19. Weak and Strong Derivatives

For this section, let Ω be an open subset of \mathbb{R}^d , $p,q,r \in [1,\infty]$, $L^p(\Omega) = L^p(\Omega,\mathcal{B}_{\Omega},m)$ and $L^p_{loc}(\Omega) = L^p_{loc}(\Omega,\mathcal{B}_{\Omega},m)$, where m is Lebesgue measure on $\mathcal{B}_{\mathbb{R}^d}$ and \mathcal{B}_{Ω} is the Borel σ – algebra on Ω . If $\Omega = \mathbb{R}^d$, we will simply write L^p and L^p_{loc} for $L^p(\mathbb{R}^d)$ and $L^p_{loc}(\mathbb{R}^d)$ respectively. Also let

$$\langle f,g \rangle := \int_{\Omega} fgdm$$

for any pair of measurable functions $f,g:\Omega\to\mathbb{C}$ such that $fg\in L^1(\Omega)$. For example, by Hölder's inequality, if $\langle f,g\rangle$ is defined for $f\in L^p(\Omega)$ and $g\in L^q(\Omega)$ when $q=\frac{p}{p-1}$.

Definition 19.1. A sequence $\{u_n\}_{n=1}^{\infty} \subset L_{loc}^p(\Omega)$ is said to converge to $u \in L_{loc}^p(\Omega)$ if $\lim_{n\to\infty} \|u-u_n\|_{L^q(K)} = 0$ for all compact subsets $K \subset \Omega$.

The following simple but useful remark will be used (typically without further comment) in the sequel.

Remark 19.2. Suppose $r, p, q \in [1, \infty]$ are such that $r^{-1} = p^{-1} + q^{-1}$ and $f_t \to f$ in $L^p(\Omega)$ and $g_t \to g$ in $L^q(\Omega)$ as $t \to 0$, then $f_t g_t \to fg$ in $L^r(\Omega)$. Indeed,

$$||f_t g_t - fg||_r = ||(f_t - f) g_t + f (g_t - g)||_r$$

$$\leq ||f_t - f||_p ||g_t||_q + ||f||_p ||g_t - g||_q \to 0 \text{ as } t \to 0$$

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let $v \in \mathbb{R}^d$ and $u \in L^p(\Omega)$ ($u \in L^p_{loc}(\Omega)$) then $\partial_v u$ is said to **exist weakly** in $L^p(\Omega)$ ($L^p_{loc}(\Omega)$) if there exists a function $g \in L^p(\Omega)$ ($g \in L^p_{loc}(\Omega)$) such that

(19.1)
$$\langle u, \partial_v \phi \rangle = -\langle g, \phi \rangle \text{ for all } \phi \in C_c^{\infty}(\Omega).$$

The function g if it exists will be denoted by $\partial_v^{(w)}u$. Similarly if $\alpha \in \mathbb{N}_0^d$ and ∂^α is as in Notation 11.10, we say $\partial^\alpha u$ exists weakly in $L^p(\Omega)$ ($L^p_{loc}(\Omega)$) iff there exists $g \in L^p(\Omega)$ ($L^p_{loc}(\Omega)$) such that

$$\langle u, \partial^{\alpha} \phi \rangle = (-1)^{|\alpha|} \langle g, \phi \rangle$$
 for all $\phi \in C_c^{\infty}(\Omega)$.

More generally if $p(\xi) = \sum_{|\alpha| \leq N} a_{\alpha} \xi^{\alpha}$ is a polynomial in $\xi \in \mathbb{R}^n$, then $p(\partial)u$ exists weakly in $L^p(\Omega)$ $(L^p_{loc}(\Omega))$ iff there exists $g \in L^p(\Omega)$ $(L^p_{loc}(\Omega))$ such that

(19.2)
$$\langle u, p(-\partial)\phi \rangle = \langle g, \phi \rangle \text{ for all } \phi \in C_c^{\infty}(\Omega)$$

and we denote g by $w-p(\partial)u$.

By Corollary 11.28, there is at most one $g \in L^1_{loc}(\Omega)$ such that Eq. (19.2) holds, so $w-p(\partial)u$ is well defined.

Lemma 19.4. Let $p(\xi)$ be a polynomial on \mathbb{R}^d , $k = \deg(p) \in \mathbb{N}$, and $u \in L^1_{loc}(\Omega)$ such that $p(\partial)u$ exists weakly in $L^1_{loc}(\Omega)$. Then

- (1) $\operatorname{supp}_m(\mathbf{w}-p(\partial)u) \subset \operatorname{supp}_m(u)$, where $\operatorname{supp}_m(u)$ is the essential support of u relative to Lebesgue measure, see Definition 11.14.
- (2) If deg p = k and $u|_{U} \in C^{k}(U, \mathbb{C})$ for some open set $U \subset \Omega$, then $w-p(\partial)u = p(\partial)u$ a.e. on U.

Proof.

(1) Since

$$\langle \mathbf{w} - p(\partial)u, \phi \rangle = -\langle u, p(-\partial)\phi \rangle = 0 \text{ for all } \phi \in C_c^\infty(\Omega \setminus \operatorname{supp}_m(u)),$$
 an application of Corollary 11.28 shows $\mathbf{w} - p(\partial)u = 0$ a.e. on $\Omega \setminus \operatorname{supp}_m(u)$. So by Lemma 11.15, $\Omega \setminus \operatorname{supp}_m(u) \subset \Omega \setminus \operatorname{supp}_m(\mathbf{w} - p(\partial)u)$, i.e. $\operatorname{supp}_m(\mathbf{w} - p(\partial)u) \subset \operatorname{supp}_m(u)$.

(2) Suppose that $u|_U$ is C^k and let $\psi \in C_c^{\infty}(U)$. (We view ψ as a function in $C_c^{\infty}(\mathbb{R}^d)$ by setting $\psi \equiv 0$ on $\mathbb{R}^d \setminus U$.) By Corollary 11.25, there exists $\gamma \in C_c^{\infty}(\Omega)$ such that $0 \le \gamma \le 1$ and $\gamma = 1$ in a neighborhood of $\operatorname{supp}(\psi)$. Then by setting $\gamma u = 0$ on $\mathbb{R}^d \setminus \operatorname{supp}(\gamma)$ we may view $\gamma u \in C_c^k(\mathbb{R}^d)$ and so by standard integration by parts (see Lemma 11.26) and the ordinary product rule,

(19.3)
$$\langle \mathbf{w} - p(\partial)u, \psi \rangle = \langle u, p(-\partial)\psi \rangle = -\langle \gamma u, p(-\partial)\psi \rangle$$
$$= \langle p(\partial)(\gamma u), \psi \rangle = \langle p(\partial)u, \psi \rangle$$

wherein the last equality we have γ is constant on $\operatorname{supp}(\psi)$. Since Eq. (19.3) is true for all $\psi \in C_c^{\infty}(U)$, an application of Corollary 11.28 with $h = \operatorname{w} - p(\partial)u - p(\partial)u$ and $\mu = m$ shows $\operatorname{w} - p(\partial)u = p(\partial)u$ a.e. on U.

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing $p(\partial)u$ for $w-p(\partial)u$. So in the sequel we will always interpret $p(\partial)u$ in the weak or "distributional" sense.

Example 19.6. Suppose u(x) = |x| for $x \in \mathbb{R}$, then $\partial u(x) = \operatorname{sgn}(x)$ in $L^1_{loc}(\mathbb{R})$ while $\partial^2 u(x) = 2\delta(x)$ so $\partial^2 u(x)$ does not exist weakly in $L^1_{loc}(\mathbb{R})$.

Example 19.7. Suppose d=2 and $u(x,y)=1_{y>x}$. Then $u\in L^1_{loc}\left(\mathbb{R}^2\right)$, while $\partial_x 1_{y>x}=-\delta\left(y-x\right)$ and $\partial_y 1_{y>x}=\delta\left(y-x\right)$ and so that neither $\partial_x u$ or $\partial_y u$ exists weakly. On the other hand $(\partial_x + \partial_y) u=0$ weakly. To prove these assertions, notice $u\in C^\infty\left(\mathbb{R}^2\setminus\Delta\right)$ where $\Delta=\left\{(x,x):x\in\mathbb{R}^2\right\}$. So by Lemma 19.4, for any polynomial $p\left(\xi\right)$ without constant term, if $p\left(\partial\right)u$ exists weakly then $p\left(\partial\right)u=0$. However,

$$\langle u, -\partial_x \phi \rangle = -\int_{y>x} \phi_x(x, y) dx dy = -\int_{\mathbb{R}} \phi(y, y) dy,$$
$$\langle u, -\partial_y \phi \rangle = -\int_{y>x} \phi_y(x, y) dx dy = \int_{\mathbb{R}} \phi(x, x) dx \text{ and }$$
$$\langle u, -(\partial_x + \partial_y) \phi \rangle = 0$$

from which it follows that $\partial_x u$ and $\partial_y u$ can not be zero while $(\partial_x + \partial_y)u = 0$.

On the other hand if $p(\xi)$ and $q(\xi)$ are two polynomials and $u \in L^1_{loc}(\Omega)$ is a function such that $p(\partial)u$ exists weakly in $L^1_{loc}(\Omega)$ and $q(\partial)[p(\partial)u]$ exists weakly in $L^1_{loc}(\Omega)$ then $(qp)(\partial)u$ exists weakly in $L^1_{loc}(\Omega)$. This is because

$$\langle u, (qp) (-\partial) \phi \rangle = \langle u, p (-\partial) q (-\partial) \phi \rangle$$

= $\langle p (\partial) u, q (-\partial) \phi \rangle = \langle q (\partial) p (\partial) u, \phi \rangle$ for all $\phi \in C_c^{\infty}(\Omega)$.

