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9. POISSON AND LAPLACE’S EQUATION

For the majority of this section we will assume Q C R™ is a compact manifold
with C? — boundary. Let us record a few consequences of the divergence theorem
in Proposition 8.28 in this context. If u,v € C*(Q°) N C () and [ |Au|dz < o

Q

then

(9.1) /Au-vdm: —/Vu-Vvdm—i—/vg—udU
n
Q Q a0

and if further [{|Au|+ |Av|}dz < co then
o)

9.2) / (A — Avw)dm = / (v% - %u) do.

Q o0

Lemma 9.1. Suppose u € C*(Q°)NCHQ), Au=0 on Q° and u = 0 on Q. Then
u = 0. Similarly if Au=0 on Q° and J,u = 0 on I, then u is constant on each
connected component of €.

Proof. Letting v = w in Eq. (9.1) shows in either case that

Ozf/Vu-Vudm+/u%dcr:7/\Vu\2dm.
Q 0 Q

This then implies Vu = 0 on 2° and hence u is constant on the connected compo-
nent of Q°. If u = 0 on 012, these constants must all be zero. m

Proposition 9.2 (Laplacian on radial functions). Suppose f(xz) = F (|z|), then

= F(ol) + P,

(9-3) Af(x) = —= (" (1))

r=|z|

In particular AF (|z]) = 0 implies d%(r”*lF'(r)) = 0 and hence F'(r) = Ar*—".
That is to say

[ A"+ B if n#£2
F(T)_{ Alnr+B if n=2.
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Proof. Since (0,f)(x) = F'(|z[) Ov|z| = F'(|z|)Z - v where & = &, Vf(z) =
F'(|z|)#. Hence for g € C}(R"),

Af(x)g(z)de = — | Vf(z) Vg(z) do

Rn Rn

__ / F()E Vg(rd) do

= —/ F’(r)ig(rw) " ldr do(w)
Sn=1x[0,00 dr

)
/ i(7""*1F’(r))g(r(,u)dr do(w)
Sn=1x[0,00) dr

1 d .
/S o) T = (r"YE'(r)) glrw)r™ dr do(w)
n—1ix[0,00

B 1 d
_/ Tnfl E(r
RTL
Since this is valid for all g € C}(R"), Eq. (9.3) is valid. Alternatively, we may
simply compute directly as follows:

Af(x) =V - [F'(lz))2] = VF'(|2]) - 2 + F'(|2])V - &

§|
Ju
<
—~
<

)

g(x) dx.

r=|z|

= F'(ja -+ F'()V - = F (Ix)+F(|x){|? -5 x}

1 (.

]

= F"(jal) +
|

Notation 9.3. For ¢t > 0, let

Lo if n#£2
L o -z 1
(9.4) alt) == an(t) = cy { It if n—2
1 .
where ¢, = { (n=2)7(5) Tf n#2 Also let
—5- if n=2.
= = = |y‘n 2 !
95 o) = o) =) = o { Tor 0 17

An important feature of « is that

iy [ = i 2 11
(9.6) a(t)—cn{ LT =2 T e

for all n. This then implies, for all n, that

(07) Vo) = Vo] = /() = gy r = g

One more piece of notation will be useful in the sequel.

Notation 9.4 (Averaging operator). Suppose p is a finite measure on some space

Q, we will define
1
fdu = —/ fdp.
Zz[ 1(2) Jo
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For example if Q is a compact manifold with C? — boundary in R™ then

Z?[f(x)dm = ﬁ/gﬂx)dm = Vol;m)/gf(x)dx

1 1

Theorem 9.5. Let Q be a compact manifold with C?- boundary, u € C*(Q°) N
C(Q) with [, |Au(y)|dy < co. Then for z € Q

0 dop(
05 ulo) = [ (6o - 0G0 v 5= ) do /¢x— ) su(y)dy
[219]
Proof. Let 9¥(y) := ¢(x —y) and € > 0 be small so that B,(e) C © and let
Qc :=Q\ By(e), see Figure 27 below.

and

R

FIGURE 27. Removing the region where % is singular from (2.

Let us begin by observing

/ U(y) dy:/ IyI% o(S"” 1)/0 MIQMH dr

lz—y|<e ly|<e

€ 62
= 0(5"71)/ rdr=o(S"1)—
O 2

when n # 2 and for n = 2 that

Y(y) dy = / In|y| dy:U(Sl)/(:rlnr dr

|z—y|<e ly|<e
L o 1 o]° 2
=271 |=r’lnr — =r°| =me [lne—1/2].
2 1],
This shows ¢ € L},.(Q2) and hence that YAu € L'(Q) and by dominated con-
vergence theorem,

[ suw) dy=tim [ v iu) d
Q Qe
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Using Green’s identity (Eq. (9.2) and Proposition 9.2) and Ay = 0 on ), we find

/Au(y) dy—/Aw y) dy + / (wa—:i — g—iu>
Qe

Q.

0
(9.9) = / (z[za—z — g—qiu) do + / (¢% - g—;/:u> do.
o0

80\80

Working on the last term in Eq. (9.9) we have, for n # 2,

/ /w ) 52 (ot w)do(w)

0B(,€) lyl=e

= /zb(x—&—ew) %(m—i—ew)e”*ldo(w)
Jw]=1
1 Ou

— —n(:zr + ew)e" o (w)

QD

€
lw|=1

/8 x + ew)do(w) — 0 as e | 0.

Similarly when n = 2,

/7/) —61116/ %(m+ew)do(w)%0ase10.

OB(x,€) |w|=1

Using Eq. (9.7) and n(y) = f(y/f\x) as in Figure 28 we find

FIGURE 28. The outward normal to €. is the inward normal to B(z,e€).

o _ B 1 1
%(y) = vy¢(y —x) n(y) = _U(Snfl) ly — $|"

L
O-(Sn—l) en—l

w-2)-(-—2)

(9.10) =
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and therefore

[ e Rwwe g [ e

2Q.\0Q OB (x,e)

=— ][ uw(z + ew)do(w) — —u(z) ase | 0
Jwl=1

by the dominated convergence theorem. So we may pass to the limit in Eq. (9.9)

to find
/w ) Bty dy—/(w)gﬁ w G ) doly) ~ u(e)

which is equlvalent to Eq. (9.8). m
The following Corollary gives an easy but useful extension of Theorem 9.5It will
be us

Corollary 9.6. Keeping the same notation as in Theorem 9.5. Further assume
that h € C?(Q°) N CY(Q) and Ah = 0 and set G(y) := ¢(z —y) + h(y). Then we
still have the representation formula

010 )= [ (65aw - un L ) do ~ [ Gauti
Q

oQ
Proof. By Green’s identity (Proposition 8.28) with v = h,

Oou Oh
/Au hdmz/(Auh—Ahu)dmz/(h%—% )dm
Q Q a0
ie.

ou Oh
(9.12) 0——/Auhdm+/<h%—%>da.
Q

9
Eq. (9.11) now follows by adding Egs. (9.8) and (9.12). =

Corollary 9.7. For all u € C?(R™),
(9.13) = [, Auwely)dy = u(0).

