Group Colorings and Bernoulli Subflows

Su Gao
Steve Jackson
Brandon Seward

Author address:
Department of Mathematics, University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203-5017

E-mail address: sgao@unt.edu
Department of Mathematics, University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203-5017

E-mail address: jackson@unt.edu
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109-1043

E-mail address: b.m.seward@gmail.com

Contents

Chapter 1. Introduction 1
1.1. Bernoulli flows and subflows 1
1.2. Basic notions 3
1.3. Existence of free subflows 4
1.4. Hyper aperiodic points and k-colorings 6
1.5. Complexity of sets and equivalence relations 9
1.6. Tilings of groups 11
1.7. The almost equality relation 13
1.8. The fundamental method 14
1.9. Brief outline 16
Chapter 2. Preliminaries 19
2.1. Bernoulli flows 19
2.2. 2-colorings 21
2.3. Orthogonality 23
2.4. Minimality 24
2.5. Strengthening and weakening of 2 -colorings 27
2.6. Other variations of 2-colorings 30
2.7. Subflows of $\left(2^{\mathbb{N}}\right)^{G}$ 32
Chapter 3. Basic Constructions of 2-Colorings 35
3.1. 2-Colorings on supergroups of finite index 35
3.2. 2 -Colorings on group extensions 39
3.3. 2 -Colorings on \mathbb{Z} 43
3.4. 2-Colorings on nonabelian free groups 46
3.5. 2-Colorings on solvable groups 48
3.6. 2-Colorings on residually finite groups 51
Chapter 4. Marker Structures and Tilings 53
4.1. Marker structures on groups 53
4.2. 2-Colorings on abelian and FC groups by markers 57
4.3. Some properties of ccc groups 61
4.4. Abelian, nilpotent, and polycyclic groups are ccc 63
4.5. Residually finite and locally finite groups and free products are ccc 70
Chapter 5. Blueprints and Fundamental Functions 77
5.1. Blueprints 77
5.2. Fundamental functions 84
5.3. Existence of blueprints 91
5.4. Growth of blueprints 98
Chapter 6. Basic Applications of the Fundamental Method 103
6.1. The uniform 2-coloring property 103
6.2. Density of 2 -colorings 107
6.3. Characterization of the ACP 109
Chapter 7. Further Study of Fundamental Functions 117
7.1. Subflows generated by fundamental functions 117
7.2. Pre-minimality 122
7.3. Δ-minimality 127
7.4. Minimality constructions 131
7.5. Rigidity constructions for topological conjugacy 138
Chapter 8. The Descriptive Complexity of Sets of 2-Colorings 147
8.1. Smallness in measure and category 147
8.2. $\quad \boldsymbol{\Sigma}_{2}^{0}$-hardness and $\boldsymbol{\Pi}_{3}^{0}$-completeness 148
8.3. Flecc groups 151
8.4. Nonflecc groups 156
Chapter 9. The Complexity of the Topological Conjugacy Relation 169
9.1. Introduction to countable Borel equivalence relations 169
9.2. Basic properties of topological conjugacy 170
9.3. Topological conjugacy of minimal free subflows 176
9.4. Topological conjugacy of free subflows 185
Chapter 10. Extending Partial Functions to 2-Colorings 205
10.1. A sufficient condition for extendability 205
10.2. A characterization for extendability 207
10.3. Almost equality and cofinite domains 218
10.4. Automatic extendability 229
Chapter 11. Further Questions 233
11.1. Group structures 233
11.2. 2-colorings 234
11.3. Generalizations 235
11.4. Descriptive complexity 236
Bibliography 237
Index 239

Abstract

In this paper we study the dynamics of Bernoulli flows and their subflows over general countable groups. One of the main themes of this paper is to establish the correspondence between the topological and the symbolic perspectives. From the topological perspective, we are particularly interested in free subflows (subflows in which every point has trivial stabilizer), minimal subflows, disjointness of subflows, and the problem of classifying subflows up to topological conjugacy. Our main tool to study free subflows will be the notion of hyper aperiodic points; a point is hyper aperiodic if the closure of its orbit is a free subflow. We show that the notion of hyper aperiodicity corresponds to a notion of k-coloring on the countable group, a key notion we study throughout the paper. In fact, for all important topological notions we study, corresponding notions in group combinatorics will be established. Conversely, many variations of the notions in group combinatorics are proved to be equivalent to some topological notions. In particular, we obtain results about the differences in dynamical properties between pairs of points which disagree on finitely many coordinates.

Another main theme of the paper is to study the properties of free subflows and minimal subflows. Again this is done through studying the properties of the hyper aperiodic points and minimal points. We prove that the set of all (minimal) hyper aperiodic points is always dense but meager and null. By employing notions and ideas from descriptive set theory, we study the complexity of the sets of hyper aperiodic points and of minimal points, and completely determine their descriptive complexity. In doing this we introduce a new notion of countable flecc groups and study their properties. We also obtain the following results for the classification problem of free subflows up to topological conjugacy. For locally finite groups the topological conjugacy relation for all (free) subflows is hyperfinite and nonsmooth. For nonlocally finite groups the relation is Borel bireducible with the universal countable Borel equivalence relation.

The third, but not the least important, theme of the paper is to develop constructive methods for the notions studied. To construct k-colorings on countable groups, a fundamental method of construction of multi-layer marker structures is

\footnotetext{ Received by the editor December 28, 2011. 2010 Mathematics Subject Classification. Primary 37B10, 20F99; Secondary 03E15, 37B05, 20F65.

Key words and phrases. colorings, hyper aperiodic points, orthogonal colorings, Bernoulli flows, Bernoulli shifts, Bernoulli subflows, free subflows, marker structures, tilings, topological conjugacy.

Su Gao's research was supported by the U.S. NSF Grants DMS-0501039 and DMS-0901853. Steve Jackson's research was supported by the U.S. NSF Grant DMS-0901853. Brandon Seward's research was supported by two REU supplements to the U.S. NSF Grant DMS-0501039 and an NSF Graduate Research Fellowship. }

developed with great generality. This allows one to construct an abundance of k colorings with specific properties. Variations of the fundamental method are used in many proofs in the paper, and we expect them to be useful more broadly in geometric group theory. As a special case of such marker structures, we study the notion of ccc groups and prove the ccc-ness for countable nilpotent, polycyclic, residually finite, locally finite groups and for free products.

CHAPTER 1

Introduction

In this paper we study Bernoulli flows over arbitrary countable groups (these are also known as Bernoulli shifts, Bernoulli systems, and Bernoulli schemes). The overall focus of this paper is on the development and application of constructive methods, with a particular emphasis on questions surrounding free subflows. The topics, methods, and results presented here should be of interest to at least researchers in descriptive set theory, symbolic dynamics, and topological dynamics, and may be of interest to researchers in C^{*}-algebras, ergodic theory, geometric group theory, and percolation theory. In Section 1.1 we remind the reader the definitions of Bernoulli flow and subflow and also discuss the importance of Bernoulli flows to various areas of mathematics. In Section 1.2 we introduce some basic notation and terminology which is needed for this chapter. In Section 1.3 we discuss the question of the existence of free subflows. This question has been recently answered and is of importance to this paper. In Sections $1.4,1.5,1.6$, and 1.7 we discuss the main results of this paper and at the same time discuss relevance to and motivation from various areas of mathematics, namely descriptive set theory, ergodic theory, geometric group theory, symbolic dynamics, and topological dynamics. A significant aspect of this paper is the invention of some versatile tools which add structure to arbitrary countable groups and offer significant aid in constructing points in Bernoulli flows. These tools are developed in great generality and likely have applications beyond their use here. These constructive methods and their potential utility to various areas of mathematics are discussed in Section 1.8. Finally, in Section 1.9 we give a brief outline to the paper and discuss chapter dependencies. We encourage the reader to make use of the detailed index found at the end of the paper which includes both terminology and notation.

1.1. Bernoulli flows and subflows

Let us first begin by presenting the most general definition of a Bernoulli flow (also known as Bernoulli shift, Bernoulli system, and Bernoulli scheme). If G is a countable group and K is a set with the discrete topology and with a probability measure ν, then the Bernoulli flow over G with alphabet K is defined to be

$$
K^{G}=\{x: G \rightarrow K\}=\prod_{g \in G} K
$$

together with the product topology, the product measure ν^{G}, and the following action of G : for $x \in K^{G}$ and $g \in G, g \cdot x \in K^{G}$ is defined by $(g \cdot x)(h)=x\left(g^{-1} h\right)$. The set K is always assumed to have at least two elements as otherwise K^{G} consists of a single point.

The action of G on K^{G} is quite intuitive. For example, if $G=\mathbb{Z}$ and $K=\{0,1\}$ then $K^{G}=\{0,1\}^{\mathbb{Z}}$ can be viewed as the space of all bi-infinite sequences of 0 's and

1 's. \mathbb{Z} then acts by shifting these sequences left and right (the action of $5 \in \mathbb{Z}$ shifts these sequences 5 units to the right). Similarly, $\{0,1\}^{\mathbb{Z}^{2}}$ can be visualized as the space of $\{0,1\}$-labelings of the two dimensional lattice $\mathbb{Z}^{2} \subseteq \mathbb{R}^{2}$ with the action of \mathbb{Z}^{2} moving the labels in the obvious fashion. Comprehension of these examples should lead to an intuitive understanding of the action of G on K^{G}.

Under the product topology, the basic open sets of K^{G} are the sets of the form

$$
\left\{x \in K^{G}: \forall 1 \leq i \leq n x\left(h_{i}\right)=k_{i}\right\}
$$

where $h_{1}, h_{2}, \ldots, h_{n} \in G, k_{1}, k_{2}, \ldots, k_{n} \in K$, and $n \geq 1$. Thus the action of G on K^{G} is continuous. It is not difficult to see that the basic open sets of K^{G} are both open and closed (i.e. clopen). Since every point is the intersection of a decreasing sequence of basic open sets, it follows that K^{G} is totally disconnected (meaning that the only connected sets are the one point sets). K^{G} is also seen to be perfect (meaning that there are no isolated points). Furthermore, K^{G} is compact if and only if K is finite. Thus by a well known theorem of topology, K^{G} is homeomorphic to the Cantor set whenever K is finite. On basic open sets the measure ν^{G} is given by

$$
\nu^{G}\left(\left\{x \in K^{G}: \forall 1 \leq i \leq n x\left(h_{i}\right)=k_{i}\right\}\right)=\prod_{1 \leq i \leq n} \nu\left(k_{i}\right) .
$$

Therefore the action of G on K^{G} is measure preserving. It may not be so clear, but this action is in fact ergodic.

In addition to Bernoulli flows, we are also very interested in their subflows (also known as subshifts or subsystems). A subflow of a Bernoulli flow K^{G} is simply a closed subset of K^{G} which is stable under the action of G. Bernoulli flows and their subflows show up in many areas of mathematics. One reason is that they have a rich diversity of dynamical properties which allow them to model many phenomenon. This "modeling" shows up in many contexts, such as in ergodic theory, descriptive set theory, percolation theory, topological dynamics, and symbolic dynamics. In ergodic theory and descriptive set theory, the orbit structures of Bernoulli flows are used to model the orbit structures of measurable group actions on other measure spaces. More generally, they are used to model countable Borel equivalence relations as a well known result of Feldman-Moore states that every countable Borel equivalence relation on a standard Borel space is induced by a Borel action of a countable group ($[\mathbf{F M}]$). In the site percolation model of percolation theory, Bernoulli flows of the form $\{0,1\}^{G}$ are used to model the flow of liquids through porous materials. In topological dynamics, it is known that if a group G acts continuously on a compact topological space X and the action is expansive, then there is a Bernoulli flow K^{G} over G, a subflow $S \subseteq K^{G}$, and a continuous surjection $\phi: S \rightarrow X$ which commutes with the action of G (meaning $\phi(g \cdot s)=g \cdot \phi(s)$ for all $g \in G$ and $s \in S)$. Furthermore, if X is totally disconnected then ϕ can be chosen to be a homeomorphism. Similarly, if X can be partitioned by a collection of clopen sets, then there is a subflow S of a Bernoulli flow K^{G} and a continuous surjection $\phi: X \rightarrow S$ which commutes with the action of G. These types of facts can be used to study Bernoulli flows via topological dynamics (for example, as in $[\mathbf{G U}]$), but more frequently topological dynamical systems are studied via Bernoulli flows. This latter approach led to the invention of symbolic dynamics ($[\mathbf{M H}]$) and its subsequent growth over the past seventy years. A classical example of the use of symbolic dynamics is the modeling of geodesics flows on manifolds by
(the suspension of) subflows of Bernoulli flows over \mathbb{Z}. Traditionally only Bernoulli flows over \mathbb{Z} and \mathbb{Z}^{n} are studied in symbolic dynamics, but more recently Bernoulli flows over hyperbolic groups have been used to model the dynamics of hyperbolic groups acting on their boundary ($[\mathbf{C P}]$).

A key aspect of the importance of Bernoulli flows is their modeling capabilities, but there are several other reasons to study them as well. Indeed, Bernoulli flows may be considered interesting in and of themselves. This viewpoint can be seen in at least descriptive set theory, ergodic theory, and symbolic dynamics. Bernoulli flows serve as very natural examples of orbit equivalence relations, of measure preserving ergodic group actions, and of continuous group actions on compact spaces. At the same time, Bernoulli flows have very simple definitions yet their dynamical properties are very difficult to fully understand. A particularly nice and many times useful aspect of Bernoulli flows is that they are susceptible to combinatorial arguments, something which is typically not seen in other dynamical systems. Indeed, combinatorial approaches are a predominant feature both in symbolic dynamics and in this paper. Another source of motivation for studying Bernoulli flows is to understand the relationship between the algebraic properties of the acting group and the dynamical properties of the Bernoulli flow (a research program suggested by Gottschalk in $[\mathbf{G o}])$. There are some known results of this type. For example, with complete knowledge of the dynamical properties of a Bernoulli flow K^{G}, one can determine if G is amenable ($[\mathbf{C F W}]$), if G has Kazhdan's property (T) ([GW]), and the rank of G if G is a nonabelian free group ([Ga]), to name a few. This is another aspect of Bernoulli flows which appears on several occasions in this paper. Finally, in topological dynamics Bernoulli flows are also studied in order to reveal properties of the greatest ambit of G, since it is known that the greatest ambit of G is the enveloping semigroup of the Bernoulli flow $\{0,1\}^{G}$ (see $[\mathbf{G U}]$).

In this paper we study the dynamics of Bernoulli flows from the symbolic and topological viewpoints and employ ideas from descriptive set theory to gain further understanding. Although we do not study Bernoulli flows from the ergodic theory perspective, there is a topic we study (tileability properties of groups) which could be of interest to researchers in ergodic theory and geometric group theory.

1.2. Basic notions

We study Bernoulli flows from the symbolic and topological perspectives. We therefore only want to consider Bernoulli flows over finite alphabets (these are precisely the compact Bernoulli flows, as mentioned in the previous section). So throughout the paper the term "Bernoulli flow" will always mean "Bernoulli flow over a finite alphabet." We will also not make use of any measures (aside from a single lemma). So we will never specify measures on the alphabets or on the Bernoulli flows. Since the alphabet K is always finite and the particular elements of K are unimportant, we will always use $K=\{0,1, \ldots, k-1\}$ for some positive integer $k>1$. As is common in logic and descriptive set theory, we let the positive integer k denote the set $\{0,1, \ldots, k-1\}$. We therefore write $k^{G}=\{0,1, \ldots, k-1\}^{G}$.

Let G be a countable group and let X be a compact Hausdorff space on which G acts continuously (such as the Bernoulli flow k^{G}). A closed subset of X which is stable under the group action is called a subflow of X. We denote the closure of sets $A \subseteq X$ by \bar{A}. If $x \in X$, then the orbit of x is denoted

$$
[x]=\{g \cdot x: g \in G\}
$$

Notice that $[x]$ is the smallest subflow of X containing $x \in X$. If $g \in G-\left\{1_{G}\right\}$, $x \in X$, and $g \cdot x=x$ then we call g a period of x. We call $x \in X$ periodic if it has a period and otherwise we call x aperiodic (notice that here "periodic" and "aperiodic" differ from conventional use since most commonly these two terms relate to whether or not the orbit of x is finite). A subflow of X is called free if it consists entirely of aperiodic points, and $x \in X$ is called hyper aperiodic if $\overline{[x]}$ is free (in [DS] such points are called limit aperiodic). In the specific case where X is the Bernoulli flow k^{G}, we use k-coloring interchangeably with "hyper aperiodic." Notice that $x \in X$ is hyper aperiodic if and only if x is contained in some free subflow, and furthermore the collection of all hyper aperiodic points is precisely the union of the collection of free subflows. A subflow $S \subseteq X$ is minimal if $\overline{[s]}=S$ for all $s \in S$. Similarly, a point $x \in X$ is minimal if $\overline{[x]}$ is minimal (this again differs from conventional terminology, since such points x are usually called "almost periodic"). Two points $x, y \in X$ are called orthogonal if $\overline{[x]}$ and $\overline{[y]}$ are disjoint. Finally, two subflows $S_{1}, S_{2} \subseteq X$ are topologically conjugate if there is a homeomorphism $\phi: S_{1} \rightarrow S_{2}$ which commutes with the action of G (meaning $\phi(g \cdot s)=g \cdot \phi(s)$ for all $g \in G$ and $\left.s \in S_{1}\right)$. From the viewpoint of symbolic and topological dynamics, topologically conjugate subflows are essentially identical.

As mentioned in the previous section, a useful property of Bernoulli flows is that many topological and dynamical properties are found to have equivalent combinatorial characterizations. In fact, it is known that hyper aperiodicity, orthogonality, minimality, and topological conjugacy can all be expressed in a combinatorial fashion. We heavily rely on the combinatorial characterizations of these properties within the paper, and as a convenience to the reader we include proofs of these characterizations. Our heavy use of the combinatorial characterization of hyper aperiodicity led us to frequently use the term " k-coloring" in place of "hyper aperiodic." The term emphasizes the combinatorial condition and is also reminiscent of the term "coloring" in graph theory as both roughly mean "nearby things look different." We use the term "hyper aperiodic" within this chapter in order to emphasize the dynamical property as well as to avoid the possibility of the reader confusing " k-colorings" with arbitrary elements of k^{G}.

Now having gone through the basic definitions, let us repeat the second sentence of this introduction. The overall focus of this paper is on the development and application of constructive methods for Bernoulli flows, with a particular emphasis on questions surrounding free subflows.

1.3. Existence of free subflows

The most basic, natural, and fundamental question one can ask about free subflows is:

Does every Bernoulli flow contain a free subflow? Equivalently, does every Bernoulli flow contain a hyper aperiodic point?
This question is an important source of motivation for this paper, so we discuss it here at some length. One may at first hope that this question is answered by an existential measure theory or Baire category argument. Indeed, a promising well known fact is that the collection of aperiodic points in a Bernoulli flow always has full measure and is comeager (i.e. second category, the countable intersection of dense open sets). However, it is not clear if a comeager set of full measure must contain a subflow, and furthermore a simple argument (included here in Section
8.1) shows that the collection of all hyper aperiodic points in a Bernoulli flow is of measure zero and meager (i.e. first category, countable union of nowhere dense sets). The failure of measure theory and Baire category arguments suggests that a constructive approach to this question is needed. This is a bit concerning because even in the case of Bernoulli flows over \mathbb{Z} constructions for hyper aperiodic points are not very simple. Nevertheless, we are led to ask: for which groups G can one construct a hyper aperiodic element in at least some Bernoulli flow k^{G} ? The twosided Morse-Thue sequence provides a well known example of a hyper aperiodic point for all Bernoulli flows over \mathbb{Z}, so the existence of free subflows of Bernoulli flows over \mathbb{Z} (and possibly \mathbb{Z}^{n}) has been known since at least the 1920's (when the Morse-Thue sequence was introduced). Only very recently were constructions for hyper aperiodic points found for other groups. In 2007, Dranishnikov-Shroeder proved that if G is a torsion free hyperbolic group and $k \geq 9$ then k^{G} contains a free subflow ([DS]). Their proof essentially used the Morse-Thue sequence along certain geodesic rays of G. Shortly after, Glasner-Uspenskij proved in $[\mathbf{G U}]$ that if G is abelian or residually finite and $k>1$ then k^{G} contains a free subflow. They did this by constructing topological dynamical systems with certain properties and then using the modeling capabilities of Bernoulli flows to conclude that these Bernoulli flows contained free subflows.

The existence question of free subflows was finally resolved in a recent paper by the authors ([GJS]) which provided a method for constructing hyper aperiodic points in k^{G} for every countable group G and every $k>1$. In this paper we spend a great deal of time reproving this fact here, and in fact this paper entirely supersedes [GJS]. In addition to presenting a general proof which applies to all Bernoulli flows, we also present alternative specialized proofs in the case of Bernoulli flows over abelian groups, solvable groups, FC groups, residually finite groups, and free groups (a group is FC if every conjugacy class is finite). As mentioned previously, a significant aspect of this paper is the development of powerful tools for constructing elements of Bernoulli flows. A very primitive and obscure form of these tools appeared in [GJS] under a dense and technical presentation. Thankfully here the presentation is much more spread out, the tools are clearly distinguished and greatly generalized, and significant effort was put into making these tools understandable and more widely applicable. It is with the use of these tools that we prove essentially all of the results mentioned in the next four sections. The tools we develop in this paper come from [GJS] and hence come from trying to answer the existence question for free subflows. We therefore place a lot of focus on the existence question in the first half of the paper and use the question as primary motivation for developing our tools.

For those readers who have a background in descriptive set theory, we would like to remark that the first two authors' original motivation for proving the existence of free subflows (in [GJS]) came from the theory of Borel equivalence relations and in particular the theory of hyperfinite equivalence relations. In proving that the orbit equivalence relation on $2^{\mathbb{Z}}=\{0,1\}^{\mathbb{Z}}$ is hyperfinite, a key marker lemma by Slaman and Steel was the following ([SS]).

Lemma 1.3.1 (Slaman-Steel). Let $F(\mathbb{Z})$ be the set of aperiodic points in $2^{\mathbb{Z}}$. Then there is an infinite decreasing sequence of Borel complete sections of $F(\mathbb{Z})$

$$
S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \cdots
$$

such that $\bigcap_{n \in \mathbb{N}} S_{n}=\varnothing$.
This lemma remains true when \mathbb{Z} is replaced by any countably infinite group G. The existence of decreasing sequences of complete sections that are relatively closed in $F(\mathbb{Z})$ would allow one to easily construct a continuous embedding of E_{0} into the orbit equivalence relation on $F(\mathbb{Z})$. However, the existence of a free subflow of 2^{G} immediately implies (by compactness) that for every countable group G there cannot exist a decreasing sequence of relatively closed complete sections of $F(G)$ whose intersection is empty (although a continuous embedding of E_{0} into the orbit equivalence relation on $F(\mathbb{Z})$ still does exist). The relationship of free subflows to this type of marker question is discussed a bit further in [GJS].

In the following four sections we discuss the results of this paper followed by a section discussing this paper's methods and tools. Again, we would like to emphasize that although the existence question of free subflows was previously resolved, we use the question here as primary motivation for developing our tools, and these tools in turn are vital to the proofs of nearly all of the results mentioned in the next four sections.

1.4. Hyper aperiodic points and k-colorings

When work began on this paper, one of the original goals was to investigate some of the basic properties of the set of hyper aperiodic points since at the time it was merely known that hyper aperiodic points existed. A natural first question is: How many hyper aperiodic points are there? Of course, this phrasing of the question is rather trivial since if x is hyper aperiodic then $\overline{[x]}$ is uncountable and consists entirely of hyper aperiodic points. However, this question becomes more meaningful when attention is restricted to sets of hyper aperiodic points which are pairwise orthogonal. In this case, the answer to the question is not at all clear. A second natural question is: Is the set of hyper aperiodic points (equivalently, the union of the collection of free subflows) dense? Even more restrictive versions of these questions exist where one considers points which are both hyper aperiodic and minimal. Recall the fact mentioned in the previous section that the set of hyper aperiodic points is always of measure zero and is meager. This tells us that there is a dividing line after which these "largeness" questions regarding the set of hyper aperiodic points will have negative answers. Nevertheless, the results mentioned in this section reveal that the set of hyper aperiodic points is surprisingly large in a few respects. The above questions are all answered in succession over two chapters. The following is the crowning theorem of these investigations.

THEOREM 1.4.1. Let G be a countably infinite group, and let $k>1$ be an integer. If $U \subseteq k^{G}$ is open and nonempty, then there exists a perfect (hence uncountable) set $P \subseteq U$ which consists of pairwise orthogonal minimal hyper aperiodic points.

We remind the reader that the proofs of all of our main results, including the theorem above, are entirely constructive. This theorem has three nice corollaries, all of which are new results. The first corollary ties in with the descriptive set theory connection mentioned in the previous section and requires further argument after the theorem above. The other two corollaries follow immediately from the theorem above but are also given direct proofs within this paper.

Corollary 1.4.2. Let G be a countably infinite group, let $k>1$ be an integer, and let $F(G)$ denote the set of aperiodic points in k^{G}. If $\left(S_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of (relatively) closed complete sections of $F(G)$ (meaning each S_{n} meets every orbit in $F(G)$) then

$$
G \cdot\left(\bigcap_{n \in \mathbb{N}} S_{n}\right)
$$

is dense in k^{G}.
Corollary 1.4.3. If G is a countable group and $k>1$ is an integer, then the collection of minimal points in k^{G} is dense in k^{G}.

Corollary 1.4.4. If G is a countably infinite group and $k>1$ is an integer, then the collection of hyper aperiodic points in k^{G} (equivalently the union of the free subflows of k^{G}) is dense in k^{G}.

This last corollary is equivalent to the statement: if $A \subseteq G$ is finite and $y: A \rightarrow$ $k=\{0,1, \ldots, k-1\}$ then there is a hyper aperiodic point $x \in k^{G}$ which extends the function y. The above result therefore leads to the question: Which functions $y: A \rightarrow k$ with $A \subseteq G$ can be extended to a hyper aperiodic point $x \in k^{G}$? While we were unable to answer this question in full generality, we do prove two strong theorems which make substantial progress on resolving the question. The first such theorem is below. It completely characterizes those domains $A \subseteq G$ for which every function $y: A \rightarrow k$ can be extended to a hyper aperiodic point.

Theorem 1.4.5. Let G be a countably infinite group, let $A \subseteq G$, and let $k>1$ be an integer. The following are all equivalent:
(i) for every $y: A \rightarrow k$ there exists a perfect (hence uncountable) set $P \subseteq k^{G}$ consisting of pairwise orthogonal hyper aperiodic points extending y;
(ii) for every $y: A \rightarrow k$ there exists a hyper aperiodic point $x \in k^{G}$ extending y;
(iii) the function on A which is identically 0 can be extended to a hyper aperiodic point $x \in k^{G}$;
(iv) there is a finite set $T \subseteq G$ so that for all $g \in G$ there is $t \in T$ with gt $\notin A$. Furthermore, if $A \subseteq G$ satisfies any of the above equivalent properties then there is a continuous function $f: k^{A} \rightarrow k^{G}$ (where k^{A} has the product topology) whose image consists entirely of hyper aperiodic points and with the property that $f(y)$ extends the function y for each $y \in k^{A}$.

Notice that the set A can be quite large while still satisfying clause (iv). For example, one could take $G=\mathbb{Z}^{n}$ and $A=\mathbb{Z}^{n}-(1000 \mathbb{Z})^{n}$. Clearly any finite set A satisfies (iv) if G is infinite, so this theorem greatly generalizes the previous corollary. Also, since H satisfies (iv) if $H \leq G$ is a proper subgroup, we have the following.

Corollary 1.4.6. Let G be a countably infinite group and let $k>1$ be an integer. If $H \leq G$ is a proper subgroup of G, then every element of k^{H} can be extended (continuously) to a (perfect set of pairwise orthogonal) hyper aperiodic point(s) in k^{G}.

The second and final theorem addressing the extendability question stated above is the following. Recall that $k^{G}=\{0,1, \ldots, k-1\}^{G}$.

Theorem 1.4.7. Let G be a countable group and let $k>1$ be an integer. If $A \subseteq G$ and $y: A \rightarrow k$, then let $y_{*} \in(k+1)^{G}$ be the function satisfying $y_{*}(a)=y(a)$ for $a \in A$ and $y_{*}(g)=k$ for $g \in G-A$. Then y can be extended to a hyper aperiodic point in k^{G} provided $G-A$ is finite and $\overline{\left[y_{*}\right]} \cap k^{G}$ consists of aperiodic points.

We remark that for many groups one thinks of, such as \mathbb{Z}^{n}, the above theorem is rather obvious. However, this is not always the case as there are groups whose Bernoulli flows have quite strange behavior. An example somewhat related to the theorem above is that for certain countable groups G, there are $x, y \in k^{G}$ which differ at precisely one coordinate and yet x is hyper aperiodic while y is periodic. This particular phenomenon is carefully studied in this paper and is discussed in Section 1.7.

Regarding the extendability question stated above, we make the following conjecture.

Conjecture 1.4.8. Let G be a countable group, let $A \subseteq G$, let $k>1$ be an integer, and let $y: A \rightarrow k$. Define $y_{*} \in(k+1)^{G}$ by setting $y_{*}(a)=y(a)$ for $a \in A$ and $y_{*}(g)=k$ for $g \in G-A$. Then y can be extended to a hyper aperiodic point in k^{G} if and only if $\overline{\left[y_{*}\right]} \cap k^{G}$ consists of aperiodic points.

If y can be extended to a hyper aperiodic point in k^{G}, then it is easy to see that $\overline{\left[y_{*}\right]} \cap k^{G}$ consists of aperiodic points. The difficult question to resolve is if this condition is sufficient. Clearly this conjecture implies Theorem 1.4.7. Also, if A satisfies clause (iv) of Theorem 1.4.5 and y and y_{*} are as above, then $\overline{\left[y_{*}\right]} \cap k^{G}$ must be empty. Thus the implication (iv) \Rightarrow (ii) appearing in Theorem 1.4.5 also follows from the above conjecture. We would like to emphasize that in all of the work we have done studying Bernoulli flows, we have always found the obvious necessary conditions to be sufficient. This is the main reason for us formally making this conjecture.

Related to the extendability question discussed above, one can ask a similar question of which functions $y: A \rightarrow k$ have the property that every point in k^{G} extending y is hyper aperiodic. There is a combinatorial characterization for this property, but it is rather trivial. However, if $A=H \leq G$ is a subgroup, then one can characterize this property through dynamical conditions on y when y is viewed as an element of the Bernoulli flow k^{H}. It is easy to see that if $y \in k^{H}$ and every extension of y to k^{G} is hyper aperiodic, then y must itself be hyper aperiodic (as an element of k^{H}). So the question comes down to: for a subgroup $H \leq G$, which hyper aperiodic $y \in k^{H}$ have the property that every point in k^{G} extending y is hyper aperiodic? This is answered by the following theorem.

Theorem 1.4.9. Let G be a countable group and let $k>1$ be an integer. For a subgroup $H \leq G$, the following are equivalent:
(i) there is some hyper aperiodic $y \in k^{H}$ for which every $x \in k^{G}$ extending y is hyper aperiodic;
(i) for every hyper aperiodic $y \in k^{H}$ and every $x \in k^{G}$ extending y, x is hyper aperiodic;
(ii) H is of finite index in G and $\langle g\rangle \cap H \neq\left\{1_{G}\right\}$ for every $1_{G} \neq g \in G$.

Moreover, if every nontrivial subgroup $H \leq G$ satisfies the above equivalent conditions, then $G=\mathbb{Z}$.

In proving the above theorem, we prove the following interesting proposition. The proof of this proposition is nontrivial, and we do not know if its truth was previously known.

Proposition 1.4.10. If G is an infinite group and every nontrivial subgroup is of finite index, then $G=\mathbb{Z}$.

1.5. Complexity of sets and equivalence relations

In this paper we study some complexity questions related to Bernoulli flows, and we approach such questions from the perspective of descriptive set theory. We remark that it is natural to use descriptive set theory as other notions of complexity (such as computability theory) are not generally applicable to Bernoulli flows since, for instance, not all groups have solvable word problem. There are two complexity issues we study here. The first is the descriptive complexities of the set of hyper aperiodic points, the set of minimal points, and the set of minimal hyper aperiodic points. The second is the complexity, under the theory of countable Borel equivalence relations, of the topological conjugacy relation among subflows of a common Bernoulli flow. We do not expect all readers to have previous knowledge of descriptive set theory and so we include a section which briefly introduces the notions and ideas surrounding the theory of countable Borel equivalence relations. The material should be readable to those who are interested. Also, we do review some terminology of these areas here, but only very briefly.

We first recall a bit of terminology from descriptive set theory. A topological space X is Polish if it is separable and if its topology can be generated by a complete metric. A set is $\boldsymbol{\Sigma}_{2}^{0}$ (i.e. F_{σ}) if it can be expressed as the countable union of closed sets. Similarly, a set is Π_{3}^{0} (i.e. $F_{\sigma \delta}$) if it can be represented as the countable intersection of $\boldsymbol{\Sigma}_{2}^{0}$ sets. A subset $A \subseteq X$ of a Polish space X is $\boldsymbol{\Sigma}_{2}^{0}$-complete if it is $\boldsymbol{\Sigma}_{2}^{0}$ and if for every Polish space Y and every $\boldsymbol{\Sigma}_{2}^{0}$ subset $B \subseteq Y$ there is a continuous function $f: Y \rightarrow X$ with $B=f^{-1}(A)$. A similar definition applies to $\boldsymbol{\Pi}_{3}^{0}$-complete. Intuitively, $\boldsymbol{\Sigma}_{2}^{0}$-complete sets are the most complicated among all $\boldsymbol{\Sigma}_{2}^{0}$ subsets of Polish spaces, and similarly for $\boldsymbol{\Pi}_{3}^{0}$-complete sets.

The study of the descriptive complexity of the set of hyper aperiodic points leads us to define a new class of groups which we call flecc. We provide the simplest definition here. A group G is flecc if there is a finite set $A \subseteq G-\left\{1_{G}\right\}$ with the property that for every nonidentity $g \in G$ there is $n \in \mathbb{Z}$ and $h \in G$ with $h g^{n} h^{-1} \in A$. The choice of the name flecc comes from the acronym "finitely many limit extended conjugacy classes." Various properties of flecc groups, other characterizations of flecc groups, and the meaning of the acronym can all be found in Section 8.3. To the best of our knowledge, the class of flecc groups have never been isolated despite being associated to an interesting dynamical property. This dynamical property is the following. Let G be a countable flecc group, let $A \subseteq G$ be the finite set described above, and let X be any set on which G acts. Then X contains a periodic point if and only if X contains a point having a period in the finite set A. To see this, suppose $x \in X, g \in G-\left\{1_{G}\right\}$, and $g \cdot x=x$. Then there is $n \in \mathbb{Z}-\{0\}$ and $h \in G$ with $h g^{n} h^{-1}=a \in A$. So we have that $a \in A$ is a period of the point $y=h \cdot x$. This dynamical property of flecc groups leads to a dichotomy in the descriptive complexity of the set of hyper aperiodic points, as seen in the theorem below.

Theorem 1.5.1. Let G be a countable group and $k>1$ an integer. Then the set of hyper aperiodic points in k^{G} is closed if G is finite, $\boldsymbol{\Sigma}_{2}^{0}$-complete if G is an infinite flecc group, and $\boldsymbol{\Pi}_{3}^{0}$-complete if G is an infinite nonflecc group.

The following theorem restricts attention to sets of minimal points and the dichotomy related to flecc groups disappears.

ThEOREM 1.5.2. Let G be a countable group and $k>1$ an integer. Then the set of minimal points in k^{G} and the set of minimal hyper aperiodic points in k^{G} are both closed if G is finite and are both $\boldsymbol{\Pi}_{3}^{0}$-complete if G is infinite.

Next we discuss the complexity of the topological conjugacy relation on subflows of a common Bernoulli flow. In other words, we study how difficult it is to determine if two subflows are topologically conjugate. For a countable group G and an integer $k>1$, let TC denote the topological conjugacy relation on subflows of k^{G}. Specifically, TC is the equivalence relation on the set of subflows of k^{G} defined by the rule: $S_{1} \mathrm{TC} S_{2}$ if and only if S_{1} and S_{2} are topologically conjugate. Let $\mathrm{TC}_{\mathrm{F}}, \mathrm{TC}_{\mathrm{M}}$, and $\mathrm{TC}_{\mathrm{MF}}$ denote the restriction of TC to the set of free subflows, minimal subflows, and free and minimal subflows, respectively. Also define an equivalence relation TC_{p} on k^{G} by declaring $x \mathrm{TC}_{\mathrm{p}} y$ if and only if $\overline{[x]}$ and $\overline{[y]}$ are topologically conjugate via a homeomorphism sending x to y. We show that these five equivalence relations are always countable Borel equivalence relations.

Before stating the theorems, let us quickly introduce a few notions from the theory of Borel equivalence relations. An equivalence relation E on a Polish space X is Borel if it is a Borel subset of $X \times X$ (under the product topology), and the equivalence relation E is countable if every equivalence class is countable. Given Borel equivalence relations E and F on X and Y respectively, F is said to be Borel reducible to E if there is a Borel function $f: Y \rightarrow X$ such that $y_{1} F y_{2}$ if and only if $f\left(y_{1}\right) E f\left(y_{2}\right)$. Intuitively, in this situation E is at least as complicated as F, or F is no more complicated than E. There are countable Borel equivalence relations which all other countable Borel equivalence relations are Borel reducible to (so intuitively they are of maximal complexity), and such equivalence relations are called universal countable Borel equivalence relations. Finally, recall that E_{0} is the nonsmooth hyperfinite equivalence relation on $2^{\mathbb{N}}$ defined by: $x E_{0} y$ if and only if there is $n \in \mathbb{N}$ so that $x(m)=y(m)$ for all $m \geq n$.

THEOREM 1.5.3. Let G be a countably infinite group and let $k>1$ be an integer. Then E_{0} continuously embeds into TC_{p} and Borel embeds into $\mathrm{TC}, \mathrm{TC}_{\mathrm{F}}, \mathrm{TC}_{\mathrm{M}}$, and $\mathrm{TC}_{\mathrm{MF}}$.

This theorem has two immediate corollaries. We point out that on the space of all subflows of k^{G} we use the Vietoris topology (see Section 9.2), or equivalently the topology induced by the Hausdorff metric. In symbolic and topological dynamics there is a lot of interest in finding invariants, and in particular searching for complete invariants, for topological conjugacy, particularly for subflows of Bernoulli flows over \mathbb{Z} or \mathbb{Z}^{n}. The following corollary says that, up to the use of Borel functions, there are no complete invariants for the topological conjugacy relation on any Bernoulli flow.

Corollary 1.5.4. Let G be a countably infinite group and let $k>1$ be an integer. Then there is no Borel function defined on the space of subflows of k^{G} which computes a complete invariant for any of the equivalence relations $\mathrm{TC}, \mathrm{TC}_{\mathrm{F}}$,
TC_{M}, or $\mathrm{TC}_{\mathrm{MF}}$. Similarly, there is no Borel function on k^{G} which computes a complete invariant for the equivalence relation TC_{p}.

The above theorem and corollary imply that from the viewpoint of Borel equivalence relations, the topological conjugacy relation on subflows of a common Bernoulli flow is quite complicated as no Borel function can provide a complete invariant. However, the above results do not rule out the possibility of the existence of algorithms for computing complete invariants among subflows described by finitary data, such as subflows of finite type. The above theorem also leads to another nice corollary. We do not know if the truth of the following corollary was previously known.

Corollary 1.5.5. For every countably infinite group G, there are uncountably many pairwise non-topologically conjugate free and minimal continuous actions of G on compact metric spaces.

The following theorem completely classifies the complexity of TC and TC_{F} for all countably infinite groups G. Again we see the interplay between group theoretic properties and dynamic properties as this theorem presents a dichotomy between locally finite and nonlocally finite groups. Recall that a group is called locally finite if every finite subset generates a finite subgroup.

THEOREM 1.5.6. Let G be a countably infinite group and let $k>1$ be an integer. If G is locally finite then $\mathrm{TC}, \mathrm{TC}_{\mathrm{F}}, \mathrm{TC}_{\mathrm{M}}, \mathrm{TC}_{\mathrm{MF}}$, and TC_{p} are all Borel bi-reducible with E_{0}. If G is not locally finite then TC and TC_{F} are universal countable Borel equivalence relations.

This last theorem generalizes a result of John Clemens which states that for the Bernoulli flow $k^{\mathbb{Z}^{n}}$ the equivalence relation TC is a universal countable Borel equivalence relation ([C]).

1.6. Tilings of groups

A key aspect of the main constructions of this paper is the use of marker structures. Marker structures can be placed on groups or on sets on which groups act and are a geometrically motivated way of studying groups and their actions. They have been used numerous times in ergodic theory, the theory of Borel equivalence relations (especially the theory of hyperfinite equivalence relations), and even in symbolic dynamics (for studying the automorphism groups of Bernoulli flows over \mathbb{Z}). In working with Bernoulli flows, it became apparent that solving problems through algebraic methods was cumbersome, placed restrictions on the groups we could consider, and resulted in case-by-case proofs. However, we found that solving problems through geometric methods (specifically through marker structures) relaxed and many times removed restrictions on the groups and resulted in unified arguments. The stark difference between algebraic and geometric methods can clearly be seen in this paper in Chapters 3 (algebraic) and 4 (geometric). It is for this reason that we define and study marker structures on groups. Naturally, better marker structures lead to better proofs. We therefore consider strong types of marker structures such as tilings and ccc sequences of tilings.

For a countably infinite group G and a finite set $T \subseteq G$, we call T a tile if there is a set $\Delta \subseteq G$ such that the the set $\{\gamma T: \gamma \in \Delta\}$ partitions G. Such a pair (Δ, T) is a tiling of G. A sequence of tilings $\left(\Delta_{n}, T_{n}\right)_{n \in \mathbb{N}}$ is coherent if each set
γT_{n+1} with $\gamma \in \Delta_{n+1}$ is the union of left Δ_{n} translates of T_{n}. A sequence of tilings $\left(\Delta_{n}, T_{n}\right)_{n \in \mathbb{N}}$ is centered if $1_{G} \in \Delta_{n}$ for all $n \in \mathbb{N}$. Finally, a centered sequence of tilings $\left(\Delta_{n}, T_{n}\right)_{n \in \mathbb{N}}$ is cofinal if $T_{n} \subseteq T_{n+1}$ and $G=\bigcup_{n \in \mathbb{N}} T_{n}$. We abbreviate the three adjectives "coherent, centered, and cofinal" to simply $c c c$. We call G a $c c c$ group if G admits a ccc sequence of tilings.

The study of ccc groups has applications to ergodic theory as it ties in with Rokhlin sets and is closely related with the study of monontileable amenable groups initiated by Chou ($[\mathbf{C h}]$) and Weiss ($[\mathbf{W}]$). In fact, ccc groups form a subset of what Weiss called MT groups in [W]. In our terminology, a group is MT if it admits a centered and cofinal sequence of tilings. Ccc groups are also pertinent to the theory of hyperfinite equivalence relations. Progress in the theory of hyperfinite equivalence relations has so far been dependent on finding better and better marker structures on Bernoulli flows over larger and larger classes of groups. The study of ccc groups, and in fact marker structures on groups in general, gives an upper bound to the types of marker structures which can be constructed on Bernoulli flows and also may give an informal sense of properties such marker structures may have. The notion of ccc groups is also interesting from the geometric group theory perspective. Groups and their Cayley graphs display such a high degree of symmetry and homogeneity that it is hard to imagine the existence of a group which is not ccc, or even worse, not MT. This is strongly contrasted by the fact that it seems to be in general very difficult to determine if a group is ccc. This geometric property is therefore somewhat mysterious.

We prove that a few large classes of groups are ccc, as indicated in the following theorem.

Theorem 1.6.1. The following groups are ccc groups:

(i) countable locally finite groups;
(ii) countable residually finite groups;
(iii) countable nilpotent groups;
(iv) countable solvable groups G for which $[G, G]$ is polyclic;
(v) countable groups which are the free product of a collection of nontrivial groups.

Notice that every countable polycyclic group satisfies (iv) and is thus a ccc group. Abelian groups are nilpotent, and linear groups (complex and real) are residually finite, so these classes of groups are also covered by the above theorem.

We do not know of any countably infinite group which is not ccc. Ideally, the methods of proof used here would help in finding new classes of groups which are ccc and in constructing better marker structures on Bernoulli flows and other spaces on which groups act. To this end, this paper includes entirely distinct proofs that the following classes of groups are ccc: finitely generated abelian groups, nonfinitely generated abelian groups, nilpotent groups, polycyclic groups, residually finite groups, locally finite groups, nonabelian free groups, and free products of nontrivial groups. Despite having a direct proof that polycyclic groups are ccc (one which does not use the fact that polycyclic groups are residually finite), we were unable to determine if solvable groups are ccc.

1.7. The almost equality relation

Finally, in this paper we study the behavior of periodic, aperiodic, and hyper aperiodic points under the almost-equality relation. Points $x, y \in k^{G}$ are almost equal, written $x=^{*} y$, if as functions on G they differ at only finitely many coordinates. In studying the almost equality relation and in establishing the results mentioned in this section, we had to make substantial use of tools and notions from geometric group theory. To be specific, the proofs of many of the theorems in this section relied heavily upon the notion of the number of ends of a group and on Stallings' theorem regarding groups with more than one end.

We also introduce and study a notion stronger than almost equality. If $x, y \in k^{G}$ then we write $x=^{* *} y$ if x and y disagree on exactly one element of $G\left(\right.$ so $\left.x \neq{ }^{* *} x\right)$. We first study the relationship between periodicity and almost equality and obtain the following. Below, $\operatorname{Stab}(x)$ denotes the stabilizer subgroup $\{g \in G: g \cdot x=x\}$.

Theorem 1.7.1. Let $k>1$ be an integer.
(i) Let G be a countable group not containing any subgroup which is a free product of nontrivial groups. Then for every $x \in k^{G}$ and every $y={ }^{* *} x$, either x is aperiodic or y is aperiodic.
(ii) Let G be a countable group containing $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ as a subgroup and with the property that every subgroup of G which is the free product of two nontrivial groups is isomorphic to $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. Then for every $x \in k^{G}$ there is an aperiodic $y \in k^{G}$ with $y={ }^{*} x$, but there are periodic $w, z \in k^{G}$ with $w={ }^{* *} z$.
(iii) Let G be a countable group containing a subgroup which is the free product of two nontrivial groups one of which has more than two elements. Then there is $x \in k^{G}$ such that every $y={ }^{*} x$ is periodic.
Furthermore for any countable group G, if $x=^{* *} y \in k^{G}$ then $\langle\operatorname{Stab}(x) \cup \operatorname{Stab}(y)\rangle \cong$ $\operatorname{Stab}(x) * \operatorname{Stab}(y)$.

Clearly every countable group is described by precisely one of the clauses (i), (ii), and (iii). We point out that torsion groups fall into clause (i) and an amenable group will fall into either cluase (i) or clause (ii), depending on whether or not it contains $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ as a subgroup. As the dynamical properties described are mutually incompatible, we see that for each individual clause, the stated dynamical property characterizes the class of groups described. Thus, for example, if G is a countable group such that for every $x \in k^{G}$ and every $y={ }^{* *} x$ either x or y is aperiodic, then G does not contain any subgroup which is a free product of nontrivial groups. We show that the groups described in clause (iii) are precisely those countable groups containing nonabelian free subgroups. Thus the dynamical property stated in clause (iii) provides a dynamical characterization of those groups which contain nonabelian free subgroups.

The above theorem does not require the group G to be infinite, so for finite groups clause (i) leads to the following corollary.

Corollary 1.7.2. If G is a finite group and $k>1$ is an integer then k^{G} contains at least $(k-1) k^{|G|-1}$ many aperiodic points.

We also study the behavior of hyper aperiodic points under almost equality. A difficult basic question is if any point almost equal to a hyper aperiodic point must
be hyper aperiodic itself. The following theorem says that, suprisingly, this is not always the case.

THEOREM 1.7.3. Let G be a countable group and let $k>1$ be an integer. The following are equivalent:
(i) there are $x, y \in k^{G}$ with x hyper aperiodic and y not hyper aperiodic but $y={ }^{*} x$;
(ii) there are $x, y \in k^{G}$ with x hyper aperiodic and y periodic but $y={ }^{* *} x$;
(iii) there is a nonidentity $u \in G$ such that every nonidentity $v \in\langle u\rangle$ has finite centralizer in G.

We show that abelian groups, nilpotent groups, and nonabelian free groups never satisfy the equivalent conditions listed above. However, we find examples of groups which are polycyclic (hence solvable) and finite extensions of abelian groups which do satisfy the equivalent conditions above.

As the previous theorem indicates, in general there may be points which are not hyper aperiodic but are almost equal to a hyper aperiodic point. We study the behaviour of such points and arrive at the following theorem.

Theorem 1.7.4. For a countable group G, an integer $k>1$, and $x \in k^{G}$, the following are all equivalent:
(i) there is a hyper aperiodic $y \in k^{G}$ with $y={ }^{*} x$;
(ii) there is a hyper aperiodic $y \in k^{G}$ such that x and y disagree on at most one coordinate;
(iii) either x is hyper aperiodic or else every $y={ }^{* *} x$ is hyper aperiodic;
(iv) every limit point of $[x]$ is aperiodic;
(v) for every nonidentity $s \in G$ there are finite sets $A, T \subseteq G$ so that for all $g \in G-A$ there is $t \in T$ with $x(g t) \neq x(g s t)$;

We remark that clause (v) is very similar to the combinatorial characterization of being hyper aperiodic. Specifically, a point $x \in k^{G}$ is hyper aperiodic if and only if it satisfies the condition stated in clause (v) with A restricted to being the empty set.

