
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Canadian Research Knowledge Network]
On: 7 July 2009
Access details: Access Details: [subscription number 783016891]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Linear and Multilinear Algebra
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713644116

Kazhdan-Lusztig immanants and products of matrix minors, II
Brendon Rhoades a; Mark Skandera b

a Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA b Department of
Mathematics, Lehigh University, Bethlehem, PA 18015, USA

First Published on: 20 January 2009

To cite this Article Rhoades, Brendon and Skandera, Mark(2009)'Kazhdan-Lusztig immanants and products of matrix minors, II',Linear
and Multilinear Algebra,99999:1,

To link to this Article: DOI: 10.1080/03081080701646638

URL: http://dx.doi.org/10.1080/03081080701646638

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713644116
http://dx.doi.org/10.1080/03081080701646638
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Linear and Multilinear Algebra
2009, 1–14, iFirst

Kazhdan–Lusztig immanants and products

of matrix minors, II

Brendon Rhoadesa* and Mark Skanderab

aDepartment of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
bDepartment of Mathematics, Lehigh University, Bethlehem, PA 18015, USA

Communicated by F. Zhang

(Received 29 November 2006; final version received 18 August 2007)

We show that for each permutation w containing no decreasing subsequence of
length k, the Kazhdan–Lusztig immanant Immw(x) vanishes on all matrices
having k equal rows or columns. Also, we define two filtrations of the vector
space of immanants via products of matrix minors and pattern avoidance and use
the above result to show that these filtrations are equivalent. Finally, we construct
new and simple inequalities satisfied by the minors of totally
nonnegative matrices.
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1. Introduction and preliminaries

The Kazhdan–Lusztig basis fC 0wðqÞ w 2 Sngj of the Hecke algebra Hn(q), originally
introduced in [14], has seen several applications in combinatorics and positivity. In [21],
the authors define the Kazhdan–Lusztig immanants via the Kazhdan–Lusztig basis and
obtain various positivity results concerning linear combinations of products of matrix
minors. These results illuminate inequalities [10, Theorem 4.6] satisfied by the minors
of certain matrices [2,20,23]. In addition, [21, Theorem 9] implies inequalities [15, Theorem
10] satisfied by certain symmetric functions. The inequalities in turn are used in [15] to
revolve several conjectures in Schur positivity. In this article, we further develop algebraic
properties of the Kazhdan–Lusztig immanants and apply these immanants to obtain
additional positivity results.

Fix n 2 N and let x¼ (xij)1�i,j�n be a matrix of n2 variables. For a pair of subsets
I, J � ½n� ¼deff1, . . . , ng with jIj ¼ jJj, define the (I, J)-minor of x, denoted �I,J(x), to be the
determinant of the submatrix of x indexed by rows in I and columns in J. We adopt the
convention that the empty minor �;, ;ðxÞ is equal to 1. An n � n matrix A is said to be
totally nonnegative (TNN) if every minor of A is a nonnegative real number. A polynomial
p(x) in n2 variables is called totally nonnegative if whenever A¼ (ai,j)1�i,j�n is a totally
nonnegative matrix, pðAÞ ¼def pða1,1, . . . , an,nÞ is a nonnegative real number. When taken
together, results in [3,4,13,16,17,29] give a graph theoretic characterization of totally
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nonnegative matrices which is used in [20] to construct several examples of totally

nonnegative polynomials.
Let H denote the infinite array (hj�i)i,j� 1, where hi denotes the complete homogeneous

symmetric function of degree i [25]. Here we use the convention that hi¼ 0 whenever i5 0.

A polynomial p(x) in n2 variables is called Schur nonnegative (SNN) if whenever K is an

n� n submatrix of H, the symmetric function p(K) is a nonnegative linear combination of

Schur functions. By the Jacobi identity, the determinant is a trivial example of an SNN

polynomial.
Let Sn denote the symmetric group on n letters. For i 2 ½n� 1�, let si denote the

adjacent transposition in Sn which is written (i, iþ 1) in cycle notation. For a fixed w 2 Sn,

call an expression si1 , . . . , si‘ representing w reduced if ‘ is minimal. In this case, define the

length of w, denoted ‘(w), to be ‘. Let wo denote the long element of Sn which has one line

notation n(n� 1), . . . , 1. Define (strong) Bruhat order to be the partial order � on Sn given

by u� v if and only if every reduced expression for v contains a subsequence (not

necessarily contiguous) which is equal to u. Bruhat order on Sn has the identity

permutation e as a unique minimal element, wo as a unique maximal element, and is a

graded poset with rank function given by the length defined above.
For q a formal indeterminate, define the Hecke algebra Hn(q) to be the C½q1=2, q�1=2� -

algebra with generators Ts1 , . . . ,Tsn�1 subject to the relations

T2
si
¼ ðq� 1ÞTsi þ q, for i ¼ 1, . . . , n� 1,

TsiTsjTsi ¼ TsjTsiTsj , if i� j
�� �� ¼ 1,

TsiTsj ¼ TsjTsi , if i� j
�� �� � 2:

For w 2 Sn, define the Hecke algebra element Tw by

Tw ¼ Tsi1
, . . . ,Tsi‘

,

where si1 , . . . , si‘ is any reduced expression for w. The algebra elements Tw, where w ranges

over Sn, form a basis for Hn(q). Specializing at q¼ 1, the map Tsi � si induces an

isomorphism between Hn(1) and the symmetric group algebra C½Sn�.
For any i 2 ½n� 1�, it is easy to see that the element Tsi is invertible in Hn(q) and that

T�1si
¼ ð1=qÞðTsi � qþ 1Þ. Therefore, any basis element Tw is also invertible inHn(q) and we

can define an involution D of Hn(q) by D(q1/2)¼ q�1/2 and DðTwÞ ¼ T�1w�1 . Under the q¼ 1

specialization which identifies Hnð1Þ with C½Sn�, the involution D reduces to the identity

map.
The Kazhdan–Lusztig polynomials Pu,v(q) introduced in [14] can be defined in terms of

bases of Hn(q) which are fixed pointwise by the involution D. More specifically, we have

the following result.

