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19. WEAK AND STRONG DERIVATIVES

For this section, let € be an open subset of RY, p,q,r € [1,00], LP(Q)) =
LP(Q,Bg,m) and L} () = L (Q,Bq, m), where m is Lebesgue measure on Bga

and Bg is the Borel o — algebra on Q. If Q = R?, we will simply write L? and Ly
for LP(R?) and L} (R?) respectively. Also let

loc
(f,9) ::/Qfgdm

for any pair of measurable functions f,g : @ — C such that fg € L'(Q). For
example, by Holder’s inequality, if (f,g) is defined for f € LP(Q) and g € L9(2)
p

when ¢ = o1

Definition 19.1. A sequence {u,},-, C LI () is said to converge tou € L ()

loc loc
if limy, oo [ — wn | a5y = 0 for all compact subsets K C (0.

The following simple but useful remark will be used (typically without further
comment) in the sequel.

Remark 19.2. Suppose r,p,q € [1,00] are such that ! = p~t + ¢! and f; — f
in LP(Q) and g; — ¢ in LY(Q) as t — 0, then f;g: — fg in L" (). Indeed,
1 fege = fall, = I(fe = f) ge + f (e = 9,
< \fe = flly lgellq + Lf 1L, [lge — glly — 0 as £ — 0

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Differentiability). Let v € R and u € LP(Q2) (u € Lt ()

then O,u is said to exist weakly in LP(Q) (L} (9Q)) if there exists a function
g€ LP(Q) (g€ LV (Q)) such that

loc
(19.1) (4, 0,6) = — (g, 6) for all 6 € C=(9).
The function g if it exists will be denoted by 81(,w)u. Similarly if o« € Nd and 9 is
as in Notation 11.10, we say 9“u exists weakly in L?(Q) (L} .(2)) iff there exists
g€ LP(Q) (L} () such that

(u,0%¢) = (~1)*l(g, ¢) for all ¢ € CZ(9).

More generally if p(¢§) = Z\aISN a,€” is a polynomial in £ € R™, then p(0)u exists
weakly in LP(Q) (LT (£2)) iff there exists g € LP(Q) (L7 .(9)) such that

loc loc

(19.2) (u, p(~0)6) = (g, 6) for all ¢ € C=(9)
and we denote g by w—p(9)u.

By Corollary 11.28, there is at most one g € L}, .(§2) such that Eq. (19.2) holds,
so w—p(9)u is well defined.

Lemma 19.4. Let p(§) be a polynomial on R%, k = deg (p) € N, and u € L}, ()
such that p(d)u exists weakly in L},.(Q). Then

(1) supp,,(w—p(d)u) C supp,, (u), where supp,, (u) is the essential support of
u relative to Lebesgue measure, see Definition 11.14.

(2) Ifdegp =k and uly € C* (U, C) for some open set U C Q, then w—p(9)u =
p(0)u a.e. on U.

Proof.
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(1) Since
(w—p(D), &) = —(u, p(~0)) = 0 for all ¢ € CX (2 supp,, (u),
an application of Corollary 11.28 shows w—p(d)u = 0 a.e. on Q\
supp,, (u). So by Lemma 11.15, Q \ supp,,(u) C 2\ supp,,, (w—p(d)u), i.e.
supp,, (w—p(d)u) C supp,, (u).

(2) Suppose that u|y is C* and let v € C(U). (We view 1 as a function
in C°(R%) by setting ¢y = 0 on R?\ U.) By Corollary 11.25, there exists
v € C(R) such that 0 < v <1 and v =1 in a neighborhood of supp(v).
Then by setting yu = 0 on R? \ supp(y) we may view yu € C*(R%) and
so by standard integration by parts (see Lemma 11.26) and the ordinary
product rule,

(w=p(0)u, ¥} = (u, p(=0)¢)) = —(yu, p(=0)¢)
(19.3) = (p(9) (yu) ,¥) = (p(O)u, V)
wherein the last equality we have -« is constant on supp(¢). Since Eq.
(19.3) is true for all ¢ € C°(U), an application of Corollary 11.28 with
h=w—p(d)u —p(9)u and p = m shows w—p(d)u = p (9) u a.e. on U.
|

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing p (9) u
for w—p(0)u. So in the sequel we will always interpret p(9)u in the weak or “dis-
tributional” sense.

Example 19.6. Suppose u(z) = |z| for z € R, then du(z) = sgn(z) in L},, (R)
while 8%u(z) = 26(x) so 9*u(x) does not exist weakly in L . (R).

Example 19.7. Suppose d = 2 and u(z,y) = 1,5,. Then u € L}, (R?), while
Oplysy = =0 (y — ) and dyly~, = d (y — =) and so that neither d,u or Jyu exists
weakly. On the other hand (0, + 9y)u = 0 weakly. To prove these assertions,
notice u € C (R?\ A) where A = {(z,z) : 2 € R*} . So by Lemma 19.4, for any
polynomial p (£) without constant term, if p (9) u exists weakly then p (9)u = 0.
However,

(u, —0,0) = — bo(, y)daxdy = — /]R oy, y)dy,

y>x

(u, —0y) = — oy (z,y)dxdy = /R<b(av,x)d$ and

y>x
from which it follows that d,u and dyu can not be zero while (0, + 9,)u = 0.
On the other hand if p(§) and ¢ (£) are two polynomials and u € L}, () is a
function such that p(d)u exists weakly in L}, (2) and ¢ () [p(9)u] exists weakly
in L} . (Q) then (gp) (0) u exists weakly in Lloc (Q). This is because

loc
(u, (gp) (=0) ¢) = (u, p(—9) ¢(=0)9)

= (p(9)u,q(=09)9) = (¢(9)p (9) u, ¢) for all ¢ € C° (Q).
Example 19.8. Let u(z,y) = ly50 + ly>o in L}, (R?). Then d,u(z,y) = 6(z)
and dyu(z,y) = §(y) so dyu(z,y) and dyu(z,y) do not exist weakly in L} . (Rz) .