Proof. Let Q = B(0, R) where R is chosen so large that supp(g) C €2, then by
Theorem 9.5,

w0 = [ (o 5e 00~ w0 %5 ) do — [ o) dutuiy
o Y Q
- [ owsutay
Q

Remark 9.8. We summarize (9.13) by saying —A¢ = 6.

Formally we expect for reasonable functions p that

A(pxp)=Adxp=—0*p=—p.
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Theorem 9.9. Suppose Q C, R", p € C*(Q) N LY () and

/qu— y)dy = (¢ % Lap) (2),

then
—Au=p on .

Proof. First assume that p € C%(Q) in which case we may set p := lgp €
C2?(R™). Therefore

1 1
u(r) = / P(ZHW@ = /n plz — y)Wdy

and so we may differentiate under the integral to find

where the last equality follows from Corollary 9.7.
For p € C%(Q)N LY(Q) and zg € Q, choose a € C(£,[0,1]) such that o = 1 in
a neighborhood of g and let 5:=1— a. Then u = (¢ * ap) + (¢ * Slap) and so

(9.14) Au=A(dpxap)+ A(p*Blgp).
By what we have just proved
(9.15) A(d*xap)(xz) = —(ap) (x) = —p(z) for z near xo.

Since 8 = 0 near zg and

(6% Blap) (x / o(z — ) B)p(y)dy,

we may differentiate past the integral to learn

(9.16) A (¢ % Blap) (x) = / Ard(z — 4)By)p(y)dy = 0

for x near xp. and this completes the proof. The combination of Egs. (9.14 — 9.16)
completes the proof. m

9.1. Harmonic and Subharmonic Functions.

Definition 9.10 (HarmonicFunctions). Let © C, R™. A function u € C?(Q) is
said to be harmonic (subharmonic) on Q if Au=0 (Au > 0) on Q.

Because of the Cauchy Riemann equations, the real and imaginary parts of
holomorphic functions are harmonic. For example 22 = (22 — y?) + 2izy implies

(x2 — y?) and 2y are harmonic functions on the plane. Similarly,
e =e”cosy + e’ siny and
In(z) =Inr+i6
implies

e’ cosy, esiny, Inr, and 6(x,y)

are harmonic functions on their domains of definition.
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Remark 9.11. If we can choose h in Corollary 9.6 so that G = 0 on 912, then Eq.
(9.11) gives

(9.17) u(z) = —/G(y)Au(y)dy— /uag—iy)da
Q o0

which shows how to recover u(x) from Au on 2 and u on 9€2. The next theorem is
a consequence of this remark.

Theorem 9.12 (Mean Value Property). If Au =0 on Q and B(z,r) C Q then

1
(9.18) u(z) = @B / u(y) do(y) =: ][ u do
OB (z,r) OB(z,r)
More generally if Au >0 on 2, then
(9.19) u(z) < ][ u do
OB(z,r)

Proof. For y € B(x,r),

Gy) = o(z —y) —alr) = a(lz —y|) — alr)
where « is defined as in Eq. (9.4). Then G(y) =0 for y € 0B(x,r) and G(y) > 0
for all y € B(x,r) because « is decreasing as is seen from Eq. (9.6). From Eq.
(9.10) (using now that n is the outward normal to B(z,r)),

g—i(az—krw) = —W for jw| =1
and so according to Eq. (9.17) we have
u(z) = #(Sn_l) / udo — / G(y)Au(y)dy
oB(z,r) B(e,r)
(9.20) = ][ u do — / G(y)Au(y)dy.
OB (z,r) B(z,r)

This completes the proof since G(y) > 0 for all y € B(x,r). m

Remark 9.13 (Mean value theorem). Assuming B(x, R) C © and multiplying Eq.
(9.18) (Eq. (9.19)) by

o(0B(z,r)) = o(S" 1)t
and then integrating on 0 < r < R, implies

R
w(@)m(B(z, R)) = (or <) [ dr u(y) do(y)
0 OB (z,r)
= " r ot u(x + rw da(w)—/ udm
_/Od Sn/_1 (x4 rw) —B(LR) .

Therefore if Au =0 or Au > 0 then

(9.21) u(z) = ][ udm or u(z) < ][ udm respectively

B(z,R) B(z,R)
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for all Bz, R) C Q.

Proposition 9.14 (Converse of the mean value property). If u € C(Q) (or more
generally measurable and locally bounded) and

(9.22) u(z) = ][ u(y)do(y)
OB (z,r)

for all z € Q and r > 0 such that B(z,r) C §, then u € C*®(Q) and Au = 0.
Similarly, if u € C*(Q) and z € Q and

(923) < o)
OB(z,r)
for all v sufficiently small, then Au(z) > 0.

Proof. First assume v € C(Q) and Eq. (9.22) hold which implies

(9.24) u(zx) = ][u(:v + rw)do(w)

S

for all z € Q and r sufficiently small, where S = S"~! denotes the unit sphere in
R™. Let n € C°(R™,[0,00)) such that n(0) > 0 and

1= /n(\x|2)dx =0o(95) /000 n(r?)r"tdr

R

||

and for € > 0 let n.(z) = e ™ (6—2> € C*(R™) and wu.(z) = 1 * u(x). Then for
any zo €  and € > 0 sufficiently small, u. is a well defined smooth function near
zo. Moreover for x near xo we have

w@) = [ wla=yuiy = [ Caret [ e+ o)

|w|=1

_ /0 " ! / e (Z—j) (@ + rw)do(w)

jwi=1
— w(@)o(S) /0 S ey <:—2) — u(e)

which shows u is smooth near x.
Now suppose that v € C?, and u satisfies Eq. (9.23), z € Q and |r| < € with €
sufficiently small so that

f(r) = ][ udo = ][ u(z + rw)do(w)
OB(z,r) Sn—1
is well defined. Clearly f € C?(—¢,¢), f is an even function of 7 so f’(0) = 0,

f(0) = u(z) and f(r) > f(0). From these conditions it follows that f/(0) > 0 for
otherwise we would find from Taylor’s theorem that f(r) < f(0) for 0 < |r| < e.
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On the other hand
0< 0= [ (@) @hdotw) = [ @) (@hwrsdo(w)
Snfl Snfl

(9.25) — (9,0,0) (2)5;; ][ w?dc(w)z%Au(w}.
STL*l

wherein we have used the symmetry of do on S"~! to conclude

][ wiwjdo(w) =01if i # j

Sn—1
and
1 n
2 _ - 2
][ wido(w) = - Z ][ “do(w ][ |w|? do(w
Sn—1 Jj=1 Sn—1
Alternatively, by the divergence theorem,
1
][ wiwjdo(w) = ][ wie; - n(w)do(w) = m/ V- (zie;) dm
Sn—1 Sn—1 B(O’l)
— L uB0,1)5, = <5,
~ o(Sn) ’ Y

This completes the proof since if u satisfies (9.22) then f is constant and it follows
from Eq. (9.25) that Au(z) = 0.