Example 19.8. Let $u(x,y) = 1_{x>0} + 1_{y>0}$ in $L^1_{loc}(\mathbb{R}^2)$. Then $\partial_x u(x,y) = \delta(x)$ and $\partial_y u(x,y) = \delta(y)$ so $\partial_x u(x,y)$ and $\partial_y u(x,y)$ do **not** exist weakly in $L^1_{loc}(\mathbb{R}^2)$. However $\partial_y \partial_x u$ does exist weakly and is the zero function. This shows $\partial_y \partial_x u$ may exists weakly despite the fact both $\partial_x u$ and $\partial_y u$ do not exists weakly in $L^1_{loc}(\mathbb{R}^2)$.

Lemma 19.9. Suppose $u \in L^1_{loc}(\Omega)$ and $p(\xi)$ is a polynomial of degree k such that $p(\partial)u$ exists weakly in $L^1_{loc}(\Omega)$ then

(19.4)
$$\langle p(\partial) u, \phi \rangle = \langle u, p(-\partial) \phi \rangle \text{ for all } \phi \in C_c^k(\Omega).$$

Note: The point here is that Eq. (19.4) holds for all $\phi \in C_c^k(\Omega)$ not just $\phi \in C_c^{\infty}(\Omega)$.

Proof. Let $\phi \in C_c^k(\Omega)$ and choose $\eta \in C_c^{\infty}(B(0,1))$ such that $\int_{\mathbb{R}^d} \eta(x) dx = 1$ and let $\eta_{\epsilon}(x) := \epsilon^{-d} \eta(x/\epsilon)$. Then $\eta_{\epsilon} * \phi \in C_c^{\infty}(\Omega)$ for ϵ sufficiently small and $p(-\partial) [\eta_{\epsilon} * \phi] = \eta_{\epsilon} * p(-\partial) \phi \to p(-\partial) \phi$ and $\eta_{\epsilon} * \phi \to \phi$ uniformly on compact sets as $\epsilon \downarrow 0$. Therefore by the dominated convergence theorem,

$$\langle p(\partial) u, \phi \rangle = \lim_{\epsilon \downarrow 0} \langle p(\partial) u, \eta_{\epsilon} * \phi \rangle = \lim_{\epsilon \downarrow 0} \langle u, p(-\partial) (\eta_{\epsilon} * \phi) \rangle = \langle u, p(-\partial) \phi \rangle.$$

Lemma 19.10 (Product Rule). Let $u \in L^1_{loc}(\Omega)$, $v \in \mathbb{R}^d$ and $\phi \in C^1(\Omega)$. If $\partial_v^{(w)}u$ exists in $L^1_{loc}(\Omega)$, then $\partial_v^{(w)}(\phi u)$ exists in $L^1_{loc}(\Omega)$ and

$$\partial_v^{(w)}(\phi u) = \partial_v \phi \cdot u + \phi \partial_v^{(w)} u \ a.e.$$

Moreover if $\phi \in C_c^1(\Omega)$ and $F := \phi u \in L^1$ (here we define F on \mathbb{R}^d by setting F = 0 on $\mathbb{R}^d \setminus \Omega$), then $\partial^{(w)} F = \partial_v \phi \cdot u + \phi \partial_v^{(w)} u$ exists weakly in $L^1(\mathbb{R}^d)$.

Proof. Let $\psi \in C_c^{\infty}(\Omega)$, then using Lemma 19.9,

$$-\langle \phi u, \partial_v \psi \rangle = -\langle u, \phi \partial_v \psi \rangle = -\langle u, \partial_v (\phi \psi) - \partial_v \phi \cdot \psi \rangle = \langle \partial_v^{(w)} u, \phi \psi \rangle + \langle \partial_v \phi \cdot u, \psi \rangle$$
$$= \langle \phi \partial_v^{(w)} u, \psi \rangle + \langle \partial_v \phi \cdot u, \psi \rangle.$$

This proves the first assertion. To prove the second assertion let $\gamma \in C_c^{\infty}(\Omega)$ such that $0 \leq \gamma \leq 1$ and $\gamma = 1$ on a neighborhood of $\operatorname{supp}(\phi)$. So for $\psi \in C_c^{\infty}(\mathbb{R}^d)$, using $\partial_v \gamma = 0$ on $\operatorname{supp}(\phi)$ and $\gamma \psi \in C_c^{\infty}(\Omega)$, we find

$$\langle F, \partial_v \psi \rangle = \langle \gamma F, \partial_v \psi \rangle = \langle F, \gamma \partial_v \psi \rangle = \langle (\phi u), \partial_v (\gamma \psi) - \partial_v \gamma \cdot \psi \rangle$$

$$= \langle (\phi u), \partial_v (\gamma \psi) \rangle = -\langle \partial_v^{(w)} (\phi u), (\gamma \psi) \rangle$$

$$= -\langle \partial_v \phi \cdot u + \phi \partial_v^{(w)} u, \gamma \psi \rangle = -\langle \partial_v \phi \cdot u + \phi \partial_v^{(w)} u, \psi \rangle.$$

This show $\partial_v^{(w)} F = \partial_v \phi \cdot u + \phi \partial_v^{(w)} u$ as desired.

Lemma 19.11. Suppose $q \in [1, \infty)$, $p(\xi)$ is a polynomial in $\xi \in \mathbb{R}^d$ and $u \in L^q_{loc}(\Omega)$. If there exists $\{u_m\}_{m=1}^{\infty} \subset L^q_{loc}(\Omega)$ such that $p(\partial)u_m$ exists in $L^q_{loc}(\Omega)$ for all m and there exists $g \in L^q_{loc}(\Omega)$ such that for all $\phi \in C^\infty_c(\Omega)$,

$$\lim_{m \to \infty} \langle u_m, \phi \rangle = \langle u, \phi \rangle \ and \ \lim_{m \to \infty} \langle p(\partial) u_m, \phi \rangle = \langle g, \phi \rangle$$

then $p(\partial)u$ exists in $L_{loc}^{q}(\Omega)$ and $p(\partial)u=g$.

Proof. Since

$$\langle u, p(\partial) \phi \rangle = \lim_{m \to \infty} \langle u_m, p(\partial) \phi \rangle = -\lim_{m \to \infty} \langle p(\partial) u_m, \phi \rangle = \langle g, \phi \rangle$$

for all $\phi \in C_c^{\infty}(\Omega)$, $p(\partial)u$ exists and is equal to $g \in L_{loc}^q(\Omega)$. \blacksquare Conversely we have the following proposition.

Proposition 19.12 (Mollification). Suppose $q \in [1, \infty)$, $p_1(\xi), \ldots, p_N(\xi)$ is a collection of polynomials in $\xi \in \mathbb{R}^d$ and $u \in L^q_{loc}(\Omega)$ such that $p_l(\partial)u$ exists weakly in $L^q_{loc}(\Omega)$ for $l = 1, 2, \ldots, N$. Then there exists $u_n \in C^\infty_c(\Omega)$ such that $u_n \to u$ in $L^q_{loc}(\Omega)$ and $p_l(\partial)u_n \to p_l(\partial)u$ in $L^q_{loc}(\Omega)$ for $l = 1, 2, \ldots, N$.

Proof. Let $\eta \in C_c^{\infty}(B(0,1))$ such that $\int_{\mathbb{R}^d} \eta dm = 1$ and $\eta_{\epsilon}(x) := \epsilon^{-d} \eta(x/\epsilon)$ be as in the proof of Lemma 19.9. For any function $f \in L^1_{loc}(\Omega)$, $\epsilon > 0$ and $x \in \Omega_{\epsilon} := \{y \in \Omega : dist(y, \Omega^c) > \epsilon\}$, let

$$f_{\epsilon}(x) := f * \eta_{\epsilon}(x) := 1_{\Omega} f * \eta_{\epsilon}(x) = \int_{\Omega} f(y) \eta_{\epsilon}(x-y) dy.$$

Notice that $f_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ and $\Omega_{\epsilon} \uparrow \Omega$ as $\epsilon \downarrow 0$.

Given a compact set $K \subset \Omega$ let $K_{\epsilon} := \{x \in \Omega : \operatorname{dist}(x, K) \leq \epsilon\}$. Then $K_{\epsilon} \downarrow K$ as $\epsilon \downarrow 0$, there exists $\epsilon_0 > 0$ such that $K_0 := K_{\epsilon_0}$ is a compact subset of $\Omega_0 := \Omega_{\epsilon_0} \subset \Omega$ (see Figure 38) and for $x \in K$,

$$f * \eta_{\epsilon}(x) := \int_{\Omega} f(y) \eta_{\epsilon}(x - y) dy = \int_{K_{\epsilon}} f(y) \eta_{\epsilon}(x - y) dy.$$

Therefore, using Theorem 11.21,

FIGURE 38. The geometrry of $K \subset K_0 \subset \Omega_0 \subset \Omega$.

