Math 103A: Winter 2014
 Practice Midterm 1 Solutions

Problem 1: (a) \star is associative if $(a \star b) \star c=a \star(b \star c)$ for all $a, b, c \in S$.
(b) Let $S=Z$ and define \star by $a \star b=a-b$. Then $(1 \star 1) \star 1=(1-1)-1=0-1=-1$, but $1 \star(1 \star 1)=1-(1-1)=1-0=1$.

Problem 2: (See the solution to Problem 9 on Homework 3.)
Problem 3: This is false. Indeed, if $a=2$ and $b=3$, we have that $(s, t)=(-1,1)$ and $(s, t)=(-4,3)$ are both solutions to $a s+b t=1$.

Problem 4: We know that $2013 \bmod 2014=-1 \bmod 2014$, so $2013^{2015} \bmod 2014=(-1)^{2015}$ $\bmod 2014=-1 \bmod 2014=2013$.

Problem 5: Let $G=D_{4}$ be the dihedral group of symmetries of the square. Let $H=$ $\left\{R_{0}, R_{90}, R_{180}, R_{270}\right\}$ be the subgroup of G consisting of the rotations.

Problem 6: Since $I I^{T}=I$, we have that $I \in O(n, \mathbb{R})$ and $O(n, \mathbb{R})$ is nonempty. Suppose $A, B \in O(n, \mathbb{R})$. Then B is invertible with $B^{-1}=B^{T}$. Also, we have that $\left(A B^{-1}\right)\left(A B^{-1}\right)^{T}=$ $A\left(B^{-1}\left(B^{-1}\right)^{T}\right) A^{T}=A\left(B^{-1} B\right) A^{T}=A A^{T}=I$. We conclude that $A B^{-1} \in O(n, \mathbb{R})$, so that $O(n, \mathbb{R})$ is a subgroup of $G L(n, \mathbb{R})$, as desired.

