5. A VERY SHORT INTRODUCTION TO GENERALIZED FUNCTIONS

Let U be an open subset of  $\mathbb{R}^n$  and

$$(5.1) C_c^{\infty}(U) = \cup_{K \sqsubset \sqsubset U} C^{\infty}(K)$$

denote the set of smooth functions on U with compact support in U.

**Definition 5.1.** A sequence  $\{\phi_k\}_{k=1}^{\infty} \subset \mathcal{D}(U)$  converges to  $\phi \in \mathcal{D}(U)$ , iff there is a compact set  $K \sqsubseteq U$  such that  $\operatorname{supp}(\phi_k) \subset K$  for all k and  $\phi_k \to \phi$  in  $C^{\infty}(K)$ .

**Definition 5.2** (Distributions on  $U \subset_o \mathbb{R}^n$ ). A generalized function T on  $U \subset_o \mathbb{R}^n$  is a continuous linear functional on  $\mathcal{D}(U)$ , i.e.  $T: \mathcal{D}(U) \to \mathbb{C}$  is linear and  $\lim_{n\to\infty} \langle T, \phi_k \rangle = 0$  for all  $\{\phi_k\} \subset \mathcal{D}(U)$  such that  $\phi_k \to 0$  in  $\mathcal{D}(U)$ . Here we have written  $\langle T, \phi \rangle$  for  $T(\phi)$ . We denote the space of generalized functions by  $\mathcal{D}'(U)$ .

Example 5.3. Here are a couple of examples of distributions.

- (1) For  $f \in L^1_{loc}(U)$  define  $T_f \in \mathcal{D}'(U)$  by  $\langle T_f, \phi \rangle = \int_U \phi f dm$  for all  $\phi \in \mathcal{D}(U)$ . This is called the distribution associated to f.
- (2) More generally let  $\mu$  be a complex measure on U, then  $\langle \mu, \phi \rangle := \int_U \phi d\mu$  is a distribution. For example if  $x \in U$ , and  $\mu = \delta_x$  then  $\langle \delta_x, \phi \rangle = \phi(x)$  for all  $\phi \in \mathcal{D}$ .

**Lemma 5.4.** Let  $a_{\alpha} \in C^{\infty}(U)$  and  $L = \sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha} - a \ m^{th}$  order linear differential operator on  $\mathcal{D}(U)$ . Then for  $f \in C^{m}(U)$  and  $\phi \in \mathcal{D}(U)$ ,

$$\langle Lf, \phi \rangle := \langle T_{Lf}, \phi \rangle = \langle T, L^* \phi \rangle$$

where  $L^*$  is the **formal adjoint** of L defined by

$$L^*\phi = \sum_{|\alpha| \le m} (-1)^{|\alpha|} \, \partial^{\alpha} \left[ a_{\alpha} \phi \right].$$

**Proof.** This is simply repeated integration by parts. No boundary terms arise since  $\phi$  has compact support.

**Definition 5.5** (Multiplication by smooth functions). Suppose that  $g \in C^{\infty}(U)$  and  $T \in \mathcal{D}'(U)$  then we define  $gT \in \mathcal{D}'(U)$  by

$$\langle gT, \phi \rangle = \langle T, g\phi \rangle$$
 for all  $\phi \in \mathcal{D}(U)$ .

It is easily checked that gT is continuous.

**Definition 5.6** (Differentiation). For  $T \in \mathcal{D}'(U)$  and  $i \in \{1, 2, ..., n\}$  let  $\partial_i T \in \mathcal{D}'(U)$  be the distribution defined by

$$\langle \partial_i T, \phi \rangle = -\langle T, \partial_i \phi \rangle$$
 for all  $\phi \in \mathcal{D}(U)$ .

Again it is easy to check that  $\partial_i T$  is a distribution.

**Definition 5.7.** More generally if L is as in Lemma 5.4 and  $T \in \mathcal{D}'$  we define  $LT \in \mathcal{D}'$  by

$$\langle LT, \phi \rangle = \langle T, L^*\phi \rangle.$$

**Example 5.8.** Suppose that  $f \in L^1_{loc}$  and  $g \in C^{\infty}(U)$ , then  $gT_f = T_{gf}$ . If further  $f \in C^1(U)$ , then  $\partial_i T_f = T_{\partial_i f}$ . More generally if  $f \in C^m(U)$  then, by Lemma 5.4,  $LT_f = T_{Lf}$ .