 $||f * \eta_{\epsilon} - f||_{L^{p}(K)} = ||(1_{K_{0}}f) * \eta_{\epsilon} - 1_{K_{0}}f||_{L^{p}(K)} \le ||(1_{K_{0}}f) * \eta_{\epsilon} - 1_{K_{0}}f||_{L^{p}(\mathbb{R}^{d})} \to 0 \text{ as } \epsilon \downarrow 0.$ Hence, for all $f \in L^{q}_{loc}(\Omega)$, $f * \eta_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ and $\lim_{\epsilon \downarrow 0} ||f * \eta_{\epsilon} - f||_{L^{p}(K)} = 0.$

Now let $p(\xi)$ be a polynomial on \mathbb{R}^d , $u \in L^q_{loc}(\Omega)$ such that $p(\partial) u \in L^q_{loc}(\Omega)$ and $v_{\epsilon} := \eta_{\epsilon} * u \in C^{\infty}(\Omega_{\epsilon})$ as above. Then for $x \in K$ and $\epsilon < \epsilon_0$,

$$p(\partial)v_{\epsilon}(x) = \int_{\Omega} u(y)p(\partial_{x})\eta_{\epsilon}(x-y)dy = \int_{\Omega} u(y)p(-\partial_{y})\eta_{\epsilon}(x-y)dy$$
$$= \int_{\Omega} u(y)p(-\partial_{y})\eta_{\epsilon}(x-y)dy = \langle u, p(\partial)\eta_{\epsilon}(x-\cdot)\rangle$$
$$= \langle p(\partial)u, \eta_{\epsilon}(x-\cdot)\rangle = (p(\partial)u)_{\epsilon}(x).$$
(19.6)

From Eq. (19.6) we may now apply Eq. (19.5) with f = u and $f = p_l(\partial)u$ for $1 \le l \le N$ to find

$$||v_{\epsilon} - u||_{L^{p}(K)} + \sum_{l=1}^{N} ||p_{l}(\partial)v_{\epsilon} - p_{l}(\partial)u||_{L^{p}(K)} \to 0 \text{ as } \epsilon \downarrow 0.$$

For $n \in \mathbb{N}$, let

$$K_n := \{x \in \Omega : |x| \le n \text{ and } d(x, \Omega^c) \ge 1/n\}$$

(so $K_n \subset K_{n+1}^o \subset K_{n+1}$ for all n and $K_n \uparrow \Omega$ as $n \to \infty$ or see Lemma 10.10) and choose $\psi_n \in C_c^\infty(K_{n+1}^o, [0, 1])$, using Corollary 11.25, so that $\psi_n = 1$ on a neighborhood of K_n . Choose $\epsilon_n \downarrow 0$ such that $K_{n+1} \subset \Omega_{\epsilon_n}$ and

$$||v_{\epsilon_n} - u||_{L^p(K_n)} + \sum_{l=1}^N ||p_l(\partial)v_{\epsilon_n} - p_l(\partial)u||_{L^p(K_n)} \le 1/n.$$

Then $u_n := \psi_n \cdot v_{\epsilon_n} \in C_c^{\infty}(\Omega)$ and since $u_n = v_{\epsilon_n}$ on K_n we still have

(19.7)
$$||u_n - u||_{L^p(K_n)} + \sum_{l=1}^N ||p_l(\partial)u_n - p_l(\partial)u||_{L^p(K_n)} \le 1/n.$$

Since any compact set $K \subset \Omega$ is contained in K_n^o for all n sufficiently large, Eq. (19.7) implies

$$\lim_{n \to \infty} \left[\|u_n - u\|_{L^p(K)} + \sum_{l=1}^N \|p_l(\partial)u_n - p_l(\partial)u\|_{L^p(K)} \right] = 0.$$

The following proposition is another variant of Proposition 19.12 which the reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose $q \in [1, \infty)$, $p_1(\xi), \ldots, p_N(\xi)$ is a collection of polynomials in $\xi \in \mathbb{R}^d$ and $u \in L^q = L^q(\mathbb{R}^d)$ such that $p_l(\partial)u \in L^q$ for $l = 1, 2, \ldots, N$. Then there exists $u_n \in C_c^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{n\to\infty} \left[\left\| u_n - u \right\|_{L^p} + \sum_{l=1}^N \left\| p_l(\partial) u_n - p_l(\partial) u \right\|_{L^p} \right] = 0.$$

Notation 19.14 (Difference quotients). For $v \in \mathbb{R}^d$ and $h \in \mathbb{R} \setminus \{0\}$ and a function $u : \Omega \to \mathbb{C}$, let

$$\partial_v^h u(x) := \frac{u(x+hv) - u(x)}{h}$$

for those $x \in \Omega$ such that $x + hv \in \Omega$. When v is one of the standard basis elements, e_i for $1 \le i \le d$, we will write $\partial_i^h u(x)$ rather than $\partial_{e_i}^h u(x)$. Also let

$$\nabla^h u(x) := \left(\partial_1^h u(x), \dots, \partial_n^h u(x)\right)$$

be the difference quotient approximation to the gradient.

Definition 19.15 (Strong Differentiability). Let $v \in \mathbb{R}^d$ and $u \in L^p$, then $\partial_v u$ is said to exist **strongly** in L^p if the $\lim_{h\to 0} \partial_v^h u$ exists in L^p . We will denote the limit by $\partial_v^{(s)} u$.

It is easily verified that if $u \in L^p$, $v \in \mathbb{R}^d$ and $\partial_v^{(s)} u \in L^p$ exists then $\partial_v^{(w)} u$ exists and $\partial_v^{(w)} u = \partial_v^{(s)} u$. The key to checking this assetion is the identity,

(19.8)
$$\langle \partial_v^h u, \phi \rangle = \int_{\mathbb{R}^d} \frac{u(x+hv) - u(x)}{h} \phi(x) dx$$
$$= \int_{\mathbb{R}^d} u(x) \frac{\phi(x-hv) - \phi(x)}{h} dx = \langle u, \partial_{-v}^h \phi \rangle.$$

Hence if $\partial_v^{(s)} u = \lim_{h\to 0} \partial_v^h u$ exists in L^p and $\phi \in C_c^{\infty}(\mathbb{R}^d)$, then

$$\langle \partial_v^{(s)} u, \phi \rangle = \lim_{h \to 0} \langle \partial_v^h u, \phi \rangle = \lim_{h \to 0} \langle u, \partial_{-v}^h \phi \rangle = \frac{d}{dh} |_0 \langle u, \phi (\cdot - hv) \rangle = -\langle u, \partial_v \phi \rangle$$

wherein Corollary 7.43 has been used in the last equality to bring the derivative past the integral. This shows $\partial_v^{(w)}u$ exists and is equal to $\partial_v^{(s)}u$. What is somewhat more surprising is that the converse assertion that if $\partial_v^{(w)}u$ exists then so does $\partial_v^{(s)}u$. Theorem 19.18 is a generalization of Theorem 12.36 from L^2 to L^p . For the reader's convenience, let us give a self-contained proof of the version of the Banach - Alaoglu's Theorem which will be used in the proof of Theorem 19.18. (This is the same as Theorem 18.27 above.)

Proposition 19.16 (Weak-* Compactness: Banach - Alaoglu's Theorem). Let X be a separable Banach space and $\{f_n\} \subset X^*$ be a bounded sequence, then there exist a subsequence $\{\tilde{f}_n\} \subset \{f_n\}$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in X$ with $f \in X^*$.

Proof. Let $D \subset X$ be a countable linearly independent subset of X such that $\overline{\operatorname{span}(D)} = X$. Using Cantor's diagonal trick, choose $\{\tilde{f}_n\} \subseteq \{f_n\}$ such that $\lambda_x := \lim_{n \to \infty} \tilde{f}_n(x)$ exist for all $x \in D$. Define $f : \operatorname{span}(D) \to \mathbb{R}$ by the formula

$$f(\sum_{x \in D} a_x x) = \sum_{x \in D} a_x \lambda_x$$

where by assumption $\#(\{x \in D : a_x \neq 0\}) < \infty$. Then $f : \operatorname{span}(D) \to \mathbb{R}$ is linear and moreover $\tilde{f}_n(y) \to f(y)$ for all $y \in \operatorname{span}(D)$. Now

$$|f(y)| = \lim_{n \to \infty} |\tilde{f}_n(y)| \le \limsup_{n \to \infty} |\tilde{f}_n|| ||y|| \le C||y|| \text{ for all } y \in \text{span}(D).$$

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional on X. We still denote the extension of f by $f \in X^*$. Finally, if $x \in X$ and $y \in \text{span}(D)$

$$|f(x) - \tilde{f}_n(x)| \le |f(x) - f(y)| + |f(y) - \tilde{f}_n(y)| + |\tilde{f}_n(y) - \tilde{f}_n(x)|$$

$$\le ||f|| ||x - y|| + ||\tilde{f}_n|| ||x - y|| + |f(y) - \tilde{f}_n(y)||$$

$$\le 2C||x - y|| + |f(y) - \tilde{f}_n(y)| \to 2C||x - y|| \text{ as } n \to \infty.$$

Therefore $\limsup_{n\to\infty} |f(x) - \tilde{f}_n(x)| \le 2C||x-y|| \to 0$ as $y\to x$.

Corollary 19.17. Let $p \in (1, \infty]$ and $q = \frac{p}{p-1}$. Then to every bounded sequence $\{u_n\}_{n=1}^{\infty} \subset L^p(\Omega)$ there is a subsequence $\{\tilde{u}_n\}_{n=1}^{\infty}$ and an element $u \in L^p(\Omega)$ such that

$$\lim_{n\to\infty}\langle \tilde{u}_n,g\rangle=\langle u,g\rangle \text{ for all } g\in L^q\left(\Omega\right).$$

Proof. By Theorem 15.14, the map

$$v \in L^p(\Omega) \to \langle v, \cdot \rangle \in (L^q(\Omega))^*$$

is an isometric isomorphism of Banach spaces. By Theorem 11.3, $L^q(\Omega)$ is separable for all $q \in [1, \infty)$ and hence the result now follows from Proposition 19.16.

