /2 g~ lemul /2t
be the heat kernel on R™. Then
1 .
(12.4) <8t — §Ax) pi(x —y) =0 and ltlﬁ)lpt(av —y) = 0z(y),

where §, is the § — function at x in R™. More precisely, if f is a continuous bounded
function on R™, then

uta) = [ e =) f)dy
is a solution to Eq. (12.1) where u(0,x) := limy o u(t, x).

Proof. Direct computations show that (Bt — %AI) pi(z —y) = 0 and an
application of Theorem ?? shows lim;gpi(x — y) = d,(y) or equivalently that
limy | [gn Pe(x — ) f(y)dy = f(z) uniformly on compact subsets of R”™. This shows
that limg o u(¢,z) = f(x) uniformly on compact subsets of R".

|

Proposition 12.2 (Properties of e'~/2). (1) For f € L*(R",dz), the function

(em/2f> (z) = (P.f)(z) :/ f

n

2
e_Tltlz_y‘

(Q)Wdy

is smooth in (t,z) fort >0 and x € R™ and is in fact real analytic.

(2) e'™/2 acts as a contraction on LP(R™,dz) for all p € [0,00] and t > 0.
Indeed,

(3) Moreover, py* f — f in LP ast — 0.
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Proof. Item 1. is fairly easy to check and is left the reader. One just notices
that ps(x — y) analytically continues to Ret > 0 and € C™ and then shows that
it is permissible to differentiate under the integral.

Item 2.

(e * 1)(@)] < / P @) pez — v)dy

R™

and hence with the aid of Jensen’s inequality we have,

o 15 < [ 17 = w)ddz = 11,

So P, is a contraction V¢ > 0.

Item 3. It suffices to show, because of the contractive properties of p;*, that
prxf — fast | 0for f € C.(R™). Notice that if f has support in the ball of
radius R centered at zero, then

(e * £) ()] g/

= [|fl|lcCR™ e 2 71 R)?

P )Pz — )dy < |l / Pz — y)dy

ly|I<R

n

and hence

lpe * £ — fII2, = /

p * f — f|Pdy + || f]lwC R e~ 2 (#1=R)°,
ly|<R
Therefore py + f — fin [P ast | 0 Vf € Co(R"). m

Theorem 12.3 (Forced Heat Equation). Suppose g € Cy(R?Y) and f €
Cr?([0,00) x RY) then

t
u(t, x) = pg * g(x) +/O pi—r * f(T,2)dT

solves

ou 1 .
T iAqu f with u(0,-) = g.

Proof. Because of Theorem 12.1, we may with out loss of generality assume
g = 0 in which case

t
u(t,x) = /0 pe* f(t — 7, 2)dT.

Therefore

ou ¢ 0
E(t,x):pt*f((),x)—l—/o pT*Ef(t—T,x)dT

t
0
:pt*fo(x)—/o pT*Ef(t—T,IE)dT
and

t
éu(t,:zc) = / Dy * éf(t —7,z)dT.
2 A 2
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Hence we find, using integration by parts and approximate § — function arguments,
that

t
(% - %) u(t, z) = py * fo(x) +/0 Dr * (-5% - %A) f(t =7 2)dr

[ o 1
_pt*f()(m)—'_le%l/e Dy ok (—E —§A) ft—m7,x)dr

=D * fO(m) - 161%1]97 * f(t -7, $)|z

+ lim t (2 - lA) prx f(t — T, 2)dT
elo Jo \or 2
= pt * fo(x) — pt * fo(z) + lellrg pex f(t —e,x) = f(t, ).
]
12.1. Extensions of Theorem 12.1.

Proposition 12.4. Suppose f : R™ — R is a measurable function and there exists
constants ¢, C < oo such that

|f(z)| < Cetlol,

Then u(t,z) := p; * f(z) is smooth for (t,z) € (0,c¢™1) x R™ and for all k € N and
all multi-indices a,

(12.5) D~ (%)ku(t,x) = (D"‘ (%)kpt> « ().

In particular u satisfies the heat equation u; = Au/2 on (0,c71) x R™.