The method of proof of the previous two theorems leads to the following interesting corollary regarding more general dynamical systems.

Corollary 1.7.5. For a countable group G, the following are equivalent:
(i) for every compact Hausdorff space X on which G acts continuously and every $x \in X$, if every limit point of $[x]$ is aperiodic then x is hyper aperiodic;
(ii) for every nonidentity $u \in G$ there is a nonidentity $v \in\langle u\rangle$ having infinite centralizer in G.

1.8. The fundamental method

All of the proofs within this paper are constructive, and nearly all of them rely on a single general, adaptable, and powerful method for constructing points in Bernoulli flows which we call the fundamental method. A tremendous amount of time and effort was put into developing the fundamental method as if it were a general theory in itself, and in fact the method was intentionally developed in much greater generality than we make use of here. The fundamental method relies
on three objects: a blueprint on the group, a locally recognizable function, and a sequence of functions of subexponential growth. These objects are not fixed but rather each must satisfy a general definition. We will not give precise definitions of these objects at this time, but we will give some indication as to what these objects are.

A blueprint on a group G is a sequence $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ which is somewhat similar to a ccc sequence of tilings. The sets $\Delta_{n} \subseteq G$ are in some sense evenly spread out within G as there are finite sets B_{n} with $\Delta_{n} B_{n}=G$. The left translates of F_{n} by Δ_{n} are pairwise disjoint, and if a left translate of F_{k} by Δ_{k} meets a left translate of F_{n} by Δ_{n}, then the former must be a subset of the latter provided $k \leq n$. Furthermore, for $k<n$ the left translates of F_{k} by Δ_{k} appear in an identical fashion within every left translate of F_{n} by an element of Δ_{n}. It is a nontrivial fact that every countably infinite group has a blueprint. In this paper we in fact prove that a very strong type of blueprint exists on every countably infinite group. A locally recognizable function is a function $R: A \rightarrow k$ where $1_{G} \in A \subseteq G$ is finite and $k>1$ is an integer. This function must have the property that the identity, 1_{G}, is recognizable in the sense that if $a \in A$ and $R(a b)=R(b)$ for all $b \in A$ whenever both are defined, then $a=1_{G}$. Again, we show that locally recognizable functions always exist and we give several nontrivial examples. Finally, a sequence of functions of subexponential growth is a sequence $\left(p_{n}\right)_{n \geq 1}$ such that each $p_{n}: \mathbb{N} \rightarrow \mathbb{N}$ is of subexponential growth.

We present a fixed construction which when given any blueprint, locally recognizable function, and sequence of functions of subexponential growth (under a few restrictions) produces a function c taking values in k and having a large infinite subset of G as domain. This function c has very nice properties related to the blueprint, the locally recognizable function, and the sequence of functions of subexponential growth. One can in fact determine if $g \in \Delta_{n}$ merely by the behavior of c on the set $g F_{n}$. Furthermore, each left translate of F_{n} by Δ_{n} has its own proprietary points on which c is undefined. The number of such points is at least $\log p_{n}\left(\left|F_{n}\right|\right)$. If t is the number of undefined points within a translate of F_{n}, then using k values one can extend c on this translate of F_{n} in k^{t} many ways. So the logarithm essentially disappears and on each left translate of F_{n} by Δ_{n} one can essentially encode an amount of information which is subexponentially related to the size of F_{n}. The fact that the members of Δ_{n} are distinguishable within c allows one to both encode and decode information using the undefined points of c. This fact is tremendously useful. Finally, the relationship of c to the locally recognizable function R is that near every member of Δ_{1} one sees a "copy" of R in c.

Each of the three objects which go into the construction have their own strengths and weaknesses in terms of creating points in Bernoulli flows with certain desired properties. In fact, we prove the existence of hyper aperiodic points by using only functions of subexponential growth, we prove the density of hyper aperiodic points by primarily using locally recognizable functions, and we prove the existence of a point which is not hyper aperiodic but almost equal to a hyper aperiodic point by using a special blueprint. The fundamental method refers to the coordinated use of these three objects in achieving a goal of constructing a particular type of element of a Bernoulli flow. To further aid the use of the fundamental method, we develop two general tools which enhance the fundamental method. The first tool is a general method of constructing minimal points in Bernoulli flows. The
second is a method of constructing sets of points in Bernoulli flows which have the property that the closures of the orbits of the points are pairwise not topologically conjugate. The fundamental method and these tools have been tremendously useful within this paper as nearly all of our results rely on them, and we hope that they will be similarly useful to other researchers in the future.

In view of some basic questions which were only recently answered in $[\mathbf{G U}]$, it seems that the dynamics of Bernoulli flows over general countable groups has received little investigation from the symbolic and topological points of view. This paper demonstrates that this need not be the case. Although there are problems in symbolic dynamics which seem too difficult even in the case of Bernoulli flows over \mathbb{Z}^{n}, there are likely many other interesting questions and properties which can be pursued over a larger class of groups or possibly even all countable groups. The fundamental method, which is entirely combinatorial, provides at least one way of approaching this. Such investigations will also benefit topological dynamics both through the modeling capabilities of Bernoulli flows and through supplying new examples of continuous group actions with various properties. Such examples may lead to quite general results similar to Corollary 1.7.5 (in this corollary, showing (ii) implies (i) is quite simple, and to show the negation of (ii) implies the negation of (i) one uses a subflow of a Bernoulli flow). On a final note, we also mention that blueprints provide a nontrivial structure to all countably infinite groups which could be useful in various situations.

1.9. Brief outline

In Chapter 2 we reintroduce the main definitions, terminology, and notation of this paper. This is done in a more elaborate and detailed manner than in this introduction. We also state and prove the combinatorial characterizations for dynamical properties such as hyper aperiodicity / k-coloring, orthogonality, and minimality (recall that hyper aperiodic and k-coloring have identical meanings on the Bernoulli flow k^{G}). We also present other notions, terminology, and ideas which are not present in this introduction. Various simple lemmas related to these concepts are also presented. It is recommended that readers do not skip Chapter 2 as the terminology and notation introduced is important to the rest of the paper.

In Chapter 3 we present various algebraic methods for constructing hyper aperiodic points / k-colorings. In particular, we present several general methods for extending k-colorings on a smaller group to a larger group. We also give direct (algebraic) proofs that all abelian groups admit k-colorings (different proofs are provided for different classes of abelian groups), all solvable groups admit k-colorings, all nonabelian free groups admit k-colorings, and all residually finite groups admit k-colorings. This chapter is independent of all later chapters and can be skipped if desired. The chapter should be of interest to anyone with a strong interest in hyper aperiodic points / k-colorings. The chapter also demonstrates the limitations of trying to construct k-colorings through algebraic methods.

In Chapter 4 we define a general notion of a marker structure on a group. We then use marker structures to provide a new (geometric) proof that all abelian and all FC groups admit k-colorings (a group is FC if all of its conjugacy classes are finite). These marker methods are more geometrically motivated than algebraicly motivated and prove to be much more succesful than the algebraic methods used in Chapter 3. For the rest of the paper our proofs rely on these geometric and
marker structure methods. We therefore study groups with particularly strong marker structures - the ccc groups. The study of ccc groups comprises a significant portion of Chapter 4. This chapter contains all of the results mentioned in Section 1.6 above. Technically speaking, the only thing from Chapter 4 which is used in later chapters is the definition of a marker structure. However, the marker structure proof that abelian and FC groups admit k-colorings is a good source of motivation for the machinery which is developed in Chapter 5.

Chapter 5 focuses almost entirely on developing the fundamental method and its related machinery. The only result pertaining to Bernoulli flows in this chapter is that the minimal points in a Bernoulli flow are always dense (Corollary 1.4.3 from this introduction). This chapter is of great importance to the rest of the paper. The only sections which can be read if Chapter 5 is skipped are Sections 8.1, 8.3, 9.1, 9.2, 10.2, 10.3, and 10.4.

To make up for Chapter 5 being nearly devoid of results pertaining to Bernoulli flows, Chapter 6 focuses on presenting short, simple, and satisfying applications of the fundamental method. Each section focuses on one of the objects used in the fundamental method: functions of subexponential growth, locally recognizable functions, and blueprints. Many results are included in this chapter. Those mentioned in this introduction include a weaker version of Theorem 1.4.1 which does not mention minimality, Corollary 1.4.4, Theorem 1.7.3, and Corollary 1.7.5. The only sections which do not rely on Chapter 6 are those listed in the previous paragraph which do not rely on Chapter 5.

In Chapter 7 we return to developing machinery again. We develop the two tools mentioned in the previous section which enhance the fundamental method. More specifically, we develop tools for using the fundamental method to construct minimal points and to construct sets of points which have the property that the closures of the orbits of the points are pairwise not topologically conjugate. We also investigate properties of fundamental functions - those functions which are constructed through the fundamental method. Additionally, we use the tools we develop to prove Theorem 1.4.1 and Corollary 1.4.2. Chapter 10 can be read without reading Chapter 7.

In Chapter 8 we investigate the descriptive complexity of various important subsets of Bernoulli flows. Specifically, we study the descriptive complexities of the sets of hyper aperiodic points, minimal points, and points which are both minimal and hyper aperiodic. We prove Theorems 1.5.1 and 1.5.2. We also spend an entire section defining flecc groups and studying their properties. Chapters 9 and 10 are independent of Chapter 8.

In Chapter 9 we study the complexity of the topological conjugacy relation among subflows of a common Bernoulli flow. In other words, we study how difficult it is to determine when two subflows are topologically conjugate. This is done using the theory of countable Borel equivalence relations. A brief introduction to the theory of Borel equivalence relations is included in Section 9.1. In this chapter we prove Theorems 1.5.3 and 1.5.6 and Corollaries 1.5.4 and 1.5.5. Chapter 10 is independent of Chapter 9.

In Chapter 10 we study both the extendability of partial functions to k-colorings and further properties of the almost-equality relation. We prove Theorems 1.4.5, 1.4.7, and 1.4.9, Corollary 1.4.6, and all of the results mentioned in Section 1.7 aside from Theorem 1.7.3 and Corollary 1.7.5 (Theorem 1.7.3 and Corollary 1.7.5
are proven in Chapter 6). Somewhat surprisingly, Sections 10.2, 10.3, and 10.4 do not rely on any previous material in the paper aside from a few definitions. Furthermore, Section 10.2 has an entirely self contained proof of Theorem 1.4.5. The dialog present in the proof of this theorem assumes the reader is familiar with the fundamental method, but this is only to aid in comprehension of the proof as no knowledge of the fundamental method is technically required.

Finally, in Chapter 11 we list some open problems.
Chapter dependencies are illustrated in Figure 1.9 below. We again would like to remind the reader that there is a detailed index at the end of this paper which includes both terminology and notation.

Figure 1.1. Flowchart of dependency between chapters. Solid arrows indicate dependencies; dashed arrows indicate motivation.

CHAPTER 2

Preliminaries

In this chapter we go through the definitions presented in the previous chapter in more detail. In the first section we go over some basic definitions and notation. The second, third, and fourth sections discuss the three most central notions: k colorings, minimality, and orthogonality. In these sections we prove that these notions admit equivalent dynamical and combinatorial definitions. We also present a few basic lemmas related to these properties. In the fifth section we tweak the definition of k-colorings in various ways to obtain other interesting notions. These notions play an important role in this paper but were not mentioned in the previous chapter. Section five also contains several lemmas and propositions related to these notions. The sixth section discusses further generalizations of the notion of a k coloring, however the discussion in this section is purely speculative as the notions introduced in this section are not studied within the paper. Finally, in the seventh section we discuss generalizations to the action of G on $\left(2^{\mathbb{N}}\right)^{G}$. This last section has connections with descriptive set theory and topological dynamics.

2.1. Bernoulli flows

For a positive integer k, we let k denote the set $\{0,1, \ldots, k-1\}$. If G is a countable group, then a Bernoulli flow over G, or a Bernoulli G-flow, is a topological space of the form

$$
k^{G}=\{0,1, \ldots, k-1\}^{G}=\{x: G \rightarrow k\}=\prod_{g \in G}\{0,1, \ldots, k-1\},
$$

equipped with the product topology, together with the following action of G : for $x \in k^{G}$ and $g \in G, g \cdot x \in k^{G}$ is defined by $(g \cdot x)(h)=x\left(g^{-1} h\right)$ for $h \in G$. Notice that k^{G} is compact and metrizable. We will often find it convenient to work with the following compatible metric on k^{G}. Fix a countable group G, and fix an enumeration $g_{0}, g_{1}, g_{2}, \ldots$ of the group elements of G with $g_{0}=1_{G}$ (the identity element). For $x, y \in k^{G}$, we define

$$
d(x, y)= \begin{cases}0, & \text { if } x=y, \\ 2^{-n}, & \text { if } n \text { is the least such that } x\left(g_{n}\right) \neq y\left(g_{n}\right)\end{cases}
$$

Notice that the action of G on k^{G} is continuous.
Since 1^{G} is trivial (it consists of a single point), 2^{G} is in some sense the "smallest" Bernoulli flow over G. As will be apparent, all of the questions we pursue in this paper are most restrictive (i.e. the most difficult to answer) in the setting of 2^{G}. We therefore work nearly exclusively with 2^{G}, however all of our results hold for $k^{G}(k>1)$ by making obvious modifications to the proofs. While our main results were stated in terms of k^{G} in the previous chapter, within the body of this
paper we will only state our results in terms of 2^{G}. Nevertheless, many definitions will be given in terms of k^{G}.

Although we will work primarily with Bernoulli flows, there are times when we wish to discuss more general dynamical systems. To accommodate this we introduce some notation and definitions in a more general setting. Let G be a countable group and let X be a compact metrizable space on which G acts continuously. If $x \in X$, then the orbit of x is denoted

$$
[x]=\{g \cdot x: g \in G\}
$$

A subflow of X is a closed subset of X which is stable under the group action. If $A \subseteq X$, then we denote the closure of A by \bar{A}. Notice that $\overline{[x]}$ is the smallest subflow of X containing x.

We call $g \in G-\left\{1_{G}\right\}$ a period of $x \in X$ if $g \cdot x=x$. We call x periodic if it has a period, and otherwise we call x aperiodic. As a word of caution, we point out that our use of the word periodic differs from conventional use (usually it means that the orbit of x is finite). A subflow of X is free if it consists entirely of aperiodic points.

In this paper, aperiodic points and free subflows of 2^{G} play a particularly important role. We denote by $F(G)$ the collection of all aperiodic points of 2^{G}. $F(G)$ is called the free part. It is a dense G_{δ} subset of 2^{G}, is stable under the group action, and is closed in 2^{G} if and only if G is finite. An important achievement of both this paper and the authors' previous paper [GJS] is showing that while $F(G)$ is not compact (for infinite groups), it does display some compactness types of properties. Notice that in the case of 2^{G}, a subflow is free if and only if it is contained in $F(G)$.

If Y is another compact metrizable space on which G acts continuously, then X and Y are topologically conjugate if there is a homeomorphism $\phi: X \rightarrow Y$ which commutes with the action of G, meaning $\phi(g \cdot x)=g \cdot \phi(x)$ for all $g \in G$ and $x \in X$.

Much of this paper is concentrated on constructing elements of 2^{G} with special properties. These functions $G \rightarrow 2=\{0,1\}$ will be mostly defined by induction. In the middle of a construction we will be only working with partial functions from G to 2 . This motivates the following notations and definitions. A partial function c from G to 2 , denoted $c: G \rightharpoonup 2$, is a function $c: \operatorname{dom}(c) \rightarrow 2$ with $\operatorname{dom}(c) \subseteq G$. The set of all partial functions from G to 2 is denoted $2 \subseteq G$. We also denote the set of all partial functions from G to 2 with finite domains by $2^{<G}$. The action of G on 2^{G} induces a natural action of G on $2 \subseteq G$ as follows. For $g \in G$ and $c \in 2 \subseteq G$, let $g \cdot c$ be the function with domain $g \cdot \operatorname{dom}(c)$ given by $(g \cdot c)(h)=c\left(g^{-1} h\right)$ for $h \in \operatorname{dom}(g \cdot c)=g \cdot \operatorname{dom}(c)$. Alternatively, $2^{\subseteq}{ }^{G}$ may be viewed simply as 3^{G}. The bijection $\phi: 2 \subseteq G \rightarrow 3^{G}$ is given by

$$
\phi(c)(g)= \begin{cases}c(g) & \text { if } g \in \operatorname{dom}(c) \\ 2 & \text { otherwise }\end{cases}
$$

It is easy to see that ϕ is a bijection and that ϕ commutes with the action of G. Therefore, $2 \subseteq G$ may be considered as 3^{G} if desired. In particular, this provides us with a nice compact metrizable topology on $2 \subseteq G$.

There still remains three more definitions which are very central to this paper. These definitions are introduced and discussed in each of the three next sections.

2.2. 2-colorings

The related notions of 2 -coloring, k-coloring, and hyper aperiodic points are the most central notions of this paper. We first define these notions.

Definition 2.2.1. Let G be a countable group, and let X be a compact metrizable space on which G acts continuously. A point $x \in X$ is called hyper aperiodic if every point in $\overline{[x]}$ is aperiodic. Equivalently, x is hyper aperiodic if $\overline{[x]}$ is a free subflow of X.

In the particular context of Bernoulli flows we have the following specialized terminology.

Definition 2.2.2. Let G be a countable group and $k \geq 2$ an integer. A point $x \in k^{G}$ is called a k-coloring if it is hyper aperiodic. That is, x is a k-coloring if every point in $\overline{[x]}$ is aperiodic. Equivalently, x is a k-coloring if for every $s \in G$ with $s \neq 1_{G}$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

We will very shortly prove the equivalence of the two statements given in the previous definition.

In the context of Bernoulli flows, the terms k-coloring and hyper aperiodic are interchangeable. The term k-coloring, or to be more precise, 2 -coloring, is used with much greater frequency within the paper than the term hyper aperiodic. The reason is that 2 -coloring was the original term and the term hyper aperiodic was adopted much later on in order to discuss the concept in a more general setting. Still, a nice feature of of the term k-coloring is that it emphasizes the combinatorial characterization and is also reminiscent of the term coloring in graph theory as both notions roughly mean that nearby things look different.

Before proving that the two conditions in the previous definition are equivalent, we introduce one more definition.

Definition 2.2.3. Let G be a countable group, $k \geq 2$ an integer, $x \in k^{G}$, and $s \in G$ with $s \neq 1_{G}$. We say that x blocks s if no element of $\overline{[x]}$ has period s. Equivalently, x blocks s if there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

Notice that $x \in k^{G}$ is a k-coloring if and only if x blocks all non-identity $s \in G$.
The following lemma, which proves the equivalence of the combinatorial and dynamical conditions found in the previous two definitions, originally appeared, independently, in [GJS] and $[\mathbf{G U}]$. For the convenience of the reader we include the proof below.

Lemma 2.2 .4 ([GJS]; Pestov, c.f. [GU]). Let G be a countable group, $k \geq 2$ an integer, $x \in k^{G}$, and $s \in G$ with $s \neq 1_{G}$. Then $s \cdot y \neq y$ for all $y \in \overline{[x]}$ if and only if there is a finite set $T \subseteq G$ so that

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

Proof. (\Leftarrow) Assume x has the combinatorial property. Suppose $y \in \overline{[x]}$, that is, there are $h_{m} \in G$ with $h_{m} \cdot x \rightarrow y$ as $m \rightarrow \infty$. We show that $s \cdot y \neq y$. Assume not and suppose $s \cdot y=y$. Then by the continuity of the action we have that $s^{-1} h_{m} \cdot x \rightarrow s^{-1} \cdot y=y$. Let $T \subseteq G$ be a finite set such that for any $g \in G$ there
is $t \in T$ with $x(g t) \neq x(g s t)$. Let n be large enough so that $T \subseteq\left\{g_{0}, \ldots, g_{n}\right\}$, where g_{0}, g_{1}, \ldots is the enumeration of G used in defining the metric on k^{G}. Let $m \geq n$ be such that $d\left(h_{m} \cdot x, y\right), d\left(s^{-1} h_{m} \cdot x, y\right)<2^{-n}$. Now fix $t \in T$ with $\left(h_{m} \cdot x\right)(t)=x\left(h_{m}^{-1} t\right) \neq x\left(h_{m}^{-1} s t\right)=\left(s^{-1} h_{m} \cdot x\right)(t)$. Then $y(t)=\left(h_{m} \cdot x\right)(t) \neq$ $\left(s^{-1} h_{m} \cdot x\right)(t)=y(t)$, a contradiction.
(\Rightarrow) Assume $s \cdot y \neq y$ for all $y \in \overline{[x]}$. Denote $C=\overline{[x]}$. Then for any $y \in C$, $s^{-1} \cdot y \neq y$, and hence there is $t \in G$ with $\left(s^{-1} \cdot y\right)(t) \neq y(t)$. Define a function $\tau: C \rightarrow G$ by letting $\tau(y)=g_{n}$ where n is the least so that $\left(s^{-1} \cdot y\right)\left(g_{n}\right) \neq y\left(g_{n}\right)$. Then τ is a continuous function. Since C is compact we get that $\tau(C) \subseteq G$ is finite. Let $T=\tau(C)$. Then for any $g \in G$, there is $t \in T$ such that $x(g t)=\left(g^{-1} \cdot x\right)(t) \neq$ $\left(s^{-1} g^{-1} \cdot x\right)(t)=x(g s t)$. This proves that x has the combinatorial property.

Corollary 2.2.5. Let G be a countable group, $k \geq 2$ an integer, and $x \in k^{G}$. Then x is hyper aperiodic, i.e. each $y \in \overline{[x]}$ is aperiodic, if and only if for every non-identity $s \in G$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

In view of the previous corollary, the problem of constructing free Bernoulli subflows is reduced to the problem of constructing elements $x \in 2^{G}$ with a particularly combinatorial property. The combinatorial characterization of 2 -colorings is therefore vital to our constructions.

Under the dynamical definition of blocking, the following corollary is rather obvious. However, we will tend to focus mostly on the combinatorial definition of blocking, and from the combinatorial viewpoint the statement of the following corollary is not so expected. It is therefore worth pointing out for future reference.

Corollary 2.2.6. Let G be a countable group, $k \geq 2$ an integer, $x \in k^{G}$, and $s \in G$ with $s \neq 1_{G}$. If x blocks $g^{-1} s^{n} g$ for any integer n and $g \in G$ with $s^{n} \neq 1_{G}$, then x blocks s. In particular, if x blocks s^{n} for any integer n with $s^{n} \neq 1_{G}$, then x blocks s.

Proof. We will use the dynamical characterization of blocking. If x does not block s then there is $z \in \overline{[x]}$ with $s \cdot z=z$. Then $g^{-1} s^{n} g \cdot\left(g^{-1} \cdot z\right)=g^{-1} \cdot z \in \overline{[x]}$. Hence x does not block $g^{-1} s^{n} g$ for any $g \in G$ and n with $s^{n} \neq 1_{G}$.

We will also find it useful to discuss blockings for partial functions on G.
Definition 2.2.7. Let G be a countable group, $c \in 2^{\subseteq G}$, and $s \in G$ with $s \neq 1_{G}$. We say that c blocks s if for any $x \in 2^{G}$ with $c \subseteq x, x$ blocks s.

If G is infinite no element of $2^{<G}$ can block any $s \in G$. There are, however, partial functions with coinfinite domains that can block all $s \in G$ with $s \neq 1_{G}$. As an example, suppose $y \in 2^{\mathbb{Z}}$ is a 2 -coloring on \mathbb{Z}. Consider a partial function $c: \mathbb{Z} \rightharpoonup 2$ defined by $c(2 n)=y(n)$ for all $n \in \mathbb{Z}$. Then c blocks all $s \in \mathbb{Z}$ with $s \neq 0$. This is because, for any $x \in 2^{\mathbb{Z}}$ with $c \subseteq x, x$ blocks all $2 s$ with $s \neq 0$, and therefore by Corollary $2.2 .6 x$ blocks all s with $s \neq 0$. It follows that any $x \in 2^{G}$ with $c \subseteq x$ is also a 2-coloring on \mathbb{Z}.

Before closing this section we remark that in a countably infinite group, a single finite set cannot witness the blocking of all shifts.

Lemma 2.2.8. Let G be a countably infinite group. Then there are no finite sets $T \subseteq G$ such that for all $s \in G$ with $s \neq 1_{G}$, there is $t \in T$ with $x(g t) \neq x(g s t)$.

Proof. Assume not, and let $T \subseteq G$ be such a finite set. By induction we can define an infinite sequence $\left(h_{n}\right)$ of elements of G so that $\left(h_{n} T\right)$ are pairwise disjoint. In fact, let $h_{0} \in G$ be arbitrary. In general, suppose h_{0}, \ldots, h_{n} have been defined so that $h_{0} T, \ldots, h_{n} T$ are pairwise disjoint. Let $h_{n+1} \in G-\left(h_{0} T \cup \cdots \cup h_{n} T\right) T^{-1}$. Since G is infinite and $\left(h_{0} T \cup \cdots \cup h_{n} T\right) T^{-1}$ is finite, such h_{n+1} exists. Then $h_{n+1} T$ is disjoint from $h_{0} T, \ldots, h_{n} T$. Now consider the partial functions $c_{n} \in 2^{\subseteq G}$ with $\operatorname{dom}\left(c_{n}\right)=T$ defined by $c_{n}(t)=x\left(h_{n} t\right)$. Since there are only finitely many partial functions with domain T, there are $n \neq m$ such that $c_{n}=c_{m}$. Thus $x\left(h_{n} t\right)=x\left(h_{m} t\right)$ for all $t \in T$. Thus if we let $s=h_{m}^{-1} h_{n}, T$ fails to witness that x blocks s, a contradiction.

2.3. Orthogonality

The notion of orthogonality is another central notion to this paper. On the one hand, a pair of points being orthogonal says that they are distinct from one another in a strong sense, and on the other hand the notion of orthogonality carries along with it some nice properties which we will make use of frequently.

Definition 2.3.1. Let G be a countable group, let X be a compact metrizable space on which G acts continuously, and let $x_{0}, x_{1} \in X$. We say that x_{0} and x_{1} are orthogonal, denoted $x_{0} \perp x_{1}$, if $\overline{\left[x_{0}\right]}$ and $\overline{\left[x_{1}\right]}$ are disjoint. If X is a Bernoulli flow, then this is equivalent to the existence of a finite set $T \subseteq G$ such that

$$
\forall g_{0}, g_{1} \in G \exists t \in T x_{0}\left(g_{0} t\right) \neq x_{1}\left(g_{1} t\right)
$$

The following lemma implies that within the context of Bernoulli flows, the two conditions given in the previous definition are equivalent.

Lemma 2.3.2. Let G be a countable group, $k \geq 2$ an integer, and $x_{0}, x_{1} \in k^{G}$. Then $\left[x_{0}\right]$ and $\left[x_{1}\right]$ are disjoint if and only if there is a finite set $T \subseteq G$ such that

$$
\forall g_{0}, g_{1} \in G \exists t \in T x_{0}\left(g_{0} t\right) \neq x_{1}\left(g_{1} t\right) .
$$

Proof. (\Rightarrow) Suppose $\overline{\left[x_{0}\right]} \cap \overline{\left[x_{1}\right]}=\varnothing$. Since they are both compact it follows that there is some $\delta>0$ such that for any $z_{0} \in \overline{\left[x_{0}\right]}$ and $z_{1} \in \overline{\left[x_{1}\right]}, d\left(z_{0}, z_{1}\right) \geq \delta$. Recall that the metric on k^{G} is defined in terms of an enumeration $1_{G}=g_{0}, g_{1}, \ldots$ of G. Let n be large enough such that $\delta \geq 2^{-n}$. Then in particular for any $g_{0}, g_{1} \in G$, $d\left(g_{0}^{-1} \cdot x_{0}, g_{1}^{-1} \cdot x_{1}\right) \geq 2^{-n}$. This implies that there is $t \in\left\{g_{0}, \ldots, g_{n}\right\}$ such that $x_{0}\left(g_{0} t\right)=\left(g_{0}^{-1} \cdot x_{0}\right)(t) \neq\left(g_{1}^{-1} \cdot x_{1}\right)(t)=x_{1}\left(g_{1} t\right)$.
(\Leftarrow) Conversely, suppose that T is a finite set such that for every pair $g_{0}, g_{1} \in G$ there is $t \in T$ with $x_{0}\left(g_{0} t\right) \neq x_{1}\left(g_{1} t\right)$. Let n be large enough such that $T \subseteq$ $\left\{g_{0}, \ldots, g_{n}\right\}$. Then for any $y_{0} \in\left[x_{0}\right]$ and $y_{1} \in\left[x_{1}\right]$, there is $t \in T$ such that $y_{0}(t) \neq y_{1}(t)$, and thus $d\left(y_{0}, y_{1}\right) \geq 2^{-n}$. It follows that for any $z_{0} \in \overline{\left[x_{0}\right]}$ and $z_{1} \in \overline{\left[x_{1}\right]}, d\left(z_{0}, z_{1}\right) \geq 2^{-n}$, and therefore $\overline{\left[x_{0}\right]} \cap \overline{\left[x_{1}\right]}=\varnothing$.

We will frequently work with infinite sets of pairwise orthogonal elements. In this situation we remark that the pairwise orthogonality cannot be witnessed by a single finite set.

LEmma 2.3.3. Let G be a countable group, $k \geq 2$ an integer, and x_{0}, x_{1}, \ldots be infinitely many pairwise orthogonal elements of $k^{\bar{G}}$. Then there are no finite sets $T \subseteq G$ such that for any $n \neq m$ there is $t \in T$ with $x_{n}(t) \neq x_{m}(t)$.

Proof. Assume not, and let $T \subseteq G$ be such a finite set. Consider the partial functions $c_{n} \in 2^{\subseteq G}$ with $\operatorname{dom}\left(c_{n}\right)=T$ defined by $c_{n}(t)=x_{n}(t)$. Since there are only finitely many partial functions with domain T, there are $n \neq m$ such that $c_{n}=c_{m}$. Thus for all $t \in T, x_{n}(t)=x_{m}(t)$, a contradiction.

2-colorings were constructed on every countable group in [GJS], and they are also constructed in this paper (with a much improved construction). The known methods for constructing 2-colorings on general countable groups involve purely geometric and combinatorial methods, and the constructions are rather long and technical. There is therefore motivation to develop simpler constructions for more restricted classes of groups. We do this in Chapter 3 and Section 4.2. The construction in Section 4.2 uses geometric methods, as in the general setting. However, in Chapter 3 we construct 2-colorings on all solvable groups, all free groups, and all residually finite groups by using algebraic methods. The notion of orthogonality plays a key role in these constructions. The following definition will be used in Chapter 3.

Definition 2.3.4. Let G be a countable group, $k \geq 2$ an integer, and $\lambda \geq 1$ a cardinal number. G is said to have the (λ, k)-coloring property, if there exist λ many pairwise orthogonal k-colorings of $G . G$ is said to have the coloring property if G has the $(1,2)$-coloring property, i.e., there is a 2 -coloring on G.

We point out that it has already been proven in [GJS] that every countable group has the coloring property, i.e. admits a 2 -coloring, and moreover that every countably infinite group has the $\left(2^{\aleph_{0}}, 2\right)$-coloring property. So for any cardinal $\lambda \leq 2^{\aleph_{0}}$ and integer $k \geq 2$, every countably infinite group has the (λ, k)-coloring property. The above definition is therefore rather trivial, but nonetheless it will be useful for studying algebraic constructions of 2-colorings in Chapter 3.

It is easy that finite groups have the coloring property. However, it is not clear how many orthogonal k-colorings there can be.

Lemma 2.3.5. Every finite group has the coloring property. Every finite group with at least 3 elements has the $(2,2)$-coloring property. The two element group \mathbb{Z}_{2} does not have the (2,2)-coloring property.

Proof. For any finite group G let $c\left(1_{G}\right)=0$ and $c(g)=1$ for all $g \neq 1_{G}$. Then c is a 2 -coloring on G. Let $\bar{c}(g)=1-c(g)$ for all $g \in G$. If $|G|>2$ then c and \bar{c} are both 2-colorings and $c \perp \bar{c} . \mathbb{Z}_{2}$ has only two 2-colorings, but they are not orthogonal (they are in the same orbit).

2.4. Minimality

We now discuss the classical notion of minimality. We again see that in the context of Bernoulli flows this dynamical notion has a combinatorial characterization.

Definition 2.4.1. Let G be a countable group, and let X be a compact metrizable space on which G acts continuously. A subflow $Y \subseteq X$ is minimal if $\overline{[y]}=Y$ for all $y \in Y$. A point $x \in X$ is minimal if $\overline{[x]}$ is minimal. If X is a Bernoulli flow, then $x \in X$ is minimal if it satisfies the following: for every finite $A \subseteq G$ there exists a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T \forall a \in A x(g t a)=x(a) .
$$

As a word of caution, we point out that our definition of minimality of a point is not standard; it is relatively common to call x almost-periodic if $\overline{[x]}$ is minimal. However, for us almost-periodic will have a different meaning.

In a moment we will prove that in the context of Bernoulli flows the two stated conditions for minimality of a point are equivalent. However, first we prove the standard fact that minimal subflows always exist. We first give a standard wellknown argument for their existence assuming AC.

Lemma 2.4.2 (ZFC). Let X be a compact Hausdorff space, and let G be a group which acts on X. Then X contains a minimal subflow.

Proof. Consider the collection of all subflows of X, ordered by reverse inclusion. This collection is nonempty because it contains X itself. If $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a chain, then each X_{n} is a subflow and hence is closed, thus compact. So $Y=\bigcap_{n \in \mathbb{N}} X_{n}$ is a nonempty compact set. Since X is Hausdorff, Y is closed. Y is also clearly G-invariant. The claim now follows by applying Zorn's Lemma.

In fact, AC is not needed to prove Lemma 2.4.2, at least in the case when X is Polish. We are not sure if this has been observed before so we give the proof in the following lemma.

Lemma 2.4.3 (ZF). Let X be a compact Polish space on which the group G acts continuously. Then there is a minimal subflow.

Proof. Let $\left\{U_{n}\right\}_{n \in \mathbb{N}}$ enumerate a base for X. Let $F(X)$ be the standard Borel space of closed (so compact) non-empty subsets of X with the usual Effros Borel structure (which, since X is compact, is generated by the Vietoris topology on $F(X)$). By the Borel selection theorem in descriptive set theory (c.f. [K, Theorem 12.13] or [G, Theorem 1.4.6]) there is a Borel function $s: F(X) \rightarrow X$ which is a selector, that is, $s(F) \in F$ for all $F \in F(X)$. We define inductively closed invariant sets F_{α} satisfying $F_{\beta} \subsetneq F_{\alpha}$ for all $\alpha<\beta$. Let $F_{0}=X$. If α is a limit ordinal, let $F_{\alpha}=\bigcap_{\beta<\alpha} F_{\beta}$ (which is non-empty by compactness). If $\alpha=\beta+1$, stop the construction if F_{β} is minimal. Otherwise, let n be least such that $F_{\beta} \cap U_{n} \neq \varnothing$ and $F_{\beta}-G \cdot U_{n}=F_{\beta}-\bigcup_{g \in G} g \cdot U_{n} \neq \varnothing$. Such an n clearly exists if F_{β} is an invariant but not minimal closed set. Let $A=F_{\beta}-U_{n}$. Let $F=\{x \in A: \overline{[x]} \subseteq A\}$. Note that $X-F=(X-A) \cup\{x: \exists g \in G g \cdot x \in X-A\}$. Since G acts continuously on X, this shows that $X-F$ is open, so F is closed. Let $x_{\alpha}=s(F)$, and let $F_{\alpha}=\overline{\left[x_{\alpha}\right]}$. Clearly F_{α} is a closed invariant set which is properly contained in F_{β}. The above transfinite recursion defining the F_{α} is clearly done in ZF. The construction must stops at some ordinal θ, and we are done as F_{θ} is then a minimal subflow.

In fact, using a little more descriptive set theory one can prove more. We state this in the next lemma.

Lemma 2.4.4 (ZF). Let X be a compact Polish space and let G be a Polish group acting in a Borel way on X. Then there is a minimal subflow.

Proof. We proceed as in Lemma 2.4.3, defining by transfinite recursion a sequence F_{α} of (non-empty) closed, invariant subsets of X. At limit stages we again take intersections. If $\alpha=\beta+1$ and F_{β} is not a minimal flow, we again let n be least such that $F_{\beta} \cap U_{n} \neq \varnothing$ and $F_{\beta}-G \cdot U_{n} \neq \varnothing$. Again let $A=F_{\beta}-U_{n}$ and

$$
F=\{x: \overline{[x]} \subseteq A\}=\{x: \forall g \in G(g \cdot x \in A)\}
$$

Note that F is a non-empty Π_{1}^{1} set, using that the action of G on X is Borel. In fact, consider the relation $R \subseteq F(X) \times X$ defined by $R(A, x) \leftrightarrow \forall g \in G(g \cdot x \in A)$. This is a Π_{1}^{1} relation in the Polish space $F(X) \times X$. It is a theorem of ZF that Π_{1}^{1} subsets of products of Polish spaces admit $\boldsymbol{\Pi}_{1}^{1}$ uniformizations (recall a uniformization R^{\prime} of a relation $R \subseteq X \times Y$ means $R^{\prime} \subseteq R$, $\operatorname{dom}\left(R^{\prime}\right)=\operatorname{dom}(R)$, and R^{\prime} is the graph of a (partial) function). Here we do not care about the complexity of the uniformization, only that the relation R has a uniformizing function, call it s, provably in ZF. The proof then finishes as in Lemma 2.4.3, letting $x_{\alpha}=s(F)$ and $F_{\alpha}=\overline{\left[x_{\alpha}\right]}$ as before.

Now we prove the equivalence of the dynamical and combinatorial characterizations of minimality (of a point) in the context of Bernoulli flows.

Lemma 2.4.5. Let G be a countable group and $x \in k^{G}$. Then $\overline{[x]}$ is a minimal subflow iff for every finite $A \subseteq G$ there exists a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T \forall a \in A x(g t a)=x(a)
$$

Proof. (\Rightarrow) Assume $\overline{[x]}$ is a minimal subflow. Let $A \subseteq G$ be arbitrary but finite, and let n be large enough such that $A \subseteq\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$, where g_{0}, g_{1}, \ldots is the enumeration of G used in defining the metric on k^{G}. For every $z \in \overline{[x]}$ there exists $h \in G$ with $d(h \cdot z, x)<2^{-n}$ since $[z]$ is dense in $\overline{[x]}$. Define $\phi(z)=g_{m}$, where m is the least integer such that $d\left(g_{m}^{-1} \cdot z, x\right)<2^{-n}$. Then $\phi: \overline{[x]} \rightarrow G$ is continuous. Since $\overline{[x]}$ is compact, it follows that $\phi(\overline{[x]})$ is finite. Set $T=\phi(\overline{[x]})$. In particular, we have that for any $g \in G$ there is $t \in T$ with $d\left(t^{-1} \cdot\left(g^{-1} \cdot x\right), x\right)<2^{-n}$. Therefore, for all $a \in A, \quad x(g t a)=\left(t^{-1} \cdot g^{-1} \cdot x\right)(a)=x(a)$.
(\Leftarrow) Now assume x has the stated combinatorial property. Let $z \in \overline{[x]}$. It suffices to show that $x \in \overline{[z]}$. For this we fix an arbitrary $\epsilon>0$ and show that $d([z], x)<\epsilon$. Then since ϵ is arbitrary, we would actually have $d([z], x)=0$ and so $x \in \overline{[z]}$. For this let n be large enough such that $2^{-n}<\epsilon$, and set $A=$ $\left\{g_{0}, g_{1}, \ldots, g_{n}\right\}$. By our assumption, there is a finite $T \subseteq G$ such that for all $g \in G$ there is $t \in T$ with $x(g t a)=x(a)$ for all $a \in A$. Let h_{i} be a sequence in G with $h_{i} \cdot x \rightarrow z$ as $i \rightarrow \infty$. Let m be large enough such that $T A \subseteq\left\{g_{0}, g_{1}, \ldots, g_{m}\right\}$, and fix i with $d\left(h_{i} \cdot x, z\right)<2^{-m}$. Then for some $t \in T, x\left(h_{i}^{-1} t a\right)=x(a)$ for all $a \in A$. Thus $z(t a)=\left(h_{i} \cdot x\right)(t a)=x\left(h_{i}^{-1} t a\right)=x(a)$ for all $a \in A$. This implies that $d([z], x)<2^{-n}<\epsilon$, as promised.

The combinatorial characterization of minimality allows us to explicitly construct minimal elements of 2^{G} without appealing to Zorn's lemma. It also has the following immediate corollary about the descriptive complexity of the set of all minimal elements.

Corollary 2.4.6. Let G be a countable group. The set of all minimal elements of 2^{G} is $\boldsymbol{\Pi}_{3}^{0}$.

We also note the following basic fact, which provides a useful way to obtain orthogonal elements through minimality.

Lemma 2.4.7. Let G be a countable group and $x \in 2^{G}$. If $y \in 2^{G}-\overline{[x]}$ is minimal then $y \perp x$.

Proof. By Lemma 2.3 .2 it suffices to show that $\overline{[y]} \cap \overline{[x]}=\varnothing$. Assume not, and let $z \in \overline{[y]} \cap \overline{[x]}$. Then $\overline{[z]} \subseteq \overline{[x]}$. Moreover, by minimality of $y, \overline{[z]}=\overline{[y]}$. Thus $y \in \overline{[y]}=\overline{[z]} \subseteq \overline{[x]}$, contradicting our assumption.

2.5. Strengthening and weakening of 2-colorings

In this section we introduce some natural strengthening and weakening of 2colorings which will be further studied in later chapters. We first give their definitions.

Definition 2.5.1. Let G be a countable group and $x, y \in 2^{G}$. We call x and y almost equal, denoted $x=^{*} y$, if the set $\{g \in G: x(g) \neq y(g)\}$ is finite.

Definition 2.5.2. Let G be a countable group and $x \in 2^{G}$.
(1) For $s \in G$ with $s \neq 1_{G}$, we say that x nearly blocks s if there are finite sets $S, T \subseteq G$ such that

$$
\forall g \notin S \exists t \in T x(g t) \neq x(g s t) .
$$

x is called a near 2 -coloring on G if x nearly blocks s for all $s \in G$ with $s \neq 1_{G}$.
(2) x is called an almost 2 -coloring on G if there is a 2-coloring y on G such that $x={ }^{*} y$.
(3) For $s \in G$ with $s \neq 1_{G}$, we say that x strongly blocks s if x blocks s and there are infinitely many $g \in G$ such that $x(s g) \neq x(g) . x$ is called a strong 2 -coloring on G if x strongly blocks s for all $s \in G$ with $s \neq 1_{G}$,
We first mention that there is an equivalent dynamical characterization for near 2-colorings. We remind the reader that if A is a subset of a topological space X and $x \in X$, then x is said to be a limit point of A if x lies in the closure of $A-\{x\}$.

Lemma 2.5.3. Let G be a countable group and let $x \in 2^{G}$. The following are equivalent:
(i) x is a near 2-coloring;
(ii) for every non-identity $s \in G$ there are finite sets $S, T \subseteq G$ so that for all $g \in G-S$ there is $t \in T$ with $x(g t) \neq x(g s t)$;
(iii) every limit point of $[x]$ is aperiodic.

Proof. The equivalence of (i) and (ii) is by definition.
(ii) \Rightarrow (iii). Let $y \in[x]$ be a limit point of $[x]$. Then there is a non-repeating sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ of group elements of G with $y=\lim g_{n} \cdot x$. Fix a non-identity $s \in G$. It suffices to show that $s^{-1} \cdot y \neq y$. Let $S, T \subseteq G$ be finite and such that for all $g \in G-S$ there is $t \in T$ with $x(g t) \neq x(g s t)$. Let $m \in \mathbb{N}$ be such that for all $n \geq m$ and all $t \in T$

$$
y(t)=\left(g_{n} \cdot x\right)(t) \text { and } y(s t)=\left(g_{n} \cdot x\right)(s t) .
$$

Since $\left(g_{n}\right)_{n \in \mathbb{N}}$ is non-repeating and S is finite, there is $n \geq m$ with $g_{n}^{-1} \notin S$. Let $t \in T$ be such that $x\left(g_{n}^{-1} t\right) \neq x\left(g_{n}^{-1} s t\right)$. Then we have

$$
y(t)=\left(g_{n} \cdot x\right)(t)=x\left(g_{n}^{-1} t\right) \neq x\left(g_{n}^{-1} s t\right)=\left(g_{n} \cdot x\right)(s t)=y(s t)=\left(s^{-1} \cdot y\right)(t)
$$

Therefore $s^{-1} \cdot y \neq y$.
(iii) \Rightarrow (ii). Fix a non-identity $s \in G$. We must find sets S and T satisfying (ii). Let C be the set of limit points of $[x]$. Then C is closed, compact, and
nonempty (since 2^{G} is compact). Let $g_{0}, g_{1}, g_{2}, \ldots$ be the enumeration of G used in defining the metric d on 2^{G}. Define $\phi: C \rightarrow \mathbb{N}$ by letting $\phi(y)$ be the least n with $y\left(g_{n}\right) \neq y\left(s g_{n}\right)=\left(s^{-1} \cdot y\right)\left(g_{n}\right)$. Then ϕ is continuous. Since C is compact, ϕ has finite image. So there is a finite $T \subseteq G$ containing the image of ϕ. So for every $y \in C$ there is $t \in T$ with $y(t) \neq y(s t)$. Let S be the set of $g \in G$ for which $x(g t)=x(g s t)$ for all $t \in T$. Towards a contradiction, suppose S is infinite. By compactness of 2^{G}, we can pick a non-repeating sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ of elements of S such that $g_{n}^{-1} \cdot x$ converges to some $y \in 2^{G}$. Now $y \in C$ and for $t \in T$ and sufficiently large $n \in \mathbb{N}$ we have

$$
y(t)=\left(g_{n}^{-1} \cdot x\right)(t)=x\left(g_{n} t\right)=x\left(g_{n} s t\right)=\left(g_{n}^{-1} \cdot x\right)(s t)=y(s t) .
$$

So $y(t)=y(s t)$ for all $t \in T$, a contradiction. We conclude that S is finite.

Lemma 2.5.4. Let G be a countable group. Then the following hold:
(a) Every strong 2-coloring on G is a 2-coloring on G.
(b) Every 2-coloring on G is an almost 2-coloring on G.
(c) Every almost 2-coloring on G is a near 2 -coloring on G.
(d) Every aperiodic near 2 -coloring on G is a 2 -coloring on G.
(e) x is a strong 2 -coloring on G iff for all $y=^{*} x, y$ is a 2 -coloring on G.

Proof. (a) and (b) are immediately obvious and (c) follows from the previous lemma. We only show (d) and (e).

For (d) assume that x is an aperiodic near 2 -coloring on G. By the previous lemma all of the limit points of $[x]$ are aperiodic. Since $\overline{[x]}$ is the union of $[x]$ with the limit points of $[x]$, it follows that $\overline{[x]}$ is free (i.e. consists entirely of aperiodic points). Thus x is a 2 -coloring.

Now for (e) we first show (\Rightarrow). Assume x is a strong 2-coloring on G. Let $y=^{*} x$ and $A=\{g \in G: x(g) \neq y(g)\}$. Then y is an almost 2-coloring, and in particular a near 2 -coloring. By (d), it suffices to show that y is aperiodic. Let $s \in G$ with $s \neq 1_{G}$. Let $g \in G-\left(A \cup s^{-1} A\right)$ be such that $x(s g) \neq x(g)$. Then $g, s g \notin A$, and $y(g)=x(g) \neq x(s g)=y(s g)$. Hence y is aperiodic.

For (\Leftarrow), assume that for all $y={ }^{*} x, y$ is a 2 -coloring on G. In particular x is a 2 -coloring on G. We show that x strongly blocks s for all $s \in G$ with $s \neq 1_{G}$. Fix such an s. Consider two cases.

Case 1: s has infinite order, i.e., $\langle s\rangle$ is infinite. Let $T \subseteq G$ be a finite set witnessing that x blocks s. Since $T T^{-1} \cap\langle s\rangle$ is finite, there is $m \in \mathbb{N}$ such that for all k with $|k| \geq m, s^{k} \notin T T^{-1}$. Fix such an m. Then we have that for all distinct $n, k \in \mathbb{N}, s^{n m} T \cap s^{k m} T=\varnothing$. By blocking we have that for all $n \in \mathbb{N}$ there is $t_{n} \in T$ such that $x\left(s^{n m} t_{n}\right) \neq x\left(s^{n m} s t_{n}\right)$. Thus $x\left(s^{n m} t_{n}\right) \neq x\left(s s^{n m} t_{n}\right)$ for all $n \in \mathbb{N}$. Since the set $\left\{s^{n m} t_{n}: n \in \mathbb{N}\right\}$ is infinite, we have that x strongly blocks s.

