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8. SURFACES, SURFACE INTEGRALS AND INTEGRATION BY PARTS

Definition 8.1. A subset M C R” is a n — 1 dimensional C*-Hypersurface if for
all 29 € M there exists ¢ > 0 an open set 0 € D C R” and a C*-diffeomorphism
¥ : D — B(xg,€) such that (D N {x, = 0}) = B(xg,€) N M. See Figure 16 below.

FIGURE 16. An embedded submanifold of R2.

k
Example 8.2. Suppose V Co R" ! and g : V <5 R. Then M := T'(g) =
{(y,9(y)) : y € V} is a C* hypersurface. To verify this assertion, given xzq =
(Y0, 9(yo)) € T'(g) define

U(y, 2) = (Y + 0,9y + yo) — 2).
k
Then ¢ : {V —yo) xR LV xR diffeomorphism
P((V =y0) x {0}) ={(y + 0. 9(y +%0)) : y €V =00} =T(g).
Proposition 8.3 (Parametrized Surfaces). Let k > 1, D Co R*! and ¥ €
Ck(D,R") satisfy
(1) ¥: D — M :=X(D) is a homeomorphism and
(2) ¥'(y) : R*~Y — R” is injective for ally € D. (We will call M a C* —
parametrized surface and ¥ : D — M a parametrization of M.)

Then M is a C*-hypersurface in R™. Moreover if f € C(W Co R R™) is a
continuous function such that f(W) C M, then f € CK(W,R") iff S~1o f €
C*k(U, D).

Proof. Let yg € D and 29 = X(yo) and ng be a normal vector to M at xg, i.e.
ng L Ran (X (yo)), and let
Y(t,y) =2(yo+y) +tng fort e R and y € D — yo,

see Figure 17 below. Since Dy(0,0) = ¥'(yo) and %%(0,0) =no ¢ Ran (X'(v0)) ,
1’(0,0) is invertible. so by the inverse function theorem there exists a neighborhood
V of (0,0) € R™ such that |y : V — R" is a C* — diffeomorphism.
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FIGURE 17. Showing a parametrized surface is an embedded
hyper-surface.

Choose an € > 0 such that B(zg,e)NM C (VN {t =0}) and B(zg,€) C (V).
Then set U := %~ Y(B(wg,¢)). One finds ¥|y : U — B(xg,¢) has the desired
properties.

Now suppose f € C(W Co R% R"™) such that f(W) C M, a € W and xy =
f(a) € M. By shrinking W if necessary we may assume f(W) C B(zg,€) where
B(zg, €) is the ball used previously. (This is where we used the continuity of f.)
Then

Y lof=nmoyplof
where 7 is projection onto {¢t = 0}. Form this identity it clearly follows X1 o f is

Ck if f is C*. The converse is easier since if X1 o f is CF then f = Yo (X~ 1o f)
is O as well. m

8.1. Surface Integrals.

Definition 8.4. Suppose ¥ : D Co R"™! — M C R" is a C'- parameterized
hypersurface of R™ and f € C.(M,R). Then the surface integral of f over M,
[ f do, is defined by

M

B X (y) 9x(y)
]Zf dg_D/foE(y)‘det[ o """aynq In(y)]| dy

- / £ o S(y) [det[S (wex ... [ (¥)en—1 [n(w)]] dy
D

where n(y) € R" is a unit normal vector perpendicular of ran(¥’(y)) for each y € D.
We will abbreviate this formula by writing

0%(y)
oy

9%(y)

8.1 do =
( ) 7 3yn71

det|

B In(y)]] dy,

see Figure 18 below for the motivation.



96 BRUCE K. DRIVER'

N RN
B

FIGURE 18. The approximate area spanned by X([y, y+dy]) should

be equal to the area spaced by aaz(y) dy, and 65—?/(3)(11/2 which is equal

Y1
to the volume of the parallelepiped spanned by 65—3§1y)dy1, 82—(?")dyg

Oy2
and n(3(y)) and hence the formula in Eq. (8.1).

Remark 8.5. Let A= A(y) :=[¥'(y)e1,..., X (y)en—1,n(y)]. Then

[ o %t
02!
AtrA = [812| e |8n_12|n]
Oy 2"
L nt
0hX-0X 0X-0Y ... OhX- 01X O
X - X 02X - Y ... 02X O0p12 0
On—12-01Y 0, 1X-0%X ... Op12-0p12 O
I 0 0 0 1

and therefore

det( 20 OEW) |n<y>1\ — |det(A)] dy = /3ot (A" AVdy

LR
_ \/det [(@E ) ajE)Z;J = \/det {(E/)tr 2'}.

This implies do = p*(y)dy or more precisely that

/ fdo = / f o S (y)dy

M

where

P (y) = \/det [(aiz : ajz);fj;ll} - \/det [(z/)“ Z’].
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The next lemma shows that f f do is well defined, i.e. independent of how M
M

is parametrized.

k
Example 8.6. Suppose V CoR" ! and g:V CLRand M = T'(g) ={(y,9(y)) :
y € V} as in Example 8.2. We now compute do in the parametrization ¥ : V — M
defined by X(y) = (y,9(y)). To simplify notation, let

Vy(y) = (019(y);- -, 0n-19(y)) -
As is standard from multivariable calculus (and is easily verified),
Vg(y),—1
n(y) = (Vg(y), —1)
)

V1+ V)l

is a normal vector to M at X(y), i.e. n(y) - kX(y) =0forall k=1,2...,n— 1.
Therefore,

do = |det [01X]. .. |0n—1X|n]| dy

tr
- ; det [ I%_l (V;ql) de
1+ [Vg(y)[? g
1 Infl 0
— det [ 2 ”dy
Vg —-1-1|V
1+ Vo) 9 Vsl
1
- (1 v \vg(y)F) dy = \/1+ |Vg(y) | dy.
L+ [Vg(y)l

Hence if g : M — R, we have

/Mgda: /V a1+ V() dy.