Second proof of the last statement. Now that we know u is C? we have by
Eq. (9.20) that

G(y)Au(y)dy = ][ udo—u(z) >0
B(z,r) 0B(xz,r)
and since with « as in Eq. (9.4),
G(y)Auly)dy = Gz +y)Au(z +y)dy

B(z,r) B(0,r)

/ " 1dp/ dwG(z + pw)Au(z + pw)

[=)

n—1 r wAu(x w
Op dp(alp) ~ o) [ dotsula + po)

Au(z)r(5") / "l alp) — alr)
:Au(m)a(S”_l)cn{g— . }

nrn—2
= b,r? Au(z)

where b,, is a positive constant. From this it follows that Au(z) > 0.
Third proof of the last statement. If u € C?(Q) satisfies expand u(x + rw)
in a Taylor series

1%

2
u(z + rw) = u(z) + rVu(z) - w+ Eaiu(:c) + o(r?),
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and integrate on w to find

udo = ][ u(z + rw)do(w)
OB(x,r) Sn—1
= ][ {u(m) +rVu(z) - w+ TQ%aiu(x) +...| do(w)
Sn—1

=u(z) + %’F?Au(x) + o(r?).

Thus if u satisfies Eq. (9.22) Eq. (9.23) we conclude
w(z) =u(z) + %7’2Au(z) + o(r?) or
u(z) < ulz) + %7’2Au(z) + o(r?)
from which we conclude Au(z) = 0 or Au(z) > 0 respectively.
Fourth proof of the statement: If u satisfies Eq. (9.22) then Au = 0. Since

we already know u is smooth, it is permissible to differentiate Eq. (9.24) in r to
learn,

0= Vu(z + rw) - w do(w) = ][ %(I + rw) do(w)
Sn—1 Sn—1
__ 1 / Vu-n do — _ / Au d
= o(SnT)m-1 e T wam.

OB (z,r) B(z,r)
Dividing this equation by r and letting | 0 shows Au(z) =0. =
Corollary 9.15 (Smoothness of Harmonic Functions). If u € C?(Q) and Au =

0 then u € C*°(Q). (Soon we will show w 1is real analytic, see Theorem 9.16 of
Corollary 9.32 below.)

Theorem 9.16 (Bounds on Harmonic functions). Suppose u is a Harmonic func-
tion on Q C R™, zp € Q, « is a multi-index with k := |a| and 0 < r < dist(z,, dQ).
Then

o Ck Cr
(9.26) [D%u(2o)| < =g llull o2 (BGeo.m) < st (2, D)7 [l (@)
where Cy, = % In particular one shows that u is real analytic in §Q.

Proof. Let n.(z) be constructed as in the proof of Proposition 9.14 so that
u(z) = u * ne(x). Therefore, D*u(z) = u.D*nc(z) and hence

[ D% u(o)| < [lull L2 (Bewo,e) [ D nell -

Now
.1 z
Dne(z) =€ nm@%)(;)
so that
« —-n 1 o7 z 1 [ 1
1D ne(@)] = €™ =57 | (D*n)(2)] < Coqmy = Corparm
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where the last identity is gotten by taking e comparable to r. Putting this all
together then implies that

« 1 «
[D%u(zo)| < oy ID*nllze< llull 22 (o)
which is an inequality of the form in Eq. (9.26). To get the desired constant we
will have to work harder. This is done in Theorem 7. on p. 29 of the book. The

idea is to use D%u is harmonic for all a and therefore,

n

o _ et _ DB _ DB
D%u(zo) = ][ D%udm = ][ 0;DPudm = W/B(wmp) 0; D" udm

B(zo,p) B(zo,p)
n

=— DPun;do
O-(Sn—l)pn /BB(zo,p)

| D%u(zp)| < % HDﬁ

so that
Ul e (Ba0.0)
and for & = 0 and = € B(z,7/2) we have

1 2\"
ol pulan < i (2) Bl
B(z,r/2)
Using this and similar inequalities along with a tricky induction argument one gets
the desired constants. The details are in Theorem 7. p. 29 and Theorem 10 p.31
of the book. (See also Corollary 9.32 below for another proof of analyticity of u.)
[

Corollary 9.17 (Liouville’s Theorem). Suppose u € C% (R"), Au =0 on R™ and
lu(z)| < C(1+ |z|N) for all z € R™. Then u is a polynomial of degree at most N.

Proof. We have seen there are constants C),| < oo such that

o 1
[D*u(z0)| < ClayllullLr(B(xo,r) P

~ 1
< Ol 1wl Lo (B(zo,r)) el
14N
=] Cﬂ —0asr— o0

7"|04‘
when if |o| > N. Therefore D®u := 0 for all || > N and the the result follows by
Taylor’s Theorem with remainder,

() = Z Du(xg)(z — :EO)O‘.

ol
lal<N

Corollary 9.18 (Compactness of Harmonic Functions). Suppose Q C, R™ and
un, € C?(Q) is a sequence of harmonic functions such that for each compact set
K CQ,

Ck ::sup{/ |un|dm:n€N}<oo.
K

Then there is a subsequence {v,} C {un} which converges, along with all of its
derivatives, uniformly on compact subsets of Q to a harmonic function u.
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Proof. An application of Theorem 9.16 shows that for each compact set K C €2,
sup,, [Vu,| Loo (k) < 00 and hence by the locally compact form of the Arzela-Ascolli
theorem, there is a subsequence {v,, } C {u,} which converges uniformly on compact
subsets of  to a continuous function v € C(2). Passing to the limit in the mean
value theorem for harmonic functions along with the converse to the mean value
theorem, Proposition 9.14, shows u is harmonic on €2. Since v, — u uniformly on
compacts it follows for any K CC Q that [, |u — v,|dm — 0. Another application
of Theorem 9.16 then shows D%v,, — D« uniformly on compacts. ®

In light of Proposition 9.14, we will extend the notion of subharmonicity as
follows.

