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Combinatorics of Tesler matrices
in the theory of parking functions and diagonal harmonics

by D. Armstrong, A. Garsia, J. Haglund, B. Rhoades, and B. Sagan *

Abstract In [J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal

coinvariants, Adv. Math. 227 (2011) 2092-2106], the study of the Hilbert series of diagonal coinvariants

is linked to combinatorial objects called Tesler matrices. In this paper we use operator identities from

Macdonald polynomial theory to give new and short proofs of some of these results. We also develop the

combinatorial theory of Tesler matrices and parking functions, extending results of P. Levande, and apply

our results to prove various special cases of a positivity conjecture of Haglund.

1. Introduction

Tesler matrices have been with us since Alfred Young’s work at the beginning of last century, only

it took Glenn Tesler’s work on the higher order Macdonald operators to bring them to his attention and

into the Sloane online encyclopedia of integer sequences. To be precise, they already emerged naturally from

Young’s “Rising operator” formula yielding the irreducible characters of the symmetric groups. In fact, the

Frobenius image of Young’s formula (see [14] p. 42) may be written in the form

sµ[X] =

n∏
i=1

Ω[ziX]
∏

1≤i<j≤n

(1− zi/zj)
∣∣∣
z
µ1
n z

µ2
n−1
···zµn1

1.1

where, for any expression E, Ω[zE] denotes the generating function of the complete homogeneous symmetric

functions plethystically evaluated at E. (Readers unfamiliar with plethystic notation can consult [8], Chapter

1.) More explicitly

Ω[zE] =
∑
m≥0

zmhm[E]. 1.2

We should note also that Young’s formula itself is but a specialization of the Raising operator formula for

Hall-Littlewood functions Hµ(X; t) (see [14] p. 213) which may also be written in the form

Hµ[X; t] =

n∏
i=1

Ω[ziX]
∏

1≤i<j≤n

1− zi/zj
1− tzi/zj

∣∣∣
z
µ1
n z

µ2
n−1
···zµn1

. 1.3

Since we may write
1− zi/zj
1− tzi/zj

= Ω[− zi
zj

(1− t)]

1.3 becomes

Hµ[X; t] =

n∏
i=1

Ω[ziX]
∏

1≤i<j≤n

Ω[− zi
zj

(1− t)]
∣∣∣
z
µ1
n z

µ2
n−1
···zµn1

. 1.4
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This in turn may be derived from N. Jing’s “Vertex” operator formula for Hall-Littlewood functions. That

is

Hµ[X; t] = Hµ1
Hµ2
· · ·Hµn 1 1.5

where for any symmetric function F [X] we set

HaF [X] = F [X − 1−t
z ]Ω[zX]

∣∣∣
za
. 1.6

In fact, note that this gives

HbHa 1 = Ω[z1(X − 1−t
z2

)]Ω[z2X]
∣∣∣
za1 z

b
2

= Ω[z1X]Ω[z2X]Ω[− z1z2 (1− t)]
∣∣∣
za1 z

b
2

and more generally we will have

Han · · ·Ha2Ha1 1 =

n∏
i=1

Ω[ziX]
∏

1≤i<j≤n

Ω[− zi
zj

(1− t)]
∣∣∣
z
a1
1 z

a2
2 ···z

an
n

1.7

which shows that 1.4 and 1.5 are identical.



Combinatorics of Tesler Matrices November 10, 2011 3

Now note that the generic summand produced by the right hand side of 1.7, after we expand all its

factors according to 1.2 is

n∏
i=1

zpii hpi [X]
∏

1≤i<j≤n

(zi/zj)
pijhpij [−(1− t)]

∣∣∣
z
a1
1 z

a2
2 ···z

an
n

.

This forces the equalities

ps +

n∑
j=s+1

psj −
s−1∑
i=1

pis = as (for all 1 ≤ s ≤ n). 1.8

We may thus associate to each summand an upper triangular matrix A = ‖ai,j‖ni,j=1 by setting

ai,j =

{
pi if i = j,
pij if i < j,
0 otherwise.

Denoting by UP the collection of upper triangular matrices with non-negative integer entries, let us set for

a given integral vector (a1, a2, . . . , an)

T (a1, a2, . . . , an) =
{
A = ‖ai,j‖ni,j=1 ∈ UP : as,s +

n∑
j=s+1

as,j −
s−1∑
i=1

ai,s = as ∀ 1 ≤ s ≤ n
}
. 1.9

We will here and after refer to this as the collection of Tesler matrices with hook sums (a1, a2, . . . , an). For

a given matrix A = ‖ai,j‖ni,j=1 ∈ UP set

wHL(A) =

n∏
i=1

hai,i [X]
∏

1≤i<j≤n

hai,j [−(1− t)]

and call it the “Hall-Littlewood weight ” of A. With this notation 1.5 becomes

Hµ[X; t] =
∑

A∈T (µn,µn−1,...,µ1)

wHL(A). 1.10

In a recent paper Haglund [9], through Macdonald polynomial manipulations, was led to a new

expression for the Hilbert series of the space of diagonal harmonics. By using Sloane’s On-Line Encyclopedia

of Integer Sequences, he was able to identify this new expression as a weighted sum of Tesler matrices. More

precisely, Haglund obtained that

∂np1∇en = (− 1
M )n

∑
A∈T (1,1,...,1)

wH(A) 1.11

with

wH(A) =

n∏
i=1

hai,i [−M ]
∏

1≤i<j≤n

hai,j [−M ] 1.12
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where here and after it will be convenient to set

M = (1− t)(1− q). 1.13

In the same paper Haglund also proved that

∂np1∇
men = (− 1

M )n
∑

A∈T (1,m,...,m)

wH(A) (for all m ≥ 1). 1.14

It is now important to note that the same manipulations that yielded 1.10 but applied in reverse yield that,

in view of 1.12, the Haglund identity in 1.14 can also be written in the form

∂np1∇
men = (− 1

M )n
n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z11z

m
2 ···zmn

. 1.15

Note further that as long as the entries (a1, a2, . . . , an) are all positive each row of a matrix A ∈
T (a1, a2, . . . , an) has to have at least one positive element, which is quite evident from the definition in 1.9.

Thus, in view of 1.12, in spite of the denominator factor (−M)n, the expression

Pa1,a2,...,an(q, t) = (− 1
M )n

∑
A∈T (a1,a2,...,an)

wH(A) 1.16

will necessarily evaluate to a polynomial. Further experimentations revealed that when a1 ≤ a2 ≤ · · · ≤ an
the polynomial Pa1,a2,...,an(q, t) turns out to have non-negative integer coefficients. All these findings spurred

a flurry of research activities aimed at the identification of the structures q, t counted by these polynomials

and by what statistics. In particular the formulas in 1.11 and 1.14 beg to be reconciled with the previously

conjectured formulas [10] ,[11] as weighted sums over parking functions and their natural m-extensions.

In this paper we present a variety of results which connect combinatorial properties of Tesler matrices

to combinatorial properties of parking functions, diagonal harmonics and their closely related graded Sn

modules. Our hope is that this work will help form a base for future research on connections between these

topics. We also give a new proof of the m = 1 case of 1.15, as well as deriving some new results in the theory

of plethystic Macdonald polynomial operators. Our exposition will start with the basic symmetric function

identities of the subject and then present the combinatorial developments that followed. But before we can

do that we need to collect a few identities of Macdonald polynomial theory which will turn out to be useful

in our exposition.

2. Our manipulatorial tool kit
Let us recall that in [5] we have set

a) Dk F [X] = F
[
X + M

z

]
Ω[−z X ]

∣∣
zk

b) D∗k F [X] = F
[
X − M̃

z

]
Ω[z X ]

∣∣
zk

for −∞ < k < +∞ . 2.1

Here “
∣∣
zk

” denotes the operation of taking the coefficient of zk in the preceding expression, em and hm

denote the elementary and homogeneous symmetric functions indexed by m, and for convenience we have

set

M = (1− t)(1− q) , M̃ = (1− 1/t)(1− 1/q) . 2.2
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Recall that the symmetric function operator ∇ is defined by setting for the Macdonald basis {H̃µ(X; q, t)}µ

∇H̃µ = TµH̃µ (with Tµ = tn(µ)qn(mu′) and n(µ) =
∑
i(i− 1)µi) .

The operators in 2.1 are connected to ∇ and the polynomials H̃µ through the following basic iden-

tities:
(i) D0 H̃µ = −Dµ(q, t) H̃µ , (i)∗ D∗0 H̃µ = −Dµ(1/q, 1/t) H̃µ

(ii) Dk e1 − e1Dk = M Dk+1 (ii)∗ D∗k e1 − e1D
∗
k = −M̃ D∗k+1

(iii) ∇ e1∇−1 = −D1 (iii)∗ ∇D∗1∇−1 = e1

(iv) ∇−1 ∂1∇ = 1
MD−1 (iv)∗ ∇−1D∗−1∇ = −M̃ ∂1

2.3

where e1 is simply the operator “multiplication by e1”, ∂1 denotes its “Hall” scalar product adjoint and

Dµ(q, t) = MBµ(q, t)− 1 with Bµ(q, t) =
∑
c∈µ

tl
′(c)qa

′(c). 2.4

Note that we also have
a) Dk ∂1 − ∂1Dk = Dk−1 ,

b) D∗k ∂1 − ∂1D
∗
k = −D∗k−1 .