Theorem 19.18 (Weak and Strong Differentiability). Suppose $p \in [1, \infty)$, $u \in$ $L^p(\mathbb{R}^d)$ and $v \in \mathbb{R}^d \setminus \{0\}$. Then the following are equivalent:

(1) There exists $g \in L^p(\mathbb{R}^d)$ and $\{h_n\}_{n=1}^{\infty} \subset \mathbb{R} \setminus \{0\}$ such that $\lim_{n \to \infty} h_n = 0$

$$\lim_{n \to \infty} \langle \partial_v^{h_n} u, \phi \rangle = \langle g, \phi \rangle \text{ for all } \phi \in C_c^{\infty}(\mathbb{R}^d).$$

- (2) $\partial_v^{(w)}u$ exists and is equal to $g \in L^p(\mathbb{R}^d)$, i.e. $\langle u, \partial_v \phi \rangle = -\langle g, \phi \rangle$ for all $\phi \in C_c^{\infty}(\mathbb{R}^d)$.
- (3) There exists $g \in L^p(\mathbb{R}^d)$ and $u_n \in C_c^{\infty}(\mathbb{R}^d)$ such that $u_n \stackrel{L^p}{\to} u$ and $\partial_v u_n \stackrel{L^p}{\to} g$ as $n \to \infty$. (4) $\partial_v^{(s)} u$ exists and is is equal to $g \in L^p(\mathbb{R}^d)$, i.e. $\partial_v^h u \to g$ in L^p as $h \to 0$.

Moreover if $p \in (1, \infty)$ any one of the equivalent conditions 1. – 4. above are implied by the following condition.

1'. There exists $\{h_n\}_{n=1}^{\infty} \subset \mathbb{R} \setminus \{0\}$ such that $\lim_{n\to\infty} h_n = 0$ and $\sup_n \|\partial_v^{h_n} u\|_n < 0$

Proof. 4. \implies 1. is simply the assertion that strong convergence implies weak convergence.

1. \Longrightarrow 2. For $\phi \in C_c^{\infty}(\mathbb{R}^d)$, Eq. (19.8) and the dominated convergence theorem

$$\langle g, \phi \rangle = \lim_{n \to \infty} \langle \partial_v^{h_n} u, \phi \rangle = \lim_{n \to \infty} \langle u, \partial_{-v}^{h_n} \phi \rangle = -\langle u, \partial_v \phi \rangle.$$

2. \Longrightarrow 3. Let $\eta \in C_c^{\infty}(\mathbb{R}^d,\mathbb{R})$ such that $\int_{\mathbb{R}^d} \eta(x) dx = 1$ and let $\eta_m(x) =$ $m^d \eta(mx)$, then by Proposition 11.24, $h_m := \eta_m * u \in C^{\infty}(\mathbb{R}^d)$ for all m and

$$\partial_v h_m(x) = \partial_v \eta_m * u(x) = \int_{\mathbb{R}^d} \partial_v \eta_m(x - y) u(y) dy = \langle u, -\partial_v \left[\eta_m (x - \cdot) \right] \rangle$$
$$= \langle g, \eta_m (x - \cdot) \rangle = \eta_m * g(x).$$

By Theorem 11.21, $h_m \to u \in L^p(\mathbb{R}^d)$ and $\partial_v h_m = \eta_m * g \to g$ in $L^p(\mathbb{R}^d)$ as $m \to \infty$. This shows 3. holds except for the fact that h_m need not have compact support. To fix this let $\psi \in C_c^{\infty}(\mathbb{R}^d, [0,1])$ such that $\psi = 1$ in a neighborhood of 0 and let $\psi_{\epsilon}(x) = \psi(\epsilon x)$ and $(\partial_{\nu}\psi)_{\epsilon}(x) := (\partial_{\nu}\psi)(\epsilon x)$. Then

$$\partial_v \left(\psi_{\epsilon} h_m \right) = \partial_v \psi_{\epsilon} h_m + \psi_{\epsilon} \partial_v h_m = \epsilon \left(\partial_v \psi \right)_{\epsilon} h_m + \psi_{\epsilon} \partial_v h_m$$

so that $\psi_{\epsilon}h_m \to h_m$ in L^p and $\partial_v(\psi_{\epsilon}h_m) \to \partial_v h_m$ in L^p as $\epsilon \downarrow 0$. Let $u_m = \psi_{\epsilon_m}h_m$ where ϵ_m is chosen to be greater than zero but small enough so that

$$\|\psi_{\epsilon_m} h_m - h_m\|_p + \|\partial_v (\psi_{\epsilon_m} h_m) \to \partial_v h_m\|_p < 1/m.$$

Then $u_m \in C_c^{\infty}(\mathbb{R}^d)$, $u_m \to u$ and $\partial_v u_m \to g$ in L^p as $m \to \infty$.

 $3. \implies 4.$ By the fundamental theorem of calculus

(19.9)
$$\partial_v^h u_m(x) = \frac{u_m(x+hv) - u_m(x)}{h}$$
$$= \frac{1}{h} \int_0^1 \frac{d}{ds} u_m(x+shv) ds = \int_0^1 (\partial_v u_m) (x+shv) ds.$$

and therefore,

$$\partial_v^h u_m(x) - \partial_v u_m(x) = \int_0^1 \left[(\partial_v u_m) (x + shv) - \partial_v u_m(x) \right] ds.$$

So by Minkowski's inequality for integrals, Theorem 9.27,

$$\left\|\partial_v^h u_m(x) - \partial_v u_m\right\|_p \le \int_0^1 \left\|\left(\partial_v u_m\right)\left(\cdot + shv\right) - \partial_v u_m\right\|_p ds$$

and letting $m \to \infty$ in this equation then implies

$$\left\|\partial_v^h u - g\right\|_p \le \int_0^1 \left\|g(\cdot + shv) - g\right\|_p ds.$$

By the dominated convergence theorem and Proposition 11.13, the right member of this equation tends to zero as $h \to 0$ and this shows item 4. holds.

 $(1'. \Longrightarrow 1. \text{ when } p > 1)$ This is a consequence of Corollary 19.17 (or see Theorem 18.27 above) which asserts, by passing to a subsequence if necessary, that $\partial_v^{h_n} u \stackrel{w}{\to} g$ for some $g \in L^p(\mathbb{R}^d)$.

Example 19.19. The fact that (1') does not imply the equivalent conditions 1-4 in Theorem 19.18 when p=1 is demonstrated by the following example. Let $u:=1_{[0,1]}$, then

$$\int_{\mathbb{R}} \left| \frac{u(x+h) - u(x)}{h} \right| dx = \frac{1}{|h|} \int_{\mathbb{R}} \left| 1_{[-h,1-h]}(x) - 1_{[0,1]}(x) \right| dx = 2$$

for |h| < 1. On the other hand the distributional derivative of u is $\partial u(x) = \delta(x) - \delta(x-1)$ which is not in L^1 .

Alternatively, if there exists $g \in L^1(\mathbb{R}, dm)$ such that

$$\lim_{n\to\infty}\frac{u(x+h_n)-u(x)}{h_n}=g(x) \text{ in } L^1$$

for some sequence $\{h_n\}_{n=1}^{\infty}$ as above. Then for $\phi \in C_c^{\infty}(\mathbb{R})$ we would have on one hand,

$$\int_{\mathbb{R}} \frac{u(x+h_n) - u(x)}{h_n} \phi(x) dx = \int_{\mathbb{R}} \frac{\phi(x-h_n) - \phi(x)}{h_n} u(x) dx$$
$$\to -\int_0^1 \phi'(x) dx = (\phi(0) - \phi(1)) \text{ as } n \to \infty,$$

while on the other hand,

$$\int_{\mathbb{R}} \frac{u(x+h_n) - u(x)}{h_n} \phi(x) dx \to \int_{\mathbb{R}} g(x) \phi(x) dx.$$

These two equations imply

(19.10)
$$\int_{\mathbb{R}} g(x)\phi(x)dx = \phi(0) - \phi(1) \text{ for all } \phi \in C_c^{\infty}(\mathbb{R})$$

and in particular that $\int_{\mathbb{R}} g(x)\phi(x)dx = 0$ for all $\phi \in C_c(\mathbb{R} \setminus \{0,1\})$. By Corollary 11.28, g(x) = 0 for m – a.e. $x \in \mathbb{R} \setminus \{0,1\}$ and hence g(x) = 0 for m – a.e. $x \in \mathbb{R}$. But this clearly contradicts Eq. (19.10). This example also shows that the unit ball in $L^1(\mathbb{R}, dm)$ is not weakly sequentially compact. Compare with Example 18.24.

Proposition 19.20 (A weak form of Weyls Lemma). If $u \in L^2(\mathbb{R}^d)$ such that $f := \Delta u \in L^2(\mathbb{R}^d)$ then $\partial^{\alpha} u \in L^2(\mathbb{R}^d)$ for $|\alpha| \leq 2$. Furthermore if $k \in \mathbb{N}_0$ and $\partial^{\beta} f \in L^2(\mathbb{R}^d)$ for all $|\beta| \leq k$, then $\partial^{\alpha} u \in L^2(\mathbb{R}^d)$ for $|\alpha| \leq k + 2$.