Example 8.7. Keeping the same notation as in Example 8.6, but now taking

V := B(0,7) C R*" ! and g(y) := /2 — |y|2 In this case M = S7~', the upper-
hemisphere of S"~1, Vg(y) = —y/g(v),

do = \/1+|y* /g?(y)dy = ﬁdy

.,
/ gdo = / gy, 12 = |y|*) ——=dy.
S lyl<r 2 — |y‘2

A similar computation shows, with S ! being the lower hemisphere, that

_ _a/r2 —yl? "
[ aio=[ gt _dy
s ly|<r r2 |y|

Lemma 8.8. Iff] : D — M is another C* - parametrization of M, then

/ £ o () (w)dy = / £ o S(w)pS (v)dy.
D D

and so

n—1
+
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Proof. By Proposition 8.3, ¢ := X1 o Y:D > DisaCk- diffeomorphism.
By the change of variables theorem on R"~! with y = ¢(7) (using X = ¥ o ¢, see
Figure 19) we find

/ £ o S@)e @)y = / f o Vet s dy
J J

= /fozo¢\/det (Zo09)" (Lo0g)d
b

= [ 1300 faet [03 010" > 015
D

- / [ oTog\fdet[s' [S(8) "5 (0)] ¢'dj
D

:/ foXog)- \/detE’“E/) o -|detd'| dj
/ o XVdet X't ¥ dy.

F1GURE 19. Verifying surface integrals are independent of parametrization.

Definition 8.9. Let M be a C'-embedded hypersurface and f € C.(M). Then we
define the surface integral of f over M as

/fda—Z/gbeda

le

where ¢; € C}(M,[0,1]) are chosen so that Y ;p; < 1 with equality on supp(f)
and the supp(¢; f) C M; C M where M; is a subregion of M which may be viewed
as a parametrized surface.

Remark 8.10. The integral f [ do is well defined for if ¢; € C}(M, [0, 1]) is another
sequence satisfying the propertles of {¢;} with supp(¢);) C M; C M then (using
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Lemma 8.8 implicitly)
E/¢if dU:Z/Z%(bif do = / Vi¢if do
YA toap 4 oMinM;
with a similar computation showing
S furio=3 [ wosio=% [ vosd
I My It MM 9 MinM]

Remark 8.11. By the Reisz theorem, there exists a unique Radon measure ¢ on M

such that
/ fdo :/ f do.
M M

This o is called surface measure on M.

Lemma 8.12 (Surface Measure). Let M be a C? — embedded hypersurface in R™
and B C M be a measurable set such that B is compact and contained inside %(D)
where ¥ : D — M C R"™ is a parametrization. Then

3 € d €
o(B) =limm(B%) = --|orm(5)

where
B :={z+tn(z):z€ B,0<t<e}

and n(x) is a unit normal to M at x € M, see Figure 20.

F1GURE 20. Computing the surface area of B as the volume of an
€ - fattened neighborhood of B.

Proof. Let A := ©71(B) and v(y) := n(3(y)) so that v € C*~1(D,R") if
¥ € C*(D,R"). Define

Uy, 1) = X(y) + tn(X(y)) = X(y) + tv(y)
so that B¢ = ¢(A x [0, €]). Hence by the change of variables formula

(82)  m(BY) = / | det ' (3, £)|dy dt = /0 it /A dy| det v/ (1, 1)

AXx[0,€]
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so that by the fundamental theorem of calculus,

d d €
—MMFﬁvwﬁ/ﬁ/mwwwwh/memww
dé d€ 0 A A

But
| det ¥’ (y, 0)] = |det[X'(y)[n(E(y))]] = ps(y)
which shows

%Imm(Be)=/Apz(y)dy=/DlB(E(y))pz(y)dy =:0(B).

Example 8.13. Let ¥ = rS™ ! be the sphere of radius r > 0 contained in R™ and
for BC ¥ and a > 0 let

B, ={tw:weBand 0 <t<a}=ab.
Assuming N(w) = w/r is the outward pointing normal to S"~!, we have
B = B(14e/r) \ B1 = [(1+¢/r)B1] \ B
and hence
m(B) =m ([(1+¢€/r)Bi]\ B1) = m ([(1 + €/r)Bi])=m(B1) = [(1 + €¢/r)" — 1] m(B).

Therefore,

o(B) = %\0 [(1+¢/r)" —1]m(By) = %m(Bl) =nr""'m (r~'By) =" 'o(r 'B),

i.e.

o(B) = ﬁm(Bl) = " lm (7“_131) _ Tn—lo_(r—lB).
T
Theorem 8.14. If f : R" — [0,00] is a (Bgrn,B)-measurable function then

(8.3) F@)dm(z) = / F(r w) 1" drdo(w).
RTL
[0,00) xS —1

In particular if f: Ry — Ry is measurable then
(84) [ Htiahdo= [ seravin
RTL

where V(r) =m (B(0,r)) = r"m (B(0,1)) =n~'o (S"71) rm.
Proof. Let B C 5" ', 0<a<bandlet f(z) =1p,\ p,(z). Then
f(rw) r"tdrdo(w) = / 15(w)1p(r) " 'drdo(w)

[0,00)x S~ 1 [0,00) xS —1
b
= J(B)/ " Ydr = n"to(B) (b — a™)

=m(B;) (V" —a") =m (By \ Ba) = . f(z)dm(z).

Since sets of the form By \ B, generate Br» and are closed under intersections, this
suffices to prove the theorem.