2.5

Recall that for our version of the Macdonald polynomials the Macdonald Reciprocity formula states

that
H̃α[1 + uDβ ]∏
c∈α(1− u tl′qa′)

=
H̃β [1 + uDα]∏
c∈β(1− u tl′qa′)

(for all pairs α, β). 2.6

We will use here several special evaluations of 2.6. To begin, canceling the common factor (1− u) out of the

denominators on both sides of 2.6 then setting u = 1 gives

H̃α[MBβ ]

Πα
=

H̃β [MBα]

Πβ
(for all pairs α, β). 2.7

On the other hand replacing u by 1/u and letting u = 0 in 2.6 gives

(−1)|α|
H̃α[Dβ ]

Tα
= (−1)|β|

H̃β [Dα]

Tβ
(for all pairs α, β). 2.8

Since for β the empty partition we can take H̃β = 1 and Dβ = −1, 2.6 in this case reduces to

H̃α[1− u ] =
∏
c∈α

(1− utl
′
qa
′
) = (1− u)

n−1∑
r=0

(−u)rer[Bµ − 1]. 2.9

This identity yields the coefficients of hook Schur functions in the expansion.

H̃µ[X; q, t] =
∑
λ`|µ|

sµ[X]K̃λµ(q, t). 2.10

Recall that the addition formula for Schur functions gives

sµ[1− u] =

{
(−u)r(1− u) if µ = (n− r, 1r)

0 otherwise

. 2.11
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Thus 2.10, with X = 1− u, combined with 2.9 gives for µ ` n〈
H̃µ , s(n−r,1r)

〉
= er[Bµ − 1] 2.12

and the identity erhn−r = s(n−r,1r) + s(n−r−1,1r−1) gives〈
H̃µ , erhn−r

〉
= er[Bµ]. 2.13

Since for β = (1) we have H̃β = 1 and Πβ = 1, formula 2.7 reduces to the surprisingly simple identity

H̃α[M ] = MBαΠα. 2.14

Last but not least we must also recall that we have the Pieri formulas

a) e1H̃ν =
∑
µ←ν

dµνH̃µ , b) e⊥1 H̃µ =
∑
ν→µ

cµνH̃ν . 2.15

The final ingredients we need, to carry out our proofs, are the following summation formulas from [4] (the

k=1 case of 2.17 occurs in unpublished work of M. Zabrocki)

∑
ν→µ

cµν(q, t) (Tµ/Tν)k =


tq
M hk+1

[
Dµ(q, t)/tq

]
if k ≥ 1 ,

Bµ(q, t) if k = 0 .
2.16

∑
µ←ν

dµν(q, t) (Tµ/Tν)k =

{
(−1)k−1 ek−1

[
Dν(q, t)

]
if k ≥ 1 ,

1 if k = 0 .

2.17

Here ν→µ simply means that the sum is over ν’s obtained from µ by removing a corner cell and µ←ν means

that the sum is over µ’s obtained from ν by adding a corner cell.

It will be useful to know that these two Pieri coefficients are related by the identity

dµν = Mcµν
wν
wµ

2.18

Recall that our Macdonald Polynomials satisfy the orthogonality condition〈
H̃λ , H̃µ

〉
∗ = χ(λ = µ)wµ(q, t). 2.21

The ∗-scalar product, is simply related to the ordinary Hall scalar product by setting for all pairs

of symmetric functions f, g 〈
f , g

〉
∗ =

〈
f , ωφg

〉
, 2.20

where it has been customary to let φ be the operator defined by setting for any symmetric function f

φ f [X] = f [MX]. 2.21

Note that the inverse of φ is usually written in the form

f∗[X] = f [X/M ]. 2.22
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In particular we also have for all symmetric functions f, g〈
f , g

〉
=
〈
f, ωg∗

〉
∗. 2.23

The orthogonality relations in 1.15 yield the “Cauchy” identity for our Macdonald polynomials in the form

Ω
[
−εXYM

]
=
∑
µ

H̃µ[X]H̃µ[Y ]

wµ
2.24

which restricted to its homogeneous component of degree n in X and Y reduces to

en
[
XY
M

]
=
∑
µ`n

H̃µ[X]H̃µ[Y ]

wµ
. 2.25

Note that the orthogonality relations in 2.19 yield us the following Macdonald polynomial expansions

Proposition I.1
For all n ≥ 1 we have

a) en
[
X
M

]
=
∑
µ`n

H̃µ[X]

wµ
, b) hk

[
X
M

]
en−k

[
X
M

]
=
∑
µ`n

ek[Bµ]H̃µ[X]

wµ
, c) hn

[
X
M

]
=
∑
µ`n

TµH̃µ[X]

wµ

d) (−1)n−1pn = (1− tn)(1− qn)
∑
µ`n

ΠµH̃µ[X]

wµ

e) e1[X/M ]n =
∑
µ`n

H̃µ[X]

wµ

〈
H̃µ, e

n
1

〉
f) en =

∑
µ`m

H̃µ[X]MBµΠµ

wµ
.

2.27

Finally it is good to keep in mind, for future use, that we have for all partitions µ

TµωH̃µ[X; 1/q1/, t] = H̃µ[X; q, t]. 2.28

Remark 2.1
It was conjectured in [4] and proved in [11 ] that the bigraded Frobenius characteristic of the diagonal

Harmonics of Sn is given by the symmetric function

DHn[X; q, t] =
∑
µ`n

TµH̃µ(X; q, t)MBµ(q, t)Πµ(q, t)

wµ(q, t)
. 2.29

Surprisingly the intricate rational function on the right hand side is none other than ∇en. To see this we

simply combine the relation in 2.14 with the degree n restricted Macdonald-Cauchy formula 2.25 obtaining

en[X] = en
[
XM
M

]
=
∑
µ`n

H̃µ[X]MBµΠµ

wµ
. 2.30

This is perhaps the simplest way to prove 2.27 f). This discovery is precisely what led to the introduction

of ∇ in the first place.
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3. The Hilbert series of diagonal harmonics

Our first goal here is to obtain new proofs of the results in [9] by using the connection between

Tesler matrices and plethystic operators. The basic ingredient in this approach is provided by the following

Proposition 3.1
For any symmetric function F [X] and any sequence of integers a1, a2, . . . , an we have

Dan · · ·Da2Da1F [X]
∣∣∣
X=M

= F
[
M +

n∑
i=1

M
zi

] n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z
a1
1 z

a2
2 ···z

an
n

= F
[
M +

n∑
i=1

M
zi

] n∏
i=1

(1− zi)(1− tqzi)
(1− tzi)(1− qzi)

∏
1≤i<j≤n

(1− zi
zj

)(1− tq zizj )

(1− t zizj )(1− q zizj )

∣∣∣
z
a1
1 z

a2
2 ···z

an
n

.

3.1

Proof
The definition in 2.1 a) gives

Da1F [X] = F [X + M
z1

]Ω[−z1X]
∣∣∣
z
a1
1

and using 2.1 a) again we get

Da2Da1F [X] = F [X + M
z1

+ M
z2

]Ω[−z1(X + M
z2

)]Ω[−z2X]
∣∣∣
z
µ1
1 z

µ2
2

= F [X + M
z1

+ M
z2

]Ω[− z1z2M ]Ω[−z1X − z2X]
∣∣∣
z
a1
1 z

a2
2

.

As before, this should make it clear that the successive actions of Da3 · · ·Dak will eventually yield the identity

Dan · · ·Da2Da1F [X] = F [X +

n∑
i=1

M
zi

]
∏

1≤i<j≤n

Ω[− zi
zj
M ]Ω[−z1X − z2X − · · · − znX]

∣∣∣
z
a1
1 z

a2
2 ···z

an
n

.

Setting X = M gives the first equality in 1.6, but then the second equality holds as well since for any

monomial v we have

Ω[−vM ] = Ω[vt+ vq − v − qtv] =
(1− v)(1− qtv)

(1− tv)(1− qv).

The identity in 3.1 has the following important corollary.

Theorem 3.1

∂np1∇
men = (− 1

M )nDn−1
m−1D0en+1[XM ]

∣∣∣
X=M

. 3.2

Proof
Setting a0 = 0, a2 = a3 = · · · = an = m− 1 and F [X] = en+1[XM ] in 3.1 gives

Dn−1
m−1D0en+1[XM ]

∣∣∣
X=M

=

n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z11z

m
2 ···zmn

3.3
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because in this case we have

F
[
M +

n∑
i=1

M
zi

]
= en+1[1 + 1

z1
+ 1

z2
+ · · ·+ + 1

zn
] = 1

z1z2···zn .

Combining 3.3 with 1.15 shows that 3.2 is simply another way of writing Haglund’s identity 1.11.

Our challenge here is to give a direct proof of 3.2. We have so far succeeded in carrying this out for

m = 1. Research to obtain the general case is still in progress. The rest of this section is dedicated to the

proof of the case m = 1 of 3.2 and the derivation of another Tesler matrix formula for the Hilbert series of

diagonal harmonics. We will start with the latter formula since it requires the least amount of machinery.