Proof. By Proposition 19.13, there exists $u_n \in C_c^{\infty}(\mathbb{R}^d)$ such that $u_n \to u$ and $\Delta u_n \to \Delta u = f$ in $L^2(\mathbb{R}^d)$. By integration by parts we find

$$\int_{\mathbb{R}^d} |\nabla (u_n - u_m)|^2 dm = (-\Delta(u_n - u_m), (u_n - u_m))_{L^2} \to -(f - f, u - u) = 0 \text{ as } m, n \to \infty$$

and hence by item 3. of Theorem 19.18, $\partial_i u \in L^2$ for each i. Since

$$\|\nabla u\|_{L^2}^2 = \lim_{n \to \infty} \int_{\mathbb{R}^d} |\nabla u_n|^2 dm = (-\Delta u_n, u_n)_{L^2} \to -(f, u) \text{ as } n \to \infty$$

we also learn that

$$\|\nabla u\|_{L^2}^2 = -(f, u) \le \|f\|_{L^2} \cdot \|u\|_{L^2}$$
.

Let us now consider

$$\sum_{i,j=1}^{d} \int_{\mathbb{R}^d} |\partial_i \partial_j u_n|^2 dm = -\sum_{i,j=1}^{d} \int_{\mathbb{R}^d} \partial_j u_n \partial_i^2 \partial_j u_n dm$$

$$= -\sum_{j=1}^{d} \int_{\mathbb{R}^d} \partial_j u_n \partial_j \Delta u_n dm = \sum_{j=1}^{d} \int_{\mathbb{R}^d} \partial_j^2 u_n \Delta u_n dm$$

$$= \int_{\mathbb{R}^d} |\Delta u_n|^2 dm = ||\Delta u_n||_{L^2}^2.$$

Replacing u_n by $u_n - u_m$ in this calculation shows

$$\sum_{i,j=1}^{d} \int_{\mathbb{R}^d} \left| \partial_i \partial_j (u_n - u_m) \right|^2 dm = \left\| \Delta (u_n - u_m) \right\|_{L^2}^2 \to 0 \text{ as } m, n \to \infty$$

and therefore by Lemma 19.4 (also see Exercise 19.3), $\partial_i \partial_j u \in L^2(\mathbb{R}^d)$ for all i, j and

$$\sum_{i,i=1}^{d} \int_{\mathbb{R}^d} |\partial_i \partial_j u|^2 \, dm = \|\Delta u\|_{L^2}^2 = \|f\|_{L^2}^2 \, .$$

Let us now further assume $\partial_i f \in L^2(\mathbb{R}^d)$. Then for $h \in \mathbb{R} \setminus \{0\}$, $\partial_i^h u \in L^2(\mathbb{R}^d)$ and $\Delta \partial_i^h u = \partial_i^h \Delta u = \partial_i^h f \in L^2(\mathbb{R}^d)$ and hence by what we have just proved, $\partial^\alpha \partial_i^h u = \partial_i^h \partial^\alpha u \in L^2$ and

$$\begin{split} \sum_{|\alpha| \leq 2} \left\| \partial_i^h \partial^\alpha u \right\|_{L^2(\mathbb{R}^d)}^2 &\leq C \left[\left\| \partial_i^h f \right\|_{L^2}^2 + \left\| \partial_i^h f \right\|_{L^2} \cdot \left\| \partial_i^h u \right\|_{L^2} \right] \\ &\leq C \left[\left\| \partial_i f \right\|_{L^2}^2 + \left\| \partial_i f \right\|_{L^2} \cdot \left\| \partial_i u \right\|_{L^2} \right] \end{split}$$

with the last bound being independent of $h \neq 0$. Therefore applying Theorem 19.18 again we learn that $\partial_i \partial^{\alpha} u \in L^2(\mathbb{R}^d)$ for all $|\alpha| \leq 2$. The remainder of the proof, which is now an induction argument using the above ideas, is left as an exercise to the reader.

Theorem 19.21. Suppose that Ω is a precompact open subset of \mathbb{R}^d and V is an open precompact subset of Ω .

- (1) If $1 \leq p < \infty$, $u \in L^p(\Omega)$ and $\partial_i u \in L^p(\Omega)$, then $\|\partial_i^h u\|_{L^p(V)} \leq \|\partial_i u\|_{L^p(\Omega)}$ for all $0 < |h| < \frac{1}{2} \operatorname{dist}(V, \Omega^c)$.
- (2) Suppose that $1 , <math>u \in L^p(\Omega)$ and assume there exists a constants $C_V < \infty$ and $\epsilon_V \in (0, \frac{1}{2} \operatorname{dist}(V, \Omega^c))$ such that

$$\|\partial_i^h u\|_{L^p(V)} \le C_V \text{ for all } 0 < |h| < \epsilon_V.$$

Then $\partial_i u \in L^p(V)$ and $\|\partial_i u\|_{L^p(V)} \leq C_V$. Moreover if $C := \sup_{V \subset C\Omega} C_V < C_V$ ∞ then in fact $\partial_i u \in L^p(\Omega)$ and $\|\partial_i u\|_{L^p(\Omega)} \leq C$.

Proof. 1. Let $U \subset_o \Omega$ such that $\bar{V} \subset U$ and \bar{U} is a compact subset of Ω . For $u \in C^1(\Omega) \cap L^p(\Omega), x \in B \text{ and } 0 < |h| < \frac{1}{2} \operatorname{dist}(V, U^c),$

$$\partial_i^h u(x) = \frac{u(x + he_i) - u(x)}{h} = \int_0^1 \partial_i u(x + the_i) dt$$

and in particular,

$$|\partial_i^h u(x)| \le \int_0^1 |\partial u(x + the_i)| dt.$$

Therefore by Minikowski's inequality for integrals,

(19.11)
$$\|\partial_i^h u\|_{L^p(V)} \le \int_0^1 \|\partial u(\cdot + the_i)\|_{L^p(V)} dt \le \|\partial_i u\|_{L^p(U)}.$$

For general $u \in L^p(\Omega)$ with $\partial_i u \in L^p(\Omega)$, by Proposition 19.12, there exists $u_n \in C_c^{\infty}(\Omega)$ such that $u_n \to u$ and $\partial_i u_n \to \partial_i u$ in $L_{loc}^p(\Omega)$. Therefore we may replace u by u_n in Eq. (19.11) and then pass to the limit to find

$$\|\partial_i^h u\|_{L^p(V)} \le \|\partial_i u\|_{L^p(U)} \le \|\partial_i u\|_{L^p(\Omega)}.$$

2. If $\|\partial_i^h u\|_{L^p(V)} \leq C_V$ for all h sufficiently small then by Corollary 19.17 there exists $h_n \to 0$ such that $\partial_i^{h_n} u \xrightarrow{w} v \in L^p(V)$. Hence if $\varphi \in C_c^{\infty}(V)$,

$$\int_{V} v\varphi dm = \lim_{n \to \infty} \int_{\Omega} \partial_{i}^{h_{n}} u\varphi dm = \lim_{n \to \infty} \int_{\Omega} u \partial_{i}^{-h_{n}} \varphi dm$$
$$= -\int_{\Omega} u \partial_{i} \varphi \ dm = -\int_{V} u \partial_{i} \varphi \ dm.$$

Therefore $\partial_i u = v \in L^p(V)$ and $\|\partial_i u\|_{L^p(V)} \leq \|v\|_{L^p(V)} \leq C_V$. Finally if C := $\sup_{V\subset\subset\Omega}C_V<\infty$, then by the dominated convergence theorem,

$$\|\partial_i u\|_{L^p(\Omega)} = \lim_{V \uparrow \Omega} \|\partial_i u\|_{L^p(V)} \le C.$$

We will now give a couple of applications of Theorem 19.18.

Lemma 19.22. Let $v \in \mathbb{R}^d$.

- (1) If $h \in L^1$ and $\partial_v h$ exists in L^1 , then $\int_{\mathbb{R}^d} \partial_v h(x) dx = 0$. (2) If $p, q, r \in [1, \infty)$ satisfy $r^{-1} = p^{-1} + q^{-1}$, $f \in L^p$ and $g \in L^q$ are functions such that $\partial_v f$ and $\partial_v g$ exists in L^p and L^q respectively, then $\partial_v (fg)$ exists in L^r and $\partial_v(fg) = \partial_v f \cdot g + f \cdot \partial_v g$. Moreover if r = 1 we have the integration by parts formula,

(19.12)
$$\langle \partial_v f, g \rangle = -\langle f, \partial_v g \rangle.$$

(3) If p = 1, $\partial_v f$ exists in L^1 and $g \in BC^1(\mathbb{R}^d)$ (i.e. $g \in C^1(\mathbb{R}^d)$ with g and its first derivatives being bounded) then $\partial_v(gf)$ exists in L^1 and $\partial_v(fg) = \partial_v f \cdot g + f \cdot \partial_v g$ and again Eq. (19.12) holds.

Proof. 1) By item 3. of Theorem 19.18 there exists $h_n \in C_c^{\infty}(\mathbb{R}^d)$ such that $h_n \to h$ and $\partial_v h_n \to \partial_v h$ in L^1 . Then

$$\int_{\mathbb{R}^d} \partial_v h_n(x) dx = \frac{d}{dt} |_0 \int_{\mathbb{R}^d} h_n(x + hv) dx = \frac{d}{dt} |_0 \int_{\mathbb{R}^d} h_n(x) dx = 0$$

and letting $n \to \infty$ proves the first assertion.