Proof. The reader may check that

D~ (%)kpt(m) =q(t™ ", 2)p()

where ¢ is a polynomial in its variables. Let xg € R™ and € > 0 be small, then for
x € B(zp,€) and any 8 > 0,

[ =yl = [af* = 2lallyl + o> = |yl + lal* — (672 |2 + 52 [y*)
> (1= ) lyl* = (572 = 1) (Jwol +¢).

Hence

k
o) = sup{‘m (5:) me-0rw
e—rle—yl?

< sup — 75
{ (2nt)"/?

< ,Xp, €)sup 9 |(27t qt_,x—ye_% —8%)+5]lvl® re<t<c—eandx € B(xg,e€),.
<C(B -n/2 1 [ (1-8%)+5]lyl d B

:eStSceand$€B($o,e)}

gtz —y) Cesll’

:eStSc—eandxeB(aBo,e)}

By choosing 3 close to 0, the reader should check using the above expression that for
any 0 < 6 < (1/t — ¢) /2 there is a C' < oo such that g(y) < Ce=%1v In particular
g € L' (R™). Hence one is justified in differentiating past the integrals in p; * f and
this proves Eq. (12.5). m
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Lemma 12.5. There exists a polynomial g, (x) such that for any 8 > 0 and § > 0,

1 2
1 =Bl gy < 67q,, [ — ) e P9
/]R" ly|>6€ y=04q 352 €

Proof. Making the change of variables y — Jy and then passing to polar
coordinates shows

(oo}
/ 1|y|256_5‘y|2dy = 6”/ 1\y\216_562|y‘2dy =0 (S”_l) 6”/ e =BT =1 g
R™ Rn 1

Letting A = $62 and ¢, ()\) := ff:ol e, integration by parts shows

o L —)\7”2 1 N 1 [e'e} ( 2) e—)\rz
6 = [t —e g [ e
() =1 —2\ 2\ 2 7,:1(
1 n—l
= 2—>\€ s ¢n 2(N).
Iterating this equation 1mphes

7i Y nfl i Y TL*S

and continuing in this way shows

() = e (A1) + %@(A)

where § is the integer part of n/2, ¢ =0 if n is even and ¢ = 1 if n is odd and r,, is
a polynomial. Since

oo 5 oo 5 -
do(N\) :/ e dr < di(N) :/ re A" dr = Z—A

-1 =1
it follows that
Pn(N) < e_kqn()‘_l)

for some polynomial g,,. =

Proposition 12.6. Suppose f € C(R™,R) such that | f(z)] < Ces 12l then pyx f —
f uniformly on compact subsets as t | 0. In particular in view of Proposition 12.4,
u(t,x) := p x f(x) is a solution to the heat equation with u(0,x) = f(z).

Proof. Let M > 0 be fixed and assume |z| < M throughout. By uniform
continuity of f on compact set, given € > 0 there exists 6 = §(¢t) > 0 such that
If(z)— f(y)| <eif |lz—y| <0 and |z| < M. Therefore, choosing a > ¢/2 sufficiently
small,

b fla |—L/m ) - f(@)]dy

g/m@ﬂﬂ%—@—f@ﬂ@

< / pe(y)dy + C (27t) ™ n/2 [eﬁlﬂtﬂ;\2 + e%ll’\?}e*%Idey
Iy\<5 ly|>6

<e+C (27775)_"/2/ e (Fr=a)lv® gy
y|>é

So by Lemma 12.5, it follows that

2 —-n n 1 (L _4)s2
Ipe * f(2) — f(z)| < e+ C(27t) 5 4n <m>e (%—a)s
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and therefore

limsup sup |pe* f(z)— f(z)]<e—0aselO.
t10 |e|l<M

Lemma 12.7. If ¢(x) is a polynomial on R™, then
ot A"
/Rn pile — ey = 3 Tr5ra(@)
Proof. Since

f(t,z) = / iz —y)g(y)dy = /Rn Pe(y) Y aapr®y’dy = Colt)z”,

f(t,x) is a polynomial in x of degree no larger than that of ¢. Moreover f(¢,x) solves
the heat equation and f(t,z) — g(z) as t | 0. Since g(t,z) := o0 ; £ 57 ¢(z) has
the same properties of f and A is a bounded operator when acting on polynomials

of a fixed degree we conclude f(t,z) = g(t,x). =

Example 12.8. Suppose ¢(z) = z172 + 23, then
2

214

t
etA/Qq(;[;) = X122 + Z’ﬁ + iA (1’1$2 + .’Eg) =+ A2 (mlzljg + ZL'§)

2
! Y
2 2.4
= z129 + 73 + 6t23 + 3t°.