Theorem 3.2
For all n ≥ 1 we have

∂n−1
p1 ∇en−1 = (− 1

M )n−1Dn
−1pn

[
X
M

]
= (− 1

M )n−1
n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[− zi
zj
M ]
∣∣∣
zn−1
1 z−1

2 ···z
−1
n

. 3.4

In particular it follows that

∂n−1
p1 ∇en−1 = (− 1

M )n−1
∑

A∈T (n,−1,−1,...,−1)

wH [A]. 3.5

Proof
The definition of D−1 gives that

D−1pn[XM ] =
(
pn[XM ] + 1

zn

)
Ω[−zX]

∣∣∣
z−1

= (−1)n−1en−1.

Using this and 2.3 (iv) we derive that

(− 1
M )n−1Dn

−1pn[XM ] = ( 1
M )n−1Dn−1

−1 en−1 = ∇−1 ∂n−1
p1 ∇en−1 = ∂n−1

p1 ∇en−1. 3.6

This proves the first equality in 3.4.

But Proposition 3.1 with a1 = a2 = · · · = an = −1 gives

Dn
−1pn[XM ]

∣∣∣
X=M

=
(
1 +

n∑
i=1

1
zn
i

) n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[− zi
zj
M ]
∣∣∣
z−1
1 z−1

2 ···z
−1
n

3.7

and 3.6 gives

∂n−1
p1 ∇en−1 = (− 1

M )n−1
(
1 +

n∑
i=1

1
zn
i

) n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[− zi
zj
M ]
∣∣∣
z−1
1 z−1

2 ···z
−1
n

. 3.8

Note next that if we set F = 1 and a1 = a2 = · · · = an = −1 in 3.1 we obtain

0 = Dn
−11
∣∣∣
X=M

=

n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[− zi
zj
M ]
∣∣∣
z−1
1 z−1

2 ···z
−1
n

3.9
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that eliminates one of the terms in 3.8. We claim that only the term yielded by 1
zn1

survives. That is we have

1
zn
k

n∏
i=1

Ω[−Mzi]
∏

1≤i<j≤n

Ω[−Mzi/zj ]
∣∣∣
z−1
1 z−1

2 ···z
−1
n

= 0 (for all 2 ≤ k ≤ n). 3.10

Let us now rewrite the LHS in the expanded form, that is

1
zn
k

n∏
i=1

∑
pi≥0

zpii hpi [−M ]
∏

1≤i<j≤n

∑
ri,j≥0

z
ri,j
i

z
ri,j
j

hri,j [−M ]
∣∣∣
z−1
1 z−1

2 ···z
−1
n

.

The exponent of z1 in the generic term of the product of these geometric series must satisfy the equation

p1 +

n∑
j=2

r1,j = −1.

This is, of course impossible, causing 3.10 to be true precisely as asserted. Using 3.9 and 3.10 in 3.8 proves

the second equality in 3.4, completing our proof.

Our proof of 3.2 for m = 1 is more elaborate and requires the following auxiliary identity.

Proposition 3.2
For any symmetric function F [X] we have

∑
µ`n+1

MBµΠµ

wµ
F [MBµ] = ∆enF [X]

∣∣∣
X=M

. 3.11

Proof

We need only prove this for F [X] = H̃γ [X] for arbitrary γ. In this case 3.11 becomes

∑
µ`n+1

MBµΠµ

wµ
H̃γ [MBµ] = H̃γ [M ]en[Bγ ] = MBγΠγen[Bγ ]. 3.12

Since by the reciprocity in 2.7 we have

H̃γ [MBµ]

Πγ
=

H̃µ[MBγ ]

Πµ

3.12 becomes

Πγ

∑
µ`n+1

MBµ
wµ

H̃µ[MBγ ] = MBγΠγen[Bγ ].

Or better ∑
µ`n+1

MBµ
wµ

H̃µ[MBγ ] = MBγen[Bγ ]. 3.13

But recall that we have

Bµ =
∑
ν→µ

cµν
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and 1.3 becomes ∑
µ`n+1

M

wµ
H̃µ[MBγ ]

∑
ν→µ

cµν = MBγen[Bγ ]. 3.14

Now for the left hand side we have

LHS =
∑
ν`n

1

wν

∑
µ←ν

Mwν
wµ

cµνH̃µ[MBγ ]

=
∑
ν`n

1

wν

∑
µ←ν

dµνH̃µ[MBγ ]

=
∑
ν`n

1

wν
e1[MBγ ]H̃ν [MBγ ]

= e1[MBγ ]en

[MBγ
M

]
= MBγen[Bγ ] = RHS (!!!!)

and our proof is complete.

As a corollary we obtain

Proposition 3.3
For F ∈ Λ=k with k ≤ n we have

∑
µ`n+1

MBµΠµ

wµ
F [MBµ] =

{
∇F [X]

∣∣∣
X=M

if k = n

0 if k < n
. 3.15

Proof
From 3.11 we get that the left hand side of 3.15 is

∆enF [X]
∣∣∣
X=M

but for a symmetric function F [X] of degree n we have ∆enF [X] = ∇F [X], thus the first alternative in 1.5

is immediate. On the other hand for k < n the expansion of F in the Macdonald basis will involve H̃ ′γs with

γ ` k and even before we make the evaluation at X = M the identity

∆enH̃γ [X] = en[Bγ ]H̃γ [S] = 0 (for all γ ` k < n)

forces ∆enF = 0, yielding the second alternative in 3.15.

We are now in a position to give a new and direct proof of 3.2 for m = 1.

Theorem 3.3

∂np1∇en =
(
− 1

M

)n
Dn

0 en+1[XM ]
∣∣∣
X=M

. 3.16

Proof
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From 2.27 a) and 2.3 (i) we get

Dn
0 en+1[XM ]

∣∣∣
X=M

=
(
Dn

0

∑
µ`n+1

H̃µ[X; q, t]

wµ

)∣∣∣
X=M

=
∑
µ`n+1

H̃µ[X; q, t](1−MBµ)n

wµ

∣∣∣
X=M

=

n∑
k=0

(
n

k

)
(−M)k

∑
µ`n+1

MBµΠµ

wµ
Bkµ

and Proposition 3.3 with F = e1

[
X
M

]k
and 0 ≤ k ≤ n gives(

− 1
M

)n
Dn

0 en+1[XM ]
∣∣∣
X=M

= ∇en1
[
X
M

]∣∣∣
X=M

(by 2.27 e) and the definition of ∇) =
∑
µ`n

TµH̃µ[X]

wµ

〈
H̃µ, e

n
1

〉]∣∣∣
X=M

(by 2.14) =
∑
µ`n

TµMBµΠµ

wµ

〈
H̃µ, e

n
1

〉
(by 2.27 f) and ∂p1 = e⊥1 ) = ∂np1∇en.

This proves 3.16 and completes our argument.

Remark 3.1
Note that the identity in 3.2 for m = 2 becomes

∂np1∇
2en = (− 1

M )nDn−1
1 D0en+1[XM ]

∣∣∣
X=M

. 3.17

Since 2.3 (iii) gives D1 = −∇e1∇−1 we can rewrite this as

∂np1∇
2en = −( 1

M )n∇en−1
1 ∇−1D0en+1[XM ]

∣∣∣
X=M

3.18

which is a really surprising formula, since it shows that there are identities for these operators that still

remain to be discovered.

Remark 3.2
Computer experimentation has shown that (−1)n−1∂np1∇

−men is a polynomial in Q[1/q, 1/t] with

non negative integer coefficients. This phenomenon can be explained by means of the operator “↓” which is

defined by setting for any symmetric polynomial F [X; q, t]

↓ F [X; q, t] = ωF [X; 1/q, 1/t].

In fact, note that for F = H̃µ[X; q, t] 2.28 gives

↓ H̃µ[X; q, t] = ωH̃µ[X; 1/q, 1/t] =
1

Tµ
H̃µ[X; q, t]. 3.19

Thus 2.28 again gives

↓ ∇ ↓ H̃µ[X; q, t] = ↓ H̃µ[X; q, t] =
1

Tµ
H̃µ[X; q, t] = ∇−1H̃µ[X; q, t]
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and since the operator ↓ ∇ ↓ is linear in the linear span of the basis {H̃µ}µ it follows that

↓ ∇ ↓ = ∇−1. 3.20

Now this implies that

(−1)n−1∇−men[X] = ↓ ∇m(−1)n−1hn[X]

and the Schur positivity of (−1)n−1∇−men[X] now follows from the conjectured Schur positivity of∇m(−1)n−1hn[X].

Since the operators ∂p1 and ↓ commute we see then that applying ↓ to both sides of 1.14 we derive that

∂np1∇
−mhn = (− tq

M )n
∑

A∈T (1,m,...,m)

wH(A)
∣∣∣
t=1/t,q=1/q

(for all m ≥ 1). 3.21

Remark 3.3
Note that using the operator ↓ we can derive from 2.27 f) that

hn =
∑
µ`m

ωH̃µ[X; 1/q, 1/t](1− 1/t)(1− 1/q)Bµ(1/q, 1/t)Πµ(1/q, 1/t)

wµ(1/q, 1/t)
. 3.22

Since by definition we have

wµ(q, t) =
∏
c∈µ

(qa(c) − tl(c)+1)(tl(c) − qa(c)+1) , Πµ(q, t) =
∏
c∈µ

c6=(0,0)

(1− qa
′(c)tl

′(c)).