Definition 9.19 (Subharmonic Functions). A function v € C(Q) is said to be
subharmonic if for all € Q and all r > 0 sufficiently small,

u(z) < ][ u do.
9B (z,r)

The reason for the name subharmonic should become apparent from Corollary 9.25
below.

Remark 9.20. Suppose that u,v € C(Q) are subharmonic functions then so is u+wv.
Indeed,

uw(z) +v(z) < ][ u do + ][ vdo = ][ (u+v)do.

OB(z,r) OB(z,r) OB (z,r)

Theorem 9.21 (Harnack’s Inequality). Let V' be a precompact open and connected
subset of Q. Then there exists C = C(V,Q) such that

supu < Cinfu
% |4

for all non-negative sub-harmonic functions, u, on €.

Proof. Let r = 1dist(V,€¢) and « € V (as in Figure 29) and |y — | < r, then

L

Hr

F1GURE 29. A pre-compact region V C €.
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by the mean value inequality in Eq. (9.21) of Remark 9.13,

1
u(z) = ][ u(z)dz:W / u(z)dz

B(z,2r) B(x,2r)
1 1 1
R — dz = — dz = —
> EETEy | g f =g
B(y,r) B(y,r)
see Figure 30. Therefore u(z) > s-u(y) provided z,y € V with |z — y| < r. Since

Fi1GURE 30. Nested balls.

V is compact there exists a finite cover S := {W;}*, of V consisting of balls with
of radius r with centers z; € V. For all z,y € V, there exists a path v : z — y
and hence a chain B; € § such that z € By, y € By and B; N B;11 # ¢ for all
1=1,...,k— 1. It then follows from what we have just proved that

uy) < (2" u(z) <2M" u(z) =: Cu(x)

for all z,y € V, i.e. sup u < Cir‘}fu where C :=2M", m
v

Theorem 9.22 (Strong Maximum Principle). Let Q C R™ be connected and open

and u € C(Q) be a subharmonic function (see Definition 9.19). If M = sup u(zx) is
€N

attained in Q then u := M. (Notice that u € C*(Q) and Au = 0, then u is harmonic
and hence in particular sub-harmonic.)

Proof. Suppose there exists x € {2 such that M = u(z). If € > 0 is chosen so
that B(z,¢e) C Q as in Figure 27 and u(y) < M for some y € dB(z, €), then by the
mean value inequality,

M=u@)< | o) <M
OB(x,€)
which is nonsense. Therefore v := M on dB(z,¢€) and since € € (0, dist(z, 99))
we concluded that u := M on B(z, R) provided B(z, R) C . Therefore {z € Q :
u(z) = M} is both open and relatively closed in Q and hence {x € Q : u(x) =
M} = Q because  is connected. m

Corollary 9.23. If Q is bounded open set u € C(Q) is subharmonic, then

M :=maxu(z) = max u(z).
z€Q z€bd(Q)
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Again this corollary applies to v € C(Q) N C?(Q) such that Au = 0.

Proof. By Theorem 9.22, if z € () is an interior maximum of u, then v = M on
the connected component €2, of €2 which contains z. By continuity, u is constant
on Q, and in particular u takes on the value M on bd(Q2). =

Corollary 9.24. Given g € C(bd(Q)), f € C(RQ) there exists at most one function
u € C*Q)NC(Q) such that Au= f on Q and u = g on bd(£).

Proof. If v € C?(Q2) N C(Q) is another such function then w = u — v €

C?(Q) N C(Q) satisfies Aw = 0 in © and w = 0 on bd(Q). Therefore applying
Corollary 9.23 to w and —w implies

maxw(z) = max w(z) =0 and minw(z) = min w(z) = 0.
z€Q zebd(Q) z€Q z€bd(Q)

Corollary 9.25. Suppose g € C(bd(2)) and u € C*(Q) N C(Q) such that Nu =0

on Q. Then w < u for any subharmonic function w € C(2) such that w < g on

bd(€).

Proof. The function —u is subharmonic and so is v = w — u by Remark 9.20.
Since v = w — g < 0 on bd(Q), it follows by Corollary 9.23 that v < 0 on €, i.e.
w<gonf m

9.2. Green’s Functions.

Notation 9.26. Unless otherwise stated, for the rest of this section assume Q C R™
is a compact manifold with C? — boundary.

For x € Q, suppose there exists h € C%(2°) N C*(N2) which solves
(9.27) Ahy =0 on Q with hy(y) = ¢(z —y) for y € O

Hence if we define

then by the representation formula (Eq. (9.11) also see Remark 9.11) implies

929)  u(e) = / Gl y) Muly) dy — / 9G (2.y) uly) do(y)
Q

on,
o0
for all u € C%(Q°) N C1(Q).
Throughout the rest of this subsection we will make the following assumption.

Assumption 2 (Solvability of Dirichlet Problem). We assume that for each g €
C(09) there exists h = hy, € C%(Q°) N C*(2) such that

Ah =0 on Q with h = g on 9.
In this case we define G(x,y) as in Eq. (9.28). We will (almost) verify that this

assumption holds in Section 9.5 below. The full verification will come later when
we study Hilbert space methods.

Theorem 9.27. Let G(x,y) be given as in Eq (9.28). Then
(1) G(z,y) is smooth on (Q° x Q°)N\A where A = {(z,z) : x € Q°}.
(2) G(z,y) = G(y,x) for all z,y € Q. In particular the function h(x,y) :=
h.(y) is symmetric in x,y and x € Q° — h, € C(Q) is a smooth mapping.
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(3) If Q2 is connected, then G(x,y) > 0 for all (x,y) € (2° x Q°)\A.
Proof. Let € > 0 be small and Q. := Q\ (B(z,€) U B(z,¢€)) as in Figure 31, then

F1GURE 31. Excising the singular region from €.

by Green’s theorem and the fact that A,G(z,y) =0 if y # «,

0= / £, Gle,y)Glz,y)dy
Qe

= [ (G606 - GeanGe ) dr+ [ 6eas,Ge
0 Q.
~ [ (a0t - GGt do

0.
Since G(z,y) and G(z,y) = 0 for y € 09, the previous equation implies,

0 9
—G(z,y)G(2,y) — G(z,9)—G(2,y }do:O.
/G(B(x,e)UB(z,e))A {3ny (#,9)6(zy) - & )8ny (2,9)

We now let € | 0 in the above equations to find

: 99(x —y) L d
(9.30)  lim t/ on, Gz, y)do(y) = lim ‘/) GCmy)any¢@ y) do.
O(B(z,¢)) OB(z,¢)

Moreover as we have seen above,
0
13%1 G(x,y)a—nyqb(z —y) do = G(z,z) and
OB(z,€)

lim 9¢(x — y)
€l0 On,
(B(ze))
and hence G(z, z) = G(z, z). Since G(z,y) = ¢p(x—y)—h,(y) and ¢p(z—y) = ¢p(y—2x)
it follows that h,(y) = hy(z) =: h(z,y). Therefore y — hy(y) and z — h,(y) are

