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9. Poisson and Laplace’s Equation

For the majority of this section we will assume Ω ⊂ Rn is a compact manifold
with C2 — boundary. Let us record a few consequences of the divergence theorem
in Proposition 8.28 in this context. If u, v ∈ C2(Ωo) ∩ C1(Ω) and R

Ω

|4u|dx < ∞
then

(9.1)
Z
Ω

4u · vdm = −
Z
Ω

∇u ·∇vdm+

Z
∂Ω

v
∂u

∂n
dσ

and if further
R
Ω

{|4u|+ |4v|}dx <∞ then

(9.2)
Z
Ω

(4uv −4v u)dm =

Z
∂Ω

µ
v
∂u

∂n
− ∂v

∂n
u

¶
dσ.

Lemma 9.1. Suppose u ∈ C2(Ωo)∩C1(Ω), ∆u = 0 on Ωo and u = 0 on ∂Ω. Then
u ≡ 0. Similarly if ∆u = 0 on Ωo and ∂nu = 0 on ∂Ω, then u is constant on each
connected component of Ω.

Proof. Letting v = u in Eq. (9.1) shows in either case that

0 = −
Z
Ω

∇u ·∇udm+

Z
∂Ω

u
∂u

∂n
dσ = −

Z
Ω

|∇u|2 dm.

This then implies ∇u = 0 on Ωo and hence u is constant on the connected compo-
nent of Ωo. If u = 0 on ∂Ω, these constants must all be zero.

Proposition 9.2 (Laplacian on radial functions). Suppose f(x) = F (|x|) , then

(9.3) 4f(x) =
1

rn−1
d

dr
(rn−1F 0(r))

¯̄̄̄
r=|x|

= F 00(|x|) + (n− 1)|x| F 0(|x|).

In particular ∆F (|x|) = 0 implies d
dr (r

n−1F 0(r)) = 0 and hence F 0(r) = Ãr1−n.
That is to say

F (r) =

½
Ar2−n +B if n 6= 2
A ln r +B if n = 2.
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Proof. Since (∂vf)(x) = F 0(|x|) ∂v|x| = F 0(|x|)x̂ · v where x̂ = x
|x| , ∇f(x) =

F 0(|x|)x̂. Hence for g ∈ C1c (Rn),Z
Rn
4f(x)g(x)dx = −

Z
Rn
∇f(x) ·∇g(x) dx

= −
Z
Rn

F 0(r)x̂ ·∇g(rx̂) dx

= −
Z
Sn−1×[0,∞)

F 0(r)
d

dr
g(rω) rn−1dr dσ(ω)

=

Z
Sn−1×[0,∞)

d

dr
(rn−1F 0(r))g(rω)dr dσ(ω)

=

Z
Sn−1×[0,∞)

1

rn−1
d

dr
(rn−1F 0(r)) g(rω)rn−1 dr dσ(ω)

=

Z
Rn

1

rn−1
d

dr
(rn−1F 0(r))

¯̄̄̄
r=|x|

g(x) dx.

Since this is valid for all g ∈ C1c (Rn), Eq. (9.3) is valid. Alternatively, we may
simply compute directly as follows:

4f(x) = ∇ · [F 0(|x|)x̂] = ∇F 0(|x|) · x̂+ F 0(|x|)∇ · x̂

= F 00(|x|)x̂ · x̂+ F 0(|x|)∇ · x

|x| = F 00(|x|) + F 0(|x|)
½

n

|x| −
x

|x|2 · x̂
¾

= F 00(|x|) + (n− 1)|x| F 0(|x|).

Notation 9.3. For t > 0, let

(9.4) α(t) := αn(t) := cn

½
1

tn−2 if n 6= 2
ln t if n = 2,

where cn =
½ 1

(n−2)σ(Sn−1) if n 6= 2
− 1
2π if n = 2.

Also let

(9.5) φ(y) = φn(y) := α (|y|) = cn

½ 1
|y|n−2 if n 6= 2
ln |y| if n = 2.

An important feature of α is that

(9.6) α0(t) = cn

½ −(n− 2) 1
tn−1 if n 6= 2

1
t if n = 2

= − 1

σ(Sn−1)
1

tn−1

for all n. This then implies, for all n, that

(9.7) ∇φ(x) = ∇ [α (|x|)] = α0(|x|)x̂ = − 1

σ(Sn−1)
1

|x|n−1 x̂ = −
1

σ(Sn−1)
1

|x|nx.

One more piece of notation will be useful in the sequel.

Notation 9.4 (Averaging operator). Suppose µ is a finite measure on some space
Ω, we will define Z

−
Ω

fdµ :=
1

µ(Ω)

Z
Ω

fdµ.
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For example if Ω is a compact manifold with C2 — boundary in Rn thenZ
−
Ω

f(x)dx =
1

m(Ω)

Z
Ω

f(x)dx =
1

Vol(Ω)

Z
Ω

f(x)dx

and Z
−
∂Ω

fdσ =
1

σ(∂Ω)

Z
∂Ω

f(x)dx =
1

Area(∂Ω)

Z
∂Ω

f(x)dx.

Theorem 9.5. Let Ω be a compact manifold with C2- boundary, u ∈ C2(Ωo) ∩
C1(Ω) with

R
Ω
|∆u(y)| dy <∞. Then for x ∈ Ω

(9.8) u(x) =

Z
∂Ω

µ
φ(x− y)

∂u

∂n
(y)− u(y)

∂φ(x− y)

∂ny

¶
dσ −

Z
Ω

φ(x− y)4u(y)dy.

Proof. Let ψ(y) := φ(x − y) and � > 0 be small so that Bx(�) ⊂ Ω and let
Ω� := Ω \Bx(�), see Figure 27 below.

Figure 27. Removing the region where ψ is singular from Ω.

Let us begin by observingZ
|x−y|≤�

ψ(y) dy =

Z
|y|≤�

1

|y|n−2 dy = σ(Sn−1)
Z �

0

1

rn−2
rn−1 dr

= σ(Sn−1)
Z �

0

r dr = σ(Sn−1)
�2

2

when n 6= 2 and for n = 2 thatZ
|x−y|≤�

ψ(y) dy =

Z
|y|≤�

ln |y| dy = σ(S1)

Z �

0

r ln r dr

= 2π

·
1

2
r2 ln r − 1

4
r2
¸�
0

= π�2 [ln �− 1/2] .

This shows ψ ∈ L1loc(Ω) and hence that ψ∆u ∈ L1(Ω) and by dominated con-
vergence theorem, Z

Ω

ψ(y) 4u(y) dy = lim
�↓0

Z
Ω�

ψ(y)4u(y) dy.
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Using Green’s identity (Eq. (9.2) and Proposition 9.2) and ∆ψ = 0 on Ω�, we findZ
Ω�

4u(y)ψ(y) dy =

Z
Ω�

4ψ(y)u(y) dy +

Z
∂Ω�

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ

=

Z
∂Ω

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ +

Z
∂Ω�\∂Ω

µ
ψ
∂u

∂n
− ∂ψ

∂n
u

¶
dσ.(9.9)

Working on the last term in Eq. (9.9) we have, for n 6= 2,Z
∂B(x,�)

ψ(y)
∂u

∂n
(y) =

Z
|y|=�

ψ(x+ ω)
∂u

∂n
(x+ ω)dσ(ω)

=

Z
|ω|=1

ψ(x+ �ω)
∂u

∂n
(x+ �ω)�n−1dσ(ω)

=

Z
|ω|=1

1

�n−2
∂u

∂n
(x+ �ω)�n−1dσ(ω)

= �

Z
|ω|

∂u

∂n
(x+ �ω)dσ(ω)→ 0 as � ↓ 0.

Similarly when n = 2,Z
∂B(x,�)

ψ(y)
∂u

∂n
(y) = � ln �

Z
|ω|=1

∂u

∂n
(x+ �ω)dσ(ω)→ 0 as � ↓ 0.

Using Eq. (9.7) and n(y) = −\(y − x) as in Figure 28 we find

Figure 28. The outward normal to Ω� is the inward normal to B(x, �).