LEMMA 1 There exists a unique family of polynomials {Pu,v(q)} in Z½q� indexed by ordered

pairs of permutations ðu, vÞ 2 S2
n satisfying the following conditions.

(1) Pu,v(q)¼ 0 unless u� v in Bruhat order.
(2) The degree of Pu,v(q) is at most equal to ð‘ðvÞ � ‘ðuÞ � 1Þ=2.
(3) Pu,u(q)¼ 1 for any u 2 Sn.
(4) For any v 2 Sn, the element C 0vðqÞ of Hn(q) defined by

C 0vðqÞ ¼ q�‘ðvÞ=2 � Pleasecheckbreak
P

u�v Pu,vðqÞTu is fixed by D.
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The algebra elements

C 0vðqÞ ¼
X
u�v

Pu, vðqÞq
�‘ðvÞ=2Tu, ð1Þ

which appear in the above lemma form a basis ofHn(q) called theKazhdan–Lusztig basis. In

our present case (type A), we also have that the polynomials Pu,v(q) have nonnegative

coefficients. With property 2 of the above Lemma in mind, we define a function

� : Sn � Sn! C by �ðw, vÞ ¼ ½q
1
2ð‘ðvÞ�‘ðwÞ�1Þ�Pw,vðqÞ. That is, m(w, v) is the coefficient of the

maximum possible power of q inPw,v(q). Notice that m(w, v)¼ 0 whenever ‘(w)� ‘(v) is even.
Recall that a preorder � on a set X is a binary relation on X which is transitive and

reflexive, but need not be antisymmetric. That is, there may be distinct elements x and y in

X satisfying x� y� x. Given X and �, we have an equivalence relation defined on X via

x� y if and only if x� y� x. Now � induces a partial order �o on the set X/� of

equivalence classes given by [x] �o [y] if any, only if for any, elements x0 2 ½x� and y0 2 ½y�

we have that x0 � y0.
Specializing again to q¼ 1, the elements fC 0vð1Þ v 2 Sngj form a basis for the symmetric

group algebra C½Sn�, which is also called the Kazhdan–Lusztig basis. In [14] this basis is

used to define a preorder �LR on Sn whose definition we recall here. First define a binary

relation �0LR on Sn by u �0LR v if and only if there exists an i 2 ½n� 1� such that C 0vð1Þ

appears with nonzero coefficient in the expansion of either siC
0
uð1Þ or Un,kðxÞ in the

Kazhdan–Lusztig basis of C½Sn�. Let �LR be the transitive closure of the relation �0LR.

That is, u�LR v if and only if we have a chain u ¼ w1 �
0
LR . . . �0LR wk ¼ v. The preorder

�LR is called the two-sided Kazhdan–Lusztig preorder and it, along with its one-sided

analogs, are of great interest in the representation theory of Sn. The equivalence classes on

Sn induced by the preorder �LR are called two-sided Kazhdan–Lusztig cells.
A polynomial p(x) in n2 variables is called an immanant if it belongs to the C�linear

span of fx1,wð1Þ � � � xn,wðnÞ w 2 Sngj . Denote the vector space of immanants by InðxÞ.

Following [21], for w 2 Sn, define the v-Kazhdan–Lusztig immanant by

ImmvðxÞ ¼
def

X
w2Sn

ð�1Þ‘ðwÞ�‘ðvÞPw0w,w0vð1Þx1,wð1Þ � � �xn,wðnÞ: ð2Þ

In the special case that v is the identity element e of Sn, we have that Imme(x)¼ det(x).
Following [26], define the more general f-immanant for any function f : Sn! C by

ImmfðxÞ ¼
X
w2Sn

fðwÞx1,wð1Þ � � � xn,wðnÞ:

Typical choices for f include an irreducible character of, or more generally any class

function on, the symmetric group Sn.
There exists a certain duality between the Kazhdan–Lusztig basis and the

Kazhdan–Lusztig immanants. To state this precisely, for any permutation v 2 Sn, let

fv : Sn! C be the function which defines the v-Kazhdan–Lusztig immanant. That is,

fv(w)¼ (�1)‘(w)�‘(v)Pw0w,w0v
(1). We extend fv to a function C½Sn� ! C by linearity.