G(z,y)do(y) = G(z, )
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smooth functions. Now by the maximum principle:
_ < _ — _ _ _ .
Iha(y) — he(y)] < max |ha(y) — h=(y)| = max [¢(z —y) — d(z —y)| = Oas v — =

Therefore the map « € Q — h, € C(Q) is continuous and in particular the map
(x,y) — h(z,y) is jointly continuous. Finally letting n be as in the proof of Propo-
sition 9.14, we find

he,y) = /Q W@ y)n(e — 7)dE

=/ WE ) 1y — §) 0z — ) dF dg
QOxQ

from which it follows that in fact h is smooth on € x Q.
It only remains to show © — h, € C(Q) is smooth as well. Fix z € Q and for
veR let H, € C%(0°) N C() denote the solution to
AH, =0on Q with H,(y) =v-V¢(z —y) for y € 0Q.
Notice that v — H,, is linear and by the maximum principle,
Hhx—&-v - h;r - Hv”Loo(Q) S ||hgc+v - hx - Hv”Loo(gQ)
=l +v—")=d(z—") —v-Vo(z =)l L= (s0) -

Now,

dr+v—y)—¢x—y)—v Vo(z —y)

1
= / [Vo(x +tv —y) — Vé(x — y)] - vdt
0
so that, by the dominated convergence theorem,

l¢(@ +v =) =@z —-) —v-Vo(z — )= (o0)

1
<lol [ IV6(o +t0 =) = Vol =)l oy dt = o o).

This proves x — h, is differentiable and that 0,h,; = H,. Similarly one shows that
x — h; has higher derivatives as well.
For the last item, let € Q° and choose € > 0 sufficiently small so that B(z,€) C

Q°\ {y} and G(z,z) > 0 for all z € B(z,¢). Then the function u(y) := G(z,y) is
Harmonic on Q°\ B(xz,¢), u € C(Q\ B(z,¢€)), u =0 on 9Q and u > 0 on dB(z,¢).
Hence by the maximum principle, 0 < u on Q\ B(z,€) and since u is not constant
we must also have u > 0 on QY \ B(z,¢€). Since € > 0 was any sufficiently small

number, it follows G(z,y) > 0 for all y € Q°\ {z}. m

Corollary 9.28. Keeping the above hypothesis and assuming p € C*(Q°) N LY()
and g € C(09Q), then there is (a necessarily unique) solution u € C*(Q°)NC(Q) to

(9.31) Au = —p with u = g on 0N
which is given by Eq. (9.29).

Proof. According to the remarks just before Eq. (9.29), if a solution to Eq.
(9.31) exists it must be given by

(9.32) u(x) =/G(w7y)p(y) dy—/aa—i(%y) 9(y) do(y).
Q o0
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From Assumption 2, there exists a solution v € C?(2) N C*(Q) such that Av = 0
and v = g on 0. So replacing u by u — v if necessary, it suffices to prove there is
a solution u € C%(Q°) N C(Q) such that Eq. (9.31) holds with g = 0. To produce
this solution, let

u@r:/awwmmwz/hm—mmm@—Hu>
Q Q

where
()= [ heppdy

Using the result in Theorem 9.27, one easily shows H € C>(Q°) N C*(2)and
AH = 0. By Theorem 9.9,

Ag/ﬂxfwmwdy:fmwﬂnxeﬁ
Q

and therefore u € C?(Q) and Au = —p. &

Remark 9.29. Because of the maximum principle, for any x €  the map g €
C(0Q) — hy(x) € C(R) is a positive linear functional. So by the Riesz represen-
tation theorem, there exists a unique positive probability measure o, on 02 such
that

hg(z) = /g(y)dcrx(y) for all g € C(09).
oQ
Evidently this measure is given by

0G

dos(y) = —a—%(x,y)dU(y)

and in particular —gTG (z,y) > 0for all z € Q and y € 9. It is in fact easy to see
Y

that fg—ri (z,y) >0 for all z € Q and y € 9.

9.3. Explicit Green’s Functions and Poisson Kernels. In this section we will
use the method of images to construct explicit formula for the Green’s functions
and Poisson Kernels for the half plane, H” = {x € R" : z,, > 0}and Balls B(0,a).
For z = (2/,2) € R"! x (0,00) = H" let Rz := (2',—z). It is simple to verify
|z —y| = |Rx — y| for all z € H" and y € OH". Form this and the properties of ¢,
one concluded, for z € H", that h,(y) := ¢(y — Rz) is Harmonic in y € H" and
h.(y) = ¢(x —y) for all y € OH". These remarks give rise to the following theorem.

Theorem 9.30. For x,y € H", let
G(z,y) = oy — x) — ¢(y — Rx) = ¢(y — z) — ¢(Ry — ).
Then G is the Greens function for A on H" and

ﬁ(x )= 2%y, 1
on Y T 55 oy

K(x,y) = — for x € H" and y € OH™

6We will do this again later using the Fourier transform.
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is the Poisson kernel for H". Furthermore if p € C*(H") N L'(H") and f €
BC (8]HI”) , then

ul(z) = / Glay)ol)dy + | K(e,y)f@)doy)
n 6Hn

solves the equation
Au = —p on H" with w = f on OH".
Proof. First notice that
Gly,z) = ¢(x —y) — ¢(z — Ry) = ¢(x —y) — ¢(Rz — RRy) = G(x,y)

since ¢ is a function of |-|. Therefore, if

u(z) = | Gz,y)py)dy= | @ —y)ply)dy— | ¢(x— Ry)p(y)dy,
HTL Hn Hn

we have from Theorem 9.9 that
Bue) = =pla) = [ Asola ~ By)plu)dy = ~pla).