∂ψ

∂n
(y) = ∇yφ(y − x) · n(y) = − 1

σ(Sn−1)
1

|y − x|n (y − x) ·
³
−\(y − x)

´
=

1

σ(Sn−1)
1

�n−1
(9.10)
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and therefore

−
Z

∂Ω�\∂Ω

u
∂ψ

∂n
dσ(y) = − 1

σ(Sn−1)
1

�n−1

Z
∂B(x,�)

u(y)dσ(y)

= −
Z
−

|ω|=1

u(x+ �ω)dσ(ω)→ −u(x) as � ↓ 0

by the dominated convergence theorem. So we may pass to the limit in Eq. (9.9)
to find Z

Ω

ψ(y) 4u(y)dy =

Z
∂Ω

µ
ψ(y)

∂u

∂n
− u

∂ψ

∂n

¶
dσ(y)− u(x)

which is equivalent to Eq. (9.8).
The following Corollary gives an easy but useful extension of Theorem 9.5It will

be us

Corollary 9.6. Keeping the same notation as in Theorem 9.5. Further assume
that h ∈ C2(Ωo) ∩ C1(Ω) and ∆h = 0 and set G(y) := φ(x − y) + h(y). Then we
still have the representation formula

(9.11) u(x) =

Z
∂Ω

µ
G(y)

∂u

∂n
(y)− u(y)

∂G(y)

∂n

¶
dσ −

Z
Ω

G(y)4u(y)dy.

Proof. By Green’s identity (Proposition 8.28) with v = h,Z
Ω

4u hdm =

Z
Ω

(4uh−4h u)dm =

Z
∂Ω

µ
h
∂u

∂n
− ∂h

∂n
u

¶
dσ,

i.e.

(9.12) 0 = −
Z
Ω

4u h dm+

Z
∂Ω

µ
h
∂u

∂n
− ∂h

∂n
u

¶
dσ.

Eq. (9.11) now follows by adding Eqs. (9.8) and (9.12).

Corollary 9.7. For all u ∈ C2c (Rn),

(9.13) −
Z
Rn
4u(y)φ(y)dy = u(0).

Proof. Let Ω = B(0, R) where R is chosen so large that supp(g) ⊂ Ω, then by
Theorem 9.5,

u(0) =

Z
∂Ω

µ
φ(y)

∂u

∂v
(y)− u(y)

∂φ(y)

∂vy

¶
dσ −

Z
Ω

φ(y)4u(y)dy

= −
Z
Ω

φ(y)4u(y)dy.

Remark 9.8. We summarize (9.13) by saying −4φ = δ.

Formally we expect for reasonable functions ρ that

∆(φ ∗ ρ) = ∆φ ∗ ρ = −δ ∗ ρ = −ρ.
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Theorem 9.9. Suppose Ω ⊂o Rn, ρ ∈ C2(Ω) ∩ L1(Ω) and

u(x) :=

Z
Ω

φ(x− y)ρ(y)dy = (φ ∗ 1Ωρ) (x),

then
−4u = ρ on Ω.

Proof. First assume that ρ ∈ C2c (Ω) in which case we may set ρ := 1Ωρ ∈
C2c (Rn). Therefore

u(x) =

Z
Rn

ρ(y)
1

|x− y|n−2 dy =
Z
Rn

ρ(x− y)
1

|y|n−2 dy

and so we may differentiate under the integral to find

4u(x) =

Z
Rn

4xρ(x− y)
1

|y|n−2 dy = −ρ(x)

where the last equality follows from Corollary 9.7.
For ρ ∈ C2(Ω) ∩ L1(Ω) and x0 ∈ Ω, choose α ∈ C∞c (Ω, [0, 1]) such that α = 1 in

a neighborhood of x0 and let β := 1− α. Then u = (φ ∗ αρ) + (φ ∗ β1Ωρ) and so
(9.14) ∆u = ∆ (φ ∗ αρ) +∆ (φ ∗ β1Ωρ) .
By what we have just proved

(9.15) ∆ (φ ∗ αρ) (x) = − (αρ) (x) = −ρ(x) for x near x0.
Since β = 0 near x0 and

(φ ∗ β1Ωρ) (x) =
Z
Ω

φ(x− y)β(y)ρ(y)dy,

we may differentiate past the integral to learn

(9.16) ∆ (φ ∗ β1Ωρ) (x) =
Z
Ω

∆xφ(x− y)β(y)ρ(y)dy = 0

for x near x0. and this completes the proof. The combination of Eqs. (9.14 — 9.16)
completes the proof.

9.1. Harmonic and Subharmonic Functions.

Definition 9.10 (HarmonicFunctions). Let Ω ⊂o Rn. A function u ∈ C2(Ω) is
said to be harmonic (subharmonic) on Ω if ∆u = 0 (∆u ≥ 0) on Ω.
Because of the Cauchy Riemann equations, the real and imaginary parts of

holomorphic functions are harmonic. For example z2 = (x2 − y2) + 2ixy implies
(x2 − y2) and xy are harmonic functions on the plane. Similarly,

ez = ex cos y + iex sin y and

ln(z) = ln r + iθ

implies
ex cos y, ex sin y, ln r, and θ(x, y)

are harmonic functions on their domains of definition.
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Remark 9.11. If we can choose h in Corollary 9.6 so that G = 0 on ∂Ω, then Eq.
(9.11) gives

(9.17) u(x) = −
Z
Ω

G(y)4u(y)dy −
Z
∂Ω

u
∂G(y)

∂v
dσ

which shows how to recover u(x) from ∆u on Ω and u on ∂Ω. The next theorem is
a consequence of this remark.

Theorem 9.12 (Mean Value Property). If 4u = 0 on Ω and B(x, r) ⊂ Ω then
(9.18) u(x) =

1

σ(∂B(x, r))

Z
∂B(x,r)

u(y) dσ(y) =:

Z
−

∂B(x,r)

u dσ

More generally if ∆u ≥ 0 on Ω, then
(9.19) u(x) ≤

Z
−

∂B(x,r)

u dσ

Proof. For y ∈ B(x, r),

G(y) = φ(x− y)− α(r) = α (|x− y|)− α(r)

where α is defined as in Eq. (9.4). Then G(y) = 0 for y ∈ ∂B(x, r) and G(y) > 0
for all y ∈ B(x, r) because α is decreasing as is seen from Eq. (9.6). From Eq.
(9.10) (using now that n is the outward normal to B(x, r)),

∂G

∂n
(x+ rω) = − 1

σ(Sn−1)rn−1
for |ω| = 1

and so according to Eq. (9.17) we have

u(x) =
1

rn−1σ(Sn−1)

Z
∂B(x,r)

udσ −
Z

B(x,r)

G(y)4u(y)dy

=

Z
−

∂B(x,r)

u dσ −
Z

B(x,r)

G(y)4u(y)dy.(9.20)

This completes the proof since G(y) > 0 for all y ∈ B(x, r).

Remark 9.13 (Mean value theorem). Assuming B(x,R) ⊂ Ω and multiplying Eq.
(9.18) (Eq. (9.19)) by

σ(∂B(x, r)) = σ(Sn−1)rn−1

and then integrating on 0 ≤ r ≤ R, implies

u(x)m(B(x,R)) = (or ≤)
Z R

0

dr

Z
∂B(x,r)

u(y) dσ(y)

=

Z R

0

dr rn−1
Z

Sn−1

u(x+ rω) dσ(ω) =

Z
B(x,R)

udm.