Alternatively one may show that any f € C.(R™) may be uniformly approxi-
mated by linear combinations of characteristic functions of the form 1p,\ g, . Indeed,
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K
let S"~! = |J B; be a partition of S"~! with B; small and choose w; € B;. Let
i=1
0<rm <rp<rg<--<r,=R< oo Assume supp(f) C B(0,R). Then
{(Bi)rj+1 \ (Bi)rj }i,; partitions R” into small regions. Therefore

f(@)dz 22y f(rjw)m((Bi),,,, \ (Bi),,)

R J

=Y (rjw)(rf —rf) m((B),)
= Zf(rjwi)/:
= E/:H f(rjwi)r~tdr o(B;)

=3/ :’“ [ oot | -tar

T

:/Ooo /f(rw)da(w) .

Eq. (8.4) is a simple special case of Eq. (8.3). It can also be proved directly as
follows. Suppose first f € C1([0,00)) then

R[f(|x|)dx= —Rde/: drf'(r) = _[dx/RllzKrf/(T)d?"

R
00

i1

rldr nm((B;),)

__ / V) f (r)dr = / V() £ (r)dr.

0 0

The result now extends to general f by a density argument. m
We are now going to work out some integrals using Eq. (8.3). The first we leave
as an exercise.

Exercise 8.1. Use the results of Example 8.7 and Theorem 8.14 to show,

U(anfl) —

1
1
20(5"2 / L
(5"79) ; —1_/)29 P

The result in Exercise 8.1 may be used to compute the volume of spheres in any
dimension. This method will be left to the reader. We will do this in another way.
The first step will be to directly compute the following Gaussian integrals. The
result will also be needed for later purposes.

Lemma 8.15. Let a > 0 and
(8.5) I(a) = / el dm(x).
Rn

Then I,,(a) = (7/a)™/?.
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Proof. By Tonelli’s theorem and induction,

I,(a) = / e_“‘ylze_“tzmn,1(dy) dt
Rn—1xR
(8.6) = I,-1(a)li(a) = I7'(a).
So it suffices to compute:
Ir(a) = /e‘“lw‘2dm(x) = / e~ @H3) g, d,.
R2 R2\{0}
We now make the change of variables,
x1 =rcosf and x5 = rsinf for 0 < r < oo and 0 < 6 < 2.

In vector form this transform is

v =T(r,0) = < rcos? )

rsin

and the differential and the Jacobian determinant are given by

T'(r,0) = < ;O;g ;(Z"Osslgﬁ ) and det T"(r,0) = rcos> 6 + rsin® 0 = r.

Notice that T : (0,00) x (0,27) — R?\ ¢ where ¢ is the ray, ¢ := {(x,0): 2 > 0}

which is a m? — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function f : R? — [0, 00] we have

2m 00
fz)dx = / / f(rcosf,rsin ) rdrdd.
R2 o Jo

In particular,

oo 2m 00
Is(a) :/ dr 7"/ dg e = 27r/ re= dr
0 0 0
M

. 2 . e 2
=271 lim re “" dr =27 lim =— =7/a.
M—oo [ M—oco —2a 0

This shows that Iz(a) = m/a and the result now follows from Eq. (8.6). m
Corollary 8.16. Let S"~1 C R" be the unit sphere in R and

I(z) := / u”te "du for x >0
0

be the gamma function. Then
(1) The surface area a(S™') of the unit sphere S"~1 C R™ is

8.7 Sn—l _ 271-"/2
(8.7) o(S") = Tn2)
(2) TheT - function satisfies
(a) I(1/2) = /7, (1) =1 and T'(z + 1) = z['(x) for z > 0.
(b) Forn €N,

(2n — 1! '

(8.8) Fn+1)=nlandT (n+1/2) = o
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(3) ForneN,

2ntl on 2 (2m)"

Proof. Let I, be as in Lemma 8.15. Using Theorem 8.14 we may alternatively
compute /2 = I,,(1) as

0 0

Sn—1

(8.9) o (S =

We simplify this last integral by making the change of variables u = 72 so that
r=u'/? and dr = 2u='/2du. The result is

o 2 L 1
/ rPler dT:/ wT e 2w 2du
0 0 2

S 1
(8.10) = 5/0 u? e tdu = 3T (n/2).

Collecting these observations implies that
1
w2 = (1) = 5o (5" (n/2)

which proves Eq. (8.7).
The computation of I'(1) is easy and is left to the reader. By Eq. (8.10),

I'(1/2) = 2/000 e dr = /Z e dr
=I,(1) = V7.

The relation, I'(x + 1) = aT'(z) is the consequence of integration by parts:

e d e d
T(x+1) :/ eu ot 24 :/ u® (—— e_“) du
0 u 0 du
o0
:x/ u"t e du =z T'(z).
0

Eq. (8.8) follows by induction from the relations just proved. Eq. (8.9) is a
consequence of items 1. and 2. as follows:

27r(2n+2)/2 2ﬂ.n+1 27T.n+1

2n4+1y _ —
) = Nt " TrD) -
and
27T(2n+1)/2 27Tn+1/2 2ﬂ.n+1/2 2) (27T)n
0'(5271‘) = = = m = .
I(2n+1)/2) Tn+1/2) CoDU 70 (2n -1
2’L

|

8.2. More spherical coordinates. In this section we will define spherical coor-
dinates in all dimensions. Along the way we will develop an explicit method for
computing surface integrals on spheres. As usual when n = 2 define spherical
coordinates (r,0) € (0,00) x [0,27) so that

0
( i; > - ( rsind > = 1a(0,7).



104 BRUCE K. DRIVER'

For n = 3 we let x3 = r cos ¢; and then

< 1 > = 1o(0, rsin ¢1),

T2

as can be seen from Figure 21, so that

FIGURE 21. Setting up polar coordinates in two and three dimensions.