With this definition, we have that

fvðC
0
wð1ÞÞ ¼ �v,w, ð3Þ

where C 0wð1Þ is the Kazhdan–Lusztig basis element corresponding to w [21].
It follows from Lemma 1 and the fact that the Kazhdan–Lusztig polynomials

have nonnegative coefficients in type A that the expression (�1)‘(w)�‘(v)Pw0w,w0v
(1) is
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nonzero if and only if v�w in the Bruhat order and that Pw0w,w0w
(1)¼ 1. Thus,

the transition matrix between the set fImmwðxÞ w 2 Sngj and the natural basis of immanants
fx1,wð1Þ � � � xn,wðnÞ w 2 Sngj is upper triangular with 1’s on the diagonal and the Kazhdan–

Lusztig immanants form a basis for the vector space of immanants. The Kazhdan–Lusztig
immanants are both TNN and SNN and various examples of TNN and SNN polynomials

can be constructed by studying the cone generated by the Kazhdan–Lusztig immanants

[21]. Moreover, when w is 321-avoiding, the Kazhdan–Lusztig immanant Immw(x) satisfies
a natural generalization of Lindström’s Lemma [20].

2. Filtration equality

To begin, we define two filtrations of the vector space T nðxÞ. The first of these is defined

using complementary products of matrix minors in the spirit of Désarménien et al. [6] and

the second is defined via Kazhdan–Lusztig immanants.
Given a tableau T, write sh(T ) for the shape of the partition corresponding

to T. Define the size of T to be the integer of which sh(T ) is a partition. T is injective if

the numbers 1, 2, . . . , n each appear exactly once in T, where T has size n. T is called
semistandard if the numbers in T weakly increase across rows and strictly increase down

columns, and T is called standard if it is both injective and semistandard.
Following Désarménien et al. we define a bitableau (U:T ) to be an ordered pair

of tableaux (U,T ) such that U and T have the same shape. A bitableau is called injective,

semistandard, or standard if both of its entries have the corresponding property. Define

the shape of a bitableau (U:T ), written sh(U:T ), to be either sh(U) or sh(T ). Define the
size of (U:T ) similarly.

Given any bitableau (U:T ) of size n such that the entries of U and T are drawn from

the set [n], we may define an element of the polynomial ring C½x11, . . . , xnn� as follows.
Suppose that the columns of U and T, viewed as subsets of [n] are I1, . . . , Ik and J1, . . . , Jk,

respectively. Then, the product of minors

�I1,J1ðxÞ . . . �Ik,JkðxÞ

is an element of C½x11, . . . ,xnn�. We denote this polynomial by (U:T )(x), and think of it as
the bitableau (U:T ) evaluated on the set of variables x. We may also refer to the

polynomial (U:T )(x) as a bitableau. While it is not in general true that an arbitrary

bitableau (U:T )(x) with entries drawn from [n] is an immanant on the variable set x, it is
easy to see that (U:T )(x) is contained in I nðxÞ if and only if (U:T ) is injective. In this case,

the above minor product is a complementary product of minors, i.e., we have that
I1 ] � � � ] Ik ¼ J1 ] � � � ] Jk ¼ ½n�.

Désarménien et al. [6, Theorem p. 68] showed that semistandard bitableaux

form a basis of C½x11, . . . , xnn�. Restricting to standard bitableaux and the subspace
InðxÞ, this naturally leads to our first filtration of InðxÞ. Given k 2 N, define Un,kðxÞ to be

the C -linear span of all injective bitableau (U:T )(x), where j(U : T)j ¼ n and the first part

of sh(U:T ) is� k. That is, Un,kðxÞ is the span of all complementary products of k (or fewer)
minors. By our definition of the empty minor �;, ;ðxÞ, it is clear that

Un,1ðxÞ � Un,2ðxÞ � � � � � Un,nðxÞ ¼ InðxÞ: ð4Þ

Thus, the sequence of spaces in (4) is a filtration of I nðxÞ, which we shall call the
U-filtration.

4 B. Rhoades and M. Skandera
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In [20], Kazhdan–Lusztig immanants are used to show that the dimension of Un,2ðxÞ is

equal to the nth Catalan number Cn. In this article, we shall relate the dimension of Un,kðxÞ

for arbitrary k to pattern avoidance in Sn.
For k 2 N, let Sn,k denote the set of permutations in Sn which do not have a decreasing

subsequence of length kþ 1. For example, in one-line notation, S3,2¼ {123, 213,132, 312,

231}. Notice that Sn,k¼Sn for all k� n. Define Vn,kðxÞ to be the linear span of all

Kazhdan–Lusztig immanants Immw(x) corresponding to permutations w 2 Sn,k. The

obvious chain of inclusions Sn,1 � Sn,2 � � � � � Sn,n gives rise to another filtration of I nðxÞ

given by Vn,1ðxÞ � Vn,2ðxÞ � � � � � Vn,nðxÞ � I nðxÞ. Call this filtration the V filtration.
Recall that the Robinson–Schensted correspondence gives an algorithmic bijection

between Sn and the set of ordered pairs of standard Young tableaux with n boxes having

the same shape. The details of this algorithm can be found, for example, in [22]. In this

paper we will be using column insertion only, so that the long element w0 2 Sn will

correspond to (12� � � n, 12� � � n). In order to prove the equality of the U and V filtrations, let

us first examine the image of Sn,k under the Robinson–Schensted correspondence. Let s[1,k]
be the longest element in the subgroup of Sn generated by s1, . . . , sk�1.

LEMMA 2 Suppose v =2Sn,k�1. Then we have v�LR s[1,k].