Therefore if ∆u = 0 or ∆u ≥ 0 then
(9.21) u(x) =

Z
−

B(x,R)

udm or u(x) ≤
Z
−

B(x,R)

udm respectively
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for all B(x,R) ⊂ Ω.
Proposition 9.14 (Converse of the mean value property). If u ∈ C(Ω) (or more
generally measurable and locally bounded) and

(9.22) u(x) =

Z
−

∂B(x,r)

u(y)dσ(y)

for all x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω, then u ∈ C∞(Ω) and 4u = 0.
Similarly, if u ∈ C2(Ω) and x ∈ Ω and

(9.23) u(x) ≤
Z
−

∂B(x,r)

u(y)dσ(y)

for all r sufficiently small, then ∆u(x) ≥ 0.
Proof. First assume u ∈ C(Ω) and Eq. (9.22) hold which implies

(9.24) u(x) =

Z
−
S

u(x+ rω)dσ(ω)

for all x ∈ Ω and r sufficiently small, where S = Sn−1 denotes the unit sphere in
Rn. Let η ∈ C∞c (Rn, [0,∞)) such that η(0) > 0 and

1 =

Z
Rn

η(|x|2)dx = σ(S)

Z ∞
0

η(r2)rn−1dr

and for � > 0 let η�(x) = �−nη
³
|x|2
�2

´
∈ C∞c (Rn) and u�(x) = η� ∗ u(x). Then for

any x0 ∈ Ω and � > 0 sufficiently small, u� is a well defined smooth function near
x0. Moreover for x near x0 we have

u�(x) =

Z
Rn

η�(x− y)u(y)dy =

Z ∞
0

dr rn−1
Z

|ω|=1

η�(rω)u(x+ rω)dσ(ω)

=

Z ∞
0

drrn−1
Z

|ω|=1

�−nη
µ
r2

�2

¶
u(x+ rω)dσ(ω)

= u(x)σ(S)

Z ∞
0

dr rn−1�−nη
µ
r2

�2

¶
= u(x)

which shows u is smooth near x0.
Now suppose that u ∈ C2, and u satisfies Eq. (9.23), x ∈ Ω and |r| < � with �

sufficiently small so that

f(r) :=

Z
−

∂B(x,r)

u dσ =

Z
−

Sn−1

u(x+ rω)dσ(ω)

is well defined. Clearly f ∈ C2 (−�, �) , f is an even function of r so f 0(0) = 0,
f(0) = u(x) and f(r) ≥ f(0). From these conditions it follows that f 00(0) ≥ 0 for
otherwise we would find from Taylor’s theorem that f(r) < f(0) for 0 < |r| < �.
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On the other hand

0 ≤ f 00(0) =
Z
−

Sn−1

¡
∂2ωu

¢
(x)dσ(ω) =

Z
−

Sn−1

(∂i∂ju) (x)ωiωjdσ(ω)

= (∂i∂ju) (x)δij

Z
−

Sn−1

ω2i dσ(ω) =
1

n
∆u(x).(9.25)

wherein we have used the symmetry of dσ on Sn−1 to concludeZ
−

Sn−1

ωiωjdσ(ω) = 0 if i 6= j

and Z
−

Sn−1

ω2i dσ(ω) =
1

n

nX
j=1

Z
−

Sn−1

ω2jdσ(ω) =
1

n

Z
−

Sn−1

|ω|2 dσ(ω) = 1

n
∀ i.

Alternatively, by the divergence theorem,Z
−

Sn−1

ωiωjdσ(ω) =

Z
−

Sn−1

ωiej · n(ω)dσ(ω) = 1

σ(Sn−1)

Z
B(0,1)

∇ · (xiej) dm

=
1

σ(Sn−1)
m(B(0, 1))δij =

1

n
δij .

This completes the proof since if u satisfies (9.22) then f is constant and it follows
from Eq. (9.25) that ∆u(x) = 0.
Second proof of the last statement. Now that we know u is C2 we have by

Eq. (9.20) that Z
B(x,r)

G(y)4u(y)dy =

Z
−

∂B(x,r)

u dσ − u(x) ≥ 0

and since with α as in Eq. (9.4),Z
B(x,r)

G(y)4u(y)dy =

Z
B(0,r)

G(x+ y)4u(x+ y)dy

=

Z r

0

ρn−1dρ
Z
Sn

dωG(x+ ρω)4u(x+ ρω)

=

Z r

0

ρn−1dρ (α(ρ)− α(r))

Z
Sn

dω4u(x+ ρω)

∼= ∆u(x)σ(Sn−1)
Z r

0

ρn−1dρ (α(ρ)− α(r))

= ∆u(x)σ(Sn−1)cn

½
r2

2
− rn

nrn−2

¾
= bnr

2∆u(x)

where bn is a positive constant. From this it follows that ∆u(x) ≥ 0.
Third proof of the last statement. If u ∈ C2(Ω) satisfies expand u(x+ rω)

in a Taylor series

u(x+ rω) = u(x) + r∇u(x) · ω + r2

2
∂2ωu(x) + o(r3),
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and integrate on ω to findZ
−

∂B(x,r)

udσ =

Z
−

Sn−1

u(x+ rω)dσ(ω)

=

Z
−

Sn−1

·
u(x) + r∇u(x) · ω + r2

1

2
∂2ωu(x) + . . .

¸
dσ(ω)

= u(x) +
1

2
r2∆u(x) + o(r2).

Thus if u satisfies Eq. (9.22) Eq. (9.23) we conclude

u(x) = u(x) +
1

2
r2∆u(x) + o(r2) or

u(x) ≤ u(x) +
1

2
r2∆u(x) + o(r2)

from which we conclude ∆u(x) = 0 or ∆u(x) ≥ 0 respectively.
Fourth proof of the statement: If u satisfies Eq. (9.22) then ∆u = 0. Since

we already know u is smooth, it is permissible to differentiate Eq. (9.24) in r to
learn,

0 =

Z
−

Sn−1

∇u(x+ rω) · ω dσ(ω) =

Z
−

Sn−1

∂u

∂n
(x+ rω) dσ(ω)

=
1

σ(Sn−1)rn−1

Z
∂B(x,r)

∇u · n dσ =
1

σ(Sn−1)rn−1

Z
B(x,r)

4u dm.

Dividing this equation by r and letting r ↓ 0 shows ∆u(x) = 0.
Corollary 9.15 (Smoothness of Harmonic Functions). If u ∈ C2(Ω) and 4u =
0 then u ∈ C∞(Ω). (Soon we will show u is real analytic, see Theorem 9.16 of
Corollary 9.32 below.)

Theorem 9.16 (Bounds on Harmonic functions). Suppose u is a Harmonic func-
tion on Ω ⊂ Rn, x0 ∈ Ω, α is a multi-index with k := |α| and 0 < r < dist(xo, ∂Ω).
Then

(9.26) |Dαu(x0)| ≤ Ck

rn+k
kukL1(B(x0,r)) ≤

Ck

dist(xo, ∂Ω)n+k
kukL1(Ω)

where Ck =
(2n+1n k)k

α(n) . In particular one shows that u is real analytic in Ω.

Proof. Let η�(x) be constructed as in the proof of Proposition 9.14 so that
u(x) = u ∗ η�(x). Therefore, Dαu(x) = u∗Dαη�(x) and hence

|Dαu(x0)| ≤ kukL1(B(x0,�))kDαη�kL∞ .
Now

Dαη�(x) = �−n
1

�|α|
(Dαη)(

x

�
)

so that

|Dαη�(x)| = �−n
1

�|α|

¯̄̄
(Dαη)(

x

�
)
¯̄̄
≤ Cα

1

�|α|+n
∼= Cα

1

r|α|+n
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where the last identity is gotten by taking � comparable to r. Putting this all
together then implies that

|Dαu(x0)| ≤ 1

rn+|α|
kDαηkL∞kukL1(B(x0,r))

which is an inequality of the form in Eq. (9.26). To get the desired constant we
will have to work harder. This is done in Theorem 7. on p. 29 of the book. The
idea is to use Dαu is harmonic for all α and therefore,

Dαu(x0) =

Z
−

B(x0,ρ)

Dαudm =

Z
−

B(x0,ρ)

∂iD
βudm =

n

σ(Sn−1)ρn

Z
B(x0,ρ)

∂iD
βudm

=
n

σ(Sn−1)ρn

Z
∂B(x0,ρ)

Dβunidσ

so that
|Dαu(x0)| ≤ n

ρ

°°Dβu
°°
L∞(B(x0,ρ))

and for α = 0 and x ∈ B(x0, r/2) we have

|u(x)| ≤
Z
−

B(x,r/2)

|u| dm ≤ 1

|B(0, 1)|
µ
2

r

¶n
kukL1(B(x0,r) .

