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1. Introduction

The N -Ish arrangement, introduced by Abe, Suyama and Tsujie [1], is given by

Ish(N) := Cox(n) ∪ {x1 − xj = i : 2 ≤ j ≤ n, i ∈ Nj},

where N = (N2, . . . , Nn) is a tuple of finite subsets Nj of some characteristic 0 field
K.

In the case where K = R and N is such that N2 ⊆ N3 ⊆ · · · ⊆ Nn and 0 6∈ Nn,
we say that Ish(N) is a nested Ish arrangement. We choose to limit ourselves to
this case in what follows.

It is known from [1] that the characteristic polynomial of Ish(N) is given by

χIsh(N)(p) = p(p−#Nn − 1)(p−#Nn−1 − 2) · · · (p−#N2 − n+ 1).(1.1)

We will see that in a special case, χIsh(N) is equivalent to χShi(m)(n), where
χShi(m)(n) is the characteristic polynomial of the extended Shi arrangement, given

by Stanley in [6]. This arrangement is defined by

Shi(m)(n) = {xi − xj = −m+ 1,−m+ 2, . . . ,m : 1 ≤ i < j ≤ n}

and has characteristic polynomial

(1.2) χShi(m)(n)(p) = p(p−mn)n−1,

as shown in [REFERENCE?].
Hence, if N is chosen such that #N` = (m− 1)n+ `− 1 for all ` = 2, . . . , n,

(1.3) χIsh(N)(p) = p(p−mn)n−1.

If Equation (1.3) holds, we will say that Ish(N) is Shi(m)(n)-compatible, or Shi-
compatible for short. We further say that N is Shi-compatible if Ish(N) is Shi-
compatible.

It is seen from Zaslavsky’s Theorem [7] that if Ish(N) is Shi-compatible, Shi(m)(n)
and Ish(N) share

• the number of regions r
(

Shi(m)(n)
)

= r (Ish(N)), and

• the number of bounded regions b
(

Shi(m)(n)
)

= b (Ish(N)).

Our present goal will be to establish an explicit bijection between the regions of

Shi(m)(n) and an arbitrary Shi-compatible Ish(N) arrangement, a problem posed
by [REFERENCE?].

We begin by giving some definitions.
1
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Figure 1. The steps in our bijection.

Definition 1.1. Let A be a hyperplane arrangement in Rn. We define RA to
be the collection of regions of A. That is, the elements of RA are the connected
components of

Rn \
⋃
H∈A

H.

Definition 1.2. An m-parking function on n letters is a sequence f = (a1a2 · · · an)
such that if b1 ≤ b2 ≤ · · · ≤ bn is the unique rearrangement of the terms in f in
increasing order, we have bi ≤ 1 +m(i− 1) for all i = 1, . . . , n. We denote the set
of all m-parking functions on n letters by Parkmn .

Definition 1.3. By the simple nest Ñm
n , we mean

Ñm
n := {[(m− 1)n+ 1], [(m− 1)n+ 2], . . . , [mn− 1]}.

If m and n are clear from the context, we simply write Ñ .

Remark. We note that Ñm
n is Shi-compatible for any choice of m,n.

Our bijection will follow Figure 1.

2. Nested Ish Ceiling Diagrams

Let C denote the dominant cone x1 ≥ x2 ≥ · · · ≥ xn in Rn. We will define
nested Ish ceiling diagrams which label the regions of Ish(Ñ) analogously to the

construction in Section 4.2 of [2]. Since Cox(n) ⊂ Ish(Ñ), for a given region R of

Ish(Ñ), all vectors v = (v1, . . . , vn) ∈ R satisfy

vπ(1) > vπ(2) > · · · > vπ(n)

for some permutation π ∈ Sn. Notice that the hyperplane x1 − xj = i intersects

the cone πC containing R if and only if x1 > xj on πC. Thus the set of Ish(Ñ)
hyperplanes that intersect πC are exactly

Ψ+(Ñ , π) := {x1 − xj = i : i ∈ Ñj and π−1(1) < π−1(j)}.