2) Similarly there exists $f_n, g_n \in C_c^{\infty}(\mathbb{R}^d)$ such that $f_n \to f$ and $\partial_v f_n \to \partial_v f$ in L^p and $g_n \to g$ and $\partial_v g_n \to \partial_v g$ in L^q as $n \to \infty$. So by the standard product rule and Remark 19.2, $f_n g_n \to f g \in L^r$ as $n \to \infty$ and

$$\partial_v(f_ng_n) = \partial_v f_n \cdot g_n + f_n \cdot \partial_v g_n \to \partial_v f \cdot g + f \cdot \partial_v g$$
 in L^r as $n \to \infty$.

It now follows from another application of Theorem 19.18 that $\partial_v(fg)$ exists in L^r and $\partial_v(fg) = \partial_v f \cdot g + f \cdot \partial_v g$. Eq. (19.12) follows from this product rule and item 1. when r = 1.

3) Let $f_n \in C_c^{\infty}(\mathbb{R}^d)$ such that $f_n \to f$ and $\partial_v f_n \to \partial_v f$ in L^1 as $n \to \infty$. Then as above, $gf_n \to gf$ in L^1 and $\partial_v (gf_n) \to \partial_v g \cdot f + g\partial_v f$ in L^1 as $n \to \infty$. In particular if $\phi \in C_c^{\infty}(\mathbb{R}^d)$, then

$$\langle gf, \partial_v \phi \rangle = \lim_{n \to \infty} \langle gf_n, \partial_v \phi \rangle = -\lim_{n \to \infty} \langle \partial_v (gf_n), \phi \rangle$$
$$= -\lim_{n \to \infty} \langle \partial_v g \cdot f_n + g \partial_v f_n, \phi \rangle = -\langle \partial_v g \cdot f + g \partial_v f, \phi \rangle.$$

This shows $\partial_v(fg)$ exists (weakly) and $\partial_v(fg) = \partial_v f \cdot g + f \cdot \partial_v g$. Again Eq. (19.12) holds in this case by item 1. already proved.

Lemma 19.23. Let $p, q, r \in [1, \infty]$ satisfy $p^{-1} + q^{-1} = 1 + r^{-1}$, $f \in L^p$, $g \in L^q$ and $v \in \mathbb{R}^d$.

- (1) If $\partial_v f$ exists strongly in L^r , then $\partial_v (f * g)$ exists strongly in L^p and $\partial_v (f * g) = (\partial_v f) * g$.
- (2) If $\partial_v g$ exists strongly in L^q , then $\partial_v (f * g)$ exists strongly in L^r and $\partial_v (f * q) = f * \partial_v q$.
- (3) If $\partial_v f$ exists weakly in L^p and $g \in C_c^{\infty}(\mathbb{R}^d)$, then $f * g \in C^{\infty}(\mathbb{R}^d)$, $\partial_v (f * g)$ exists strongly in L^r and

$$\partial_v(f*g) = f*\partial_v g = (\partial_v f)*g.$$

Proof. Items 1 and 2. By Young's inequality (Theorem 11.19) and simple computations:

$$\left\| \frac{\tau_{-hv}(f * g) - f * g}{h} - (\partial_v f) * g \right\|_r = \left\| \frac{\tau_{-hv}f * g - f * g}{h} - (\partial_v f) * g \right\|_r$$

$$= \left\| \left[\frac{\tau_{-hv}f - f}{h} - (\partial_v f) \right] * g \right\|_r$$

$$\leq \left\| \frac{\tau_{-hv}f - f}{h} - (\partial_v f) \right\|_p \|g\|_q$$

which tends to zero as $h \to 0$. The second item is proved analogously, or just make use of the fact that f * g = g * f and apply Item 1.

Using the fact that $g(x-\cdot) \in C_c^{\infty}(\mathbb{R}^d)$ and the definition of the weak derivative,

$$f * \partial_v g(x) = \int_{\mathbb{R}^d} f(y) (\partial_v g) (x - y) dy = -\int_{\mathbb{R}^d} f(y) (\partial_v g(x - \cdot)) (y) dy$$
$$= \int_{\mathbb{R}^d} \partial_v f(y) g(x - y) dy = \partial_v f * g(x).$$

Item 3. is a consequence of this equality and items 1. and 2. \blacksquare

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.24. Let $\Omega = (\alpha, \beta) \subset \mathbb{R}$ be an open interval and $f \in L^1_{loc}(\Omega)$ such that $\partial^{(w)} f = 0$ in $L^1_{loc}(\Omega)$. Then there exists $c \in \mathbb{C}$ such that f = c a.e. More generally, suppose $F : C^{\infty}_{c}(\Omega) \to \mathbb{C}$ is a linear functional such that $F(\phi') = 0$ for all $\phi \in C^{\infty}_{c}(\Omega)$, where $\phi'(x) = \frac{d}{dx}\phi(x)$, then there exists $c \in \mathbb{C}$ such that

(19.13)
$$F(\phi) = \langle c, \phi \rangle = \int_{\Omega} c\phi(x) dx \text{ for all } \phi \in C_c^{\infty}(\Omega).$$

Proof. Before giving a proof of the second assertion, let us show it includes the first. Indeed, if $F(\phi) := \int_{\Omega} \phi f dm$ and $\partial^{(w)} f = 0$, then $F(\phi') = 0$ for all $\phi \in C_c^{\infty}(\Omega)$ and therefore there exists $c \in \mathbb{C}$ such that

$$\int_{\Omega} \phi f dm = F(\phi) = c \langle \phi, 1 \rangle = c \int_{\Omega} \phi f dm.$$

But this implies f = c a.e. So it only remains to prove the second assertion.

Let $\eta \in C_c^{\infty}(\Omega)$ such that $\int_{\Omega} \eta dm = 1$. Given $\phi \in C_c^{\infty}(\Omega) \subset C_c^{\infty}(\mathbb{R})$, let $\psi(x) = \int_{-\infty}^{x} (\phi(y) - \eta(y)\langle \phi, 1 \rangle) dy$. Then $\psi'(x) = \phi(x) - \eta(x)\langle \phi, 1 \rangle$ and $\psi \in C_c^{\infty}(\Omega)$ as the reader should check. Therefore,

$$0 = F(\psi) = F(\phi - \langle \phi, \eta \rangle \eta) = F(\phi) - \langle \phi, 1 \rangle F(\eta)$$

which shows Eq. (19.13) holds with $c = F(\eta)$. This concludes the proof, however it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose $f \in L^1_{loc}(\Omega)$ and $\partial^{(w)} f = 0$ and $f_m := f * \eta_m$ as is in the proof of Lemma 19.9. Then $f'_m = \partial^{(w)} f * \eta_m = 0$, so $f_m = c_m$ for some constant $c_m \in \mathbb{C}$. By Theorem 11.21, $f_m \to f$ in $L^1_{loc}(\Omega)$ and therefore if J = [a, b] is a compact subinterval of Ω ,

$$|c_m - c_k| = \frac{1}{b-a} \int_J |f_m - f_k| \, dm \to 0 \text{ as } m, k \to \infty.$$

So $\{c_m\}_{m=1}^{\infty}$ is a Cauchy sequence and therefore $c:=\lim_{m\to\infty}c_m$ exists and $f=\lim_{m\to\infty}f_m=c$ a.e.

Theorem 19.25. Suppose $f \in L^1_{loc}(\Omega)$. Then there exists a complex measure μ on \mathcal{B}_{Ω} such that

(19.14)
$$-\langle f, \phi' \rangle = \mu(\phi) := \int_{\Omega} \phi d\mu \text{ for all } \phi \in C_c^{\infty}(\Omega)$$

iff there exists a right continuous function F of bounded variation such that F = f a.e. In this case $\mu = \mu_F$, i.e. $\mu((a,b]) = F(b) - F(a)$ for all $-\infty < a < b < \infty$.

Proof. Suppose f = F a.e. where F is as above and let $\mu = \mu_F$ be the associated measure on \mathcal{B}_{Ω} . Let $G(t) = F(t) - F(-\infty) = \mu((-\infty, t])$, then using Fubini's theorem and the fundamental theorem of calculus,

$$-\langle f, \phi' \rangle = -\langle F, \phi' \rangle = -\langle G, \phi' \rangle = -\int_{\Omega} \phi'(t) \left[\int_{\Omega} 1_{(-\infty, t]}(s) d\mu(s) \right] dt$$
$$= -\int_{\Omega} \int_{\Omega} \phi'(t) 1_{(-\infty, t]}(s) dt d\mu(s) = \int_{\Omega} \phi(s) d\mu(s) = \mu(\phi).$$

Conversely if Eq. (19.14) holds for some measure μ , let $F(t) := \mu((-\infty, t])$ then working backwards from above,

$$-\langle f, \phi' \rangle = \mu(\phi) = \int_{\Omega} \phi(s) d\mu(s) = -\int_{\Omega} \int_{\Omega} \phi'(t) 1_{(-\infty, t]}(s) dt d\mu(s) = -\int_{\Omega} \phi'(t) F(t) dt.$$

This shows $\partial^{(w)}(f-F)=0$ and therefore by Proposition 19.24, f=F+c a.e. for some constant $c \in \mathbb{C}$. Since F+c is right continuous with bounded variation, the proof is complete.

Proposition 19.26. Let $\Omega \subset \mathbb{R}$ be an open interval and $f \in L^1_{loc}(\Omega)$. Then $\partial^w f$ exists in $L^1_{loc}(\Omega)$ iff f has a continuous version \tilde{f} which is absolutely continuous on all compact subintervals of Ω . Moreover, $\partial^w f = \tilde{f}'$ a.e., where $\tilde{f}'(x)$ is the usual pointwise derivative.