To r cos ¢, = 7 sin ¢ sin =:3(0, 1,1, ).
T3 7 COS (1

- - ( V(6,7 sin ¢y ) ) 7sin ¢y cos 0

We continue to work inductively this way to define

Z1
_ wn(ea(blv”'7¢n7277"5in¢n717) _
T - ( TCOS¢n_1 _¢n+1(93¢15"‘7¢n*25¢n*1a7')'
Tn+1

So for example,
1 = 7 sin ¢ sin ¢ cos 6
To = T 8in ¢ sin ¢1 sin 6
7 8in o COS P1

T4 = T COS (2

T3

and more generally,
T1 = 7rsing,_s...sin ¢s sin ¢y cos
To = T8INPp_o . ..SiN @2 sin ¢1 sin O

T3 = 7sin@y,_o...sin ¢y cos @1

Tp—2 = T8I ¢n—2 sin ¢n—3 Cos ¢n—4
Tp_1 = TSN @p_oCOS Py _3
Ty, = T COS Pp_2.

By the change of variables formula,
(8.11)

/ f(:r)dm(:v) = /OO d’l’/ d¢1...d¢n_2d0An(0,¢1,...,¢7l_2,’r‘)f(1/)n(9,¢1,...,¢n_2,T))
n 0 0<¢;<m,0<0<27
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where
A0, D1, Pn2,7) = |det ) (0, ¢1, ..., Pn_2,7)|.
Proposition 8.17. The Jacobian, A,, is given by
(8.12) An(0,61,...,0n_2,7) =7" " sin" "2 $,,_o...sin? Py sin dy.
If f is a function on rS™~' — the sphere of radius r centered at 0 inside of R™, then
[ f@ao@) =t [ o)
(8.13)

= Tn71 / f(d’n (07 ¢17 o ¢n727 T)) Sinn_2 ¢n72 B Sin2 ¢2 sin (bld(bl cee d¢n72d0
0<¢;<m,0<6<2m

Proof. We are going to compute A,, inductively. Letting p := rsin¢,_1 and
writing % for %(9, @1,y On_2,p) we have

AnJrl(ead)l, ey ¢n72, ¢n717 T)

ad)n awn 5¢n 31% ad)n 3
— || B Fer v Bas o T COSPnm1 Tprsingna
0 0o ... 0 —78in ¢p,_1 COS Pp_1

=r (C052 ¢n_1 + sin? gbn,l) A0, d1,. .oy P2, p)
=rAn(0,01,...,Pp—2,rsinG,_1),

i.e.

(8.14) Ani1(0,01,. s oo, dn-1,7) = 1A (0,01,...,pp_2,rsingd,_1).

To arrive at this result we have expanded the determinant along the bottom row.
Staring with the well known and easy to compute fact that Ay(6,r) = r, Eq.
(8.14) implies

As(0,¢1,7) = 1As(0,7sin¢y) = r’sin ¢y
Ay(0, 1, d2,7) = 1A3(0, 1, 75In ¢o) = 7 sin® po sin ¢y

An(0,01,. .., 0p_o,7) =1r""tsin" 2 ¢, _o...sin% Py sin ¢y

which proves Eq. (8.12). Eq. (8.13) now follows from Egs. (8.3), (8.11) and (8.12).

[
As a simple application, Eq. (8.13) implies
o(S" ) = / Sin™ 2 $y_s . ..sin’ ¢o sin p1doy . . . dp_odb
0<¢; <m,0<60<27
n—2
(815) =2 H Vi = U(Sn72>’}/n_2
k=1

where v, 1= foﬂ sin® ¢de. If k > 1, we have by integration by parts that,

Vi = / sin® ¢pdop = —/ sin* "1 ¢ dcos ¢ = 201 + (k— 1)/ sin®~2 ¢ cos? ¢do

0 0 0

=261+ (k—1) /7r sin" 2 ¢ (1 —sin® @) dp = 2051 + (k — 1) [ve—2 — V&)
0
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and hence 7y, satisfies 79 = 7, 71 = 2 and the recursion relation

k—1
Ve = Vi—z for k > 2.
Hence we may conclude
B 1 o2 31 42, 531
Yo =T, M1 = 4 ’Y2—27T, 73—3 774—427% 75—53 ) ’76—64277
and more generally by induction that
(2k — D! (2k)N
=7——" and =2—\
B Y S T e O R 1T
Indeed,
%42 _2k+2, (RN [2(k+ DY
P2 T o M T 93 2k + DI (2(k+ 1) + DY
and
C2k+1 2k+1 (2k—1)M  (2E+1)!
T2 T o R T ok 12 20 2k 2
The recursion relation in Eq. (8.15) may be written as
(8.16) o(S") =0 (") -1
which combined with o (S 1) = 27 implies
o (Sl) = 2,
0(S%) =21 -y =21 -2,
1 222
3) — . = Q=
o(8°)=2m-2 -y =2mw-2 57 = o
2272 2272 2 2372
4y _ _ _
A e T e T S T
1 2_ 31 2373
5) — g 2o . o=
o(S°)=2m-2 57 32 137 =
1 231 42 2473
6
=72 —r-=2. - .- —-=2 =
(5 =2m 2 gm g2 3 532 T

and more generally that

2 (2m)"
(2n — )N
which is verified inductively using Eq. (8.16). Indeed,

202m)"  (2n-DI  (@2n)"!