We define a partial order on Ψ+(Ñ , π) by the convention that (x1 − xj = i) <
(x1 − xj′ = i′) whenever either i < i′ or π−1(j′) < π−1(j). We now have the
following generalization of Theorem 4.3 from [2].
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Theorem 2.1. There is a bijection between regions of Ish(Ñ) in the cone πC

and order filters in the poset Ψ+(Ñ , π). This map sends a region R to the set of

hyperplanes in Ish(Ñ) that are “above” R.

Proof. The proof of Theorem 4.3 in [2] carries over exactly to the general case. �

We are now ready to define nested Ish ceiling diagrams, which will provide a
combinatorial characterization of the order filters.

Definition 2.2. Let π ∈ Sn. We call a pair (π, ε) a nested Ish ceiling diagram if
the vector ε = (ε1, . . . , εn) satisfies

(1) 0 ≤ εi < (m− 1)n+ π(i),
(2) εi = 0 unless π−1(1) < π−1(i), and
(3) the nonzero entries of ε strictly increase from left to right.

Remark. This definition is exactly analogous to Definition 4.2 in [2], except that
condition 1 now allows for more dots above the entries in the permutation, corre-

sponding to the fact that the families of parallel hyperplanes in Ish(Ñ) are larger
than those in the standard Ish arrangement, Ish(n).

3. Rook Placements

A board B is a finite subset of the two-dimensional integer lattice Z×Z. A rook
placement on B is a placement of non-attacking rooks (that is, no row or column of
B contains more than one rook). A rook placement on B is called maximal if it is
impossible to place any more rooks on B and maintain the non-attacking condition.
We will focus on rook placements on a particular family of boards.

Let Bmn be the bottom-justified board with column heights from left to right
given by

(n+m(n− 1) + 1, n+m(n− 1) + 2, · · · , n+m(n− 1) + n− 1).

We define the coordinates on Bmn as follows.

Bmn := {(i, j) : 2 ≤ i ≤ n, 1 ≤ j ≤ n+m(n− 1) + i− 1}.

We will show a bijection between regions of Ish(Ñ) and maximal rook placements
on Bmn .

Definition 3.1. Given a region R of Ish(Ñ) with ceiling diagram (π, ε), we define
a rook placement ρ(R) onto Bmn as follows. The rook on column i is placed on
position

• (i, π−1(i)) if επ−1(i) = 0 (there are no dots atop i),
• (i, n+ εi) if επ−1(i) > 0 (there are εi dots atop i).

It is easily seen that ρ(R) is a maximal rook placement.

Definition 3.2. Let w = w1w2 · · ·wn be a word with wi ∈ [mn] for all i = 1, . . . , n
and such that each member of [1, w1] appears at least once as a letter in w. We
then say w is an m-rook word and denote by Rookmn the set of all such words.

Lemma 3.3. Let g be the action Znmn+1 y [mn+ 1]n defined by

1 · (a1, a2, . . . , an) 7→ (a1 + 1, a2 + 1, . . . , an + 1).

Then,
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(1) each orbit of g contains exactly one m-parking function,
(2) each orbit of g contains exactly one m-rook word.

Proof.

(1) The proof will make use of the cycle lemma. Interpret a word w = w1...wn
in [mn + 1]n as a parking preference function for n caravans of m cars
seeking to park in mn spots, where wi is the preferred spot of the i-th
caravan. The caravans will park one at a time, with the cars in the i-th
caravan parking in the first m available spots weakly after spot wi. It is
straightforward to show that the word w is an m-parking function if and
only if all cars are able to find spots. To prove the lemma consider the
lot arranged circularly, with an additional spot mn + 1. The cars park in
the same manner, but now all cars are able to park successfully. A word
w is an m-parking function if and only if the single empty spot remaining
at the end of the parking process is the (mn + 1)-st spot. Since g acts by
increasing spot preferences, each of the mn+ 1 words in the orbit of w will
have a different empty spot at the end of the parking process, thus exactly
one of them is an m-parking function.

(2) This proof follows easily from the proof of Lemma 10 in [4].