Proof. If f is locally absolutely continuous and $\phi \in C_c^{\infty}(\Omega)$ with $\operatorname{supp}(\phi) \subset [a,b] \subset \Omega$, then by integration by parts, Corollary 16.32,

$$\int_{\Omega} f' \phi dm = \int_{a}^{b} f' \phi dm = -\int_{a}^{b} f \phi' dm + f \phi|_{a}^{b} = -\int_{\Omega} f \phi' dm.$$

This shows $\partial^w f$ exists and $\partial^w f = f' \in L^1_{loc}(\Omega)$.

Now suppose that $\partial^w f$ exists in $L^1_{loc}(\Omega)$ and $a \in \Omega$. Define $F \in C(\Omega)$ by $F(x) := \int_a^x \partial^w f(y) dy$. Then F is absolutely continuous on compacts and therefore by fundamental theorem of calculus for absolutely continuous functions (Theorem 16.31), F'(x) exists and is equal to $\partial^w f(x)$ for a.e. $x \in \Omega$. Moreover, by the first part of the argument, $\partial^w F$ exists and $\partial^w F = \partial^w f$, and so by Proposition 19.24 there is a constant c such that

$$\tilde{f}(x) := F(x) + c = f(x)$$
 for a.e. $x \in \Omega$.

Definition 19.27. Let X and Y be metric spaces. A function $u: X \to Y$ is said to be **Lipschitz** if there exists $C < \infty$ such that

$$d^Y(u(x), u(x')) \le Cd^X(x, x')$$
 for all $x, x' \in X$

and said to be **locally Lipschitz** if for all compact subsets $K\subset X$ there exists $C_K<\infty$ such that

$$d^Y(u(x), u(x')) \le C_K d^X(x, x')$$
 for all $x, x' \in K$.

Proposition 19.28. Let $u \in L^1_{loc}(\Omega)$. Then there exists a locally Lipschitz function $\tilde{u}: \Omega \to \mathbb{C}$ such that $\tilde{u} = u$ a.e. iff $\partial_i u \in L^1_{loc}(\Omega)$ exists and is locally (essentially) bounded for i = 1, 2, ..., d.

Proof. Suppose $u = \tilde{u}$ a.e. and \tilde{u} is Lipschitz and let $p \in (1, \infty)$ and V be a precompact open set such that $\bar{V} \subset W$ and let $V_{\epsilon} := \{x \in \Omega : \operatorname{dist}(x, \bar{V}) \leq \epsilon\}$. Then for $\epsilon < \operatorname{dist}(\bar{V}, \Omega^c)$, $V_{\epsilon} \subset \Omega$ and therefore there is constant $C(V, \epsilon) < \infty$ such that $|\tilde{u}(y) - \tilde{u}(x)| \leq C(V, \epsilon) |y - x|$ for all $x, y \in V_{\epsilon}$. So for $0 < |h| \leq 1$ and $v \in \mathbb{R}^d$ with |v| = 1,

$$\int_{V} \left| \frac{u(x+hv) - u(x)}{h} \right|^{p} dx = \int_{V} \left| \frac{\tilde{u}(x+hv) - \tilde{u}(x)}{h} \right|^{p} dx \le C(V, \epsilon) \left| v \right|^{p}.$$

Therefore Theorem 19.18 may be applied to conclude $\partial_v u$ exists in L^p and moreover,

$$\lim_{h\to 0} \frac{\tilde{u}(x+hv)-\tilde{u}(x)}{h} = \partial_v u(x) \text{ for } m-\text{a.e. } x\in V.$$

Since there exists $\{h_n\}_{n=1}^{\infty} \subset \mathbb{R} \setminus \{0\}$ such that $\lim_{n\to\infty} h_n = 0$ and

$$|\partial_v u(x)| = \lim_{n \to \infty} \left| \frac{\tilde{u}(x + h_n v) - \tilde{u}(x)}{h_n} \right| \le C(V) \text{ for a.e. } x \in V,$$

it follows that $\|\partial_v u\|_{\infty} \leq C(V)$ where $C(V) := \lim_{\epsilon \downarrow 0} C(V, \epsilon)$.

Conversely, let $\Omega_{\epsilon} := \{x \in \Omega : \operatorname{dist}(x, \Omega^c) > \epsilon\}$ and $\eta \in C_c^{\infty}(B(0, 1), [0, \infty))$ such that $\int_{\mathbb{R}^n} \eta(x) dx = 1$, $\eta_m(x) = m^n \eta(mx)$ and $u_m := u * \eta_m$ as in the proof of Theorem 19.18. Suppose $V \subset_o \Omega$ with $\bar{V} \subset \Omega$ and ϵ is sufficiently small. Then $u_m \in C^{\infty}(\Omega_{\epsilon})$, $\partial_v u_m = \partial_v u * \eta_m$, $|\partial_v u_m(x)| \leq ||\partial_v u||_{L^{\infty}(V_{m-1})} =: C(V, m) < \infty$ and therefore,

$$|u_m(y) - u_m(x)| = \left| \int_0^1 \frac{d}{dt} u_m(x + t(y - x)) dt \right|$$

$$= \left| \int_0^1 (y - x) \cdot \nabla u_m(x + t(y - x)) dt \right|$$

$$\leq \int_0^1 |y - x| \cdot |\nabla u_m(x + t(y - x))| dt$$

$$\leq C(V, m) |y - x| \text{ for all } x, y \in V.$$

$$(19.15)$$

By passing to a subsequence if necessary, we may assume that $\lim_{m\to\infty} u_m(x) = u(x)$ for m – a.e. $x \in V$ and then letting $m \to \infty$ in Eq. (19.15) implies

$$(19.16) |u(y) - u(x)| \le C(V) |y - x| for all x, y \notin E$$

where $E \subset V$ is a m – null set. Define $\tilde{u}_V : V \to \mathbb{C}$ by $\tilde{u}_V = u$ on $V \setminus E^c$ and $\tilde{u}_V(x) = \lim_{\substack{y \neq E \\ y \notin E}} u(y)$ if $x \in E$. Then clearly $\tilde{u}_V = u$ a.e. on V and it is easy to show \tilde{u}_V is well defined and $\tilde{u}_V : V \to \mathbb{C}$ is Lipschitz continuous. To complete the proof, choose precompact open sets V_n such that $V_n \subset \bar{V}_n \subset V_{n+1} \subset \Omega$ for all n and for $x \in V_n$ let $\tilde{u}(x) := \tilde{u}_{V_n}(x)$.

Here is an alternative way to construct the function \tilde{u}_V above. For $x \in V \setminus E$,

$$|u_m(x) - u(x)| = \left| \int_V u(x - y)\eta(my)m^n dy - u(x) \right| = \left| \int_V \left[u(x - y/m) - u(x) \right] \eta(y) dy \right|$$

$$\leq \int_V |u(x - y/m) - u(x)| \eta(y) dy \leq \frac{C}{m} \int_V |y| \eta(y) dy$$

wherein the last equality we have used Eq. (19.16) with V replaced by V_{ϵ} for some small $\epsilon > 0$. Letting $K := C \int_{V} |y| \, \eta(y) dy < \infty$ we have shown

$$||u_m - u||_{\infty} \le K/m \to 0 \text{ as } m \to \infty$$

and consequently

$$||u_m - u_n||_u = ||u_m - u_n||_{\infty} \le 2K/m \to 0 \text{ as } m \to \infty.$$

Therefore, u_n converges uniformly to a continuous function \tilde{u}_V .

The next theorem is from Chapter 1. of Maz'ja [2].

Theorem 19.29. Let $p \ge 1$ and Ω be an open subset of \mathbb{R}^d , $x \in \mathbb{R}^d$ be written as $x = (y, t) \in \mathbb{R}^{d-1} \times \mathbb{R}$,

$$Y := \{ y \in \mathbb{R}^{d-1} : (\{y\} \times \mathbb{R}) \cap \Omega \neq \emptyset \}$$

and $u \in L^p(\Omega)$. Then $\partial_t u$ exists weakly in $L^p(\Omega)$ iff there is a version \tilde{u} of u such that for a.e. $y \in Y$ the function $t \to \tilde{u}(y,t)$ is absolutely continuous, $\partial_t u(y,t) = \frac{\partial \tilde{u}(y,t)}{\partial t}$ a.e., and $\left\|\frac{\partial \tilde{u}}{\partial t}\right\|_{L^p(\Omega)} < \infty$.