Using this and similar inequalities along with a tricky induction argument one gets
the desired constants. The details are in Theorem 7. p. 29 and Theorem 10 p.31
of the book. (See also Corollary 9.32 below for another proof of analyticity of u.)

Corollary 9.17 (Liouville’s Theorem). Suppose u ∈ C2 (Rn) , ∆u = 0 on Rn and
|u(x)| ≤ C(1 + |x|N ) for all x ∈ Rn. Then u is a polynomial of degree at most N.

Proof. We have seen there are constants C|α| <∞ such that

|Dαu(x0)| ≤ C|α|kukL1(B(x0,r))
1

rn+|α|

≤ eC|α|rnkukL∞(B(x0,r)) · 1

rn+|α|

∼= C
(1 + rN )

r|α|
→ 0 as r →∞

when if |α| > N. Therefore Dαu := 0 for all |α| > N and the the result follows by
Taylor’s Theorem with remainder,

u(x) =
X
|α|≤N

Dαu(x0)(x− x0)
α

α!
.

Corollary 9.18 (Compactness of Harmonic Functions). Suppose Ω ⊂o Rn and
un ∈ C2(Ω) is a sequence of harmonic functions such that for each compact set
K ⊂ Ω,

CK := sup

½Z
K

|un| dm : n ∈ N
¾
<∞.

Then there is a subsequence {vn} ⊂ {un} which converges, along with all of its
derivatives, uniformly on compact subsets of Ω to a harmonic function u.
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Proof. An application of Theorem 9.16 shows that for each compact set K ⊂ Ω,
supn |∇un|L∞(K) <∞ and hence by the locally compact form of the Arzela-Ascolli
theorem, there is a subsequence {vn} ⊂ {un} which converges uniformly on compact
subsets of Ω to a continuous function u ∈ C(Ω). Passing to the limit in the mean
value theorem for harmonic functions along with the converse to the mean value
theorem, Proposition 9.14, shows u is harmonic on Ω. Since vm → u uniformly on
compacts it follows for any K @@ Ω that

R
K
|u− vn| dm→ 0. Another application

of Theorem 9.16 then shows Dαvn → Dαu uniformly on compacts.
In light of Proposition 9.14, we will extend the notion of subharmonicity as

follows.

Definition 9.19 (Subharmonic Functions). A function u ∈ C(Ω) is said to be
subharmonic if for all x ∈ Ω and all r > 0 sufficiently small,

u(x) ≤
Z
−

∂B(x,r)

u dσ.

The reason for the name subharmonic should become apparent from Corollary 9.25
below.

Remark 9.20. Suppose that u, v ∈ C(Ω) are subharmonic functions then so is u+v.
Indeed,

u(x) + v(x) ≤
Z
−

∂B(x,r)

u dσ +

Z
−

∂B(x,r)

v dσ =

Z
−

∂B(x,r)

(u+ v) dσ.

Theorem 9.21 (Harnack’s Inequality). Let V be a precompact open and connected
subset of Ω. Then there exists C = C(V,Ω) such that

sup
V

u ≤ C inf
V

u

for all non-negative sub-harmonic functions, u, on Ω.

Proof. Let r = 1
4dist(V,Ω

c) and x ∈ V (as in Figure 29) and |y − x| ≤ r, then

Figure 29. A pre-compact region V ⊂ Ω.
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by the mean value inequality in Eq. (9.21) of Remark 9.13,

u(x) =

Z
−

B(x,2r)

u(z)dz =
1

m(B(0, 1))(2r)n

Z
B(x,2r)

u(z)dz

≥ 1

m(B(0, 1))(2r)n

Z
B(y,r)

u(z)dz =
1

2n

Z
−

B(y,r)

u(z)dz =
1

2n
u(y),

see Figure 30. Therefore u(x) ≥ 1
2nu(y) provided x, y ∈ V with |x − y| ≤ r. Since

Figure 30. Nested balls.

V̄ is compact there exists a finite cover S := {Wi}Mi=1 of V̄ consisting of balls with
of radius r with centers xi ∈ V̄ . For all x, y ∈ V, there exists a path γ : x → y
and hence a chain Bi ∈ S such that x ∈ B1, y ∈ Bk and Bi ∩ Bi+1 6= φ for all
i = 1, . . . , k − 1. It then follows from what we have just proved that

u(y) ≤ (2n)k u(x) ≤ 2Mn u(x) =: Cu(x)

for all x, y ∈ V, i.e. sup
V

u ≤ C inf
V

u where C := 2Mn.

Theorem 9.22 (Strong Maximum Principle). Let Ω ⊂ Rn be connected and open
and u ∈ C(Ω) be a subharmonic function (see Definition 9.19). If M = sup

x∈Ω
u(x) is

attained in Ω then u :=M. (Notice that u ∈ C2(Ω) and ∆u = 0, then u is harmonic
and hence in particular sub-harmonic.)

Proof. Suppose there exists x ∈ Ω such that M = u(x). If � > 0 is chosen so
that B(x, �) ⊂ Ω as in Figure 27 and u(y) < M for some y ∈ ∂B(x, �), then by the
mean value inequality,

M = u(x) ≤
Z
−

∂B(x,�)

u(y)dσ(y) < M

which is nonsense. Therefore u := M on ∂B(x, �) and since � ∈ (0, dist(x, ∂Ω))
we concluded that u := M on B(x,R) provided B(x,R) ⊂ Ω. Therefore {x ∈ Ω :
u(x) = M} is both open and relatively closed in Ω and hence {x ∈ Ω : u(x) =
M} = Ω because Ω is connected.
Corollary 9.23. If Ω is bounded open set u ∈ C(Ω) is subharmonic, then

M := max
x∈Ω

u(x) = max
x∈bd(Ω)

u(x).
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Again this corollary applies to u ∈ C(Ω) ∩ C2(Ω) such that ∆u = 0.
Proof. By Theorem 9.22, if x ∈ Ω is an interior maximum of u, then u =M on

the connected component Ωx of Ω which contains x. By continuity, u is constant
on Ω̄x and in particular u takes on the value M on bd(Ω).

Corollary 9.24. Given g ∈ C(bd(Ω)), f ∈ C(Ω) there exists at most one function
u ∈ C2(Ω) ∩ C(Ω) such that 4u = f on Ω and u = g on bd(Ω).

Proof. If v ∈ C2(Ω) ∩ C(Ω) is another such function then w := u − v ∈
C2(Ω) ∩ C(Ω) satisfies ∆w = 0 in Ω and w = 0 on bd(Ω). Therefore applying
Corollary 9.23 to w and −w implies

max
x∈Ω

w(x) = max
x∈bd(Ω)

w(x) = 0 and min
x∈Ω

w(x) = min
x∈bd(Ω)

w(x) = 0.

Corollary 9.25. Suppose g ∈ C(bd(Ω)) and u ∈ C2(Ω) ∩ C(Ω) such that 4u = 0
on Ω. Then w ≤ u for any subharmonic function w ∈ C(Ω̄) such that w ≤ g on
bd(Ω).

Proof. The function −u is subharmonic and so is v = w − u by Remark 9.20.
Since v = w − g ≤ 0 on bd(Ω), it follows by Corollary 9.23 that v ≤ 0 on Ω, i.e.
w ≤ g on Ω.

9.2. Green’s Functions.

Notation 9.26. Unless otherwise stated, for the rest of this section assume Ω ⊂ Rn
is a compact manifold with C2 — boundary.

For x ∈ Ω, suppose there exists h ∈ C2(Ωo) ∩ C1(Ω) which solves
(9.27) 4hx = 0 on Ω with hx(y) = φ(x− y) for y ∈ ∂Ω.

Hence if we define

(9.28) G(x, y) = φx(y)− hx(y)

then by the representation formula (Eq. (9.11) also see Remark 9.11) implies

(9.29) u(x) = −
Z
Ω

G(x, y)4u(y) dy −
Z
∂Ω

∂G

∂ny
(x, y) u(y) dσ(y)

for all u ∈ C2(Ωo) ∩ C1(Ω).
Throughout the rest of this subsection we will make the following assumption.

Assumption 2 (Solvability of Dirichlet Problem). We assume that for each g ∈
C(∂Ω) there exists h = hg ∈ C2(Ωo) ∩ C1(Ω) such that

∆h = 0 on Ω with h = g on ∂Ω.