Case 2: s has finite order. Toward a contradiction, assume that $A=\{t \in G$: $x(t) \neq x(s t)\}$ is finite. Then for all $t \notin A, x(s t)=x(t)$. Now define $y={ }^{*} x$ so that $\{g \in G: y(g) \neq x(g)\} \subseteq\langle s\rangle A$ and y is constant on $\langle s\rangle A$. Then $y(s t)=y(t)$ for all $t \in G$. Thus y is not a 2 -coloring, contradiction.

Thus we have the following implications:
strong 2-coloring
(a)

2-coloring \Longleftrightarrow aperiodic near 2-coloring
\downarrow (b)
almost 2-coloring
(c)
near 2-coloring
We will show in Section 6.3 that the converses of (a) and (b) are false. On the other hand, in Section 10.3 we will prove that the converse of (c) is true. We are particularly interested in the following property for countable groups.

Definition 2.5.5. A countable group G is said to have the almost 2 -coloring property $(A C P)$ if every almost 2 -coloring on G is a 2-coloring on G.

The following lemma is easy to prove.
Lemma 2.5.6. Let G be a countable group. Then the following are equivalent:
(i) G has the $A C P$;
(ii) Every 2-coloring on G is a strong 2-coloring on G.
(iii) Every almost 2-coloring on G is a strong 2-coloring on G.

Proof. It is immediate that (iii) is equivalent to the combination of (i) and (ii), thus it suffices to show the equivalence of (i) and (ii). For (i) \Rightarrow (ii), suppose G has the ACP. Let x be a 2 -coloring on G. Let $y={ }^{*} x$. Then y is an almost 2 -coloring. By the ACP y is a 2 -coloring. Thus we have shown that every $y={ }^{*} x$ is a 2 -coloring on G. By Lemma 2.5.4 (e) x is a strong 2 -coloring on G. The converse $($ ii $) \Rightarrow($ i) is similar.

We consider the notion of centralizer in a group G in the following proposition. For $g \in G$, the centralizer of g in G is defined as

$$
\mathrm{Z}_{G}(g)=\{h \in G: g h=h g\}
$$

Proposition 2.5.7. Let G be a countably infinite group. If for every $1_{G} \neq u \in$ G there is $1_{G} \neq v \in\langle u\rangle$ with $\left|\mathrm{Z}_{G}(v)\right|=\infty$, then every near 2 -coloring on G is a 2 -coloring on G. In particular, a group G has the $A C P$ if for every $1_{G} \neq u \in G$ there is $1_{G} \neq v \in\langle u\rangle$ with $\left|\mathrm{Z}_{G}(v)\right|=\infty$.

Proof. Let G be a group with the stated property. Let $x \in 2^{G}$ be a near 2 -coloring. We will show that x is a 2 -coloring by showing that x is aperiodic and then applying clause (d) of Lemma 2.5.4. Towards a contradiction, suppose x is not aperiodic. So there is $1_{G} \neq u \in G$ with $u \cdot x=x$. Let $1_{G} \neq v \in\langle u\rangle$ be such that $\left|\mathrm{Z}_{G}(v)\right|=\infty$. Notice $v \cdot x=x$. Let g_{1}, g_{2}, \ldots be any non-repeating sequence of elements in $\mathrm{Z}_{G}(v)$. By compactness of 2^{G} and by passing to a subsequence if necessary, we may suppose that $\left(g_{n} \cdot x\right)_{n \in \mathbb{N}}$ is a convergent sequence. Set $y=$ $\lim g_{n} \cdot x$. Since each $g_{n} \in \mathrm{Z}_{G}(v)$, we have

$$
v \cdot y=v \cdot\left(\lim g_{n} \cdot x\right)=\lim v \cdot g_{n} \cdot x=\lim g_{n} \cdot v \cdot x=\lim g_{n} \cdot x=y
$$

Thus y is a limit point of $[x]$ and is periodic. This contradicts Lemma 2.5.3. We conclude that x must be aperiodic and is thus a 2 -coloring.

The condition above is in fact both necessary and sufficient for G to have the ACP. The proof of necessity will be provided in Section 6.3. From the previous proposition we can easily list a few classes of groups which have the ACP. Recall the following definition of FC groups.

Definition 2.5.8. If G is a group in which every conjugacy class is finite then G is called an FC group. Specifically, an FC group G is a group such that for all $g \in G,\left\{h g h^{-1}: h \in G\right\}$ is finite.

Corollary 2.5.9. Let G be a countably infinite group. Then G has the $A C P$ if any of the following is true:
(i) every non-identity element of G has infinite order;
(ii) G is a free abelian or free non-abelian group;
(iii) G is nilpotent;
(iv) G is an $F C$ group.

Proof. (i). For any $1_{G} \neq v \in G$ we have that $\langle v\rangle \subseteq \mathrm{Z}_{G}(v)$. So if every non-identity group element has infinite order, then every group element has infinite centralizer. So by the previous proposition G has the ACP.
(ii). This follows immediately from (i).
(iii). Set $G_{0}=G$ and in general define $G_{n+1}=\left[G, G_{n}\right]$. Since G is nilpotent, G_{n} is trivial for sufficiently large n. Let n be such that G_{n} is infinite and G_{n+1} is finite. Fix $1_{G} \neq v \in G$. We have that for all $g \in G_{n},[g, v] \in G_{n+1}$. If $g, h \in G_{n}$ satisfy $[g, v]=[h, v]$ then

$$
g^{-1} v^{-1} g v=[g, v]=[h, v]=h^{-1} v^{-1} h v
$$

so

$$
h g^{-1} v g h^{-1}=v
$$

and therefore $h g^{-1} \in \mathrm{Z}_{G}(v)$. Since G_{n} is infinite and G_{n+1} is finite, it immediately follows that infinitely many elements of G_{n} lie in $\mathrm{Z}_{G}(v)$. By the previous proposition G has the ACP.
(iv). Fix $1_{G} \neq v \in G$. If $g, h \in G$ satisfy $g v g^{-1}=h v h^{-1}$ then it follows $h^{-1} g \in \mathrm{Z}_{G}(v)$. Since G is infinite and the conjugacy class of v is finite, it follows that $\mathrm{Z}_{G}(v)$ is infinite. So by the previous proposition G has the ACP.

In Section 6.3, we will show that solvable, polycyclic, and virtually abelian groups in general do not have the ACP. In contrast, in Section 6.1 we will show that every countably infinite group has a strong 2 -coloring.

2.6. Other variations of 2-colorings

In this section we introduce some further concepts related to 2-colorings. These will not be our main subjects of investigation. However, we will note from time to time that our methods for constructing 2-colorings can also be applied to obtain these variations.

First we consider the dual notion of a right action of G on 2^{G} :

$$
(g \cdot x)(h)=x(h g)
$$

This induces a dual version of all the concepts that we have defined and considered throughout this chapter. Consequently we obtain the notion of right 2 -colorings.

Definition 2.6.1. Let G be a countable group. An element $x \in 2^{G}$ is called a right 2 -coloring if for any $s \in G$ with $s \neq 1_{G}$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(t g) \neq x(t s g)
$$

It is now natural to ask whether the concepts of 2-colorings and right 2-colorings can be combined.

Definition 2.6.2. Let G be a countable group. An element $x \in 2^{G}$ is called a two-sided 2 -coloring if it is both a 2 -coloring and a right 2 -coloring.

Of course, for abelian groups 2-colorings and right 2-colorings coincide, hence also with two-sided 2-colorings. For non-abelian groups, very little is known for twosided 2-colorings. In Section 3.4, we will give for non-abelian free groups examples of two-sided 2-colorings and of 2-colorings that are not right (or two-sided) 2-colorings.

Next we note that the definition of 2-colorings does not explicitly mention the inverse operation in a group, and therefore can be similarly defined for any semigroup.

Definition 2.6.3. Let S be a countable semigroup. An element 2^{S} is called a 2 -coloring on the semigroup S if for any $s \in S$ there is a finite set $T \subseteq S$ such that

$$
\forall g \in S[g \neq g s \rightarrow \exists t \in T x(g t) \neq x(g s t)]
$$

We will not systematically explore 2-colorings on semigroups in this paper. Instead, we will just consider some 2 -colorings on \mathbb{N}. These are intrinsically related to 2-colorings on \mathbb{Z}.

Definition 2.6.4. A 2-coloring $x \in 2^{\mathbb{Z}}$ is unidirectional if for all $s \in \mathbb{Z}$ there is a finite $T \subseteq \mathbb{N}$ such that

$$
\forall g \in \mathbb{Z} \exists t \in T x(g+t) \neq x(g+s+t)
$$

Thus for unidirectional 2-colorings on \mathbb{Z} one can always search for distinct colors by shifting to the right. It is clear that, if a 2 -coloring on \mathbb{Z} is unidirectional, then its restriction on \mathbb{N} is a 2 -coloring on \mathbb{N}. However, we have the following observation.

Lemma 2.6.5. Any 2 -coloring on \mathbb{Z} is unidirectional.
Proof. Suppose x is a 2 -coloring on \mathbb{Z}. Fix $s \in \mathbb{Z}$ with $s \neq 0$. Let $T \subseteq Z$ be the finite set witnessing that x blocks s. Let m be the least element of T. Then we claim that $|m|+T \subseteq \mathbb{N}$ also witnesses that x blocks s. To see this let $g \in \mathbb{Z}$ be arbitrary. Consider the element $|m|+g$. By blocking there is $t \in T$ such that $x(|m|+g+t) \neq x(|m|+g+s+t)$. Therefore $x(g+(|m|+t)) \neq x(g+s+(|m|+t))$ with $|m|+t \in|m|+T$, as required.

Thus indeed the restriction to \mathbb{N} of any 2-coloring on \mathbb{Z} is a 2-coloring on \mathbb{N}. Conversely, it is also easy to check that if $y \in 2^{\mathbb{N}}$ is a 2 -coloring on \mathbb{N} then the element $x \in 2^{\mathbb{Z}}$ defined by

$$
x(n)= \begin{cases}y(n), & \text { if } n \geq 0 \\ y(-n), & \text { otherwise }\end{cases}
$$

is a 2 -coloring on \mathbb{Z}.

2.7. Subflows of $\left(2^{\mathbb{N}}\right)^{G}$

Some of our results in this paper about Bernoulli subflows can be directly generalized to more general dynamical systems. Among continuous actions of G the shift action on $\left(2^{\mathbb{N}}\right)^{G}$ plays an important role. Let us recall the following basic fact from [DJK] about this dynamical system. Again for the convenience of the reader we give the proof below.

Lemma 2.7.1. Let G be a countable group with a Borel action on a standard Borel space X. Then there is a Borel embedding $\theta: X \rightarrow\left(2^{\mathbb{N}}\right)^{G}$ such that for all $g \in G$ and $x \in X, \theta(g \cdot x)=g \cdot \theta(x)$.

Proof. Let U_{0}, U_{1}, \ldots be a sequence of Borel sets in X separating points. Define $\theta: X \rightarrow\left(2^{\mathbb{N}}\right)^{G}$ by

$$
\theta(x)(g)(i)=1 \Longleftrightarrow g^{-1} \cdot x \in U_{i}
$$

Then θ is as required.
Thus $\left(2^{\mathbb{N}}\right)^{G}$ contains a G-invariant Borel subspace that is Borel isomorphic to the Borel G-space X. In this sense $\left(2^{\mathbb{N}}\right)^{G}$ is a universal Borel G-space among all standard Borel G-spaces. In the case that the space X is a zero-dimensional Polish space and the action of G on X is continuous, we can improve the embedding θ to be continuous.

Lemma 2.7.2. Let G be a countable group with a continuous action on a zerodimensional Polish space X. Then there is a continuous embedding $\theta: X \rightarrow\left(2^{\mathbb{N}}\right)^{G}$ such that for all $g \in G$ and $x \in X, \theta(g \cdot x)=g \cdot \theta(x)$.

Proof. In the proof of Lemma 2.7.1 if we take the U_{i} 's from a countable clopen base of X the resulting θ is continuous.

If X is compact in addition, then the resulting θ is a homeomorphic embedding.
Because of these universality properties of $\left(2^{\mathbb{N}}\right)^{G}$ we are especially interested in establishing results about its subflows. Note that $\left(2^{\mathbb{N}}\right)^{G}$ is isomorphic to the space $2^{\mathbb{N} \times G}$, and it is more convenient to consider this latter space when we consider combinatorial properties of elements. The following lemmas are analogous to their counterparts, Lemmas 2.2.4, 2.3.2 and 2.4.5, for Bernoulli flows. We state them without proof.

Lemma 2.7.3. Let G be a countable group and $x \in 2^{\mathbb{N} \times G}$. Then x is hyper aperiodic iff for any $s \in G$ there is $N \in \mathbb{N}$ and finite $T \subseteq G$ such that

$$
\forall g \in G \exists n<N \exists t \in T x(n, g t) \neq x(n, g s t) .
$$

Lemma 2.7.4. Let G be a countable group and $x_{0}, x_{1} \in 2^{\mathbb{N} \times G}$. Then x_{0} and x_{1} are orthogonal iff there is $N \in \mathbb{N}$ and finite $T \subseteq G$ such that

$$
\forall g_{0}, g_{1} \in G \exists n<N \exists t \in T x_{0}\left(n, g_{0} t\right) \neq x_{1}\left(n, g_{1} t\right) .
$$

Lemma 2.7.5. Let G be a countable group and $x \in 2^{\mathbb{N} \times G}$. Then x is minimal iff for all $N \in \mathbb{N}$ and finite $A \subseteq G$ there is a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T \forall n<N \forall a \in A x(n, g t a)=x(n, a) .
$$

Note that by Lemma 2.7.3 if $x \in 2^{\mathbb{N} \times G}$ is such that $x(0, \cdot)$ is a 2 -coloring on G then x is hyper aperiodic. Hence the existence of hyper aperiodic points is an immediate corollary of the existence of 2 -colorings on G. In Chapter 7 we will show, among other facts, that every non-empty open subset of $\left(2^{\mathbb{N}}\right)^{G}$ contains a perfect set of pairwise orthogonal minimal hyper aperiodic points.

CHAPTER 3

Basic Constructions of 2-Colorings

In this chapter we give some basic constructions of 2-colorings on groups. The methods introduced here are not as powerful as the one explored later in this paper. But they are simple and intuitive, and using these methods we are able to construct 2-colorings on all solvable groups, all free groups and some of their extensions. In fact, other than constructing 2-colorings on free groups (including \mathbb{Z}), this chapter focuses primarily on constructing 2 -colorings on group extensions.

3.1. 2-Colorings on supergroups of finite index

In this section we consider two constructions to obtain 2-colorings on a countable group from 2-colorings on a subgroup of finite index.

Let G be a countable group and $H \leq G$ with $1<|G: H|=m<\infty$. Let $\alpha_{1}=1_{G}, \alpha_{2}, \ldots, \alpha_{m}$ enumerate a set of representatives for all left cosets of H in G. Given $x, y \in 2^{H}$, we define a function $\kappa_{H}(x ; y) \in 2^{G}$ by

$$
\kappa_{H}(x ; y)(g)= \begin{cases}x(g), & \text { if } g \in H \\ y(h), & \text { if } g \notin H \text { and } g=\alpha_{i} h \text { for } 1<i \leq m .\end{cases}
$$

H	$\alpha_{2} H$		$\alpha_{m} H$
x	y	$\ldots \ldots$	y

Figure 3.1. The function $\kappa_{H}(x ; y)$.
Thus $\kappa_{H}(x ; y)$ is obtained by imposing x on H and y on every other left coset of H viewed as a copy of H (see Figure 3.1). Apparently the definition of $\kappa_{H}(x ; y)$ depends on the particular choice of left coset representatives, and they are omitted in the notation just for simplicity. However, the results we prove below about $\kappa_{H}(x ; y)$ will not depend on this choice. We first observe the following fact.

Lemma 3.1.1. Let G be a countable group and $H \leq G$ with $|G: H|<\infty$. If x is a 2-coloring on H and $y \in 2^{H}$ is such that $y \perp x$, then $\kappa_{H}(x ; y)$ is a 2-coloring on G.

Proof. Let $T_{0}=\left\{\alpha_{1}=1_{G}, \alpha_{2}, \ldots, \alpha_{m}\right\}$. Since $x \perp y$, there is a finite set $T_{1} \subseteq H$ such that for all $h_{0}, h_{1} \in H$ there is $\tau \in T_{1}$ such that $x\left(h_{0} \tau\right) \neq y\left(h_{1} \tau\right)$. Given $s \in G$ with $s \neq 1_{G}$, let

$$
I_{s}=\left\{1 \leq i \leq m: \alpha_{i}^{-1} s \alpha_{i} \in H\right\} .
$$

Since x is a 2-coloring, for each $i \in I_{s}$, there is a finite set $T_{s, i} \subseteq H$ such that for all $h \in H$ there is $\tau \in T_{s, i}$ such that $x(h \tau) \neq x\left(h \alpha_{i}^{-1} s \alpha_{i} \tau\right)$. Let

$$
T=T_{0}\left(T_{1} \cup \bigcup_{i \in I_{s}} T_{s, i}\right)
$$

We verify that T witnesses that s is blocked by $\kappa_{H}(x ; y)$. For this let $g \in G$. First there is some $1 \leq i \leq m$ such that $g^{-1} \in \alpha_{i} H$. Then $g \alpha_{i} \in H$. If $g s \alpha_{i} \notin H$, say $g s \alpha_{i}=\alpha_{j} h$ for $1<j \leq m$ and $h \in H$, then there is $\tau \in T_{1}$ such that

$$
\kappa_{H}(x ; y)\left(g \alpha_{i} \tau\right)=x\left(g \alpha_{i} \tau\right) \neq y(h \tau)=\kappa_{H}(x ; y)\left(g s \alpha_{i} \tau\right)
$$

which finishes the proof by taking $t=\alpha_{i} \tau \in T_{0} T_{1} \subseteq T$.
If $g s \alpha_{i} \in H$, then $i \in I_{s}$ since $\alpha_{i}^{-1} s \alpha_{i}=\left(g \alpha_{i}\right)^{-1}\left(g s \alpha_{i}\right) \in H$. In this case there is $\tau \in T_{s, i}$ such that

$$
\kappa_{H}(x ; y)\left(g \alpha_{i} \tau\right)=x\left(g \alpha_{i} \tau\right) \neq x\left(g \alpha_{i}\left(\alpha_{i}^{-1} s \alpha_{i}\right) \tau\right)=x\left(g s \alpha_{i} \tau\right)=\kappa_{H}(x ; y)\left(g s \alpha_{i} \tau\right)
$$

Again, by letting $t=\alpha_{i} \tau \in T_{0} T_{s, i} \subseteq T$, we have that $\kappa_{H}(x ; y)(g t) \neq \kappa_{H}(x ; y)(g s t)$, and our proof is complete.

The idea of the above proof can be informally summarized as the following procedure. Given s and g we first transfer g back to the "standard" set H. If the corresponding element $g s$ is transferred to the same set, then we note that they are related by one of finitely many conjugates of s, and use the 2-coloring property of x. If $g s$ stays out of H, then we use the orthogonality of y and x to finish the proof.

If we assume instead that y is a 2 -coloring (and x is not), then we can use the compliment of H as our standard set, but this idea encounters a difficulty when g and $g s$ are transferred to different left cosets (by the right multiplication of the same element) outside H. In this case we note that, if we assume that H is a normal subgroup of G, then the difficulty disappears. Thus we have the following corollary of the above proof.

Corollary 3.1.2. Let G be a countable group and $H \unlhd G$ with $1<|G: H|<\infty$. If y is a 2 -coloring on H and $x \in 2^{H}$ is such that $x \perp y$, then $\kappa_{H}(x ; y)$ is a 2 -coloring on G.

Proof. Given $s \in G$ with $s \neq 1_{G}$, the witnessing set T for $\kappa_{H}(x ; y)$ blocking s is the same as in the proof of Lemma 3.1.1. In fact, let α_{i} be such that $g \alpha_{i} \in H$. If $g s \alpha_{i} \notin H$ then the proof is finished as before since $x \perp y$. If $g s \alpha_{i} \in H$, then $s=\alpha_{i}\left(\left(g \alpha_{i}\right)^{-1} g s \alpha_{i}\right) \alpha_{i}^{-1} \in \alpha_{i} H \alpha_{i}^{-1}=H$. In this case let $j \neq i$, so that $g \alpha_{j} \notin H$. Then $g s \alpha_{j}=g \alpha_{j}\left(\alpha_{j}^{-1} s \alpha_{j}\right) \notin H$. Let $h \in H$ be such that $g \alpha_{j}=\alpha_{k} h$ for some k. Then $g s \alpha_{j}=\alpha_{k} h\left(\alpha_{j}^{-1} s \alpha_{j}\right)$, and there is $\tau \in T_{s, j}$ such that

$$
\kappa_{H}(x ; y)\left(g \alpha_{j} \tau\right)=y(h \tau) \neq y\left(h\left(\alpha_{j}^{-1} s \alpha_{j}\right) \tau\right)=\kappa_{H}(x ; y)\left(g s \alpha_{j} \tau\right)
$$

by the assumption that y is a 2 -coloring. Letting $t=\alpha_{j} \tau \in T_{0} T_{s, j} \subseteq T$, we have that $\kappa_{H}(x ; y)(g t) \neq \kappa_{H}(x ; y)(g s t)$ as required.

In particular, this corollary applies when $H \leq G$ and $|G: H|=2$.
The same idea of the proof of Lemma 3.1.1 can also be used to study when $\kappa_{H}\left(x_{0} ; y_{0}\right) \perp \kappa_{H}\left(x_{1} ; y_{1}\right)$. For instance, it can be shown that, if either x_{0} or y_{0} is orthogonal to both x_{1} and y_{1}, then $\kappa_{H}\left(x_{0} ; y_{0}\right) \perp \kappa_{H}\left(x_{1} ; y_{1}\right)$ (note that this holds independently from the choice of left coset representatives in the definitions of
$\kappa_{H}\left(x_{0} ; y_{0}\right)$ and $\left.\kappa_{H}\left(x_{1} ; y_{1}\right)\right)$. It follows that if $\left\{x_{0}, y_{0}, x_{1}, y_{1}\right\}$ is a set of pairwise orthogonal elements and $\left\{x_{0}, y_{0}\right\} \neq\left\{x_{1}, y_{1}\right\}$, then $\kappa_{H}\left(x_{0} ; y_{0}\right) \perp \kappa_{H}\left(x_{1} ; y_{1}\right)$. Below we state without proof a simple fact that can be justified with similar arguments.

Lemma 3.1.3. Let G be a countable group and $H \leq G$ with $|G: H|<\infty$. If $X, Y \subseteq 2^{H}$ are disjoint such that $X \cup Y$ is a set of pairwise orthogonal elements of 2^{H}, then the set

$$
\left\{\kappa_{H}(x ; y): x \in X, y \in Y\right\}
$$

is a set of pairwise orthogonal elements of 2^{G}.
Throughout the rest of the paper we use 0 to denote the constant 0 function on a group and 1 to denote the constant 1 function. It follows immediately from Lemma 2.3.2 that for any 2-coloring x on $H, x \perp 0,1$.

Recall that H is said to have the $(\lambda, 2)$-coloring property (where $\lambda \geq 1$ is a cardinal number) if there exist λ many pairwise orthogonal 2-colorings on H. We thus have the following corollary.

Corollary 3.1.4. Let G be a countable group, $H \leq G$ with $1<|G: H|<\infty$, and $\lambda \geq 1$ a cardinal number. Suppose H has the $(\lambda, 2)$-coloring property. Then the following hold:
(i) If λ is infinite then G has the $(\lambda, 2)$-coloring property.
(ii) If λ is finite then G has the $\left(\frac{1}{2} \lambda(\lambda+3), 2\right)$-coloring property.

Proof. Let X be a set of pairwise orthogonal 2-colorings on H with $|X|=\lambda$. If λ is infinite, then note that $\left\{\kappa_{H}(x ; 0): x \in X\right\}$ is a set of pairwise orthogonal 2 -colorings on G by Lemmas 3.1.1 and 3.1.3. Since $\left|\left\{\kappa_{H}(x ; 0): x \in X\right\}\right|=|X|=\lambda$, G has the $(\lambda, 2)$-coloring property. If λ is finite, we enumerate the elements of X as $x_{1}, \ldots, x_{\lambda}$. Consider the collection

$$
\left\{\kappa_{H}\left(x_{i} ; x_{j}\right): 1 \leq i<j \leq \lambda\right\} \cup\left\{\kappa_{H}\left(x_{i} ; y\right): 1 \leq i \leq \lambda, y \in\{0,1\}\right\}
$$

By Lemmas 3.1.1, 3.1.3 and the remark preceding Lemma 3.1.3, this is a set of pairwise orthogonal 2 -colorings on G. Its cardinality is $\frac{1}{2} \lambda(\lambda-1)+2 \lambda=\frac{1}{2} \lambda(\lambda+$ $3)$.

For the rest of this section we consider a generalization of $\kappa_{H}(x ; y)$ defined as follows. For $x_{1}, \ldots, x_{m} \in 2^{H}$ define

$$
\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)(g)=\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)\left(\alpha_{i} h\right)=x_{i}(h)
$$

for $g=\alpha_{i} h$, where $1 \leq i \leq m, h \in H$, and $\alpha_{1}=1_{G}, \ldots, \alpha_{m}$ enumerate a set of representatives for all left cosets of H in G.

H	$\alpha_{2} H$		$\alpha_{m} H$
x_{1}	x_{2}	$\ldots \ldots \ldots$	x_{m}

Figure 3.2. The function $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$.

Figure 3.1 illustrates the definition of $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$. Clearly, $\kappa_{H}(x ; y)=$ $\kappa_{H}(x, y, \ldots, y)$. In the following we prove a generalization of Lemma 3.1.1 which guarantees that $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$ is a 2 -coloring by assuming one of the x_{i} is a 2 coloring orthogonal to all other x_{j} 's. In the proof we will use a well known lemma of Poincaré, which we recall below.

Lemma 3.1.5. Let G be a group and $H \leq G$ with $|G: H|<\infty$. Then there is $K \unlhd G$ such that $K \leq H$ and $|H: K|<\infty$.

Proof. Let Σ be the collection of all left cosets of H in G. For each $g \in G$, let $\varphi(g)$ be a permutation of Σ given by $\varphi(g)(\alpha H)=g \alpha H$. Then $\varphi: G \rightarrow S(\Sigma)$ is a group homomorphism, where $S(\Sigma)$ is the group of all permutations of Σ. Here $S(\Sigma)$ is finite since Σ is finite. Let $K=\operatorname{ker}(\varphi)$. Then $K \unlhd G$. It follows from the finiteness of $S(\Sigma)$ that G / K is finite. Hence to finish the proof it suffices to verify that $K \leq H$. For this let $g \in K$, then $\varphi(g)=1_{S(\Sigma)}$, and in particular $\varphi(g)(H)=g H=H$, so $g \in H$.

Theorem 3.1.6. Let G be a countable group and $H \leq G$ with $|G: H|=m<\infty$. Let $x_{1}, \ldots, x_{m} \in 2^{H}$. If there is $1 \leq i \leq m$ such that x_{i} is a 2 -coloring on H and $x_{i} \perp x_{j}$ for any $1 \leq j \leq m$ with $j \neq i$, then $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$ is a 2 -coloring on G.

Proof. Let $K \unlhd G$ be given by the preceding lemma. Then $K \leq H$ and $|G: K|<\infty$. Let $\gamma_{1}=1_{G}, \ldots, \gamma_{n}$ enumerate a set of representatives for all cosets of K in G. Let $1 \leq i \leq m$ be such that x_{i} is a 2-coloring on H and that $x_{i} \perp x_{j}$ for all $j \neq i, 1 \leq j \leq m$. Since $K \leq H$ there is $1 \leq p \leq n$ such that $K \gamma_{p}=\gamma_{p} K \subseteq \alpha_{i} H$. Let $T_{0}=\left\{\gamma_{q}^{-1} \gamma_{p}: 1 \leq q \leq n\right\}$. By the orthogonality assumptions there is a finite set $T_{1} \subseteq H$ such that for all $j \neq i, 1 \leq j \leq m$, and $h, h^{\prime} \in H$ there is $\tau \in T_{1}$ such that $x_{i}(h \tau) \neq x_{j}\left(h^{\prime} \tau\right)$.

Given $s \in G$ with $s \neq 1_{G}$, let

$$
I_{s}=\left\{1 \leq q \leq n: \gamma_{p}^{-1} \gamma_{q} s \gamma_{q}^{-1} \gamma_{p} \in H\right\}
$$

Since x_{i} is a 2-coloring, for each $q \in I_{s}$, there is a finite set $T_{s, q} \subseteq H$ such that for all $h \in H$ there is $\tau \in T_{s, q}$ such that

$$
x_{i}(h \tau) \neq x_{i}\left(h \gamma_{p}^{-1} \gamma_{q} s \gamma_{q}^{-1} \gamma_{p} \tau\right)
$$

Let

$$
T=T_{0}\left(T_{1} \cup \bigcup_{q \in I_{s}} T_{s, q}\right)
$$

We claim that T witnesses that s is blocked by $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$. For this let $g \in G$. First there is some $1 \leq q \leq n$ such that $g \in K \gamma_{q}$. Then $g \gamma_{q}^{-1} \in K$ and $g \gamma_{q}^{-1} \gamma_{p} \in$ $K \gamma_{p} \subseteq \alpha_{i} H$. Let $h \in H$ be such that $g \gamma_{q}^{-1} \gamma_{p}=\alpha_{i} h$. If $g s \gamma_{q}^{-1} \gamma_{p} \notin \alpha_{i} H$, say $g s \gamma_{q}^{-1} \gamma_{p}=\alpha_{j} h^{\prime}$ for $j \neq i, 1 \leq j \leq m$, and $h^{\prime} \in H$, then there is $\tau \in T_{1}$ such that

$$
\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)\left(g \gamma_{q}^{-1} \gamma_{p} \tau\right)=x_{i}(h \tau) \neq x_{j}\left(h^{\prime} \tau\right)=\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)\left(g s \gamma_{q}^{-1} \gamma_{p} \tau\right)
$$

which finishes the proof by taking $t=\gamma_{q}^{-1} \gamma_{p} \tau \in T_{0} T_{1} \subseteq T$.
If $g s \gamma_{q}^{-1} \gamma_{p} \in \alpha_{i} H$, then $q \in I_{s}$ since

$$
\gamma_{p}^{-1} \gamma_{q} s \gamma_{q}^{-1} \gamma_{p}=\left(g \gamma_{q}^{-1} \gamma_{p}\right)^{-1}\left(g s \gamma_{q}^{-1} \gamma_{p}\right) \in\left(\alpha_{i}^{-1} H\right)\left(\alpha_{i} H\right)=H
$$

In this case there is $\tau \in T_{s, q}$ such that

$$
\begin{aligned}
& \kappa_{H}\left(x_{1}, \ldots, x_{m}\right)\left(g \gamma_{q}^{-1} \gamma_{p} \tau\right)=x_{i}(h \tau) \\
& \neq x_{i}\left(h\left(\gamma_{p}^{-1} \gamma_{q} s \gamma_{q}^{-1} \gamma_{p}\right) \tau\right)=\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)\left(g s \gamma_{q}^{-1} \gamma_{p} \tau\right) .
\end{aligned}
$$

Again, by letting $t=\gamma_{q}^{-1} \gamma_{p} \tau \in T_{0} T_{s, q} \subseteq T$ our proof is complete.
Despite the tedious notation the idea of the above proof is quite simple: we use the underlying normal subgroup to transfer the elements to a standard set just as we did in the proof of Lemma 3.1.1, and then use the assumptions of 2-coloring and orthogonality to finish the proof. The same idea can be applied again to investigate when $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right) \perp \kappa_{H}\left(y_{1}, \ldots, y_{m}\right)$. We state the following observation without proof.

Lemma 3.1.7. Let G be a countable group and $H \leq G$ with $|G: H|=m<\infty$. Let $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \in 2^{H}$. If there is $1 \leq i \leq m$ such that $x_{i} \perp y_{j}$ for all $1 \leq j \leq m$, then

$$
\kappa_{H}\left(x_{1}, \ldots, x_{m}\right) \perp \kappa_{H}\left(y_{1}, \ldots, y_{m}\right) .
$$

Using Theorem 3.1.6 and Lemma 3.1.7 one can improve Corollary 3.1.4 with the general $\kappa_{H}\left(x_{1}, \ldots, x_{m}\right)$ in place of $\kappa_{H}(x ; y)$.

3.2. 2-Colorings on group extensions

We begin by defining a natural map $2^{G} \times 2^{H} \rightarrow 2^{G \times H}$.
Definition 3.2.1. Let G and H be countable groups, $x \in 2^{G}$, and $y \in 2^{H}$. Then the product $x y$ is an element of $2^{G \times H}$ defined by

$$
(x y)(g, h)=x(g) y(h) .
$$

Figure 3.3. The product $x y$ viewed from two different perspectives.
One way to view the product $x y$ is to regard y as labeling the cosets of G in $G \times H$ and impose the function x on the copy of G when the y label is 1 and 0 when the y label is 0 (see Figure 3.2). Of course, by symmetry x could be viewed as labeling cosets of H as well. The following proposition collects some elementary facts about the product. In the statement we use 0 to denote the constant zero element in $2^{G}, 2^{H}$, or $2^{G \times H}$.

Proposition 3.2.2. Let G and H be countable groups, $x, x_{1}, x_{2} \in 2^{G}$, and $y, y_{1}, y_{2} \in 2^{H}$. Then the following hold:
(i) $x y$ is a 2-coloring iff both x and y are 2 -colorings.
(ii) If $x_{1} \perp x_{2}$ and $0 \notin \overline{\left[y_{1}\right]} \cup \overline{\left[y_{2}\right]}$, then $x_{1} y_{1} \perp x_{2} y_{2}$.
(iii) If $0 \notin \overline{[y]}$, then $x_{1} \perp x_{2}$ iff $x_{1} y \perp x_{2} y$.
(iv) If $x y \neq 0$, then $x y$ is minimal iff both x and y are minimal.

Proof. (i) First assume that x and y are both 2-colorings. Note that $0 \notin \overline{[x]}$, and therefore there is a finite set $A \subseteq G$ such that

$$
\forall g \in G \exists a \in A x(g a)=1
$$

Similarly there is a finite set $B \subseteq H$ such that

$$
\forall h \in H \exists b \in B y(h b)=1
$$

To show that $x y$ is a 2 -coloring, fix a nonidentity $(s, u) \in G \times H$. Without loss of generality assume $s \neq 1_{G}$. Thus we can find a finite set $T \subseteq G$ witnessing that x blocks s. If $u \neq 1_{H}$ then we also have a finite set $S \subseteq H$ witnessing that y blocks u. If $u=1_{H}$ we set $S=\varnothing$. Then we claim that $(T \times B) \cup(A \times S)$ witnesses that $x y$ blocks (s, u) in $G \times H$. To see this, let $(g, h) \in G \times H$ be arbitrary. We consider two cases. Case 1: $u=1_{H}$. Then we may find $b \in B$ such that $y(h b)=1$ and $t \in T$ such that $x(g t) \neq x(g s t)$. Note that also $y(h u b)=1$. We have

$$
(x y)(g t, h b)=x(g t) y(h b)=x(g t) \neq x(g s t)=x(g s t) y(h u b)=(x y)(g s t, h u b)
$$

Since $(t, b) \in T \times B$ we are done. Case 2: $u \neq 1_{H}$. In this case we find $v \in S$ such that $y(h v) \neq y(h u v)$. If $y(h v)=1$ we find $a \in A$ such that $x(g a)=1$; if $y(h u v)=1$ we find $a \in A$ such that $x(g s a)=1$. Either way we have

$$
(x y)(g a, h v)=x(g a) y(h v)=y(h v) \neq y(h u v)=x(g s a) y(h u v)=(x y)(g s a, h u v) .
$$

Since $(a, v) \in A \times S$, our proof is completed.
For the converse assume without loss of generality that x is not a 2 -coloring. Then there is some $z \in \overline{[x]}$ with a nontrivial period $s \neq 1_{G}$. It follows that $z y \in \overline{[x y]}$ and that $\left(s, 1_{H}\right)$ is a period of $z y$. Thus $x y$ is not a 2 -coloring.

The proof for (ii) is similar. For (iii) it suffices to note that, if $T \times S \subseteq G \times H$ is a finite set witnessing $x_{1} y \perp x_{2} y$, then T witnesses $x_{1} \perp x_{2}$.

To prove (iv) we first assume that both x and y are minimal. Let $A \subseteq G \times H$ be finite. Without loss of generality we may assume $A=B \times C$ for $B \subseteq G$ and $C \subseteq H$. Let $T_{B} \subseteq G$ be finite with the property that for all $g \in G$ there is $t \in T_{B}$ with $x(g t b)=x(b)$ for all $b \in B$. Similarly, let $T_{C} \subseteq H$ be finite such that for all $h \in H$ there is $\tau \in T_{C}$ with $y(h \tau c)=y(c)$ for all $c \in C$. We claim that $T=T_{B} \times T_{C}$ works for A. For this let $(g, h) \in G \times H$ be arbitrary. Let $t \in T_{B}$ be such that $x(g t b)=x(g)$ for all $b \in B$, and let $\tau \in T_{C}$ be such that $y(h \tau c)=y(c)$ for all $c \in C$. Then $(t, \tau) \in T$ and for all $(b, c) \in A$,

$$
(x y)(g t b, h \tau c)=x(g t b) y(h \tau c)=x(b) y(c)=(x y)(b, c) .
$$

This shows that $x y$ is minimal.
For the converse we assume $x y \neq 0$ is minimal. Note that we have both $x \neq 0$ and $y \neq 0$. We show that x is minimal, and by symmetry it follows that y is minimal too. For this fix $h_{0} \in H$ with $y\left(h_{0}\right)=1$. Let $A \subseteq G$ be finite. Without loss of generality we assume that there is $g_{0} \in A$ with $x\left(g_{0}\right)=1$. Since $A \times\left\{h_{0}\right\}$ is a finite subset of $G \times H$, by the minimality of $x y$, there is a finite $T \subseteq G \times H$ such that for all $(g, h) \in G \times H$ there is $(t, \tau) \in T$ with $(x y)\left(g t a, h \tau h_{0}\right)=(x y)\left(a, h_{0}\right)$ for all $a \in A$. Let $T_{G}=\{t \in G: \exists \tau \in H(t, \tau) \in T\}$. We claim that T_{G} works for A. For this let $g \in G$ be arbitrary. There is $(t, \tau) \in T$ such that $(x y)\left(g t a, \tau h_{0}\right)=(x y)\left(a, h_{0}\right)$ for all $a \in A$. In particular, $t \in T_{G}$ and $(x y)\left(g t g_{0}, \tau h_{0}\right)=(x y)\left(g_{0}, h_{0}\right)=x\left(g_{0}\right) y\left(h_{0}\right)=1$.

It follows that $y\left(\tau h_{0}\right)=1$ and therefore $x(g t a)=(x y)\left(g t a, \tau h_{0}\right)=(x y)\left(a, h_{0}\right)=$ $x(a)$ for all $a \in A$. This shows that x is minimal as required.

Corollary 3.2.3. Let G and H be countable groups, and $\lambda, \kappa \geq 1$ cardinal numbers. If G has the $(\lambda, 2)$-coloring property and H has the $(\kappa, 2)$-coloring property, then $G \times H$ has the $(\lambda \cdot \kappa, 2)$-coloring property.

One can also consider a slightly more general construction on the product group $G \times H$ as follows. For $x, z \in 2^{G}$ and $y \in 2^{H}$, define $x y_{z} \in 2^{G \times H}$ by

$$
\left(x y_{z}\right)(g, h)=x(g) y(h)+z(g)(1-y(h)) .
$$

Figure 3.4. The function $x y_{z}$.
Here again y is used to label the cosets of G in $G \times H$. When the label is 1 the coset is imposed the function x, and when the label is 0 the coset is imposed the function z (see Figure 3.2). Then similar to Proposition 3.2.2 (i) one can show that, if both x and y are 2 -colorings, and $z \perp x$, then $x y_{z}$ is a 2 -coloring on $G \times H$. Conversely, if $x y_{z}$ is a 2 -coloring, we can only conclude that y is a 2 -coloring due to asymmetry in this construction. In fact, both x and z can be periodic in this case. For example, let x_{0}, z_{0}, y be 2 -colorings on \mathbb{Z}, and let 1 denote the constant 1 element in $2^{\mathbb{Z}}$. Let $x=x_{0} 1$ and $z=1 z_{0}$. Then x and z are both periodic elements in $2^{\mathbb{Z} \times \mathbb{Z}}$, and $x \perp z$. It is easy to check that $x y_{z}$ is a 2 -coloring on \mathbb{Z}^{3}.

We next consider general group extensions. Recall that in the preceding section we have considered the case where H is a normal subgroup of finite index in a countable group G. The constructions there fail to work when H has infinite index in G, because the witnessing sets are no longer finite. In the next theorem we get around this problem by making use of k-colorings on the quotient.

Theorem 3.2.4. Let $m, k \geq 2$ be integers and $\lambda \geq 1$ a cardinal number. Let G be a countable group and $H \unlhd G$. Suppose G / H has the (λ, m)-coloring property and H has the (m, k)-coloring property. Then G has the (λ, k)-coloring property.

Proof. We first define a k-coloring x on G assuming that z is an m-coloring on G / H and y_{0}, \ldots, y_{m-1} are pairwise orthogonal k-colorings on H. Let R be a transversal for the cosets of H, i.e., R contains exactly one element of each coset of H. Let $\sigma: G \rightarrow R$ be such that for every $g \in G, \sigma(g) \in H g=g H$. Then define $x: G \rightarrow k$ by letting

$$
x(g)=y_{z(H g)}\left(\sigma(g)^{-1} g\right)
$$

We check that x is a k-coloring on G. For this fix $s \in G$ with $s \neq 1_{G}$. First assume $s \in H$. Since y_{0}, \ldots, y_{m-1} are all k-colorings there are finite subsets $T_{0}, \ldots, T_{m-1} \subseteq H$ such that for all $h \in H$ and $i<m$ there are $t_{i} \in T_{i}$ such that $y_{i}\left(h t_{i}\right) \neq y_{i}\left(h s t_{i}\right)$. Let $T=\bigcup_{i<m} T_{i}$. We check that for any $g \in G$ there is
$t \in T$ such that $x(g t) \neq x(g s t)$. Let $g \in G$. If $z(H g)=i$ then for any $t \in T$, since $s, t \in H$, we have

$$
x(g t)=y_{i}\left(\sigma(g t)^{-1} g t\right)=y_{i}\left(\sigma(g)^{-1} g t\right)
$$

and

$$
x(g s t)=y_{i}\left(\sigma(g s t)^{-1} g s t\right)=y_{i}\left(\sigma(g)^{-1} g s t\right) .
$$

Thus if we let $t=t_{i}$ so that $y_{i}\left(h t_{i}\right) \neq y_{i}\left(h s t_{i}\right)$ where $h=\sigma(g)^{-1} g$, then $x(g t) \neq$ $x(g s t)$.

Now we assume that $s \notin H$. From the assumption that z is an m-coloring we obtain a finite set $F \subseteq R$ such that for any $g \in G$ there is $f \in F$ such that $z(H g f) \neq z(H g s f)$. Let $\Gamma \subseteq H$ witness the orthogonality of y_{i} and y_{j} for all pairs $i, j<m, i \neq j$. That is, for any $i, j<m, i \neq j$, and any $g_{i}, g_{j} \in H$, there is $\gamma \in \Gamma$ such that $y_{i}\left(g_{i} \gamma\right) \neq y_{j}\left(g_{j} \gamma\right)$. Let $T=F \Gamma$. We again check that for any $g \in G$ there is $t \in T$ such that $x(g t) \neq x(g s t)$. First fix an $f \in F$ such that $z(H g f) \neq z(H g s f)$. For definiteness let $z(H g f)=i$ and $z(H g s f)=j$. Then for any $\gamma \in \Gamma \subseteq H$,

$$
x(g f \gamma)=y_{i}\left(\sigma(g f)^{-1} g f \gamma\right)
$$

and

$$
x(g s f \gamma)=y_{j}\left(\sigma(g s f)^{-1} g s f \gamma\right)
$$

Thus letting $h_{i}=\sigma(g f)^{-1} g f, h_{j}=\sigma(g s f)^{-1} g s f$ and applying the orthogonality we obtain a $\gamma \in \Gamma$ such that $y_{i}\left(h_{i} \gamma\right) \neq y_{j}\left(h_{j} \gamma\right)$. Letting $t=f \gamma$, we have thus verified that x is a k-coloring.

Now we assume z_{0} and z_{1} are two orthogonal m-colorings on G / H. Let x_{0} and x_{1} be defined similarly as above. We verify that $x_{0} \perp x_{1}$, i.e., there is a finite set $\Phi \subseteq G$ such that for any $g_{0}, g_{1} \in G$ there is $\varphi \in \Phi$ such that $x_{0}\left(g_{0} \varphi\right) \neq x_{1}\left(g_{1} \varphi\right)$. Let $F \subseteq R$ be finite such that for all $g_{0}, g_{1} \in G$ there is $f \in F$ such that $z_{0}\left(H g_{0} f\right) \neq$ $z_{1}\left(H g_{1} f\right)$. Let $\Gamma \subseteq H$ witness the orthogonality of all pairs y_{i} and y_{j} for $i, j<m$ and $i \neq j$. Let $\Phi=F \Gamma$. Then for any $g_{0}, g_{1} \in G$, letting $f \in F$ be fixed as above, $h_{0}=\sigma\left(g_{0} f\right)^{-1} g_{0} f, h_{1}=\sigma\left(g_{1} f\right)^{-1} g_{1} f, i=z_{0}\left(H g_{0} f\right), j=z_{0}\left(H g_{1} f\right)$, and γ such that $y_{i}\left(h_{0} \gamma\right) \neq y_{j}\left(h_{1} \gamma\right)$, then

$$
\begin{gathered}
x_{0}\left(g_{0} f \gamma\right)=y_{z_{0}\left(H g_{0} f\right)}\left(\sigma\left(g_{0} f \gamma\right)^{-1} g_{0} f \gamma\right)=y_{i}\left(h_{0} \gamma\right), \text { and } \\
x_{1}\left(g_{1} f \gamma\right)=y_{j}\left(h_{1} \gamma\right) .
\end{gathered}
$$

Thus $x_{0}\left(g_{0} f \gamma\right) \neq x_{1}\left(g_{1} f \gamma\right)$.
The following approach is an alternative way to obtain 2-colorings on an extension from those on a normal subgroup. Instead of assuming the existence of any 2-coloring on the quotient we consider a strong notion of a uniform 2-coloring property on the normal subgroup.

Definition 3.2.5. Let G be a countable group. We say that G has the uniform 2 -coloring property if there exists a perfect set $\left\{x_{\sigma}: \sigma \in 2^{\mathbb{N}}\right\}$ of pairwise orthogonal 2-colorings on G such that
(i) for any $s \in G$ with $s \neq 1_{G}$, there is a finite set $T \subseteq G$ such that for any $x \in\left\{x_{\sigma}: \sigma \in 2^{\mathbb{N}}\right\}$, we have

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

(ii) for each $n \in \mathbb{N}$ there is a finite set $A_{n} \subseteq G$ such that for any $\sigma, \tau \in 2^{\mathbb{N}}$ with $\sigma(n) \neq \tau(n)$,

$$
\forall g_{0}, g_{1} \in G \exists a \in A_{n} x_{\sigma}\left(g_{0} a\right) \neq x_{\tau}\left(g_{1} a\right)
$$

Theorem 3.2.6. Let G be a countable group and $H \unlhd G$. If H has the uniform 2 -coloring property then so does G.

Proof. Suppose H has the uniform 2-coloring property. As in the above definition, there is a collection of 2-colorings $\left\{y_{\sigma}: \sigma \in 2^{\mathbb{N}}\right\}$ on H, for each $s \in H$ with $s \neq 1_{H}$ there is $T_{H}(s) \subseteq H$, and for each $n \in \mathbb{N}$ there is $A_{n} \subseteq H$ satisfying (i) and (ii).

We first deal with the case $|G: H|=\infty$. Let $1_{G}=r_{0}, r_{1}, \ldots$ enumerate a transversal of the cosets of H in G. Let $\phi: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ be a function with the following property:

> for any $i, n \in \mathbb{N}$, letting $j, k \in \mathbb{N}$ be the unique integers satisfying $r_{j} H=r_{i} r_{n+1} H$ and $r_{k} H=r_{i} r_{n+1}^{-1} H$, we have either $\phi(i, n) \neq$ $\phi(j, n)$ or $\phi(i, n) \neq \phi(k, n)$.

To see that such a function exists, note that for any fixed $n \in \mathbb{N}$, the right multiplication by r_{n+1} induces a permutation π_{n} on \mathbb{N} such that $r_{\pi_{n}(i)} H=r_{i} r_{n+1} H$. Note that π_{n} has no fixed points. Thus in the statement of the property $j=\pi_{n}(i)$ and $k=\pi_{n}^{-1}(i)$. The permutation π_{n} can be decomposed into basic cycles of either finite or infinite length. In either case it is easy to assign values to indices so that no three consecutive indices in each cycle are assigned the same value. Since k, i, j are consecutive indices, we must have $\phi(i, n) \neq \phi(j, n)$ or $\phi(i, n) \neq \phi(k, n)$.

We then define infinitely many elements $\tau_{i} \in 2^{\mathbb{N}}$ for $i \in \mathbb{N}$ by letting $\tau_{i}(n)=$ $\phi(i, n)$. We will also use a coding function $\langle\cdot, \cdot\rangle: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ defined by $\langle\tau, \sigma\rangle(2 n)=\tau(n)$ and $\langle\tau, \sigma\rangle(2 n+1)=\sigma(n)$ for all $n \in \mathbb{N}$.