Thus

wµ(1/q, 1/t) =
∏
c∈µ

(q−a(c)− t−l(c)−1)(t−l(c)−q−a(c)−1) , Πµ(1/q, 1/t) =
∏
c∈µ

c6=(0,0)

(1−q−a
′(c)t−l

′(c))

wµ(1/q, 1/t) = (qt)−nT−2
µ wµ(q, t) , Πµ(1/q, 1/t) = (−1)n−1T−1

µ Πµ(q, t)

and 3.22 becomes

hn = (−qt)n−1
∑
µ`m

H̃µ[X; q, t]MBµ(1/q, 1/t)Πµ(q, t)

wµ(q, t)
. 3.23

It should be noted that other surprising identities may be obtained by means of the operator ↓. For

instance applying it to both sides of ∂p1H̃µ(X; q, t) =
∑
ν→µ cµν(q, t)H̃ν [X; q, t) gives by 3.19

∂p1
1

Tµ
H̃µ[X; q, t] =

∑
ν→µ

cµν(1/q, 1/t)
1

Tν
H̃ν [X; q, t]

from which we derive that cµν(1/q, 1/t) = Tν
Tµ
cµν(q, t). An application of ↓ to the identity Bµ(q, t) =∑

ν→µ cµν(q, t) gives

TµBµ(1/q, 1/t) =
∑
ν→µ

cµν(q, t)Tν 3.24

which for µ ` n can also be rewritten as

en−1[Bµ(q, t)] =
∑
ν→µ

cµν(q, t)Tν . 3.25
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4. Further remarkable D0 identities

In this section we will explore some of the consequences obtained by combining the action of Do

with the following identity of Haglund [7]

Proposition 4.1
For any positive integers m,n and any P ∈ Λn. we have〈

∆em−1
en , P

〉
=
〈
∆ωP em , sm

〉
. 4.1

Proof
The operator ∆em−1

applied to both sides of 2.27 gives

∆em−1
en =

∑
µ`n

MBµΠµH̃µ(x; q, t)

wµ
em−1[Bµ]. 4.2

Using again 2.27 with n→m we also have

∆ωP em =
∑
α`m

MBαΠαH̃α(x; q, t)

wα
(ωP )[Bα]. 4.3

Using 4.2 and 4.3 we get the explicit form of 4.1, which is∑
µ`n

MBµΠµem−1[Bµ]

wµ

〈
H̃µ , P

〉
=

∑
α`m

MBαΠα

wα
(ωP )[Bα]. 4.4

This given, our idea here as in [7], is to establish 4.1 by checking its validity when P varies among all the

members of a symmetric function basis. It turns out that a simpler proof of 4.1 is obtained by testing 4.3

with the modified Macdonald basis {ωH̃γ [MX; q, t]

wγ

}
γ
.

The source of the simplification is due to the fact that this basis is precisely the Hall scalar product dual of

the Macdonald basis
{
H̃γ [X]}γ . Using this fact, putting P =

ωH̃γ [MX]
wγ

in 4.4 gives

MBγΠγem−1[Bγ ]

wγ
=

∑
α`m

MBαΠα

wα

H̃γ [MBα]

wγ
.

Carrying out the simplifications this may be rewritten as

Bγem−1[Bγ ] =
∑
α`m

BαΠα

wα

H̃γ [MBα]

Πγ
4.5

and Macdonald reciprocity reduces this to

Bγem−1[Bγ ] =
∑
α`m

Bα
wα

H̃α[MBγ ]. 4.6
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Now we may rewrite 2.16 with k = 0, as

Bα =
∑
β→α

cαβ .

Using this in the right hand side of 4.5 gives

RHS =
∑
α`m

H̃α[MBγ ]

wα

∑
β→α

cαβ =
∑

β`m−1

1

wβ

∑
α←β

H̃α[MBγ ] cαβ
wβ
wα
. 4.7

Next we use 2.18, in the form

cαβ
wβ
wα

= = 1
M dαβ

and 4.7 becomes

RHS =
1

M

∑
β`m−1

1

wβ

∑
α←β

H̃α[MBγ ] dαβ

=
1

M

∑
β`m−1

MBγH̃β [MBγ ]

wβ

= Bγ
∑

β`m−1

H̃β [MBγ ; q, t]

wβ

(by 2.27 a)) = Bγem−1

[
MBγ
M

]
= Bγem−1 [Bγ ]

proving 4.5 as desired.

Study of the above proof led us to the following variation of 4.1.

Proposition 4.2

(−qt)m−1
〈
∆hm−1

en , P
〉

=
〈
∆ωP sm , s1m

〉
. 4.8

Proof
As we did for 4.1, we will prove 4.8 by testing it with P = ωH̃γ [MX]/wγ . To this end note first

that the left hand side is

LHS = (−qt)m−1
∑
µ`n

MBµΠµhm−1

[
Bµ
]

wµ

〈
H̃µ , P

〉
and the right hand side (using 3.23) is

RHS = (−qt)m−1
∑
µ`m

MB̃µΠµ

wµ
(ωP )[Bµ].

With this choice of P we get

LHS = (−qt)m−1MBγΠγhm−1

[
Bγ
]

wγ
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and

RHS = (−qt)m−1
∑
µ`m

MB̃µΠµTµ
wµ

H̃γ [MBµ]

wγ
.

We are thus reduced to showing, upon omission of the common factor (−qt)m−1, division by MΠγ/wγ and

setting B̃µ = Bµ(1/q, 1/t)

Bγhm−1

[
Bγ
]

=
∑
µ`m

B̃µΠµTµ
wµ

H̃γ [MBµ]

Πγ
. 4.9

The next idea is to use the identity in 3.24, namely

TµB̃µ =
∑
ν→µ

cµνTν

and transform 4.9 to

Bγhm−1

[
Bγ
]

=
∑
µ`m

Πµ

wµ

H̃γ [MBµ]

Πγ

∑
ν→µ

cµνTν

=
∑

ν`m−1

Tν
wν

∑
µ←ν

ΠµH̃γ [MBµ]

Πγ
cµν

wν
wµ

=
∑

ν`m−1

Tν
wν

∑
µ←ν

ΠµH̃γ [MBµ]

Πγ
dµν/M

(by reciprocity) =
∑

ν`m−1

Tν
wν

∑
µ←ν

H̃µ[MBγ ] dµν/M

=
h1[MBγ ]

M

∑
ν`m−1

Tν
wν

H̃ν [MBγ ] = Bγ hm−1

[
MBγ
M

]

which is plainly true, and completes the proof of 4.8.

An application of Proposition 4.1 yields us another remarkable consequence of the action of the

operator D0

Theorem 4.1
Recalling the notation in 1.16 for the Tesler matrix polynomials we have

〈
∇en+k , hkh

n
1

〉
=

∑
a1+a2+···+an≤k

P1+a1,1+a2,...,1+an(q, t).

Proof
An application of 4.1 with m = n+ k + 1 and F = hkh

n
1 gives

〈
∆en+k

en+k , hkh
n
1

〉
=
〈
∆eken1

en+k+1 , hn+k+1

〉
.
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Now 2.27 f) gives

〈
∆eken1

en+k+1 , hn+k+1

〉
=

∑
µ`n+k+1

MBµΠµ

wµ
ek[Bµ]Bnµ

(by the second case of 3.15 ) = (− 1
M )n

∑
µ`n+k+1

MBµΠµ

wµ
ek[Bµ](1−MBµ)n

= (− 1
M )n

∑
µ`n+k+1

H̃µ[X]

wµ
ek[Bµ](1−MBµ)n

∣∣∣
X=M

(by 2.13 ) = (− 1
M )nDn

0

∑
µ`n+k+1

H̃µ[X]

wµ

〈
H̃µ , ekhn+1

〉∣∣∣
X=M

= (− 1
M )nDn

0 en+1

[
X
M

]
hk
[
X
M

]∣∣∣
X=M

.

On the other hand an application of Proposition 3.1 for a1 = a2 = · · · = an = 0 and F = en+1

[
X
M

]
hk
[
X
M

]
gives

Dn
0 e
∗
n+1h

∗
k

∣∣∣
X=M

= en+1

[
1 +

n∑
i=1

1
zi

]
hk
[
1 +

n∑
i=1

1
zi

] n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z01z

0
2 ···z0n

= hk
[
1 +

n∑
i=1

1
zi

] n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z11z

1
2 ···z1n

=
∑

a1+a2+···+an≤k

n∏
i=1

Ω[−ziM ]
∏

1≤i<j≤n

Ω[ zizjM ]
∣∣∣
z
1+a1
1 z

1+a2
2 +···z1+ann

.
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5. From parking functions to Tesler matrices

In a recent work P. Levande [12] establishes a beautiful weight preserving bijection between parking

functions and Tesler matrices with hook sums (1, 1, . . . , 1) and only one non zero element in each row. We

will soon be deriving more general forms of Levande’s results, and as a means to that end we include our

own exposition of part of his work here, in notation compatible with previous sections of this paper. To

state and prove his results we need to introduce some notation and establish a few auxiliary facts.

In our previous writings parking functions were depicted as tableaux in the n× n lattice square as

in the figure below.