�

Theorem 3.4. There exists a bijection

γ : {Maximal rook placements on Bmn } → Parkmn .

Proof. We define a map γ from maximal rook placements on Bmn to m−rook words.
If P is a maximal rook placement on Bmn , fire lasers rightward from every rook on
P to the right side of the board. We then define a word v1 . . . vn by the rule

vi =

{
1 i = 1

#
{

squares weakly below the rook in
Column i that do not contain laser fire

}
2 ≤ i ≤ n

(3.1)

Using Lemma 3.3, define γ(P ) to be the unique m-parking function in the Zmn+1-
orbit of v. �

4. Extended Shi Diagrams

Let R be a region of Shi(m)(n). Then, for some multiset partition π of Mm
n =

{1m, . . . , nm}, all points in R satisfy

xπ(1) + a(1) > xπ(2) + a(2) > · · · > xπ(mn) + a(mn),(4.1)

where a(k) = m − 1 −#{k′ : k′ < k and π(k′) = π(k)}. Additionally, inequalities
of the form xi−xj < m or xi−xj > m, where i < j, may be required to specify R.

Denote by Rπ the collection of regions of Shi(m)(n) that satisfy (4.1). Let π−1k (i)
denote the k-th position where i occurs in π, counting right to left. Note that the
π−1k (i)-th term in (4.1) is xi + (k − 1) if (4.1) is written in order from greatest to
least.

Lemma 4.1. Let Φm(π) denote the set of hyperplanes that intersect the Rπ. Then,
Φm(π) is precisely the set of hyperplanes xi − xj = m for which π−11 (i) < π−1m (j)

and where all π(k) satisfying π−11 (i) < k < π−1m (j) are distinct (that is, π has no
repeated entries between positions π−11 (i) and π−1m (j)).
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Proof. Any hyperplane of the form xi − xj = a for a < m determines π. Such
hyperplanes form the boundaries of the Rπ and thus cannot intersect them. If
π−1a (j) > π−11 (i) for some 1 ≤ a ≤ m, then xi − xj < a− 1 ≤ m− 1, implying that

xi − xj = m does not intersect Rπ. If there are distinct π(k) satisfying π−11 (i) <
k < π−1m (j), we have for 1 ≤ a ≤ m−2 that xi > xk+a > xk+a−1 > xj+(m−1),
and it follows that xi − xj > m. �

We impose a partial order on Φm(π) by declaring that xi′ −xj′ = m is less than
or equal to xi − xj = m if i ≤ i′ < j′ ≤ j. This ensures that if a region R lies
below the first hyperplane, it also lies below the second, so that the collection of
hyperplanes of the form xi − xj = m above R form a down-closed set.

Theorem 4.2. There is a bijection between the regions of Shi(m)(n) in Rπ and the
order ideals in Φm(π). The maximal elements of this ideal are the ceilings of the
R ∈ Rπ of the form xi − xj = m.

Proof. Let R ∈ Rπ. We established above that the collection of hyperplanes above
R form an order ideal in Φm(π). The map is injective since the hyperplanes above
a region uniquely determine R in any particular Rπ (note that π and the ceilings
are all possible information about a particular region). The ceilings of R are the
elements of the ideal which may be removed to obtain another ideal, which are by
definition maximal. �

Corollary 4.3. There is a bijection between the regions of Shi(m)(n) in Rπ and
the order filters in Φm(n). The minimal elements of this ideal are the floors of the
R ∈ Rπ of the form xi − xj = m.

Proof. The proof is identical to that of Theorem 4.2 with floors instead of ceilings
and filters instead of ideals. �

Definition 4.4. Let R ∈ Rπ. We associate with R a pair (π,C), where C is an
order ideal in the poset Φm(π). The extended Shi diagram of R is obtained using
the following procedure.

(1) Write π in one-line notation,
(2) For each k ∈ [n], draw arcs from positions π−1a (k) to π−1a+1(k), for a ∈ [m−1],

(3) For maximal xi − xj = m in C, draw an arc from π−11 (i) to π−1m (j).