We are now ready to construct a collection $\left\{x_{\sigma}: \sigma \in 2^{\mathbb{N}}\right\}$ of pairwise orthogonal 2 -colorings on G. For each $\sigma \in 2^{\mathbb{N}}$ define x_{σ} by

$$
x_{\sigma}\left(r_{i} h\right)=y_{\left\langle\tau_{i}, \sigma\right\rangle}(h) .
$$

We verify that each x_{σ} is a 2-coloring on G. Let $s \in G$ with $s \neq 1_{G}$ and let $g \in G$ be arbitrary. If $s \in H$ then there exists $t \in T_{H}(s)$ such that $x_{\sigma}(g t) \neq x_{\sigma}(g s t)$. If $s \notin H$ let $s \in r_{n+1} H, g \in r_{i} H, g s \in r_{j} H$ and $g s^{-1} \in r_{k} H$. Then by the property of ϕ either $\phi(i, n) \neq \phi(j, n)$ or $\phi(i, n) \neq \phi(k, n)$. Therefore either $\left\langle\tau_{i}, \sigma\right\rangle(2 n) \neq$ $\left\langle\tau_{j}, \sigma\right\rangle(2 n)$ or $\left\langle\tau_{i}, \sigma\right\rangle(2 n) \neq\left\langle\tau_{k}, \sigma\right\rangle(2 n)$. It follows that if we let $T=A_{2 n} \cup s^{-1} A_{2 n}$ then there exists $t \in T$ such that $x_{\sigma}(g t) \neq x_{\sigma}(g s t)$. Note that the choice of T does not depend on σ so our collection of 2-colorings on G satisfies property (i) in Definition 3.2.5.

For property (ii) in Definition 3.2.5 it is clear that the set $B_{n}=A_{2 n+1}$ works for $n \in \mathbb{N}$. This finishes the proof in the case H has infinite index in G.

As for the case $|G: H|=m<\infty$, we can use an easy adaptation of the above construction. In this case the function ϕ would be only defined on a finite domain $(m-1) \times m$. We then extend its definition to $\mathbb{N} \times \mathbb{N}$ using value 0 and proceed as above. The resulting functions are as required.

3.3. 2-Colorings on \mathbb{Z}

For the rest of this chapter we construct concrete 2-colorings on concrete groups. In this section we focus on the group \mathbb{Z}. We show that \mathbb{Z} has the uniform 2-coloring property.

We will use the following notation. Let

$$
2^{\prec \mathbb{Z}}=\bigcup_{l \leq r \in \mathbb{Z}} 2^{[l, r]}
$$

For $p \in 2^{\prec \mathbb{Z}}$ we let $|p|=l-r+1$ if $p \in 2^{[l, r]}$. For $p \in 2^{\prec \mathbb{Z}}$ we let $\bar{p}(i)=1-p(i)$ for all $i \in \operatorname{dom}(p)$ and call it the conjugate of p. Thus $\operatorname{dom}(\bar{p})=\operatorname{dom}(p)$. For $p, q \in 2^{\prec \mathbb{Z}}$, we write $p \subseteq q$ if $\operatorname{dom}(p) \subseteq \operatorname{dom}(q)$ and $q \upharpoonright \operatorname{dom}(p)=p$. The group \mathbb{Z} acts on $2^{\prec \mathbb{Z}}$ naturally: for $s \in \mathbb{Z}$ and $p \in 2^{\prec \mathbb{Z}}$, let

$$
(s+p)(i)=p(i-s)
$$

Thus $\operatorname{dom}(s+p)=s+\operatorname{dom}(p)$. We write $p \sim q$ if there is $s \in \mathbb{Z}$ such that $s+p=q$. For $p_{0}, p_{1} \in 2^{\prec \mathbb{Z}}$, say $p_{0} \in 2^{\left[l_{0}, r_{0}\right]}, p_{1} \in 2^{\left[l_{1}, r_{1}\right]}$, we write $\widehat{p_{0}} p_{1}$ or simply $p_{0} p_{1}$ for the unique $q \in 2^{\left[l_{0}, r_{0}+1+r_{1}-l_{1}\right]}$ such that $q \upharpoonright\left[l_{0}, r_{0}\right]=p_{0}$ and $q \upharpoonright\left[r_{0}+1, r_{0}+1+r_{1}-l_{1}\right] \sim$ p_{1}. By iteration we can define the notation $p_{0}^{〔} p_{1}^{\sim} \cdots \curvearrowright p_{n}$ or $p_{0} p_{1} \cdots p_{n}$.

We also let

$$
P=\bigcup_{k \in \mathbb{N}} 2^{[-k, k]}
$$

For $p, q \in P$, say $p \in 2^{[-k, k]}$ and $q \in 2^{[-l, l]}$, we write $p \sqsubseteq q$ if $2 k+1 \mid l-k$ and for all $i \in \mathbb{Z}$, if $D=[(2 k+1) i+k+1,(2 k+1)(i+1)+k] \subseteq \operatorname{dom}(q)$ then $q \upharpoonright D \sim p$ or $q \upharpoonright D \sim \bar{p}$.

Figure 3.5. An illustration of $p \sqsubseteq q$.
Note that \sqsubseteq is a transitive relation, i.e., if $p_{0} \sqsubseteq p_{1}$ and $p_{1} \sqsubseteq p_{2}$ then $p_{0} \sqsubseteq p_{2}$. Also for $p \in 2^{[-k, k]}$ and $x \in 2^{\mathbb{Z}}$, we write $p \sqsubseteq x$ if for all $i \in \mathbb{N}, p \sqsubseteq x \upharpoonright[-i(2 k+$ 1) $-k, i(2 k+1)+k]$. We now define two operations on P, Φ_{0} and Φ_{1}. For $p \in P$, let $\Phi_{0}(p)$ and $\Phi_{1}(p)$ be the unique elements of P so that

$$
\Phi_{0}(p) \sim p p \bar{p} p p \bar{p} p \quad \text { and } \quad \Phi_{1}(p) \sim \bar{p} p \bar{p} p \bar{p} p \bar{p}
$$

Note that $p \sqsubseteq \Phi_{0}(p), \Phi_{1}(p)$ and $\left|\Phi_{0}(p)\right|=\left|\Phi_{1}(p)\right|=7|p|$. Also for $i=0,1, \overline{\Phi_{i}(p)}=$ $\Phi_{i}(\bar{p})$.

Lemma 3.3.1. Let $p, q \in P$ and $x, y \in 2^{\mathbb{Z}}$. If $|p|=|q|$ and $\Phi_{0}(p) \sqsubseteq x, \Phi_{1}(q) \sqsubseteq y$, then $x \perp y$.

Proof. Let $T=\{i|p|: 0 \leq i \leq 7\}$. Let

$$
p_{0} \in\left\{\Phi_{0}(p) \Phi_{0}(p), \Phi_{0}(\bar{p}) \Phi_{0}(\bar{p}), \Phi_{0}(\bar{p}) \Phi_{0}(p), \Phi_{0}(p) \Phi_{0}(\bar{p})\right\}
$$

and

$$
p_{1} \in\left\{\Phi_{1}(q) \Phi_{1}(q), \Phi_{1}(\bar{q}) \Phi_{1}(\bar{q}), \Phi_{1}(\bar{q}) \Phi_{1}(q), \Phi_{1}(q) \Phi_{1}(\bar{q})\right\}
$$

By direct inspection it can be shown that for any $0 \leq g_{0}, g_{1}<7|p|$ there is $t \in T$ such that $p_{0}(p)\left(g_{0}+t\right) \neq p_{1}(q)\left(g_{1}+t\right)$. In fact, the 0,1 -sequence $\left\langle p_{0}\left(g_{0}+t\right): t \in T\right\rangle$
consists of at least two occurrences of 00 and 11 which are separated by at most four digits in between, but this property fails for the sequence $\left\langle p_{1}\left(g_{1}+t\right): t \in T\right\rangle$. Now for any $g_{0}, g_{1} \in \mathbb{Z}$ there are p_{0}, p_{1} as above and $p_{0}^{\prime} \subseteq x, p_{1}^{\prime} \subseteq y$ such that $g_{0} \in \operatorname{dom}\left(p_{0}^{\prime}\right), g_{1} \in \operatorname{dom}\left(p_{1}^{\prime}\right), p_{0} \sim p_{0}^{\prime}$ and $p_{1} \sim p_{1}^{\prime}$. Thus there is $t \in T$ such that $p_{0}^{\prime}\left(g_{0}+t\right) \neq p_{1}^{\prime}\left(g_{1}+t\right)$. In particular $x\left(g_{0}+t\right) \neq y\left(g_{1}+t\right)$.

In the sequel we use the notation $2^{<\mathbb{N}}$ to denote the set of all finite binary sequences. I.e., $2^{<\mathbb{N}}=\bigcup_{n \in \mathbb{N}} 2^{n}$. For $u \in 2^{<\mathbb{N}}$, let $|u|$ denote the length of u.

Theorem 3.3.2. \mathbb{Z} has the uniform 2 -coloring property.
Proof. We define a system $\left(p_{u}\right)_{u \in 2^{<N}}$ of elements of P by induction on $|u|$ so that the following conditions are satisfied:
(i) for all $u, v \in 2^{<\mathbb{N}}$ with $|u|=|v|,\left|p_{u}\right|=\left|p_{v}\right|$;
(ii) for all $u \in 2^{<\mathbb{N}}, \Phi_{0}\left(p_{u}\right) \sqsubseteq p_{u \frown 0}$ and $\Phi_{1}\left(p_{u}\right) \sqsubseteq p_{u \frown 1}$;
(iii) for every $u \in 2^{<\mathbb{N}}$, there is $i \in \operatorname{dom}\left(p_{u}\right)$ such that $i+|u| \in \operatorname{dom}\left(p_{u}\right)$ and $p_{u}(i) \neq p_{u}(i+|u|)$.
To begin the definition, let $\operatorname{dom}\left(p_{\varnothing}\right)=\{0\}$ and $p_{\varnothing}(0)=0$. In general suppose all p_{u} where $|u| \leq n$ have been defined. We first define $q_{u \wedge 0}, q_{u \wedge 1}$ to satisfy the conditions (ii) and (iii). For this let $i \in \operatorname{dom}\left(\Phi_{0}\left(p_{u}\right)\right)$ so that $i+n+1 \notin \operatorname{dom}\left(\Phi_{0}\left(p_{u}\right)\right)$. Let $q_{u \sim 0} \sqsupseteq \Phi_{0}\left(p_{u}\right)$ be such that $q_{u \sim 0}(i+n+1) \neq \Phi_{0}\left(p_{u}\right)(i)$. Then define $q_{u \wedge 1} \sqsupseteq$ $\Phi_{1}\left(p_{u}\right)$ similarly. After all q_{v} where $|v|=n+1$ have been defined this way let $l=\max \left\{\left|q_{v}\right|:|v|=n+1\right\}$ and define $p_{u \wedge i}$ so that $\left|p_{u \curvearrowright i}\right|=l, q_{u \curvearrowright i} \subseteq p_{u \wedge i}$ and $\Phi_{i}\left(p_{u}\right) \sqsubseteq p_{u \curvearrowright i}$. This finishes the definition of $\left(p_{u}\right)_{u \in 2<\mathrm{N}}$.

Now for $\alpha \in 2^{\mathbb{N}}$ we let $x_{\alpha}=\bigcup_{n \in \mathbb{N}} p_{\alpha \mid n}$. We claim that each x_{α} is a 2-coloring on \mathbb{Z}. To verify this let $s \in \mathbb{Z}$. Let $n=|s|$ and $u=\alpha \upharpoonright n$. Let $i \in \operatorname{dom}\left(p_{u}\right)$ such that $i+n \in \operatorname{dom}\left(p_{u}\right)$ and $p_{u}(i) \neq p_{u}(i+n)$. Let $T=\left[0,2\left|p_{u}\right|\right]$. Now let $g \in \mathbb{Z}$ be arbitrary. Then noting that $p_{u} \sqsubseteq x_{\alpha}$, there is $q \subseteq x_{\alpha}$ with $g \in \operatorname{dom}(q)$ and $q \sim p_{u}$ or $q \sim \bar{p}_{u}$. Letting j to be the least integer greater than g with $j \notin \operatorname{dom}(q)$, we have that $x_{\alpha}\left(i+j+\frac{1}{2}\left(\left|p_{u}\right|-1\right)\right) \neq x_{\alpha}\left(i+n+j+\frac{1}{2}\left(\left|p_{u}\right|-1\right)\right)$. Thus if we let $t=i+j+\frac{1}{2}\left(\left|p_{u}\right|-1\right)-g \in T$ (if $\left.s>0\right)$ or $t=i+n+j+\frac{1}{2}\left(\left|p_{u}\right|-1\right) \in T$ (if $s<0$), we must have that $x_{\alpha}(g+t) \neq x_{\alpha}(g+s+t)$. Note that the set T only depends on s and not on α, since $\left|p_{u}\right|$ only depends on $|u|$ by property (i). This shows that the set $\left\{x_{\alpha}: \alpha \in 2^{\mathbb{N}}\right\}$ satisfies Definition 3.2.5 (i).

Finally, suppose $\alpha, \beta \in 2^{\mathbb{N}}$ with $\alpha(n) \neq \beta(n)$. Let $u=\alpha \upharpoonright n$ and $v=\beta \upharpoonright n$. Without loss of generality assume $u^{\wedge} 0 \subseteq \alpha$ and $v^{\wedge} 1 \subseteq \beta$. Then $\Phi_{0}\left(p_{u}\right) \sqsubseteq p_{u \frown 0} \sqsubseteq x_{\alpha}$ and $\Phi_{1}\left(p_{v}\right) \sqsubseteq p_{v \wedge 1} \sqsubseteq x_{\beta}$. By Lemma 3.3.1, $x_{\alpha} \perp x_{\beta}$. Moreover, the proof of Lemma 3.3.1 shows that the witnessing set can be taken as $\{$ in : $0 \leq i \leq 7\}$, which depends only on n and not on α and β. This shows that the set $\left\{x_{\alpha}: \alpha \in 2^{\mathbb{N}}\right\}$ satisfies Definition 3.2.5 (ii).

We remark that, using Lemma 2.4.5, it is easy to check that all 2-colorings constructed in the above proof are minimal. By an obvious modification of the above proof, we have the following corollary.

Corollary 3.3.3. Let U be any given open subset of $2^{\mathbb{Z}}$. Then there is a perfect set of pairwise orthogonal minimal 2-colorings in U.

The following corollary follows immediately from Theorem 3.2.6.

Corollary 3.3.4. Let G be a countable group. If $\mathbb{Z} \unlhd G$, then G has the uniform 2 -coloring property. In particular, for any countable group $G, G \times \mathbb{Z}$ has the uniform 2 -coloring property.

Before closing this section we briefly turn to a curious question about constructing 2-colorings on \mathbb{Z} that are orthogonal to their conjugates. Note that our construction above does not produce 2-colorings on \mathbb{Z} orthogonal to their own conjugates. One needs a slightly different construction to achieve this.

For any $x \in 2^{\mathbb{Z}}$ let $\bar{x} \in 2^{\mathbb{Z}}$ be defined by $\bar{x}(n)=1-x(n)$ for all $n \in \mathbb{Z}$. If x is a 2 -coloring then so is \bar{x}. For any $x \in 2^{\mathbb{Z}}$ we also define $x^{\prime} \in 2^{\mathbb{Z}}$ as follows:

$$
x^{\prime}(n)= \begin{cases}x(n / 3), & \text { if } 3 \mid n \\ 0, & \text { otherwise }\end{cases}
$$

The following facts are easy to see. For any $x \in 2^{\mathbb{Z}}, x^{\prime} \perp \overline{x^{\prime}}$, since x^{\prime} does not contain two consecutive 1s. Also, if x is a 2 -coloring on \mathbb{Z}, then so is x^{\prime}. This is because x^{\prime} blocks $3 n$ for any $n \neq 0$, and therefore it blocks n for all $n \neq 0$ by Corollary 2.2.6. Using Lemma 2.4.5 it is clear that x is minimal iff \bar{x} is minimal iff x^{\prime} is minimal. Finally if $x, y \in 2^{\mathbb{Z}}$, then $x \perp y$ iff $\bar{x} \perp \bar{y}$ iff $x^{\prime} \perp y^{\prime}$.

Thus we have the following corollary.
Corollary 3.3.5. There is a perfect set X of pairwise orthogonal minimal 2 -colorings on \mathbb{Z} such that for any $x \in X, x \perp \bar{x}$.

One can also modify the construction in an obvious way to obtain such families of 2 -colorings inside any given open set.

3.4. 2-Colorings on nonabelian free groups

In this section we show that all nonabelian free groups have the uniform 2coloring property. We will need the following observation.

Definition 3.4.1. Two elements $x_{0}, x_{1} \in 2^{\mathbb{Z}}$ are positively orthogonal, denoted $x_{0} \perp^{+} x_{1}$, if there is a finite $T \subseteq \mathbb{N}$ such that

$$
\forall g_{0}, g_{1} \in \mathbb{Z} \exists t \in T x_{0}\left(g_{0}+t\right) \neq x_{1}\left(g_{1}+t\right)
$$

Lemma 3.4.2. For $x_{0}, x_{1} \in 2^{\mathbb{Z}}$, if $x_{0} \perp x_{1}$ then $x_{0} \perp^{+} x_{1}$.
Proof. This is similar to the proof of Lemma 2.6.5. Let $T \subseteq \mathbb{Z}$ witness $x_{0} \perp x_{1}$. Let m be the least element of T. Then $|m|+T \subseteq \mathbb{N}$ witnesses $\bar{x}_{0} \perp x_{1}$ as well.

We are now ready to consider free groups. Let \mathbb{F}_{n} be the free group with n generators, where $n \geq 2$ is an integer. For notational uniformity we use F_{ω} to denote the free group with countably infinitely many generators, where ω denotes the first infinite ordinal. We will combine the two cases by considering \mathbb{F}_{n} with n generators, where $2 \leq n \leq \omega$.

Fix $2 \leq n \leq \omega$. For any $x \in 2^{\mathbb{Z}}$, we define $x^{*} \in 2^{\mathbb{F}_{n}}$ by $x^{*}(w)=x(|w|)$, where $|w|$ is the length of the reduced word w.

Theorem 3.4.3. Let $2 \leq n \leq \omega$. If x is a 2 -coloring on \mathbb{Z}, then x^{*} is a 2 -coloring on \mathbb{F}_{n}. In addition, for $x_{0}, x_{1} \in 2^{\mathbb{Z}}$, if $x_{0} \perp x_{1}$, then $x_{0}^{*} \perp x_{1}^{*}$.

Proof. Let $A=\left\{a_{m}: m<n\right\}$ be a generating set of elements of \mathbb{F}_{n}. Let $s \in \mathbb{F}_{n}$ with $s \neq 1_{\mathbb{F}_{n}}$. For each integer $i \in[-2|s|, 2|s|]$ with $i \neq 0$, let $L_{i} \subseteq \mathbb{N}$ be a finite set such that for any $j \in \mathbb{Z}$ there is $l \in L_{i}$ with $x(j+l) \neq x(j+i+l)$. Let

$$
T=\left\{t \in \mathbb{F}_{n}: \exists i, i^{\prime} \in[-|s|,|s|]|t| \in L_{i}+i^{\prime}\right\}
$$

We check that for any $g \in \mathbb{F}_{n}$ there is $t \in T$ such that $x^{*}(g t) \neq x^{*}(g s t)$. For this let $g \in \mathbb{F}_{n}$. We consider two cases. Case 1: $|g| \neq|g s|$. In this case let $i=|g s|-|g|$. Then $0<|i| \leq|s|$. Let $l \in L_{i} \subseteq \mathbb{N}$ be such that $x(|g|+l) \neq x(|g|+i+l)$. There is t with $|t|=l$ such that $|g t|=|g|+l$ and $|g s t|=|g s|+l$. Now $t \in T$ (with $\left.i^{\prime}=0\right)$ and $x^{*}(g t)=x(|g|+l) \neq x(|g|+i+l)=x(|g s|+l)=x^{*}(g s t)$. Case 2: $|g|=|g s|$. Then from the structure of the free group we get $u, v \in \mathbb{F}_{n}$ such that $s=u^{-1} v,|s|=2|u|=2|v|$ and $\left|g u^{-1}\right|=|g|-|u|$. Note that $\left|g u^{-1}\right| \neq\left|g u^{-1} v u^{-1}\right|$ and their difference $i \leq|s|$. Thus by a similar construction as that in Case 1 there is t_{0} with $\left|t_{0}\right| \in L_{i}$ such that $x^{*}\left(g u^{-1} t_{0}\right) \neq x^{*}\left(g u^{-1} v u^{-1} t_{0}\right)$. Now let $t=u^{-1} t_{0}$, then $x^{*}(g t) \neq x^{*}(g s t)$ and $t \in T$ with $i^{\prime}=|t|-\left|t_{0}\right| \leq\left|u^{-1}\right| \leq|s|$. This finishes the proof that x^{*} is a 2 -coloring on \mathbb{F}_{n}.

Now suppose $x_{0} \perp x_{1}$. Then by Lemmas 2.6.5 and 3.4.2 x_{0} and x_{1} are positively orthogonal unidirectional 2-colorings on \mathbb{Z}. Let $L \subseteq \mathbb{N}$ be such that for any $j_{0}, j_{1} \in \mathbb{Z}$ there is $l \in L$ with $x_{0}\left(j_{0}+l\right) \neq x_{1}\left(j_{1}+l\right)$. Let $a_{0}, a_{1} \in A$ be arbitrary and $T=\left\{a_{i}^{l}, a_{i}^{-l}: i=0,1, l \in L\right\}$. Let $g_{0}, g_{1} \in F_{n}$ be arbitrary. Let $j_{0}=\left|g_{0}\right|$ and $j_{1}=\left|g_{1}\right|$. Let $l \in L$ be such that $x_{0}\left(j_{0}+l\right) \neq x_{1}\left(j_{1}+l\right)$. Then there is $t \in T$ such that $|t|=l,\left|g_{0} t\right|=\left|g_{0}\right|+|t|$ and $\left|g_{1} t\right|=\left|g_{1}\right|+|t|$. Then $x_{0}^{*}\left(g_{0} t\right)=x_{0}\left(\left|g_{0}\right|+|t|\right)=$ $x_{0}\left(j_{0}+l\right) \neq x_{1}\left(j_{1}+l\right)=x_{1}\left(\left|g_{1}\right|+|t|\right)=x_{1}^{*}\left(g_{1} t\right)$. This shows that $x_{0}^{*} \perp x_{1}^{*}$.

Theorem 3.4.4. For any $1 \leq n \leq \omega$ the free group \mathbb{F}_{n} has the uniform 2coloring property.

Proof. Let $\left\{x_{\alpha}: \alpha \in 2^{\mathbb{N}}\right\}$ be a collection of 2 -colorings on \mathbb{Z} witnessing the uniform 2-coloring property for \mathbb{Z} from Theorem 3.3.2. Then for $2 \leq n \leq \omega$, the collection $\left\{x_{\alpha}^{*}: \alpha \in 2^{\mathbb{N}}\right\}$ witnesses the uniform 2-coloring property for \mathbb{F}_{n}. This is because, by the above proof, the set T witnessing that x_{α}^{*} blocks s depends on s only and does not depend on α; in addition, if the set L witnessing the orthogonality of x_{α} and x_{β} depends only on the index n where $\alpha(n) \neq \beta(n)$, then the set T witnessing the orthogonality of x_{α}^{*} and x_{β}^{*} depends only on n.

Since the free groups have the ACP (Corollary 2.5.9 (ii)), we have the following immediate corollary.

Corollary 3.4.5. Let $2 \leq n \leq \omega$. Let U be any given open subset of $2^{\mathbb{F}_{n}}$. Then there is a perfect set of pairwise orthogonal 2 -colorings in U.

We also have the following immediate corollary from Theorem 3.2.6.
Corollary 3.4.6. Let G be a countable group. If for some $1 \leq n \leq \omega, \mathbb{F}_{n} \unlhd G$, then G has the uniform 2-coloring property.

Note that the definition of x^{*} makes sense even for $n=1$. And in this case the proofs of the theorems still work and give another collection witnessing the uniform 2 -coloring property for \mathbb{Z}.

Moreover, when only restrictions of 2 -colorings on the semigroup \mathbb{N} are considered, we obtain a collection of 2-colorings on \mathbb{N} witnessing the uniform 2-coloring property for \mathbb{N}. Thus in particular, \mathbb{N} has the uniform 2-coloring property.

Finally we remark that if x is a 2 -coloring on \mathbb{Z}, the 2 -coloring x^{*} is actually a two-sided 2 -coloring. This is because, the dual definition of x^{*} would be the same for right actions of \mathbb{F}_{n} and the dualized proof of Theorem 3.4.3 would show that x^{*} is a right 2-coloring.

Before closing this section we give a construction of a 2 -coloring on $\mathbb{F}_{n}, n>1$, that is not a two-sided 2-coloring.

Theorem 3.4.7. For $n>1$ there exists a 2 -coloring on \mathbb{F}_{n} that is not a right 2 -coloring.

Proof. It suffices to construct a 2 -coloring on \mathbb{F}_{n} that is right-periodic. Fix $n>1$. Let a be one of the generators of \mathbb{F}_{n}, and let F be the free subgroup generated by the other $n-1$ generators. Let $x_{0} \perp x_{1} \in 2^{F}$ be 2-colorings on F (they can be obtained by Theorem 3.4.4). Let $y \in 2^{\mathbb{Z}}$ be any 2 -coloring on \mathbb{Z}, and y^{*} be the word-length 2 -coloring of \mathbb{F}_{n} (Theorem 3.4.3).

We now construct a 2 -coloring z on \mathbb{F}_{n} so that $z\left(1_{\mathbb{F}_{n}}\right)=0$ and $z(w a)=z(w)$ for all $w \in \mathbb{F}_{n}$. To define such a z it is clearly sufficient to define the values of $z(w)$ for all nonempty words $w \in \mathbb{F}_{n}$ that do not end in a or a^{-1}. Such a word can be uniquely written as $w=u_{0} a^{p_{0}} u_{1} a^{p_{1}} \ldots u_{k}$, where $k \geq 0, u_{0}, \ldots, u_{k} \in F$, $p_{0}, \ldots, p_{k-1} \in \mathbb{Z}-\{0\}$ and $u_{1}, \ldots, u_{k} \neq 1_{F}$ if $k>0$. Let $w_{1}=w u_{k}^{-1}$. We define z by

$$
z(w)=x_{y^{*}\left(w_{1}\right)}\left(u_{k}\right)
$$

z is clearly right-periodic, hence is not a right 2 -coloring.
We verify that z is a 2 -coloring. Fix a nonidentity $s \in \mathbb{F}_{n}$. Let T_{0} be a finite subset of F so that for any $h, h^{\prime} \in F$ there is $t \in T_{0}$ such that $x_{0}(h t) \neq x_{1}\left(h^{\prime} t\right)$. Let $M=\max \left\{|u|: u \in T_{0}\right\}$. Let N be a large enough positive integer so that for any $0<k \leq|s|$ and for any $m \in \mathbb{Z}$, there is $0<l \leq N$ such that $y(m+l) \neq y(m+k+l)$. Such N exists since y is unidirectional (Lemma 2.6.5). Let

$$
T=\left\{t \in \mathbb{F}_{n}:|t| \leq 2|s|+N+M\right\}
$$

We claim that T witnesses that z blocks s. Let $g \in \mathbb{F}_{n}$. First notice that there is $s^{\prime} \in \mathbb{F}_{n}$ with $\left|s^{\prime}\right| \leq|s|$ such that $\left|g s^{\prime}\right| \neq\left|g s s^{\prime}\right|$. In fact, there is such an s^{\prime} among the initial segments of s. Then note that there is a generator b of \mathbb{F}_{n} (not necessarily distinct from a) so that $\left|g s^{\prime} b^{\epsilon}\right|=\left|g s^{\prime}\right|+1$ and $\left|g s s^{\prime} b^{\epsilon}\right|=\left|g s s^{\prime}\right|+1$ for some $\epsilon \in\{-1,1\}$. Thus for $t_{0}=s^{\prime} b^{\epsilon}$ we have that $\left|t_{0}\right| \leq 2|s|$ and $\left|g t_{0}\right| \neq\left|g s t_{0}\right|$. Next we consider $t_{1}=t_{0} a^{k}$ where $0<|k| \leq N$. There is such a k so that $\left|t_{1}\right|=\left|t_{0}\right|+|k|$ and $y^{*}\left(g t_{1}\right) \neq y^{*}\left(g s t_{1}\right)$. Let $i=y^{*}\left(g t_{1}\right)$ and $i^{\prime}=y^{*}\left(g s t_{1}\right)$. Then by the orthogonality of x_{0} and x_{1} there is $t=t_{1} u$ for some nonidentity $u \in F$ such that

$$
z(g t)=x_{i}(u) \neq x_{i^{\prime}}(u)=z(g s t) .
$$

Obviously $|t| \leq 2|s|+N+M$.

3.5. 2-Colorings on solvable groups

In this section we establish the uniform 2-coloring property for all countably infinite solvable groups. We first do this for all countably infinite abelian groups.

If an abelian group contains at least one element of infinite order then we are done by Corollary 3.3.4. Thus we only need to deal with countably infinite abelian torsion groups here. There are two concrete situations we need to discuss before coming back to the general argument.

The first situation concerns a direct sum of infinitely many finite groups. Let $H_{0}, H_{1}, \ldots, H_{n}, \ldots$ be nontrivial finite groups and $H=\oplus_{n} H_{n}$. We show that H has the uniform 2-coloring property.

Lemma 3.5.1. Let $\pi \in 2^{\mathbb{N}}$ be such that $0,1 \notin \overline{[\pi]}$. For any $h \in H$ define

Then c_{π} is a 2-coloring on H. Moreover, if $\pi_{0} \neq \pi_{1}$ and $0,1 \notin \overline{\left[\pi_{0}\right]}, \overline{\left[\pi_{1}\right]}$, then $c_{\pi_{0}} \perp c_{\pi_{1}}$.

Proof. First it is easily seen that $0,1 \notin \overline{[\pi]}$ iff there is $b \in \mathbb{N}$ such that for any $n \in \mathbb{N}$ there is $m<b$ with $\pi(n) \neq \pi(n+m)$. We will use this equivalence below without elaboration.

Let $s \in H$ with $s \neq 1_{H}$. Let n_{s} be the least n such that $s_{n} \neq 1_{H_{n}}$. Let $T=\oplus_{n \leq n_{s}+b} H_{n}$. Now suppose $h \in H$ is arbitrary. Let $t_{0}=\oplus_{n \leq n_{s}} h_{n}^{-1}$. Then for all $n \leq n_{s},\left(h t_{0}\right)_{n}=1_{H_{n}}$. Similarly, for all $n<n_{s},\left(h s t_{0}\right)_{n}=h_{n} s_{n}\left(t_{0}\right)_{n}=$ $h_{n} h_{n}^{-1}=1_{H_{n}}$. However, $\left(\text { hst }_{0}\right)_{n_{s}}=h_{n_{s}} s_{n_{s}} h_{n_{s}}^{-1} \neq 1_{H_{n_{s}}}$. Note that for any $t_{1} \in H$ with $\left(t_{1}\right)_{n}=1_{H_{n}}$ for all $n \leq n_{s}, c_{\pi}\left(h s t_{0} t_{1}\right)=c_{\pi}\left(h s t_{0}\right)$. Now if $c_{\pi}\left(h t_{0}\right) \neq c_{\pi}\left(h s t_{0}\right)$ we are done since $t_{0} \in T$. Suppose $c_{\pi}\left(h t_{0}\right)=c_{\pi}\left(h s t_{0}\right)$. By the assumption on π there is $m<b$ such that $\pi\left(n_{s}+1\right) \neq \pi\left(n_{s}+1+m\right)$. We consider two cases. Case 1: $\pi\left(n_{s}+1\right) \neq c_{\pi}\left(h t_{0}\right)$. In this case let $k_{n_{s}+1} \in H_{n_{s}+1}$ be any nonidentity element and let $t_{1}=k_{n_{s}+1}$. Then $n_{s}+1$ is the least n so that $\left(h t_{0} t_{1}\right)_{n} \neq 1_{H_{n}}$. Hence $c_{\pi}\left(h t_{0} t_{1}\right)=\pi\left(n_{s}+1\right) \neq c_{\pi}\left(h s t_{0}\right)=c_{\pi}\left(h s t_{0} t_{1}\right)$. Thus $t=t_{0} t_{1}$ is as required. Case 2: $\pi\left(n_{s}+1+m\right) \neq c_{\pi}\left(h t_{0}\right)$. Let $t_{1}=\oplus_{n_{s}+1 \leq n<n_{s}+1+m} h_{n}^{-1} \oplus k_{n_{s}+1+m}$ where $k_{n_{s}+1+m} \in H_{n_{s}+1+m}$ is an arbitrary element $\neq h_{n_{s}+1+m}^{-1}$. Then $c_{\pi}\left(h t_{0} t_{1}\right)=$ $\pi\left(n_{s}+1+m\right) \neq c_{\pi}\left(h s t_{0}\right)=c_{\pi}\left(h s t_{0} t_{1}\right)$. Note that $n_{s}+1+m \leq n_{s}+b$, thus $t=t_{0} t_{1} \in T$ is as required. This shows that c_{π} is a 2 -coloring.

Now suppose $\pi_{0} \neq \pi_{1}$ and $0,1 \notin \overline{\left[\pi_{0}\right]}, \overline{\left[\pi_{1}\right]}$, and let the witness be b_{0} and b_{1}. Let b_{2} be the least n such that $\pi_{0}(n) \neq \pi_{1}(n)$. Let $b=b_{0}+b_{1}+b_{2}$ and $T=\oplus_{n \leq b} H_{n}$. Then we claim that for any $g_{0}, g_{1} \in H$ there is $t \in T$ such that $c_{\pi_{0}}\left(g_{0} t\right) \neq c_{\pi_{1}}\left(g_{1} t\right)$. Let $g_{0}, g_{1} \in H$. We consider two cases. Case 1: $\left(g_{0}\right)_{i}=\left(g_{1}\right)_{i}$ for all $i \leq b_{2}$. Then let $t \in \oplus_{n \leq b_{2}} H_{n} \subseteq T$ be such that $\left(g_{0} t\right)_{i}=1_{H_{i}}$ for all $i<b_{2}$ and $\left(g_{0} t\right)_{b_{2}} \neq 1_{H_{b_{2}}}$. Then the same is true for $g_{1} t$, and thus $c_{\pi_{0}}\left(g_{0} t\right)=\pi_{0}\left(b_{2}\right) \neq \pi_{1}\left(b_{2}\right)=c_{\pi_{1}}\left(g_{1} t\right)$. Case 2: $\left(g_{0}\right)_{i} \neq\left(g_{1}\right)_{i}$ for some $i \leq b_{2}$. Then let $t_{0} \in \oplus_{n \leq b_{2}} H_{n} \subseteq T$ be such that for some $i \leq b_{2},\left(g_{0} t_{0}\right)_{i}=1_{H_{i}} \neq\left(g_{1} t_{0}\right)_{i}$ and for all $j<i,\left(g_{0} t_{0}\right)_{j}=1_{H_{j}}=\left(g_{1} t_{0}\right)_{j}$. If $c_{\pi_{0}}\left(g_{0} t_{0}\right) \neq c_{\pi_{1}}\left(g_{1} t_{0}\right)$ there is nothing more to prove. Otherwise, note that $c_{\pi_{1}}\left(g_{1} t_{0}\right)=\pi_{1}(i)$ for the above mentioned $i \leq b_{2}$ and $c_{\pi_{0}}\left(g_{0} t_{0}\right)=\pi_{0}(k)$ for some $k>i$. Since $0,1 \notin \overline{\left[\pi_{0}\right]}$, there is $m<b_{0}$ such that $\pi_{0}(k) \neq \pi_{0}(k+m)$. Thus there is $t_{1} \in \oplus_{k \leq n \leq k+m} H_{n} \subseteq T$ such that $c_{\pi_{0}}\left(g_{0} t_{0} t_{1}\right)=\pi_{0}(k+m)$. But then $c_{\pi_{1}}\left(g_{1} t_{0} t_{1}\right)=\pi_{1}(i) \neq \pi_{0}(k+m)=c_{\pi_{0}}\left(g_{0} t_{0} t_{1}\right)$, so $t=t_{0} t_{1}$ is as required. This completes the proof of the lemma.

Theorem 3.5.2. Let $H_{0}, H_{1}, \ldots, H_{n}, \ldots$ be nontrivial finite groups and $H=$ $\oplus_{n} H_{n}$. Then H has the uniform 2 -coloring property.

Proof. Let $\left\{x_{\alpha}: \alpha \in 2^{\mathbb{N}}\right\}$ be the collection of 2-colorings on \mathbb{Z} constructed in the proof of Theorem 3.3.2. Then each $\pi_{\alpha}=x_{\alpha} \upharpoonright \mathbb{N}$ satisfies $0,1 \notin \overline{\left[\pi_{\alpha}\right]}$.

By the proof of the above lemma, for any $s \in H$ with $s \neq 1_{H}$, the witnessing set T for the blocking of s by $c_{\pi_{\alpha}}$ only depends on s and not on α. This shows that the collection $\left\{c_{\pi_{\alpha}}: \alpha \in 2^{\mathbb{N}}\right\}$ satisfies Definition 3.2.5 (i).

To check that $\left\{c_{\pi_{\alpha}}: \alpha \in 2^{\mathbb{N}}\right\}$ satisfies Definition 3.2 .5 (ii), we let $A_{n} \subseteq \mathbb{N}$ be given by Theorem 3.3.2 such that for all $\alpha, \beta \in 2^{\mathbb{N}}$ with $\alpha(n) \neq \beta(n)$, we have

$$
\forall g_{0}, g_{1} \in \mathbb{Z} \exists a \in A_{n} x_{\alpha}\left(g_{0}+a\right) \neq \beta\left(g_{1}+a\right) .
$$

Note that we could take $A_{n} \subseteq \mathbb{N}$ because of Lemma 3.4.2. Let $b_{n}=\max A_{n}$. Then in particular for any α, β as above, there is some $m<b_{n}$ such that $x_{\alpha}(m) \neq x_{\beta}(m)$. By the proof of the above lemma, if we let $T_{n}=\oplus_{m \leq b_{n}+8} H_{m}$, then

$$
\forall h_{0}, h_{1} \in H \exists t \in T_{n} c_{\pi_{\alpha}}\left(h_{0} t\right) \neq c_{\pi_{\beta}}\left(h_{1} t\right) .
$$

Since T_{n} does not depend on α and β, our proof is complete.
Next we consider the quasicyclic group $\mathbb{Z}\left(p^{\infty}\right)$ for any prime p.
Theorem 3.5.3. Let p be a prime number. Then $\mathbb{Z}\left(p^{\infty}\right)$ has the uniform 2coloring property.

Proof. Every element g of $\mathbb{Z}\left(p^{\infty}\right)$ can be expressed as

$$
\gamma\left(a_{0}, \ldots, a_{N-1}\right)=\frac{a_{0}}{p}+\frac{a_{1}}{p^{2}}+\frac{a_{2}}{p^{3}}+\cdots+\frac{a_{N-1}}{p^{N}}
$$

for some $N \geq 0$ and $0 \leq a_{n}<p$ for $n=0, \ldots, N-1$. For notational convenience we denote $g(n)=a_{n}$ for $n=0, \ldots, N-1$, and more generally, for $n \geq N$, let $g(n)=0$. Now for $g \in \mathbb{Z}\left(p^{\infty}\right)$ let n_{g} be the least n such that $g\left(n_{g}\right) \neq 0$. Then similar to the proof of Lemma 3.5.2, we have the following claim.

Let $\pi \in 2^{\mathbb{N}}$ be such that $0,1 \notin \overline{[\pi]}$. For any $g \in \mathbb{Z}\left(p^{\infty}\right)$ define $c_{\pi}(g)=\pi\left(n_{g}\right)$. Then c_{π} is a 2 -coloring on $\mathbb{Z}\left(p^{\infty}\right)$. Moreover, if $\pi_{0} \neq \pi_{1}$ and $0,1 \notin \overline{\left[\pi_{0}\right]}, \overline{\left[\pi_{1}\right]}$, then $c_{\pi_{0}} \perp c_{\pi_{1}}$.
The proof is also similar. In fact, let $s \in \mathbb{Z}\left(p^{\infty}\right)$ so that $s \neq 0$. Let $T=\left\{t \in \mathbb{Z}\left(p^{\infty}\right)\right.$: $t(n)=0$ for all $\left.n>n_{s}+b\right\}$. Then for all $g \in \mathbb{Z}\left(p^{\infty}\right)$, let $t_{0}=-\gamma\left(g \upharpoonright\left(n_{s}+1\right)\right)$. We have that $n_{g+t_{0}}>n_{s}$. Thus for any t_{1} with $n_{t_{1}}>n_{s}, c_{\pi}\left(g+s+t_{0}+t_{1}\right)=$ $c_{\pi}\left(g+s+t_{0}\right)$, whereas for some such t_{1} with $n_{t_{1}} \leq n_{s}+b$, we can arrange that $c_{\pi}\left(g+t_{0}+t_{1}\right) \neq c_{\pi}\left(g+s+t_{0}\right)$. Hence if we let $t=t_{0}+t_{1}$ then $c_{\pi}(g+t) \neq c_{\pi}(g+s+t)$.

The rest of the proof is similar to that of Theorem 3.5.2.
Now we are ready to establish the uniform 2-coloring property for all countably infinite abelian groups. As noted before we only need to deal with the torsion case. Also recall that any abelian group can be written as the direct sum of its maximal divisible subgroup and a reduced subgroup. In the case of a divisible group there is at least one prime p such that the quasicyclic group $\mathbb{Z}\left(p^{\infty}\right)$ is contained in the group.

Theorem 3.5.4. Let G be a countably infinite abelian group. Then G has the uniform 2 -coloring property.

Proof. Assume that G is a torsion group. If G has a nontrivial divisible subgroup then there is some prime p such that $\mathbb{Z}\left(p^{\infty}\right) \unlhd G$. In this case we are done by the preceding theorem and Theorem 3.2.6. Suppose G is reduced. We consider two cases. Case 1: There are infinitely many prime p for which there exist elements of order p. In this case let $p_{0}, p_{1}, \ldots, p_{n}, \ldots$ be distinct prime numbers and $g_{0}, g_{1}, \ldots, g_{n}, \ldots$ be nonzero elements so that $p_{n} g_{n}=0$. Then $H=\left\langle g_{0}, g_{1}, \ldots, g_{n}, \ldots\right\rangle$ is isomorphic to the direct sum $\oplus_{n} \mathbb{Z}_{p_{n}}$. Since $H \unlhd G$, by Theorem 3.5.2 and Theorem 3.2.6 we have that G has the uniform 2-coloring
property. Case 2 : There are only finitely many primes p so that G has a nontrivial p-component. Let G_{p} be the p-component of G, i.e., the subgroup of all elements of G whose order is a power of p. Let p_{0}, \ldots, p_{n} be all primes such that $G_{p_{i}}$ is nontrivial. Then $G=\oplus_{i \leq n} G_{p_{i}}$. Thus at least one of $G_{p_{i}}$ is infinite. Fix such a p. Since we assume that G is reduced, we claim that there are infinitely many elements in G_{p} with order p. In fact, define a partial order $<$ defined on G_{p} by $h<g$ iff there is $k \geq 1$ such that $p^{k} h=g$. Then since G_{p} is reduced, $<$ is a wellfounded tree on G_{p}, i.e., there is no infinite <-descending sequence in G_{p}. If there are only finitely many elements of order p in G_{p}, then the tree is finite splitting. For this, just note that if $g_{0}, \ldots, g_{n}, \ldots$ are infinitely many distinct elements with $p g_{0}=p g_{1}=\cdots=p g_{n}=\ldots$, then for any $n \geq 1, p\left(g_{0}-g_{n}\right)=0$, and thus $g_{0}-g_{1}, \ldots, g_{0}-g_{n}, \ldots$ are infinitely many distinct elements of order p. It follows by König's lemma that a finite splitting wellfounded tree is finite, and thus G_{p} would be finite if there are only finitely many elements of order p.

Finally, suppose there are infinitely many elements of order p in G_{p}. We define by induction a sequence h_{n} of elements in G_{p} as follows. Let h_{0} be any nonzero element of order p in G_{p}. In general, if h_{0}, \ldots, h_{n} have been defined, then note that $\left\langle h_{0}, \ldots, h_{n}\right\rangle$ is isomorphic to \mathbb{Z}_{p}^{n+1}, hence finite, and let h_{n+1} be any nonzero element of order p not in $\left\langle h_{0}, \ldots, h_{n}\right\rangle$. Our assumption guarantees that this construction will not stop at any finite stage. Also, when the infinite sequence $h_{0}, \ldots, h_{n}, \ldots$ is defined, we have that $\left\langle h_{0}, \ldots, h_{n}, \ldots\right\rangle$ is isomorphic to the direct sum $\oplus_{n} \mathbb{Z}_{p}$. Now by Theorem 3.5.2 and Theorem 3.2.6, G has the uniform 2-coloring property, and our theorem is proved.

Finally we expand the result to all countably infinite solvable groups.
Theorem 3.5.5. Let G be a countably infinite solvable group. Then G has the uniform 2-coloring property.

Proof. Suppose G has rank $n \geq 1$ and its derived series are as follows:

$$
G \unrhd G^{\prime} \unrhd G^{\prime \prime} \unrhd \cdots \unrhd G^{(n)}=\left\{1_{G}\right\}
$$

Then for each $i<n, G^{(i)} / G^{(i+1)}$ is abelian. Let n_{0} be the smallest such that $G^{\left(n_{0}\right)}$ is finite. Then $0<n_{0} \leq n$. By Theorem 3.2.6 it suffices to show that $G^{\left(n_{0}-1\right)}$ has the uniform 2-coloring property. By assumption, $G^{\left(n_{0}-1\right)} / G^{\left(n_{0}\right)}$ is an infinite abelian group, thus it has the uniform 2-coloring property by Theorem 3.5.4. If $n_{0}=n$ then we have that $G^{\left(n_{0}-1\right)} \cong G^{\left(n_{0}-1\right)} / G^{\left(n_{0}\right)}$ and we are done. If $n_{0}<n$, we must have that $\left|G^{\left(n_{0}\right)}\right|>2$, since otherwise $G^{\left(n_{0}-1\right)}$ is in fact abelian; thus by Lemma 2.3.5 $G^{\left(n_{0}\right)}$ has the (2,2)-coloring property. Let y_{0} and y_{1} be orthogonal 2-colorings on $G^{\left(n_{0}\right)}$. Let $\left\{z_{\alpha}: \alpha \in 2^{\mathbb{N}}\right\}$ be a collection of 2 -colorings on $G^{\left(n_{0}-1\right)} / G^{\left(n_{0}\right)}$ witnessing its uniform 2-coloring property. Using the construction in the proof of Theorem 3.2.4 to define a collection of 2-colorings on $G^{\left(n_{0}-1\right)}$. It can be easily verified that the resulting 2 -colorings witness the uniform 2-coloring property for $G^{\left(n_{0}-1\right)}$.

3.6. 2 -Colorings on residually finite groups

In this short section we present a final method of constructing 2-colorings through algebraic methods. We show how to construct a 2 -coloring on any countable residually finite group.

Theorem 3.6.1. If G is a countable residually finite group, then G has the coloring property.

Proof. If G is finite then it clearly has the coloring property. So suppose that G is countably infinite. Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a decreasing sequence of finite index normal subgroups of G with $\bigcap K_{n}=\left\{1_{G}\right\}$. Such a sequence exists by the definition of residual finiteness. Define $x \in 2^{G}$ by setting $x(g)=n \bmod 2$ where n satisfies $g \in K_{n}-K_{n+1}$ (and define $x\left(1_{G}\right)$ arbitrarily). We claim that x is a 2 -coloring on G. Fix a nonidentity $s \in G$ and let n satisfy $s \in K_{n}-K_{n+1}$. Let T_{0} be a set of representatives for the cosets of K_{n+1} in G, let T_{1} be a set of representatives for the cosets of K_{n+3} in K_{n+1}, and let $T=T_{0} T_{1}$. Let $g \in G$ be arbitrary. Since $s \notin K_{n+1}$, g and $g s$ are not in the same coset of K_{n+1}. Consequently, by considering the group G / K_{n+1} we see that there is $t_{0} \in T_{0}$ with $g t_{0} \in K_{n+1}$ and $g s t_{0} \notin K_{n+1}$. Notice that if m satisfies $g s t_{0} \in K_{m}-K_{m+1}$, then $m<n+1$. By considering the group K_{n+1} / K_{n+3}, we see that there are $t_{1}, t_{2} \in T_{1} \subset K_{n+1}$ with $g t_{0} t_{1} \in K_{n+1}-K_{n+2}$ and $g t_{0} t_{2} \in K_{n+2}-K_{n+3}$. So clearly $x\left(g t_{0} t_{1}\right) \neq x\left(g t_{0} t_{2}\right)$. Also, since $g s t_{0} \in K_{m}-K_{m+1}$ and the sequence $\left(K_{r}\right)_{r \in \mathbb{N}}$ is decreasing, we have $g s t_{0} t_{1}, g s t_{0} t_{2} \in K_{m}-K_{m+1}$ as well (since $\left.t_{1}, t_{2} \in K_{n+1} \subset K_{m+1}\right)$. So $x\left(g s t_{0} t_{1}\right)=x\left(g s t_{0} t_{2}\right)$. It follows that either $x\left(g t_{0} t_{1}\right) \neq x\left(g s t_{0} t_{1}\right)$ or else $x\left(g t_{0} t_{2}\right) \neq x\left(g s t_{0} t_{2}\right)$. Since $t_{0} t_{1}, t_{0} t_{2} \in T$, we conclude that x is a 2 -coloring on G.