In this representation a parking function is constructed by first choosing a Dyck path, then placing circles

in the cells adjacent to its NORTH steps and then filling the circles with 1, 2, . . . , n in a column increasing

manner. The label ui, on the left of row i, gives the number of cells between the NORTH step in that row

and the diagonal. The label vi on the right of row i, gives the “car” in that row. In the computer a PF is

stored as the two line array

PF =

[
v1 v2 · · · vn
u1 u2 · · · un

]
.

Thus the example above we obtain

PF =

[
4 6 8 1 3 2 7 5
0 1 2 2 3 0 1 1

]
.

It is easy to see that a necessary and sufficient condition for such an array to represent a PF is that we have

u1 = 0 , ui ≤ ui−1 + 1 with ui = ui−1 + 1 =⇒ vi > vi−1.

Using this representation the two statistics “area” and “dinv” can be simply defined by setting

area(PF ) =

n∑
i=1

ui , dinv(PF ) =
∑

1≤i<j≤n

(
χ(ui = uj & vi < vj) + χ(ui = uj + 1 & vi > vj)

)
.

However historically this construction of a PF was only devised so as to assure that the corresponding

“preference function ” did “park the cars”. In fact in the original definition a parking function for a one way

street with n parking spaces is a vector f = (f1, f2, . . . , fn) ∈ [1, n]n such that

#{j : fj ≤ i } ≥ i (for all 1 ≤ i ≤ n).
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The simple bijection that converts the classical definition to its tableau form is simply two stack the cars as

columns above the parking spaces they prefer to park. Thus in the example above car 1 wants to park in

space 2, car 2 wants to park in space 6, etc.. So the correponding preference function turns out to be

pf = (2, 6, 2, 1, 7, 1, 6, 1).

Of all the permutations we previously obtained from a parking function there are two more that we over-

looked. Namely the one which gives the history or better, the time order in which the places are filled and

the other gives the arrangement of the cars after they are finally all parked. It is easy to see that these

permutations are inverses of each other, We will refer to the former as the “filling” permutation and the

latter as the “parking” permutation.

For instance for the above parking function we have

filling(pf) = (2, 6, 3, 1, 7, 4, 8, 5) , parking(pf) = (4, 1, 3, 6, 8, 2, 5, 7).

There is a simple algorithm for constructing filling(pf) from the preference function pf . This is none other

than an implementation of the way the parking takes place. We need only illustrate it in our particular

example. Car 1 arrives and parks in 2, car 2 arrives and parks in 6, but when car 3 arrives 2 is occupied

and parks in 3. Car 4 arrives and parks in 1. Car 5 arrives and parks in 7. But when car 6 arrives, who

wants to park in 1, finds 1, 2, 3 occupied, thus ends up parking in 4 since it is still free. The algorithm to

get α = filling(pf) from pf, starts by setting α1 = pf [1] then inductively having constructed the first i− 1

components of α and given that pf [i] = a we let αi = a if a is not in (α1, α2, . . . , αi−1) and let αi = a+k+ 1

if a, a+ 1, . . . , a+ k are in (α1, α2, . . . , αi−1) and a+ k + 1 is not.

Finally, the permutation parking(pf) is the inverse of filling(pf) since filling(pf)[i] gives where

car i parks or equivalently where we must place i in parking(pf).

A classical beautiful fact in the theory of parking functions, which goes back to Kreweras is

Theorem 5.1
The inverse algorithm yields that for any α ∈ Sn the polynomial

Nα(q) =
∑

filling(pf)=α

qarea(pf) 5.1

factors into a product of q-integers

Proof
Let α = (3, 6, 1, 4, 7, 2, 5) be the given filling permutation.

The tree depicted on the right gives all the preference functions

that have α as their filling permutation. To see this, note that

when car 1 arrives and parks at 3 it is clearly where it had wanted

to park. The same is true for cars 2 and 3. But when car 4 arrives,

and parks at 4, may be it wanted to park there, but since space 3

is occupied, it could very well have wanted to park at 3. Similarly car 5 may have wanted to park at 7 or 6,

car 6 may have wanted to park at 2 or 1 and car 7 may have wanted to park at 5, 4, 3, 2 or 1. More generally,

if αs = a and a − 1, a − 2, . . . , a − k are in the set {α1, α2, . . . , αs−1} but , a − k − 1 is not, let us call the
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string a, a − 1, . . . , a − k the “tail ” of αs otherwise, if that does not happen we will let αs be its own tail.

In any case we will refer to it as “tail(αs, α)” or briefly “tail(αs)”. This given, we see that the children of

every node of the tree at level s are to be labeled from right to left by the tail of αs. Moreover if we label the

edges leading to the children of a node at level s, from right to left, by 1, q, q2, . . . , qk, then its is easy to see

that the tree will have the further property that, as we go from the root down to a leaf, reading the labels

of the successive nodes and multiplying the powers of q encountered in the successive edges, we will obtain

the preference function corresponding to that leaf together with q to the power the extra travel that the cars

end up traveling as a result of that preference. Note that the total amount of travel the cars end up doing

after they enter the one way street is
(
n+1

2

)
(in parking space units) . Since the sum of the components of

the preference function gives the amount of travel they where hoping to do, the difference, (which is none

other than the area of the corresponding, Dyck path) is, in fact, the extra travel they were forced to do.

This proves 5.1. Note that, for our example we also have the identity

N(3,6,1,4,7,2,5)(q) = [2]q[2]q[2]q[5]q.

Likewise, in the general case, denoting by “#S” the cardinality of a set S, we will have

Nα(q) =

n∏
s=1

[#tail(αs)]q. 5.2

This proves our last assertion and completes the proof.

Levande proves that the same family of polynomials may be obtained from the subfamily of Tesler

matrices in T [1, 1, . . . , 1] that have only one non-zero element in each row. Since in the n×n case this family

has n! elements we will call these matrices “Permutational Tesler ” or briefly “Permutational ” and denote

them “Π[1, 1, . . . 1]”.

Given a permutation α = (α1, α2, . . . , αn), it will be convenient to call the smallest element αj > αs,

that is to the right of αs, “the target of αs in α”, and let αs be is own target if all the elements to its right

are smaller that it. In symbols

target[αs, α] =

{
αs if max{αs+1, . . . αn} < αs
min{αj : αj > αs & j > s} otherwise

.

This given Levande’s result may be stated as follows.

Theorem 5.2
For each n there is a bijection α ↔ A(α) between Sn and Π[1, 1, . . . , 1] such that, if we set for

each A = ‖ai,j‖ni,j=1

WΠ[A] =
∏
ai,j>0

[ai,j ]q. 5.3

Then

WΠ[A(α)] = Nα(q) ∀ α ∈ Sn. 5.4
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Proof
The construction of a matrix A(α) ∈ (Π[1, 1, . . . , 1] satisfying 5.4 for each

filling permutation α is immediate. In fact, we simply fill row s by placing the

integer #tail(αs) in column j, if the target of αs is αj . Of course, if αs is its own

target then the integer #tail(αs) ends up in the diagonal.

The reader will have no difficulty seeing that this recipe applied to the

permutation α = (3, 6, 1, 4, 7, 2, 5) yields the permutational Tesler matrix on the

right. Since this construction is easily shown to be reversible, and therefore injective,

and the cardinalities are in both cases n!, the only thing we need, to complete the

proof, is to show that the resulting matrix is indeed in Π[1, 1, . . . , 1] as asserted.

This will be an immediate consequence of the following auxiliary fact.

Lemma 5.1
Suppose that for a given α = (α1, α2, . . . , αn) ∈ Sn and some 1 < k ≤ n we have

{αs < αk : target[αs, α] = αk} = {αs1 , αs2 , . . . , αsr} (with s1 < s2 < · · · < sr < k).

Then

tail(αk) = {αk}+ tail(αs1) + tail(αs2) + · · · + tail(αsr ) 5.5

the “+” denoting disjoint union.

Proof
Note that we must have αs1 > αs2 > · · · > αsr , since if for some i we had αsi < αsi+1

then the target

of αsi would be αsi+1
and not αk. It follows from this that for each i we must have min tail(αsi) > αsi+1

.

In fact, with the opposite inequality we would have min tail(αsi) < αsi+1
< αsi and since tail(αsi) is the

interval of integers between its minimum and its maximum αsi , this would force αsi+1 to be in tail(αsi)

which contradicts si < si+1. Now suppose that for some i we have αsi+1
< min tail(αsi) − 1, and set

a = min tail(αsi)− 1. Clearly a must be to the right of αsi in α, for otherwise a would in tail(αsi). But on

the other hand a can’t be on the right of αsi+1 for otherwise αsi+1 would not have αk as its target. Now a

cannot be its own target since it is less that αk and to the left of it. Moreover a cannot have ak as its target,

and thus its target, say b, must be less than αk. However b must be greater than αsi since all the elements

in the interval [a + 1, αsi ] are in tail(αsi). Since b is is necessarily to the right of αsi , this negates that αk

is the target of αsi . This final contradiction proves that αsi+1 = min tail(αsi)− 1. This means that all the

tails in 5.5 must be contiguous. To prove 5.5 it remains to show that

(1) the entry min tail(αsr )− 1 is not on the left of αk and

(2) αs1 = αk − 1.

Suppose that a = min tail(αsr )− 1 is to the left of αk , then, as in the previous argument a must be to the

right of αsr since otherwise it would be part of tail(αsr ). But then as before the target b of a is shown to be

a number greater that αsr , to the right of it and less than αk, and this negates that αk is the target of αsi .