However 0,,0,u does exists weakly and is the zero function. This shows 0,0, u may
exists weakly despite the fact both d,u and 9yu do not exists weakly in LloC (RQ) .
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Lemma 19.9. Suppose u € L. () and p(€) is a polynomial of degree k such that
p (0) u exists weakly in L}, (Q) then

loc
(19.4) (p(9)u, ¢) = (u,p (~0) §) for all ¢ € CF ().
Note: The point here is that Eq. (19.4) holds for all ¢ € CF () not just ¢ €
C*(Q).

Proof. Let ¢ € C¥ (Q) and choose n € C2° (B (0,1)) such that [, n(z)dz =1
and let 7 (z) := e 9n(x/e). Then n. x ¢ € C=(N) for e sufficiently small and
p(=0)Me*P] = ne xp(—0)¢p — p(—0) ¢ and 71 x ¢ — ¢ uniformly on compact
sets as € | 0. Therefore by the dominated convergence theorem,

(p (9) u, ¢) = lim(p () u, ne * §) = lim(u, p (=0) (ne * ¢)) = {u.p (~0) ¢)-

[

Lemma 19.10 (Product Rule). Let u € L}

loc

(Q), v e R? and ¢ € C1(Q). If 5" u
(Q), then o) (¢u) exists in L, .(Q) and

31(}“’) (Pu) = Opp - u + gbaf}“’)u a.e.

Moreover if ¢ € CH(Q) and F := ¢u € L' (here we define F' on R? by setting F = 0
on RY\ Q ), then 0 F = 0,¢ - u + ¢Sy exists weakly in LY (RY).

exists in Ly,

Proof. Let ¢ € C°(9), then using Lemma 19.9,

_<¢’LL, &ﬂm = _<u7 ¢>av1/’> = —(U, Oy (QW) - av¢ . 7/1> = <61()w)u7 ¢1/)> + <av¢ U, 1/)>
= (¢05" u, ¥) + (Do - u, ).
This proves the first assertion. To prove the second assertion let v € C'2°(£2) such

that 0 <y < 1 and v = 1 on a neighborhood of supp(¢). So for ¢ € C>°(R?), using
Oyy = 0 on supp(¢) and vy € C°(0), we find

<F7 8v¢> = <’7F7 8v¢> = <F7 78v¢> = <<¢u) ; Oy (’7’9[}) — 0y ¢>
= ((¢u) , 0y (y9)) = —(05") ($u) , (v9))
= (00t ut+ GO u, ) = —(0u6 - u+ GO u, ).

This show 95 F = 0,¢ - u + 05 u as desired. m

Lemma 19.11. Suppose q € [1,00), p(€) is a polynomial in & € R* andu € L} ().
If there exists {um}oo_y C LE () such that p(d)un, exists in LL () for all m

loc loc

and there exists g € L1 () such that for all ¢ € C(Q),

loc
W}i_r‘noo<uma ¢) = (u,¢) and n%i_r>noo<p (0) um, @) = (9,9)

then p (9) u exists in L}

loc

(Q) and p(9)u = g.
Proof. Since

(1,9/(0) ) = 1 {un, p(9) 6) = — limn (p(0) . 6) = {g,0)

m—00

for all ¢ € C°(Q), p (9) u exists and is equal to g € L] (). m
Conversely we have the following proposition.
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Proposition 19.12 (Mollification). Suppose q € [1,00), p1(§),-..,pn(§) is a col-

lection of polynomials in &€ € R and u € L} .(Q) such that p;(0)u exists weakly in

LL.(Q) for 1l =1,2,...,N. Then there exists u, € C(Q) such that u, — u in
(Q) and p; (O)up — pr (D) u in L] (Q) forl=1,2,... N.

L?oc loc

Proof. Let n € C (B(0,1)) such that [p,ndm = 1 and ne(z) := e n(z/e)
be as in the proof of Lemma 19.9. For any function f € L}, . (Q), € > 0 and
x € Q:={y € Q:dist(y,Q°) > e}, let

fo(e) = fxne(z) = Laf *ne(x) = /Q F@ne(a — y)dy.

Notice that f. € C>*(Q) and Q. T Q as € | 0.

Given a compact set K C Qlet K := {z € Q: dist(z, K) < €}. Then K, | K as
€ | 0, there exists ¢y > 0 such that Ky := K., is a compact subset of gy := Q,, C {2
(see Figure 38) and for = € K,

frnda) = [ fmde -y = [ Fwna =iy
Therefore, using Theorem 11.21,

F1GURE 38. The geomentry of K C Ky C g C Q.

1S *1e = Fll Loy = 1 (Lico ) * e = Lieo fll Lo rey < (Lo f) # 1e = 1o fll Lo ay — 0 as € L 0.
Hence, for all f € L} (Q), f*n. € C*(Q,) and

loc

(19.5) lim 1f *ne = fllocrey = O

Now let p(&) be a polynomial on R?, u € L () such that p(d)u € L

loc loc

Ve := e xu € C°(9) as above. Then for z € K and € < €,

p(O)ve(x) = / u(y)p(0z)ne(z — y)dy = /Q u(y)p(—0y)ne(x — y)dy

Q
- /Q w()p(—0,)ne(z — y)dy = {u, p(O)e(z — )

(19.6) = (P()u,ne(z —-)) = (p(I)u), ().