(8.17) o(S*) = and o(S*"*) =

(82 = o (S )yen =

Cn—DI" @)l 2o
and
n+1 2n+2 2n+1 27T)n+1 2n)!! 2 27T)n+1
o(STY) = o(8272) = o(S  ani = ((2n)!! 2(25L+1)!! - (2(n+1)n'
Using

2n)l=2n(2(n—-1))...(2-1) =2"n!
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27rn+1

we may write o(S*"*!) = 2—— which shows that Egs. (8.9) and (8.17) are in
agreement. We may also write the formula in Eq. (8.17) as

2(27)"/? f
n (n—1)N or n even
U(S ) - 9 nj:zl
% for n odd.

8.3. n — dimensional manifolds with boundaries.

Definition 8.18. A set Q C R" is said to be a C*¥ — manifold with boundary
if for each zo € 00 := Q\ Q° (here Q° is the interior of Q) there exists € > 0
an open set 0 € D C R™ and a Ck-diffeomorphism 1 : D — B(zo,¢) such that
(D N {yn > 0}) = B(zg, €) N2 See Figure 22 below. We call 92 the manifold
boundary of Q.

FiGUurE 22. Flattening out a neighborhood of a boundary point.

Remarks 8.19. (1) In Definition 8.18 we have defined 99 = Q \ Q° which is
not the topological boundary of , defined by bd(£2) := Q\ Q°. Clearly we
always have 092 C bd(Q) with equality iff  is closed.

(2) Tt is easily checked that if Q@ C R is a C* — manifold with boundary, then
09 is a C* — hypersurface in R™.

The reader is left to verify the following examples.

Example 8.20. Let H" = {z € R™ : z,, > 0}.
(1) H" is a C*° — manifold with boundary and

OH™ = bd (H") = R x {0}.

(2) Q= B(¢,r) is a C*° — manifold with boundary and 02 = bd (B(&,r)), as
the reader should verify. See Exercise 8.2 for a general result containing
this statement.

(3) Let U be the open unit ball in R®~1, then Q@ = H" U (U x {0}) is a C> —
manifold with boundary and 9Q = U x {0} while bd(Q) = R*~1 x {0}.
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(4) Now let Q = H*U (U x {0}), then Q is not a C! — manifold with boundary.
The bad points are bd(U) x {0}.
(5) Suppose V is an open subset of R"~! and g : V — R is a C* — function
and set
Q:={(y,2) EVXRCR":2>g(y)},

then €2 is a C* — manifold with boundary and 9Q = I'(g) — the graph of g.
Again the reader should check this statement.
(6) Let

Q2=1[(0,1) x (0,1)]U[(=1,0) x (=1,0)] U[(—1,1) x {0}]
in which case
Q% =1(0,1) x (0,1)] U[(-1,0) x (=1,0)]

and hence 9Q = (—1,1) x {0} is a C* — hypersurface in R2. Nevertheless
Q is not a C* — manifold with boundary as can be seen by looking at the
point (0,0) € 99.

(7) If Q = S»~1 C R", then 9Q = Q is a C* - hypersurface. However, as
in the previous example (2 is not an n — dimensional C* — manifold with
boundary despite the fact that €2 is now closed. (Warning: there is a clash
of notation here with that of the more general theory of manifolds where
9S"~1 = () when viewing S"~! as a manifold in its own right.)

Lemma 8.21. Suppose Q C, R™ such that bd(Q) is a C* — hypersurface, then
Q is C* — manifold with boundary. (It is not necessarily true that 0Q = bd ().
For example, let Q := B(0,1) U {z € R" : 1 < |z| < 2}. In this case Q = B(0,2) so
0N ={x € R": |z| =2} while bd(Q) = {z €R" : |z| =2 or |z|=1}.)

Proof. Claim: Suppose U = (—1,1)" C, R" and V C, U such that bd(V) N
U = OH™NU. Then V is either, Uy := UNH" = Un{x,, > 0} or U_ := Un{z, < 0}
or U\OH"=U,UU_.

To prove the claim, first observe that V' C U\ 9H™ and V is not empty, so either
VNU; or VNU- is not empty. Suppose for example there exists £ € VN U,. Let
o :[0,1) = U NH" be a continuous path such that ¢(0) = £ and

T =sup{t<1:0([0,t]) CV}.

If T # 1, then 7 := o(T) is a point in Uy which is also in bd(V) = V '\ V. But this
contradicts bd(V)NU = JH"NU and hence T' = 1. Because Uy is path connected,
we have shown U, C V. Similarly if VN U_ # ), then U_ C V as well and this
completes the proof of the claim.

We are now ready to show € is a C* — manifold with boundary. To this end,
suppose

€€00=0bd(Q) =0\ Q°CQ\Q=hbd(Q).
Since bd(Q) is a C* — hypersurface, we may find an open neighborhood O of ¢ such

that there exists a C* — diffeomorphism 1 : U — O such that ¢ (O Nbd(Q)) =
U NH". Recall that

ONbd(Q) =0N0NQ =0N0°\ (0\ Q) =bdo (2N 0)

where A° and bdo(A) denotes the closure and boundary of a set A C O in the
relative topology on A. Since ¢ is a C* — diffeomorphism, it follows that V :=
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¥ (0N Q) is an open set such that
bd(V) N U = bdy (V) = ¢ (bdo (2N 0)) = (0N bd(Q)) = U NH".

Therefore by the claim, we learn either V' = U, of U- or Uy UU-. However the
latter case can not occur because in this case { would be in the interior of (2 and

hence not in bd(€2). This completes the proof, since by changing the sign on the
nt" coordinate of v if necessary, we may arrange it so that 1 (Q N O) =U;. n

Exercise 8.2. Suppose F : R” — R is a C* — function and assume
{F<0}:={zeR":F(z) <0} #0

and F’(€) : R™ — R is surjective (or equivalently VF(§) # 0) for all
Ee{F=0}:={zeR": F(z) =0}.

Then Q := {F < 0} is a C¥ — manifold with boundary and 992 = {F =0} .