Corollary 3.6.2. All finitely generated abelian groups, all finitely generated nilpotent groups, all polycyclic groups, all countable (real or complex) linear groups, and all countable nonabelian free groups admit a 2-coloring.

Proof. All of these groups are residually finite.
The discovery of the above construction occurred very late in the developement of this paper. In effect, we did not investigate if one can use constructions similar to the one above to establish that residually finite groups have the uniform 2-coloring property. Of course, we do prove in Section 6.1 that every countably infinite group has the uniform 2-coloring property. It may be nice though if the methods of this section could show this fact directly for residually finite groups. We leave the resolution of this question to interested readers.

CHAPTER 4

Marker Structures and Tilings

In this chapter we will introduce a general notion of marker structures on countable groups and study some of their general properties. As an immediate application of this notion we give in Section 4.2 another proof that all abelian groups admit a 2 -coloring, and in fact the proof will be generalized to establish that all FC groups admit a 2-coloring. The concept of marker region will be one of the main tools we use for our main results in future chapters. In the remainder of this chapter we then introduce and study the related notion of a ccc group. We will show that ccc groups include, among others, all nilpotent groups, all polycyclic groups, all residually finite groups, all locally finite groups, and all groups which are free products of nontrivial groups. The results of this chapter are relatively independent and will not be needed for the rest of the paper.

4.1. Marker structures on groups

We introduce the general notion of a marker structure on a countable group G, and introduce also several specializations of this notion. This point of view is crucial for the main results of this paper to appear in the following chapters. In Chapter 3 we gave certain more algebraic arguments which showed that every countable solvable group has a 2-coloring, in fact, we showed this in a strong form already (c.f. Theorem 3.5.5). However, we have not been able to push the methods used in those proofs further. In particular, we have not been able to use them to show that every countable group G admits a 2 -coloring. For this we seem to need arguments involving a certain more geometric nature, which leads to the concept of a marker structure. The concept of marker structures on various types of groups is certainly not new to this paper, and indeed has been a central notion in ergodic theory and the theory of equivalence relations for a long time. In particular, it plays a key role in most hyperfiniteness proofs. The theorem of Weiss (c.f. [DJK] $[\mathbf{J K L}])$ that all of the Borel actions of the group \mathbb{Z}^{n} are hyperfinite uses these concepts in the proof. Recall a Borel equivalence relation on a Polish space is hyperfinite if it can be written as an increasing union of finite Borel equivalence relations. The more recent proof of Gao and Jackson [GJ] that all Borel actions of any countable abelian group are also hyperfinite makes use of even better marker structures on these groups. Indeed, the best known results on the hyperfiniteness problem (determining which groups have only hyperfinite Borel actions) involve carefully examining the nature of the marker structures that can be put on such groups. Although this is an interesting connection, the arguments of this paper do not require familiarity with the notion or theory of hyperfinite equivalence relations.

In the main results of this paper the existence of certain carefully controlled marker structures is also of central importance. However, for many of our results the point of view is somewhat different. We are often interested now in what marker
structure can be put on arbitrary countable groups. Of course, as we restrict the class of groups, we expect marker structures with better properties. The point we wish to emphasize is that there is a common thread between many of these other arguments (such as hyperfiniteness proofs) and the arguments of this paper, and this is what we abstract into the notion of a marker structure. Various specializations of this notion result in interesting concepts which have been studied on their own, such as the class of MT groups defined independently by Chou $[\mathbf{C h}]$ and Weiss $[\mathbf{W}]$ in their study of monotileable amenable groups. Although the marker structures we use in our main results can be put on any group, it is nonetheless interesting to ask exactly which types of structures can be put on various groups. For example, we will introduce the concept of a ccc tiling of a group. Some very basic questions about which groups admit such marker structures remain open.

We next give the general notion of a marker structure and various specializations of the concept. We first use this concept to give a completely different proof that all of the abelian, and then all of the FC groups admit a 2-coloring. The proofs of this section have a decidedly more geometric flavor than the previous arguments; this seems to be inherent in the concept of a marker structure. Part of the reason for presenting these proofs is that they foreshadow the more involved arguments necessary for general groups. Indeed, the short proofs for abelian and FC groups to follow can be seen as a rough outline of the procedure for general groups, with some of the key technical difficulties removed. We then introduce the strongest notion of marker structure which seems relevant for the type of constructions one might do along these lines, and this leads to the notion of a ccc tiling. Again, we will not prove these exist on arbitrary groups (nor do we need to for our main results), but it becomes an interesting independent question as to when these exist. As we said above, this is likely related to other questions such as the hyperfiniteness problem.

We point out two technical distinctions before giving the actual definitions. First, for the kinds of arguments we do we are mainly interested in not a single marker structure (defined below), but a sequence of such structures. This is generally also the case in arguments from ergodic theory as well as hyperfiniteness theory. Second, for the results of this paper we are interested in the marker structures on the groups themselves as opposed to on some Polish space on which the groups act. This is in contrast to many of the arguments in ergodic theory and descriptive set theory where marker arguments occur. In putting marker structures on the groups themselves, there is no issue of definability that enters in as in the Polish space case. Thus it becomes easier, at least in theory, to put such structures on the group. So, the inability to put a type of marker structure on a group puts an upper-bound on what one can do with the equivalence relation defined by a Borel action of the group (at least if the action of the group is free). Again, this gives an independent interest to questions about marker structures on groups.

Definition 4.1.1. Let G be a countable group. A marker structure on G is a pair (Δ, \mathcal{R}) where $\Delta \subseteq G, \mathcal{R} \subseteq \mathcal{P}(G)$ satisfying:
(1) \mathcal{R} is a pairwise disjoint collection.
(2) For every $R \in \mathcal{R},|\Delta \cap R|=1$.
(3) Every $\delta \in \Delta$ lies in some $R \in \mathcal{R}$.
(4) The set $\bigcup_{\delta \in \Delta} \delta^{-1} R_{\delta}$ is finite, where R_{δ} denotes the unique $R \in \mathcal{R}$ with $\delta \in R$.

We call the elements $\delta \in \Delta$ the marker points, and the sets $R \in \mathcal{R}$ the marker regions.

The definition of marker structure in Definition 4.1.1 is quite general. It encompasses all of the marker constructions of this paper as well as all of the known hyperfiniteness proofs. For the constructions of this paper, however, we are usually interested in marker structures with additional properties. The next definition records some of these additional properties,

Definition 4.1.2. A marker structure (Δ, \mathcal{R}) is regular if there is a single (necessarily finite) $F \subseteq G$ such that for all $\delta \in \Delta$ we have $\delta^{-1} R_{\delta}=F$, where R_{δ} is the unique element of \mathcal{R} which contains δ. A marker structure (Δ, \mathcal{R}) is centered if $1_{G} \in \Delta$. A marker structure (Δ, \mathcal{R}) is total if $G=\bigcup \mathcal{R}$. A marker structure is a tiling if it is regular and total.

In the case of a regular marker structure (Δ, \mathcal{R}), we usually present the marker structure as (Δ, F), where F is the common value of $\delta^{-1} R_{\delta}$ for $\delta \in \Delta$. Thus, the marker regions are the sets of the form $R=\delta F$ for some $\delta \in \Delta$. Note that for a regular marker structure (Δ, F) we necessarily have $1_{G} \in F$ since $1_{G}=\delta^{-1} \delta$ and $\delta \in R_{\delta}$. Conversely, given a $\Delta \subseteq G$ and a finite $F \subseteq G$ with $1_{G} \in F$, if we set $\mathcal{R}=\{\delta F: \delta \in \Delta\}$, then (Δ, \mathcal{R}) is a regular marker structure iff whenever $\delta_{1} \neq \delta_{2}$ are in Δ, then $\delta_{1} F \cap \delta_{2} F=\varnothing$. Notice that this is stronger than just requiring that $\{\delta F: \delta \in \Delta\}$ forms a pairwise disjoint collection (since the latter condition allows for the possibility that $\delta_{1} F=\delta_{2} F$ for some $\delta_{1} \neq \delta_{2}$ in Δ).

In the case of a tiling, the $\delta F=\delta\left(\delta^{-1} R_{\delta}\right)=R_{\delta}$ partition the group G, where again F is the common value of $\delta^{-1} R_{\delta}$. In fact, a regular marker structure (Δ, F) is a tiling iff $\bigcup_{\delta \in \Delta} \delta F=G$. We call F the tile for the tiling \mathcal{R}. In particular, we usually also present tilings as (Δ, F), where F is the tile. Total marker structures occur in hyperfiniteness proofs, but for most of the main results of this paper we must work with marker structures which are not total. Nevertheless, we establish certain strong tiling properties for classes of groups in this chapter.

In the main arguments of this paper, and also in hyperfiniteness proofs, one needs to consider not just a single marker structure, but a sequence $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ of marker structures. We introduce some more terminology for such sequences.

Definition 4.1.3. A sequence of marker structures $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ is coherent if for $k \leq n$ and marker regions $R_{k} \in \mathcal{R}_{k}, R_{n} \in \mathcal{R}_{n}$, we have $R_{k} \cap R_{n} \neq \varnothing$ implies $R_{k} \subseteq R_{n}$. A sequence of marker structures $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ is cofinal if for every finite $A \subseteq \bigcup_{n} \bigcup \mathcal{R}_{n}$ there is an $n \in \mathbb{N}$ such that for all $m \geq n$ we have $A \subseteq R_{m}$ for some $R_{m} \in \mathcal{R}_{m}$. A sequence of marker structures $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ is centered if for each n the marker structure $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ is centered (that is, $1_{G} \in \Delta_{n}$ for all n).

As with single marker structures, we usually present sequences $\left(\Delta_{n}, \mathcal{R}_{n}\right)$ of regular marker structures as $\left(\Delta_{n}, F_{n}\right)$ where F_{n} is the common value of $\delta^{-1} R_{\delta}$ for $\delta \in \Delta_{n}$ and R_{δ} the unique $R \in \mathcal{R}_{n}$ containing δ.

Note that a sequence of tilings $\left(\Delta_{n}, F_{n}\right)$ is coherent iff every nth level marker region $\delta_{n} F_{n}$ is contained in a (unique) $n+1$ st level marker region $\delta_{n+1} F_{n+1}$. Also, if $\left(\Delta_{n}, F_{n}\right)$ is a coherent sequence of tilings then each $n+1$ st level marker region $\delta_{n+1} F_{n+1}$ is a disjoint union of nth level marker regions δF_{n}, for some finite set of $\delta \in \Delta_{n}$. Finally, note that for a sequence of total marker structures $\left(\Delta_{n}, \mathcal{R}_{n}\right)$, being cofinal is just saying that for every finite $A \subseteq G$, for large enough n we have that A is contained in a single nth level marker region $R_{n} \in \mathcal{R}_{n}$. Moreover, a
sequence of centered regular marker structures $\left(\Delta_{n}, F_{n}\right)$ is cofinal iff every finite $A \subseteq \bigcup_{n} \cup \mathcal{R}_{n}$ (where $\mathcal{R}_{n}=\left\{\delta F_{n}: \delta \in \Delta_{n}\right\}$) is contained in F_{n} for large enough n. This is because we may assume A contains 1_{G}, and each F_{n} contains 1_{G} for a centered tiling. In particular, a sequence $\left(\Delta_{n}, F_{n}\right)$ of centered tilings is cofinal iff $\bigcup_{n} F_{n}=G$.

The next definition gives a name to groups admitting the strongest form of tilings we will consider.

Definition 4.1.4. A countable group G is a $c c c$ group if G has a coherent, cofinal, centered sequence of tilings $\left(\Delta_{n}, F_{n}\right)$.

The significance of ccc tilings is that they are in some sense the most highly controlled marker structure we can get on a group. It is easy to see that various simple groups such as \mathbb{Z} or \mathbb{Z}^{n} are ccc groups. The general situation, however, is not clear, which leads to the following question.

Question 4.1.5. Which groups are ccc groups?
Recall from $[\mathbf{C h}]$ and $[\mathbf{W}]$ the concept of MT groups defined independently by Chou and Weiss. A countable group is called an MT group if it admits cofinal tilings. Chou and Weiss independently proved that the class of MT groups is closed under group extensions and that all countable residually finite groups and all countable solvable groups are MT. Chou further proved that any free product of nontrivial groups is MT. Chou and Weiss raised the following question.

Question 4.1.6 (Chou [Ch], Weiss [W]). Which groups are MT groups?

The above questions are important for several reasons. The results of this paper depend heavily on being able to construct sufficiently good marker regions for a general group. We suspect that in future applications of these methods, it may become important to identify even better classes of marker regions for groups (or some special families of groups). Aside from the applications to the current paper, these general questions also arise in other considerations. For example, suppose G is a countable group acting in a Borel way on a standard Borel space X. Recall the equivalence relation E on X generated by the action is said to be hyperfinite if E is the increasing union of finite Borel sub-equivalence relations E_{n} on X. That is, E is hyperfinite if we can find (Borel) marker regions on X whose equivalence classes union to all of X. Here the marker regions are on the Polish space X, and not the group G. However, marker regions R for X, assuming the action of G on X is free, easily induce marker regions for G by simply fixing a particular equivalence class $[x]$ and considering the relation $g \sim h$ iff $(g \cdot x) R(h \cdot x)$. The other direction does not go through, so having marker regions with certain properties on a group G is in general a weaker assertion that having marker regions with these properties on X. The two questions, though, are certainly related, and having the regions on G is a necessary condition for having them on X.

We will consider the question of which groups are ccc groups later in this chapter. For now we note the simple observation that the centeredness requirement is mainly for convenience as it can always be achieved.

Proposition 4.1.7. Every tiling (Δ, F) of a group G has a presentation as a centered tiling. That is, there is a centered tiling $\left(\Delta^{\prime}, F^{\prime}\right)$ having the same marker regions (i.e., $\{\delta F: \delta \in \Delta\}=\left\{\delta^{\prime} F^{\prime}: \delta^{\prime} \in \Delta^{\prime}\right\}$). In particular, if G admits a coherent, cofinal sequence of tilings, then G is a ccc group.

Proof. Suppose (Δ, F) is a tiling for G. Let $\delta \in \Delta$ be such that $1_{G} \in \delta F$. Let $\Delta^{\prime}=\Delta \delta^{-1}$ and $F^{\prime}=\delta F$. This clearly works.

4.2. 2-Colorings on abelian and FC groups by markers

In this section we use the notion of marker structure to give a proof that all abelian groups admit a 2-coloring. This proof is quite different from that of Theorem 3.5.4. This rather simple proof foreshadows the proof for general groups to be given in Chapters 5 and 6 , and will serve to motivate some of the later constructions. We then extend the argument slightly to show that every FC group also admits a 2-coloring (the definition of an FC group is given below). This result does not seem to follow from the methods of the previous chapters. It will also show some of the difficulties associated with the group being nonabelian, and will give further motivation for the general constructions later.

We remark that we use multiplicative notation throughout, even when the group is abelian.

We will first introduce some notation. For any graph Γ let $V(\Gamma)$ and $E(\Gamma)$ denote the vertices and edges of Γ respectively. For any two graphs Γ_{1} and Γ_{2} let $\Gamma_{1} \cup \Gamma_{2}=\left(V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right), E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right)\right)$.

Theorem 4.2.1. If G is a countable abelian group then G has a 2-coloring.
Proof. When G is finite this is clear, so we may assume G is countably infinite and let $1_{G}=g_{0}, g_{1}, \ldots, g_{n}, \ldots$ be an enumeration of the elements of G.

We begin by constructing a sequence $\left(F_{n}\right)_{n \in \mathbb{N}^{+}}$of finite subsets of G. First choose F_{1} such that $\left|F_{1}\right| \geq 3$ and for some $a_{1} \in F_{1}, a_{1} g_{1} \in F_{1}$. We will continue the construction inductively and assume that $F_{1}, F_{2}, \ldots, F_{k-1}$ have been defined for some $k>1$. Choose any $\lambda_{1}, \lambda_{2}, \lambda_{3} \in G$ with $\lambda_{i} F_{k-1} F_{k-1}^{-1} \cap \lambda_{j} F_{k-1} F_{k-1}^{-1}=\varnothing$ for $i \neq j \quad i, j \in\{1,2,3\}$ and choose a finite $F_{k} \subseteq G$ such that

$$
\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, g_{k} \lambda_{1}, g_{k} \lambda_{2}, g_{k} \lambda_{3}\right\} F_{k-1}^{2} F_{k-1}^{-1} \subseteq F_{k}
$$

Now, for each $n \in \mathbb{N}$ fix $\Delta_{n} \subseteq G$ such that $\left\{\gamma F_{n}: \gamma \in \Delta_{n}\right\}$ is a collection of maximally disjoint translates of F_{n}. Thus, we have defined a sequence $\left(\Delta_{n}, F_{n}\right)$ of regular marker structures on G. Note that this sequence is neither coherent nor cofinal.

We claim that for every $n>1$ and $\gamma \in \Delta_{n}$ there exist distinct $z_{1}, z_{2}, z_{3} \in \Delta_{n-1}$ with $\left\{z_{i}, z_{i} g_{n}\right\} F_{n-1} \subseteq \gamma F_{n}$ for each $i \in\{1,2,3\}$. By construction there exist $\lambda_{1}, \lambda_{2}, \lambda_{3} \in G$ such that for $i, j \in\{1,2,3\}$ with $i \neq j, \lambda_{i} F_{n-1} F_{n-1}^{-1} \cap \lambda_{j} F_{n-1} F_{n-1}^{-1}=$ \varnothing and $\left\{\lambda_{i}, \lambda_{i} g_{n}\right\} F_{n-1}^{2} F_{n-1}^{-1} \subseteq F_{n}$. Since the Δ_{n-1}-translates of F_{n-1} are maximally disjoint, for some $z_{1} \in \Delta_{n-1}, z_{1} F_{n-1} \cap \gamma \lambda_{1} F_{n-1} \neq \varnothing$ and therefore $z_{1} \in$ $\gamma \lambda_{1} F_{n-1} F_{n-1}^{-1}$. Similarly we find there exists $z_{2} \in \Delta_{n-1} \cap \gamma \lambda_{2} F_{n-1} F_{n-1}^{-1}$ and $z_{3} \in \Delta_{n-1} \cap \gamma \lambda_{3} F_{n-1} F_{n-1}^{-1}$. Since $\lambda_{i} F_{n-1} F_{n-1}^{-1} \cap \lambda_{j} F_{n-1} F_{n-1}^{-1}=\varnothing$ for $i \neq j \quad i, j \in$ $\{1,2,3\}, z_{1}, z_{2}$, and z_{3} must be distinct. Finally, for $i \in\{1,2,3\},\left\{z_{i}, z_{i} g_{n}\right\} F_{n-1} \subseteq$ $\left\{\gamma \lambda_{i}, \gamma \lambda_{i} g_{n}\right\} F_{n-1}^{2} F_{n-1}^{-1} \subseteq \gamma F_{n}$.

We will now create an increasing sequence of graphs $\left(\Gamma_{n}\right)_{n \in \mathbb{N}}$ which we will use to construct a 2 -coloring on G. By construction there exists $a_{1} \in F_{1}$ with $a_{1} g_{1} \in F_{1}$. Define Γ_{1} to be the graph with edge set the set of all (undirected) edges between γa_{1} and $\gamma a_{1} g_{1}$ for $\gamma \in \Delta_{1}$. We will write this as $\bigcup_{\gamma \in \Delta_{1}}\left\{\left(\gamma a_{1}, \gamma a_{1} g_{1}\right)\right\}$. Note that since the Δ_{1}-translates of F_{1} are disjoint and $a_{1}, a_{1} g_{1} \in F_{1}, \Gamma_{1}$ is composed of an infinite number of disconnected components, each of which contains only one edge.

Figure 4.1. The proof of Theorem 4.2.1.

On this note it is clear that Γ_{1} has no cycles. Additionally since $\left|F_{1}\right| \geq 3$, for all $\gamma \in \Delta_{1}$ we have $\left|\left(\gamma F_{1}\right)-V\left(\Gamma_{1}\right)\right| \geq 1$.

We will continue the construction inductively and assume that for some $k>1$ $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k-1}$ have been defined such that
(i) Γ_{k-1} has no cycles;
(ii) For all $\gamma \in \Delta_{k-1},\left|\left(\gamma F_{k-1}\right)-V\left(\Gamma_{k-1}\right)\right| \geq 1$;
(iii) For all $i<k$ and $\gamma \in \Delta_{i}$ there exists $a \in F_{i}$ such that $\left\{\gamma a, \gamma a g_{i}\right\} \subseteq$ $V\left(\Gamma_{k-1}\right)$ and $\left(\gamma a, \gamma a g_{i}\right) \in E\left(\Gamma_{k-1}\right)$.
We know that for any $\gamma \in \Delta_{k}$ there exist distinct $z_{1}, z_{2}, z_{3} \in \Delta_{k-1}$ with $\left\{z_{i}, z_{i} g_{k}\right\} F_{k-1} \subseteq \gamma F_{k}$ for $i \in\{1,2,3\}$. Therefore for every $\gamma \in \Delta_{k}, \mid\left(\gamma F_{k}\right)-$ $V\left(\Gamma_{k-1}\right) \mid \geq 3$ and there exists $a_{k}^{\gamma} \in F_{k}$ such that $\gamma a_{k}^{\gamma} \in \gamma F_{k}-V\left(\Gamma_{k-1}\right)$ and $\gamma a_{k}^{\gamma} g_{k} \in$ γF_{k}. We then define Γ_{k} to be Γ_{k-1} together with the edges in $\bigcup_{\gamma \in \Delta_{k}}\left\{\left(\gamma a_{k}^{\gamma}, \gamma a_{k}^{\gamma} g_{k}\right)\right\}$. Since in each Δ_{k}-translate of F_{k} at most two vertices are being appended to Γ_{k-1} in constructing Γ_{k}, we see that for all $\gamma \in \Delta_{k}$ that $\left|\gamma F_{k}-V\left(\Gamma_{k}\right)\right| \geq 1$. Additionally, as Γ_{k-1} has no cycles and for each $\gamma \in \Delta_{k}$ we have $a_{k}^{\gamma} \notin V\left(\Gamma_{k-1}\right), \Gamma_{k}$ cannot have any cycles either. Figure 4.1 illustrates our construction.

We let $\Gamma=\bigcup_{n \in \mathbb{N}^{+}} \Gamma_{n}$ and claim that Γ has no cycles. Towards a contradiction suppose Γ has a cycle. Then the cycle would traverse a finite number of edges, and therefore for some sufficiently large $n \in \mathbb{N} \Gamma_{n}$ would contain this cycle. But this is a contradiction since Γ_{n} has no cycles. Since Γ has no cycles it can be 2-colored in the graph theoretic sense, that is, any two vertices joined by an edge have different colors. Let $\mu: V(\Gamma) \rightarrow 2$ be a 2-coloring of Γ and let $c: G \rightarrow 2$ be any function such that for all $g \in V(\Gamma) c(g)=\mu(g)$. We will now show c is a 2 -coloring on G. Let g_{i} be given, let $T=F_{i}^{2} F_{i}^{-1}$, and let $g \in G$ be arbitrary. Since the $\Delta_{i^{-}}$ translates of F_{i} are maximally disjoint there exists $f_{1} \in F_{i}$ such that $g f_{1} \in \Delta_{i} F_{i}$. It follows there exists $f_{2} \in F_{i}^{-1}$ with $\gamma=g f_{1} f_{2} \in \Delta_{i}$. Finally, there exists $a \in F_{i}$ such that $\left\{\gamma a, \gamma a g_{i}\right\} \subseteq V\left(\Gamma_{i}\right) \subseteq V(\Gamma)$ and $\left(\gamma a, \gamma a g_{i}\right) \in E\left(\Gamma_{i}\right) \subseteq E(\Gamma)$. Therefore $c\left(g f_{1} f_{2} a\right)=c(\gamma a)=\mu(\gamma a) \neq \mu\left(\gamma a g_{i}\right)=c\left(\gamma a g_{i}\right)=c\left(g f_{1} f_{2} a g_{i}\right)$. This completes the proof as $f_{1} f_{2} a \in F_{i}^{2} F_{i}^{-1}=T$.

We now extend the previous argument to FC groups (see Definition 2.5.8).
Theorem 4.2.2. If G is a countable $F C$ group then G has a 2-coloring.
Proof. When G is finite this is clear, so we may assume G is countably infinite and let $1_{G}=g_{0}, g_{1}, \ldots, g_{n}, \ldots$ be an enumeration of the elements of G. For each $n \in \mathbb{N}$ let C_{n} denote the finite conjugacy class containing g_{n}.

We begin by constructing a sequence $\left(F_{n}\right)_{n \in \mathbb{N}^{+}}$of finite subsets of G. First choose F_{1} such that $\left|F_{1}\right| \geq\left|C_{1}\right|+2$ and for some $a_{1} \in F_{1}$ we have $a_{1} C_{1} \subseteq F_{1}$. We will continue the construction inductively and assume that $F_{1}, F_{2}, \ldots, F_{k-1}$ have been defined for some $k>1$. Let $m=\left|C_{k}\right|$ and choose any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m+1} \in G$ such that for $i, j \in\{1,2, \ldots, m+1\}$ with $i \neq j$

$$
\begin{gather*}
\lambda_{i} F_{k-1} F_{k-1}^{-1} \cap \lambda_{j} F_{k-1} F_{k-1}^{-1}=\varnothing, \tag{4.1}\\
\lambda_{i} F_{k-1} F_{k-1}^{-1} F_{k-1} C_{k} \cap \lambda_{j} F_{k-1} F_{k-1}^{-1} F_{k-1}=\varnothing, \text { and } \tag{4.2}\\
\lambda_{i} F_{k-1} F_{k-1}^{-1} F_{k-1} C_{k} \cap \lambda_{j} F_{k-1} F_{k-1}^{-1} F_{k-1} C_{k}=\varnothing \tag{4.3}
\end{gather*}
$$

Finally choose a finite $F_{k} \subseteq G$ such that for all $i \in\{1,2, \ldots, m+1\}$

$$
\begin{equation*}
\lambda_{i} F_{k-1} F_{k-1}^{-1} F_{k-1} \cup \lambda_{i} F_{k-1} F_{k-1}^{-1} F_{k-1} C_{k} \subseteq F_{k} \tag{4.4}
\end{equation*}
$$

Now, for each $n \in \mathbb{N}^{+}$fix $\Delta_{n} \subseteq G$ such that $\left\{\gamma F_{n} \mid \gamma \in \Delta_{n}\right\}$ is a maximally disjoint collection of translates of F_{n}. Thus, we have defined a sequence $\left(\Delta_{n}, F_{n}\right)$ of regular marker structures on G.

We claim that for every $n \in \mathbb{N}^{+}$and $\gamma \in \Delta_{n}$ there exist distinct elements $z_{1}, z_{2}, \ldots, z_{m+1} \in \Delta_{n-1}$ where $m=\left|C_{n}\right|$ such that for each $i, j \in\{1,2, \ldots, m+1\}$ with $i \neq j$

$$
\begin{gather*}
z_{i} F_{n-1} C_{n} \cap z_{j} F_{n-1}=\varnothing, \tag{4.5}\\
z_{i} F_{n-1} C_{n} \cap z_{j} F_{n-1} C_{n}=\varnothing, \text { and } \tag{4.6}\\
z_{i} F_{n-1} \cup z_{i} F_{n-1} C_{n} \subseteq \gamma F_{n} . \tag{4.7}
\end{gather*}
$$

By construction there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m+1} \in G$ satisfying (4.1) through (4.4). Since the Δ_{n-1}-translates of F_{n-1} are maximally disjoint, for some $z_{1} \in \Delta_{n-1}$ $z_{1} F_{n-1} \cap \gamma \lambda_{1} F_{n-1} \neq \varnothing$ and therefore $z_{1} \in \gamma \lambda_{1} F_{n-1} F_{n-1}^{-1}$. Similarly we find there exists $z_{i} \in \Delta_{n-1} \cap \gamma \lambda_{i} F_{n-1} F_{n-1}^{-1}$ for each $i \in\{2,3, \ldots, m+1\}$. It follows that for each $i, j \in\{1,2, \ldots, m+1\}$ with $i \neq j$ that z_{i} and z_{j} are distinct since $\lambda_{i} F_{n-1} F_{n-1}^{-1} \cap$ $\lambda_{j} F_{n-1} F_{n-1}^{-1}=\varnothing$. Finally, for $i \in\{1,2, \ldots, m+1\}, z_{i} F_{n-1} \subseteq \gamma \lambda_{i} F_{n-1} F_{n-1}^{-1} F_{n-1}$ and $z_{i} F_{n-1} C_{n} \subseteq \gamma \lambda_{i} F_{n-1} F_{n-1}^{-1} F_{n-1} C_{n}$, so properties (4.5) through (4.7) follow from $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m+1}$ satisfying (4.2) through (4.4).

We will now create an increasing sequence of graphs $\left(\Gamma_{n}\right)_{n \in \mathbb{N}^{+}}$which we will use to construct a 2 -coloring on G. By construction there exists $a_{1} \in F_{1}$ with $a_{1} C_{1} \subseteq$ F_{1}. Define Γ_{1} to be the graph with (undirected) edges $\bigcup_{\gamma \in \Delta_{1}} \bigcup_{h \in C_{1}}\left\{\left(\gamma a_{1}, \gamma h a_{1}\right)\right\}$. Note that $\gamma h a_{1}=\gamma a_{1} a_{1}^{-1} h a_{1} \in \gamma a_{1} C_{1} \subseteq \gamma F_{1}$ and since the Δ_{1}-translates of F_{1} are disjoint, Γ_{1} is composed of an infinite number of disconnected components. It is clear from the construction that Γ_{1} has no cycles. Additionally since $\left|F_{1}\right| \geq\left|C_{1}\right|+2$, for all $\gamma \in \Delta_{1}$ we have $\left|\gamma F_{1}-V\left(\Gamma_{1}\right)\right| \geq 1$.

We will continue the construction inductively and assume that for some $k>1$ $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k-1}$ have been defined such that

Figure 4.2. The proof of Theorem 4.2.2.
(i) Γ_{k-1} has no cycles;
(ii) For all $\gamma \in \Delta_{k-1},\left|\gamma F_{k-1}-V\left(\Gamma_{k-1}\right)\right| \geq 1$;
(iii) For all $i<k, \gamma \in \Delta_{i}$, and $h \in C_{i}$ there exists $a \in F_{i}$ such that $\{\gamma a, \gamma h a\} \subseteq$ $V\left(\Gamma_{k-1}\right)$ and $(\gamma a, \gamma h a) \in E\left(\Gamma_{k-1}\right)$.
Enumerate the members of C_{k} as $h_{1}, h_{2}, \ldots, h_{m}$. We know that for each $\gamma \in \Delta_{k}$ there exist distinct $z_{1}^{\gamma}, z_{2}^{\gamma}, \ldots, z_{m+1}^{\gamma} \in \Delta_{k-1}$ satisfying (4.5) through (4.7). For each $i \in\{1,2, \ldots, m\}$ and each $\gamma \in \Delta_{k}$ fix $a_{i}^{\gamma} \in F_{k-1}$ such that $z_{i}^{\gamma} a_{i}^{\gamma} \notin V\left(\Gamma_{k-1}\right)$. Then define Γ_{k} to be the graph Γ_{k-1} together with the edges between the points $z_{i}^{\gamma} a_{i}^{\gamma}$ and $\gamma h_{i} \gamma^{-1} z_{i}^{\gamma} a_{i}^{\gamma}$. That is, we set

$$
E\left(\Gamma_{k}\right)=E\left(\Gamma_{k-1}\right) \cup \bigcup_{\gamma \in \Delta_{k}} \bigcup_{1 \leq i \leq m}\left\{\left(z_{i}^{\gamma} a_{i}^{\gamma}, \gamma h_{i} \gamma^{-1} z_{i}^{\gamma} a_{i}^{\gamma}\right)\right\}
$$

Since $\gamma h_{i} \gamma^{-1} z_{i}^{\gamma} a_{i}^{\gamma}=z_{i}^{\gamma} a_{i}^{\gamma}\left(\left(z_{i}^{\gamma} a_{i}^{\gamma}\right)^{-1} \gamma h_{i} \gamma^{-1} z_{i}^{\gamma} a_{i}^{\gamma}\right) \in z_{i}^{\gamma} F_{k-1} C_{k}$, it follows from the definition of the z_{i}^{γ} 's that

$$
z_{1}^{\gamma} a_{1}^{\gamma}, \gamma h_{1} \gamma^{-1} z_{1}^{\gamma} a_{1}^{\gamma}, z_{2}^{\gamma} a_{2}^{\gamma}, \gamma h_{2} \gamma^{-1} z_{2}^{\gamma} a_{2}^{\gamma}, \ldots, z_{m}^{\gamma} a_{m}^{\gamma}, \gamma h_{m} \gamma^{-1} z_{m}^{\gamma} a_{m}^{\gamma}
$$

are all distinct and lie in γF_{k} for each $\gamma \in \Delta_{k}$. Since Γ_{k-1} has no cycles and for each $\gamma \in \Delta_{k}$ and $i \in\{1,2, \ldots, m\} z_{i}^{\gamma} a_{i}^{\gamma} \notin V\left(\Gamma_{k-1}\right)$ it follows that Γ_{k} has no cycles either. Additionally for each $\gamma \in \Delta_{k}$ and $i \in\{1,2, \ldots, m\} z_{i}^{\gamma} a_{i}^{\gamma}, \gamma h_{i} \gamma^{-1} z_{i} a_{i}^{\gamma} \notin z_{m+1} F_{k-1}$ by (4.5) therefore $\left|\gamma F_{k}-V\left(\Gamma_{k}\right)\right| \geq 1$. The third requirement on the induction follows as well when we set $a=\gamma^{-1} z_{i}^{\gamma} a_{i}^{\gamma}$. Figure 4.2 illustrates our construction.

We let $\Gamma=\bigcup_{n \in \mathbb{N}^{+}} \Gamma_{n}$. As before, Γ has no cycles and so can be 2-colored in the graph theoretic sense. Let $\mu: V(\Gamma) \rightarrow 2$ be a 2-coloring of Γ and let $c: G \rightarrow 2$ be any function such that for all $g \in V(\Gamma) c(g)=\mu(g)$. We will now show c is a 2-coloring on G. Let g_{i} be given, let $T=F_{i} F_{i}^{-1} F_{i}$, and let $g \in G$ be arbitrary. Since the Δ_{i}-translates of F_{i} are maximally disjoint there exists $f_{1} \in F_{i}$ such that $g f_{1} \in \Delta_{i} F_{i}$. It follows there exists $f_{2} \in F_{i}^{-1}$ with $\gamma=g f_{1} f_{2} \in \Delta_{i}$. Then we have $g g_{i} f_{1} f_{2}=\gamma\left(f_{1} f_{2}\right)^{-1} g_{i}\left(f_{1} f_{2}\right)=\gamma h$ for some $h \in C_{i}$. Finally, by construction there
exists $a \in F_{i}$ such that $\{\gamma a, \gamma h a\} \subseteq V\left(\Gamma_{i}\right) \subseteq V(\Gamma)$ and $(\gamma a, \gamma h a) \in E\left(\Gamma_{i}\right) \subseteq E(\Gamma)$. Therefore $c\left(g f_{1} f_{2} a\right)=c(\gamma a)=\mu(\gamma a) \neq \mu(\gamma h a)=c(\gamma h a)=c\left(g g_{i} f_{1} f_{2} a\right)$. This completes the proof as $f_{1} f_{2} a \in F_{i} F_{i}^{-1} F_{i}=T$.

4.3. Some properties of ccc groups

In the remainder of this chapter we study ccc groups. In this section we first establish some basic properties of ccc groups. Recall that a countable group G is a ccc group if it has a sequence of tilings $\left(\Delta_{n}, F_{n}\right)$ which are coherent, cofinal, and centered. As we noted in Proposition 4.1.7 there is no loss of generality in assuming centeredness.

We first prove a general lemma which shows that starting from a ccc tiling $\left(\Delta_{n}, F_{n}\right)$ of the group G we may modify it to get another ccc tiling ($\tilde{\Delta}_{n}, F_{n}$) (using the same tiles F_{n}) with some additional uniformity properties. Recall that in a ccc tiling $\left(\Delta_{n}, F_{n}\right)$, every F_{n} is a finite disjoint union of translates δF_{n-1} for $\delta \in \Delta_{n-1}$ (since $F_{n}=1_{G} F_{n}$ is one of the sets in the partition corresponding to $\left(\Delta_{n}, F_{n}\right)$).

Lemma 4.3.1. Let $\left(\Delta_{n}, F_{n}\right)$ be a ccc tiling of the group G. Then there is a ccc tiling $\left(\tilde{\Delta}_{n}, F_{n}\right)$ of G satisfying the following. For each n, let $\tilde{\Delta}_{n-1}^{n}=\{\delta \in$ $\left.\tilde{\Delta}_{n-1}: \delta F_{n-1} \subseteq F_{n}\right\}$. Then
(1) $\tilde{\Delta}_{n}=\bigcup_{m>n} \tilde{\Delta}_{m-1}^{m} \tilde{\Delta}_{m-2}^{m-1} \cdots \tilde{\Delta}_{n}^{n+1}$;
(2) $F_{n}=\tilde{\Delta}_{n-1}^{n} \tilde{\Delta}_{n-2}^{n-1} \cdots \tilde{\Delta}_{0}^{1} F_{0}$;
(3) $\tilde{\Delta}_{n+1} \subseteq \tilde{\Delta}_{n}$.

Proof. Let $\Delta_{n-1}^{n}=\left\{\delta \in \Delta_{n-1}: \delta F_{n-1} \subseteq F_{n}\right\}$. So, Δ_{n-1}^{n} is a finite subset of Δ_{n-1}. For $m>n$ define $\Delta_{n}^{m}=\Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}$. Note that by centeredness that $\Delta_{n}^{m} \subseteq \Delta_{n}^{m+1}$. Set $\tilde{\Delta}_{n}=\bigcup_{m>n} \Delta_{n}^{m}$. Since $1_{G} \in \Delta_{n-1}$ and $F_{n} \subseteq F_{n+1}$, we have $1_{G} \in \Delta_{n}^{n+1}$ and thus $1_{G} \in \tilde{\Delta}_{n}$ for each n. Since we have not changed the F_{n}, we still have $\bigcup_{i} F_{i}=G$ and so the $\left(\tilde{\Delta}_{n}, F_{n}\right)$ are centered and cofinal.

To see that $\left(\tilde{\Delta}_{n}, F_{n}\right)$ is a tiling, we first show that the distinct translates of F_{n} by $\tilde{\Delta}_{n}$ are disjoint. Suppose $\delta F_{n} \cap \eta F_{n} \neq \varnothing$ with $\delta, \eta \in \tilde{\Delta}_{n}$. Say $\delta=\delta_{m-1}^{m} \cdots \delta_{n}^{n+1}$, $\eta=\eta_{m-1}^{m} \cdots \eta_{n}^{n+1}$ where $\delta_{i}^{i+1}, \eta_{i}^{i+1} \in \Delta_{i}^{i+1}$ (we may assume a common value for m by centeredness). By an immediate induction on i we have that for all $i>n$ that $\tilde{\Delta}_{n}^{i} F_{n}=F_{i}$. In particular, $\delta_{m-2}^{m-1} \cdots \delta_{n}^{n+1} F_{n} \subseteq F_{m-1}$ and similarly $\eta_{m-2}^{m-1} \cdots \eta_{n}^{n+1} F_{n} \subseteq F_{m-1}$. By definition, the distinct Δ_{m-1}^{m} translates of F_{m-1} are disjoint, and so $\delta_{m-1}^{m}=\eta_{m-1}^{m}$. Continuing in this manner gives that $\delta_{i}^{i+1}=\eta_{i}^{i+1}$ for all i. Thus, the two translates of F_{n} are the same. We next show that the $\tilde{\Delta}_{n}$ translates of F_{n} cover G. This follows from $F_{m}=\tilde{\Delta}_{n}^{m} F_{n}$ and the fact that $G=\bigcup_{m} F_{m}$. So, $G=\bigcup_{m} \Delta_{n}^{m} F_{n}=\bigcup \tilde{\Delta}_{n} F_{n}$.

To see the tilings $\left(\tilde{\Delta}_{n}, F_{n}\right)$ are coherent, consider δF_{n} for $\delta \in \tilde{\Delta}_{n}$. Say $\delta=$ $\delta_{m-1}^{m} \cdots \delta_{n}^{n+1}$ where again $\delta_{i}^{i+1} \in \Delta_{i}$. Since $F_{n}=\Delta_{n-1}^{n} F_{n-1}$ we have $\delta F_{n}=$ $\bigcup_{\delta_{n-1}^{n} \in \Delta_{n-1}^{n}} \delta_{m-1}^{m} \cdots \delta_{n}^{n+1} \delta_{n-1}^{n} F_{n-1}$. Each element $\delta_{m-1}^{m} \cdots \delta_{n}^{n+1} \delta_{n-1}^{n}$ lies in $\tilde{\Delta}_{n-1}$, and this is a disjoint union as we already showed. This shows the tilings are coherent.

Finally, note that the sets $\tilde{\tilde{\Delta}}_{n}$ defined starting from the ccc tiling $\left(\tilde{\Delta}_{n}, F_{n}\right)$ are the same as the sets $\tilde{\Delta}_{n}$. This is because the corresponding sets $\tilde{\Delta}_{i}^{i+1}$ and Δ_{i}^{i+1} are equal. This in turn follows from the fact that we use the same sets F_{i+1}, F_{i} in these definitions and that $F_{i+1}=\Delta_{i}^{i+1} F_{i}$ which shows that $\tilde{\Delta}_{i}^{i+1}=\Delta_{i}^{i+1}$ as $\Delta_{i}^{i+1} \subseteq \tilde{\Delta}_{i}$.

The second claim of the lemma is a particular case of $F_{n}=\tilde{\Delta}_{k}^{n} F_{k}$ which was noted above, using $k=0$. The third claim is immediate by centeredness since $\delta_{m-1}^{m} \cdots \delta_{n+1}^{n+2}=\delta_{m-1}^{m} \cdots \delta_{n+1}^{n+2} 1_{G} \in \tilde{\Delta}_{n}$ as $1_{G} \in \Delta_{n}^{n+1}$.

Note that the tilings constructed in Lemma 4.3.1 have the following uniformity property. For any $i<n$, any $\gamma_{1}, \gamma_{2} \in \Delta_{n}$, and for any $g \in F_{n}$, we have $\gamma_{1} g \in \Delta_{i}$ iff $\gamma_{2} g \in \Delta_{i}$. This is because $\gamma F_{n} \cap \Delta_{i}=\gamma \Delta_{n-1}^{n} \Delta_{n-2}^{n-1} \cdots \Delta_{i}^{i+1}$ for any $\gamma \in \Delta_{n}$, which follows easily from the properties of Lemma 4.3.1. This uniformity will be an important ingredient for blueprints, which will be defined and studied in the next chapter (c.f. Definition 5.1.2).

In the rest of this section we show that the class of ccc groups is closed under taking direct products, more generally direct sums, and finite index extensions.

The next basic lemma is used in the proof of Theorem 4.4.1. We will prove an extension of it also in Lemma 4.3.3.

Lemma 4.3.2. Suppose G, H are ccc groups, and let $\left(\Delta_{n}, F_{n}\right),\left(\Delta_{n}^{\prime}, F_{n}^{\prime}\right)$ be ccc tilings for G, H respectively. Then $\left(\Delta_{n} \times \Delta_{n}^{\prime}, F_{n} \times F_{n}^{\prime}\right)$ is a ccc tiling for $G \times H$.

Proof. For fixed n, every element of g can be written uniquely in the form δf_{n} where $\delta \in \Delta_{n}$ and $f \in F_{n}$, and likewise every element of H can be written uniquely as $\delta^{\prime} f^{\prime}$ for $\delta^{\prime} \in \Delta_{n}^{\prime}$, $f^{\prime} \in F_{n}^{\prime}$. So, (g, h) can be written uniquely as $\left(\delta, \delta^{\prime}\right) \cdot\left(f, f^{\prime}\right)$ where $\left(\delta, \delta^{\prime}\right) \in \Delta \times \Delta^{\prime}$ and $\left(f, f^{\prime}\right) \in F_{n} \times F_{n}^{\prime}$. This shows that every $\left(\Delta_{n} \times \Delta_{n}^{\prime}, F_{n} \times F_{n}^{\prime}\right)$ is a tiling of $G \times H$. Since each $\delta_{n} F_{n}\left(\delta_{n} \in \Delta_{n}\right)$ is contained in some $\delta_{n+1} F_{n+1}\left(\delta_{n+1} \in \Delta_{n+1}\right)$, and likewise for H, it follows immediately that every $\left(\delta_{n}, \delta_{n}^{\prime}\right) \cdot\left(F_{n} \times F_{n}^{\prime}\right)$ is contained in some $\left(\delta_{n+1}, \delta_{n+1}^{\prime}\right) \cdot\left(F_{n+1} \times F_{n+1}^{\prime}\right)$ and so our tilings on $G \times H$ are coherent. The cofinality of the $G \times H$ tilings follows from that of the G, H tilings, and centeredness follows immediately from $1_{G} \in \Delta_{n}$, $1_{H} \in \Delta_{n}^{\prime}$ and so $\left(1_{G}, 1_{H}\right) \in \Delta_{n} \times \Delta_{n}^{\prime}$.

Of course, Lemma 4.3.2 holds also in the case where a group \tilde{G} is the "internal" product of subgroups G and H with the appropriate change of notation.

Lemma 4.3.3. Suppose $G=\sum_{i} G_{i}$ where each G_{i} is a ccc group. Then G is a ccc group.

Proof. Let $\left(\Delta_{n}^{i}, F_{n}^{i}\right)$ be a ccc tiling for G_{i}. Let $F_{n}=F_{n}^{1} F_{n}^{2} \cdots F_{n}^{n}$. Let $\Delta_{n}=\Delta_{n}^{1} \cdots \Delta_{n}^{n} \cdot H_{n}$ where $H_{n}=\sum_{i=n+1}^{\infty} G_{i}$. Clearly $1_{G} \in \Delta_{n}$ for each n. Fix an n and we show $\left(\Delta_{n}, F_{n}\right)$ is a tiling of G. Every $g \in G$ can be written in the form $g=g_{1} \cdots g_{n} h$ where $h \in H_{n}$. Then

$$
\begin{aligned}
g & =\left(\delta_{n}^{1} f_{n}^{1}\right) \cdots\left(\delta_{n}^{n} f_{n}^{n}\right) h \\
& =\left(\delta_{n}^{1} \cdots \delta_{n}^{n}\right)\left(f_{n}^{1} \cdots f_{n}^{n}\right) h,
\end{aligned}
$$

where $\delta_{n}^{i} \in \Delta_{n}^{i}$ and $f_{n}^{i} \in F_{n}^{i}$. Since H_{n} commutes with G_{1}, \ldots, G_{n}, we have $g=\left(\delta_{n}^{1} \cdots \delta_{n}^{n} h\right)\left(f_{n}^{1} \cdots f_{n}^{n}\right) \in \Delta_{n} F_{n}$. So, the Δ_{n} translates of F_{n} cover G.

Suppose next that $\delta F_{n} \cap \eta F_{n} \neq \varnothing$, where $\delta, \eta \in \Delta_{n}$. So, letting $\delta=\delta_{n}^{1} \cdots \delta_{n}^{n} h$, $\eta=\eta_{n}^{1} \cdots \eta_{n}^{n} h^{\prime}$ where $\delta_{n}^{i}, \eta_{n}^{i} \in \Delta_{n}^{i}, h, h^{\prime} \in H_{n}$, we have

$$
\delta_{n}^{1} \cdots \delta_{n}^{n} h f_{n}^{1} \cdots f_{n}^{n}=\eta_{n}^{1} \cdots \eta_{n}^{n} h^{\prime} k_{n}^{1} \cdots k_{n}^{n}
$$

where $f_{n}^{i}, k_{n}^{i} \in F_{n}^{i}$. Rearranging this gives

$$
\left(\delta_{n}^{1} f_{n}^{1}\right) \cdots\left(\delta_{n}^{n} f_{n}^{n}\right) h=\left(\eta_{n}^{1} k_{n}^{1}\right) \cdots\left(\eta_{n}^{n} k_{n}^{n}\right) h^{\prime} .
$$

Since G is a direct sum of $\sum_{i=1}^{n} G_{i}$ and H_{n} we must have $h=h^{\prime}$, and then $\delta_{n}^{i} f_{n}^{i}=\eta_{n}^{i} k_{n}^{i}$ for all $i=1, \ldots, n$. Since $\left(\Delta_{n}^{i}, F_{n}^{i}\right)$ is a tiling of G_{i} this gives $\delta_{n}^{i}=\eta_{n}^{i}$ and $f_{n}^{i}=k_{n}^{i}$. In particular, $\delta=\eta$. So, $\left(\Delta_{n}, F_{n}\right)$ is a tiling of G.