(Q) and
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From Eq. (19.6) we may now apply Eq. (19.5) with f = w and f = p;(9)u for
1 <1< N to find

N
lve — UHLP(K) + Z [[pe(0)ve _pl(a)“”LP(K) —0asel0.
=1

For n € N, let
K, :={zeQ:|z|] <nand d(z,Q° >1/n}

(so K, C K1 C Kpyy for all n and K, T Q as n — oo or see Lemma 10.10)
and choose ¢, € C°(K},,[0,1]), using Corollary 11.25, so that ¢, = 1 on a
neighborhood of K,,. Choose €, | 0 such that K,+; C €., and

N
oew = ull Logre,y + D 1P1(@)ve, = pr(@ull i,y < 1/m.
1=1
Then uy, := ¥, - v, € C(N) and since u,, = v, on K, we still have
N
(19.7) lun = vl 1o,y + Z [P () un — pi(ull o,y < 1/n
1=1
Since any compact set K C £ is contained in K? for all n sufficiently large, Eq.
(19.7) implies
N
lim | f[un = ull pogrey + D IPe(@)un = pe()ull 1o iy | = O-

n—o00
=1

]
The following proposition is another variant of Proposition 19.12 which the
reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose q € [1,00), p1(§),...,pn() is a collection of poly-
nomials in &€ € R and v € L9 = L9 (Rd) such that p(0)u € L for1=1,2,...,N.
Then there exists u, € C*° (Rd) such that

N

T}LH;O lun —ull s + Z [pe(@)un — pi(O)ullf, | = 0.
=1

Notation 19.14 (Difference quotients). For v € R? and h € R\ {0} and a function
u: ) — C, let
u(z + hv) — u(x)

h

for those x € € such that x +hv € Q. When v is one of the standard basis elements,
e; for 1 <i < d, we will write 0/u(z) rather than 9! u(z). Also let

Viu(z) == (0fu(z),...,0hu(x))

be the difference quotient approximation to the gradient.

olu(x) =

Definition 19.15 (Strong Differentiability). Let v € R? and u € LP, then d,u is
said to exist strongly in LP if the limj, . O"u exists in LP. We will denote the limit
by Bq(,s)u.
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It is easily verified that if u € LP, v € R? and 95" u € LP exists then 95" u exists
and &(,w)u = 81()5)% The key to checking this assetion is the identity,

(O, ) = /R ) wat ho) Zul@) s,

h
(19.8) _ / () 28I =@ b ok g,
Rd h
Hence if 95 u = limy, ¢ Oy exists in LP and ¢ € C2°(R?), then
d
(S) =1 h =1 h = — . — = —
<av U, ¢> }lbli%(av u, ¢> ’llli%@t, 8—U¢> dh |0<u5 ¢ ( h’U)> <ua 8U¢>

wherein Corollary 7.43 has been used in the last equality to bring the derivative
past the integral. This shows 05" )u exists and is equal to 05"u. What is somewhat
more surprising is that the converse assertion that if quw)u exists then so does
81(,5)11. Theorem 19.18 is a generalization of Theorem 12.36 from L? to LP. For the
reader’s convenience, let us give a self-contained proof of the version of the Banach
- Alaoglu’s Theorem which will be used in the proof of Theorem 19.18. (This is the
same as Theorem 18.27 above.)

Proposition 19.16 (Weak-+x Compactness: Banach - Alaoglu’s Theorem). Let X
be a separable Bgmach space and {fn} C X* be a bounded sequence, then there exist
a subsequence {fn} C {fn} such that lim f,(z) = f(z) for allz € X with f € X*.

Proof. Let D C X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f,} C {f,} such that
Az i= lim f,(x) exist for all x € D. Define f : span(D) — R by the formula

f(z azx) = Z g\

xz€D z€D

where by assumption # ({z € D : a; # 0}) < co. Then f : span(D) — R is linear
and moreover f,(y) — f(y) for all y € span(D). Now

[f@)l = Tim | ()] < limsup | ful] [lyll < Clly|| for all y € span(D).

Hence by the B.L.T. Theorem 4.1, f extends uniquely to a bounded linear functional
on X. We still denote the extension of f by f € X*. Finally, if x € X and y €
span(D)

(@) = fal@)] < |f(@) = F@)+ @) = fa@)] +1fa(y) = ful2)]
<A Nl =yl + IFall lz =yl + 1) = Fa(w)ll
< 20|z —yll + |f(y) = faly)] — 2C|lz —y] as n — cc.

Therefore limsup | f(z) — fn(z)] < 20|z —y|| = 0 as y — =. m

n—00

Corollary 19.17. Let p € (1,00] and g = ﬁ. Then to every bounded sequence
{un} 2y C LP(Q) there is a subsequence {tuy}, , and an element u € LP(Q) such
that

lim (@, g) = (u,g) for all g € LT ().