In this case we define G(x, y) as in Eq. (9.28). We will (almost) verify that this
assumption holds in Section 9.5 below. The full verification will come later when
we study Hilbert space methods.

Theorem 9.27. Let G(x, y) be given as in Eq (9.28). Then
(1) G(x, y) is smooth on (Ωo × Ωo)\4 where 4 = {(x, x) : x ∈ Ωo}.
(2) G(x, y) = G(y, x) for all x, y ∈ Ω. In particular the function h(x, y) :=

hx(y) is symmetric in x, y and x ∈ Ωo → hx ∈ C(Ω) is a smooth mapping.



140 BRUCE K. DRIVER†

(3) If Ω is connected, then G(x, y) > 0 for all (x, y) ∈ (Ωo × Ωo)\4.

Proof. Let � > 0 be small and Ω� := Ω\ (B(x, �) ∪B(z, �)) as in Figure 31, then

Figure 31. Excising the singular region from Ω.

by Green’s theorem and the fact that ∆yG(x, y) = 0 if y 6= x,

0 =

Z
Ω�

4yG(x, y)G(z, y)dy

=

Z
∂Ω�

µ
∂

∂n
G(x, y)G(z, y)−G(x, y)

∂G

∂n
(z, y)

¶
dσ +

Z
Ω�

G(x, y)4yG(z, y)dy

=

Z
∂Ω�

µ
∂

∂n
G(x, y)G(z, y)−G(x, y)

∂G

∂n
(z, y)

¶
dσ

Since G(x, y) and G(z, y) = 0 for y ∈ ∂Ω, the previous equation implies,Z
∂(B(x,�)∪B(z,�)).

½
∂

∂ny
G(x, y)G(z, y)−G(z, y)

∂

∂ny
G(z, y)

¾
dσ = 0.

We now let � ↓ 0 in the above equations to find

(9.30) lim
�↓0

Z
∂(B(x,�))

∂φ(x− y)

∂ny
G(z, y)dσ(y) = lim

�↓0

Z
∂B(z,�)

G(x, y)
∂

∂ny
φ(z − y) dσ.

Moreover as we have seen above,

lim
�↓0

Z
∂B(z,�)

G(x, y)
∂

∂ny
φ(z − y) dσ = G(x, z) and

lim
�↓0

Z
∂(B(x,�))

∂φ(x− y)

∂ny
G(z, y)dσ(y) = G(z, x)

and hence G(x, z) = G(z, x). SinceG(x, y) = φ(x−y)−hx(y) and φ(x−y) = φ(y−x)
it follows that hx(y) = hy(x) =: h(x, y). Therefore y → hx(y) and x → hx(y) are
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smooth functions. Now by the maximum principle:

|hx(y)− hz(y)| ≤ max
y∈∂Ω

|hx(y)− hz(y)| = max
y∈∂Ω

|φ(x− y)− φ(z − y)|→ 0 as x→ z.

Therefore the map x ∈ Ω → hx ∈ C(Ω) is continuous and in particular the map
(x, y)→ h(x, y) is jointly continuous. Finally letting η be as in the proof of Propo-
sition 9.14, we find

h(x, y) =

Z
Ω

h(ex, y)η(x− ex)dex
=

Z
Ω×Ω

h(ex, ey) η(y − ey) η(x− ex) dex dey
from which it follows that in fact h is smooth on Ω× Ω.
It only remains to show x → hx ∈ C(Ω) is smooth as well. Fix x ∈ Ω and for

v ∈ Rn, let Hv ∈ C2(Ωo) ∩ C1(Ω) denote the solution to
∆Hv = 0 on Ω with Hv(y) = v ·∇φ(x− y) for y ∈ ∂Ω.

Notice that v → Hv is linear and by the maximum principle,

khx+v − hx −HvkL∞(Ω) ≤ khx+v − hx −HvkL∞(∂Ω)
= kφ(x+ v − ·)− φ(x− ·)− v ·∇φ(x− ·)kL∞(∂Ω) .

Now,

φ(x+ v − y)− φ(x− y)− v ·∇φ(x− y)

=

Z 1

0

[∇φ(x+ tv − y)−∇φ(x− y)] · vdt
so that, by the dominated convergence theorem,

||φ(x+ v − ·)− φ(x− ·)− v ·∇φ(x− ·)||L∞(∂Ω)

≤ |v|
Z 1

0

k∇φ(x+ tv − ·)−∇φ(x− ·)kL∞(∂Ω) dt = o (|v|) .
This proves x→ hx is differentiable and that ∂vhx = Hv. Similarly one shows that
x→ hx has higher derivatives as well.
For the last item, let x ∈ Ωo and choose � > 0 sufficiently small so that B(x, �) ⊂

Ωo \ {y} and G(x, z) > 0 for all z ∈ B(x, �). Then the function u(y) := G(x, y) is
Harmonic on Ω0 \B(x, �), u ∈ C(Ω \B(x, �)), u = 0 on ∂Ω and u > 0 on ∂B(x, �).
Hence by the maximum principle, 0 ≤ u on Ω \B(x, �) and since u is not constant
we must also have u > 0 on Ω0 \ B(x, �). Since � > 0 was any sufficiently small
number, it follows G(x, y) > 0 for all y ∈ Ωo \ {x} .
Corollary 9.28. Keeping the above hypothesis and assuming ρ ∈ C2(Ωo) ∩ L1(Ω)
and g ∈ C(∂Ω), then there is (a necessarily unique) solution u ∈ C2(Ωo)∩C(Ω) to
(9.31) ∆u = −ρ with u = g on ∂Ω

which is given by Eq. (9.29).

Proof. According to the remarks just before Eq. (9.29), if a solution to Eq.
(9.31) exists it must be given by

(9.32) u(x) =

Z
Ω

G(x, y)ρ(y) dy −
Z
∂Ω

∂G

∂ny
(x, y) g(y) dσ(y).
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From Assumption 2, there exists a solution v ∈ C2(Ω) ∩ C1(Ω̄) such that ∆v = 0
and v = g on ∂Ω. So replacing u by u− v if necessary, it suffices to prove there is
a solution u ∈ C2(Ωo) ∩ C(Ω) such that Eq. (9.31) holds with g ≡ 0. To produce
this solution, let

u(x) :=

Z
Ω

G(x, y)ρ(y) dy =

Z
Ω

φ(x− y)ρ(y) dy −H(x)

where

H(x) :=

Z
Ω

h(x, y)ρ(y)dy.

Using the result in Theorem 9.27, one easily shows H ∈ C∞(Ωo) ∩ C1(Ω)and
∆H = 0. By Theorem 9.9,

∆x

Z
Ω

φ(x− y)ρ(y) dy = −ρ(x) for x ∈ Ω

and therefore u ∈ C2(Ω) and ∆u = −ρ.
Remark 9.29. Because of the maximum principle, for any x ∈ Ω the map g ∈
C(∂Ω) → hg(x) ∈ C(Ω̄) is a positive linear functional. So by the Riesz represen-
tation theorem, there exists a unique positive probability measure σx on ∂Ω such
that

hg(x) =

Z
∂Ω

g(y)dσx(y) for all g ∈ C(∂Ω).

Evidently this measure is given by

dσx(y) = − ∂G

∂ny
(x, y)dσ(y)

and in particular − ∂G
∂ny

(x, y) ≥ 0 for all x ∈ Ω and y ∈ ∂Ω. It is in fact easy to see

that − ∂G
∂ny

(x, y) > 0 for all x ∈ Ω and y ∈ ∂Ω.

9.3. Explicit Green’s Functions and Poisson Kernels. In this section we will
use the method of images to construct explicit formula for the Green’s functions
and Poisson Kernels for the half plane6, H̄n = {x ∈ Rn : xn ≥ 0}and Balls B(0, a).
For x = (x0, z) ∈ Rn−1 × (0,∞) = Hn let Rx := (x0,−z). It is simple to verify
|x− y| = |Rx− y| for all x ∈ Hn and y ∈ ∂H̄n. Form this and the properties of φ,
one concluded, for x ∈ Hn, that hx(y) := φ(y − Rx) is Harmonic in y ∈ Hn and
hx(y) = φ(x−y) for all y ∈ ∂H̄n. These remarks give rise to the following theorem.