=x1T2 + :Eg + 12x§ +

Proposition 12.9. Suppose f € C°(R™) and there exists a constant C' < 0o such
that

S D f()] < ceP

|a|=2N+2
then

N
(pr* (@) = €2 f(x)" = ’,;,Mf(x) +O(t" ) ast |0
k=0

Proof. Fix x € R" and let
1 (e} «
In) = Y —Df(a)y”
a|<2N+1

Then by Taylor’s theorem with remainder

@ +y) — I ()] < ClyPN 2 sup eClettnl” < ¢y PNH2 2[Rl +ulP] < &y 2N +2 (2011
te[0,1]

and thus

/n pe(y) fz+y)dy — /npt(y)fzv(y)dy‘ < C/]R pi(y) [y 22 2001 gy

2N+2 2 2
pi(y) [y T2 e Ol ay
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Since f(z +y) and fn(y) agree to order 2N + 1 for y near zero, it follows that

N N

[ »t z z 2+l = Y G A @)
R k= k= k=0 "

which completes the proof. m

12.2. Representation Theorem and Regularity. In this section, suppose that

Q) is a bounded domain such that Q is a C? — submanifold with C? boundary and
for T > 0 let Qp :=(0,T) x Q, and

I o= ([0,T] x 9Q) U ({0} x Q)  bd(Q7) = ([0,T] x 9Q) U ({0, T} x Q)

as in Figure 36 below.

FIGURE 36. A cylindrical region Q2 and the parabolic boundary I'r.

Theorem 12.10 (Representation Theorem). Suppose u € C*Y(Qr) Qr =Qr =
[0,T] x Q) solves uy = 3 Au+ f on Qr. Then

w(T,z) = /pT(x —y)u(0,y)dy + / pr—t(x —y) f(t,y)dydt
[0,T1x
1 Opr—t
2 ony
[0,T]x 00

(126)  + (&~ )l )~ proile — ) oo (y) | do(y)at

Proof. For v € C%1([0,T] x ), integration by parts shows

/fvdydt = /U(ut —% Av)dydt

QT QT
1 =T 1 Ov
= /(—vt + §Vv - Vu)dydt + /vu‘tzo dy + 3 / va—dtdo
Qr Q (0,7 x99

1 T 1 ou ou
= /(fvt ~3 Av)udydt + /vu’o dy + 3 / (%u - v%) do dt.

Qr Q [0,T]x 09
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Given € > 0, taking v(t,y) := prie—t(z — y) (note that v, + 1 Av =0 and v €
C?1([0,T] x Q)) implies

fy)pryet(r —y)dydt =0+ /Qpe(x —y)u(t,y)dy — /pT+e(9: —y)u(t,y)dy

[0,T]x Q
1 apTwLeft(m - y) ou
— —— > u(t,y) — et(x—y)=— d dt
+3 an, ult,y) = pree—t(z —y)5-(y) | do(y)
[0,T]x 00
Let € | 0 above to complete the proof. m
Corollary 12.11. Suppose f = 0 so w(t,z) = 1Au(t,xz). Then u €

> ((0,T) x Q).

Proof. Extend p;(z) for t <0 by setting p;(x) := 0 if ¢ < 0. It is not to hard to
check that this extension is C*° on R x R™\{0}. Using this notation we may write
Eq. (12.6) as

ult, x) = / pr(a — )u(0, y)dy

Q
1 8pt—7' ou
v5 [ Bt - e - 050 doar
[0,00) X002

The result follows since now it permissible to differentiate under the integral to
show v € C* ((0,T7) x Q). m

Remark 12.12. Since x — py(z) is analytic one may show that © — wu(t,x) is
analytic for all x € €.