This contradiction proves (1).

Next let a = αk − 1 and suppose that αs1 < a. But then a can’t be to the right of αs1 for the αk

would not be the target of αs1 . But if it is to the left of αs1 and therefore also to the left of αk, then αk

would be its target contradicting that αs1 , αs2 , . . . , αsr are all the element of α that are less than αk and

have αk as a target. This completes the proof of 5.5.



Combinatorics of Tesler Matrices November 10, 2011 22

To complete the proof of Theorem 5.2 recall that the integer we place in row k gives the size of the

tail of αk. Thus the Tesler matrix condition for that row will be satisfied if and only if #tail(αk) equals 1 plus

the sum of the integers we placed in column k, Now if these integers were placed in rows s1 < s2 < · · · < sr.

Then this condition is simply

#tail(αk) = 1 + as1,k + as2,k + · · ·+ asr,k. 5.6

But by our construction, αs1 , αs2 , . . . α,sr must have been the entries of α with target αk, thus for each

1 ≤ i ≤ r we must have set asi,k = #tail(αsi). Thus 5.6 is none other than

#tail(αk) = 1 + #tail(αs1) + #tail(αs2) + · · ·+ #tail(αsr ),

which is clearly an immediate consequence of 5.5.

6. Tesler matrices with arbitrary hook sums and weighted parking functions
In 1.16 we set

Pa1,a2,...,an(q, t) = (− 1
M )n

∑
A∈T (a1,a2,...,an)

wH(A) 6.1

with

wH(A) =
∏
i,j

hai,j [−M ].

Now it is easy to show that we have for any integer k

hk[−M ] =


0 if k < 0
1 if k = 0
−M [k]qt if k > 0

6.2

where

[k]qt =
qk − tk

q − t
= qk−1 + qk−2q + · · ·+ tk−2q + tk−1. 6.3

Since as we have noted, when a1, a2, . . . , an are positive then all Tesler matrices in T (a1, a2, . . . , an) have at

least one non-zero element in each row, the identity in 6.2 assures that Pa1,a2,...,an(q, t) is a polynomial. In

Section 4 we have seen a variety of cases where these polynomials are guaranteed to have positive integer

coefficients. Computer experimentations have revealed a variety of other cases. In particular it is conjectured

in [9] that the same thing happens when the a1, a2, . . . , an is any weakly increasing sequence.

In an effort to discover what collection of objects is q, t-enumerated by these polynomials, several

values were obtained for q = t = 1. The resulting data led the first author to conjecture (in a Banff meeting)

that

Pa1,a2,...,an(1, 1) = a1

(
a1 + na2

)(
a1 + a2 + (n− 1)a3

)
· · ·
(
a1 + a2 + · · ·+ an−1 + 2an

)
. 6.4

In this section we give two proofs of this conjecture. One uses an inductive argument and algebraic manipula-

tions, while the other gives an explicit combinatorial interpretation of the conjecture by extending Levande’s

ideas. As a by-product we will obtain a parking function interpretation for the matrices Π[a1, a2, . . . , an].
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To see how this comes about we need some preliminary observations. Note first that setting q = t = 1 in 6.1

reduces it to a sum over Permutational Tesler matrices. Now set

Qa1,a2,...,an(q, t) =
∑

A∈Π(a1,a2,...,an)

wD(A) 6.5

with

wD(A) =
∏
ai,j>0

[ai,j ]qt. 6.6

Then, the identities in 6.2 imply that for all positive choices of a1, a2, . . . , an we have

Pa1,a2,...,an(1, 1) = Qa1,a2,...,an(1, 1). 67

Keeping this in mind, for a given parking function PF ∈ PFn, let us set, for pf = pf(PF )

y(pf) =

n∏
i=1

yπi 6.8

where the y′is are variables and the word π = π1π2 · · ·πn is obtained by combining the preference function

pf corresponding to PF with its parking permutation. More precisely, if pf = (pf [1], pf [2], . . . , pf [n]) and

parking(pf) = (β1, β2, . . . , βn) then

πi = βpf [i]. 6.9

Note further that it makes perfectly good sense to consider the matrices Π[y1, y2, . . . , yn], In fact,

for each of the n! choices of where to put the n non zero entries in the rows of a permutational matrix, by

proceeding from top to bottom we can simply place in row s the sum of ys plus the entries the previous rows

that have been placed in column s. The entries of a matrix A(y) = ‖ai,j‖ni.j=1 are of course linear forms in

y1, y2, . . . , yn and we will set as before

w
(
A(y)

)
=

∏
ai,j(y)6=0

ai,j(y). 6.10

This given we have the following fact

Theorem 6.1
For each n there is a bijection α ↔ A(α, y) between Sn and Π[y1, y2, . . . , yn] such that∑

filling(pf)=α

y(pf) = w
(
A(α, y)

)
. 6.11

Moreover we also have∑
PF∈PFn

y(PF ) =
∑

A(y)∈Π[y1,y2,...,yn]

w
(
A(α, y)

)
= y1

(
y1 + ny2

)(
y1 + y2 + (n− 1)y3

)
· · ·
(
y1 + y2 + · · ·+ yn−1 + 2yn

)
.

6.12

Proof
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The identity in 6.11 is another consequence of Lemma 5.1. To begin, for a given α ∈ Sn and β = α−1

we construct the matrix A(α, y) by placing (for s = 1, 2, . . . , n) in row s and column j the linear form

as,j(y) =
∑

a∈tail(αs)

yβa 6.13

if αj is the target of αs in α. The same tree we used in the proof of Theorem 5.1 yields the identity

∑
filling(pf)=α

y(pf) =

n∏
s=1

∑
a∈tail(αs)

yπa . 6.14

Thus to complete the proof of 6.11 we need only verify that the resulting matrixA(α, y) lies in Π[y1, y2, . . . , yn].

For this we need that the linear form we place in row k equals

y[βαk ] +
∑

a1∈tail(αs1 )

y[βa1 ] +
∑

a2∈tail(αs2 )

y[βa2 ] + · · · +
∑

ar∈tail(αsr )

y[βar ]

where again αs1 , αs2 , . . . , αs3 are the entries of α whose target is αk. But this is again a consequence of

applying y[β] to every element of the identity in 5.5.

This given, the first equality in 6.12 follows from 6.11. To prove the second equality we can follow

two different paths, either algebraic manipulations or direct combinatorial counting. We will do it both

ways since each argument yields identities that may be useful in further work. We start with a simple

combinatorialization of 6.4.

Proposition 6.1

∑
PF∈PFn

y(PF ) = y1

n∏
i=2

(y1 + y2 + · · ·+ yi−1 + (n+ 2− i)yi). 6.15

Proof
The monomial y(PF ) contributed by a parking function PF to the sum on the left hand side of

6.15 may be progressively obtained by the following steps as the cars arrive one by one. To begin, car 1

contributes the factor y1. Having constructed the partial monomial yj1yj2 · · · yji−1
after the arrival of cars

1, 2, . . . , i− 1, the factor yji contributed by car i is yi if the parking space pf [i] is free and is yr if space pf [i]

is already occupied by car r there after car i proceeds to the first free space.

To show that the polynomial resulting by summing these monomials factors as in 6.15, we make use

of the original device of parking the cars on a circular one way street with n+ 1 parking spaces. Here again

we construct each monomial as indicated above but from the unrestricted family of preference functions

giving n + 1 parking choices for each car. We have then n + 1 choices for car 1. For car 2 its choice could

be the place where car 1 parked, in that case the partial monomial would be y2
1 . There remain n free places

where car 2 can park, in which case the partial monomial is y1y2. Now two spaces are occupied, one by car

1 and one by car 2. So when car three arrives the possible new factors it can contribute are y1, y2 and in

n− 1 different ways y3 . . .. We can clearly see now how the successive factors at the right hand side of 6.15

do arise from this construction. Finally, when car n comes cars 1, 2, . . . , n − 1 are already parked, and the
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final factor in the resulting monomial can be one of y1, y2, . . . , yn−1 and yn in two different ways. It follows

that, by summing the monomials produced by all these (n + 1)n preference functions, we must necessarily

obtain the polynomial.

(n+ 1)× y1

n∏
i=2

(y1 + y2 + · · ·+ yi−1 + (n+ 2− i)yi). 6.16

Because of the rotational symmetry of this particular parking algorithm, it follows that for each

of the n + 1 parking spaces, by summing the monomials coming from the preference functions that leave

that space empty, we must invariably produce the same polynomial. Therefore by summing the monomials

produced by the preference function that leave space n + 1 empty we will obtain the polynomial in 6.16

divided by n+ 1. This proves 6.15 and completes the proof of 6.12 as well.

We give next an inductive proof of 6.12.

Proposition 6.2

∑
A(y)∈Π[y1,y2,...,yn]

w
(
A(α, y)

)
= y1

n∏
i=2

(y1 + y2 + · · ·+ yi−1 + (n+ 2− i)yi). 6.17

Proof
Note first that the left hand side of 6.7 for n = 2 reduces to

w

[
y1 0
0 y2

]
+ w

[
0 y1

0 y1 + y2

]
= y1y2 + y2

1 + y1y2 = y1(y1 + 2y2).