Hint: For £ € {F =0}, let A: R" — R""! be a linear transformation such
that Alxw(r () : Nul(F'(£)) — R"~! is invertible and Al (¢))~ = 0 and then
define

d(x) = (A(z —§&),—F(z)) e R xR =R".
Now use the inverse function theorem to construct .

Definition 8.22 (Outward pointing unit normal vector). Let 2 be a C* — manifold
with boundary, the outward pointing unit normal to 0f2 is the unique function
n : 02 — R"™ satisfying the following requirements.
(1) (Unit length.) |n(z)| =1 for all z € 9.
(2) (Orthogonality to 0Q.) If xyp € 0 and ¢ : D — B(xo,€) is as in the
Definition 8.18, then n(z,) L ¢'(0) (OH™), i.e. n(xg) is perpendicular of
092.
(3) (Outward Pointing.) If ¢ := 1~!, then ¢'(0)n(z,) - e, < 0 or equivalently
put ¢’ (0)ey, - n(zo) < 0, see Figure 23 below.

8.4. Divergence Theorem.

Theorem 8.23 (Divergence Theorem). Let Q C R™ be a manifold with C* -
boundary and n : 0Q — R™ be the unit outward pointing normal to Q. If Z €
C.(,R™") N CH(Q°,R") and

(8.18) / V- Zldm < oo
Q
then
(8.19) /Z(x) -n(z)do(x) = /V - Z(z) du.
o9 )

The proof of Theorem 8.23 will be given after stating a few corollaries and then
a number preliminary results.

Example 8.24. Let
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then f € C([0,1]) N C*°((0,1)) and f'(x) = sin (2) — L sin (L) for 2 > 0. Since

1 o) 00
1 1 1 i
/— sin (—) dm:/u|sin(u)|—2du:/wdu:oo,
x x u u
0 1 1

f |f/(xz)|dz = oo and the integrability assumption, f |V - Z|dz < oo, in Theorem

8 23 is necessary.

Corollary 8.25. Let Q C R" be a closed manifold with C? — boundary and n :
0Q — R™ be the outward pointing unit normal to Q. If Z € C(,R™) N CH(Q°,R™)
and

(8.20) /{|Z|+|V-Z|}dm+/ 1Z -l do < o
Q o9
then Eq. (8.19) is valid, i.e.

/ 2(@) - n(x)do(z) = / V- Z(z) da.

o0 Q

Proof. Let v € C°(R™,[0,1]) such that ¢» = 1 in a neighborhood of 0 and set
Yr(x) == Y(x/k) and Zj, := ¢ Z. We have supp(Zx) C supp(¢x) N Q — which is a
compact set since § is closed. Since Vi (z) = £ (Vi) (z/k) is bounded,

/|V~Zk|dm:/|Vwk~Z+¢kV-Z|dm§C’/|Z|dm+/|V-Z|dm<oo.
Q Q Q Q

Hence Theorem 8.23 implies

(8.21) /QV~dem:/aQ Z - ndo.
By the D.C.T.,

/v Diedm = /[ (Vi) (/) - ()+¢(m/k)V~Z(x)} dm—>/QV-de
and

/ Zy-n do = Y4 -n do — Z -n do,
o0 o0 o0

which completes the proof by passing the limit in Eq. (8.21). m
Corollary 8.26 (Integration by parts I). Let Q C R™ be a closed manifold with
C? — boundary, n : 9Q — R™ be the outward pointing normal to 2, Z € C(2,R")N
CHQ°,R"?) and f € C(,R) N CH(Q°,R) such that
[ 121419 2041901121 dm+ [ 17112l do < o0
Q a0
then

/f W Z(x) do = — /Vf dx+/Z() n(z)do(x).

o0
Proof. Apply Corollary 8.25 with Z replaced by fZ. m
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Corollary 8.27 (Integration by parts II). Let Q C R™ be a closed manifold with
C? — boundary , n : O — R™ be the outward pointing normal to Q and f,g €€
C(Q,R)NCH(Q°,R) such that

/Q (1F11g] + 18:£1 9] + | £110:g1} dm. + / |fgni| do < oo
o0

/ F@)org(a / if(2) - g(x) dm :é F(@)g(@)ns(@)do ().

Proof. Apply Corollary 8.26 with Z chosen so that Z; =0 if j # i and Z; = g,
(ie. Z=1(0,...,9,0...,0)). m

then

Proposition 8.28. Let Q be as in Corollary 8.25 and suppose u,v € C?(Q°) N
CY(Q) such that u,v, Vu, Vv, Au, Av € L*(Q) and u,v, 2%, 9% ¢ Lz(aQ do) then

> dn On
(8.22) /Au vdm = — /Vu Vvdm—i—/vg—da
o0
and
ou Ov
(8.23) /(Auv — Avu)dm = / (v% - %u> do.
Q o9

Proof. Eq. (8.22) follows by applying Corollary 8.26 with f = v and Z = Vu.
Similarly applying Corollary 8.26 with f = u and Z = Vv implies

/AU udm = — /Vu Vvder/ug—da

oQ
and subtracting this equation from Eq. (8.22) implies Eq. (8.23). m
8.5. The proof of Theorem 8.23.
Lemma 8.29. Suppose Q C, R™ and Z € CH(,R") and f € CL(Q,R), then
/fV-de:—/Vf-de.
Q

Q

Proof. Let W := fZ on Q and W = 0 on Q°, then W € C.(R™,R"™). By Fubini’s
theorem and the fundamental theorem of calculus,

/V-(fZ)dx:/(V-W)dx:Z/n %Z dzy ... dz, = 0.
Q R» =1
This completes the proof because V- (fZ2)=Vf-Z+ fV-Z =
Corollary 8.30. IfQ CR", Z € C*(,R") and g € C(Q,R) then g =V - Z iff

(8.24) /gf dr = f/Z-Vf dx for all f € CX(Q).