Proof Given any permutation w, define the pair of tableaux (P0(w), Q0(w)) to be the image

of w under the Robinson–Schensted column insertion correspondence. Let �0(w) be the

shape of these tableaux.
A well-known property of the Robinson–Schensted correspondence implies that

�0(v)� �0(s[1,k]) in the dominance order. This dominance relation in turn is known to be

equivalent, to the partial order on Kazhdan–Lusztig cells induced by the preorder �LR.

Thus in the preorder �LR, every permutation in the cell of v precedes every permutation in

the cell of s[1,k]. (See [1], [9, Section 1], [12, Appendix].) g

Our first main result is a generalization of the fact that the determinant vanishes on

matrices having two equal rows. This also generalizes [20, Prop. 3.14], which together with

[21] implies that Proposition 1 holds when k¼ 2.

PROPOSITION 1 Suppose A 2MatnðCÞ has k equal rows and let v 2 Sn,k�1.Then, Immv(A)¼ 0.

Proof As in [27], define the element [A] of C½Sn� by

½A� ¼
X
w2Sn

a1,wð1Þ � � � an,wðnÞw:

Let i1 < � � � < ik be the indices of k rows in A which are equal and let U be the

subgroup of Sn which fixes all indices not contained in the set {i1, . . . , ik}. ThenX
u2U

u

factors as wz[1,k]w
0 for some elements w, w0 of Sn. Since every element w 2 Sn factors as

w¼ uv for some u 2 U and v in an appropriate set of coset representatives, it follows that

[A] factors as

½A� ¼
X
u2U

u

 !
gðAÞ

¼ ðwz½1,k�w
0ÞgðAÞ

for some group algebra element g(A).
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Let I be the linear span of fC 0uð1Þju �LR s½1,k�g in C½Sn�. It follows from properties of the

preorder �LR that I is in fact a two-sided ideal in C½Sn� and the set fC 0uð1Þju �LR s½1,k�g is a

basis for this ideal. Let � :C½Sn� ! C½Sn�=I be the canonical homomorphism. Since

z½1,k� ¼ C 0s½1, k�ð1Þ belongs to I, we have �([A])¼ 0.
On the other hand, by the duality of Kazhdan–Lusztig immanants and the

Kazhdan–Lusztig basis [21, Eq. 4] we have that

�ð½A�Þ ¼ �
X
w2Sn

ImmwðAÞC
0
wð1Þ

 !

¼
X
w2Sn

ImmwðAÞ�ðC
0
wð1ÞÞ:

Since �ðC 0wð1ÞÞ ¼ 0 for all permutations w�LR s[1,k], we have

0 ¼
X
w

ImmwðAÞ�ðC
0
wð1ÞÞ,

where the sum is over all permutations w 6�LR s½1,k�, i.e., those permutations having no

decreasing subsequence of length k. Since the elements �ðC 0wð1ÞÞ in this sum are linearly

independent, we must have Immw(A)¼ 0 for each permutation w having no decreasing

subsequence of length k. g

It should be noted that the obvious basis-free analog of the previous proposition fails

in general. That is, if a complex n� n complex matrix A has a set of m rows with rank �m–

k and w 2 Sn,k, it is not necessarily the case that Immw(A)¼ 0. This is because, unlike the

determinant, Kazhdan–Lusztig immanants corresponding to permutations other than 1

are not in general independent of basis, as can be readily checked.
On the other hand, by [21] we have that Immw�1ðAÞ ¼ ImmwðA

TÞ for any permutation

w and matrix A. Here AT denotes the transpose of the matrix A. Since Sn,k is closed under

taking inverses of permutations, it follows that the previous proposition remains true when

the word ‘rows’ is replaced by the word ‘columns’.
Using Proposition 1 we now seek to establish a relation between the U filtration and

the V filtration.

PROPOSITION 2 Suppose (U:T )(x) is a generator of Un,kðxÞ. Then, there exist numbers

dw 2 C such that ðU :T ÞðxÞ ¼
P

w2Sn,k
dwImmwðxÞ.

Proof Let I1, . . . , Ik and J1, . . . , Jk be the column sets of U and T, respectively.
The Kazhdan–Lusztig immanants form a basis for the vector space of immanants, so

we may write

�I1,J1ðxÞ � � ��Ik,JkðxÞ ¼
X
w2Sn

dwImmwðxÞ, ð5Þ

for some numbers dw 2 C. We show that dw¼ 0 whenever w =2Sn,k.
Suppose that in Equation (5) we have dw 6¼ 0 for some permutation w =2Sn,k. Let m

be the greatest index for which such a permutation belongs to Sn,m, and among

such elements of Sn,m\Sn,m�1, let y be a Bruhat minimal element. Then, we may rewrite

Equation (5) as

�I1,J1 ðxÞ . . . �Ik,JkðxÞ ¼
X

w2Sn,m�1

dwImmwðxÞ þ
X
w2Sn

w 6�y

dwImmwðxÞ þ dyImmyðxÞ: ð6Þ
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By the definition of Sn,m we may choose indices i1 5 � � � 5 im such that

yði1Þ4 � � � 4PleasecheckbreakyðimÞ. Let D 2MatnðCÞ be the matrix obtained by replacing

all entries in the rows i1, . . . , im of the permutation matrix of y with ones. Since D has

m� kþ 1 equal rows, the pigeonhole principle implies that some pair of these rows have

indices contained in one of the sets I1, . . . , Ik. Hence, �I1,J1 ðDÞ � � ��Ik,JkðDÞ ¼ 0
By Proposition 1, we have Immw(D)¼ 0 for every w 2 Sn,m, and by Equation (2), we have

Immw(D)¼ 0 for every w 6� y in the Bruhat order. Furthermore, it is easy to see that

Immy(D)¼ 1. Thus, applying both sides of Equation (6) toD, we obtain 0¼ dy, a contradiction.