Thus 6.17 holds true in this case. We can thus proceed by an induction argument, but for clarity and

simplicity this idea is best understood in a special case. We will by carry it out for n = 5 and that will be

sufficient. Let us denote the polynomial produced by the left-hand side of 6.17 by L[y1, y2, . . . , yn] .

Note that it immediately follows from the definition of the matrices in Π[y1, y2, . . . , yn], by taking

into account of the column occupied by the non-zero element of the first row, that we must have the following

recursion for n = 5

L[y1, y2, y3, y4, y5] = y1L[y2, y3, y4, y5] + y1L[y1 + y2, y3, y4, y5] + y1L[y2, y1 + y3, y4, y5]

+ y1L[y2, y3, y1 + y4, y5] + y1L[y2, y3, y4, y1 + y5].

Using MAPLE, the inductive hypothesis gives that these five L-polynomials are as listed in the display below

. 6.18

Notice that the three middle polynomials have as common factor y1 + y2 + y3 + y4 + 2y5, while the first and

last start with the same three factors, while adding their last factors gives

y2 + y3 + y4 + 2y5 + 2y1 + y2 + y3 + y4 + 2y5 = 2(y1 + y2 + y3 + y4 + 2y5).
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Thus omitting the common factor (y1 + y2 + y3 + y4 + 2y5), combining the first and last polynomial in 6.18

and the remaining three polynomials we have

. 6.19

Now we see the same pattern emerging. Summing the last factors of the first and last in 6.19 gives

2(y2 + y3 + 3y4) + 3y1 + y2 + y3 + 3y4 = 3(y1 + y2 + y3 + 3y4).

Omitting the common factor (y1 + y2 + y3 + 3y4) and combining the first and last now gives

3y2(y2 + 4y3)

(y1 + y2)(y1 + y2 + 4y3)

y2(4y1 + y2 + 4y3).

6.20

Now adding the last factors of the first and last gives

3(y2 + 4y3) + 4y1 + y2 + 4y3) = 4(y1 + y2 + 4y3).

Omitting the factor y1 + y2 + 4y3 and combining the first and last give

4y2

y1 + y2

whose sum is y1 + 5y2 which is the last factor we needed to complete the induction and the proof.
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7.1 The weighted parking function setting for q-Teslers
The problem that still remains open is to discover what combinatorial structures are q, t-counted by

the polynomial in 1.16, namely

Pu1,u2,...,un(q, t) = (− 1
M )n

∑
A∈T (u1,u2,...,un)

wH(A) 7.1

where we replaced the a′is by the u′is to avoid notational conflicts. Theorem 6.1, and more specifically the

identity in 6.12, essentially gives a parking function setting for the polynomial Pa1,a2,...,an(1, 1). In this

section we make one step further towards the general open problem by working out the statistic that gives

a parking function setting for the polynomial Pu1,u2,...,un(q, 1).

Note first that setting t = 1 in 7.1 reduces it to the polynomial

Pu1,u2,...,un(q) =
∑

A∈Π(u1,u2,...,un)

wq(A) 7.2

with

wq(A) =
∏
ai,j>0

[ai,j ]q. 7.3

We will next define the “q,u-weight ” of a parking function PF which we will denote “wq,u[PF ]”. To this

end, let α = filling(PF ) and β = parking(PF ) and pf be the corresponding preference function. Now

recall that for a given 1 ≤ i ≤ n, αi gives the space that is occupied by car i. By definition tail[αi] gives the

possible places that car i may have prefered to park. Thus pf [i] must necessarily be an element of tail[αi].

More precisely, if tail[αi] = [αi− ki, . . . , αi− 1, αi] then pf [i] = αi− ri, for some 0 ≤ ri ≤ ki. This given, let

ex(α, ri) =
∑

ri+1≤j≤ki

uβαi−j 7.4

and keeping in mind that, given that filling(PF ) = α, the preference function pf as well as PF are

completely determined by the sequence (r1, r2, . . . , rn), we set

wq,u[PF ] =

n∏
i=1

qex(α,ri)
[
uβαi−ri

]
q
. 7.5

We are now in position to state and prove

Theorem 7.1
For every positive integral vector u = (u1, u2, . . . , un) we have∑

PF∈PFn

wq,u(PF ) = Pu1,u2,...,un(q). 7.6

Proof
Recall that a matrix A = ‖ai,j‖ni,j=1 ∈ UP is in Π(u1, u2, . . . , un) if and only if there one non-zero

element in its row and if the element in row k is ak,j then given that the non-zero elements in column k are

as1,k, as1,k, . . . , asr,k, 7.7
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we must have

ak,j = uk + as1,k + as1,k + · · ·+ asr,k. 7.8

We will obtain all these matrices by a construction that follows closely the proof of Theorem 6.1. More

precisely for a given α ∈ Sn we will let A(α) be a permutational matrix A = ‖ai,j‖ni.j=1 ∈ UP obtained

by placing, the non-zero element in row s, in column k if αk is the target of αs . But here, to satisfy the

requirement in 7.4, we must set

as,k =
∑

a∈tail(αs)

uβa 7.9

with β = α−1. The reason for this is that if the non-zero elements in column k are as1,k, as2,k, . . . , asr,k,

then the identity in 5.5 gives ∑
a∈tail(αk)

uβa = uk + as1,k + as2,k + · · · + asr,k

which is 7.4 since the sum on the left hand side is none other that the non-zero element we place in row k.

This identity gives that A(α) ∈ Π(u1, u2, . . . , un) for all ∈ Sn and since this construction is reversible

thus injective and the cardinalities are the same, it must also be surjective.

Note next that it follows from our definition in 7.4 that for a fixed 1 ≤ i ≤ n we have, for

tail[αi] = [αi − ki, . . . , αi − 1, αi]

ki∑
ri=0

qex(α,ri)
[
uβαi−ri ]q =

= [uβαi−ki ]q + q
uβαi−ki [uβαi−ki+1

]q + q
uβαi−ki

+uβαi−ki+1 [uβαi−ki+2
]q + · · ·+ q

uβαi−ki
+···+uβαi−1 [uβαi ]q

=
[∑

a∈tail[αi] uβa
]
q

=
[
ai,ji(α)

]
q
,

where the last equality follows from the definition in 7.9 provided that the non-zero element in row i of the

matrix A(α) is in column ji . Thus it follows from 7.5 that

∑
filling(PF )=α

wq,u[PF ] =

n∏
i=1

( ki∑
ri=0

qex(α,ri)
[
uβαi−ri ]q

)
= wq[A(α)] 7.10

and the equality in 7.6 is then obtained by summing over all α ∈ Sn. This completes our proof.
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The special case t = 1/q of the bigraded Hilbert series for diagonal harmonics is known to have a

nice formulation, which in the language of 6.1 can be expressed as

q(
n
2)P(1,1,...,1)(q, 1/q) = (1 + q + q2 + . . .+ qn)n−1.

Maple calculations indicate that this nice special case extends in the following elegant way.

Conjecture 7.1
Let (a1, a2, . . . , an) be an arbitrary sequence of positive integers, and set

F =

n∑
i=1

(n+ 1− i)ai − n.

Then

qFP(a1,a2,...,an)(q, 1/q) = [a1]qn+1

n∏
i=2

i−1∑
j=1

aj + (n+ 2− i)ai


q

.

8. The Dyck path associated to a Tesler matrix
In this section we show how to associate a Dyck path to a Tesler matrix in T [1, 1, 1, . . . 1], which

leads to “prime parking functions” and refinements of some of our results and conjectures on Tesler matrices.

Let us say that an n× n matrix A = ‖ai,j‖ni,j=1 factors at 1 ≤ k ≤ n− 1 if it is block diagonal with

an initial block of size k×k. More precisely, A factors at k if and only if ai,j = 0 when 1 ≤ i ≤ k& j > k and

when i > k& 1 ≤ j ≤ k; in that case, the two submatrices A1 = ‖ai,j‖ki,j=1 and A2 = ‖ai,j‖k<i,j≤n will be

referred to as “factors ” of A. It develops that a very simple factorization criterion follows in full generality

straight from the definition of Tesler matrices.

Proposition 8.1
For any Tesler matrix A = ‖ai,j‖ni,j=1 ∈ T [u1, u2, . . . , un] we have the equality

k∑
s=1

as,s +

k∑
i=1

n∑
j=k+1

ai,jχ(i < j) =

k∑
s=1

us (for all 1 ≤ k ≤ n ). 8.1

Thus we have the inequality
k∑
s=1

as,s ≤
k∑
s=1

us 8.2

with equality for k = n. Moreover, we see that A factors at k if and only if

k∑
s=1

as,s =

k∑
s=1

us. 8.3

Proof
Note that the hook sum equalities for a Tesler matrix may be written in the form

n∑
j=1

as,jχ(j ≥ s) −
n∑
i=1

ai,sχ(i < s) = us.
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Summing for 1 ≤ s ≤ k gives

k∑
s=1

as,s +

n∑
j=1

k∑
s=1

as,jχ(j > s) −
n∑
i=1

k∑
s=1

ai,sχ(i < s) =

k∑
s=1

us.

Replacing s by i in the first sum and s by j in the second sum gives

k∑
s=1

as,s +

k∑
i=1

n∑
j=1

ai,jχ(i < j) −
k∑
i=1

k∑
j=1

ai,jχ(i < j) =

k∑
s=1

us

and 8.1 follows by canceling equal terms. But now we can clearly see that 8.2 can hold if and only if

k∑
i=1

n∑
j=k+1

ai,jχ(i < j) = 0.