n—oo
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Proof. By Theorem 15.14, the map
Ve 17() (v, € (L)
is an isometric isomorphism of Banach spaces. By Theorem 11.3, L4(€) is separable
for all ¢ € [1,00) and hence the result now follows from Proposition 19.16. =
Theorem 19.18 (Weak and Strong Differentiability). Suppose p € [1,00), u €
LP(R?) and v € RY\ {0}. Then the following are equivalent:
(1) There exists g € LP(R?) and {h,},—, C R\ {0} such that lim, oo hy, =0

and
lim (9 u, ¢) = (g,¢) for all ¢ € C°(RY).
(2) 0w exists and is equal to g € LP(RY), d.e. {(u,0,0) = —(g,¢) for all
¢ € C(RY).
(3) There exists g € LP(R?) and u,, € C2°(R?) such that uy, L2 w and dyun 5 g
as m — oo.
(4) OSu exists and is is equal to g € LP(RY), i.e. Ofu — g in LP as h — 0.
Moreover if p € (1,00) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.
1'. There exists {hy,},-, C R\ {0} such thatlim, . h, = 0 and sup,, H@L‘”u”p <
0.
Proof. 4. = 1. is simply the assertion that strong convergence implies weak
convergence.
1. = 2. For ¢ € C(R%), Eq. (19.8) and the dominated convergence theorem
implies
(9,0) = lim (9)"u, ¢) = lim {u,8";) = —(u, 0,0).
2. = 3. Let n € C(R%R) such that [p,n(z)dz = 1 and let nyy,(z) =
mdn(mz), then by Proposition 11.24, h,, := 1, * u € C=(R?) for all m and

b () = Do v ula) = [ O = wulo)dy = 0.0, (@ =)

= (g, (T =) = N * g().

By Theorem 11.21, h,,, — u € LP(R?) and 0,h,, = Nin*g — g in LP(RY) as m — oo.
This shows 3. holds except for the fact that h,, need not have compact support.
To fix this let 1 € C°(R%,[0,1]) such that ) = 1 in a neighborhood of 0 and let

Ye(x) = Y(ex) and (0,9), () := (0y9) (ex). Then

Oy (wehm) = 0pVchm + VeOyphy = € (81)7/})6 hm +%e0phm
so that Yehy, — hy, in LP and 0y (Yehim) — Ophy, in LP as € | 0. Let wy, = e, A
where ¢, is chosen to be greater than zero but small enough so that

e i — hme + 100 (e, him) — 8vhme <1/m.
Then u,, € C2(R?), u,, — u and d,u,, — g in LP as m — oo.
3. = 4. By the fundamental theorem of calculus

U (2 4+ ) — U ()
N h

0y ()

1

1 1
(19.9) == / ium(:r + shv)ds = / (Ovtm) (x + shv)ds.
h 0 ds 0
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and therefore,

Ot () — Dyt () = / (Dot ( + 5hv) — Dyt ()] ds.
0

So by Minkowski’s inequality for integrals, Theorem 9.27,

1
H@f}um(x) - &,ume < / 1 (Bptin) (- + shv) — &,ume ds
0

and letting m — oo in this equation then implies

1
[0 — 9|, < /0 lg(- + shv) — g, ds.

By the dominated convergence theorem and Proposition 11.13, the right member
of this equation tends to zero as h — 0 and this shows item 4. holds.

(I'. = 1. when p > 1) This is a consequence of Corollary 19.17 (or see Theorem
18.27 above) which asserts, by passing to a subsequence if necessary, that 9" u Zyg
for some g € LP(RY). m

Example 19.19. The fact that (1’) does not imply the equivalent conditions 1 —
4 in Theorem 19.18 when p = 1 is demonstrated by the following example. Let

u = 1jg 1], then
u(z + h) — u(zx)

1
— 1 -1 =2
/R h de A /R| (-h1-n) (%) = L1y (@)] da

for |h| < 1. On the other hand the distributional derivative of u is du(z) = §(x) —
d(x — 1) which is not in L.
Alternatively, if there exists g € L'(R, dm) such that
lim w(z + hy) — u(x)

n—oo hn

= g(x) in L*

for some sequence {h,}, -, as above. Then for ¢ € C2°(R) we would have on one
hand,

w(@ + hn) — u(z) _ [ ¢ —hn) — o(x)
/]R o(x)dx —/]R ™ u(x)dx

hn
1
= [ @)dn = (6(0) - 6(1)) as - v,
0
while on the other hand,

/]R ho, ¢(z)dr — /Rg(x)gf)(x)dz.

These two equations imply
(19.10) / g(@)d(x)dz = 6(0) — $(1) for all ¢ € C=(R)
R

and in particular that [, g(x)¢(x)dz = 0 for all ¢ € C.(R\{0,1}). By Corollary
11.28, g(z) = 0 for m — a.e. x € R\ {0,1} and hence g(z) =0 for m — a.e. z € R.
But this clearly contradicts Eq. (19.10). This example also shows that the unit ball
in L(R, dm) is not weakly sequentially compact. Compare with Example 18.24.
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Proposition 19.20 (A weak form of Weyls Lemma). If u € L?(R%) such that
[ = Au e L*(R?) then 0°u € L* (R?) for || < 2. Furthermore if k € Ny and
0P f € L? (RY) for all |B] <k, then 0“u € L* (R?) for |a] <k +2.

Proof. By Proposition 19.13, there exists u,, € Cg° (R?) such that u,, — u and
Au, — Au= f in L* (R?) . By integration by parts we find
/Rd IV (tn, — t)|* dm = (—A(tp—t ), (U=t )) 2 — — (f — fru—u) = 0 as m,n — 0o
and hence by item 3. of Theorem 19.18, d;u € L? for each i. Since
||Vu|\22 = HILH;O /Rd [V |* dm = (—Aup, tn) 2 — —(f,u) as n — oo

we also learn that
2
[Vullpe = =(f,u) < fllpe - llullpe -
Let us now consider

d d
2 _ 2
Z /Rd |0;05un|” dm = — Z /]Rd 0;un0; 0jundm

i,j=1 =1

d d
=— Z /]Rd 0jun0; Aupdm = Z y ajzunAundm
j=1 j=1

_ /]R |Aun? dm = || At 2 .