Since G(z,y) =0 for = € GHT]I_"and so u(x) = 0 for x € OH". Tt is left to the reader
to show w is continuous on H".
For x € H™ and y € OH", we find form Eq. (9.7),

K(z,y) = j—fy@,w - %G@,y)
- % 6y — ) — oy — Ra)]
1 1 1 1

- =o)-et (v Ra) e

Co(S ) Jy —af”
_ 1 22,
Co(Sm ) Jy —al"
Claim: For all x € H”,

§ 1) Jy — Ral"

K(z,y)dy =1.
OHn
It is possible to prove this by direct computation, since (writing x = (2, z,) as
above)

2 T
K(z,y)dy = / - dy
ofi o(577Y) Jrnr (|2 — yf2 + 22)"

2 / 1 dy
o5 Jan (|2 + 1)

2 ° 1
=— (5" 2 / S ——
o(S5m) ( ) 0 (r2 4 1)"/?

where in the second equality we have made the change of variables y — z,y and in
the last we passed to polar coordinates. When n = 2 we find

> 1 > 1
/ e dr = / ——dr = /2
0 (r2 4+ 1)n/ o T+1
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and for n = 3 we may let u = 2 to find

/ 7~"_2—/2 dr = / 7“—3/2617” = —/ —3/2du =1.
0 (r2+1)" o (r2+1) 2Jo (u+1)

These results along with
s 1 jes} _n n—1 2 [e%¢) /o
/ =2 dr = / (2 1 1) 2 n/ / (r? +1) 21 n-1g,
0 (r24+1)" 0 n—1 n-1J

e 1
n—1J (r2+1)2

—2

allows one to compute fooo r" dr inductively. I will not carry out the

1
r241)"/2
details of this method here. Ratfler, i)t is more instructive to use Corollary 9.6 to
prove the claim. In order to do this let u € C°(B(0,1), [0, 1]) such that u(0) = 1,
u(xz) = U(|z|) and U(r) is decreasing as r decreases. Then by Corollary 9.6, with
u(z) = up(z) := ulz/M),

933)  un(a) = / K (. y)uly/M)do(y) — M~ / G, y) (D) (y/M)dy.
OH™ H~

By the monotone convergence theorem,

lim [ K@ ouwandew) = [ K io)

OH™ 9H"

and therefore passing the limit in Eq. (9.33) gives

— lim
MToo

1= / K, y)do(y)

M2 / G, y) Muly/M)dy
ofin Hn

This latter limit is zero, since

_ - 1 1
32 [ Glag) duty/ M)y = et [ S | (A (/M) dy
i 2. Llz—yl |Rz — y|
:ch_QM”/ ! 5 — ! 5 | Au(y)dy
|z — My["™"  |Rx — My|"™

Hn

1 1
=c, — — — | Au(y)dy.
H“kc/M—m > [Ra/M =y ]
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This latter expression tends to zero and M — oo by the dominated convergence
and this proves the claim. (Alternatively, for y large,

n—2

1 1 1 1 1
n—2 n—2 n—2 n—2
[z =y |Rx —y| [yl g ‘Rﬁ —

1 R
= [<1+2£~y+...) —(1+2—$-g+...>}
|yl [y |

(—=)
|yl

and therefore

MQ/[ ! — - ! ](Au)(y/M)dyzO(MQ ! M"):O(l/M)—>0

|$_y|n 2 |R1’_y|n72 Mn—l
Hn
as M — oo.
Since G(z,y) is harmonic in z, it follows that K(z,y) = —a—?lyK(x,y) is still
Harmonic in z. and therefore
2 x
u(z) = K(z,y)f(y)do(y) = / —— f(y)do(y)

D= Jogo KT = GGy [ Ty 04

is harmonic as well. Since
2 Ty
u(x) = —_/ f(y)dy
o(5"71) Jomn (|2f — y|2 + 22)"/?

2 1 / 1
= a1 =1 f(y)dy
(S 1) 1 o (|Z,7 |2+1)n/2 (y)

Tn

it follows from Theorem 7.13 that u((2',2,)) — f(2') as z,, | 0 uniformly for 2" in
compact subsets of OH". m

9.4. Green’s function for Ball. Let r > 0 be fixed, we will construct the Green’s
function for the ball B(0, 7). The idea for a given € B(0, ), we should find a mirror
location, say p& and a charge ¢ so that

oz —y) = aé (p — y) for all [y = 1.

Assuming for the moment that n > 3 and writing ¢ = 3™, this leads to the
equations

o — yI* = |82 — By|* = B* |pi — y|*
or equivalently squaring out both sides and using |y| = r,
j2f* =22y + 12 = B (p* — 2p2 -y +17).
Choosing y 1 = and y = rz leads to the conditions
lz|® + r? = 8 (p* +r?) and
lz|> — 2r || 4 r? = B2 (p* = 2pr +1?).
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Subtracting these two equations implies —2r|z| = —2pB%r or equivalently that
p = |z|/3?. Putting this into the first equation above then implies
2 |z[?
|.CC‘ +T‘2 = ﬁ +62T2
or equivalently that
0=r28"— (lef’ +r2) B +al*.

By the quadratic formula, this implies

2
(\:E|2 + 1"2) + \/(|:L'|2 + T2) — 4r2 |x|2

2 _
F = 272
(ol +72) 4/ (102 =12) " (jaf +42) = (12 = jaP)
- 2r2 - 2r2
=1lor ﬁ
r2’

Clearly the charge 8 = 1 will not work so we must take 8 = |z| /r in which case,
p =r?/|z| and hence
" 2-n z Y
46 (pi —y) = (|| /1) ¢ <T2|? - y) =¢ <m - 7|y) -
Let us now verify that our guess has worked. Let us begin by noting the following

identities for z,y € R™,
(9.34) |ri—7"71 |x\y|2 = (r2 —2x~y+r72 |$|2 \y|2)
and in particular when |y| = r this implies

. .12 2

j@r — |z[g]” = (r* = 2z -y + [2*) = [z — y]

so that

(9.35) o ol =lor  Jall = | o7 = 1ol2].

Now the function
pet) =0 (7~ By} =0 (2 (-5
is harmonic in y and by Eq. (9.35),
haly) = ¢ (r = |o| ) = 6 (ar — [2] §) = o(= — ) when |y| =r.
Hence we should define the Green’s function for the ball to be given by
Gla,y) = 6w —y) = holy) = 6(x —y) — ¢ (a7 — [2/2)
=0z —y) — ¢ (ar —rz| |yl 9)

oo -0 (2 (s-r2)).

From Eq. (9.34), it follows that h,(y) = h,(z) and therefore G(x,y) is again
symmetric under the interchange of z and y.
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For y € 9B(0,r), using Eq. (9.7) we find

oG
—K(z,y) = I
Yy

o8 (-2}

— 1 1 || 1 || 2
- O—(Snil) |y—$|n (y .'L') r n N y T ‘1‘

___ 1 1 ( _@_'ﬂ%('ﬂ _r;g) g
D) |y_x|ny r kL, T\ Y Y

1 1 ] 1 . A} .
=— =(y—z)— ——Fx (z|lg—r2)| -9

(z,y) = 95G(2,y) = VyG(z,9) - §

_ 2 2
= oy —ar

These computations lead to the following theorem.