Thus the last assertion is a immediate consequence of the non-negativity of the entries of Tesler matrices.

The inequality in 8.2 allows us to associate to each matrix in T [1, 1, . . . , 1] a Dyck path by the

following construction. Given A = ‖ai,j‖ni,j=1 ∈ T [1, 1, . . . , 1], starting at (0, 0) of the n × n lattice square,

and for each diagonal element ai,i, we go successively NORTH one unit step and then EAST ai,i unit steps.

The inequality in 8.2 (when all ui = 1) assures that the resulting path remains weakly above the diagonal

(i, i). Moreover, since each time equality holds in 8.2, the factorization criterion applies, and there is a direct

connection between the Dyck path and the block diagonal structure of the corresponding matrix.

In particular it follows from this that the Tesler matrix does not factor at any k if and only if its

Dyck path never hits the diagonal. Computer calculations indicate that the weighted sum of these matrices

yields a polynomial with positive coefficients, whose evaluation at t = q = 1 appears to be enumerating

structures equi-numerous with the prime parking functions of Novelli-Thibon [14] . Further explorations

with the Tesler matrices in T [1, 1 . . . , 1] led to a variety of other conjectures relating the shape of the Dyck

paths to the combinatorial properties of the sum of their weights. To state these findings we need some

auxiliary facts and definitions.

To begin, given a preference function f = (f1, f2, . . . , fn), we will say that it factors at 1 ≤ k < n

if max{fi : 1 ≤ i ≤ k} = k and min{fi : k + 1 ≤ i ≤ n} = k + 1. If that happens we say f itself may be

expressed as a “product” by setting f = g⊕h with g = (f1, f2, . . . fk) and h = (fk+1−k, fk+2−k, . . . , fn−k).

Since both g and h are necessarily preference functions for one way streets with k and n−k spaces respectively,

we are led in this manner to a unique factorization of each preference function into a “product” of “prime”

preference functions. Denote by πn the number of prime preference functions f = (f1, f2, . . . , fn). Using the

unique factorization, together with the fact that (n + 1)n−1 gives the total number of preference functions

f = (f1, f2, . . . , fn), Novelli and Thibon derive that∑
n≥1

πnt
n = 1 − 1

1 +
∑
n≥1(n+ 1)n−1tn

= t+ 2 t2 + 11 t3 + 92 t4 + 1014 t5 + 13795 t6 + 223061 t7 +O
(
t8
)
.

8.4

Recall that we have defined the “diagonal composition” of a Dyck path D and have denoted it “p(D)” the

length of the intervals between successive diagonal hits. Note that for a Dyck path in the n×n lattice square

that returns to the diagonal only at the end we will set p(D) = (n).
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Conjecture 8.1
For each composition p |= n the sum

Qp(q, t) =
∑

A∈T [1,1,...,1]

wH(A)χ(p(Dyck(A)) = p) 8.5

evaluates to a polynomial with positive integer coefficients.

We now show that when q = t = 1, “prime” Tesler matrices have a nice generating function, which

can be understood by the properties of “filling” permuations. Let us say that a element αs of a permutation

α = (α1, α2, . . . , αn) is “salient ” if all the elements to its right are smaller. Let us say that α “factors ” at k, if

the elements α1, α2, · · · , αk are a permutation of n, n−1, . . . , n−k+1. Note that in this case we may express

α as a “juxtaposition product” β⊗ γ , of a permutation β ∈ Sk by a permutation γ ∈ Sn−k, by simply letting

β be the permutation obtained by subtracting n−k from α1, α2, · · · , αk and taking γ = (αk+1αk+2, . . . , αn).

Let us say that a permutation α ∈ Sn is “prime ” if and only if it does not factor at any 1 ≤ k ≤ n − 1.

Finally define the “weight ” of a permutation α ∈ Sn, denoted “w(α)”, to be the product of the sizes of all

the tails of its elements. In symbols

w(α) =

n∏
s=1

#tail(αs). 8.6

Note that this weight is multiplicative, that is we have

w(β ⊗ γ) = w(β)× w(γ). 8.7

This given, let us set

G(t) =
∑
n≥1

tn
∑
α∈Sn

w(α)χ(α prime). 8.8

Theorem 5.2 has the following immediate corollary.

Proposition 8.2

G(t) = 1 − 1

1 +
∑
n≥1(n+ 1)n−1tn

. 8.9

Proof
Setting q = 1 in 5.2 and summing over α ∈ Sn Theorem 5.1 gives∑

α∈Sn

w(α) = #PFn = (n+ 1)n−1.

Thus the weighted generating function of permutations is the formal power series

F (t) = 1 +
∑
n≥1

(n+ 1)n−1tn 8.10

since each permutation can be uniquely factorized as a product of prime permutations, the multiplicativity

of the weight function gives

F (t) = 1 +G(t) +G(t)2 +G(t)3 + · · · =
1

1−G(t)
8.11
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and 8.10 follows by solving for G(t).

Corollary 8.1 ∑
n≥1

N(n)(1, 1)tn = 1 − 1

1 +
∑
n≥1(n+ 1)n−1tn

. 8.12

The connection between parking functions and permutational Tesler matrices Π[1, 1, . . . , 1] offered

by Theorem 5.2 leads to the following result.

Proposition 8.3
The matrix A(α, y) = ‖ai,j(α)‖ni,j=1 ∈ Π[y1, y2, . . . , yn] corresponding to a permutation α ∈ Sn factors

at k if and only if α itself factors at k and that happens if and only if

a1,1(α) + α2(α) + · · ·+ ak,k(α) = y1 + y2 + · · ·+ yk. 8.13

Proof
We have seen that A(α) factors at k if and only if 8.13 holds true. Thus we need only show the first

statement.

Recall, setting β = α−1 (see 6.13), that we construct the matrix A(α, y) by placing in row s and

column j the linear form

as,j(α, y) =
∑

a∈tail(αs)

yβa 8.14

provided αj is the target of αs. Thus A(α, y) factors at k if and only if, for all 1 ≤ s ≤ k the target of αs

occurs to the left of αk+1. In particular αk must be its own target and therefore in this case the non zero

element in row k lies in the diagonal. More generally in any matrix A(α, y) the diagonal non zero elements

correspond to the self-targeting αs. In other words we have as,s 6= 0 if and only if αs is salient in α. Now

suppose that A(α, y) factors at k and that αs1 > as2 > · · · > αsr = αk are the salient elements of α in

{α1, α2, . . . , ak}. Of course we must have s1 < s2 < · · · < αsr . Let tail(αsi) = {asi , asi − 1, . . . , asi − ki}.
Since all the element of tail(αsi) are to the left of αsi and a fortiori to the left of αsi+1

we cannot have

αsi+1 ∈ tail(αsi). This gives αsi+1 ≤ asi − ki − 1. We claim that we must have equality here. Suppose if

possible that αsi+1 < asi − ki − 1. Then asi − ki − 1 cannot be to the left of αsi for otherwise it would be in

its tail. Nor it can be to the right of αsi+1
since it is greater than αsi+1

. Since asi − ki − 1 is not not one of

the salients of α in α1, α2, . . . , ak its target must be to its right. This target must be greater than αsi since

all the entries in the interval [αsi − ki, αsi ] are to the left of asi − ki − 1 but that contradicts the saliency

of αsi . This proves that αsi+1
= asi − ki − 1. Consequently the tails are disjoint contiguous intervals of

integers. Thus

tail(αs1) + tail(αs2) + · · ·+ tail(αsr ) = [αsr − kr, αs1 ] 8.15

and since the first salient element of a permutation of Sn is necessarily n it follows that

[αsr − kr, αs1 ] = [αsr − kr, n]. 8.16

Since all the elements to the right of αsr must be less that αsr and therefore also less than αsr − kr it

follows that α1, α2, . . . , αk is a permutation of the interval [αsr − kr, n]. This shows that α itself factors at
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k. Moreover, 8.14 gives

as1,s1 + as2,s2 + · · ·+ asr,sr =

k∑
i=1

yβαi =

k∑
i=1

yi.

Proving 8.13. Conversely, if 8.13 holds true, then assuming again that αs1 > as2 > · · · > αsr = αk are the

salient elements of α in {α1, α2, . . . , ak}, we must have

as1,s1 + as2,s2 + · · ·+ asr,sr =

k∑
i=1

yi

and 8.16 gives that

tail(αs1) + tail(αs2) + · · ·+ tail(αsr ) = {α1, α2, · · · , αk}.

A reverse of the previous argument gives that α factors at k. The reader should have no difficulty filling in

the omitted details.

As an immediate corollary of Proposition 8.3 we have

Theorem 8.1

Call the matrices A ∈ Π[1, 1, . . . , 1] (n ones) that do not factor “prime”. Then if we set wΠ[A] =∏
ai,j>0 ai,j we have ∑

A∈Π[1,1,...,1]

wΠ[A]χ(A prime) =
∑
α∈Sn

w(α)χ(α prime).

In particular, Proposition 8.2 and 8.4 show that the resulting integer counts the number of parking functions in

PFn that are prime in the sense of Novelli-Thibon.
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