Replacing u,, by u,, — u,, in this calculation shows

d
Z / |0;0; (upn, — um)\2 dm = ||A(u, — um)Hiz — 0as m,n — oo
R

4,J=1

and therefore by Lemma 19.4 (also see Exercise 19.3), 9;0;u € L? (Rd) for all 4, j
and

d
2 2 2
> [ loduf am = 8ul = 171
i,j—17 R
Let us now further assume 9;f € L? (R?) . Then for h € R\ {0}, 0'u € L*(R?)
and Adlu = 9'Au = 9!'f € L*(R?) and hence by what we have just proved,
0%0u = 9ro*u € L? and

o 12 2
> 0k 0%ullagmey < O (08772 + 190 Fll o - 90 o

lov]<2
< C 10 13e +110:S 1 2 - |9su] 2]

with the last bound being independent of h # 0. Therefore applying Theorem 19.18
again we learn that 9;0%u € L?(RY) for all |a| < 2. The remainder of the proof,
which is now an induction argument using the above ideas, is left as an exercise to
the reader. m

Theorem 19.21. Suppose that Q is a precompact open subset of R and V is an
open precompact subset of €.
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(1) If 1 <p < oo, u € LP(Q) and dyu € LP(Q), then ||3£Lu|\Lp(v) < HaiuHL,,(Q)
for all 0 < || < &dist(V, Q).

(2) Suppose that 1 < p < 0o, u € LP(Q) and assume there exists a constants
Cv < o0 and ey € (0, 3dist(V, Q°)) such that

00 ul| Lo vy < Cy for all 0 < |h| < ey

Then O;u € LP(V) and ||0yu|| 1r(vy < Cv. Moreover if C := supy q Cv <
oo then in fact O;u € LP(Q) and ||0zul pr) < C.

Proof. 1. Let U C, Q such that V C U and U is a compact subset of Q. For
uwe CH(Q)NLP(Q), z € B and 0 < |h| < 1dist(V,U*),
u(z + he;) —u

h _

1
(z) :/ Oiu(x + the;) dt
0
and in particular,
1
10hu(z)] < / 1Ou(z + the,)|dt.
0

Therefore by Minikowski’s inequality for integrals,

1
(19.11) ||3£ZUHLp(V) < / |Ou(- + thei)HLy(V)dt < ||az'UHLP(U)-
0

For general u € LP(Q) with d;u € LP(Q), by Proposition 19.12, there exists
u, € CX(Q) such that u, — w and dju,, — du in LY (). Therefore we may
replace u by u, in Eq. (19.11) and then pass to the limit to find

107 ull Lo vy < 10sull oy < 105ul| oo
2. If ||0ul| r(vy < Cy for all h sufficiently small then by Corollary 19.17 there
exists h,, — 0 such that 8;’"11 2w e LP(V). Hence if ¢ € C*(V),

/vcpdm = lim 8?"’u,gpdm = lim Uai_h”godm

n—oo n—oo Q
= —/u@iap dm = —/u@icp dm.
Q v

Therefore diu = v € LP(V) and ||0;ul prvy < [|v]lzrvy < Cv. Finally if C :=
supyccq Cv < oo, then by the dominated convergence theorem,

l0iul| v () = ‘1}% lOiul| v vy < C.

]
We will now give a couple of applications of Theorem 19.18.

Lemma 19.22. Let v € R%
(1) If h e L' and d,h exists in L', then [, 0,h(x)dz = 0.
(2) Ifp,q,r € [1,00) satisfy r L =p~t+q7 ', f € L? and g € LY are functions
such that 0, f and 0, g exists in LP and L? respectively, then 0,(fg) exists in
L™ and 0,(fg) = Oy f - g+ f - Oug. Moreover if r = 1 we have the integration
by parts formula,

(19.12) (Ouf,9) = —(f,0ug).
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(3) If p=1, O,f emists in L* and g € BC*(RY) (i.e. g € CY(R?) with g and
its first derivatives being bounded) then 0,(gf) ewists in L' and 0,(fg) =
Of g+ f-0vg and again Eq. (19.12) holds.
Proof. 1) By item 3. of Theorem 19.18 there exists h,, € C°(R?) such that
h,, — h and O,h,, — Oyh in L'. Then
d d
Ophn(x)dr = —|0/ hn(x + hv)dz = —|0/ hn(z)dz =0
Rd dt Rd dt R4
and letting n — oo proves the first assertion.

2) Similarly there exists f,,, g, € C2°(R%) such that f,, — f and 9, f, — 0, f in
LP and g, — ¢ and 0,9, — 0pg in LY as n — oco. So by the standard product rule
and Remark 19.2, f,g9, — fg € L" as n — oo and

Ou(frugn) = Oufn gn + fn - Ovgn — Ouf - g+ f-Ougin L as n — oo.

It now follows from another application of Theorem 19.18 that 9,(fg) exists in L"
and 0,(f9) = 0uf - g+ f - Ovg. Eq. (19.12) follows from this product rule and item
1. when r = 1.