We conclude that dw¼ 0 for all w 2 Sn,mnSn,m�1 whenever m4 k, as desired. g

Properties of the dual canonical basis of OðSLnðCÞÞ imply that the coefficients dw in

Proposition 2 are in fact nonnegative integers. In the special case k¼ 2, results in [20,21]

give a combinatorial proof of this nonnegativity. For k arbitrary and in the special case

that w avoids the patterns 3412 and 4231 (i.e., when the Schubert variety �w corresponding

to w is smooth), results in [24] give another proof.
The equality of the U and V filtrations now follows rather easily from Proposition 2.

THEOREM 1 The U and V filtrations of I nðxÞ are equal. That is, Un,kðxÞ ¼ Vn,kðxÞ for all n

and k.

Proof Proposition 2 implies that Un,kðxÞ � Vn,kðxÞ and the linear independence of the

Kazhdan–Lusztig immanants implies that dim Vn,kðxÞ ¼ Sn,k

�� ��. Recall that the RSK

correspondence implies that jSn,kj is also equal to the number of pairs (U,T ) of tableaux of

shape � with � ‘ n and �1� k, and that the corresponding bitableaux span Un,kðxÞ. Thus

we have the desired equality. g

With this result in hand, we henceforth denote either of the spaces Un,kðxÞ orVn,kðxÞ by

In,kðxÞ. It may be interesting to note that the irreducible character immanants, usually

denoted Imm�(x) in the literature [27], fit very nicely into our filtration. Using [19, p. 238],

one sees that Imm�(x) belongs to the set difference I n,�1 ðxÞnIn,�1�1ðxÞ.
The numbers jSn,kj were studied by Gessel [11] who found an expression

involving Bessel functions for the generating function
P

n�1 jSn,kjt
n. The authors do not

know of a simple form of the polynomial
Pn

k¼1 jSn,kjt
k. Désarménien [5] has given

combinatorial interpretations for the transition matrix relating the basis of

standard bitableaux to the natural basis fx1,vð1Þ � � � xn,vðnÞ v 2 Snj g. (See Stokke [28] for a

quantum version of this result.) It would also be interesting to investigate the transition

matrix between the bases of standard bitableaux and Kazhdan–Lusztig immanants.
Combining Theorem 1 with the characterization of the dual canonical basis in [24], we

may easily extend our results to obtain information about the full polynomial ring

C½x11, . . . , xnn�. Specifically, given any m 2 N, define an m�m generalized submatrix of the

n� n matrix x to be any matrix of the form

ðxaðiÞ, bðjÞÞ1�i, j�m,

where 1 � að1Þ � � � � � aðmÞ � n and 1 � bð1Þ � � � � � bðmÞ � n. Define the set �n,m,k(x) by

�n,m, kðxÞ ¼ fImmwðyÞ m 2 N,w 2 Sm, kg,
�� where y ranges over all m � m generalized

submatrices of x. It has been shown in [9] and [24] that the nonzero elements of the union

Um,k�0�n,m,kðxÞ (modulo det(x) – 1) are precisely the dual canonical basis elements of the

coordinate ring OðSLnðCÞÞ. In analogy with our definition of Vn,kðxÞ, define

V0n,m, kðxÞ ¼ spanCð�n,m, kðxÞÞ In analogy with the U filtration, define U0n,m,kðxÞ to be the
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span of all semistandard bitableau (U :T )(x) of size m and such that U and T have entries

in [n]. By specializing Theorem 1 to the case where some rows and columns of x are equal,

we get the following.

COROLLARY 1 For all positive integers n, m, k we have that U0n,m,kðxÞ ¼ V
0
n,m,kðxÞ.

3. Products of immanants

Recalling that the determinant is the Kazhdan–Lusztig immanant corresponding to the

identity permutation, we see that the problem of expanding bitableaux on x in the basis of

Kazhdan–Lusztig immanants fImmwðxÞ w 2 Sngj is a problem of multiplying together

certain Kazhdan–Lusztig immanants of submatrices of x and expanding the result in the

Kazhdan–Lusztig immanants basis. In this section we consider the more general situation
of analysing these expansions where the immanants in the product do not all necessarily

correspond to the permutation 1.
Given an n� n matrix x¼ (xi,j) and subsets I, J of [n], define the I, J submatrix of x

to be

xI,J ¼
def
ðxi, jÞi2I, j2J:

Assuming that jIj ¼ jJj and defining �I ¼ ½n�nI, �J ¼ ½n�nJ, one sees immediately that

any product of immanants of xI,J and x �I, �J is an immanant of x. Moreover, one may

use properties of the dual canonical basis of to show that a product of Kazhdan–Lusztig

immanants of such submatrices expands with nonnegative coefficients in the
Kazhdan–Lusztig immanant basis of InðxÞ. Combinatorial interpretations of these

coefficients have been given in [20,21] when the two immanants are minors.