Finally, consider a translate $T=\delta F_{n+1}$ of F_{n+1} where $\delta \in \Delta_{n+1}$. Then $T=\delta_{n+1}^{1} \cdots \delta_{n+1}^{n} \delta_{n+1}^{n+1} h F_{n+1}$, where $h \in H_{n+1}$. We have:

$$
\begin{aligned}
T & =\delta_{n+1}^{1} \cdots \delta_{n+1}^{n} \delta_{n+1}^{n+1} h F_{n+1}^{1} \cdots F_{n+1}^{n} F_{n+1}^{n+1} \\
& =\left(\delta_{n+1}^{1} F_{n+1}^{1}\right) \cdots\left(\delta_{n+1}^{n} F_{n+1}^{n}\right)\left(\delta_{n+1}^{n+1} F_{n+1}^{n+1}\right) h \\
& =\bigcup_{\delta_{1} \in A_{1}} \cdots \bigcup_{\delta_{n} \in A_{n}} \bigcup_{a_{n+1} \in \delta_{n+1}^{n+1} F_{n+1}^{n+1}}\left(\delta_{1} F_{n}^{1}\right) \cdots\left(\delta_{n} F_{n}^{n}\right) a_{n+1} h \\
& =\bigcup_{\delta_{1} \in A_{1}} \cdots \bigcup_{\delta_{n} \in A_{n}} \bigcup_{a_{n+1} \in \delta_{n+1}^{n+1} F_{n+1}^{n+1}}\left(\delta_{n}^{1} \cdots \delta_{n}^{n} a_{n+1} h\right) F_{n}^{1} \cdots F_{n}^{n}
\end{aligned}
$$

For some finite sets $A_{i} \subseteq \Delta_{n}^{i}$. This shows that T is a (disjoint) union of translates of F_{n} by elements of Δ_{n}.

Lemma 4.3.4. Suppose G has a finite index subgroup H which is a ccc group. Then G is a ccc group.

Proof. Let $\left(\Delta_{n}, F_{n}\right)$ be a ccc tiling for H and let $H x_{1}, H x_{2}, \ldots, H x_{m}$ be the distinct right cosets of H in G, where $x_{1}=e$. Let $F_{n}^{\prime}=\bigcup_{i=1}^{m} F_{n} x_{i}$. We claim that $\left(\Delta_{n}, F_{n}^{\prime}\right)$ is a ccc tiling of G. For each n, every $g \in G$ is of the form $g=h x_{i}$ for some $h \in H$, and thus of the form $g=\delta_{n} f_{n} x_{i}$ where $\delta_{n} \in \Delta_{n}$ and $f_{n} \in F_{n}$. So, $g \in \delta_{n} F_{n}^{\prime}$. So, the Δ_{n} translates of the F_{n}^{\prime} cover G. Suppose next that $\delta_{n}^{1} F_{n}^{\prime} \cap \delta_{n}^{2} F_{n}^{\prime} \neq \varnothing$, where $\delta_{n}^{1}, \delta_{n}^{2} \in \Delta_{n}$. Then, $\delta_{n}^{1} f_{n}^{1} x_{i}=\delta_{n}^{2} f_{n}^{2} x_{j}$ for some $f_{n}^{1}, f_{n}^{2} \in F_{n}$. By disjointness of the distinct cosets we have $i=j$, and therefore $\delta_{n}^{1} f_{n}^{1}=\delta_{n}^{2} f_{n}^{2}$. Since $\left(\Delta_{n}, F_{n}\right)$ is a tiling, it follows that $\delta_{n}^{1}=\delta_{n}^{2}$ (and $f_{n}^{1}=f_{n}^{2}$). Thus, the distinct translates of F_{n}^{\prime} by Δ_{n} are disjoint. So, each $\left(\Delta_{n}, F_{n}\right)$ is a tiling of G. By assumption, $1_{G}=1_{H} \in \Delta_{n}$ for each n. It is also easy to see that they are cofinal.

Finally, to show coherence consider a translate $T=\delta_{n+1} F_{n+1}^{\prime}$, where $\delta_{n+1} \in$ Δ_{n+1}. So, $T=\bigcup_{i=1}^{m} \delta_{n+1} F_{n+1} x_{i}$. Let $A \subseteq \Delta_{n}$ be finite such that $\delta_{n+1} F_{n+1}=$ $\bigcup_{\delta \in A} \delta F_{n}$. So, $T=\bigcup_{\delta \in A} \bigcup_{i=1}^{m} \delta F_{n} x_{i}=\bigcup_{\delta \in A} \delta F_{n}^{\prime}$. So, each Δ_{n+1} translate of F_{n+1}^{\prime} is a (disjoint by above) union of Δ_{n} translates of F_{n}^{\prime}.

4.4. Abelian, nilpotent, and polycyclic groups are ccc

In this section we show that all abelian, nilpotent, and polycyclic groups are ccc.

Theorem 4.4.1. Every countable abelian group is a ccc group.
Proof. Let $G=\left\{1_{G}=g_{0}, g_{1}, \ldots\right\}$ be abelian. Suppose that for $i \leq m$ we have constructed tilings $\left(\Delta_{n}^{i}, F_{n}^{i}\right)$ satisfying the following:
(1) Each $\left(\Delta_{n}^{i}, F_{n}^{i}\right)$ is a ccc tiling of $G_{i}=\left\langle g_{0}, \ldots, g_{i}\right\rangle$.
(2) If $i<m$ each marker region $\delta_{n}^{i} F_{n}^{i}$ (for $\delta_{n}^{i} \in \Delta_{n}^{i}$) is contained in a (unique) region $\delta_{n}^{i+1} F_{n}^{i+1}$ (for some $\delta_{n}^{i+1} \in \Delta_{n}^{i+1}$).

We proceed to construct the $\Delta_{n}^{m+1}, F_{n}^{m+1}$. Suppose first that g_{m+1} has infinite order in G / G_{m}. In this case, $G_{m+1} \cong G_{m} \oplus\left\langle g_{m+1}\right\rangle$. Since $\left\langle g_{m+1}\right\rangle \cong \mathbb{Z}$, we may easily get a ccc sequence of tilings $\left(\Delta_{n}^{\prime}, F_{n}^{\prime}\right)$ for $\left\langle g_{m+1}\right\rangle$. Let $F_{n}^{m+1}=F_{n}^{m} \cdot F_{n}^{\prime}$, and let $\Delta_{n}^{m+1}=\Delta_{n}^{m} \cdot \Delta_{n}^{\prime}$. From Lemma 4.3 .2 we have that $\left(\Delta_{n}^{m+1}, F_{n}^{m+1}\right)$ is a ccc sequence of tilings of G_{m+1}. Property (2) is clear from the proof of Lemma 4.3.2 (since $\delta_{n}^{m} F_{n}^{m}=\left(\delta_{n}^{m} \cdot 1_{G}\right) F_{n}^{m} \subseteq\left(\delta_{n}^{m} \cdot 1_{G}\right) F_{n}^{m+1}=\delta_{n}^{m+1} F_{n}^{m+1}$ as $\delta_{n}^{m+1}=\left(\delta_{n}^{m} \cdot 1_{G}\right) \in$ $\Delta_{n}^{m+1}=\Delta_{n}^{m} \Delta_{n}^{\prime}$ since $1_{G} \in \Delta_{n}^{\prime}$ by centeredness, and $F_{n}^{m+1}=F_{n}^{m} F_{n}^{\prime}$ contains F_{n}^{m} as $1_{G} \in F_{n}^{\prime}$ by centeredness).

If g_{m+1} has finite order k in G / G_{m}, Let $\Delta_{n}^{m+1}=\Delta_{n}^{m}$ and $F_{n}^{m+1}=F_{n}^{m}$. $\left\{g_{m+1}^{0}, \ldots, g_{m+1}^{k-1}\right\}$. This again defines the tiling $\left(\Delta_{n}^{m+1}, F_{n}^{m+1}\right)$. Clearly $\bigcup_{n} F_{n}^{m+1}=$ G_{m+1}. The coherence property that for all $\delta_{n}^{m+1} \in \Delta_{n}^{m+1}$ there is a $\delta_{n+1}^{m+1} \in \Delta_{n+1}^{m+1}$ with $\delta_{n}^{m+1} F_{n}^{m+1} \subseteq \delta_{n+1}^{m+1} F_{n+1}^{m+1}$ follows immediately from the coherence property for the tilings $\left(\Delta_{n}^{m}, F_{n}^{m}\right)$. Namely, $\delta_{n}^{m+1} F_{n}^{m+1}=\left(\delta_{n}^{m+1} F_{n}^{m}\right)\left\{g_{m+1}^{0}, \ldots, g_{m+1}^{k-1}\right\} \subseteq$ $\left(\delta_{n+1}^{m+1} F_{n+1}^{m}\right)\left\{g_{m+1}^{0}, \ldots, g_{m+1}^{k-1}\right\}=\delta_{n+1}^{m+1} F_{n+1}^{m+1}$, for some $\delta_{n+1}^{m+1} \in \Delta_{n+1}^{m+1}$. Next we show that the Δ_{n}^{m+1} translates of F_{n}^{m+1} cover G. Since $g_{m+1}^{k} \in G_{m}$, every element x of G_{m+1} is of the form $x=g \cdot g_{m+1}^{i}$ for some $i<k$, where $g \in G_{m}$. So, $x=\gamma f g_{m+1}^{i}$ where $\gamma \in \Delta_{n}^{m}$ and $f \in F_{n}^{m}$. Thus, $\gamma \in \Delta_{n}^{m+1}$ and $f g_{n+1}^{i} \in F_{n}^{m+1}$. To see disjointness of the translates, suppose $\gamma_{1}\left(f_{1} g_{m+1}^{i}\right)=\gamma_{2}\left(f_{2} g_{m+1}^{j}\right)$, where $\gamma_{1}, \gamma_{2} \in \Delta_{n}^{m+1}=\Delta_{n}^{m}$ and $f_{1}, f_{2} \in F_{n}^{m}$ (without loss of generality, $i \leq j<k$). So, $g_{m+1}^{j-i} \in G_{m}$. As g_{m+1} has order k in $G / G_{m}, i=j$. So, $\gamma_{1} f_{1}=\gamma_{2} f_{2}$, and thus $\gamma_{1}=\gamma_{2}$ and $f_{1}=f_{2}$. Property (2) is again clear (since g_{m+1}^{0} is the identity).

We have now defined $\left(\Delta_{n}^{m}, F_{n}^{m}\right)$ for all n, m which satisfy the above properties. We may assume that each $g_{m} \notin\left\langle g_{0}, \ldots, g_{m-1}\right\rangle$. Let k_{m} be the order of g_{m} in G / G_{m-1} if this order is finite and otherwise $k_{m}=\infty$.

Claim 1. For each m, let $B_{m}=\left\{g_{m+1}^{i_{m+1}} g_{m+2}^{i_{m+2}} \cdots g_{j}^{i_{j}}: i_{m+1}<k_{m+1}, \ldots, i_{j}<\right.$ $\left.k_{j}\right\}$. Then B_{m} is a set of coset representatives for G / G_{m}. Also, $B_{m} \supseteq B_{m+1}$.

Proof. This is easily checked.
Notice from the above construction that property (2) was actually established in the following stronger sense: if $x, y \in G_{m}$ and x, y are in the same marker region $\delta_{n}^{m} F_{n}^{m}$, then for any $i<k_{m+1}$ we have that $x g_{m+1}^{i}, y g_{m+1}^{i}$ are in the same region $\delta_{n}^{m+1} F_{n}^{m+1}$.

Let $F_{n}=F_{n}^{n}$ and $\Delta_{n}=B_{n} \Delta_{n}^{n}$. This defines the sequence $\left(\Delta_{n}, F_{n}\right)$ for G. If $x \in G$, then for each n, there is a $\gamma \in B_{n}$ and a $y \in G_{n}$ such that $x=\gamma y$. Then is a $\delta \in \Delta_{n}^{n}$ and $f \in F_{n}^{n}=F_{n}$ such that $y=\delta f$. So, $x=\gamma \delta f$ and $\gamma \delta \in \Delta_{n}$. So, the Δ_{n} translates of F_{n} cover G. To see disjointness suppose $\gamma_{1} f_{1}=\gamma_{2} f_{2}$ where $\gamma_{1}, \gamma_{2} \in \Delta_{n}$ and $f_{1}, f_{2} \in F_{n}$. Say $\gamma_{1}=b_{1} \delta_{1}$ where $b_{1} \in B_{n}$ and $\delta_{1} \in \Delta_{n}^{n}$. Likewise, write $\gamma_{2}=b_{2} \delta_{2}$. So, $b_{1} \delta_{1} f_{1}=b_{2} \delta_{2} f_{2}$. Since $\delta_{1} f_{1}$ and $\delta_{2} f_{2}$ are in G_{n}, this implies $b_{1}=b_{2}$, and thus $\delta_{1}=\delta_{2}$ and $f_{1}=f_{2}$. So, each $\left(\Delta_{n}, F_{n}\right)$ is a tiling of G. Suppose finally that $x, y \in G$ and x, y are in the same n-level marker region for G. Say $x=b \delta f_{1}, y=b \delta f_{2}$ where $b \in B_{n}, \delta \in \Delta_{n}^{n}$, and $f_{1}, f_{2} \in F_{n}^{n}$. So, δf_{1} and δf_{2} are in the same n-level region for G_{n}. Say $b=g_{n+1}^{i_{n+1}} b^{\prime}$ where $b^{\prime} \in B_{n+1}$. By our observation in the first paragraph after the claim, $\delta f_{1} g_{n+1}^{i_{n+1}}$ and $\delta f_{2} g_{n+1}^{i_{n+1}}$ are in the same n-level region for G_{n+1} and by coherence are in the same $n+1$-level region for G_{n+1}. So, $x=\left(\delta b^{\prime}\right)\left(f_{1} g_{n+1}^{i_{n+1}}\right)$ is in the same $n+1$-level region for G as $y=\left(\delta b^{\prime}\right)\left(f_{2} g_{n+1}^{i_{n+1}}\right)$.

We now extend Theorem 4.4.1 to nilpotent groups. We use the following lemma, in which $\mathrm{Z}(G)$ denotes the center of G.

Lemma 4.4.2. Let $H \leq \mathrm{Z}(G)$ and suppose that both H and G / H are ccc groups. Then G is a ccc group.

Proof. Let $\left(\Delta_{n}^{\prime}, F_{n}^{\prime}\right)$ be a ccc tiling for H and fix also a ccc tiling $\left(\bar{\Delta}_{n}, \bar{F}_{n}\right)$ for G / H. For notational convenience we assume (without loss of generality) that \bar{F}_{0} and F_{0}^{\prime} both consist of just the identity element of G / H and H respectively. Let the $\bar{\Delta}_{n}^{m}, \Delta_{n}^{\prime m}$ be defined as in Lemma 4.3.1. So, $\bar{\Delta}_{n-1}^{n}=\left\{\bar{\delta} \in \bar{\Delta}_{n-1}: \bar{\delta} \bar{F}_{n-1} \subseteq \bar{F}_{n}\right\}$ and $\bar{\Delta}_{n}^{m}=\bar{\Delta}_{m-1}^{m} \bar{\Delta}_{m-2}^{m-1} \cdots \bar{\Delta}_{n}^{n+1}$, and likewise for the $\Delta^{\prime \prime m}$. From Lemma 4.3.1 we may assume that $\bar{\Delta}_{n}=\bigcup_{m} \bar{\Delta}_{n}^{m}$ and $\Delta_{n}^{\prime}=\bigcup_{m} \Delta_{n}^{\prime m}$.

Fix coset representatives Δ_{n-1}^{n} for the elements $\bar{\delta}_{n-1}^{n}$ in $\bar{\Delta}_{n-1}^{n}$. We may assume that $1_{G} \in \Delta_{n-1}^{n}$ for all n. Let $\Delta_{n}^{m}=\Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}$, and $\Delta_{n}=\bigcup_{m>n} \Delta_{n}^{m}$. Thus, Δ_{n} is a set of coset representatives for $\bar{\Delta}_{n}$. Note that $\bar{F}_{n}=\bar{\Delta}_{n-1}^{n} \cdots \bar{\Delta}_{1}^{2} \bar{\Delta}_{0}^{1}$, and so if we let $F_{n}=\Delta_{n-1}^{n} \cdots \Delta_{1}^{2} \Delta_{0}^{1}$, then F_{n} is a set of coset representatives for \bar{F}_{n}. For the group H we have also defined the finite sets $\Delta^{\prime n}{ }_{m}$. From Lemma 4.3.1 we also have that $F_{n}^{\prime}=\Delta_{n-1}^{\prime n} \cdots \Delta_{0}^{\prime 1}$.

We claim that $\left(\Delta_{n} \Delta_{n}^{\prime}, F_{n} F_{n}^{\prime}\right)$ is a ccc tiling of G. We first show that for each n that $\left(\Delta_{n} \Delta_{n}^{\prime}, F_{n} F_{n}^{\prime}\right)$ is a tiling of G. We must show that every element g of G can be written uniquely in the form $g=d d^{\prime} f f^{\prime}$ where $d \in \Delta_{n}, d^{\prime} \in \Delta_{n}^{\prime}, f \in F_{n}$, and $f^{\prime} \in F_{n}^{\prime}$. To see uniqueness, suppose $d_{1} d_{1}^{\prime} f_{1} f_{1}^{\prime}=d_{2} d_{2}^{\prime} f_{2} f_{2}^{\prime}$. Since the d^{\prime} terms are in $H \leq \mathrm{Z}(G)$, this can be rewritten as $d_{1} f_{1} d_{1}^{\prime} f_{1}^{\prime}=d_{2} f_{2} d_{2}^{\prime} f_{2}^{\prime}$. In G / H this becomes $d_{1} f_{1}=d_{2} f_{2}$. This implies that in G / H that $d_{1}=d_{2}$ and $f_{1}=f_{2}$ since $\left(\bar{\Delta}_{n}, \bar{F}_{n}\right)$ is a tiling of G / H. Since the distinct points of Δ_{n} and F_{n} are in distinct cosets by H, it follows that $d_{1}=d_{2}$ and $f_{1}=f_{2}$. We therefore have that $d_{1}^{\prime} f_{1}^{\prime}=d_{2}^{\prime} f_{2}^{\prime}$. Since $\left(\bar{\Delta}_{n}^{\prime}, \bar{F}_{n}^{\prime}\right)$ is a tiling of H we have $d_{1}^{\prime}=d_{2}^{\prime}$ and $f_{1}^{\prime}=f_{2}^{\prime}$. To show existence, let $g \in G$. Let $d \in \Delta_{n}, f \in F_{n}$ be such that $g=d f$ in G / H, that is, $g=d f h$ where $h \in H$. Since $\left(\Delta_{n}^{\prime}, F_{n}^{\prime}\right)$ is a tiling of H, we may write $h=d^{\prime} f^{\prime}$ where $d^{\prime} \in \Delta_{n}^{\prime}$ and $f^{\prime} \in F_{n}^{\prime}$. So, $g=d f d^{\prime} f^{\prime}=d d^{\prime} f f^{\prime}$ where $d d^{\prime} \in \Delta_{n} \Delta_{n}^{\prime}$ and $f f^{\prime} \in F_{n} F_{n}^{\prime}$.

The tiling are clearly centered as $1_{G} \in \Delta_{n}, 1_{G} \in \Delta_{n}^{\prime}$ and so $1_{G} \in \Delta_{n} \Delta_{n}^{\prime}$. Also, the tilings are easily cofinal since each of the tilings on G / H and on H are. To show coherence, consider an n level tile, which is of the form $T=d d^{\prime} F_{n} F_{n}^{\prime}$, where $d \in \Delta_{n}, d^{\prime} \in \Delta_{n}^{\prime}$. We have $F_{n}=\bigcup_{\delta \in \Delta_{n-1}^{n}} \delta F_{n-1}$ and $F_{n}^{\prime}=\bigcup_{\delta^{\prime} \in \Delta_{n-1}^{\prime n}} \delta^{\prime} F_{n-1}^{\prime}$. So,

$$
\begin{aligned}
T & =\bigcup_{\delta \in \Delta_{n-1}^{n}} \bigcup_{\delta^{\prime} \in \Delta^{\prime \prime} n-1} d d^{\prime} \delta F_{n-1} \delta^{\prime} F_{n-1}^{\prime} \\
& =\bigcup_{\delta \in \Delta_{n-1}^{n}} \bigcup_{\delta^{\prime} \in \Delta^{\prime n} n-1} d \delta d^{\prime} \delta^{\prime} F_{n-1} F_{n-1}^{\prime} .
\end{aligned}
$$

This shows that T is a union of translates of $F_{n-1} F_{n-1}^{\prime}$ by elements of $\Delta_{n-1} \Delta^{\prime}{ }_{n-1}$ (note that $\Delta_{n} \Delta_{n-1}^{n} \subseteq \Delta_{n-1}$) and we are done.

THEOREM 4.4.3. Every countable nilpotent group is a ccc group.
Proof. This follows immediately by an induction on the nilpotency rank of G using Lemma 4.4.2.

A closer scrutiny of the proof of Lemma 4.4.2 gives us the following more general fact. It will be useful when the subgroup H is no longer abelian.

Lemma 4.4.4. Let G be a countable group, $H \leq G$, and $\mathrm{Z}_{G}(H)$ be the centralizer of H in G, i.e., $\mathrm{Z}_{G}(H)=\{g \in G: g h=h g$ for all $h \in H\}$. If $G=\mathrm{Z}_{G}(H) H$ and both H and G / H are ccc groups, then G is a ccc group.

Proof. Note that the assumption $G=\mathrm{Z}_{G}(H) H$ implies that $H \unlhd G$. The proof of Lemma 4.4 .2 can be repeated verbatim, except when picking the coset representatives for Δ_{n-1}^{n}, we require them to be chosen from the set $\mathrm{Z}_{G}(H)$; this is possible since $G=\mathrm{Z}_{G}(H) H$.

We next extend Theorem 4.4.1 to a class of solvable groups. Unfortunately we are unable to extend the result to all solvable groups, but we must restrict to those with finitely generated quotients in the derived series. We recall the following definition.

Definition 4.4.5. A countable group G is said to be polycyclic if G has a finite derived series $G=G^{0} \unrhd G^{1} \unrhd \cdots \unrhd G^{k}=\left\{1_{G}\right\}$, where $G^{i+1}=\left(G^{i}\right)^{\prime}=\left[G_{i}, G_{i}\right]$, and each quotient group G^{i-1} / G^{i} is finitely generated.

Being polycyclic is equivalent to having a subnormal series $G=G_{0} \unrhd G_{1} \cdots \unrhd$ $G_{m}=\left\{1_{G}\right\}$ (i.e., each G_{i+1} is a normal subgroup of G_{i}) with all quotient groups G_{i+1} / G_{i} cyclic.

The collection of polycyclic groups include some finitely generated groups which are not of polynomial growth, and therefore not virtually nilpotent (by Wolf [Wo]). Thus Lemma 4.3.4 and Theorem 4.4.3 do not prove that polycyclic groups are ccc. On the other hand, all polycyclic groups are residually finite, and we will prove in the next section that all residually finite groups are ccc. Here we present a direct proof of the ccc property for a class of solvable groups containing the class of polycyclic groups. We hope that this proof may be useful in future generalizations of this result to solvable groups.

THEOREM 4.4.6. If G is a countable solvable group and $[G, G]$ is polycyclic, then G is a ccc group. In particular, if G is polycyclic then G is a ccc group.

Proof. Every polycyclic group is countable, and subgroups of polycyclic groups are polycyclic. So the second sentence in the statement of the theorem follows from the first. So we prove the first sentence. We first show the following simple fact about finitely generated abelian groups which we will need for the proof.

Lemma 4.4.7. Every finitely generated abelian group A has a ccc tiling $\left(\Delta_{n}, F_{n}\right)$ satisfying:
(1) Each Δ_{n} is a subgroup of A.
(2) Each Δ_{n} is invariant under any automorphism of A.
(3) Each $\left(\Delta_{n}, F_{n}\right)$ satisfies the property of Lemma 4.3.1, that is,

$$
\Delta_{n}=\bigcup_{m>n} \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}
$$

where the Δ_{i-1}^{i} are as in Lemma 4.3.1.
Proof. Write $A=\mathbb{Z}^{k} \oplus F$, where F is a finite subgroup. Let $m>1$ be such that $F^{m}=\{e\}$. Let $\Delta_{n}=A^{m^{n}}$, for all $n \geq 1$. Clearly, (1) and (2) are satisfied. Let $F_{n}=\left\{\left(z_{1}^{i_{1}}, z_{2}^{i_{2}}, \ldots, z_{k}^{i_{k}}, f\right): 0 \leq i_{1}, \ldots i_{k}<m^{n}, f \in F\right\}$, where $\left(z_{1}, \ldots, z_{k}\right)$ generates \mathbb{Z}^{k}. Easily, $\left(\Delta_{n}, F_{n}\right)$ is a ccc tiling of A. Property (3) is easily checked.

Consider the derived series of $G, G=G^{0} \unrhd G^{1} \unrhd \cdots \unrhd G^{k}=\left\{1_{G}\right\}$, where $G^{i}=\left(G^{i-1}\right)^{\prime}=\left[G_{i-1}, G_{i-1}\right]$. By assumption, for each $i>1$ the quotient group G^{i-1} / G^{i} is finitely generated. For each quotient group G^{i-1} / G^{i}, fix a ccc tiling $\left(\bar{\Delta}_{n}^{i}, \bar{F}_{n}^{i}\right)$ satisfying clause (3) (this can always be done by Lemma 4.3.1 and Theorem 4.4.1). Additionally, for $i>1$ require this ccc tiling to be as in Lemma 4.4.7. As in Lemma 4.3.1, we let $\left(\bar{\Delta}^{i}\right)_{n-1}^{n} \subseteq \bar{\Delta}_{n-1}^{i}$ be finite such that \bar{F}_{n}^{i} is the disjoint union of translates of \bar{F}_{n-1}^{i} by the elements of $\left(\bar{\Delta}^{i}\right)_{n-1}^{n}$. We choose coset representatives $\left(\Delta^{i}\right)_{n-1}^{n} \subseteq G^{i-1}$ for $\left(\bar{\Delta}^{i}\right)_{n-1}^{n}$ in G^{i-1} / G^{i}. Let $\Delta_{n}^{i}=\bigcup_{m>n}\left(\Delta^{i}\right)_{m-1}^{m} \cdots\left(\Delta^{i}\right)_{n}^{n+1}$. Let $F_{n}^{i}=\left(\Delta^{i}\right)_{n-1}^{n} \cdots\left(\Delta^{i}\right)_{0}^{1}$. Then, the G^{i} cosets of the $\left(\Delta_{n}^{i}, F_{n}^{i}\right)$ also give a representation of the given tilings. Note that the G^{i} cosets of the elements of F_{n}^{i} are exactly the elements of the given sets \bar{F}_{n}^{i}. Similarly, from property (3) we have that the G^{i} cosets of the elements in Δ_{n}^{i} are exactly the elements of $\bar{\Delta}_{n}^{i}$.

We summarize some of the properties of these sets.
(4) $\Delta_{n+1}^{i} \subseteq \Delta_{n}^{i}$ for all n.
(5) $\Delta_{n}^{i}=\Delta_{n+1}^{i}\left(\Delta^{i}\right)_{n}^{n+1}$.
(6) $F_{n}^{i} \subseteq F_{n+1}^{i}$.
(7) For $i>1, \bar{\Delta}_{n}^{i}$ is a subgroups of G^{i-1} / G^{i} and is invariant under every automorphism of G^{i-1} / G^{i}.
Let now

$$
\begin{aligned}
F_{n} & =\left[\left(\Delta^{1}\right)_{n-1}^{n} \cdots\left(\Delta^{k}\right)_{n-1}^{n}\right]\left[\left(\Delta^{1}\right)_{n-2}^{n-1} \cdots\left(\Delta^{k}\right)_{n-2}^{n-1}\right] \cdots\left[\left(\Delta^{1}\right)_{0}^{1} \cdots\left(\Delta^{k}\right)_{0}^{1}\right] \\
\Delta_{n} & \left.=\bigcup_{m>n}\left[\left(\Delta^{1}\right)_{m-1}^{m} \cdots\left(\Delta^{k}\right)_{m-1}^{m}\right)\right] \cdots\left[\left(\Delta^{1}\right)_{n}^{n+1} \cdots\left(\Delta^{k}\right)_{n}^{n+1}\right]
\end{aligned}
$$

We show that $\left(\Delta_{n}, F_{n}\right)$ is a ccc tiling for G.
By definition, F_{n+1} is a union of translates of F_{n}, namely by points of the set $\left(\Delta^{1}\right)_{n-1}^{n} \cdots\left(\Delta^{k}\right)_{n-1}^{n}$. We show that these translates are disjoint. More generally, suppose $m>n$ and
$\left(\delta_{m}^{1} \cdots \delta_{m}^{k}\right)\left(\delta_{m-1}^{1} \cdots \delta_{m-1}^{k}\right) \cdots\left(\delta_{1}^{1} \cdots \delta_{1}^{k}\right)=\left(\rho_{m}^{1} \cdots \rho_{m}^{k}\right)\left(\rho_{m-1}^{1} \cdots \rho_{m-1}^{k}\right) \cdots\left(\rho_{1}^{1} \cdots \rho_{1}^{k}\right)$
where $\delta_{j}^{i}, \rho_{j}^{i} \in\left(\Delta^{i}\right)_{j-1}^{j}$. We show that $\delta_{j}^{i}=\rho_{j}^{i}$, that is, all the corresponding terms in the two expressions above are equal.

Lemma 4.4.8. For any $\delta_{m}^{1}, \ldots, \delta_{m}^{k}, \ldots, \delta_{1}^{1}, \ldots \delta_{1}^{k}$ in G we have:

$$
\begin{aligned}
& \left(\delta_{m}^{1} \delta_{m}^{2} \cdots \delta_{m}^{k}\right)\left(\delta_{m-1}^{1} \delta_{m-1}^{2} \cdots \delta_{m-1}^{k}\right) \cdots\left(\delta_{1}^{1} \delta_{1}^{2} \cdots \delta_{1}^{k}\right) \\
& =\left(\delta_{m}^{1} \delta_{m-1}^{1} \cdots \delta_{1}^{1}\right) \\
& \cdot\left(\delta_{m}^{2} \delta_{m-1}^{1} \cdots \delta_{1}^{1}\right. \\
& \left.\delta_{m-1}^{2} \delta_{m-2}^{1} \cdots \delta_{1}^{1} \cdots \delta_{1}^{2}\right) \\
& \cdot\left(\delta_{m}^{3} \delta_{m-1}^{1} \cdots \delta_{1}^{1} \delta_{m-1}^{2} \delta_{m-2}^{1} \cdots \delta_{1}^{1} \delta_{m-2}^{2} \delta_{m-3}^{1} \cdots \delta_{1}^{1} \cdots \delta_{1}^{2} \cdots\right) \\
& \cdots \\
& =\left(\delta_{m}^{1 c_{m}^{1}} \cdots \delta_{1}^{11_{1}^{1}}\right)\left(\delta_{m}^{2 c_{m}^{2}} \cdots \delta_{1}^{2 c_{1}^{2}}\right) \cdots\left(\delta_{m}^{k} c_{m}^{k} \cdots \delta_{1}^{k c_{1}^{k}}\right)
\end{aligned}
$$

where $c_{m}^{1}=1_{G}$ for all m, and (inductively on i)

$$
c_{j}^{i}=\delta_{j-1}^{1} \cdots \delta_{1}^{1} \delta_{j-1}^{2}{ }_{c-1}^{c_{j-1}^{2}} \cdots \delta_{1}^{2 c_{1}^{2}} \cdots \delta_{j-1}^{i-1 c_{j-1}^{i-1}} \cdots \delta_{1}^{i-1 c_{1}^{i-1}}
$$

Proof. Repeatedly use the identity $x y=y x^{y}$. First move all the terms $\delta_{m}^{1}, \delta_{m-1}^{1}, \ldots, \delta_{1}^{1}$ to the left of the equation. Then move all of the terms δ_{m}^{2}, $\delta_{m-1}^{2}, \ldots, \delta_{1}^{2}$ to the left to immediately follow these terms (the terms δ_{j}^{2} have actually become $\delta_{j}^{2 \delta_{j-1}^{1} \cdots \delta_{1}^{1}}=\delta_{j}^{2 c_{j}^{2}}$ from the first step). Continuing in this manner gives the above equation.

Apply now Lemma 4.4 .8 to both sides of equation 4.8. This gives:

$$
\begin{align*}
& \left(\delta_{m}^{1} \cdots \delta_{1}^{1}\right)\left(\delta_{m}^{2} c_{2}^{m} \cdots \delta_{1}^{2 c_{1}^{2}}\right) \cdots\left(\delta_{m}^{k c_{m}^{k}} \cdots \delta_{1}^{k c_{1}^{k}}\right) \tag{4.9}\\
& =\left(\rho_{m}^{1} \cdots \rho_{1}^{1}\right)\left(\rho_{m}^{2} e_{m}^{2} \cdots \rho_{1}^{2 e_{1}^{2}}\right) \cdots\left(\rho_{m}^{k e_{m}^{k}} \cdots \rho_{1}^{k e_{1}^{k}}\right)
\end{align*}
$$

where the e_{j}^{i} are defined as the c_{j}^{i} using the ρ 's instead of the δ 's.
Considering this equation in G_{0} / G_{1} gives $\bar{\delta}_{m}^{1} \cdots \bar{\delta}_{1}^{1}=\bar{\rho}_{m}^{1} \cdots \bar{\rho}_{1}^{1}$. Since the sets $\bar{\Delta}$ satisfy (3) we have that $\bar{\delta}_{m}^{1} \cdots \bar{\delta}_{2}^{1} \in \bar{\Delta}_{1}^{1}$, and also $\bar{\rho}_{m}^{1} \cdots \bar{\rho}_{2}^{1} \in \bar{\Delta}_{1}^{1}$. Since $\bar{\delta}_{1}^{1}, \bar{\rho}_{1}^{1} \in \bar{F}_{1}^{1}$, it follows that $\bar{\delta}_{1}^{1}=\bar{\rho}_{1}^{1}$ and $\bar{\delta}_{m}^{1} \cdots \bar{\delta}_{1}^{2}=\bar{\rho}_{m}^{1} \cdots \bar{\rho}_{2}^{1}$. Continuing, we get that $\bar{\delta}_{j}^{1}=\bar{\rho}_{j}^{1}$ for all $j=1, \ldots, m$. It then follows that $\delta_{j}^{1}=\rho_{j}^{1}$ for all j as well.

From this and the above equation we then have that

$$
\left(\delta_{m}^{2 c_{m}^{2}} \cdots \delta_{1}^{2 c_{1}^{2}}\right) \cdots\left(\delta_{m}^{k c_{m}^{k}} \cdots \delta_{1}^{k c_{1}^{k}}\right)=\left(\rho_{m}^{2} c_{m}^{2} \cdots \rho_{1}^{2 c_{1}^{2}}\right) \cdots\left(\rho_{m}^{k} c_{m}^{k} \cdots \rho_{1}^{c_{1}^{k}}\right)
$$

More generally, suppose that after $i-1$ steps we have show that

$$
\begin{gathered}
\delta_{m}^{1}=\rho_{m}^{1}, \ldots, \delta_{1}^{1}=\rho_{1}^{1} \\
\vdots \\
\delta_{m}^{i-1}=\rho_{m}^{i-1}, \ldots \delta_{1}^{i-1}=\rho_{1}^{i-1}
\end{gathered}
$$

In particular, from the equation for c_{m}^{i} we see that $c_{j}^{\ell}=e_{j}^{\ell}$ for all $1 \leq j \leq m$ and all $\ell \leq i$. From equation (4.9) we therefore have:

$$
\left(\delta_{m}^{i c_{m}^{i}} \cdots \delta_{1}^{i c_{1}^{i}}\right) \cdots\left(\delta_{m}^{k} c_{m}^{k} \cdots \delta_{1}^{k c_{1}^{k}}\right)=\left(\rho_{m}^{i c_{m}^{i}} \cdots \rho_{1}^{i c_{1}^{i}}\right) \cdots\left(\rho_{m}^{k} e_{m}^{k} \cdots \rho_{1}^{k e_{1}^{k}}\right)
$$

Considering this equation in G^{i-1} / G^{i} gives:

$$
\bar{\delta}_{m}^{i c_{m}^{i}} \cdots \bar{\delta}_{1}^{i c_{1}^{i}}=\bar{\rho}_{m}^{i c_{m}^{i}} \cdots \bar{\rho}_{1}^{i c_{1}^{i}}
$$

Conjugating both sides by $\left(c_{1}^{i}\right)^{-1}$ gives:

$$
\bar{\delta}_{m}^{i c_{m}^{i}\left(c_{1}^{i}\right)^{-1}} \cdots \bar{\delta}_{2}^{i c_{2}^{i}\left(c_{1}^{i}\right)^{-1}} \bar{\delta}_{1}^{i}=\bar{\rho}_{m}^{i} c_{m}^{c_{m}^{i}\left(c_{1}^{i}\right)^{-1}} \cdots \bar{\rho}_{2}^{i c_{2}^{i}\left(c_{1}^{i}\right)^{-1}} \bar{\rho}_{1}^{i}
$$

From properties (4) and (7) of the $\bar{\Delta}$ sets we have that $\bar{\delta}_{m}^{i c_{m}^{i}\left(c_{1}^{i}\right)^{-1}} \cdots \bar{\delta}_{2}^{i c_{2}^{i}\left(c_{1}^{i}\right)^{-1}}$ and $\bar{\rho}_{m}^{i} c_{m}^{i}\left(c_{1}^{i}\right)^{-1} \cdots \bar{\rho}_{2}^{i} c_{2}^{i}\left(c_{1}^{i}\right)^{-1}$ are in $\bar{\Delta}_{1}^{i}$. Since $\bar{\delta}_{1}^{i}$ and $\bar{\rho}_{1}^{i}$ are in \bar{F}_{1}^{i}, and the distinct $\bar{\Delta}_{1}^{i}$ translates of \bar{F}_{1}^{i} are disjoint, it follows that $\bar{\delta}_{1}^{i}=\bar{\rho}_{1}^{i}$ and $\bar{\delta}_{m}^{i c_{m}^{i}\left(c_{1}^{i}\right)^{-1}} \cdots \bar{\delta}_{2}^{i c_{2}^{i}\left(c_{1}^{i}\right)^{-1}}=$
$\bar{\rho}_{m}^{i c_{m}^{i}\left(c_{1}^{i}\right)^{-1}} \cdots \bar{\rho}_{2}^{i c_{2}^{i}\left(c_{1}^{i}\right)^{-1}}$. Continuing in this manner yields $\bar{\delta}_{j}^{i}=\bar{\rho}_{j}^{i}$ for all $j=$ $1, \ldots, m$. It follows that $\delta_{j}^{i}=\rho_{j}^{i}$ for all $j=1, \ldots, m$.

Starting from equation 4.8 we have shown that all the corresponding terms on the two sides of the equation are equal, that is $\delta_{j}^{i}=\rho_{j}^{i}$ for all $i=1, \ldots, k$ and $j=1, \ldots, m$. From this we have the following.

Lemma 4.4.9. For each n, the Δ_{n} translates of F_{n} are disjoint. Also, each translate of F_{n} by an element of Δ_{n} is a disjoint union of translates of F_{n-1} by elements of Δ_{n-1}.

Proof. Suppose $x \in \delta F_{n} \cap \rho F_{n} \neq \varnothing$, where $\delta, \rho \in \Delta_{n}$. By definition of Δ_{n} we have that

$$
\begin{aligned}
& \delta=\left(\delta_{m}^{1} \cdots \delta_{m}^{k}\right) \cdots\left(\delta_{n+1}^{1} \cdots \delta_{n+1}^{k}\right) \\
& \rho=\left(\rho_{m}^{1} \cdots \rho_{m}^{k}\right) \cdots\left(\rho_{n+1}^{1} \cdots \rho_{n+1}^{k}\right)
\end{aligned}
$$

where $\delta_{j}^{i}, \rho_{j}^{i} \in\left(\Delta^{i}\right)_{j-1}^{j}$ and we may assume a common value of $m>n$ for both equations since $1_{G} \in\left(\Delta^{i}\right)_{j-1}^{j}$ for all i and j. Then from the definition of F_{n} we have that x can be written as:

$$
\begin{aligned}
x & =\left(\delta_{m}^{1} \cdots \delta_{m}^{k}\right) \cdots\left(\delta_{n+1}^{1} \cdots \delta_{n+1}^{k}\right)\left(\delta_{n}^{1} \cdots \delta_{n}^{k}\right)\left(\delta_{1}^{1} \cdots \delta_{1}^{k}\right) \\
& =\left(\rho_{m}^{1} \cdots \rho_{m}^{k}\right) \cdots\left(\rho_{n+1}^{1} \cdots \rho_{n+1}^{k}\right)\left(\rho_{n}^{1} \cdots \rho_{n}^{k}\right)\left(\rho_{1}^{1} \cdots \rho_{1}^{k}\right)
\end{aligned}
$$

All of the corresponding terms of both expressions are equal, and in particular $\delta=\rho$.

To see the second claim, note that by definition

$$
F_{n}=\left(\Delta^{1}\right)_{n-1}^{n} \cdots\left(\Delta^{k}\right)_{n-1}^{n} F_{n-1}
$$

So, $F_{n}=\bigcup\left\{\left(\delta_{n}^{1} \cdots \delta_{n}^{k}\right) F_{n-1}: \delta_{n}^{i} \in\left(\Delta^{i}\right)_{n-1}^{n}\right\}$. Since $\delta_{n}^{1} \cdots \delta_{n}^{k} \in \Delta_{n-1}$, the first claim shows that these translates of F_{n-1} are disjoint.

The next lemma show that the Δ_{n} translates of F_{n} cover G.
Lemma 4.4.10. For every n and every $g \in G$, we may write g in the form $g=\left(\delta_{m}^{1} \cdots \delta_{m}^{k}\right) \cdots\left(\delta_{n+1}^{1} \cdots \delta_{n+1}^{k}\right) f$, where $f=\left(\delta_{n}^{1} \cdots \delta_{n}^{k}\right) \cdots\left(\delta_{1}^{1} \cdots \delta_{1}^{k}\right) \in F_{n}$, for some $m>n$.

Proof. Fix n and $g \in G$. Every element \bar{x} of a quotient G^{i-1} / G^{i} can be written in the form $\bar{x}=\bar{\rho}_{m}^{i} \cdots \bar{\rho}_{1}^{i}$ for some $m=m(x)$ (which depends on x), where $\bar{\rho}_{j}^{i} \in\left(\bar{\Delta}^{i}\right)_{j-1}^{j}$, From this and the fact that the identity element is in all the $\left(\bar{\Delta}_{i}\right)_{j-1}^{j}$ it follows that we may write g as:

$$
g=\left(\delta_{m_{1}}^{1} \delta_{m_{1}-1}^{1} \cdots \delta_{1}^{1}\right) g_{1}
$$

where $g_{1} \in G_{1}$. This defines the δ_{j}^{1} for $j \leq m_{1}$. For convenience in the following argument, we set $\delta_{j}^{1}=1_{G}$ for $j>m_{1}$. Note from the definition of the c_{j}^{i} that c_{j}^{2} is now defined for all j. Recall that $c_{j}^{2}=\delta_{j-1}^{1} \cdots \delta_{1}^{1}$. Thus, $c_{j}^{2}=c_{p}^{2}$ for all $j, p \geq m_{1}+1$. That is, the c_{j}^{2} are eventually constant.

Assume in general that we have defined

$$
\delta_{m_{1}}^{1}, \ldots, \delta_{1}^{1}, \delta_{m_{2}}^{2}, \ldots, \delta_{1}^{2}, \ldots, \delta_{m_{\ell-1}}^{\ell-1}, \ldots, \delta_{1}^{\ell-1}
$$

with

$$
g=\left(\delta_{m_{1}}^{1}, \ldots, \delta_{1}^{1}\right)\left(\delta_{m_{2}}^{2} c_{m_{2}}^{2}, \ldots, \delta_{1}^{2 c_{1}^{2}}\right), \cdots\left(\delta_{m_{\ell-1}}^{\ell-1}{c_{m_{\ell-1}}^{\ell-1}}^{2}, \ldots, \delta_{1}^{\ell-1 c_{1}^{\ell-1}}\right) g_{\ell}
$$

where $g_{\ell} \in G_{\ell}$ and all the δ_{j}^{i} lie in $\left(\Delta^{i}\right)_{j-1}^{j}$. Again for convenience set $\delta_{j}^{i}=1_{G}$ for $j>m_{i}$, for $i=1, \ldots, \ell-1$. Note that c_{j}^{i} is defined for $i=1, \ldots, \ell-1$ and all j. Also, inspecting the formula for c_{j}^{i} shows that for all $i=1, \ldots, \ell-1$ that c_{j}^{i} is eventually constant for large enough j. Let us call this eventual value c_{∞}^{i}. To finish the inductive step in the proof of the lemma it suffices to show that in the quotient group $G^{\ell} / G^{\ell+1}$ the (arbitrary) element $\bar{g}_{\ell} \in G^{\ell} / G^{\ell+1}$ can be written in the form

$$
\bar{g}_{\ell}=\bar{\delta}_{m}^{\ell c_{m}^{\ell}} \cdots \bar{\delta}_{1}^{\ell_{1}^{c_{1}^{\ell}}}
$$

for some m, where as usual $\delta_{j}^{\ell} \in\left(\Delta^{\ell}\right)_{j-1}^{j}$. For the rest of the proof we work in the quotient group $G_{\ell} / G_{\ell+1}$ and we suppress writing the bars in the notation. Conjugating by $\left(c_{\infty}^{\ell}\right)^{-1}$, it suffices to show that an arbitrary element of the quotient group $h=g_{\ell}\left(c_{\infty}^{\ell}\right)^{-1}$ can be written in the form

$$
h=\delta_{m}^{\ell d_{m}^{\ell}} \cdots \delta_{1}^{\ell d_{1}^{\ell}}
$$

where the $d_{j}^{\ell}=1_{G_{\ell} / G_{\ell+1}}$ for large enough j, say for $j>j_{0}$. To begin, write $h^{\left(d_{1}^{\ell}\right)^{-1}}=y \delta_{1}^{\ell}$ for some $\delta_{1}^{\ell} \in\left(\Delta^{\ell}\right)_{0}^{1}$ and $y \in \Delta_{1}^{\ell}$. We can do this since the Δ_{1}^{ℓ} translates of F_{1}^{ℓ} cover $G_{\ell} / G_{\ell+1}$ (and recall $\left.F_{1}^{\ell}=\left(\Delta^{\ell}\right)_{0}^{1}\right)$. Conjugating this gives $h=z \delta_{1}^{d_{1}^{\ell}}$ where $z=y^{d_{1}^{\ell}} \in \Delta_{1}^{\ell}$ by the invariance of Δ_{1}^{ℓ} under automorphisms. For the next step, since $z^{\left(d_{2}^{\ell}\right)^{-1}} \in \Delta_{1}^{\ell}$ we may write it as $z^{\left(d_{2}^{\ell}\right)^{-1}}=w \delta_{2}^{\ell}$ for some $\delta_{2}^{\ell} \in\left(\Delta^{\ell}\right)_{1}^{2}$ and $w \in \Delta_{2}^{\ell}$. Conjugating gives $z=u \delta_{2}^{\ell d_{2}^{\ell}}$. So, $g=u \delta_{2}^{\ell d_{2}^{\ell}} \delta_{1}^{\ell_{1}^{d_{1}^{\ell}}}$ where $u \in \Delta_{2}^{\ell}$. Continuing in this manner we may write g as $g=v \delta_{j_{0}}^{\ell} d_{j_{0}}^{\ell} \ldots \delta_{1}^{\ell d_{1}^{\ell}}$, where $v \in \Delta_{j_{0}}^{\ell}$. By the property of Lemma 4.3 .1 of the Δ_{j}^{ℓ}, v is of the form $v=\delta_{m}^{\ell} \cdots \delta_{j_{0}+1}^{\ell}$ for some large enough m. Therefore, $g=\left(\delta_{m}^{\ell} \cdots \delta_{j_{0}+1}^{\ell}\right)\left(\delta_{j_{0}}^{\ell} d_{j_{0}}^{\ell} \cdots \delta_{1}^{\ell_{1}^{\ell}}\right)$ and we are done (since $d_{j}^{\ell}=1_{G_{\ell} / G_{\ell+1}}$ for $j>j_{0}$).

This completes the proof of Lemma 4.4.10 and of Theorem 4.4.6.
The above method of proof does not immediately extend to solvable groups. The obstacle is that the statement of Lemma 4.4.7 does not hold for abelian groups in general. If $G=\bigoplus_{i=1}^{\infty} \mathbb{Z}$ is the infinite direct sum of copies of \mathbb{Z}, then it is easy to check that the only sets $\Delta \subseteq G$ which are invariant under all automorphisms are the sets G^{n}. However, aside from the trivial case $n=1$, none of these sets can be the set of center points for a tiling of G as G / G^{n} is not finite.

We close this section with the following open question.
Question 4.4.11. Is every countable solvable group a ccc group?

4.5. Residually finite and locally finite groups and free products are ccc

Recall the following definition for residually finite groups.
Definition 4.5.1. A group G is residually finite if the intersection of all finite index normal subgroups of G is trivial.