Theorem 9.31. For z,y € B(0,r), let
i — ) — b (e — oY
Glo,y) = dla—y) — ¢ (a7 —[a]2)
and if y € 0B(0,r), let

oG B r? —|z|?
K(z,y) = —5-(z,y) = oS )r

Then p € C*(B(0,7)) N LY(B(0,7)) and f € C (8B(O,T)> , then

(936) )= /B o Gy s / K (2,9)f (3)do(y)

oB(0,r)

solves the equation

Au = —p on B(0,r) withuw = f on dB(0,r).

Proof. The proof is essentially the same as Theorem 9.30 but a bit easier. From

Theorem 9.5 with u = 1 it follows again that

/ K(z,y)do(y) = 1.

oB(0,r)

As © — zo € 0B(0,r), the function K(z,y) becomes peaked for y near xy and
goes to zero away from xzq, it follows by the standard approximate é — function

arguments that

| K@u)f)doty) — fan) as s -
oB(0,r)
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The rest of the argument is the same as before. m

Corollary 9.32. Suppose that u is a harmonic function on 2, then u is real analytic
on €.

Proof. The condition of being real analytic is local and invariant under trans-
lations as is the notion of being harmonic. Hence we may assume 0 € B(0,r) C

for some r > 0, in which case we have, for |z| < r and f = u|am, that

7'2 — |Z 2 _
wa) = [ Knioe) =250 [ ooyl fwaoty)

B(0,r) 0B(0,r)

2 2
O3 = Ty o el i)

Now

~ —1 n

g - x|7

[z =y =fe g =

|$|2 —n/2
r—" 1—2r_1g)~$+—2
r

=" (1 - afz,y) "
where
—1x |$|2
az,y) :==2r gro——g
Since
1 |33|2 2
la(z,y)| < 2r " |z| + =) <200 +o05<1

if |2| < apr and ap < v/2 — 1, we find that |z — y| " has a convergent power series
expansion,

oo
o —y| " =r" Z ama(x,y)™ for |z| < agr.
m=0

Plugging this into Eq. (9.37) shows u(x) has a convergent power series expansion
in z for |z| < (\/5—1)7". ]

9.5. Perron’s Method for solving the Dirichlet Problem. For this section
let 2 C, R™ be a bounded open set and f € C (bd(f2),R) be a given function. We
are going to investigate the solvability of the Dirichlet problem:

(9.38) Au =0 on Q with u = f on bd(f).

Let S(©2) denote those w € C () such that w is subharmonic on 2 and let Sy(€2)
denote those w € §(Q) such that w < f on bd(€2). As we have seen in Corollary
9.25, if there is a solution to u € C*(Q2) N C (Q), then w < u for all w € S¢().
This suggests we try to define

(9.39) u(z) == uys(z) :=sup{w(z) : w e Sy(Q)} for all z € Q.

Notation 9.33. Given w € §(Q), £ € Q and r > 0 such that B(&,r) C Q, let (see
Figure 32)

[ w(y) for yeQ\B(Er)
wéﬂ‘(y)_{ h(y) for ye B(Er)



PDE LECTURE NOTES, MATH 237A-B 149

where h € C (B(f7 7")) is the unique solution to

Ah =0 on B(&r) with h = w on 0B(, 7).
The existence of h is guaranteed by Theorem 9.31.

F1GURE 32. The construction of we , in the one-dimensional case.

Proposition 9.34. Let w € S(Q) and we,, be as above. Then
(1) w < we,.
(2) we,r € S(), i.e. we, is subharmonic.
(3) We have
w() < ][ wdo.
OB(&,r)
Proof. 1. Since w = wg, on Q\ B(&,7), it suffices to show w < h on B(&, ).
But this follows from Corollary 9.25.
2. Since wg,, is harmonic on B(&,r) and subharmonic on Q \ B(,r), we need
only show
wer(y) < ][ we,rdo
0B (y,p)
for all y € OB(&,r) and p sufficiently small. This is easily checked, since w is
subharmonic,
we (y) = w(y) < ][ wdo < ][ we pdo

9B(y,p) 9B(y,p)
wherein the last equality we made use of Item 1.
3. By item 1. and the mean value property for the harmonic function, we ., we
have

w(€) < we, () = ][ wepdo = ][ wio,

dB(&,r) dB(&,r)
[ ]

Theorem 9.35. The function u = uy defined in Eq. (9.39) is harmonic on Q and
u < g on bd(Q).

Proof. Let us begin with a couple of observations. In what follows
m :=min{f(z):z €bd(Q)} and M :=min{f(z): 2 € bd(Q)}.
(1) The function u = uy > m on 2 since m € S¢(Q).
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(2) By the maximum principle w < M on 2 for all w € S¢(2) and therefore
ur < M on Q.

(3) If wi,...,wy € Sp(Q), then w = max{w,...,wy,} € S¢(Q2). Indeed for
& € Q and r small,

wdo > ][ wido > w;(€)
dB(&,r) B(¢€,r)

for all 3.

(4) Now suppose £ € Q and R > 0 be chosen so that B({,R) C Q@ and D C
B(&, R) is a countable set. Then there is a harmonic function wp on B(&, R)
such that wp = uy on D.

To prove this last item let D := {yx},—, and choose {w}*} C S§(£2) such that
wi(yr) — w(yx) as m — oo for each k. By replacing wj by max {wy, ..., wi}
if necessary we may assume for each k£ that wj* is increasing in m for each k.
Letting W, := max {w{",...,w}"} we find an increasing sequence {W,,} C S;(Q2)
such that Wi,,(y) T us(y) for all y € D. Finally define a sequence {w,,} C S;(Q2)
by wy, = (I/Vm)g’2 g - By the maximum principle, w,, is still increasing and since
Wy, < wyy, and we still have wy, (y) T uf(y) for all y € D. We now define wp :=
lim,, 00 Wi | B(¢,R) Which exists because w,, is increasing and w. We have wp =
uy on D and because {wy,,} is a bounded and convergent sequence of harmonic
functions on B(&, R), it follows from Corollary 9.18 that w is harmonic on B(¢, R).
This completes the proof of item 4.

We now use item 4. to prove uy is continuous at £ € €. To do this let {y;};—, C
B (&, R) be any sequence such that y, — £ as k — oo and let D = {£} U{yx},o, C
B (&, R). Since wp is harmonic and hence continuous,

Jim g (ye) = lim wp(ye) = wp(€) = us(§)

showing u¢ is continuous.

To show wuy is harmonic on B(&, R), let D be a countable dense subset of B(§, R).
Then the continuity of uy and the fact that uy = wp on D, it follows that uy = wp
on B(&, R). In particular uy is harmonic on B(&, R). Since ¢ is arbitrary, we have
shown wuy is harmonic. m

To complete our program, we want to show that uy extends to a function in

C(2) and that uy = f on bd(Q). For this we will need some assumption on bd(f2).