12.3. Weak Max Principles.
Notation 12.13. Let a;;,b; € C (QT) satisfy a;; = a;; and for u € C?(9) let

n

(12.7) Lu(t,z) = Z i (t, )y, o, () + Zbi(t,:c)um (z).

4,j=1

We say L is elliptic if there exists 0 > 0 such that
Zaij(t,x)@gj > 0|¢|? for all € € R"™ and (t,z) € Q.

Assumption 3. In this section we assume L is elliptic. As an example L = %A
is elliptic.

Lemma 12.14. Let L be an elliptic operator as above and suppose u € C? () and
xo € Q is a point where u(x) has a local maximum. Then Lu(t,z¢) < 0 for all
t e 0,77

Proof. Fix t € [0,T] and set Bjj = uq,qo, (w0), Aij := ai;(t,z0) and let {e;})
be an orthonormal basis for R™ such that Ae; = A;e;. Notice that A; > 6 > 0 for
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all ¢. By the first derivative test, u,,(z9) = 0 for all ¢ and hence
Lu(t,zo) = ZAZJBZJ = ZAjiBij = tI‘(AB)
= Zei . ABei = ZA(?Z ~Bei = Z/\Zez ~Bei

= Z)\Z@fiu(t, CC()) S 0.

The last inequality if a consequence of the second derivative test which asserts
Qu(t,zg) <0forallv e R". m

Theorem 12.15 (Elliptic weak maximum principle). Let Q be a bounded domain
and L be an elliptic operator as in Eq. (12.7). We now assume that a;; and b; are
functions of x alone. For each u € C (Q) NC?(Q) such that Lu >0 on Q (i.e. u is
L — subharmonic) we have

(12.8) max v < max u.
Q bd(9)

Proof. Let us first assume Lu > 0 on §2. If © and had an interior local maximum
at zp €  then by Lemma 12.14, Lu(zg) < 0 which contradicts the assumption that
Lu(zg) > 0. So if Lu > 0 on §2 we conclude that Eq. (12.8) holds.

Now suppose that Lu > 0 on Q. Let ¢(z) := e 1 with A > 0, then

Lo(z) = (Nar1(x) + bi(z)A) e > A (A + by (2)) .

By continuity of b(z) we may choose \ sufficiently large so that MA@+ by (z) > 0 on Q
in which case L¢ > 0 on 2. The results in the first paragraph may now be applied
to ue(z) := u(x) + ed(z) (for any € > 0) to learn

=u(z) < e < for all z € Q.
u(z) + ep(x) u(z)_gidl%);)u _gdl?%queg%()gb orall z €

Letting € | 0 in this expression then implies

u(z) < max u for all x € Q
bd(1)

which is equivalent to Eq. (12.8). m

Theorem 12.16 (Parabolic weak maximum principle). Assumeu € C"? (Qr\I'r)N
C(Qr).
(1) If uy — Lu < 0 in Qr then

(12.9) Imax ¢ = max .
ﬁT T'r

(2) If uy — Lu > 0 in Qr then minu = min u.
ﬁT Ir

Proof. Item 1. follows from Item 2. by replacing u — —u, so it suffices to
prove item 1. We begin by assuming u; — Lu < 0 on 2 and suppose for the sake of

contradiction that there exists a point (o, ) € Q7 \I'r such that u(ty, x¢) = max u.
Qr

(1) If (to,z0) € Qp (le. 0 < to < T) then by the first derivative test
%(to, xo) = 0 and by Lemma 12.14 Lu(to, o) < 0. Therefore,