Because of Definition 5.7 we may now talk about distributional or generalized solutions T to PDEs of the form LT = S where  $S \in \mathcal{D}'$ .

**Example 5.9.** For the moment let us also assume that  $U = \mathbb{R}$ .  $\langle T_f, \phi \rangle = \int_U \phi f dm$ . Then we have

- $(1) \lim_{M\to\infty} T_{\sin Mx} = 0$
- (2)  $\lim_{M\to\infty} T_{M^{-1}\sin Mx} = \pi\delta_0$  where  $\delta_0$  is the point measure at 0. (3) If  $f \in L^1(\mathbb{R}^n, dm)$  with  $\int_{\mathbb{R}^n} f dm = 1$  and  $f_{\epsilon}(x) = \epsilon^{-n} f(x/\epsilon)$ , then  $\lim_{\epsilon \downarrow 0} T_{f_{\epsilon}} = \delta_0$ . Indeed,

$$\lim_{\epsilon \downarrow 0} \langle T_{f_{\epsilon}}, \phi \rangle = \lim_{\epsilon \downarrow 0} \int_{\mathbb{R}^{n}} \epsilon^{-n} f(x/\epsilon) \phi(x) dx$$

$$= \lim_{\epsilon \downarrow 0} \int_{\mathbb{R}^{n}} f(x) \phi(\epsilon x) dx \stackrel{\text{D.C.T.}}{=} \int_{\mathbb{R}^{n}} f(x) \lim_{\epsilon \downarrow 0} \phi(\epsilon x) dx$$

$$= \phi(0) \int_{\mathbb{R}^{n}} f(x) dx = \phi(0) = \langle \delta_{0}, \phi \rangle.$$

As a concrete example we have

$$\lim_{\epsilon \downarrow 0} \frac{\epsilon}{\pi(x^2 + \epsilon^2)} = \delta_0 \text{ on } \mathbb{R},$$

i.e.

$$\lim_{\epsilon \downarrow 0} T_{\frac{\epsilon}{\pi(x^2 + \epsilon^2)}} = \delta_0.$$

**Example 5.10.** Suppose that  $a \in U$ , then

$$\langle \partial_i \delta_a, \phi \rangle = -\partial_i \phi(a)$$

and more generally we have

$$\langle L\delta_a, \phi \rangle = (L^*\phi)(a).$$

**Lemma 5.11.** Suppose  $f \in C^1([a,b])$  and  $g \in PC^1([a,b])$ , i.e.  $g \in C^1([a,b] \setminus \Lambda)$ where  $\Lambda$  is a finite subset of (a,b) and  $g(\alpha+)$ ,  $g(\alpha-)$  exists for  $\alpha \in \Lambda$ . Then

$$\int_a^b f'(x)g(x)dx = \left[f'(x)g(x)\right]\Big|_a^b - \int_a^b f(x)g'(x)dx - \sum_{\alpha \in \Lambda} f(\alpha)\left(g(\alpha+) - g(\alpha-)\right).$$

In particular

$$\frac{d}{dx}T_g = T_{g'} + \sum_{\alpha \in \Lambda} (g(\alpha +) - g(\alpha -)) \,\delta_{\alpha}$$

**Proof.** Write  $\Lambda \cup \{a, b\}$  as  $\{a = \alpha_0 < \alpha_1 < \dots < \alpha_n = b\}$ , then

$$\int_{a}^{b} f'(x)g(x)dx = \sum_{k=0}^{n-1} \int_{\alpha_{k}}^{\alpha_{k+1}} f'(x)g(x)dx = \sum_{k=0}^{n-1} \left[ \left[ f(x)g(x) \right] \Big|_{\alpha_{k}+1}^{\alpha_{k+1}-} - \int_{\alpha_{k}}^{\alpha_{k+1}} f(x)g'(x)dx \right]$$
$$= \left[ f'(x)g(x) \right] \Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx - \sum_{k=1}^{n-1} \left[ f(x)g(x) \right] \Big|_{\alpha_{k}-1}^{\alpha_{k}+1}$$

which is the same as Eq. (5.2).