Remark. The resulting diagram is non-nesting. First, no nests are introduced in
Step (2) of the construction, because if Rπ is to contain any regions, π must avoid
the pattern a b b a. Next, no arc drawn in Step (3) can induce a nest with any
other arc in the same step because each hyperplane in Φm(π) intersects Rπ. Also,
no arc in Step (3) can induce a nest with any arc in a previous step as only maximal
arcs are drawn.

Lemma 4.5. Let R ∈ RShi(m)(n). The extended Shi ceiling diagram (π,C) for R
has d connected components if and only if R has d degrees of freedom.

Proof. Consider v = (v1, . . . , vn) ∈ Rec(R). By definition, we have xπ(1) + a(1) >
· · · > xπ(mn) + a(mn) and so, v must satisfy vπ(1) ≥ · · · ≥ vπ(mn). Any ideal
xi − xj = m in C forces vi = vj . Since these are exactly the constraints on v, we
conclude that Rec(R) consists of all vectors of the form (a1, . . . , an) where ai = aj
if i and j are in the same connected component of (π,C). The dimension of Rec(R)
is therefore d. �
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Definition 4.6. Define ν : RShi(m)(n) → RShi(m)(n). In general, ν sends the region

R in Rπ to R′ in Rπ with the property that set of floors of R of the form xi−xj = m
is the set of ceilings of R′ of the form xi − xj = m.

Remark. This procedure is well-defined since in any Rπ, a region is determined by
the associated ideal C. The ceilings or R ∈ Rπ are then the maximal elements of C,
which uniquely determine C. Then, by Corollary 4.3, there is some region within
the same Rπ determined by the order filter generated by these maximal elements.

Lemma 4.7. The set of extended Shi ceiling diagrams is equivalent to the set of
extended Shi floor diagrams given in Athanasiadis and Linusson [3].

Proof. By construction, the extended Shi ceiling diagram of a region R is the ex-
tended floor diagram of ν(R). Since ν is a bijection, the result follows. �

5. A Bijection Preserving Degrees of Freedom

We will define a map σ : {diagrams D of Shi(m)(n) regions} → Parkmn which is
very similar to a map defined by Athanasiadis and Linusson [3]. For each 1 ≤ i ≤ n,
let 1 ≤ wi ≤ mn be the position of the leftmost number in the chain of arcs in D
that contains i. Note that by our construction of the diagram D, all m copies of i
do in fact appear in the same chain of arcs. We define σ(D) = w1 · · ·wn.

Proposition 5.1. The words σ(D) are m-parking functions, and σ is a bijection.

Proof. By Lemma 4.7, the sets of extended Shi ceiling diagrams and extended Shi
floor diagrams are equal. Hence, Theorem 3.5 in [3] holds for extended Shi ceiling
diagrams. �

Proposition 5.2. Let D be an extended Shi ceiling diagram with d connected
components. Then, the non-decreasing rearrangement a1 · · · an of σ(D) satisfies
ai = 1 +m(i− 1) for exactly d values of i.

Proof. Since the size of connected components in D must be divisible by m, suppose
that a death ray fired between positions (i−1)m and (i−1)m+1 separates connected
components in D. The number in position (i−1)m+1 is contained in some arc, and
so must be the left endpoint of a chain of arcs. Since the arcs ending in positions
1, 2, ..., (i − 1)m determine a1, ..., ai−1, we see that ai = (i − 1)m + 1. Since there
must exist d − 1 such death rays, and since a1 = 1 = (1 − 1)m + 1, we have that
there are at least d values of i for which the desired equality holds. Conversely, this
equality implies that only arcs beginning in positions 1, 2, ...(i − 1)m could end in
these positions, so that a death ray separating position (i− 1)m and (i− 1)m+ 1
exists. �

6. Degrees of Freedom

In this section, we will develop enumerative results on the degrees of freedom
statistics for the generalized Shi arrangement and the nested Ish arrangement. We
begin with the Shi case.