(ur — Lu) (to, o) = —Lu(to, o) > 0

which contradicts the assumption that u; — Lu < 0 in Q7.
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(2) If (to,w0) € Qp\I'r with ¢, = T, then by the first derivative test,
94(T,20) > 0 and by Lemma 12.14 Lu(to, zo) < 0. So again
(ug — Lu) (to, o) >0
which contradicts the assumption that u; — Lu < 0 in Q7.
Thus we have proved Eq. (12.9) holds if u; — Lu < 0 on Q. Finally if u; — Lu < 0
on Qp and € > 0, the function u®(t,z) := u(t, z) — et satisfies uf — Lu® < —e < 0.
Therefore by what we have just proved

u(t,z) — et < maxu® = maxu® < maxu for all (t,2) € Q7.
Qr Ip I'r

Letting € | 0 in the last equation shows that Eq. (12.9) holds. =

Corollary 12.17. There is at most one solution u € CH2(Qr\I'r) NC(Qr) to the
partial differential equation
ou
5 =
Proof. If there were another solution v, then w := u — v would solve %—lt” = Lw
with w = 0 on I'y. So by the maximum principle in Theorem 12.16, w = 0 on Q7.
[

We now restrict back to L = %A and we wish to see what can be said when
Q = R" — an unbounded set.

Theorem 12.18. Suppose u € C([0,T] x R*) N C%1((0,T) x R™),

Lu with u = f on T'p.

1
Up — §Au§0 on [0,T] x R"™
and there exists constants A,a < oo such that
u(t,z) < Ae?*l* for (t,x) € (0,T) x R™.

Then

sup u(t,z) < K := sup u(0,x).
(t,2)€[0,T] xR" zERn

Proof. Recall that

( B 1 n/2 _%‘wlz_ 1 n/2 _%x.x
pe(z) = ; e =17 e

solves the heat equation
1
(12.10) Ot () = EApt(x).

Since both sides of Eq. (12.10) are analytic as functions in x, so

opr . 1 o1 )
E(w) = 2(Apt)(w) = QAxpt(zx)
and therefore for all 7 >0 and t < 7
Opr—¢ . ) ) 1 ‘
p@t Liz) = —pr_(iz) = §AxpT_t(Z£C).

7Similarly since both sides of Eq. (12.10) are analytic functions in ¢, it follows that

0 1
&pft(ﬂc) = —pi(z) = —Eﬁpft-
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That is to say the function

1
T—1

n/2 L R
) el for0<t <1

plta) = -alin) =
solves the heat equation. (This can be checked directly as well.)
Let €,7 > 0 (to be chosen later) and set
v(t,x) = u(t,z) —ep(t,z) for 0 <t < 7/2.
Since p(t,x) is increasing in ¢,
2 N\ e
o(t,z) < Ae?l®l” — ¢ (—) ex 1l for 0 <t < 7/2.
T

Hence if we require 2_17 >aorT< % it will follows that

lim sup v(t,x)| = —o0.
|z]—o00 [o<t<r/2
Therefore we may choose M sufficiently large so that

v(t,z) < K :=supu(0,2) for all || > M and 0 <t < 7/2.

A A
<8t—3>v:<8t—?>u§0

we may apply the maximum principle with Q = B(0, M) and T' = 7/2 to conclude
for (¢t,z) € Qr that

u(t,z) —ep(t,z) = v(t,z) <supv(0,2) < Kif0<t<7/2
z€Q

Since

We may now let € | 0 in this equation to conclude that
(12.11) ut,z) < Kif0<t<r/2.
By applying Eq. (12.11) to u(t + 7/2, ) we may also conclude
ult,z) < Kif0<t <.
Repeating this argument then enables us to show u(t,z) < K forall0<¢t<T. m
Corollary 12.19. The heat equation
wy — %Au — 0 on [0,T] x R” with u(0,-) = f(-) € C (R")
has at most one solution in the class of functions u € C([0,T] x R®)NC*((0,T) x
R™) which satisfy
u(t,z) < Ae®*’ for (t,2) € (0,T) x R™
for some constants A and a.
Theorem 12.20 (Max Principle a la Hamilton). Suppose u € C1? ([O, 7] x Rd) satisfies

(1) u(t,z) < Ae?l®l® for some A, a (forallt <T)
(2) u(0,2) <0 for all x

(3) 2v < Auice. (8 — A)u<0.