Theorem 9.30. For x, y ∈ H̄n, let

G(x, y) := φ(y − x)− φ(y −Rx) = φ(y − x)− φ(Ry − x).

Then G is the Greens function for ∆ on Hn and

K(x, y) := −∂G
∂n
(x, y) =

2xn
σ(Sn−1)

1

|x− y|n for x ∈ H
n and y ∈ ∂H̄n

6We will do this again later using the Fourier transform.



PDE LECTURE NOTES, MATH 237A-B 143

is the Poisson kernel for Hn. Furthermore if ρ ∈ C2(Hn) ∩ L1(Hn) and f ∈
BC

¡
∂H̄n

¢
, then

u(x) =

Z
Hn

G(x, y)ρ(y)dy +

Z
∂H̄n

K(x, y)f(y)dσ(y)

solves the equation

∆u = −ρ on Hn with u = f on ∂H̄n.

Proof. First notice that

G(y, x) = φ(x− y)− φ(x−Ry) = φ(x− y)− φ(Rx−RRy) = G(x, y)

since φ is a function of |·| . Therefore, if

u(x) =

Z
Hn

G(x, y)ρ(y)dy =

Z
Hn

φ(x− y)ρ(y)dy −
Z
Hn

φ(x−Ry)ρ(y)dy,

we have from Theorem 9.9 that

∆u(x) = −ρ(x)−
Z
Hn
∆xφ(x−Ry)ρ(y)dy = −ρ(x).

Since G(x, y) = 0 for x ∈ ∂H̄n and so u(x) = 0 for x ∈ ∂H̄n. It is left to the reader
to show u is continuous on Hn.
For x ∈ Hn and y ∈ ∂H̄n, we find form Eq. (9.7),

K(x, y) := − ∂G

∂ny
(x, y) =

∂

∂yn
G(x, y)

=
∂

∂yn
[φ(y − x)− φ(y −Rx)]

= − 1

σ(Sn−1)
1

|y − x|n (y − x) · en + 1

σ(Sn−1)
1

|y −Rx|n (y −Rx) · en

=
1

σ(Sn−1)
2xn

|y − x|n .

Claim: For all x ∈ Hn, Z
∂H̄n

K(x, y)dy = 1.

It is possible to prove this by direct computation, since (writing x = (x0, xn) as
above) Z

∂H̄n
K(x, y)dy =

2

σ(Sn−1)

Z
Rn−1

xn

(|x0 − y|2 + x2n)
n/2

dy

=
2

σ(Sn−1)

Z
Rn−1

1

(|y|2 + 1)n/2
dy

=
2

σ(Sn−1)
σ(Sn−2)

Z ∞
0

rn−2
1

(r2 + 1)
n/2

dr

where in the second equality we have made the change of variables y → xny and in
the last we passed to polar coordinates. When n = 2 we findZ ∞

0

rn−2
1

(r2 + 1)n/2
dr =

Z ∞
0

1

r2 + 1
dr = π/2
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and for n = 3 we may let u = r2 to find

Z ∞
0

rn−2
1

(r2 + 1)
n/2

dr =

Z ∞
0

r
1

(r2 + 1)
3/2

dr =
1

2

Z ∞
0

1

(u+ 1)
3/2

du = 1.

These results along with

Z ∞
0

rn−2
1

(r2 + 1)n/2
dr =

Z ∞
0

¡
r2 + 1

¢−n/2
d
rn−1

n− 1 =
n/2

n− 1
Z ∞
0

¡
r2 + 1

¢−n/2−1
2r rn−1dr

=
n

n− 1
Z ∞
0

rn
1

(r2 + 1)
n+2
2

dr

allows one to compute
R∞
0

rn−2 1
(r2+1)n/2

dr inductively. I will not carry out the
details of this method here. Rather, it is more instructive to use Corollary 9.6 to
prove the claim. In order to do this let u ∈ C∞c (B(0, 1), [0, 1]) such that u(0) = 1,
u(x) = U(|x|) and U(r) is decreasing as r decreases. Then by Corollary 9.6, with
u(x) = uM (x) := u(x/M),

(9.33) uM (x) =

Z
∂H̄n

K(x, y)u(y/M)dσ(y)−M−2
Z
Hn

G(x, y) (4u) (y/M)dy.

By the monotone convergence theorem,

lim
M↑∞

Z
∂H̄n

K(x, y)u(y/M)dσ(y) =

Z
∂H̄n

K(x, y)dσ(y)

and therefore passing the limit in Eq. (9.33) gives

1 =

Z
∂H̄n

K(x, y)dσ(y)− lim
M↑∞

M−2 Z
Hn

G(x, y)4u(y/M)dy

 .
This latter limit is zero, since

M−2
Z
Hn

G(x, y)4u(y/M)dy = cnM
−2
Z
Hn

"
1

|x− y|n−2 −
1

|Rx− y|n−2
#
(4u) (y/M)dy

= cnM
−2Mn

Z
Hn

"
1

|x−My|n−2 −
1

|Rx−My|n−2
#
4u(y)dy

= cn

Z
Hn

"
1

|x/M − y|n−2 −
1

|Rx/M − y|n−2
#
4u(y)dy.
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This latter expression tends to zero and M → ∞ by the dominated convergence
and this proves the claim. (Alternatively, for y large,

1

|x− y|n−2 −
1

|Rx− y|n−2 =
1

|y|n−2

 1¯̄̄
x
|y| − ŷ

¯̄̄n−2 − 1¯̄̄
R x
|y| − ŷ

¯̄̄n−2


=
1

|y|n−2
·µ
1 + 2

x

|y| · ŷ + . . .

¶
−
µ
1 + 2

Rx

|y| · ŷ + . . .

¶¸
= O(

1

|y|n−1 )

and therefore

M−2
Z
Hn

"
1

|x− y|n−2 −
1

|Rx− y|n−2
#
(4u) (y/M)dy = O

µ
M−2

1

Mn−1M
n

¶
= O (1/M)→ 0

as M →∞.
Since G(x, y) is harmonic in x, it follows that K(x, y) = − ∂

∂ny
K(x, y) is still

Harmonic in x. and therefore

u(x) :=

Z
∂H̄n

K(x, y)f(y)dσ(y) =
2

σ(Sn−1)

Z
∂H̄n

xn
|x− y|n f(y)dσ(y)

is harmonic as well. Since

u(x) =
2

σ(Sn−1)

Z
∂H̄n

xn

(|x0 − y|2 + x2n)
n/2

f(y)dy

=
2

σ(Sn−1)
1

xn−1n

Z
∂H̄n

1³
|x0−yxn

|2 + 1
´n/2 f(y)dy

it follows from Theorem 7.13 that u((x0, xn))→ f(x0) as xn ↓ 0 uniformly for x0 in
compact subsets of ∂H̄n.

9.4. Green’s function for Ball. Let r > 0 be fixed, we will construct the Green’s
function for the ball B(0, r). The idea for a given x ∈ B(0, r), we should find a mirror
location, say ρx̂ and a charge q so that

φ(x− y) = qφ (ρx̂− y) for all |y| = r.

Assuming for the moment that n ≥ 3 and writing q = β(2−n), this leads to the
equations

|x− y|2 = |βρx̂− βy|2 = β2 |ρx̂− y|2

or equivalently squaring out both sides and using |y| = r,

|x|2 − 2x · y + r2 = β2
¡
ρ2 − 2ρx̂ · y + r2

¢
.

Choosing y ⊥ x and y = rx̂ leads to the conditions

|x|2 + r2 = β2
¡
ρ2 + r2

¢
and

|x|2 − 2r |x|+ r2 = β2
¡
ρ2 − 2ρr + r2

¢
.
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Subtracting these two equations implies −2r |x| = −2ρβ2r or equivalently that
ρ = |x|/β2. Putting this into the first equation above then implies

|x|2 + r2 =
|x|2
β2

+ β2r2

or equivalently that

0 = r2β4 −
³
|x|2 + r2

´
β2 + |x|2 .