Definition 6.1. [2, Section 2.1] Let π be a partition of [n]. We say the type of π
is (r1, r2, . . . , rn), where ri is the number of blocks of π with size i.
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γ
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Figure 2. Four examples of our bijection from RIsh(Ñ) to

RShi(m)(n) with m = 2 and n = 3. Here, (a) are Ish diagrams,

(b) are maximal rook placements, (c) are m-parking functions,
and (d) are Shi diagrams, all corresponding to the regions I, II,
III, and IV in Figure 3.

For example, the partition {13/24/5678/9} of [9] has type (1, 2, 0, 1, 0, 0, 0, 0, 0).
Since our construction of the extended Shi ceiling diagrams implies that the

nonnesting multiset partition corresponding to an extended Shi region has all oc-
currences of the same number in the same block, we may define a corresponding
type for these multisets. For a partition πm of the multiset Mm

n = {1m, . . . , nm},
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x1-x2=0

x2-x3=0x1-x3=0

I

IV

III

II

Figure 3. Shi2(3)-compatible standardly nested Ish arrangement
with some representative regions marked.

we let π be the partition of [n] such that i and j appear in the same block of π if
the same is true for πm. We say π is the copartition of πm.

For instance, the multiset partition π2 = {11/2244/33} of M2
3 has copartition

π = {1/24/3} of [3], and hence type rπ = (2, 1, 0).

Theorem 6.2. The number of regions of Shi(m)(n) with d degrees of freedom is
n∑
k=d

{
n

k

}
d(mn− d− 1)!(k − 1)!

(mn− k − 1)!(k − d)!
,(6.1)

where
{
n
k

}
is the Stirling number of the second kind.

Proof. Let Πr be the collection of nonnesting set partitions of Mm
n of type r =

(r1, r2, . . . , rn) and take d to be fixed.
The number of nonnesting partitions of [nm] with ri (i = 1, . . . , n) blocks of size

mi and d connected components is (see [5, Theorem 2.3, Part 2])

d(mn− d− 1)! (
∑n
i=1 ri − 1)!

r1!r2! · · · rn! (mn−
∑n
i=1 ri − 1)! (

∑n
i=1 ri − d)!

.(6.2)

There are r1!r2! · · · rn! ways to fill in a copartition π of [n] with type r. Hence,
if
∑
ri = k,

#Πr =
d(mn− d− 1)! (k − 1)!

(mn− k − 1)! (k − d)!
.(6.3)

The number of k-block copartitions is given by
{
n
k

}
and each of these copartitions

corresponds in turn to a nonnesting multiset partition. Hence, the total number of
regions with d degrees of freedom is

∑n
k=d

{
n
k

}
#Πr. �

Definition 6.3. The Ish type of a region R of Ish(Ñ) is a matrix(
a1 · · · ac
b1 · · · bc

)
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where b1, ..., bc are exactly the numbers in the Ish diagram of R which have dots,
and ai is the number of dots on bi. Note that c is the number of ceilings of the
region R.

Theorem 6.4. The number of regions in Ish(Ñ) with d degrees of freedom is

n−1∑
c=1

∑
(
a1 · · · ac
b1 · · · bc

)
d(n− d− 1)!(n− c− 1)!

(c− 1)!(n− c− d)!

Proof. Fix an Ish type

(
a1 · · · ac
b1 · · · bc

)
. Since all dots must occur to the right of 1,

any Ish diagram (π, ε) of this type must satisfy

π−1(1) < π−1(b1) < · · · < π−1(bc)

Since we are considering regions with d degrees of freedom, we know that π−1(bc)−
π−1(1) = n− d. Thus there are d ways to place the symbols 1 and bc, and

(
n−d−1
c−1

)
ways to place the symbols b2, ..., bc−1 left to right between them. Finally there are
(n− c− 1)! ways to place the remaining symbols. Since we have fixed the Ish type
(and therefore the vector ε) this completely determines the Ish diagram. �

7. To Do

Problem 7.1. There exists a bijection between the regions of Ish(N) and Ish(Ñm
n )

for arbitrary Shi(m)(n)-compatible N that preserves degrees of freedom.
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