Theorem 4.5.2. If G is a countably infinite residually finite group, then G is $c c c$.

Proof. Fix a strictly decreasing sequence $G=H_{0} \geq H_{1} \geq \cdots$ of finite index normal subgroups of G with $\bigcap_{n \in \mathbb{N}} H_{n}=\left\{1_{G}\right\}$. Now fix an enumeration g_{0}, g_{1}, \ldots of the nonidentity group elements of G in a manner such that $g_{i} \notin H_{i+1}$.

We will now construct, for each $i \in \mathbb{N}$, a complete set Δ_{i}^{i+1} of coset representatives for the right cosets of H_{i+1} inside of H_{i}. In other words, $H_{i}=H_{i+1} \Delta_{i}^{i+1}$, and $H_{i+1} \lambda_{1} \cap H_{i+1} \lambda_{2}=\varnothing$ for distinct $\lambda_{1}, \lambda_{2} \in \Delta_{i}^{i+1}$. The sets Δ_{i}^{i+1} will have some additional properties and must be constructed inductively. Let Δ_{0}^{1} be a complete set of coset representatives for the right cosets of H_{1} inside of H_{0} such that $1_{G}, g_{0} \in \Delta_{0}^{1}$. Now suppose that Δ_{0}^{1} through Δ_{k}^{k+1} have been defined. An easy inductive argument shows that

$$
H_{k+1} \Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1}=G .
$$

Notice also that $\left|\Delta_{i}^{i+1}\right|=\left[H_{i}: H_{i+1}\right]$ and

$$
\left|\Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1}\right|=\left[G: H_{k+1}\right]<\left[G: H_{k+2}\right]
$$

Therefore

$$
H_{k+2} \Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1} \neq G
$$

Find the least $j \in \mathbb{N}$ such that

$$
g_{j} \notin H_{k+2} \Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1} .
$$

Since $H_{k+1} \Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1}=G$, we can find $\gamma \in \Delta_{k}^{k+1} \Delta_{k-1}^{k} \cdots \Delta_{0}^{1}$ such that $g_{j} \in H_{k+1} \gamma$. Finally, let Δ_{k+1}^{k+2} be a complete set of coset representatives for the right cosets of H_{k+2} inside of H_{k+1} such that $1_{G}, g_{j} \gamma^{-1} \in \Delta_{k+1}^{k+2}$. This completes the construction of the sets Δ_{i}^{i+1}. Notice that each Δ_{i}^{i+1} is finite.

Now define $F_{0}=\left\{1_{G}\right\}, \Delta_{0}=G$, and for $n>0$

$$
\begin{gathered}
F_{n}=\Delta_{n-1}^{n} \Delta_{n-2}^{n-1} \cdots \Delta_{0}^{1} \\
\Delta_{n}=H_{n}
\end{gathered}
$$

We claim that $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a ccc sequence of tilings of G. Since $H_{i}=H_{i+1} \Delta_{i}^{i+1}$, by induction we easily have $\Delta_{n} F_{n}=H_{0}=G$. So the Δ_{n}-translates of F_{n} cover G. If $h, h^{\prime} \in H_{n}, \lambda_{i}, \lambda_{i}^{\prime} \in \Delta_{i}^{i+1}$ and

$$
h \lambda_{n-1} \lambda_{n-2} \cdots \lambda_{0}=h^{\prime} \lambda_{n-1}^{\prime} \lambda_{n-2}^{\prime} \cdots \lambda_{0}^{\prime}
$$

then after viewing this equation in G / H_{1} we see that $\lambda_{0}=\lambda_{0}^{\prime}$ (equality in G / H_{1} and hence equality in G). After canceling λ_{0} and λ_{0}^{\prime} from both sides and viewing the new equation in G / H_{2}, we see that $\lambda_{1}=\lambda_{1}^{\prime}$. Continuing in this manner we find that $\lambda_{i}=\lambda_{i}^{\prime}$ for each $0 \leq i<n$ and $h=h^{\prime}$. Therefore the Δ_{n}-translates of F_{n} are disjoint. We conclude that for each $n \in \mathbb{N}\left(\Delta_{n}, F_{n}\right)$ is a tiling of G.

Clearly $1_{G} \in H_{n}=\Delta_{n}$, so the tilings are centered. Coherency is also clear since for $n>1$ and $h \in H_{n}$ we have

$$
h F_{n}=h \Delta_{n-1}^{n} F_{n-1}
$$

and $h \Delta_{n-1}^{n} \subseteq H_{n-1}=\Delta_{n-1}$.
All that remains is to check cofinality. Notice that $F_{n} \subseteq F_{n+1}$ since $1_{G} \in \Delta_{n}^{n+1}$, and also notice $1_{G} \in F_{0}$. So we only have to show that for every $j \in \mathbb{N}$ there is $n \in \mathbb{N}$ with $g_{j} \in F_{n}$. Towards a contradiction, suppose the sequence of tilings is not
cofinal. Let $j \in \mathbb{N}$ be least such that $g_{j} \notin F_{n}$ for all $n \in \mathbb{N}$. Let $k \in \mathbb{N}$ be such that $g_{i} \in F_{k}$ for all $i<j(k=0$ if $j=0)$. By the way the sets Δ_{i}^{i+1} were constructed, we must have for all $n>k$

$$
g_{j} \in H_{n+1} F_{n}=\Delta_{n+1} F_{n}
$$

(otherwise for some $\gamma \in F_{n}, g_{j} \gamma^{-1} \in \Delta_{n}^{n+1}$ and $g_{j} \in F_{n+1}$). Let $\gamma \in \Delta_{k}$ be such that $g_{j} \in \gamma F_{k}$. We have $g_{j} \in \Delta_{k+1} F_{k}$, so there is $\sigma \in \Delta_{k+1}$ with $g_{j} \in \sigma F_{k}$. As $\Delta_{k+1}=H_{k+1} \subseteq H_{k}=\Delta_{k}$, we have that $\sigma \in \Delta_{k}$. Then $g_{j} \in \gamma F_{k} \cap \sigma F_{k}$. Therefore $\sigma=\gamma$ and $\gamma \in \Delta_{k+1}$. Repeating this argument, we find that $\gamma \in \Delta_{n}$ for all $n \geq k$. Thus

$$
\gamma \in \bigcap_{n \geq k} \Delta_{n}=\bigcap_{n \geq k} H_{n}=\left\{1_{G}\right\}
$$

Now we have $g_{j} \in \gamma F_{k}=F_{k}$, a contradiction. We conclude that the sequence of tiles are cofinal.

By a theorem of Gruenberg (c.f. $[\mathbf{M}]$) free products of residually finite groups are residually finite, hence they are also ccc by Theorem 4.5.2. All finitely generated nilpotent groups and all polycyclic groups are residually finite. Hence Theorem 4.5.2 proves again that these groups are ccc. Also, all free groups are residually finite, hence are ccc also by Theorem 4.5.2. Finally, by the theorem of Gruenberg mentioned above, free products of finite groups are residually finite, and hence are also ccc.

Now we show that countable locally finite groups are ccc groups.
Theorem 4.5.3. If G is a countably infinite locally finite group then G is a ccc group.

Proof. Fix an increasing sequence $A_{0} \subseteq A_{1} \subseteq \cdots$ of finite subsets of G with $G=\bigcup_{n \in \mathbb{N}} A_{n}$. For each $n \in \mathbb{N}$ set $F_{n}=\left\langle A_{n}\right\rangle$. Then we have $G=\bigcup_{n \in \mathbb{N}} F_{n}$, and since G is locally finite each F_{n} is finite. For each $n \geq 1$ let Δ_{n-1}^{n} be a complete set of coset representatives for the left cosets of F_{n-1} in F_{n}. In other words, $F_{n}=\Delta_{n-1}^{n} F_{n-1}$ and $\delta F_{n-1} \cap \delta^{\prime} F_{n-1}=\varnothing$ for $\delta \neq \delta^{\prime} \in \Delta_{n-1}^{n}$. We further require that $1_{G} \in \Delta_{n-1}^{n}$ for all $n \geq 1$. Now we set

$$
\Delta_{n}=\bigcup_{m>n} \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}
$$

Notice that the members of the above union are increasing since 1_{G} is in each Δ_{k}^{k+1}. We claim that $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a ccc sequence of tilings of G.

Clearly $F_{n+1}=\Delta_{n}^{n+1} F_{n}$, and it easily follows by induction that

$$
\Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1} F_{n}=\Delta_{m-1}^{m} F_{m-1}=F_{m}
$$

Therefore

$$
\Delta_{n} F_{n}=\bigcup_{m>n} \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1} F_{n}=\bigcup_{m>n} F_{m}=\bigcup_{m \in \mathbb{N}} F_{m}=G
$$

By definition we have that the Δ_{n}^{n+1}-translates of F_{n} are disjoint and are contained in F_{n+1}. Since the Δ_{n+1}^{n+2}-translates of F_{n+1} are disjoint (and contained in F_{n+2}), it follows that the $\Delta_{n+1}^{n+2} \Delta_{n}^{n+1}$-translates of F_{n} are disjoint (and contained in F_{n+2}). Inductively assume that the $\Delta_{m-2}^{m-1} \Delta_{m-3}^{m-2} \cdots \Delta_{n}^{n+1}$-translates of F_{n} are disjoint and contained in F_{m-1}. Since the Δ_{m-1}^{m}-translates of F_{m-1} are disjoint and contained in F_{m}, it follows that the $\Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}$-translates of F_{n} are disjoint and
contained in F_{m}. So by induction and by the definition of Δ_{n}, it follows that the Δ_{n}-translates of F_{n} are disjoint. Thus $\left(\Delta_{n}, F_{n}\right)$ is a tiling of G for each $n \in \mathbb{N}$. If $\gamma \in \Delta_{n+1}$ then

$$
\gamma F_{n+1}=\gamma \Delta_{n}^{n+1} F_{n} .
$$

Since $\gamma \in \Delta_{n+1}$, there is $m>n$ with

$$
\gamma \in \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n+1}^{n+2}
$$

and therefore $\gamma \Delta_{n}^{n+1} \subseteq \Delta_{n}$. Thus, every Δ_{n+1}-translate of F_{n+1} is the union of Δ_{n}-translates of F_{n}. So $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a coherent sequence of tilings of G. Since 1_{G} is in each Δ_{k}^{k+1}, we have $1_{G} \in \Delta_{n}$ for all $n \in \mathbb{N}$. Also, $G=\bigcup_{n \in \mathbb{N}} F_{n}$. Thus $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a ccc sequence of tilings of G and G is a ccc group.

In the rest of this section we consider arbitrary countable free products of nontrivial countable groups and show that they are ccc. We give a proof that is combinatorial by nature, unlike the algebraic construction in the proof of Theorem 4.5.2. To illustrate the combinatorial argument, we will first give a direct proof that all free groups are ccc.

Recall that, for $n \geq 2$ an integer, \mathbb{F}_{n} denotes the free group on n generators, and \mathbb{F}_{ω} the free group on countably infinitely many generators.

Theorem 4.5.4. Every free group \mathbb{F}_{n} or \mathbb{F}_{ω} is a ccc group.
Before turning to the proof of Theorem 4.5 .4 we fix some notation. If $G=\mathbb{F}_{n}$ or $G=\mathbb{F}_{\omega}$ is a free group, let T be the Cayley graph which in this case is a tree. Recall that if $G=\mathbb{F}_{n}$ then the nodes of the graph are the elements of G and two elements y and z of G are linked by an edge if either $y=z x_{i}$ or $y=z\left(x_{i}\right)^{-1}$, where $x_{1}, \ldots x_{n}$ are the generators of G. Every node has degree $2 n\left(\infty\right.$ if $\left.G=\mathbb{F}_{\omega}\right)$. We view T as a rooted tree with root node corresponding to the identity element 1_{G} of G. For $x \in G$ we let the depth of x be the distance from x to 1_{G} in T, and denote it by $d(x)$. This, of course, is just the length of x when expressed as a reduced word in the generators. This also can be thought of as the depth of x as a node in the rooted tree T. The children of a node $x \in G$ are the nodes adjacent to x with depth $d(x)+1$. For $x \neq 1_{G}$, the parent of x is the unique node adjacent to x with depth $d(x)-1$. The root node 1_{G} has $2 n$ children and no parent, every other node has one parent and $2 n-1$ children. We say $S \subseteq T$ is a subtree if $1_{G} \in S$ and S is closed under the parent relation, that is, if $x \in S$ and y is a parent of x, then $y \in S$. Viewing T as a rooted tree as above, this corresponds to the usual notion of subtree of a tree. We will identify G and T, and so speak of subtrees of G as well.

The following simple lemma is the main point.
Lemma 4.5.5. Let $S \subseteq G$ be a subtree of the free group G, Then G can be tiled by copies of S.

Proof. Let \mathcal{M} be a maximal pairwise disjoint collection of translates of S subject to the condition that $M \doteq \bigcup \mathcal{M}$ is a subtree of T. It suffices to show that $M=T$. If not, let $z \in T-M$ have minimal depth. Clearly $z \neq 1_{G}$, and so the unique parent y of z is in M. We must have $z=y x_{i}$ or $z=y\left(x_{i}\right)^{-1}$ for some generator x_{i}, and where y, when written as a reduced word, does not end in the term canceling this last term. Suppose to be specific $z=y x_{i}$, the other case being similar. Let k be such that $\left(x_{i}^{-1}\right)^{k} \in S$ but $\left(x_{i}^{-1}\right)^{k+1} \notin S$. Let $w=z \cdot\left(x_{i}\right)^{k}$. Note that w is in reduced form as written. Consider $\mathcal{M}^{\prime}=\mathcal{M} \cup\{w S\}$. We claim that
\mathcal{M}^{\prime} is still pairwise disjoint and $M^{\prime} \doteq \bigcup \mathcal{M}^{\prime}$ is still a tree, which then contradicts the maximality of \mathcal{M}.

An element h of $w S$ is of the form $z\left(x_{i}\right)^{k} s$, where $s \in S$. Note that s cannot begin with $\left(x_{i}^{-1}\right)^{k+1}$ as otherwise, since S is a tree, $\left(x_{i}^{-1}\right)^{k+1}$ would be in S. Since z also ends with x_{i}, it follows that the reduced form for h is of the form $h=z u$ for some (possibly empty) word u. So, h is a descendant of z, and since $z \notin M$, it follows that $h \notin M$ as well. So, $w S \cap M=\varnothing$.

Note that the path from w to y lies entirely in M^{\prime} since $\left(x_{i}^{-1}\right)^{\ell} \in S$ for all $\ell \leq k$. So, if $h \in w S$ lies on this branch, then any initial segment of h lies in M^{\prime}. If h is not on this path, then h is of the form $h=y \cdot x_{i} \cdot\left(x_{i}\right)^{k} \cdot\left(x_{i}^{-1}\right)^{-\ell} u$ where $\ell \leq k$, u does not start with x_{i}^{-1}, and $\left(x_{i}^{-1}\right)^{-\ell} u \in S$. Any initial segment h^{\prime} of h is either on the path from w to z or else is of the form $h^{\prime}=y \cdot x_{i} \cdot\left(x_{i}\right)^{k} \cdots\left(x_{i}^{-1}\right)^{-\ell} u^{\prime}$ where u^{\prime} is an initial segment of u. In the latter case, $\left(x_{i}^{-1}\right)^{-\ell} \cdot u^{\prime} \in S^{\prime}$ as S is a tree, and so $h^{\prime} \in w S \subseteq M^{\prime}$.

Proof of Theorem 4.5.4. Let G be a free group, and T the corresponding tree as above. Let g_{0}, g_{1}, \ldots enumerate G. Let $S_{0} \subseteq T$ be an arbitrary subtree of T. Suppose after step i the subtree S_{i} of T has been defined with $S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{i}$. Suppose also that each S_{j} for $j=1, \ldots, i$ is a disjoint union of S_{j-1} and another translate $w_{j-1} S_{j-1}$ of S_{j-1}.

To define S_{i+1}, let g_{i} be least in the enumeration such that $g_{i} \notin S_{i}$ but the parent of g_{i} is in S_{i}. Let w_{i} be the element constructed in the proof of Lemma 4.5.5 using $S=S_{i}$ and $z=g_{i}$. So, S_{i} and $w_{i} S_{i}$ are disjoint, $g_{i} \in w_{i} S_{i}$, and $S_{i} \cup w_{i} S_{i}$ is a subtree of T. We then let $S_{i+1}=S_{i} \cup w_{i} S_{i}$. This finishes the inductive definition of S_{i} and w_{i}.

From the definition of g_{i} it follows easily that $G=\bigcup_{i} S_{i}$. This in turn gives our ccc tiling of G. Namely, the i-th level tiling will be $\left(\Delta_{i}, S_{i}\right)$ where $\Delta_{i}=\bigcup_{m>i} \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{i}^{i+1}$ where $\Delta_{j-1}^{j}=\left\{1_{G}, w_{j-1}\right\}$. Note that $S_{m}=$ $\Delta_{m-1}^{m} S_{m-1}=\cdots=\Delta_{m-1}^{m} \Delta_{m-1}^{m} \cdots \Delta_{i}^{i+1} S_{i}$. Thus, $G=\Delta_{i} S_{i}$ and the Δ_{i} translates of S_{i} are pairwise disjoint, so $\left(\Delta_{i}, S_{i}\right)$ is a tiling of G. Clearly $1_{G} \in \Delta_{i}$ as $1_{G} \in \Delta_{i}^{i+1}$. Also, the tilings are coherent since every δS_{i+1}, for $\delta \in \Delta_{i+1}$ is of the form $\delta_{m-1}^{m} \delta_{m-2}^{m-1} \cdots \delta_{i+1}^{i+2} S_{i+1}$, where $\delta_{j-1}^{j} \in \Delta_{j-1}^{j}$. This is then equal to $\delta_{m-1}^{m} \delta_{m-2}^{m-1} \cdots \delta_{i+1}^{i+2} \Delta_{i}^{i+1} S_{i}$, which is the disjoint union of $\delta_{m-1}^{m} \delta_{m-2}^{m-1} \cdots \delta_{i+1}^{i+2} S_{i}$ and $\delta_{m-1}^{m} \delta_{m-2}^{m-1} \cdots \delta_{i+1}^{i+2} w_{i} S_{i}$. Thus, the sequence $\left(\Delta_{i}, S_{i}\right)$ gives a ccc tiling of G.

We now turn to free products. Recall the following definition.
Definition 4.5.6. Let $\mathcal{G}=\left\{G_{i}\right\}_{i \in \mathcal{I}}$ be a collection of groups. We assume the G_{i} are pairwise disjoint as sets. The free product $* \mathcal{G}=*_{i} G_{i}$ of the collection is the group with generators $\bigcup_{i} G_{i}$ and relations $g \cdot h=k$ for all g, h, k in some common G_{i} with $g \cdot h=k$ in G_{i}.

If all but one group G in \mathcal{G} are trivial (i.e., contain only one element), then we say that \mathcal{G} is trivial and the free product $* \mathcal{G}$ is just isomorphic to G. In this case, $* \mathcal{G}$ is ccc iff G is. If \mathcal{G} is nontrivial, the next theorem says that $* \mathcal{G}$ always is a ccc group.

THEOREM 4.5.7. If \mathcal{G} is a countable nontrivial collection of countable groups, then the free product $* \mathcal{G}$ is a ccc group.

Proof. To ease notation we consider the case where $\mathcal{G}=\{G, H\}$ with both G and H nontrivial, and we denote the free product in this case by $G * H$. The general case is entirely similar.

We first consider the case that one of the groups, say G, is infinite. Every nonidentity element x of $G * H$ can be written uniquely in the form $g_{1} h_{1} g_{2} h_{2} \cdots k_{i}$ or $h_{1} g_{1} h_{2} g_{2} \cdots k_{i}$ where the g_{i}, h_{i} are nonidentity elements of G, H respectively, and k_{i} is in G or H depending on whether the word length is odd or even. We denote the word length of x by $\operatorname{lh}(x)$. When $l \leq \operatorname{lh}(x)$ we use $x \upharpoonright l$ to denote the initial segment of x of word length l.

If $F \subseteq G * H$, we say $x \in G * H$ is a G-tail (with respect to F) if x is not the identity, x ends with a term $k_{i} \in G$, and x is the unique element of F which extends $x \upharpoonright(\operatorname{lh}(x)-1)$. We likewise define the notion of an H-tail. We say F is a tree if $1 \in F$ and any initial segment of an element of F (when written in one of the above two forms) is also an element of F.

The next lemma says that we may create as many new tails as we like.
Lemma 4.5.8. Suppose $F \subseteq G * H$ is a finite tree with at least one G-tail and one H-tail. Then for any $k \in \mathbb{N}$, there is an $F^{\prime} \subseteq G * H$ satisfying the following.
(1) $F^{\prime} \supseteq F$ is a finite tree.
(2) F^{\prime} is a disjoint union of translates δF of F.
(3) F^{\prime} has at least k many G-tails and at least k many H-tails.

Proof. Let $A \subseteq G$ be the set of all $g \in G$ such that some $x \in F$, when written in its reduced form, begins with g. Since F is finite, so is A. Let $g_{1}, \ldots, g_{k} \in G$ be such that $g_{i} A \cap A=\varnothing$ and $g_{i} A \cap g_{j} A=\varnothing$ for all $i \neq j$. We can do this as A is finite and G is infinite. Consider the collection of translates $F, g_{1} F, \cdots, g_{k} F$. Since $g_{i} A \cap g_{j} A=\varnothing$ for all $i \neq j$, it follows that for any elements $f_{i}, f_{j} \in F$ that $g_{i} f_{i}$ and $g_{j} f_{j}$ begin with different elements of G and so are not equal. So, $g_{i} F \cap g_{j} F=\varnothing$. Similarly, $F \cap g_{i} F=\varnothing$ for all i. Since F is a tree, it is easy to see that $F \cup g_{1} F \cup \cdots \cup g_{k} F$ is also a tree (note that each g_{i} is in this union as $1_{G} \in F$). Finally, each $g_{i} F$ has at least one G-tail and at least one H-tail since F does (if say $g_{1} h_{1} \ldots g_{k}$ is a G-tail in F, then easily $g_{i} g_{1} h_{1} \ldots g_{k}$ is a G-tail in $\left.g_{i} F\right)$.

Turning to the proof of Theorem 4.5.7, let z_{0}, z_{1}, \ldots enumerate $G * H$. Assume inductively we have constructed $F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{n}$ satisfying:
(1) Each F_{i} is a finite tree.
(2) Each F_{i+1} is a disjoint union of translates δF_{i} of F_{i}.
(3) Each F_{i} has at least one G-tail and one H-tail.

To construct F_{n+1}, Let z be the least element of $G * H$ (in the enumeration $\left.z_{0}, z_{1}, \ldots\right)$ such that $z \notin F_{n}$ but $y \doteq z \upharpoonright(\operatorname{lh}(z)-1) \in F_{n}$. Say to be specific $z=y g$ where $g \in G$ (the case $z=y h$ is similar). From Lemma 4.5 .8 we may assume that F_{n} has at least $2 G$-tails and at least $2 H$-tails. Let $t \in F_{n}$ be an H-tail relative to F_{n}. Consider the translate $z t^{-1} F_{n}$. Since t ends with an H term, t^{-1} begins with an H term, so $z t^{-1}$ is in reduced form. Since $t \in F_{n}, z \in z t^{-1} F_{n}$. Since t is the unique element of F_{n} which extends $t \upharpoonright(\operatorname{lh}(t)-1)$, every element of $z t^{-1} F_{m}$ when written in reduced form is of the form $z u$ for some possibly empty term u. Since F_{n} is a tree, none of these elements can be in F_{n}. So, $z t^{-1} F_{n} \cap F_{n}=\varnothing$. We set $F_{n+1}=F_{n} \cup z t^{-1} F_{n}$. To see that F_{n+1} is a tree, first note that the path from z to $z t^{-1}$ lies entirely in F_{n+1} This is because every element of this path is of the form $z t^{-1} v$ where v is an initial segment of t, and hence lies in F_{n}. Every
element of $z t^{-1} F_{n}$ not on this path is of the form $x=z t^{-1} u w$ where $u w \in F_{n}$ and u is the maximal initial segment of $u w$ which cancels an end segment of t^{-1}. That is, the reduced form for x is $x=z s w$ where s is an initial segment of t^{-1}. So, an initial segment of x is either on the path from z to $z t^{-1}$ or else it is of the form $z s w^{\prime}=z t^{-1} u w^{\prime}$ where w^{\prime} is an initial segment of w. Since F_{n} is a tree, $u w^{\prime} \in F_{n}$, and so in either case we have $x \in z t^{-1} F_{n} \subseteq F_{n+1}$. This shows F_{n+1} is a tree.

Finally, F_{n+1} has at most one fewer tail than F_{n}. Namely, every G - or H-tail of F_{n} except possibly y is still a tail of F_{n+1}. So, F_{n+1} satisfies all of our inductive assumptions and also contains z. As in previous arguments, this gives a ccc set of tilings for $G * H$. Namely, $\left(\Delta_{n}, F_{n}\right)$, where $\Delta_{n}=\bigcup_{m>n} \Delta_{m-1}^{m} \Delta_{m-2}^{m-1} \cdots \Delta_{n}^{n+1}$, where Δ_{i}^{i+1} is the finite set such that $F_{i+1}=\Delta_{i}^{i+1} F_{i}$ and the Δ_{i}^{i+1} translates of F_{i} are pairwise disjoint.

The case where both G and H are finite follows from Theorem 4.5.2, since $G * H$ is residually finite. But here we point out that the above argument can be easily modified to give a direct proof also, as follows. We modify assumption (3) of the F_{n} to now be that each F_{n} has at least two G-tails and two H-tails. Note that we may always start with a finite subtree F_{0} of $G * H$ with at least two G tails and at least two H tails except in the case where both G and H have size 2. For the group $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ it is easy to directly construct a ccc tiling. For example, one can let F_{n} be the set of size 3^{n} consisting of all reduced words of length $\leq\left(3^{n}-1\right) / 2$. Easily F_{n+1} is a disjoint union of three translates of F_{n} (in fact, this group has an index two subgroup isomorphic to \mathbb{Z} and is also polycyclic, so both Lemma 3.1.1 and Theorem 4.4.6 apply). To get F_{n+1}, as in the above proof let z be the least element of $G * H$ such that $z \notin F_{n}$ but $y \doteq z \upharpoonright(\operatorname{lh}(z)-1) \in F_{n}$. Consider the case $z=y g$ where $g \in G$, the other case being similar. Let $t \in F_{n}$ be an H-tail relative to F_{n}. We again consider the translate $z t^{-1} F_{n}$ and let $F_{n+1}=F_{n} \cup z t^{-1} F_{n}$. The argument above shows that F_{n+1} is a tree which is the union of two disjoint translates of F_{n}. Also, at most one of the tails of F_{n} is not a tail of F_{n+1}. So, it suffices to observe that F_{n+1} has at least one G-tail, and also at least one H-tail, which are not in F_{n}. Let z_{1}, z_{2} be two H-tails of F_{n}. Then at least one of $z t^{-1} z_{1}$, $z t^{-1} z_{2}$ is an H-tail of F_{n+1} which is not in F_{n}. This is because any two distinct tails must be incompatible (i.e., when written in reduced form neither word is an initial segment of the other), and so at least one of z_{1}, z_{2} is incompatible with t. If, say, z_{1} is incompatible with t, then it is easy to check that $z t^{-1} z_{1}$ is an H-tail of F_{n+1} which is not in F_{n}. The argument for G-tails is similar.

This completes the proof of Theorem 4.5.7.

CHAPTER 5

Blueprints and Fundamental Functions

This chapter is the backbone to a variety of results we prove in the rest of this paper. In this chapter we present a powerful and customizable method for constructing elements of 2^{G} with special properties. The concept of a blueprint, a special sequence of regular marker structures, is introduced in the first section. Blueprints simply organize the group theoretic structure of the group G and allows one to carry out sophisticated constructions of elements of 2^{G}. In our case, all of these constructions stem from one main construction which appears in the second section. In the third section, it is shown that every countably infinite group admits a blueprint. Finally, in the fourth section we study the growth rate of blueprints and how this impacts the main construction. This entire chapter is very abstract and simply develops tools for later use. It may initially be difficult to appreciate, understand, and see the motivation for what we do in this chapter, however the reader will be greatly rewarded in the next chapter.

5.1. Blueprints

Fundamental functions were originally developed for constructing 2-colorings on arbitrary groups and therefore they have their roots in the methods appearing in Section 4.2. Section 4.2 is not a prerequisite, but it would certainly aid in understanding on an intuitive level what our course of approach is. In this section, we study countable groups themselves under the notion of a blueprint. Blueprints are sequences of regular marker structures which have much more structure than those constructed in Section 4.2. Blueprints have enough structure to allow us to create partial functions on G with very nice properties. This construction appears in the next section and is easily used in the next chapter to construct a 2 -coloring. Our first definition will be central to our studies for the rest of the paper.

Definition 5.1.1. Let G be a group and let $A, B, \Delta \subseteq G$. We say that the Δ-translates of A are maximally disjoint within B if the following properties hold:
(i) for all $\gamma, \psi \in \Delta$, if $\gamma \neq \psi$ then $\gamma A \cap \psi A=\varnothing$;
(ii) for every $g \in G$, if $g A \subseteq B$ then there exists $\gamma \in \Delta$ with $g A \cap \gamma A \neq \varnothing$.

When property (i) holds we say that the Δ-translates of A are disjoint. Furthermore, we say that the Δ-translates of A are contained and maximally disjoint within B if the Δ-translates of A are maximally disjoint within B and $\Delta A \subseteq B$.

Notice that in the definition above we were referring to the left translates of A by Δ but never explicitly used the term left translates. Throughout the rest of this paper when we use the word translate(s) it will be understood that we are referring to left translate(s). When referring to right translates we will explicitly write out "right-translate(s)". Note that in the definition above there is no restriction on Δ
being nonempty. So at times it may be that the \varnothing-translates of A are contained and maximally disjoint within B.

Definition 5.1.2. Let G be a countably infinite group. A blueprint is a sequence $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ of regular marker structures satisfying the following conditions:
(i) (disjoint) for every $n \in \mathbb{N}$ and distinct $\gamma, \psi \in \Delta_{n}, \gamma F_{n} \cap \psi F_{n}=\varnothing$;
(ii) (dense) for every $n \in \mathbb{N}$ there is a finite $B_{n} \subseteq G$ with $\Delta_{n} B_{n}=G$;
(iii) (coherent) for $k \leq n, \gamma \in \Delta_{n}$, and $\psi \in \Delta_{k}, \psi F_{k} \cap \gamma F_{n} \neq \varnothing \Longleftrightarrow \psi F_{k} \subseteq$ γF_{n}
(iv) (uniform) for $k<n$ and $\gamma, \sigma \in \Delta_{n}, \gamma^{-1}\left(\Delta_{k} \cap \gamma F_{n}\right)=\sigma^{-1}\left(\Delta_{k} \cap \sigma F_{n}\right)$;
(v) (growth) for every $n>0$ and $\gamma \in \Delta_{n}$, there are distinct $\psi_{1}, \psi_{2}, \psi_{3} \in \Delta_{n-1}$ with $\psi_{i} F_{n-1} \subseteq \gamma F_{n}$ for each $i=1,2,3$.
If a sequence $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ satisfies all requirements for being a blueprint except for (ii), then it is called a pre-blueprint. Furthermore, a (pre-)blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is
(1) maximally disjoint if the Δ_{n}-translates of F_{n} are maximally disjoint within G;
(2) centered if $1_{G} \in \Delta_{n}$ for every $n \in \mathbb{N}$;
(3) directed if for every $k \in \mathbb{N}$ and $\psi_{1}, \psi_{2} \in \Delta_{k}$ there is $n>k$ and $\gamma \in \Delta_{n}$ with $\psi_{1} F_{k} \cup \psi_{2} F_{k} \subseteq \gamma F_{n}$.

Figure 5.1. The composition of F_{1}. In the figure λ denotes a generic element of Λ_{1} (see Remark 5.1.3). All the solid points form the set D_{0}^{1}. The position of 1_{G} in F_{1} can be arbitrary.

Remark 5.1.3. In the context of Borel equivalence relations, properties (i) and (ii) of the above definition are commonly referred to as the marker property, however this term will not be used in this paper. Recall that if (Δ, F) is a regular marker structure, then necessarily $1_{G} \in F$. So any pre-blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ must have $1_{G} \in F_{n}$ for every $n \in \mathbb{N}$. The set $\gamma^{-1}\left(\Delta_{k} \cap \gamma F_{n}\right)$ appearing in (iv) will be denoted by D_{k}^{n} (as the set only depends on n and k). Thus, $\gamma D_{k}^{n}=\Delta_{k} \cap \gamma F_{n}$ for all $\gamma \in \Delta_{n}$. Clause (iv) of the above definition may seem mysterious at first, but all it

Figure 5.2. The composition of F_{2}. In the figure λ denotes a generic element of Λ_{2}. All the circled points form the set D_{1}^{2}. All the solid points form the set D_{0}^{2}. The position of 1_{G} in F_{2} can be arbitrary. For details of each translates of F_{1} see Figure 5.1.
says is that Δ_{k} meets each Δ_{n}-translate of F_{n} in the same manner (the intersection being a left translate of D_{k}^{n}). With this thought, note that the growth property is equivalent to $\left|D_{n-1}^{n}\right| \geq 3$. For our purposes we will have to distinguish three distinct members from D_{n-1}^{n}. Thus, whenever discussing a pre-blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ the symbols $\alpha_{n}, \beta_{n}, \gamma_{n}$ will be reserved to denote three distinct elements of D_{n-1}^{n} (for each $n>0$). The following symbols will also have a reserved meaning:

$$
\begin{gathered}
\Lambda_{n}=D_{n-1}^{n}-\left\{\alpha_{n}, \beta_{n}, \gamma_{n}\right\} \\
a_{0}=b_{0}=1_{G} \\
a_{n}=\alpha_{n} \alpha_{n-1} \cdots \alpha_{1}(\text { for } n \geq 1)
\end{gathered}
$$

$$
b_{n}=\beta_{n} \beta_{n-1} \cdots \beta_{1}(\text { for } n \geq 1)
$$

See Figures 5.1 and 5.2 for an illustration of what blueprints generally look like.
Pre-blueprints are not difficult to construct. The notation involved in the construction may be cumbersome, but the conceptual idea is relatively simple. Pre-blueprints can be constructed one step at a time, with each F_{n} being a union of translates of F_{k} 's for $k<n$. All of the blueprints we construct will have this property, namely $F_{n}=\bigcup_{k<n} D_{k}^{n} F_{k}$. This simple construction of pre-blueprints will be presented in detail in the third section.

The fact that every countably infinite group admits a blueprint is quite nontrivial and is postponed to the third section of this chapter. The reason for postponing this is two-fold. First, the construction of a blueprint is rather technical and the reader may value the proof more after having seen why blueprints are important. Second, our construction will show that a very strong type of blueprint exists, in particular one that is maximally disjoint, centered, and directed. The constructed blueprint will have many nice properties and we don't want the reader to have an oversimplified view of blueprints when going through proofs involving arbitrary blueprints.

The purpose of this section is to bring to light some of the useful properties of pre-blueprints. Many of these properties will be vital in the next section. The following lemma consists of direct consequences of the definition of pre-blueprints. These facts will be used with high frequency throughout the rest of the paper.

Lemma 5.1.4. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a pre-blueprint. Then
(i) $\Delta_{n} D_{k}^{n} \subseteq \Delta_{k}$, for all $k<n$;
(ii) $D_{k}^{n} F_{k} \subseteq F_{n}$ for all $k<n$;
(iii) $\lambda_{1} F_{k} \cap \lambda_{2} F_{k}=\varnothing$ for all $k<n$ and distinct $\lambda_{1}, \lambda_{2} \in D_{k}^{n}$;
(iv) $D_{m}^{n} D_{k}^{m} \subseteq D_{k}^{n}$ for all $k<m<n$;
(v) $D_{k}^{n} \neq \varnothing$ for all $k<n$;
(vi) $\Delta_{k} f \cap \gamma F_{n}=\gamma D_{k}^{n} f=\left(\Delta_{k} \cap \gamma F_{n}\right) f$, for all $k<n, \gamma \in \Delta_{n}$, and $f \in F_{k}$;
(vii) $\gamma f \in \Delta_{k} B \Longleftrightarrow \sigma f \in \Delta_{k} B$, for all $k<n, \gamma, \sigma \in \Delta_{n}, f \in F_{n}$, and $B \subseteq F_{k}$;
(viii) both $\left(\Delta_{n} a_{n}\right)_{n \in \mathbb{N}}$ and $\left(\Delta_{n} b_{n}\right)_{n \in \mathbb{N}}$ are decreasing sequences;
(ix) $a_{n}, b_{n} \in F_{n}$ for all $n \in \mathbb{N}$;
(x) $a_{n} \neq b_{n}$ for all $n \geq 1$;
(xi) $\Delta_{n} a_{n} \cap \Delta_{k} b_{k}=\varnothing$ for all $n, k>0$;
(xii) for $n>k \in \mathbb{N}$

$$
\Delta_{n} D_{n-1}^{n} a_{n-1} \cap \Delta_{k} F_{k} \subseteq \Delta_{k} a_{k}
$$

and

$$
\Delta_{n} D_{n-1}^{n} b_{n-1} \cap \Delta_{k} F_{k} \subseteq \Delta_{k} b_{k}
$$

(xiii) for $n>k \in \mathbb{N}$

$$
\begin{gathered}
\Delta_{n} D_{n-1}^{n} a_{n-1} \cap \Delta_{k} D_{k-1}^{k} a_{k-1} \\
\subseteq \Delta_{k} \alpha_{k} a_{k-1}=\Delta_{k} a_{k}
\end{gathered}
$$

and

$$
\begin{aligned}
& \Delta_{n} D_{n-1}^{n} b_{n-1} \cap \Delta_{k} D_{k-1}^{k} b_{k-1} \\
& \quad \subseteq \Delta_{k} \beta_{k} b_{k-1}=\Delta_{k} b_{k}
\end{aligned}
$$

Proof. (i). Let $\gamma \in \Delta_{n}$ and $\lambda \in D_{k}^{n}$. Then

$$
\gamma \lambda \in \gamma D_{k}^{n}=\Delta_{k} \cap \gamma F_{n} \subseteq \Delta_{k} .
$$

(ii). Pick any $\gamma \in \Delta_{n}$ and $\lambda \in D_{k}^{n}$. Then $\gamma \lambda \in \gamma D_{k}^{n}=\Delta_{k} \cap \gamma F_{n}$. So $\gamma \lambda \in \gamma F_{n}$ and $\gamma \lambda \in \Delta_{k}$. By definition, $1_{G} \in F_{k}$, so that $\gamma \lambda F_{k} \cap \gamma F_{n} \neq \varnothing$. By the coherent property of pre-blueprints, this gives $\gamma \lambda F_{k} \subseteq \gamma F_{n}$. Now cancel γ.
(iii). Pick any $\gamma \in \Delta_{n}$. Then $\gamma \lambda_{1}$ and $\gamma \lambda_{2}$ are distinct elements of Δ_{k} by (i). The claim now follows from the disjoint property of pre-blueprints.
(iv). Pick $\psi \in D_{m}^{n}$ and $\lambda \in D_{k}^{m}$. Let $\gamma \in \Delta_{n}$ be arbitrary. By (i) $\gamma \psi \in \Delta_{m}$ and hence $\gamma \psi \lambda \in \Delta_{k}$. As $1_{G} \in F_{k}$, by (ii) we have

$$
\gamma \psi \lambda \in \gamma \psi \lambda F_{k} \subseteq \gamma \psi F_{m} \subseteq \gamma F_{n}
$$

Thus, $\gamma \psi \lambda \in \Delta_{k} \cap \gamma F_{n}=\gamma D_{k}^{n}$.
(v). By the growth property of pre-blueprints, $D_{n-1}^{n} \neq \varnothing$. Now suppose $D_{k+1}^{n} \neq \varnothing$. As $D_{k}^{k+1} \neq \varnothing$, we have $\varnothing \neq D_{k+1}^{n} D_{k}^{k+1} \subseteq D_{k}^{n}$ by (iv).
(vi). The second equality is clear from the definition of D_{k}^{n}. We verify the first equality. Let $\psi \in \Delta_{k}$ be such that $\psi f \in \gamma F_{n}$. Then $\psi F_{k} \cap \gamma F_{n} \neq \varnothing$, so by the coherent property of pre-blueprints $\psi F_{k} \subseteq \gamma F_{n}$. By definition, $1_{G} \in F_{k}$, so $\psi \in \gamma F_{n}$. It follows $\psi \in \Delta_{k} \cap \gamma F_{n}=\gamma D_{k}^{n}$ and hence $\psi f \in \gamma D_{k}^{n} f$. On the other hand, $\gamma D_{k}^{n} \subseteq \Delta_{k}$ by (i). Hence $\gamma D_{k}^{n} f \subseteq \Delta_{k} f$. Also, by (ii) $D_{k}^{n} f \subseteq F_{n}$. So $\gamma D_{k}^{n} f \subseteq \gamma F_{n}$. Thus we have $\gamma D_{k}^{n} f \subseteq \Delta_{k} f \cap \gamma F_{n}$.
(vii). By (vi) we have

$$
\begin{gathered}
\gamma f \in \Delta_{k} B \Longleftrightarrow \gamma f \in \Delta_{k} B \cap \gamma F_{n} \Longleftrightarrow \gamma f \in \gamma D_{k}^{n} B \Longleftrightarrow f \in D_{k}^{n} B \\
\Longleftrightarrow \sigma f \in \sigma D_{k}^{n} B \Longleftrightarrow \sigma f \in \Delta_{k} B \cap \sigma F_{n} \Longleftrightarrow \sigma f \in \Delta_{k} B .
\end{gathered}
$$

(viii). By (i), $\Delta_{n} a_{n}=\Delta_{n} \alpha_{n} a_{n-1} \subseteq \Delta_{n-1} a_{n-1}$. The same argument applies to $\Delta_{n} b_{n}$.
(ix). By definition $a_{0}=1_{G} \in F_{0}$. If we assume $a_{n-1} \in F_{n-1}$, then by (ii)

$$
a_{n}=\alpha_{n} a_{n-1} \in \alpha_{n} F_{n-1} \subseteq F_{n} .
$$

By induction, and by a similar argument, we have $a_{n}, b_{n} \in F_{n}$ for all $n \in \mathbb{N}$.
(x). From (ix) we have that $a_{n}=\alpha_{n} a_{n-1} \in \alpha_{n} F_{n-1}$. Similarly, $b_{n} \in \beta_{n} F_{n-1}$. The claim then follows from (iii) since $\alpha_{n} \neq \beta_{n}$.
(xi). Suppose $0<k \leq n$. Since $a_{k} \neq b_{k} \in F_{k}$, and since the Δ_{k}-translates of F_{k} are disjoint, from (viii) we have

$$
\Delta_{n} a_{n} \cap \Delta_{k} b_{k} \subseteq \Delta_{k} a_{k} \cap \Delta_{k} b_{k}=\varnothing
$$

The case $0<n \leq k$ is identical.
(xii) and (xiii). $\Delta_{n} D_{n-1}^{n} \subseteq \Delta_{n-1}$ by (i). So by (viii)

$$
\Delta_{n} D_{n-1}^{n} a_{n-1} \subseteq \Delta_{n-1} a_{n-1} \subseteq \Delta_{k} a_{k}
$$

This gives us (xii) and part of (xiii). The equality at the end of (xiii) follows from the definition of a_{k}. The argument for $\left(b_{n}\right)_{n \in \mathbb{N}}$ is identical.

Hopefully the proof of the previous lemma helps demonstrate to the reader the important role of the coherent and uniform properties of pre-blueprints.