By the quadratic formula, this implies

β2 =

³
|x|2 + r2

´
±
r³

|x|2 + r2
´2
− 4r2 |x|2

2r2

=

³
|x|2 + r2

´
±
r³

|x|2 − r2
´2

2r2
=

³
|x|2 + r2

´
±
³
r2 − |x|2

´
2r2

= 1 or
|x|2
r2

.

Clearly the charge β = 1 will not work so we must take β = |x| /r in which case,
ρ = r2/ |x| and hence

qφ (ρx̂− y) = (|x| /r)(2−n) φ
µ
r2

x̂

|x| − y

¶
= φ

µ
rx̂− |x|

r
y

¶
.

Let us now verify that our guess has worked. Let us begin by noting the following
identities for x, y ∈ Rn,
(9.34)

¯̄
rx̂− r−1 |x| y¯̄2 = ³r2 − 2x · y + r−2 |x|2 |y|2

´
and in particular when |y| = r this implies

|x̂r − |x|ŷ|2 = ¡r2 − 2x · y + |x|2¢ = |x− y|2
so that

(9.35) |x− y| = |x̂r − |x|ŷ| =
¯̄̄̄
x

|x|r − |x|
y

r

¯̄̄̄
.

Now the function

hx(y) = φ

µ
rx̂− |x|

r
y

¶
= φ

µ |x|
r

µ
y − r2

x

|x|2
¶¶

is harmonic in y and by Eq. (9.35),

hx(y) = φ
³
x̂r − |x| y

r

´
= φ (x̂r − |x| ŷ) = φ(x− y) when |y| = r.

Hence we should define the Green’s function for the ball to be given by

G(x, y) = φ(x− y)− hx(y) = φ(x− y)− φ
³
x̂r − |x|y

r

´
= φ(x− y)− φ

¡
x̂r − r−1|x| |y| ŷ¢

= φ(x− y)− φ

µ |x|
r

µ
y − r2

x̂

|x|
¶¶

.

From Eq. (9.34), it follows that hx(y) = hy(x) and therefore G(x, y) is again
symmetric under the interchange of x and y.
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For y ∈ ∂B(0, r), using Eq. (9.7) we find

−K(x, y) = ∂G

∂ny
(x, y) = ∂byG(x, y) = ∇yG(x, y) · ŷ

= ∇y

·
φ(x− y)− φ

µ |x|
r

µ
y − r2

x̂

|x|
¶¶¸

· ŷ

= − 1

σ(Sn−1)

 1

|y − x|n (y − x)− |x|
r

1³
|x|
r

´n ¯̄̄
y − r2 x̂

|x|
¯̄̄n |x|r

µ
y − r2

x̂

|x|
¶ · ŷ

= − 1

σ(Sn−1)

 1

|y − x|n (y − x)− |x|
r

1¯̄̄
|x|
r y − rx̂

¯̄̄n µ |x|r y − rx̂

¶ · ŷ
= − 1

σ(Sn−1)

·
1

|y − x|n (y − x)− |x|
r

1

|x− y|n (|x|ŷ − rx̂)

¸
· ŷ

= − 1

σ(Sn−1) |y − x|n
·
(y − x)−

µ |x|2
r

ŷ − x

¶¸
· ŷ

= − 1

σ(Sn−1) |y − x|n
·
y − |x|

2

r
ŷ

¸
· ŷ

= − 1

σ(Sn−1)r |y − x|n
£
r2 − |x|2¤ .

These computations lead to the following theorem.

Theorem 9.31. For x, y ∈ B(0, r), let

G(x, y) := φ(x− y)− φ
³
x̂r − |x|y

r

´
and if y ∈ ∂B(0, r), let

K(x, y) := −∂G
∂n
(x, y) =

r2 − |x|2
σ(Sn−1)r

|x− y|−n .

Then ρ ∈ C2(B(0, r)) ∩ L1(B(0, r)) and f ∈ C
³
∂B(0, r)

´
, then

(9.36) u(x) =

Z
B(0,r)

G(x, y)ρ(y)dy +

Z
∂B(0,r)

K(x, y)f(y)dσ(y)

solves the equation

∆u = −ρ on B(0, r) with u = f on ∂B(0, r).

Proof. The proof is essentially the same as Theorem 9.30 but a bit easier. From
Theorem 9.5 with u = 1 it follows again thatZ

∂B(0,r)

K(x, y)dσ(y) = 1.

As x → x0 ∈ ∂B(0, r), the function K(x, y) becomes peaked for y near x0 and
goes to zero away from x0, it follows by the standard approximate δ — function
arguments that Z

∂B(0,r)

K(x, y)f(y)dσ(y)→ f(x0) as x→ x0.
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The rest of the argument is the same as before.

Corollary 9.32. Suppose that u is a harmonic function on Ω, then u is real analytic
on Ω.

Proof. The condition of being real analytic is local and invariant under trans-
lations as is the notion of being harmonic. Hence we may assume 0 ∈ B(0, r) ⊂ Ω
for some r > 0, in which case we have, for |x| < r and f = u|∂B(0,r), that

u(x) =

Z
∂B(0,r)

K(x, y)f(y)dσ(y) =
r2 − |x|2
σ(Sn−1)r

Z
∂B(0,r)

|x− y|−n f(y)dσ(y)

=
r2 − |x|2
σ(Sn−1)r

Z
∂B(0,r)

|x− ŷr|−n f(y)dσ(y).(9.37)

Now

|x− y|−n = |x− ŷr|−n = r−n
¯̄
ŷ − r−1x

¯̄−n
= r−n

Ã
1− 2r−1ŷ · x+ |x|

2

r2

!−n/2
=: r−n (1− α(x, y))−n/2

where

α(x, y) := 2r−1ŷ · x− |x|
2

r2
.

Since

|α(x, y)| ≤ 2r−1 |x|+ |x|
2

r2
≤ 2α0 + α20 < 1

if |x| ≤ α0r and α0 <
√
2− 1, we find that |x− y|−n has a convergent power series

expansion,

|x− y|−n = r−n
∞X

m=0

amα(x, y)
m for |x| ≤ α0r.

Plugging this into Eq. (9.37) shows u(x) has a convergent power series expansion
in x for |x| ≤ ¡√2− 1¢ r.
9.5. Perron’s Method for solving the Dirichlet Problem. For this section
let Ω ⊂o Rn be a bounded open set and f ∈ C (bd(Ω),R) be a given function. We
are going to investigate the solvability of the Dirichlet problem:

(9.38) ∆u = 0 on Ω with u = f on bd(Ω).

Let S(Ω) denote those w ∈ C
¡
Ω̄
¢
such that w is subharmonic on Ω and let Sf (Ω)

denote those w ∈ S(Ω) such that w ≤ f on bd(Ω). As we have seen in Corollary
9.25, if there is a solution to u ∈ C2(Ω) ∩ C ¡Ω̄¢ , then w ≤ u for all w ∈ Sf (Ω).
This suggests we try to define

(9.39) u(x) := uf (x) := sup {w(x) : w ∈ Sf (Ω)} for all x ∈ Ω̄.
Notation 9.33. Given w ∈ S(Ω), ξ ∈ Ω and r > 0 such that B(ξ, r) ⊂ Ω, let (see
Figure 32)

wξ,r(y) =

½
w(y) for y ∈ Ω \B(ξ, r)
h(y) for y ∈ B(ξ, r)
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where h ∈ C
³
B(ξ, r)

´
is the unique solution to

∆h = 0 on B(ξ, r) with h = w on ∂B(ξ, r).

The existence of h is guaranteed by Theorem 9.31.

Figure 32. The construction of wξ,r in the one-dimensional case.

Proposition 9.34. Let w ∈ S(Ω) and wξ,r be as above. Then

(1) w ≤ wξ,r.
(2) wξ,r ∈ S(Ω), i.e. wξ,r is subharmonic.
(3) We have

w(ξ) ≤
Z
−

∂B(ξ,r)

wdσ.