These results (or alternately Theorem 1) show that a product of two complementary

minors belongs to In,2ðxÞ. More generally, we have the following result which states that in

the expansion of a product ImmuðxI,JÞImmvðx �I, �JÞ in terms of the Kazhdan–Lusztig

immanant basis of InðxÞ, the immanants appearing with nonzero coefficient are indexed by
permutations whose longest decreasing subsequences are bounded in terms of u and v.

COROLLARY 2 Given index sets I, J with jIj ¼ jJj ¼ k and permutations u 2 Sk,a, v 2 Sn�k,b,

then the product ImmuðxI,JÞImmvðx �I, �JÞ belongs to In,aþbðxÞ.

Proof Since Immu(xI,J) belongs to Ik,aðxI, JÞ, it is equal to a linear combination

of products of at most a minors of xI,J. Similarly, Immv is equal to a linear combination of

at most b minors of x �I, �J. By definition, the product of these linear combinations belongs to
In,aþbðxÞ. g

Note that a direct proof of Corollary 2 in terms of the V filtration would have involved

the identification of various sums of products of Kazhdan–Lusztig polynomials, while
Corollary 1 enables us to give a very simple proof in terms of the U filtration.

No simple formula is known for the expansion of a general product of the form

ImmuðxI,JÞImmvðx �I, �JÞ in terms of the Kazhdan–Lusztig immanant basis of I nðxÞ. However,

the following result gives such an expansion in the special case that the submatrices xI,J
and x �I, �J are related antidiagonally within x. That is,

I ¼ ½k� J ¼ fn� kþ 1, . . . , ng

�I ¼ fkþ 1, . . . , ng �J ¼ ½n� k�:
ð7Þ

8 B. Rhoades and M. Skandera

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
2
:
0
6
 
7
 
J
u
l
y
 
2
0
0
9



THEOREM 2 The Kazhdan–Lusztig immanant Immw(x) factors as a product of Kazhdan–

Lusztig immanants of submatrices of x if and only if there exists an index k5 n such that

fwðkþ 1Þ, . . . ,wðnÞg � ½k�. In this case we have

ImmwðxÞ ¼ ImmuðxI,JÞImmvðx �I, �JÞ,

where I, �I, J, �J are defined by (7) and u 2 Sk, v 2 Sn�k are defined in terms of the longest

elements w0, w
0
0, w

00
0 of Sn, Sk, Sn� k by ww0 ¼ uw00 	 vw000.

Proof To economize notation, we shall write �w,w0 ¼ ð�1Þ
‘ðw0Þ�‘ðwÞ and

Qw,w0 ¼ PleasecheckbreakPw0w,w0w0 ¼ Pww0,w0w0
, for permutations w,w0 2 Sm and the corre-

sponding longest element w0 2 Sm. Suppose that there exist u 2 Sk, v 2 Sn�k satisfying

ww0 ¼ Pleasecheckbreakuw00 	 vw000. Then we have

ImmwðxÞ ¼
X

t�ðuw0
0
	vw00

0
Þw0

�w,tQw,tð1Þx1, tð1Þ � � � xn,tðnÞ: ð8Þ

Note that t satisfies t � ðuw00 	 vw000Þw0 if and only if we have t ¼ ðyw00 	 zw000Þw0 for y� u

and z� v. In this case, the one-line notation for t is

ðn� kþ yð1ÞÞ � � � ðn� kþ yðkÞÞ � zð1Þ � � � zðn� kÞ

and we have

�w,t ¼ �u, y�v,z,

Qw,tð1Þ ¼ Qðuw0
0
	vw00

0
Þw0, ðyw

0
0
	zw00

0
Þw0
ð1Þ

¼ Pðyw0
0
	zw00

0
Þ, ðuw0

0
	vw00

0
Þð1Þ

¼ Pðyw0
0
, uw0

0
ð1ÞPzw00

0
, vw00

0
ð1Þ

¼ Qu, yð1ÞQv,zð1Þ:

Thus, equation (8) becomes

ImmwðxÞ ¼
X
y�u
z�v

�u, y�v,zQu, yð1ÞQv,zð1Þx1,n�kþyð1Þ � � � xk,n�kþyðnÞxkþ1, zð1Þ � � � xn,zðn�kÞ

¼ ImmuðxI,JÞImmvðx �I, �JÞ,

where, I, �I, J, and �J are as in (7).
Now suppose that Immw(x) factors as a product of Kazhdan–Lusztig immanants

of submatrices of x

ImmwðxÞ ¼ ImmuðxI,JÞImmvðx �I, �JÞ ð9Þ

in at least one way, but that for no such factorization do the permutations u, v

satisfy the required identity. It follows that the sets I, �I, J, �J do not satisfy (7).

Assume that we have named the index sets in all factorizations (9) so that we have 12 I.
Choose a particular factorization and let m be the smallest element of �I. Suppose

that there exists an index i 2 I such that I4m and w(i) 4 w(m). Transposing the letters in
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the i-th and m-th positions of w, we obtain a permutation greater than w in the Bruhat

order. Thus the corresponding monomial

x1,wð1Þ � � � xi,wðmÞ � � � xm,wðiÞ � � � xn,wðnÞ

appears with nonzero coefficient in Immw(x). Observe however that this monomial does

not appear in the product ImmuðxI,JÞImmvðx �I, �JÞ because the variables xi,w(m) and xm,w(i)

appear in neither of the submatrices xI,J, x �I, �J. Thus the product of immanants is not equal

to Immw(x), and we deduce that m¼ kþ 1 and that I¼ [m� 1].
Now we claim that the sets I, J, �I, and �J satisfy the equations J ¼ fnþ 1� i i 2 Ij g and