3) Let f, € C>(RY) such that f,, — f and 0,f, — 0,f in L* as n — oo. Then
as above, gf, — gf in L' and 0,(9f,) — Ouvg - f + gOuf in L' as n — oco. In
particular if ¢ € C2°(R?), then

(9f,000) = lim (gfn, 0,0) = — lim (0, (9.fn) ,¥)
= _nh_)ngo<avg “ fr + 90y fn, ¢)> = _<avg “f+ 90 f, ¢>

This shows 9, (fg) exists (weakly) and 9,(fg) = 0, f - g+ f - 0pg. Again Eq. (19.12)
holds in this case by item 1. already proved. m

Lemma 19.23. Let p,q,7 € [1,00] satisfyp~t+q¢t =1+7r"1, feLP, ge L9
and v € R%.
(1) If Oy f exists strongly in L", then 0,(f * g) exists strongly in LP and
9 (f *g) = (0uf) * g.
(2) If Opg exists strongly in L1, then O,(f * g) exists strongly in L™ and
Ou(f *g) = [f*0ug.
(3) If O, f exists weakly in LP and g € C2°(R?), then fxg € C>®(R?), 9,(f *9g)
exists strongly in L™ and

Ou(f *g) = f*0ug = (0uf) *g.
Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple
computations:

T_m(f*9) = [ *g _

p _ T—hvf*gif*g_(avf)*g

h
|:7-—th — f
h

(Ouf)*g

T T

- (&)f)] g

r

< | =2y

gl
p

which tends to zero as h — 0. The second item is proved analogously, or just make
use of the fact that f * g = g * f and apply Item 1.
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Using the fact that g(x —-) € C2°(R%) and the definition of the weak derivative,
Frog@ = [ 1o == [ 1) @ugle =) )y
= /. I f(y)g9(x —y)dy = Ou f * g().
Item 3. is a consequence of this equality and items 1. and 2. =

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.24. Let Q = (o, 3) C R be an open interval and f € L}, () such
that 0 f = 0 in L}, (Q). Then there exists ¢ € C such that f = ¢ a.e. More
generally, suppose F : C(Q) — C is a linear functional such that F(¢') = 0 for

all ¢ € C (), where ¢’ (z) = d% (z), then there exists ¢ € C such that

(19.13) F(¢) ={c,¢) = /chﬁ(x)dz for all ¢ € C°(Q).

Proof. Before giving a proof of the second assertion, let us show it includes the
first. Indeed, if F(¢) := [, fdm and 9 f =0, then F(¢') = 0 for all ¢ € C(2)
and therefore there exists ¢ € C such that

/Q ofdm = F(9) = (g, 1) = ¢ /Q o fdm.

But this implies f = ¢ a.e. So it only remains to prove the second assertion.
Let n € CX(Q) such that [,ndm = 1. Given ¢ € CX(Q) C CF (R), let
() = [ (¢(y) = n(y)(¢, 1)) dy. Then ¢/ (z) = ¢(x) —n(z)(¢, 1) and ¢ € C°()

as the reader should check. Therefore,

0=F(y)=F(¢—(p,mn) = F(¢) — (¢, ) F(n)

which shows Eq. (19.13) holds with ¢ = F(n). This concludes the proof, however
it will be instructive to give another proof of the first assertion.

Alternative proof of first assertion. Suppose f € Li () and 0™ f = 0
and f,, := f * )y as is in the proof of Lemma 19.9. Then f/ = ) f xn,, =0,
S0 fm = ¢m for some constant ¢, € C. By Theorem 11.21, f,, — f in L}, () and
therefore if J = [a,b] is a compact subinterval of €,

1
\Cm—0k|=—/|fm—fk|dm—’oasm,k—700-
b—a J

So {cm}fwo:1 is a Cauchy sequence and therefore ¢ := lim,, .. ¢, exists and f =
lim,, oo frn =ca.e. B

Theorem 19.25. Suppose f € Li,.(Q). Then there exists a complex measure ju on
Bq such that

(19.14) ~U1.) = ue) = [ o for al € C(9)

iff there exists a right continuous function F of bounded variation such that F = f
a.e. In this case p = pp, i.e. u((a,b]) = F(b) — F(a) for all —0o < a < b < 0.



380 BRUCE K. DRIVER'

Proof. Suppose f = F a.e. where F is as above and let p = pup be the
associated measure on Bg. Let G(t) = F(t) — F(—o0) = u((—00,t]), then using
Fubini’s theorem and the fundamental theorem of calculus,

~.0) =R ) = ~(6.) == [ 00) | [ 1wt

//¢](m]ﬁw /¢du (o).

Conversely if Eq. (19.14) holds for some measure p, let F(t) := pu((—o0,t]) then
working backwards from above

(¢ /¢ )l //¢ (oo ()dtda(s) /¢

This shows ) (f — F) = 0 and therefore by Proposition 19.24, f = F +c a.e. for
some constant ¢ € C. Since F' + ¢ is right continuous with bounded variation, the
proof is complete. m

Proposition 19.26. Let Q C R be an open interval and f € Lj, (). Then 9* f
exists in L}, () iff f has a continuous version f which is absolutely continuous on
all compact subintervals of Q. Moreover, 9 f = f' a.e., where f'(x) is the usual
pointwise derivative.

Proof. If f is locally absolutely continuous and ¢ € C2°(Q) with supp(¢) C
[a,b] C £, then by integration by parts, Corollary 16.32,

/f/¢dm=/bf'¢dm:—/bf¢’dm+f¢|g=—/gf¢’dm.

