Math 103A: Winter 2014 Homework 1 Due 5:00pm on Friday 1/10/2014

Problem 1: (Exercise 0.4 in Gallian) Find integers s and t such that 1 = 7s + 11t. Show that s and t are not unique.

Problem 2: (Exercise 0.5 in Gallian) Show that if a and b are positive integers, we have that $ab = \text{lcm}(a, b) \cdot \text{gcd}(a, b)$.

Problem 3: (Exercise 0.9 in Gallian) Let n be a fixed integer greater than 1. If $a \mod n = a' \mod b \mod n = b'$, prove that $(a + b) \mod n = (a' + b') \mod n$ and $ab \mod n = a'b' \mod n$.

Problem 4: (Exercise 0.11 in Gallian) Let n and a be positive integers and let d = gcd(a, n). Show that the equation $ax \mod n = 1$ has a solution if and only if d = 1.

Problem 5: (Exercise 0.16 in Gallian) Determine $7^{1000} \mod 6$ and $6^{1001} \mod 7$.

Problem 6: Let a, b, s, and t be integers. If $a \mod st = b \mod st$, show that $a \mod s = b \mod s$ and $a \mod t = b \mod t$.

Problem 7: (Exercise 0.58 in Gallian) Let S be the set of real numbers. For $a, b \in S$, define $a \sim b$ if a - b is an integer. Show that \sim is an equivalence relation on S and describe the equivalence classes of S.

Problem 8: (Exercise 0.59 in Gallian) Let S be the set of integers. For $a, b \in S$, define aRb if $ab \ge 0$. Is R an equivalence relation on S?

Problem 9: (Exercise 0.60 in Gallian) Let S be the set of integers. For $a, b \in S$, define aRb if a + b is even. Prove that R is an equivalence relation on S and determine the equivalence classes of S.