Definition 9.36. A function @ € C (Q) is a barrier function for € bd(Q) if Q
is subharmonic on Q, Q(n) = 0 and Q(z) < 0 for all z € bd(Q) \ {n}.

Example 9.37. Suppose that 7 € bd(£2) and there exists £ € R™ such that (z —n)-
€ < 0for all z € bd(Q) \ {n} (see Figure 33 below), then the function Q(z) :=
(x —n) - € is a barrier function of 7.

Example 9.38. Suppose that 7 € bd(Q2) and there exists a ball B(¢,7)NQ = {n}
(see Figure 34), then Q(z) := a(r) — a(|x — &]) is a barrier function for n, where «
is defined in Eq. 9.4.

Theorem 9.39. Suppose f € C(bd(?)) and v = uy is the harmonic function
defined by Eq. (9.39) and there exists a barrier function @ for n € bd(Q2). Then
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CIPA

x

Ficure 33. Constructing a barrier function at point where 7
where 0f) lies in a half plane.

F1GURE 34. Another 7 for which there exists a barrier function.

limg_,, ug(z) = f(n). In particular if every point n € bd(Q) admits a barrier func-
tion, then there is a unique solution u € C (Q) NC2%(Q) to Au =0 with u = f on
bd($).

Proof. Given ¢ > 0 and K > 0, let w(x) := f(n) — e — KQ(x) for all z € Q.
For any € > 0 we may choose (using continuity of f and compactness of bd(Q2)) K

sufficiently large so that w < f on bd(Q2), i.e. w € S¢(Q2). Therefore w < uy and
hence

f(n) —e=w(n) = ;ILI}?QU(ZE) < liminfus(x).

T—n

Since € > 0 is arbitrary, this shows
(9.40) liminfug(z) > f(n).

We now consider the function
—u_g(z) = —sup{w(z) :w e S_;(Q)} =inf{—w(z) : we S_(Q)}
(9.41) =inf {W(z) : =W € S_;(Q)}.
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Ifw e S¢() and —W € S_¢(2), then w—W is sub harmonic and w—W < f—f =0

on bd(2), therefore by the maximum principle it follows that w < W on ). Using
this in Eq. (9.41) shows

—u_y(z) > inf {w(z) : w € Sf(Q)} = us(x).

Therefore,
(9.42)
limsup uy(z) < limsup (~u—y(2)) = ~lminf (u_y(2)) = = (= () = f(0)

which combined with Eq. (9.40) shows

lim uf(z) = f(n)-

r—n

Exercise 9.1. Suppose that R is an n x n orthogonal matrix (R* R = I = RRY)
viewed as a linear transformation on R". Show for f € C? (R") that A(f o R) =
AfoR,ie. A isinvariant under rotations.

Exercise 9.2. Show that every point n € bd(2) has a barrier function when
bd(Q) is C?. Hint: By making a change of coordinated involving rotations and
translations change of coordinates, it suffices to assume 7 = 0 € bd(€2) and that
B(0,7) Nbd(Q) is the graph of a C? — function g : B(0,7) NR"~* — R™ such that
g(0) =0 and Vg(0) = 0. Show for § > 0 sufficiently small that

ds(x) := |de, — x| for z € bd(Q)

has a unique global minimum at x = 0. Use this fact and Example 9.38 to complete
the proof.



PDE LECTURE NOTES, MATH 237A-B 153

9.6. Solving the Dirichlet Problem by Integral Equations. Another method
for solving the Dirichlet problem to reduce it to a question of solvability of a certain
integral equation in bd(€2). For a nice sketch of how this goes the reader is referred
to Reed and Simon [2], included below. For a more detailed account the reader
may consult Sobolev [3] or Guenther and Lee [1].

The following text is taken from Reed and Simon Volume 1.

Jses Recutds For THE BANACH SpACE

Example (Dirichlet problem) v The main impetus for the study of
compact operators arose from the use of integral equations in attempting to
solve the classical boundary value problems of mathematical physics. We
briefly describe this method. Let D be an open bounded region in R’ with a
smooth boundary surface &D. The Dirichlet problem for Laplace’s equation
is: given a continuous function f on @D, find a function u, twice différentiable
in D and continuous on D, which satisfies

Au(x) =0 xeD
ux)=f(x}) xedD
Let K(x, y) = (x — y, n,)/2n|x — y|* where n, is the outer normal to 4D at

the point y € 3.D. Then, as a function of x, K(x, y) satisfies A, K(x, ) =0in
the interior which suggests that we try to write u as a superposition

ux) = [ K(x 1)o()ds0) (V1.6a)

where @(y) is some continuous function on #D and dS is the usual surface
measure. Indeed, for x € D, the integral makes perfectly good sense and
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Au(x) = 0 in D. Furthermore, if x, is any point in 0D and x — x, from
inside D, it can be proven that

ux) = 9lx) + [ K(xa, »)o0) dS() (VL6b)
D
If x = x,, from outside D, the minus is replaced by a plus. Also,

[ Kxo, 300 dSG)
oD

ists and is a continuous function on 8D if g is a continuous function on
dD. The proof depends on the fact that the boundary of D is smooth which
implies that for x,y € 2D, (x — y,n,) m c|x — y|* as x = y.

Since we wish u(x) = f(x) on é D, the whole question reduces to whether we
can find ¢ so that

f) = —p(x) + f., K, )p() dS0),  xedD

Let T: C(9D) — C(@D) be defined by

Tp = f K(x, y)o(y) dS(y)
ap

Not only is Tbounded but (as we will shortly see) T'is also compact. Thus, by
the Fredholm alternative, either A = 1 is in the point spectrum of Tin which
case there is a i € C(éD) such that (I — T =0, or —f=(/— T)p has a
unique solution for each f € C(éD). If u is defined by (VI.6a) with  replacing
@, then u =0 in D by the maximum principle. Further, du/én is continuous
across dD and therefore equals zero on dD. By an integration by parts this
implies that # =0 outside 8D. Therefore, by (VL.6b), 2y/(x) =0 on 4D, so
the first alternative does not hold.
The idea of the compactness proof is the following. Let

(x—zn)

Ky(x, z) = m

If & > 0, the kernel K; is continuous, so, by the discussion at the beginning of
this section, the corresponding integral operators T, are compact. To prove
that T is compact, we need only show that |[T— T,|| =0 as é — 0. By the
estimate

TN = ONW] < If e [ 1K 2) = Ky, 2)] dS(z)
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we must only show that the integral converges to zero uniformly in x as
& = 0. To prove this, divide the integration region into the set where [x—z| 2 ¢
and its complement. For fixed ¢, the kernels converge uniformly on the first
region. By using the fact that K is integrable, the contribution from the
second region can be made arbitrarily small for e sufficiently small.