This shows 9% f exists and 0% f = f € L}, .(Q).
Now suppose that 0¥ f exists in L], .(Q) and a € Q. Define F € C(Q) b
f 0" f(y)dy. Then F is absolutely continuous on compacts and therefore
by fundamental theorem of calculus for absolutely continuous functions (Theorem
16.31), F'(x) exists and is equal to 9" f(z) for a.e. x € Q. Moreover, by the first
part of the argument, 0% F' exists and 0¥ F = 9" f, and so by Proposition 19.24
there is a constant ¢ such that

f(z) := F(z) +c= f(x) for a.e. z€Q.
[

Definition 19.27. Let X and Y be metric spaces. A function u : X — Y is said
to be Lipschitz if there exists C' < oo such that

d¥ (u(z),u(z')) < Cd™ (x,2') for all z, 2" € X

and said to be locally Lipschitz if for all compact subsets K C X there exists
Ck < oo such that

d¥ (u(z),u(z")) < Cxd™ (x,2') for all z,2" € K.

Proposition 19.28. Letu € L}, .(Q). Then there exists a locally Lipschitz function
@:Q — C such that @ = u a.e. iff ;u € L}, (Q) exists and is locally (essentially)
bounded fori=1,2,...,d.
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Proof. Suppose v = @ a.e. and @ is Lipschitz and let p € (1,00) and V be
a precompact open set such that V' C W and let V, := {x € Q:dist(z, V) < e}.
Then for € < dist(V,Q°), Ve C Q and therefore there is constant C(V, €) < co such
that |@(y) — @(z)| < C(V,e) |y — | for all z,y € V.. So for 0 < |h| < 1 and v € R?

with |v| =1,
u(z + hv) —u(z)|? w(z + hv) — u(x)
J o=,

P
< P
A A dz < C(Ve) |v]

Therefore Theorem 19.18 may be applied to conclude 0,u exists in LP and moreover,
lim (z + hv) — u(x)
h—0 h
Since there exists {h,},.; C R\ {0} such that lim, . h,, = 0 and
w(x + hpv) — a(z)
hn,
it follows that ||0yul|,, < C(V) where C(V) := lim¢jo C(V,€).

Conversely, let Q. := {z € Q : dist(z,Q°) > €} and n € C*(B(0,1), [0, c0)) such
that [, n(z)dr = 1, ny(z) = m™n(mz) and w, = u * 1, as in the proof of
Theorem 19.18. Suppose V C, Q with V C Q and ¢ is sufficiently small. Then
Um, S COO<QE)7 8vum = a’uu*nma |avum(x)| S ||8’Uu||LQ()(V 71) = C(‘/, m) < 0 and
therefore,

= Oyu(z) for m —a.e. z € V.

|Opu(z)| = lim <C(V) for ae. z €V,

n—oo

1
) ~ ()] =| [ G-+ 1ty )t

/Ol(y =) Vup(z+t(y — x))dt‘

1
< / ly — 2| - [Vuy,(z 4ty — )| dt
0
(19.15) <C(V,m)|y — x| for all z,y € V.

By passing to a subsequence if necessary, we may assume that lim,, o um(z) =
u(x) for m —a.e. x € V and then letting m — oo in Eq. (19.15) implies

(19.16) lu(y) —uw(x)| < C(V)|ly—z| forall x,y ¢ E

where F C V is a m — null set. Define 4y : V — C by 4y = v on V \ E€ and

ay(z) = limyzEz u(y) if z € E. Then clearly 4y = u a.e. on V and it is easy to
Yy

show iy is well defined and @y : V' — C is Lipschitz continuous. To complete the
proof, choose precompact open sets V,, such that V,, C V,, C V41 C Q for all n
and for z € V,, let @(x) := Gy, (z). =

Here is an alternative way to construct the function 4y above. For z € V' \ E,

/ u(z — yn(my)m™dy — u(z) / fu(z — yfm) — u()] 1(y)dy
%4 \%

|tm () — u(z)| =

< [ tuta =y/m) = @)ty < = [ int)ay

wherein the last equality we have used Eq. (19.16) with V replaced by V; for some
small € > 0. Letting K := C [, ly|n(y)dy < oo we have shown

|ty — ul| o < K/m —0asm — oo
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and consequently
wm — vnll, = [[um — tnllo < 2K/m — 0 as m — oo.

Therefore, u,, converges uniformly to a continuous function @y .
The next theorem is from Chapter 1. of Maz’ja [2].

Theorem 19.29. Let p > 1 and Q be an open subset of R?, 2 € R? be written as
r=(y,t) € R xR,

Vi={yeR": ({y} xR)NQ#0}

andu € LP(Q2). Then Oyu exists weakly in LP () iff there is a version @ of u such that
for a.e. y €Y the function t — u(y,t) is absolutely continuous, dyu(y,t) = %
a.e. andHatHLP < 00.

Proof. For the proof of Theorem 19.29, it suffices to consider the case where
Q= (0,1)% Write z € Qas 2 = (y,t) € Y x (0,1) = (0,1)4"1 x (0,1) and dyu for
the weak derivative 0.,u. By assumption

[ 1ovuty. &)l dydt = 0], < 0], < o0
Q
and so by Fubini’s theorem there exists a set of full measure, Yy C Y, such that

1
/ |0su(y, t)] dt < oo for y € Yp.
0

So for y € Yy, the function v(y,t) == f(f Owu(y, 7)dr is well defined and absolutely
continuous in ¢ with z; du(y,t) = dpu(y,t) for a.e. t € (0,1). Let £ € C=°(Y) and
n € C®((0,1)), then 1ntegrat10n by parts for absolutely functions implies

1 1
/ v(y, t)n(t)dt = 7/ %v(y,t)n(t)dt for all y € Yj.
0 0

Multiplying both sides of this equation by &(y) and integrating in y shows

/ v(z)n(t)§(y)dydt = / 57Vt y)dydt = / Iuly, t)n(t)E(y)dydt.
Q
Using the definition of the weak derivative, this equation may be written as
/ u(z)n(t)E(y)dydt = / Opu(z &(y)dydt
Q

and comparing the last two equations shows

/Q [o(x) — u(@)](0)E(y)dydt = 0.