�J ¼ fnþ 1� i0 i0 2 �Ig
�� . If this is not the case, then the monomial x1,n . . . x1,n corresponding

to w0 appears with coefficient zero on the right-hand side of (9), and with coefficient 
1 on

the left-hand side, a contradiction. From this claim it follows immediately that the sets I, �I,

J, �J satisfy (7) and that the permutations u, v satisfy ww0 ¼ ðuw
0
0 	 vw000Þ. g

We conclude that the existence of any factorization of the form (9) implies the existence

of one which satisfies the conditions of the theorem.
To illustrate the theorem with an example, let us factor Imm365421(x). Writing

ð365421Þw0 ¼ 412365 ¼ 4123	 21 ¼ ð1432Þw00 	 ð12Þw
00
0,

where w00 and w000 are the longest elements in S4 and S2, respectively, we have that

Imm365412(x)¼ Imm1432(x1234,3456)Imm12(x56,12).
In the event that xI,J and x �I, �J are not antidiagonally related within x, the expansion of

ImmuðxI,JÞImmvðx �I, �JÞ in the Kazhdan–Lusztig immanant basis of InðxÞ is in general more

delicate. It is easy to see that this expansion has the form

ImmuðxI,JÞImmvðx �I, �JÞ ¼
X
y�w

dyImmyðxÞ

where w is permutation whose matrix P has submatrices PI,J and P �I, �J equal to the

permutation matrices of u and v. The problem of determining the coefficients dy can in

principle be solved using [21, Prop. 6.3]. Specifically, for each i 2 ½n� 1� let Pi be the

permutation matrix of the adjacent transposition si. For w 2 Sn, the above result states

that

ImmwðPxÞ ¼
�ImmwðxÞ if sw4w,

ImmwðxÞ þ ImmswðxÞ þ
P

sz4 z �ðw, zÞImmzðxÞ if sw4w

(

ImmwðxPÞ ¼
�ImmwðxÞ if ws4w,

ImmwðxÞ þ ImmwsðxÞ þ
P

zs4 z �ðw, zÞImmzðxÞ if ws4w:

(

It is clear that some pair of sequences Pi1 , � � � ,Pik ,Pj1 , � � �Pj‘ of the above form have the

property that the submatrices corresponding to xI,J and x �I, �J in Pi1 , � � � ,PikxPj1 , � � � ,Pj‘ are

in block antidiagonal position. Therefore, the above equation may be used to inductively

determine the expansion of Immu(y)Immv(z) in the basis of Kazhdan–Lusztig immanants

of x itself. The efficiency of this method is bounded by our ability to compute the �
function.

The above equation also has application to the 0, 1-conjecture. It had been suspected

that the �(w, z) was equal to either 0 or 1 for any permutations w, z 2 Sn. This conjecture

10 B. Rhoades and M. Skandera
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was disproven by McLarnan and Warrington [18], but the above equation implies that this

conjecture is true in some cases.

PROPOSITION 3 Let w and z be permutations in Sn and suppose that w is contained in Sn,2.

Suppose also that there exists a simple transposition si such that either siw5w and siz4 z or

wsi5w and zsi4 z. Then, �(w, z) is equal to either 0 or 1.

Proof Combine Proposition 3.12 of [20], the equivalence of the Kazhdan–Lusztig

immanants corresponding to permutations in Sn,2 and Temperley–Lieb immanants proven

in [21], and the linear independence of the Kazhdan–Luszing immanants.

4. Total nonnegativity and Schur nonnegativity

The problem of deciding the total nonnegativity or Schur nonnegativity of an immanant is

not easy. In particular, there is no known algorithm to do this, unless we restrict our

attention to I n,2 [20, Theorem 4.5]. Nevertheless, it is possible to state some simple

sufficient conditions which apply to immanants which are differences of products of

minors.
Define the poset Pn,k on products of (at most) k complementary minors by

�I1,J1 ðxÞ � � ��Ik,Jk ðxÞ � �I0
1
, J0

1
ðxÞ � � ��I0

k
, J0

k
ðxÞ

if and only if the difference �I0
1
, J0

1
ðxÞ � � ��I0

k
, J0

k
ðxÞ ��I1,J1ðxÞ � � ��Ik,JkðxÞ is TNN.

In [23, Theorem 3.2] and [20, Proposition 4.1, Theorem 4.2, Cororollary 4.6],

the authors give several simple combinatorial characterizations of Pn,2. These

characterizations imply that this poset has a unique maximal element �I,I(x)�J,J(x)

given by I¼ {1, 3, 5, . . .}, J¼ {2, 4, 6, . . .} and that the determinant �½n�, ½n�ðxÞ��,�ðxÞ

is among the n minimal elements. In [21] the authors show that the combinatorial

tests in [20] provide sufficient conditions for an immanant in In,2ðxÞ to be SNN.