Then u(t,x) <0 for all (t,z) € [0,T] x RY.
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Proof. Special Case. Assume % < Au on [0,7] x RY, u(0,2) < 0 for all
r € R? and there exists M > 0 such that u(t,z) < 0 if |#| > M and t € [0, T].For
the sake of contradiction suppose there is some point (t,x) € [0,T] x R? such that
u(t,z) > 0.

By the intermediate value theorem there exists 7 € [0, ] such that u(r,z) =
particular the set {u = 0} is a non-empty closed compact subset of (0, T x B(O )
Let

71 (0,T) x B(0, M) — (0,T]

be projection onto the first factor, since {u # 0} is a compact subset of (0,77] x
B(0, M) if follows that

to := min{t € # ({u=0})} > 0.

Choose a point xg € B(0, M) such that (tg,x0) € {u = 0}, i.e. u(to,z0) = 0, see
Figure 37 below. Since u(t,z) < 0 for all 0 < t < ty and x € RY, u(tg,z) < 0

Ficure 37. Finding a point (tg,xo) such that tq is as small as
possible and u(to, zo) = 0.

for all x € RY with u(tg,z¢) = 0. This information along with the first and second
derivative tests allows us to conclude

Vu(to,zg) =0, Au(te, ) <0 and %(to,xo) > 0.
This then implies that
0< gt (to, o) < Au(to,x0) <0
which is absurd. Hence we conclude that u < 0 on [0,7] x R%.

General Case: Let pi(z) = tdl/ze*ﬁmz be the fundamental solution to the
heat equation

Oipr = Apy.
Let 7 > 0 to be determined later. As in the proof of Theorem 12.18, the function

1
T—1

d/2
> el for0<t <7

plta) = pr-ilio) = (
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is still a solution to the heat equation. Given e > 0, define, for t < 7/2,
ue(t, ) = u(t,x) — e — et — ep(t, x).
Then
(O — D)ue = (0 — D)u—e < —e <0,
ue(0,2) =u(0,z) —e<0—e< —€<0
and for t < 7/2 ,

< Aetlzl® _ o _
uc(t, z) < Ae €=

o=l

Hence if we choose 7 such that = > a, we will have u(t,x) < 0 for |z| sufficiently
large. Hence by the special case already proved, ue(t,z) < 0 for all 0 < ¢ < Z and
e > 0. Letting € | 0 implies that u(¢,z) < 0 for all 0 < ¢ < 7/2. As in the proof
of Theorem 12.18 we may step our way up by applying the previous argument to
u(t + 7/2,2) and then to u(t + 7, ), etc. to learn u(t,z) <O0forall 0 <¢t<T. m

12.4. Non-Uniqueness of solutions to the Heat Equation.

Theorem 12.21 (See Fritz John §7). For any a > 1, let

et t>0
(12.12) o(®) ._{ oy

and define

% g(k) (1)g:2k
ut,) =S LT
kzzo (2k)!

Then u € C*°(R?) and
(12.13) U = Uge and u(0,2) := 0.
In particular, the heat equation does not have unique solutions.

Proof. We are going to look for a solution to Eq. (12.13) of the form

u(t,z) = Zgn(t)x"
n=0

in which case we have (formally) that

0=1ut —Upy = Z(Qn(t)mn — gn(t)n(n _ l)xn_2)
n=0
=3[90 (t) = (0 4+ 2)(n + L) gnsat)] "
n=0
This implies
o
(12.14) It = D)

To simplify the final answer, we will now assume u,(0,2) =0, i.e. g1 =0 in which
case Eq. (12.14) implies g, = 0 for all n odd. We also have with g := go,

o _9 80 _§ g9 g™

2.1 a2 ™

g2 = —4.3—1796—F--~92k:(2k)!
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and hence
© (k) 2k
g ()
(12.15 u(t,x) = T
) a)=3 T

The function u(t, ) will solve u; = uy, for (t,x) € R? with u(0,z) = 0 provided
the convergence in the sum is adequate to justify the above computations.

Now let g(t) be given by Eq. (12.12) and extend g to C\(—o0, 0] via g(z) = e~*
where

—a

27 = e~ @lo8(z) = gmallnr+if) for o — pet with — 71 < 0 < 7.