Since £ € C°(Y) is arbitrary, this implies there exists a set Y3 C Y of full measure
such that

/Q (g, 1) — u(y, )] #(t)dt = 0 for all y € V3

from which we conclude, using Proposition 19.24, that u(y,t) = v(y,t) + C(y) for
t € J, where mg_; (Jy) = 1, here my denotes k — dimensional Lebesgue measure.
In conclusion we have shown that

t
(19.17)  u(y,t) = a(y,t) := / Owu(y, 7)dT + C(y) for all y € Y7 and t € J,,.
0
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We can be more precise about the formula for (y,t) by integrating both sides
of Eq. (19.17) on ¢ we learn

C(y):/o dt/o 8Tu(y,7)d7'—/0 u(y,t)dtZ/O (1_7-)8Tu(y,7)d7—/0 u(y, t)dt
1
- /O (1 —1) Dyuly,t) — uly,t)] dt

and hence
t 1
a(y,t) == / Bruly, 7)dr + / (1= ) Oruly,7) — uly, 7)) dr

which is well defined for y € Yj.
For the converse suppose that such a @ exists, then for ¢ € C (),

_ oy, t
[ w000t e = [ty ooty = - [ PHD oy, yaray
wherein we have used integration by parts for absolutely continuous functions. From

this equation we learn the weak derivative dyu(y,t) exists and is given by %

a.e. H
19.3. Exercises.
Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use u, as defined in the proof
of Proposition 19.12 to show it suffices to consider the case where u € C*° (Rd) N
L? (R?) with 9*u € L? (R?) for all @ € N§. 2. Then let ¢y € C°(B(0,1),]0,1])
such that ¢ = 1 on a neighborhood of 0 and let u, (x) := u(z)y¥(z/n).

Exercise 19.3. Let p € [1,00), @ be a multi index (if « = 0 let 8° be the identity
operator on LP),
D(0%) :={f € LP(R") : 0 f exists weakly in LP(R"™)}
and for f € D(9%) (the domain of 9%) let 9 f denote the oo — weak derivative of f.
(See Definition 19.3.)
(1) Show 0“ is a densely defined operator on L?, i.e. D(9%) is a dense linear
subspace of LP and 0 : D(0%) — L? is a linear transformation.
(2) Show 9% : D(90%) — LP is a closed operator, i.e. the graph,
[(0%) :={(f,0°f) € L" X L : f € D(9%)},
is a closed subspace of LP x LP.

(3) Show 0¢ : D(0*) C L? — LP is not bounded unless o = 0. (The norm on
D(9%) is taken to be the L — norm.)

Exercise 19.4. Let p € [1,00), f € L? and « be a multi index. Show 9*f exists
weakly (see Definition 19.3) in LP iff there exists f, € C°(R") and g € L? such
that f, — f and 0“f,, — g in LP as n — oco. Hints: See exercises 19.2 and 19.3.

Exercise 19.5. Folland 8.8 on p. 246.

Exercise 19.6. Assume n =1 and let 9 = §,, where e; = (1) € R =R.
(1) Let f(z) = |z|, show Of exists weakly in L} (R) and df(x) = sgn(z) for

loc
m — a.e. T.
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(2) Show 9(Af) does not exists weakly in L}, .(R).

(3) Generalize item 1. as follows. Suppose f € C(R,R) and there exists a finite
set A= {t; <ty <--- <ty} C R such that f € C}(R\ A, R). Assuming
df € L. _(R), show 0f exists weakly and ™) f(z) = df(z) for m — a.e. z.

loc

Exercise 19.7. Suppose that f € Lj,.(?) and v € R? and {e;}"_, is the standard

basis for R If 9; f := 9., f exists weakly in L}, (Q) for all j = 1,2,...,n then 0, f
exists weakly in Lj,.(Q) and 9, f = 37, v;0; f.

Exercise 19.8. Suppose, f € Li (RY) and 9,f exists weakly and 9,f = 0 in
L}, (R?) for all v € R Then there exists A € C such that f(z) = X for m — a.e.

x € R%. Hint: See steps 1. and 2. in the outline given in Exercise 19.9 below.

Exercise 19.9 (A generalization of Exercise 19.8). Suppose {2 is a connected open
subset of R? and f € L}, (). If 0% f = 0 weakly for o € Z" with |a| = N +1, then
f(z) = p(x) for m — a.e. & where p(z) is a polynomial of degree at most N. Here

is an outline.

(1) Suppose g € Q2 and € > 0 such that C := Cy, () C Q and let n, be a
sequence of approximate § — functions such supp(n,) C Bo(1/n) for all n.
Then for n large enough, 0%(f *n,) = (0% f)*n, on C for |a| = N+ 1. Now
use Taylor’s theorem to conclude there exists a polynomial p,, of degree at
most N such that f, = p, on C.

(2) Show p := lim,, o py, exists on C and then let n — oo in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and ¢ are two polynomials on R? which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 19.10. Suppose Q C, R? and v,w € R%. Assume f € L} (Q) and that

loc

0,0y, [ exists weakly in L}, .(£2), show 9,0, f also exists weakly and 9,0, f = 0,0, [

Exercise 19.11. Let d = 2 and f(x,y) = 1,>0. Show 9V f = 0 weakly in L},
despite the fact that 9 f does not exist weakly in L}, !