Therefore, whenever �I,J(x)�I0,J0(x)��K,L(x)�K0,L0(x) in Pn,2 we also have that

�K,L(x)�K0,L0(x)��I,J(x)�I0,J0(x) is SNN. It is unknown whether the converse of

this statement is true.
In [7,8,21], Drake et al. study the poset Pn,n\Pn,n�1 of products of n nonempty minors,

that is, permutation monomials x1,wð1Þ � � � xn,wðnÞ, w 2 Sn. This poset is isomorphic to (the

dual of) the Bruhat order, with unique maximal element x1,1 � � � xn,n, and unique minimal

element x1,n � � � xn,1. The comparison x1,wð1Þ � � � xn,wðnÞ � x1,vð1Þ � � � xn,vðnÞ is equivalent to each

of the following statements.

(1) The difference x1,vð1Þ � � �xn,vðnÞ � x1,wð1Þ � � � xn,wðnÞ is TNN.
(2) The difference x1,vð1Þ � � �xn,vðnÞ � x1,wð1Þ � � � xn,wðnÞ is SNN.
(3) The difference x1,vð1Þ � � � xn,vðnÞ � x1,wð1Þ � � � xn,wðnÞ is a nonnegative linear combination

of Kazhdan–Lusztig immanants.
(4) v�w in the Bruhat order.

In analogy to some of the above results we show that Pn,k has a unique maximal

element for arbitrary k, and that certain comparable elements of Pn,k have differences

which are SNN as well as TNN.

LEMMA 3 Let (I1, . . . , Ip) and (J1, . . . , Jp) be sequences of sets satisfying jIij ¼ jJij for all i,

and I1 ] � � � ] Ip ¼ J1 ] � � � ] Jp ¼ ½n�. Fix indices k� ‘ and let �1 5 � � � 5�p be the
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elements of Ik [ I‘, and �1 5 � � � 5�p be the elements of Jk [ J‘. Define two more sequences

of sets ðI01, . . . , I0PÞ and ðJ
0
1, . . . , J0PÞ by

I0i ¼

f�1,�3, . . .g if i ¼ k,

f�2,�4, . . .g if i ¼ ‘,

Ii otherwise,

8>><
>>: J0i ¼

f�01,�
0
3, . . .g if i ¼ k,

f�02,�
0
4, . . .g if i ¼ ‘,

Ji otherwise:

8>><
>>:

Then the immanant �I0
1
, J0

1
ðxÞ � � ��I0

k
, J0

k
ðxÞ ��I1,J1ðxÞ � � ��Ik,JkðxÞ is totally nonnegative

and Schur nonnegative.

Proof This difference is

�I0
1
, J0

1
ðxÞ � � ��I0p, J

0
p
ðxÞ

�I0
k
, J0

k
ðxÞ�I0

‘
, J0
‘
ðxÞ
ð�I0

k
, J0

k
ðxÞ�I0

‘
, J0
‘
ðxÞ ��Ik,JkðxÞ�I‘, J‘ ðxÞÞ,

which is TNN and SNN by [21, Theorem 5.2] and [20, Propostion 4.6].
Like Pn,2 and Pn,n\Pn,n�1, each poset Pn,k has a unique maximal element.

THEOREM 3 Let (I1, . . . , Ip) and (J1, . . . , Jp) be sequences of sets as in Lemma 3, and define

a third sequence (K1, . . . ,Kp) by

Kj ¼ fi 2 ½n� i � jðmodpÞg
�� :

Then the immanant �K1,K1
ðxÞ � � ��Kp,Kp

ðxÞ ��I1,J1ðxÞ � � ��Ik,JkðxÞ is totally nonnegative

and Schur nonnegative. g

Proof Applying several iterations of Lemma 3 to the sets I1, . . . , Ip, J1, . . . , Jp, we obtain

the desired result.
This theorem yields an easy method of constructing families of TNN and SNN

polynomials.

COROLLARY 3 Let k� ‘ and define the sequences of sets (I1, . . . , Ik), (J1, . . . , J‘) by

Ij ¼ fi 2 ½n� i � j ðmodkÞg, Jj ¼ fi 2 ½n� i � jðmod ‘Þg
���� . Then the immanant

�J1,J1ðxÞ, � � � ,Pleasecheckbreak�J‘,J‘ ðxÞ ��I1,J1ðxÞ, � � � ,�Ik,IkðxÞ is totally nonnegative and

Schur nonnegative.

For example, we may apply the immanant
�14,14ðxÞ�25,25ðxÞ�3,3ðxÞ ��135,135ðxÞ�24,24ðxÞ to the Jacobi–Trudi matrix

h9 h10 h11 h12 h13

h6 h7 h8 h9 h10

h4 h5 h6 h7 h8

h3 h4 h5 h6 h7

1 h1 h2 h3 h4

2
666666664

3
777777775

to deduce that the symmetric function

sð11, 6Þ=2sð9, 4Þ=2s6 � sð11, 7, 4Þ=ð2, 1Þsð8, 6Þ=1

is SNN.
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Not much is known about the posets Pn,k in general. Obviously we have that

Pn,1 � Pn,2 � � � � � Pn,n. By Theorem 2.6, Pn,n contains a subposet isomorphic to (the dual

of) the Bruhat order on Sn. Also, it is possible to show that any element of I3ðxÞ is TNN or

SNN if and only if it may be expressed as a nonnegative linear combination of Kazhdan–

Lusztig immanants. In particular, this allows one to construct the poset P3,3 and see that it

coincides with the analogous poset constructed by considering SNN differences. Boocher

and Froehle [2] have produced several conjectures concerning the poset Pn,3 with

numerical evidence for the n¼ 4 case. It would be interesting to see what Pn,k looks like in

general.
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