Q Q




112 BRUCE K. DRIVER'

Proof. By Lemma 8.29, Eq. (8.24) holds iff

/gfdx:/V~ZfdmforalleCg(Q)

Q Q
which happens iff g=V-Z. m

Proposition 8.31 (Behavior of V under coordinate transformations). Let v :
W — Q is a C? - diffeomorphism where W and Q and open subsets of R™. Given
feCYQR) and Z € CHQ,R"™) let f¥ = foyp € CLHW,R) and Z¥ € C*(W,R")
be defined by Z¥(y) = 4'(y) "' Z(¥(y)). Then

(1) V¥ =V(fov)= )" (Vf)ot and
(2) V- [dety Z¥] = (V- Z) o -dety). (Notice that we use 9 is C* at this
point.)

Proof. 1. Let v € R", then by definition of the gradient and using the chain
rule,

V(f o) v=0,(f o)) = V() ¥'v= ()" Vi) v
2. Let f € C1(Q). By the change of variables formula,

/fv-de:/ fo(V-2Z)o|det|dm
Q w
(8.25) :/ fY(V - Z) ot |det | dm.
w
On the other hand
/fV Zdm = — /Vf Zdm = — / Vi ¥) |det ¥'| dm
== [ [@)] Vs 2 jders| am
w
T /W V@) Z(4) [det o] dm
:_/ (VY- 2% |det ¢’ | dm
w
(8.26) :/ fOV - (|det | Z¥) dm
w

Since Eqgs. (8.25) and (8.26) hold for all f € C}(Q) we may conclude
V- (dety'| Z%) = (V- Z)op|dety’|
and by linearity this proves item 2. m
Lemma 8.32. Eq. (8.19 of the divergence Theorem 8.23 holds when ) = H" =
{x e R": 2, > 0} and Z € C.(H",R") N C*(H",R") satisfies

/|V-Z| dr < o0
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Proof. In this case 9Q = R""! x {0} and n(z) = —e, for z € 9N is the
outward pointing normal to 2. By Fubini’s theorem and the fundamental theorem
of calculus,

n—1 ;
0z"
; 1 / IS dr =0

o= Tp>0

and

7,

O, dr = — / Zn(y,8)dy.

Tp >0 Rn—1
Therefore
/V.deD‘%T'hm / V. Zdr = —lim / Zu(y, 8)dy
610 510
H» Tp>0 Rr—1
— [ Zwody = [ 2@) n@) do(a).
Rn—1 OHn
| |

Remark 8.33. The same argument used in the proof of Lemma 8.32 shows Theorem
8.23 holds when

Q:Ri::{xER":xiZOforalli}.

Notice that Ri has a corners and edges, etc. and so Jf2 is not smooth in this case.

8.5.1. The Proof of the Divergence Theorem 8.23. Proof. First suppose that
supp(Z) is a compact subset of B(xg, )N for some 7 € I and € > 0 is sufficiently
small so that there exists V C, R" and C? — diffeomorphism v : V. — B(xg,€)
(see Figure 23) such that ¢(V N {y, > 0}) = B(xo,¢) N Q° and

7/)(V N {yn = 0}) = B(SC(),E) N o).

Because n is the outward pointing normal, n(¢(y)) - ¢¥'(y)e, < 0 on y,, = 0. Since

FiGURE 23. Reducing the divergence theorem for general €2 to 2 = H".

V is connected and det’(y) is never zero on V, ¢ := sgn (det¢’(y)) € {£1} is
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constant independent of y € V. For y € OH",

(Z-n)(Y(y))|det[d (y)er ... [¥' (y)en—1|n((y))]]
= —c(Z - n)(W(y)) det[v' (y)er| . .. [ (y)en—11n(¥(y))]
= —cdet[¢'(y)er].. . [V (Y)en11Z(¥(y))]
= —cdet[t(y)e]. .. [V (y)en—110' (1) 2% (y)]
= —cdet ¢/ (y) - detfer] ... len—1]2¥ (y)]
—[det ¢/ ()| Z¥ () - €n,

wherein the second equality we used the linearity properties of the determinant and
the identity

€1

n—1
Z(W(y)) = Z-n(¥(y) + > an! (y)e; for some a.
Starting with the definition of the surface integral we find

/Z4MW=/wﬂmwwWMW@MLJWMQAMW@mdy

oN OH"
=/MW@W@Www@
OH"

= /V - [det’Z¥] dm (by Lemma 8.32)

= / (V- Z)o1]det’dm (by Proposition 8.31)
Hn
= / (V- Z)dm (by the Change of variables theorem).

Q

2) We now prove the general case where Z € C.(Q,R")NC*(Q°,R") and [, |V -
Z|dm < co. Using Theorem 7.23, we may choose ¢; € C°(R™) such that

(1) Z ¢; <1 with equality in a neighborhood of K = Supp (Z).

1=

(2) For all ¢ either supp(¢;) C Q or supp(¢;) C B(zo,€) where xo € 0 and
€ > 0 are as in the previous paragraph.

Then by special cases proved in the previous paragraph and in Lemma 8.29,

/V~de—/ Z@ dz-Z/ (6:2 d:c_Z/@ -n do

Q v an

:/Z¢iZ~ndor:/Z-ndcr.
oa o0
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8.6. Application to Holomorphic functions. Let @ ¢ C 2 R? be a compact
manifold with C? — boundary.

Definition 8.34. Let Q ¢ C = R? be a compact manifold with C? — boundary
and f € C(99,C). The contour integral, [, f(z)dz, of f along 9 is defined by

f(z)dz =1 fndo
o9 o0

where n := (Ren,Imn) is the outward pointing normal, see Figure 24.

