Math 103A: Winter 2014

Homework 1

Due 5:00pm on Friday 1/10/2014

Problem 1: (Exercise 0.4 in Gallian) Find integers s and t such that $1=7 s+11 t$. Show that s and t are not unique.

Problem 2: (Exercise 0.5 in Gallian) Show that if a and b are positive integers, we have that $a b=\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)$.

Problem 3: (Exercise 0.9 in Gallian) Let n be a fixed integer greater than 1. If a $\bmod n=a^{\prime}$ and $b \bmod n=b^{\prime}$, prove that $(a+b) \bmod n=\left(a^{\prime}+b^{\prime}\right) \bmod n$ and $a b \bmod$ $n=a^{\prime} b^{\prime} \bmod n$.

Problem 4: (Exercise 0.11 in Gallian) Let n and a be positive integers and let $d=$ $\operatorname{gcd}(a, n)$. Show that the equation $a x \bmod n=1$ has a solution if and only if $d=1$.
Problem 5: (Exercise 0.16 in Gallian) Determine $7^{1000} \bmod 6$ and $6^{1001} \bmod 7$.
Problem 6: Let a, b, s, and t be integers. If $a \bmod s t=b \bmod s t$, show that $a \bmod s$ $=b \bmod s$ and $a \bmod t=b \bmod t$.

Problem 7: (Exercise 0.58 in Gallian) Let S be the set of real numbers. For $a, b \in S$, define $a \sim b$ if $a-b$ is an integer. Show that \sim is an equivalence relation on S and describe the equivalence classes of S.
Problem 8: (Exercise 0.59 in Gallian) Let S be the set of integers. For $a, b \in S$, define $a R b$ if $a b \geq 0$. Is R an equivalence relation on S ?
Problem 9: (Exercise 0.60 in Gallian) Let S be the set of integers. For $a, b \in S$, define $a R b$ if $a+b$ is even. Prove that R is an equivalence relation on S and determine the equivalence classes of S.