Proof. 1. Since w = wξ,r on Ω \ B(ξ, r), it suffices to show w ≤ h on B(ξ, r).
But this follows from Corollary 9.25.
2. Since wξ,r is harmonic on B(ξ, r) and subharmonic on Ω \ B(ξ, r), we need

only show

wξ,r(y) ≤
Z
−

∂B(y,ρ)

wξ,rdσ

for all y ∈ ∂B(ξ, r) and ρ sufficiently small. This is easily checked, since w is
subharmonic,

wξ,r(y) = w(y) ≤
Z
−

∂B(y,ρ)

wdσ ≤
Z
−

∂B(y,ρ)

wξ,rdσ

wherein the last equality we made use of Item 1.
3. By item 1. and the mean value property for the harmonic function, wξ,r, we

have

w(ξ) ≤ wξ,r(ξ) =

Z
−

∂B(ξ,r)

wξ,rdσ =

Z
−

∂B(ξ,r)

wdσ.

Theorem 9.35. The function u = uf defined in Eq. (9.39) is harmonic on Ω and
u ≤ g on bd(Ω).

Proof. Let us begin with a couple of observations. In what follows

m := min {f(x) : x ∈ bd(Ω)} and M := min {f(x) : x ∈ bd(Ω)} .
(1) The function u = uf ≥ m on Ω since m ∈ Sf (Ω).
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(2) By the maximum principle w ≤ M on Ω for all w ∈ Sf (Ω) and therefore
uf ≤M on Ω.

(3) If w1, . . . , wm ∈ Sf (Ω), then w = max {w1, . . . , wm} ∈ Sf (Ω). Indeed for
ξ ∈ Ω and r small,Z

−
∂B(ξ,r)

wdσ ≥
Z
−

∂B(ξ,r)

widσ ≥ wi(ξ)

for all i.
(4) Now suppose ξ ∈ Ω and R > 0 be chosen so that B (ξ,R) ⊂ Ω and D ⊂

B(ξ,R) is a countable set. Then there is a harmonic function wD on B(ξ,R)
such that wD = uf on D.

To prove this last item let D := {yk}∞k=1 and choose {wm
k } ⊂ Sf (Ω) such that

wm
k (yk) → u(yk) as m → ∞ for each k. By replacing wm

k by max
©
w1k, . . . , w

m
k

ª
if necessary we may assume for each k that wm

k is increasing in m for each k.
Letting Wm := max {wm

1 , . . . , w
m
k } we find an increasing sequence {Wm} ⊂ Sf (Ω)

such that Wm(y) ↑ uf (y) for all y ∈ D. Finally define a sequence {wm} ⊂ Sf (Ω)
by wm := (Wm)ξ,2R . By the maximum principle, wm is still increasing and since
Wm ≤ wm and we still have wm(y) ↑ uf (y) for all y ∈ D. We now define wD :=
limm→∞wm|B(ξ,R) which exists because wm is increasing and w. We have wD =
uf on D and because {wm} is a bounded and convergent sequence of harmonic
functions on B(ξ,R), it follows from Corollary 9.18 that w is harmonic on B(ξ,R).
This completes the proof of item 4.
We now use item 4. to prove uf is continuous at ξ ∈ Ω. To do this let {yk}∞k=1 ⊂

B (ξ,R) be any sequence such that yk → ξ as k →∞ and let D = {ξ}∪ {yk}∞k=1 ⊂
B (ξ,R) . Since wD is harmonic and hence continuous,

lim
k→∞

uf (yk) = lim
k→∞

wD(yk) = wD(ξ) = uf (ξ)

showing uf is continuous.
To show uf is harmonic on B(ξ,R), let D be a countable dense subset of B(ξ,R).

Then the continuity of uf and the fact that uf = wD on D, it follows that uf = wD

on B(ξ,R). In particular uf is harmonic on B(ξ,R). Since ξ is arbitrary, we have
shown uf is harmonic.
To complete our program, we want to show that uf extends to a function in

C(Ω̄) and that uf = f on bd(Ω). For this we will need some assumption on bd(Ω).

Definition 9.36. A function Q ∈ C
¡
Ω̄
¢
is a barrier function for η ∈ bd(Ω) if Q

is subharmonic on Ω, Q(η) = 0 and Q(x) < 0 for all x ∈ bd(Ω) \ {η} .
Example 9.37. Suppose that η ∈ bd(Ω) and there exists ξ ∈ Rn such that (x− η)·
ξ < 0 for all x ∈ bd(Ω) \ {η} (see Figure 33 below), then the function Q(x) :=
(x− η) · ξ is a barrier function of η.

Example 9.38. Suppose that η ∈ bd(Ω) and there exists a ball B(ξ, r)∩ Ω̄ = {η}
(see Figure 34), then Q(x) := α(r)− α(|x− ξ|) is a barrier function for η, where α
is defined in Eq. 9.4.

Theorem 9.39. Suppose f ∈ C(bd(Ω)) and u = uf is the harmonic function
defined by Eq. (9.39) and there exists a barrier function Q for η ∈ bd(Ω). Then
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Figure 33. Constructing a barrier function at point where η
where ∂Ω lies in a half plane.

Figure 34. Another η for which there exists a barrier function.

limx→η uf (x) = f(η). In particular if every point η ∈ bd(Ω) admits a barrier func-
tion, then there is a unique solution u ∈ C

¡
Ω̄
¢ ∩ C2(Ω) to ∆u = 0 with u = f on

bd(Ω).

Proof. Given � > 0 and K > 0, let w(x) := f(η) − � − KQ(x) for all x ∈ Ω̄.
For any � > 0 we may choose (using continuity of f and compactness of bd(Ω)) K
sufficiently large so that w ≤ f on bd(Ω), i.e. w ∈ Sf (Ω). Therefore w ≤ uf and
hence

f(η)− � = w(η) = lim
x→η

w(x) ≤ lim inf
x→η

uf (x).

Since � > 0 is arbitrary, this shows

(9.40) lim inf
x→η

uf (x) ≥ f(η).

We now consider the function

−u−f (x) = − sup {w(x) : w ∈ S−f (Ω)} = inf {−w(x) : w ∈ S−f (Ω)}
= inf {W (x) : −W ∈ S−f (Ω)} .(9.41)
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If w ∈ Sf (Ω) and−W ∈ S−f (Ω), then w−W is sub harmonic and w−W ≤ f−f = 0
on bd(Ω), therefore by the maximum principle it follows that w ≤ W on Ω̄. Using
this in Eq. (9.41) shows

−u−f (x) ≥ inf {w(x) : w ∈ Sf (Ω)} = uf (x).

Therefore,
(9.42)

lim sup
x→η

uf (x) ≤ lim sup
x→η

(−u−f (x)) = − lim inf
x→η

(u−f (x)) = − (−f(η)) = f(η)

which combined with Eq. (9.40) shows

lim
x→η

uf (x) = f(η).

Exercise 9.1. Suppose that R is an n× n orthogonal matrix (RtrR = I = RRtr)
viewed as a linear transformation on Rn. Show for f ∈ C2 (Rn) that ∆(f ◦ R) =
∆f ◦R, i.e. ∆ is invariant under rotations.

Exercise 9.2. Show that every point η ∈ bd(Ω) has a barrier function when
bd(Ω) is C2. Hint: By making a change of coordinated involving rotations and
translations change of coordinates, it suffices to assume η = 0 ∈ bd(Ω) and that
B(0, r) ∩ bd(Ω) is the graph of a C2 — function g : B(0, r) ∩Rn−1 → Rn such that
g(0) = 0 and ∇g(0) = 0. Show for δ > 0 sufficiently small that

dδ(x) := |δen − x|2 for x ∈ bd(Ω)

has a unique global minimum at x = 0. Use this fact and Example 9.38 to complete
the proof.



PDE LECTURE NOTES, MATH 237A-B 153

9.6. Solving the Dirichlet Problem by Integral Equations. Another method
for solving the Dirichlet problem to reduce it to a question of solvability of a certain
integral equation in bd(Ω). For a nice sketch of how this goes the reader is referred
to Reed and Simon [2], included below. For a more detailed account the reader
may consult Sobolev [3] or Guenther and Lee [1].
The following text is taken from Reed and Simon Volume 1.
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