F1GURE 24. The induced direction for countour integrals along
boundaries of regions.

In order to carry out the integral in Definition 8.34 more effectively, suppose that
z = ~y(t) with a < ¢ < b is a parametrization of a part of the boundary of Q and  is
chosen so that T := 4(¢)/ |¥(t)| = in(v(t)). That is to say T is gotten from n by a
90° rotation in the counterclockwise direction. Combining this with do = |§(t)| dt
we see that
indo="TI4t)dt =4(t)dt =: dz
so that

b
/ f(2)dz = / SOt

Proposition 8.35. Let f € C*(Q2,C) and 0 := % (9, +i0,), then

(8.27) (2)dz = 2i / dfdm.
o0 Q
Now suppose w € €2, then
_ 1 fz) 1 [ 9f(2)
(8.28) fw) =5 [ I /Q T ).

Proof. By the divergence theorem,

/5fdm: 1/ (5'gc+z'5‘y)fdm:1 f(n1 +ing)do
Q 2 Ja 2 Joa
1

i
3 oo fndo = 75/89 f(z)dz.
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Given € > 0 small, let Q. := Q\ B(w,€). Eq. (8.27) with Q = Q. and f being
f(2)

Z—w

replaced by implies

of

Z—w
€

(8.29) ﬁdz = 22'/ dm
Q

90, Z—Ww
wherein we have used the product rule and the fact that 9(z —w)~! = 0 to conclude

o[ 4] 0/(2)

Z—w Z—Ww

Noting that 9Q. = 02 U 0B(w,e) and dB(w,e) may be parametrized by z =
w + ee~ with 0 < 8 < 27, we have

2 —i0
JC) g [ G gy [T o,
20, X — W 90 2 — W 0 ee—?
27
Mdz -4 f(w+ ee=?)dg
M r W 0
and hence
2 3
(8.30) &) 4 f(w+ ee”?)df = 2i / mdm(z)
W 0 Q Z—w
Since
2 )
lim f(w+ ee9)df = 27 f (w)
€l0 0
and - B
lim a—fdm = / 8f—(z)dm(z).
elo Jg. z —w QZ—w
we may pass to the limit in Eq. (8.30) to find
Mdz —2mif(w) = Qi/ af—(z)dm(z)
o0 X — W QR — W

which is equivalent to Eq. (8.28). m

Exercise 8.3. Let Q be as above and assume f € C'(Q,C) satisfies g := Jf €
C>*(9Q,C). Show f € C>*(£,C). Hint, let wy € @ and € > 0 be small and choose
¢ € C°(B(zp,¢€)) such that ¢ = 1 in a neighborhood of wg and let ¢) = 1 —¢. Then
by Eq. (8.28),

fw) = g0 [ L a2 [ I i) - L [ 2y,

Now show each of the three terms above are smooth in w for w near wg. To handle
the middle term notice that

/Mﬂz)dm(z) =/m¢(z+w)dm(z)
Q

zZ—w C z
for w near wq.

Definition 8.36. A function f € C'(£,C) is said to be holomorphic if df = 0.
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By Proposition 8.35, if f € C*(Q,C) and df = 0 on €, then Cauchy’s integral
formula holds for w € ), namely

) == [ LEg,

_27TZ a0 < — W

and f € C*(Q,C). For more details on Holomorphic functions, see the complex
variable appendix.

8.6.1. Appendix: More Proofs of Proposition 8.51.
Exercise 8.4. det’(A4)B = det(A) tr(A~1B).
8.4.

% . det(A+tB) = det(A)% . det(A+tA™'B) = det(A) tr(A™'B).

]
Proof. 2nd Proof of Proposition 8.31 by direct computation. Letting A = 1)/,

i (det AZY) = ﬁ{zﬂj -VdetA+detAV.-Z¥}
(8.31) =tr[A710,0 Al + V- ZY
and
V-ZY=V- (A" Zop)) =0i(A" Z o) - ¢
=e;- (“ATTO,AAT Y Zowp) e - ATH(Z o)) Aey
= —ei - (A" (e, AT Z o)) + tr(ATH(Z 0 ) A)
= —e;- (A" (e, AT Z o p)) + tx(Z' 0 )
= —tr(AT(ZY, =) + (V- Z) 0%
(8.32) =—tr[A7'020 Al + (V- Z) o0
Combining Egs. (8.31) and (8.32) gives the desired result:
V- (et Z¥) = det (V- Z) o 4.
|

Lemma 8.37 (Flow interpretation of the divergence). Let Z € C*(Q,R"). Then
V-Z= i‘ det(e'?)’
dtlo

and

/v-(fZ)dm=%|0 / f dm.

Q etZ(Q)

Proof. By Exercise 8.4 and the change of variables formula,

i AV i tZ\\ _ no_
dt’()det(e )_tr<dt]0(e V) =tr(2) =V -7
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fayde = | [ e @) dente?) )y
Q

- / (V1) - Z(y) + f@)V - Z(y)} dy

Q
—SZV~(fZ)dm.

Proof. 3rd Proof of Proposition 8.31. Using Lemma 8.37 with f = det’ and
7 = Z¥ and the change of variables formula,

(¥(2)))

d d ¥
. A _ = / _ = tZ
/v (det ! 2¥)dm = = / dety’ dm dt‘om(woe Q)
) 12 (0)
= i m(w o ¢_1 ocet? o ¢(Q)) = i) m(etz
dtlo dtlo
_a Ldm= [ V-Zdm
dtlo
17 (P(2)) W)

z/(V~Z)O¢ det ¢ dm.

Q

Since this is true for all regions 2, it follows that V- (det 1’ Z¥) = det¢/(V-Z¥).