In order to estimate g(*)(t) we will use of the Cauchy estimates on the contour
|z — t| = vt where « is going to be chosen sufficiently close to 0. Now

Re(z7%) = e " cos(ah) = |z|~* cos(ah)

and hence

lg(2)| = e—Re(z7%) _ o=z cos(ab)
From Figure 38, we see

o
P
—_—
- ~ ‘Yk
-7 ’3
< | >
Em. 2 Re

F1GURE 38. Here is a picture of the maximum argument 6,, that
a point z on dB(t,vt) may attain. Notice that sinf,, = vt/t =~
is independent of ¢ and 60, — 0 as v — O.

B(7) := min {cos(ah) : —7 < 0 < 7 and |re’ —¢| = 4t}
is independent of ¢ and (y) — 1 as v — 0. Therefore for |z — t| = ¢ we have

19(2)] < e FITB0) < = (rHINTOB0) — o ERETT < g

provided + is chosen so small that % > %

By for w € B(t,tv), the Cauchy integral formula and its derivative give

1 z
g(lU) %\z—ﬂ:wt zgi ) dz and

21 w

k! 9(2)
k
g( )(w) = 2—m % ‘z_t|:7tm dz

and in particular

(12.16)
k! l9(2)| kU 1, 217t .
(k) o s t t
g (t)‘ < f z—t|= ‘dZ| < e 2 _ = ——e 2 .
‘ o |z—t] vt‘27w|k+1 ot |'Yt|k+1 "Yﬂk
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We now use this to estimate the sum in Eq. (12.15) as

g(k) e*%t_ai K|z
2. T30 (28]

0o k
1—a 1 (22 2 1
< e 3t E — =) = Tt < .
<e 2 o (’yt) exp <'yt 5 > 00

Therefore ltll%l u(t,z) = 0 uniformly for z in compact subsets of R. Similarly one

may use the estimate in Eq. (12.16) to show u is smooth and

f:g 2]{:—1) 2k—2 _ > g(k)(t)xQ(k_l)
131 — |
k=0 2k)! — (2k-1)
igk—&-l 2k .
= uy.
k=0

12.5. The Heat Equation on the Circle and R. In this subsection, let S :=
{Lz:z € S} — be the circle of radius L. As usual we will identify functions on S,
with 2w L — periodic functions on R. Given two 27w L periodic functions f, g, let

L
— g(x)d
(F9)n =g | F@)g(@)de
and denote Hy := L% ; to be the 2rL — periodic functions f on R such that
(f, f)r < oo. By Fourier’s theorem we know that the functions xf(z) := e™*®/F

with k € Z form an orthonormal basis for Hy, and this basis satisfies

2, A
@Xk == (f) Xk -
Therefore the solution to the heat equation on Sy,

1
Ut = SUag with w(0,-) = f € Hy,

is given by
u(t, @) = Y (foxk)e HE) teiker/
kEZ
= Z f —zky/Ldy> —5(%) teikac/L
kEZ <2WL /
L
= [ b= s
where
pt( ) 1 675(%) teika;/L.

If f is L periodic then it is nL — periodic for all n € N, so we also would learn

mnL
u(t,z) = / prl(x — y) f(y)dy for all n € N.

—mnL
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this suggest that we might pass to the limit as n — oo in this equation to learn

ult, x) = / pe( — ) f (w)dy
where

: n : 1 —1 (LY (L)
pe(z) := lim pil(z) = lim %—LZe 3(£) tei(2)

n—oo L—oo ez

1 1e2, - 1 22
_ —5&°t jiéx _ —Z
=— [ e72° "e"TdE = e 2.

2T R g vV 27t

From this we conclude
L
ut.) = [ pa -9y = [ Y pla - y+ 2mnL)r)dy
R —nL nez
and we arrive at the identity

1 _ (z+27nL)? - . 1 _1(kNy ikz/L
Yame = mleraml) =g et

nez nez kEZ
which is a special case of Poisson’s summation formula.



