Math 103A: Winter 2014

Homework 3

Due 5:00pm on Friday 1/24/2014
Problem 1: (Exercise 2.26 in Gallian) Let G be a group with the property that for any $x, y, z \in G, x y=z x$ implies $y=z$. Prove G is Abelian.

Problem 2: (Exercise 2.32 in Gallian) Construct a Cayley table for $U(12)$.
Problem 3: (Exercise 2.46 in Gallian) Prove that the set of all rational numbers of the form $2^{m} 3^{n}$, where m and n are integers, is a group under multiplication.
Problem 4: (Exercise 2.48 in Gallian) Prove that the set of 3×3 real matrices of the form $\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ (with $a, b, c \in \mathbb{R}$) forms a group under matrix multiplication.
Problem 5: Let G be a finite group of even order. Prove that there exists a nonidentity element $x \in G$ with $x^{2}=e$.
Problem 6: (Exercise 3.4 in Gallian) Let G be a group and let $g \in G$. Prove that g and g^{-1} have the same order.

Problem 7: (Exercise 3.10 in Gallian) How many subgroups of order 4 does D_{4} have?
Problem 8: Let G be an Abelian group and let $g, h \in G$. Prove that if g and h have finite order, then $g h$ has finite order.

Problem 9: Give an example two matrices $A, B \in G L(2, \mathbb{R})$ such that $|A|=|B|=2$, but $A B$ has infinite order.