Proof. For the proof of Theorem 19.29, it suffices to consider the case where $\Omega = (0,1)^d$. Write $x \in \Omega$ as $x = (y,t) \in Y \times (0,1) = (0,1)^{d-1} \times (0,1)$ and $\partial_t u$ for the weak derivative $\partial_{e_d} u$. By assumption

$$\int_{\Omega} |\partial_t u(y,t)| \, dy dt = \|\partial_t u\|_1 \le \|\partial_t u\|_p < \infty$$

and so by Fubini's theorem there exists a set of full measure, $Y_0 \subset Y$, such that

$$\int_0^1 |\partial_t u(y,t)| \, dt < \infty \text{ for } y \in Y_0.$$

So for $y \in Y_0$, the function $v(y,t) := \int_0^t \partial_t u(y,\tau) d\tau$ is well defined and absolutely continuous in t with $\frac{\partial}{\partial t} v(y,t) = \partial_t u(y,t)$ for a.e. $t \in (0,1)$. Let $\xi \in C_c^{\infty}(Y)$ and $\eta \in C_c^{\infty}((0,1))$, then integration by parts for absolutely functions implies

$$\int_0^1 v(y,t)\dot{\eta}(t)dt = -\int_0^1 \frac{\partial}{\partial t} v(y,t)\eta(t)dt \text{ for all } y \in Y_0.$$

Multiplying both sides of this equation by $\xi(y)$ and integrating in y shows

$$\int_{\Omega} v(x)\dot{\eta}(t)\xi(y)dydt = -\int_{\Omega} \frac{\partial}{\partial t}v(y,t)\eta(t)\xi(y)dydt = -\int_{\Omega} \partial_t u(y,t)\eta(t)\xi(y)dydt.$$

Using the definition of the weak derivative, this equation may be written as

$$\int_{\Omega} u(x)\dot{\eta}(t)\xi(y)dydt = -\int_{\Omega} \partial_t u(x)\eta(t)\xi(y)dydt$$

and comparing the last two equations shows

$$\int_{\Omega} [v(x) - u(x)] \dot{\eta}(t) \xi(y) dy dt = 0.$$

Since $\xi \in C_c^{\infty}(Y)$ is arbitrary, this implies there exists a set $Y_1 \subset Y_0$ of full measure such that

$$\int_{\Omega} \left[v(y,t) - u(y,t) \right] \dot{\eta}(t) dt = 0 \text{ for all } y \in Y_1$$

from which we conclude, using Proposition 19.24, that u(y,t) = v(y,t) + C(y) for $t \in J_y$ where $m_{d-1}(J_y) = 1$, here m_k denotes k – dimensional Lebesgue measure. In conclusion we have shown that

(19.17)
$$u(y,t) = \tilde{u}(y,t) := \int_0^t \partial_t u(y,\tau) d\tau + C(y) \text{ for all } y \in Y_1 \text{ and } t \in J_y.$$

We can be more precise about the formula for $\tilde{u}(y,t)$ by integrating both sides of Eq. (19.17) on t we learn

$$C(y) = \int_0^1 dt \int_0^t \partial_\tau u(y,\tau) d\tau - \int_0^1 u(y,t) dt = \int_0^1 (1-\tau) \partial_\tau u(y,\tau) d\tau - \int_0^1 u(y,t) dt$$
$$= \int_0^1 \left[(1-t) \partial_t u(y,t) - u(y,t) \right] dt$$

and hence

$$\tilde{u}(y,t) := \int_0^t \partial_\tau u(y,\tau) d\tau + \int_0^1 \left[(1-\tau) \, \partial_\tau u(y,\tau) - u(y,\tau) \right] d\tau$$

which is well defined for $y \in Y_0$.

For the converse suppose that such a \tilde{u} exists, then for $\phi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} u(y,t)\partial_t \phi(y,t)dydt = \int_{\Omega} \tilde{u}(y,t)\partial_t \phi(y,t)dtdy = -\int_{\Omega} \frac{\partial \tilde{u}(y,t)}{\partial t}\phi(y,t)dtdy$$

wherein we have used integration by parts for absolutely continuous functions. From this equation we learn the weak derivative $\partial_t u(y,t)$ exists and is given by $\frac{\partial \tilde{u}(y,t)}{\partial t}$ a.e.

19.3. Exercises.

Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. **Hints:** 1. Use u_{ϵ} as defined in the proof of Proposition 19.12 to show it suffices to consider the case where $u \in C^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $\partial^{\alpha} u \in L^p(\mathbb{R}^d)$ for all $\alpha \in \mathbb{N}_0^d$. 2. Then let $\psi \in C_c^{\infty}(B(0,1),[0,1])$ such that $\psi = 1$ on a neighborhood of 0 and let $u_n(x) := u(x)\psi(x/n)$.

Exercise 19.3. Let $p \in [1, \infty)$, α be a multi index (if $\alpha = 0$ let ∂^0 be the identity operator on L^p),

$$D(\partial^{\alpha}) := \{ f \in L^p(\mathbb{R}^n) : \partial^{\alpha} f \text{ exists weakly in } L^p(\mathbb{R}^n) \}$$

and for $f \in D(\partial^{\alpha})$ (the domain of ∂^{α}) let $\partial^{\alpha} f$ denote the α – weak derivative of f. (See Definition 19.3.)

- (1) Show ∂^{α} is a densely defined operator on L^p , i.e. $D(\partial^{\alpha})$ is a dense linear subspace of L^p and $\partial^{\alpha}: D(\partial^{\alpha}) \to L^p$ is a linear transformation.
- (2) Show $\partial^{\alpha}: D(\partial^{\alpha}) \to L^{p}$ is a closed operator, i.e. the graph,

$$\Gamma(\partial^{\alpha}) := \{ (f, \partial^{\alpha} f) \in L^p \times L^p : f \in D(\partial^{\alpha}) \},\,$$

is a closed subspace of $L^p \times L^p$.

(3) Show $\partial^{\alpha}: D(\partial^{\alpha}) \subset L^{p} \to L^{p}$ is not bounded unless $\alpha = 0$. (The norm on $D(\partial^{\alpha})$ is taken to be the L^{p} – norm.)

Exercise 19.4. Let $p \in [1, \infty)$, $f \in L^p$ and α be a multi index. Show $\partial^{\alpha} f$ exists weakly (see Definition 19.3) in L^p iff there exists $f_n \in C_c^{\infty}(\mathbb{R}^n)$ and $g \in L^p$ such that $f_n \to f$ and $\partial^{\alpha} f_n \to g$ in L^p as $n \to \infty$. **Hints:** See exercises 19.2 and 19.3.

Exercise 19.5. Folland 8.8 on p. 246.

Exercise 19.6. Assume n=1 and let $\partial=\partial_{e_1}$ where $e_1=(1)\in\mathbb{R}^1=\mathbb{R}$.

(1) Let f(x) = |x|, show ∂f exists weakly in $L^1_{loc}(\mathbb{R})$ and $\partial f(x) = \operatorname{sgn}(x)$ for m – a.e. x.

- (2) Show $\partial(\partial f)$ does **not** exists weakly in $L^1_{loc}(\mathbb{R})$.
- (3) Generalize item 1. as follows. Suppose $f \in C(\mathbb{R}, \mathbb{R})$ and there exists a finite set $\Lambda := \{t_1 < t_2 < \dots < t_N\} \subset \mathbb{R}$ such that $f \in C^1(\mathbb{R} \setminus \Lambda, \mathbb{R})$. Assuming $\partial f \in L^1_{loc}(\mathbb{R})$, show ∂f exists weakly and $\partial^{(w)} f(x) = \partial f(x)$ for m a.e. x.

Exercise 19.7. Suppose that $f \in L^1_{loc}(\Omega)$ and $v \in \mathbb{R}^d$ and $\{e_j\}_{j=1}^n$ is the standard basis for \mathbb{R}^d . If $\partial_j f := \partial_{e_j} f$ exists weakly in $L^1_{loc}(\Omega)$ for all $j = 1, 2, \ldots, n$ then $\partial_v f$ exists weakly in $L^1_{loc}(\Omega)$ and $\partial_v f = \sum_{j=1}^n v_j \partial_j f$.

Exercise 19.8. Suppose, $f \in L^1_{loc}(\mathbb{R}^d)$ and $\partial_v f$ exists weakly and $\partial_v f = 0$ in $L^1_{loc}(\mathbb{R}^d)$ for all $v \in \mathbb{R}^d$. Then there exists $\lambda \in \mathbb{C}$ such that $f(x) = \lambda$ for m – a.e. $x \in \mathbb{R}^d$. **Hint:** See steps 1. and 2. in the outline given in Exercise 19.9 below.

Exercise 19.9 (A generalization of Exercise 19.8). Suppose Ω is a connected open subset of \mathbb{R}^d and $f \in L^1_{loc}(\Omega)$. If $\partial^{\alpha} f = 0$ weakly for $\alpha \in \mathbb{Z}_+^n$ with $|\alpha| = N+1$, then f(x) = p(x) for m – a.e. x where p(x) is a polynomial of degree at most N. Here is an outline.

- (1) Suppose $x_0 \in \Omega$ and $\epsilon > 0$ such that $C := C_{x_0}(\epsilon) \subset \Omega$ and let η_n be a sequence of approximate δ functions such supp $(\eta_n) \subset B_0(1/n)$ for all n. Then for n large enough, $\partial^{\alpha}(f * \eta_n) = (\partial^{\alpha} f) * \eta_n$ on C for $|\alpha| = N + 1$. Now use Taylor's theorem to conclude there exists a polynomial p_n of degree at most N such that $f_n = p_n$ on C.
- (2) Show $p := \lim_{n\to\infty} p_n$ exists on C and then let $n\to\infty$ in step 1. to show there exists a polynomial p of degree at most N such that f=p a.e. on C.
- (3) Use Taylor's theorem to show if p and q are two polynomials on \mathbb{R}^d which agree on an open set then p = q.
- (4) Finish the proof with a connectedness argument using the results of steps 2. and 3. above.

Exercise 19.10. Suppose $\Omega \subset_o \mathbb{R}^d$ and $v, w \in \mathbb{R}^d$. Assume $f \in L^1_{loc}(\Omega)$ and that $\partial_v \partial_w f$ exists weakly in $L^1_{loc}(\Omega)$, show $\partial_w \partial_v f$ also exists weakly and $\partial_w \partial_v f = \partial_v \partial_w f$.

Exercise 19.11. Let d=2 and $f(x,y)=1_{x\geq 0}$. Show $\partial^{(1,1)}f=0$ weakly in L^1_{loc} despite the fact that $\partial_1 f$ does not exist weakly in L^1_{loc} !