The next lemma consists of properties of stronger types of pre-blueprints.
Lemma 5.1.5. Let G be a countably infinite group and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a pre-blueprint.
(i) If the pre-blueprint is centered, then $\left(F_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence and $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence.
(ii) If the pre-blueprint is maximally disjoint, then it is a blueprint and for all $n \in \mathbb{N}, \Delta_{n} F_{n} F_{n}^{-1}=G$.
(iii) If the pre-blueprint is directed, then for any $r(1), r(2), \ldots, r(m)$ and $\psi_{1} \in$ $\Delta_{r(1)}, \ldots, \psi_{m} \in \Delta_{r(m)}$, there is $n \in \mathbb{N}$ and $\gamma \in \Delta_{n}$ so that for every $1 \leq i \leq m \psi_{i} F_{r(i)} \subseteq \gamma F_{n}$.
(iv) If the pre-blueprint is directed and centered, then for any $r(1), r(2), \ldots$, $r(m)$ and $\psi_{1} \in \Delta_{r(1)}, \ldots, \psi_{m} \in \Delta_{r(m)}$, there is $n \in \mathbb{N}$ so that for every $1 \leq i \leq m \psi_{i} F_{r(i)} \subseteq F_{n}$.
(v) If $n>k \geq t, \sigma \in \Delta_{n}, A \subseteq G$ is finite, $\Delta_{t} \cap A F_{k} F_{t} F_{t} F_{t}^{-1} \subseteq \sigma D_{t}^{n}$, and the Δ_{t}-translates of F_{t} are maximally disjoint, then for all $\gamma \in \Delta_{n}$

$$
\Delta_{k} \cap \gamma \sigma^{-1} A=\gamma \sigma^{-1}\left(\Delta_{k} \cap A\right) \subseteq \gamma D_{k}^{n}
$$

(vi) If the pre-blueprint is a directed blueprint and the Δ_{0}-translates of F_{0} are maximally disjoint, then it is minimal in the following sense: for every finite $A \subseteq G$ and $N \in \mathbb{N}$ there is a finite set $T \subseteq G$ so that for any $g \in G$

$$
\exists t \in T \forall 0 \leq k \leq N g t\left(\Delta_{k} \cap A\right)=\Delta_{k} \cap g t A
$$

(vii) If the pre-blueprint is directed, then

$$
\left|\bigcap_{n \in \mathbb{N}} \Delta_{n}\right|,\left|\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}\right|,\left|\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}\right| \leq 1
$$

(viii) If the pre-blueprint is directed, centered, and for infinitely many n and infinitely many $k \alpha_{n} \neq 1_{G} \neq \beta_{k}$, then

$$
\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing
$$

Proof. (i). By definition, $1_{G} \in F_{n}$ for each $n \in \mathbb{N}$. Thus $F_{n} \cap F_{n+1} \neq \varnothing$. If the pre-blueprint is centered, then $1_{G} \in \Delta_{n} \cap \Delta_{n+1}$, so it follows from the coherent property of pre-blueprints that $F_{n} \subseteq F_{n+1}$. By (i) of Lemma 5.1.4, $\Delta_{n+1} D_{n}^{n+1} \subseteq$ Δ_{n}. However, $1_{G} \in \Delta_{n} \cap 1_{G} F_{n+1}=1_{G} D_{n}^{n+1}$, so $\Delta_{n+1} \subseteq \Delta_{n}$.
(ii). Suppose the pre-blueprint is maximally disjoint, and let $g \in G$. Then the Δ_{n}-translates of F_{n} are maximally disjoint within G, so $g F_{n} \cap \Delta_{n} F_{n} \neq \varnothing$. Hence there is $f_{1}, f_{2} \in F_{n}$ and $\gamma \in \Delta_{n}$ with $g f_{1}=\gamma f_{2}$. It follows $g=\gamma f_{2} f_{1}^{-1} \in \Delta_{n} F_{n} F_{n}^{-1}$. So the dense property is satisfied and the pre-blueprint is a blueprint.
(iii). It suffices to prove the claim for the maximal elements with respect to inclusion among $\left\{\psi_{i} F_{r(i)}: 1 \leq i \leq m\right\}$. By the coherent property, distinct maximal members of this collection are disjoint. So without loss of generality we may assume $\psi_{i} F_{r(i)} \cap \psi_{j} F_{r(j)}=\varnothing$ for $i \neq j$. Also, without loss of generality we may assume $r(1) \leq r(2) \leq \cdots \leq r(m)$. For each $i>1$ pick $\lambda_{i} \in D_{r(1)}^{r(i)}$. Then $\psi_{i} \lambda_{i} \in \Delta_{r(1)}$ for each $i>1$. For each $i>1$ pick $n(i)$ and $\sigma_{i} \in \Delta_{n(i)}$ with

$$
\psi_{1} F_{r(1)} \cup \psi_{i} \lambda_{i} F_{r(1)} \subseteq \sigma_{i} F_{n(i)}
$$

So for $i, j>1$ we have

$$
\psi_{1} F_{r(1)} \subseteq \sigma_{i} F_{n(i)} \cap \sigma_{j} F_{n(j)}
$$

Thus, by the coherent property of pre-blueprints, it must be that one of $\sigma_{i} F_{n(i)}$ and $\sigma_{j} F_{n(j)}$ contains the other. If σF_{n} is the largest member of the $\sigma_{i} F_{n(i)}$'s with
respect to containment, then we have

$$
\psi_{1} F_{r(1)} \cup \psi_{2} \lambda_{2} F_{r(1)} \cup \cdots \cup \psi_{m} \lambda_{m} F_{r(1)} \subseteq \sigma F_{n}
$$

As $\psi_{i} \lambda_{i} F_{r(1)} \subseteq \psi_{i} F_{r(i)}$ for each $i>1$, we have that each $\psi_{i} F_{r(i)}$ meets σF_{n} nontrivially. Since the $\psi_{i} F_{r(i)}$'s are pairwise disjoint, none of them can contain σF_{n}. Thus by the coherent property σF_{n} must contain each $\psi_{i} F_{r(i)}$.
(iv). By (iii) there is $n \in \mathbb{N}$ and $\gamma \in \Delta_{n}$ with $\psi_{i} F_{r(i)} \subseteq \gamma F_{n}$. So it will be enough to show $\gamma F_{n} \subseteq F_{m}$ for some $m \in \mathbb{N}$. As $1_{G} \in \Delta_{n}$, the pre-blueprint being directed implies there is $m \in \mathbb{N}$ and $\sigma \in \Delta_{m}$ with $\gamma F_{n} \cup F_{n} \subseteq \sigma F_{m}$. By (i), this gives $F_{m} \cap \sigma F_{m} \neq \varnothing$. Since $1_{G} \in \Delta_{m}$, by the disjoint property of pre-blueprints we must have $\sigma=1_{G}$.
(v). Fix $\gamma \in \Delta_{n}$. We have

$$
\begin{gathered}
\left(\Delta_{k} \cap A\right) D_{t}^{k} \subseteq\left(\Delta_{k} D_{t}^{k}\right) \cap\left(A D_{t}^{k}\right) \subseteq \Delta_{t} \cap A F_{k} F_{t} F_{t} F_{t}^{-1} \\
\subseteq \sigma D_{t}^{n} \subseteq \sigma F_{n} .
\end{gathered}
$$

So if $\psi \in \Delta_{k} \cap A$ then $\psi F_{k} \cap \sigma F_{n} \neq \varnothing$ and by the coherent property of pre-blueprints it follows that $\psi \in \sigma D_{k}^{n}$. So $\Delta_{k} \cap A \subseteq \sigma D_{k}^{n}$. Therefore

$$
\gamma \sigma^{-1}\left(\Delta_{k} \cap A\right) \subseteq \gamma \sigma^{-1} \sigma D_{k}^{n} \subseteq \gamma D_{k}^{n} \subseteq \Delta_{k}
$$

Also $\gamma \sigma^{-1}\left(\Delta_{k} \cap A\right) \subseteq \gamma \sigma^{-1} A$. Thus

$$
\gamma \sigma^{-1}\left(\Delta_{k} \cap A\right) \subseteq \Delta_{k} \cap\left(\gamma \sigma^{-1} A\right) .
$$

To show the reverse inclusion, pick $\lambda \in \Delta_{k} \cap\left(\gamma \sigma^{-1} A\right)$. Fix any $\delta \in D_{t}^{k}$. Then $\sigma \gamma^{-1} \lambda \delta \in A F_{t}$ so $\sigma \gamma^{-1} \lambda \delta F_{t} \subseteq A F_{t} F_{t}$. Notice that the $\Delta_{t} \cap A F_{k} F_{t} F_{t} F_{t}^{-1}$-translates of F_{t} are maximally disjoint within $A F_{t} F_{t}$ (though not necessarily contained in $A F_{t} F_{t}$; see Definition 5.1.1). So there is $\psi \in \Delta_{t} \cap A F_{k} F_{t} F_{t} F_{t}^{-1}$ with

$$
\psi F_{t} \cap \sigma \gamma^{-1} \lambda \delta F_{t} \neq \varnothing
$$

However, $\psi \in \sigma D_{t}^{n}$, so $\gamma \sigma^{-1} \psi \in \Delta_{t}, \lambda \delta \in \Delta_{t}$, and

$$
\gamma \sigma^{-1} \psi F_{t} \cap \lambda \delta F_{t} \neq \varnothing
$$

Therefore $\lambda \delta=\gamma \sigma^{-1} \psi$. Since $\psi \in \sigma D_{t}^{n} \subseteq \sigma F_{n}$, we have $\gamma \sigma^{-1} \psi \in \gamma F_{n}$. Thus $\lambda \delta \in \gamma F_{n}$ so $\lambda F_{k} \cap \gamma F_{n} \neq \varnothing$. By the coherency property of blueprints, we have that $\lambda F_{k} \subseteq \gamma F_{n}$ and $\lambda \in \gamma D_{k}^{n}$. It follows that $\sigma \gamma^{-1} \lambda \in \sigma D_{k}^{n} \subseteq \Delta_{k}$. Thus

$$
\sigma \gamma^{-1} \lambda \in \Delta_{k} \cap A
$$

and therefore

$$
\lambda \in \gamma \sigma^{-1}\left(\Delta_{k} \cap A\right) .
$$

(vi). Let $A \subseteq G$ be finite and let $N \in \mathbb{N}$. For each $0 \leq k \leq N$ let $C_{k}=$ $\Delta_{0} \cap A F_{k} F_{0} F_{0} F_{0}^{-1}$. By (iii) there is $n \in \mathbb{N}$ and $\sigma \in \Delta_{n}$ with $C_{k} F_{0} \subseteq \sigma F_{n}$ for every $0 \leq k \leq N$. In particular, $C_{k} \subseteq \sigma D_{0}^{n}$. Since we are assuming $\left(\Delta_{n} F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint, there is a finite $B \subseteq G$ with $\Delta_{n} B=G$. Set $T=B^{-1} \sigma^{-1}$ and let $g \in G$ be arbitrary. Since $\Delta_{n} B=G$, there is $b \in B^{-1}$ with $g b=\gamma \in \Delta_{n}$. We will show that the stated condition is satisfied for $t=b \sigma^{-1} \in T$. So $g t=\gamma \sigma^{-1}$. This follows from (v): for $0 \leq k \leq N$ we have

$$
\gamma \sigma^{-1}\left(\Delta_{k} \cap A\right)=\Delta_{k} \cap\left(\gamma \sigma^{-1} A\right)
$$

We conclude that the blueprint satisfies the stated minimal condition.
(vii). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence such that $f_{n} \in F_{n}$ for all $n \in \mathbb{N}$. We show that $\left|\bigcap_{n \in \mathbb{N}} \Delta_{n} f_{n}\right| \leq 1$. Suppose $g, h \in \bigcap_{n \in \mathbb{N}} \Delta_{n} f_{n}$. Then $g, h \in \Delta_{0} f_{0} \subseteq \Delta_{0} F_{0}$. If our
pre-blueprint is directed, then there is $n>0$ and $\gamma \in \Delta_{n}$ with $g, h \in \gamma F_{n}$. However, $g, h \in \Delta_{n} f_{n}$, so there are $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $g=\sigma_{1} f_{n}$ and $h=\sigma_{2} f_{n}$. By conclusion (ix) of Lemma 5.1.4 $\sigma_{1} F_{n} \cap \gamma F_{n} \neq \varnothing$. By the disjoint property of pre-blueprints, we must have $\sigma_{1}=\gamma$ and similarly $\sigma_{2}=\gamma$. Thus $\sigma_{1}=\sigma_{2}$ and it follows $g=h$.
(viii). Assume that our pre-blueprint is centered and directed. Suppose $g \in$ $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}$. We will show $\alpha_{n}=1_{G}$ for all but finitely many $n \in \mathbb{N}$. We have $g \in \Delta_{0} a_{0}=\Delta_{0}$ and $1_{G} \in \Delta_{0}$. Hence there is $n>0$ and $\gamma \in \Delta_{n}$ with $g, 1_{G} \in \gamma F_{n}$. As $1_{G} \in \Delta_{n}$ and $1_{G} F_{n} \cap \gamma F_{n} \supseteq\left\{1_{G}\right\} \neq \varnothing$, we must have $\gamma=1_{G}$. Thus $g \in F_{n}$. By (i), $\left(F_{m}\right)_{m \in \mathbb{N}}$ is an increasing sequence, so $g \in F_{m}$ for all $m \geq n$. Fix $m \geq n$ and let $\sigma \in \Delta_{m+1}$ be such that $g=\sigma a_{m+1}$. As $a_{m+1} \in F_{m+1}$, we have $\sigma F_{m+1} \cap F_{m+1} \supseteq$ $\{g\} \neq \varnothing$. We then must have $\sigma=1_{G}$. So $g=a_{m+1}=\alpha_{m+1} a_{m} \in \alpha_{m+1} F_{m}$. Then $g \in F_{m} \cap \alpha_{m+1} F_{m}$ so $\alpha_{m+1}=1_{G}$. The case of $\cap \Delta_{n} b_{n}$ is similar, so this completes the proof.

Note that (iii) reveals why the word "directed" was chosen. Consider the set $\mathcal{C}=\left\{\gamma F_{n}: n \in \mathbb{N} \wedge \gamma \in \Delta_{n}\right\}$ with the partial ordering

$$
\psi F_{k} \prec \gamma F_{n} \Longleftrightarrow k \leq n \wedge \psi F_{k} \subseteq \gamma F_{n}
$$

Conclusion (iii) says that if the pre-blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is directed, then this partially ordered set is a directed set.

The importance of clause (v) will be better appreciated after the next section. This is because the behavior fundamental functions (partial functions on G constructed in the next section) will be highly dependent on the sets $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$. Knowing how subsets $A \subseteq G$ intersect Δ_{k} will be very useful. Clause (v) should also be recognized as being closely related to the uniform property of pre-blueprints. If we set $A=\sigma F_{n}$ and ignore the assumptions of this clause, then we see that the conclusion is precisely the uniform property appearing in the definition of pre-blueprints.

We point out that the minimal property mentioned in (vi) actually does relate to the minimality of a certain dynamical system. Fix $N \in \mathbb{N}$, and define $x: G \rightarrow$ 2^{N+1} so that for $g, h \in G$

$$
x(g)=x(h) \Longleftrightarrow\left(\forall 0 \leq k \leq N g \in \Delta_{k} \Leftrightarrow h \in \Delta_{k}\right) .
$$

Then one can check via Lemma 2.4 .5 that x is minimal if and only if the preblueprint satisfies the stated minimal condition for N.

5.2. Fundamental functions

Now we will get to see how pre-blueprints are used in constructing well behaved partial functions on G. As the reader will see, one reason sequences of marker structures are useful is that it endows organization to the group which allows one to work with the group at the small scale at first and step by step work at larger and larger scales tweaking what has been done previously. Of course, different types of sequences of marker structures are needed for different constructions. Preblueprints seem to be precisely the type needed in the main construction of this section. We will construct a partial function on G, and the important feature of the constructed function is that one will be able to recognize the structure of the preblueprint from the behavior of the function alone. In other words, the organization endowed to the group by this sequence of marker structures, the pre-blueprint, will essentially become an intrinsic feature of the partial function. The members of Δ_{n} for each $n>0$ will be identifiable using what we call a membership test.

Definition 5.2.1. Let G be a group, $c \in 2^{\subseteq G}$, and $\Delta \subseteq G$. We say c admits $a \Delta$ membership test if there is a finite $V \subseteq G$ and $S \subseteq 2^{V}$ so that $\Delta V \subseteq \operatorname{dom}(c)$ and for all $x \in 2^{G}$ with $x \supseteq c$

$$
g \in \Delta \Longleftrightarrow\left(g^{-1} \cdot x\right) \upharpoonright V \in S
$$

The set V is called a test region and the elements of S are called test functions. If S can be taken to be a singleton, we may say that c admits a simple Δ membership test. In this case, if $S=\{f\}$ then for all $x \in 2^{G}$ with $x \supseteq c$

$$
g \in \Delta \Longleftrightarrow \forall v \in V x(g v)=f(v)
$$

Equivalently, c admits a Δ membership test if there is a finite $V \subseteq G$ satisfying $\Delta V \subseteq \operatorname{dom}(c)$ and with the property that for any $g \notin \Delta$ and $\gamma \in \Delta$, there is $v \in V$ with $g v \in \operatorname{dom}(c)$ and $c(g v) \neq c(\gamma v)$. This equivalent characterization is not used in this paper and so we do not include a proof.

In the upcoming theorem, we will create a single function with a simple Δ_{n} membership test for each $n>0$. The membership test will be constructed inductively; the membership test of Δ_{n+1} will be reliant on the membership test for Δ_{n}. Establishing the base case of the induction seems to be achieved most easily through the use of a locally recognizable function.

Definition 5.2.2. Let G be a group, let $A \subseteq G$ be finite with $1_{G} \in A$, and let $R: A \rightarrow 2$. We call R locally recognizable if for every $1_{G} \neq a \in A$ there is $b \in A$ so that $a b \in A$ and $R(a b) \neq R(b) . R$ is called trivial if $\left|\left\{a \in A: R(a)=R\left(1_{G}\right)\right\}\right|=1$.

The lemma below gives an equivalent characterization of locally recognizable functions. The property used in the definition above is the easiest to verify, while the property given in the lemma below is the most useful property in terms of applications.

Lemma 5.2.3. Let G be a group, let $A \subseteq G$ be finite with $1_{G} \in A$, and let $R: A \rightarrow 2$. The function R is locally recognizable if and only if for every $x \in 2^{G}$ with $x \upharpoonright A=R$

$$
\forall a \in A\left(\forall b \in A x(a b)=x(b) \Longrightarrow a=1_{G}\right)
$$

Proof. (\Rightarrow). Suppose R is locally recognizable. If $1_{G} \neq a \in A$, then by definition there is $b \in A$ with $a b \in A$ and $R(a b) \neq R(b)$. So if $x \in 2^{G}$ satisfies $x \upharpoonright A=R$, then $x(a b) \neq x(b)$.
(\Leftarrow). Assume that R has the property stated above. Let $a \in A$ and suppose that for every $b \in A$ either $a b \notin A$ or else $R(a b)=R(b)$. It suffices to show $a=1_{G}$. We may define $R^{\prime}: A \cup a A \rightarrow 2$ by requiring R^{\prime} to extend R and satisfy $R^{\prime}(a b)=R(b)$ for every $b \in A$. Then R^{\prime} is well defined. If $x \in 2^{G}$ is any extension of R^{\prime}, then $x(a b)=x(b)$ for every $b \in A$. Thus, by assumption this implies $a=1_{G}$.

Every group with more than two elements admits a nontrivial locally recognizable function. If G contains a nonidentity g with $g^{2} \neq 1_{G}$, then set $A=\left\{1_{G}, g, g^{2}\right\}$ and define $R\left(1_{G}\right)=R(g)=1$ and $R\left(g^{2}\right)=0$. If every element of G has order two, then pick distinct nonidentity $g, h \in G$, set $A=\left\{1_{G}, g, h, g h\right\}$, and define $R\left(1_{G}\right)=R(g)=R(h)=1$ and $R(g h)=0$ (keep in mind $h g=g h$ as G must be abelian). Also note that if $R: A \rightarrow 2$ is locally recognizable and $B \supseteq A$, then $R^{\prime}: B \rightarrow 2$ is locally recognizable, where

$$
R^{\prime}(b)=\left\{\begin{array}{ll}
R(b) & \text { if } b \in A \\
1-R\left(1_{G}\right) & \text { if } b \in B-A
\end{array} .\right.
$$

Thus, nontrivial locally recognizable functions exist on a large multitude of domains. More advanced examples of locally recognizable functions will be presented in the next chapter where we will see that they are useful for more than just creating a membership test.

Definition 5.2.4. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a pre-blueprint. A set $A \subseteq G$ is said to be m-uniform with respect to this pre-blueprint if

$$
\forall n \geq m \forall \gamma, \sigma \in \Delta_{n} \gamma^{-1}\left(A \cap \gamma F_{n}\right)=\sigma^{-1}\left(A \cap \sigma F_{n}\right)
$$

A partial function $c \in 2^{\subseteq G}$ is said to be m-uniform with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ if each of the three sets $\operatorname{dom}(c), c^{-1}(0)$, and $c^{-1}(1)$ are m-uniform with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$.

The uniform property of pre-blueprints asserts that for every $k \in \mathbb{N} \Delta_{k}$ is k-uniform relative to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$.

We are now ready for the construction. It may help to recall some of the fixed notation related to pre-blueprints $\left(\alpha_{n}, \beta_{n}, \gamma_{n}, a_{n}, b_{n}, D_{k}^{n}, \Lambda_{n}\right)$ before continuing.

THEOREM 5.2.5. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a preblueprint, and let $R: F_{0} \rightarrow 2$ be a nontrivial locally recognizable function. Then there exists a function $c \in 2 \subseteq G$ with the following properties:
(i) $c\left(\gamma \gamma_{1} f\right)=R(f)$ for all $\gamma \in \Delta_{1}$ and $f \in F_{0}$;
(ii) c admits a simple Δ_{n} membership test with test region a subset of $\gamma_{n} F_{n-1}$ for each $n \geq 1$;
(iii) $G-\operatorname{dom}(c)$ is the disjoint union $\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}$;
(iv) $c(g)=1-R\left(1_{G}\right)$ for all $g \in G-\Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$;
(v) $\left(\gamma F_{n}-\left\{\gamma b_{n}\right\}\right) \cap \operatorname{dom}(c)=\gamma\left(F_{n}-\left\{b_{n}\right\}-\bigcup_{1 \leq k \leq n} D_{k}^{n} \Lambda_{k} b_{k-1}\right)$ for all $n \geq 1$ and $\gamma \in \Delta_{n}$;
(vi) $c(\gamma f)=c(\sigma f)$ for all $n \geq 1, \gamma, \sigma \in \Delta_{n}$, and

$$
f \in F_{n}-\left\{a_{n}, b_{n}\right\}-\bigcup_{1 \leq k \leq n} D_{k}^{n} \Lambda_{k} b_{k-1}
$$

(vii) for all $n \geq 1 c \upharpoonright\left(G-\Delta_{n}\left\{a_{n}, b_{n}\right\}\right)$ is n-uniform.

Proof. We wish to construct a sequence of functions $\left(c_{n}\right)_{n \geq 1}$ satisfying for each $n \geq 1$:
(1) $\operatorname{dom}\left(c_{n}\right)=G-\Delta_{n} a_{n}-\Delta_{n} b_{n}-\bigcup_{1 \leq k \leq n} \Delta_{k} \Lambda_{k} b_{k-1}$
(2) $c_{n+1} \supseteq c_{n}$;
(3) c_{n} admits a simple Δ_{n} membership test with test region a subset of $\gamma_{n} F_{n-1}$.
Let us first dwell for a moment on (1). Condition (1) is consistent with condition (2) because $\Delta_{n} a_{n}$ and $\Delta_{n} b_{n}$ are decreasing sequences and $\Delta_{n+1} \Lambda_{n+1} b_{n} \subseteq \Delta_{n} b_{n}$ (conclusions (i) and (viii) of Lemma 5.1.4). By conclusions (xi) and (xii) of Lemma 5.1.4, we have $\Delta_{n} a_{n}$ is disjoint from $\Delta_{n} b_{n} \cup \bigcup_{1 \leq k \leq n} \Delta_{k} \Lambda_{k} b_{k-1}$. Therefore for $n>1$ we desire $\operatorname{dom}\left(c_{n}\right)$ to be

$$
\operatorname{dom}\left(c_{n-1}\right) \cup\left(\Delta_{n-1} a_{n-1}-\Delta_{n} a_{n}\right) \cup\left(\Delta_{n-1} b_{n-1}-\Delta_{n}\left[\Lambda_{n} \cup\left\{\beta_{n}\right\}\right] b_{n-1}\right)
$$

It is important to note that these unions are disjoint. This tells us that given c_{n-1}, we can define $c_{n} \supseteq c_{n-1}$ to have whichever values on $\Delta_{n-1} a_{n-1}-\Delta_{n} a_{n}$ and $\Delta_{n-1} b_{n-1}-\Delta_{n}\left[\Lambda_{n} \cup\left\{\beta_{n}\right\}\right] b_{n-1}$ without worry of a contradiction between the two or with c_{n-1}.

Figure 5.3. An illustration of the set $\gamma_{1} F_{0} \cup D_{0}^{1}$, the shaded area together with all the highlighted (circled-solid) points in the figure. Compare with Figure 5.1.

Define

$$
c_{1}:\left(G-\Delta_{1} a_{1}-\Delta_{1} b_{1}-\Delta_{1} \Lambda_{1}\right) \rightarrow\{0,1\}
$$

by

$$
c_{1}(g)= \begin{cases}R(f) & \text { if } g=\gamma \gamma_{1} f \text { where } \gamma \in \Delta_{1} \text { and } f \in F_{0} \\ 1-R\left(1_{G}\right) & \text { otherwise }\end{cases}
$$

for $g \in \operatorname{dom}\left(c_{1}\right)$. The function c_{1} satisfies (1) since $b_{0}=1_{G}$. Notice that the set referred to in (iv), $G-\Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$, is a subset of the domain of c_{1}. Clearly each element of this set is mapped to $1-R\left(1_{G}\right)$ by c_{1}. So as long as the final function c extends c_{1} clause (iv) will be satisfied. See Figures 5.3 and 5.4 for an illustration of the set $G-\Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$.

We claim c_{1} satisfies (3) with test region $\gamma_{1} F_{0}$. Since $\Delta_{1} \gamma_{1}, \Delta_{1} a_{1}, \Delta_{1} b_{1}$, and $\Delta_{1} \Lambda_{1}$ are pairwise disjoint subsets of Δ_{0}, we have that $\Delta_{1} \gamma_{1} F_{0}$ is disjoint from $\Delta_{1} a_{1} \cup \Delta_{1} b_{1} \cup \Delta_{1} \Lambda_{1}$ (since $1_{G} \in F_{0}$). Thus $\Delta_{1} \gamma_{1} F_{0} \subseteq \operatorname{dom}\left(c_{1}\right)$ as required.

Let $x \in 2^{G}$ be an arbitrary extension of c_{1}. To finish verifying (3), we will show $g \in \Delta_{1}$ if and only if for all $f \in F_{0} x\left(g \gamma_{1} f\right)=R(f)$. If $\gamma \in \Delta_{1}$, then $\gamma \gamma_{1} F_{0} \subseteq \operatorname{dom}\left(c_{1}\right)$ and hence $x\left(\gamma \gamma_{1} f\right)=R(f)$ for all $f \in F_{0}$. Now suppose $g \in G$ satisfies $x\left(g \gamma_{1} f\right)=R(f)$ for all $f \in F_{0}$. Note that $x(h)=c_{1}(h)=1-R\left(1_{G}\right)$ for all $h \in \operatorname{dom}\left(c_{1}\right)-\Delta_{1} \gamma_{1} F_{0}$. As $x\left(g \gamma_{1} 1_{G}\right)=R\left(1_{G}\right)$, either $g \gamma_{1} \in \Delta_{1} \gamma_{1} F_{0}$ or $g \gamma_{1} \notin \operatorname{dom}\left(c_{1}\right)$. But $g \gamma_{1}$ cannot be in $G-\operatorname{dom}\left(c_{1}\right) \subseteq \Delta_{0}$, for then we would have

$$
g \gamma_{1} F_{0}-\left\{g \gamma_{1}\right\} \subseteq \operatorname{dom}\left(c_{1}\right)-\Delta_{1} \gamma_{1} F_{0}
$$

and hence $R=\left(\gamma_{1}^{-1} g^{-1} \cdot x\right) \upharpoonright F_{0}$ would be trivial, a contradiction. So $g \gamma_{1} \in \Delta_{1} \gamma_{1} F_{0}$. Let $\gamma \in \Delta_{1}$ and $a \in F_{0}$ be such that $g \gamma_{1}=\gamma \gamma_{1} a$. By construction, $x\left(\gamma \gamma_{1} f\right)=R(f)$

Figure 5.4. An illustration of the set $\Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$. In the figure λ denotes a generic element of Δ_{1}. The set consists of the shaded regions together with all highlighted (circled-solid) points. For details of each translates of F_{1} see Figure 5.3.
for all $f \in F_{0}$, and we have that for all $b \in F_{0}$

$$
\left(\gamma_{1}^{-1} \gamma^{-1} \cdot x\right)(a b)=x\left(\gamma \gamma_{1} a b\right)=x\left(g \gamma_{1} b\right)=R(b)=\left(\gamma_{1}^{-1} \gamma^{-1} \cdot x\right)(b) .
$$

Now it follows from Lemma 5.2.3 that $a=1_{G}$. Thus, $g \gamma_{1}=\gamma \gamma_{1}$ and $g=\gamma \in \Delta_{1}$.
Now suppose that c_{1} through c_{k-1} have been constructed and satisfy (1) through (3). We pointed out earlier that we desire c_{k} to have domain

$$
\operatorname{dom}\left(c_{k-1}\right) \cup\left(\Delta_{k-1} a_{k-1}-\Delta_{k} a_{k}\right) \cup\left(\Delta_{k-1} b_{k-1}-\Delta_{k}\left[\Lambda_{k} \cup\left\{\beta_{k}\right\}\right] b_{k-1}\right)
$$

We define c_{k} to satisfy $c_{k} \supseteq c_{k-1}$ and:

$$
\begin{gathered}
c_{k}\left(\Delta_{k-1} a_{k-1}-\Delta_{k}\left\{\gamma_{k}, \alpha_{k}\right\} a_{k-1}\right)=\{0\} ; \\
c_{k}\left(\Delta_{k} \gamma_{k} a_{k-1}\right)=\{1\} ; \\
c_{k}\left(\Delta_{k} \gamma_{k} b_{k-1}\right)=\{1\} ; \\
c_{k}\left(\Delta_{k} \alpha_{k} b_{k-1}\right)=\{0\} ; \\
c_{k}\left(\Delta_{k-1} b_{k-1}-\Delta_{k} D_{k-1}^{k} b_{k-1}\right)=\{0\} .
\end{gathered}
$$

From our earlier remarks on (1), we know c_{k} is well defined. It is easily checked that c_{k} satisfies (1) and (2) (recall that $\Delta_{k} a_{k}=\Delta_{k} \alpha_{k} a_{k-1}$ and $\Lambda_{k}=D_{k-1}^{k}$ $\left.\left\{\alpha_{k}, \beta_{k}, \gamma_{k}\right\}\right)$. See Figure 5.5 for an illustration of c_{k}.

Let $V \subseteq \gamma_{k-1} F_{k-2}$ be the test region referred to in (3) for $n=k-1$, and let $v \in 2^{V}$ witness the membership test. Set $W=\gamma_{k}\left(V \cup\left\{a_{k-1}, b_{k-1}\right\}\right)$ and define

Figure 5.5. The definition of c_{k} ensures a simple membership test for Δ_{k}
$w \in 2^{W}$ so that w extends $\gamma_{k} \cdot v$ and $w\left(\gamma_{k} a_{k-1}\right)=w\left(\gamma_{k} b_{k-1}\right)=1$. We claim that c_{k} satisfies (3) with test region W and witnessing function w. Clearly $W \subseteq \gamma_{k} F_{k-1}$. Let $x \in 2^{G}$ be an arbitrary extension of c_{k}. If $\gamma \in \Delta_{k}$, then $\gamma \gamma_{k} \in \Delta_{k-1}$ and it is then clear from the definition of c_{k} that $x(\gamma a)=w(a)$ for all $a \in W$. Now suppose $g \in G$ satisfies $x(g a)=w(a)$ for all $a \in W$. Then in particular $x\left(g \gamma_{k} a\right)=v(a)$ for all $a \in V$ and thus $g \gamma_{k} \in \Delta_{k-1}$. Also, $x\left(g \gamma_{k} a_{k-1}\right)=w\left(a_{k-1}\right)=1$. From how we defined c_{k}, we have for $h \in G$

$$
h \in \Delta_{k-1} \text { and } x\left(h a_{k-1}\right)=1 \Longrightarrow h \in \Delta_{k} \gamma_{k} \text { or } h \in \Delta_{k} \alpha_{k} .
$$

However, $g \gamma_{k} \notin \Delta_{k} \alpha_{k}$, for otherwise we would have

$$
1=w\left(\gamma_{k} b_{k-1}\right)=x\left(g \gamma_{k} b_{k-1}\right)=c_{k}\left(g \gamma_{k} b_{k-1}\right)=0
$$

We conclude $g \gamma_{k} \in \Delta_{k} \gamma_{k}$ and $g \in \Delta_{k}$. Thus c_{k} satisfies (3).
Finally, take the function $c^{\prime}=\bigcup_{n \geq 1} c_{n}$ and if necessary extend c^{\prime} arbitrarily to $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}$ and $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}$ to get a function $c \in 2 \subseteq G$. Properties (i) and (iv) clearly hold due to how c_{1} was defined. Property (ii) holds since $c \supseteq c_{n}$ for each $n \geq 1$, and property (iii) follows from (1) and conclusion (xiii) of Lemma 5.1.4 (for the disjointness of the union). We proceed to verify properties (v), (vi), and (vii).
(v). Fix $n \geq 1$ and $\gamma \in \Delta_{n}$. By conclusion (xii) of Lemma 5.1.4, $\gamma F_{n}-\left\{\gamma b_{n}\right\}$ is disjoint from $\Delta_{k} \Lambda_{k} b_{k-1}$ for all $k>n$. Also, $\gamma b_{n} \in \Delta_{k} b_{k}=\Delta_{k} \beta_{k} b_{k-1}$ for all $k \leq n$ by conclusion (viii) of Lemma 5.1.4. Since $\Delta_{k} \beta_{k}$ and $\Delta_{k} \Lambda_{k}$ are disjoint subsets of Δ_{k-1} and $b_{k-1} \in F_{k-1}$, it follows that $\gamma b_{n} \notin \Delta_{k} \Lambda_{k} b_{k-1}$ for $k \leq n$. Thus for $k \leq n$

$$
\left(\gamma F_{n}-\left\{\gamma b_{n}\right\}\right) \cap \Delta_{k} \Lambda_{k} b_{k-1}=\Delta_{k} \Lambda_{k} b_{k-1} \cap \gamma F_{n}=\gamma D_{k}^{n} \Lambda_{k} b_{k-1}
$$

by conclusion (vi) of Lemma 5.1.4. The claim now follows from (iii).
(vi). Fix $n \geq 1, \gamma, \sigma \in \Delta_{n}$, and $f \in F_{n}-\left\{a_{n}, b_{n}\right\}-\bigcup_{1 \leq k \leq n} D_{k}^{n} \Lambda_{k} b_{k-1}$. Then by (v) $\gamma f, \sigma f \in \operatorname{dom}(c)$. Also, $f \notin\left\{a_{n}, b_{n}\right\}$ and hence $\gamma f, \sigma f \notin \Delta_{n}\left\{a_{n}, b_{n}\right\}$ since the Δ_{n}-translates of F_{n} are disjoint and $a_{n}, b_{n} \in F_{n}$. However, $\operatorname{dom}(c)-$ $\operatorname{dom}\left(c_{n}\right) \subseteq \Delta_{n}\left\{a_{n}, b_{n}\right\}$, and since $\gamma f, \sigma f \in \operatorname{dom}(c)$ there must be a $m \leq n$ with $\gamma f, \sigma f \in \operatorname{dom}\left(c_{m}\right)$. Let $k \leq n$ be minimal with either γf or σf in $\operatorname{dom}\left(c_{k}\right)$. If $k=1$, then conclusion (vii) of Lemma 5.1.4 implies that both $\gamma f, \sigma f \in \operatorname{dom}\left(c_{1}\right)$ and $c(\gamma f)=c_{1}(\gamma f)=c_{1}(\sigma f)=c(\sigma f)$. Similarly, if $k>1$ then, after recalling the five equations used to define c_{k}, conclusion (vii) of Lemma 5.1.4 again implies that both $\gamma f, \sigma f \in \operatorname{dom}\left(c_{k}\right)$ and $c(\gamma f)=c_{k}(\gamma f)=c_{k}(\sigma f)=c(\sigma f)$.
(vii). For $n \geq 1$ set $c^{n}=c \upharpoonright\left(G-\Delta_{n}\left\{a_{n}, b_{n}\right\}\right)$. Fix $n \geq 1$ and $m \geq n$. Let $\gamma, \psi \in$ Δ_{m} and let $f \in F_{m}$. We must show $\gamma f \in \operatorname{dom}\left(c^{n}\right)$ if and only if $\psi f \in \operatorname{dom}\left(c^{n}\right)$ and furthermore $c^{n}(\gamma f)=c^{n}(\psi f)$ when these are defined. Since $\Delta_{n}\left\{a_{n}, b_{n}\right\} \subseteq$ $G-\operatorname{dom}\left(c^{n}\right)$, we are done in the case f is a_{m} or b_{m} (since $\Delta_{m}\left\{a_{m}, b_{m}\right\} \subseteq \Delta_{n}\left\{a_{n}, b_{n}\right\}$ by conclusion (viii) of Lemma 5.1.4). So we assume f is neither a_{m} nor b_{m}. Then by (v) $\gamma f \in \operatorname{dom}(c)$ if and only if $\psi f \in \operatorname{dom}(c)$, and by conclusion (vii) of Lemma 5.1.4 $\gamma f \in \Delta_{n}\left\{a_{n}, b_{n}\right\}$ if and only if $\psi f \in \Delta_{n}\left\{a_{n}, b_{n}\right\}$. Therefore, $\gamma f \in \operatorname{dom}\left(c^{n}\right)$ if and only if $\psi f \in \operatorname{dom}\left(c^{n}\right)$. Finally, by (vi) we have that $c^{n}(\gamma f)=c^{n}(\psi f)$ whenever these are defined.

Although the previous theorem applies to pre-blueprints, we restrict ourselves to blueprints for the following two definitions.

Definition 5.2.6. A function $c \in 2^{\subseteq G}$ is called canonical if for some blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and some nontrivial locally recognizable function $R: F_{0} \rightarrow 2$ the conclusions of Theorem 5.2.5 are satisfied. If we wish to emphasize the blueprint, we say c is canonical with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$. To emphasize the locally recognizable function, we say c is compatible with R.

Definition 5.2.7. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint. A function $c \in 2 \subseteq G$ is called fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ if some function $c^{\prime} \subseteq c$ is canonical with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and there are sets $\Theta_{n} \subseteq \Lambda_{n}$ for each $n \geq 1$ such that

$$
\operatorname{dom}(c)=G-\bigcup_{n \geq 1} \Delta_{n} \Theta_{n} b_{n-1}
$$

In this case, if R is a nontrivial locally recognizable function and c^{\prime} is compatible with R, then we say c is compatible with R as well. We simply call $c \in 2 \subseteq G$ fundamental if it is fundamental with respect to some blueprint.

Notice that every canonical function is fundamental: set $\Theta_{n}=\Lambda_{n}$.
Remark 5.2.8. When dealing with a fundamental function $c \in 2 \subseteq G$, the symbols Θ_{n} for each $n \geq 1$ will be reserved. Θ_{n} will necessarily be as to satisfy the above definition.

Clause (v) of Theorem 5.2 .5 can be adapted for fundamental functions.
Lemma 5.2.9. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $c \in 2^{\subseteq}$ be fundamental with respect to this blueprint. Then for all $n \geq 1$ and $\gamma \in \Delta_{n}$

$$
\left(\gamma F_{n}-\left\{\gamma b_{n}\right\}\right) \cap \operatorname{dom}(c)=\gamma\left(F_{n}-\left\{b_{n}\right\}-\bigcup_{1 \leq k \leq n} D_{k}^{n} \Theta_{k} b_{k-1}\right)
$$

Proof. Fix $n \geq 1$ and $\gamma \in \Delta_{n}$. By conclusion (xii) of Lemma 5.1.4, $\gamma F_{n}-$ $\left\{\gamma b_{n}\right\}$ is disjoint from $\Delta_{k} \Theta_{k} b_{k-1}$ for all $k>n$. Also, $\gamma b_{n} \in \Delta_{k} b_{k}=\Delta_{k} \beta_{k} b_{k-1}$ for all $k \leq n$ by conclusion (viii) of Lemma 5.1.4. Since $\Delta_{k} \beta_{k}$ and $\Delta_{k} \Theta_{k}$ are disjoint subsets of Δ_{k-1} and $b_{k-1} \in F_{k-1}$, it follows that $\gamma b_{n} \notin \Delta_{k} \Theta_{k} b_{k-1}$ for $k \leq n$. Thus for $k \leq n$

$$
\left(\gamma F_{n}-\left\{\gamma b_{n}\right\}\right) \cap \Delta_{k} \Theta_{k} b_{k-1}=\Delta_{k} \Theta_{k} b_{k-1} \cap \gamma F_{n}=\gamma D_{k}^{n} \Theta_{k} b_{k-1}
$$

by conclusion (vi) of Lemma 5.1.4. The claim now follows from the fact that

$$
\operatorname{dom}(c)=G-\bigcup_{n \geq 1} \Delta_{n} \Theta_{n} b_{n-1}
$$

5.3. Existence of blueprints

In this section we show that every countably infinite group admits a blueprint. All of our future results in the paper rely on blueprints and therefore their existence is vitally important. It is not difficult to construct sequences $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ which are dense, nor is it difficult to construct sequences which are coherent. However, the truth is that the key difficulty in constructing a blueprint is simultaneously achieving the coherent property and the dense property. First we outline a simple way to construct pre-blueprints.

Lemma 5.3.1. Let G be a countably infinite group. Let $\left(F_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite subsets of G, and let $\left\{\delta_{k}^{n}: n, k \in \mathbb{N}, k<n\right\}$ be a collection of finite subsets of G satisfying
(i) $1_{G} \in \delta_{n-1}^{n}$ for each $n \geq 1$;
(ii) $\left|\delta_{n-1}^{n}\right| \geq 3$ for each $n \geq 1$;
(iii) the δ_{k}^{n}-translates of F_{k} are disjoint for all $n, k \in \mathbb{N}$ with $k<n$;
(iv) $\delta_{m}^{n} F_{m} \cap \delta_{k}^{n} F_{k}=\varnothing$ for all $m \neq k<n$;
(v) $F_{n}=\bigcup_{0 \leq k<n} \delta_{k}^{n} F_{k}$ for all $n \geq 1$.

Then there is a sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of subsets of G with $\delta_{k}^{n} \subseteq \Delta_{k}$ for every $n, k \in \mathbb{N}$ with $k<n$ and such that $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a centered and directed pre-blueprint.

Proof. The basic idea is that setting $\Delta_{k}=\bigcup_{n>k} \delta_{k}^{n}$ nearly works, except that we have to enlarge this set in order to satisfy the uniform property of pre-blueprints. Since in the end we want $\delta_{k}^{n} \subseteq \Delta_{k}$ and $\delta_{k}^{n} \subseteq F_{n}$ (so $\delta_{k}^{n} \subseteq \Delta_{k} \cap F_{n}$), in order to achieve the uniform property it is necessary that δ_{k}^{n} be copied wherever any δ_{n}^{m} translates of F_{n} are located. In other words, for each $n \in \mathbb{N}$ we want to view F_{n} as carrying all of the sets $\delta_{k}^{n}(k<n)$ with it. With this mind set, we want to recognize all of the translates of F_{k} which explicitly or implicitly make up a part of F_{n}. For example, for $k<m<n$ we have $\delta_{k}^{m} F_{k} \subseteq F_{m}$ and $\delta_{m}^{n} F_{m} \subseteq F_{n}$ so $\delta_{m}^{n} \delta_{k}^{m} F_{k} \subseteq F_{n}$. Thus, informally we would say the $\delta_{m}^{n} \delta_{k}^{m}$-translates of F_{k} are implicitly a part of F_{n}. On the other hand, if for $g \in F_{n}$ we only have $g F_{k} \subseteq F_{n}$ we would not necessarily want to say the g-translate of F_{k} is a part of F_{n}. We will momentarily define sets D_{k}^{n}. The choice of notation is no mistake. Later when we define the Δ_{n} 's we will show that the D_{k}^{n} 's carry the usual meaning for pre-blueprints. Informally, we want D_{k}^{n} to be the set of all g 's in F_{n} such that the g-translate of F_{k} either explicitly or implicitly makes up a part of F_{n}. We now give the formal definition for this. For
$k \in \mathbb{N}$, define $D_{k}^{k}=\left\{1_{G}\right\}, D_{k}^{k+1}=\delta_{k}^{k+1}$, and in general for $n>k$

$$
D_{k}^{n}=\delta_{n-1}^{n} D_{k}^{n-1} \cup \delta_{n-2}^{n} D_{k}^{n-2} \cup \cdots \cup \delta_{k+1}^{n} D_{k}^{k+1} \cup \delta_{k}^{n}=\bigcup_{k \leq m<n} \delta_{m}^{n} D_{k}^{m}
$$

We first verify that the D_{k}^{n} 's possess the following properties:
(1) $D_{k}^{n} F_{k} \subseteq F_{n}$ for all $k, n \in \mathbb{N}$ with $k \leq n$;
(2) $D_{m}^{n} D_{k}^{m} \subseteq D_{k}^{n}$ for all $k, m, n \in \mathbb{N}$ with $k \leq m \leq n$;
(3) the D_{k}^{n}-translates of F_{k} are disjoint for all $k, n \in \mathbb{N}$ with $k \leq n$;
(Proof of 1). Clearly $D_{k}^{k} F_{k}=F_{k}$. If we assume $D_{k}^{m} F_{k} \subseteq F_{m}$ for all $k \leq m<n$, then by (v)

$$
D_{k}^{n} F_{k}=\bigcup_{k \leq m<n} \delta_{m}^{n} D_{k}^{m} F_{k} \subseteq \bigcup_{k \leq m<n} \delta_{m}^{n} F_{m} \subseteq F_{n}
$$

The claim now immediately follows from induction.
(Proof of 2). Clearly when $n=m$ we have $D_{m}^{n} D_{k}^{m}=D_{n}^{n} D_{k}^{n}=D_{k}^{n}$. If we assume $D_{m}^{t} D_{k}^{m} \subseteq D_{k}^{t}$ for all $m \leq t<n$, then

$$
D_{m}^{n} D_{k}^{m}=\bigcup_{m \leq t<n} \delta_{t}^{n} D_{m}^{t} D_{k}^{m} \subseteq \bigcup_{m \leq t<n} \delta_{t}^{n} D_{k}^{t} \subseteq \bigcup_{k \leq t<n} \delta_{t}^{n} D_{k}^{t}=D_{k}^{n}
$$

The claim now immediately follows from induction.
(Proof of 3). The D_{k}^{n}-translates of F_{k} are disjoint when $n=k$ and when $n=k+1$ (by (iii)). Assume the D_{k}^{m} translates of F_{k} are disjoint for all $k \leq$ $m<n$. Recall $D_{k}^{n}=\bigcup_{k<m<n} \delta_{m}^{n} D_{k}^{m}$. If $k \leq r<s<n$, then by (iv) we have $\delta_{r}^{n} F_{r} \cap \delta_{s}^{n} F_{s}=\varnothing$. It then follows from (1) that $\delta_{r}^{n} D_{k}^{r} F_{k} \cap \delta_{s}^{n} D_{k}^{s} F_{k}=\varnothing$. Additionally, if $k \leq m<n$ and $\gamma, \psi \in \delta_{m}^{n}$ are distinct, then $\gamma F_{m} \cap \psi F_{m}=\varnothing$ by (iii). Again by (1) we have $\gamma D_{k}^{m} F_{k} \cap \psi D_{k}^{m} F_{k}=\varnothing$. Finally, by assumption the D_{k}^{m}-translates of F_{k} are disjoint for every $k \leq m<n$. So in particular, for each $k \leq m<n$ and $\gamma \in \delta_{m}^{n}$ the γD_{k}^{m}-translates of F_{k} are disjoint. It follows that the D_{k}^{n}-translates of F_{k} must be disjoint. The claim now follows from induction.

We point out that $D_{k}^{n} \subseteq D_{k}^{n+1}$ since $\delta_{n}^{n+1} D_{k}^{n} \subseteq D_{k}^{n+1}$ and $1_{G} \in \delta_{n}^{n+1}$ by (i). For $k \in \mathbb{N}$ we define $\Delta_{k}=\bigcup_{n>k} D_{k}^{n}$. We now check that $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a pre-blueprint.
(Disjoint). Let $n \in \mathbb{N}$ and $\gamma \neq \psi \in \Delta_{n}$. Then for some $m>n \gamma, \psi \in D_{n}^{m}$. From (3) we then have $\gamma F_{n} \cap \psi F_{n}=\varnothing$.
(Coherent). Suppose $k<n, \psi \in \Delta_{k}$, and $\gamma \in \Delta_{n}$ satisfy $\psi F_{k} \cap \gamma F_{n} \neq \varnothing$. Let $m \geq n$ be large enough so that $\psi \in D_{k}^{m}$ and $\gamma \in D_{n}^{m}$. We will prove $\psi \in \gamma D_{k}^{n}$ by induction on m. By (1) this will give us $\psi F_{k} \subseteq \gamma F_{n}$. Clearly, if $m=n$ then $\gamma=1_{G}$ and $\psi \in D_{k}^{n}=\gamma D_{k}^{n}$. Now suppose the claim is true for all $n \leq i<m$. By the definition of D_{k}^{m} and D_{n}^{m}, there are $k \leq s<m$ and $n \leq t<m$ with $\psi \in \delta_{s}^{m} D_{k}^{s}$ and $\gamma \in \delta_{t}^{m} D_{n}^{t}$. However, if $s \neq t$ then by (iv) we have

$$
\psi F_{k} \cap \gamma F_{n} \subseteq \delta_{s}^{m} D_{k}^{s} F_{k} \cap \delta_{t}^{m} D_{n}^{t} F_{n} \subseteq \delta_{s}^{m} F_{s} \cap \delta_{t}^{m} F_{t}=\varnothing
$$

So it must be that $s=t$. Let $\lambda, \sigma \in \delta_{t}^{m}$ be such that $\psi \in \lambda D_{k}^{t}$ and $\gamma \in \sigma D_{n}^{t}$. If $\lambda \neq \sigma$ then by (iii) we would have

$$
\psi F_{k} \cap \gamma F_{n} \subseteq \lambda D_{k}^{t} F_{k} \cap \sigma D_{n}^{t} F_{n} \subseteq \lambda F_{t} \cap \sigma F_{t}=\varnothing
$$

So we must have $\lambda=\sigma$. Then $\lambda^{-1} \psi \in D_{k}^{t} \subseteq \Delta_{k}, \lambda^{-1} \gamma \in D_{n}^{t} \subseteq \Delta_{n}$, and $\lambda^{-1} \psi F_{k} \cap$ $\lambda^{-1} \gamma F_{n} \neq \varnothing$. By the induction hypothesis we conclude $\lambda^{-1} \psi \in \lambda^{-1} \gamma D_{k}^{n}$ and hence $\psi \in \gamma D_{k}^{n}$.
(Uniform). It suffices to show that $\Delta_{k} \cap \gamma F_{n}=\gamma D_{k}^{n}$ for $k<n$ and $\gamma \in \Delta_{n}$. In particular, this will show that D_{k}^{n} has its usual meaning. For sufficiently large m
$\gamma \in D_{n}^{m}$ so $\gamma D_{k}^{n} \subseteq D_{k}^{m} \subseteq \Delta_{k}$ by (2). Since $\gamma D_{k}^{n} F_{k} \subseteq \gamma F_{n}$, we have $\gamma D_{k}^{n} \subseteq \Delta_{k} \cap \gamma F_{n}$. Conversely, if $\psi \in \Delta_{k} \cap \gamma F_{n}$, then in particular $\psi F_{k} \cap \gamma F_{n} \neq \varnothing$ since $1_{G} \in F_{k}$. Under this assumption, it was shown in the previous paragraph that $\psi \in \gamma D_{k}^{n}$.
(Growth). By (ii) $\left|D_{n-1}^{n}\right|=\left|\delta_{n-1}^{n}\right| \geq 3$.
(Centered). By (i) we have $1_{G} \in \delta_{n}^{n+1} \subseteq \Delta_{n}$.
(Directed). Let $n, k \in \mathbb{N}$ and let $\gamma \in \Delta_{n}, \psi \in \Delta_{k}$. Then for large enough m we have $\gamma \in D_{n}^{m}$ and $\psi \in D_{k}^{m}$. So by (1) $\gamma F_{n}, \psi F_{k} \subseteq F_{m}=1_{G} \cdot F_{m}$.

Notice that we provided an explicit construction of the sets $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ satisfying the lemma.

The previous lemma provides one with an easy way to construct many preblueprints. Once F_{n-1} has been defined, one simply chooses sets δ_{k}^{n} for $0 \leq k<n$ satisfying the assumptions of the lemma and then defines $F_{n}=\bigcup_{0 \leq k<n} \delta_{k}^{n} F_{k}$. In the end one will have collections of sets satisfying the assumptions of the lemma.

Pre-blueprints are easy to construct, but a nontrivial question is how to modify these methods to construct a blueprint. By conclusion (ii) of Lemma 5.1.5 we know that it suffices to make each of the Δ_{n}-translates of F_{n} maximally disjoint within G. It can be seen that in the previous lemma $\Delta_{k} F_{k} \subseteq \bigcup_{n \geq k} F_{n}$ for every $k \in \mathbb{N}$. Since the F_{n} 's are increasing (in the construction we have) we need F_{n} to come close to exhausting the entire group as $n \rightarrow \infty$. One way to do this is to fix an increasing sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $\bigcup_{n \in \mathbb{N}} H_{n}=G$ and for each $n \in \mathbb{N}$ try to construct F_{n} so that it comes close to filling up all of H_{n}. A likely belief is that in order to make the pre-blueprint maximally disjoint we need to not only use the H_{n} 's, but also when constructing F_{n} the set δ_{n-1}^{n} should be chosen so that the δ_{n-1}^{n}-translates of F_{n-1} are contained and maximally disjoint within H_{n}, then δ_{n-2}^{n} should be chosen so that the δ_{n-2}^{n}-translates of F_{n-2} are contained and maximally disjoint within the space that remains, and carry this on all the way to δ_{0}^{n}. We refer to this approach as the greedy algorithm. The idea might be that since Δ_{k} is all of the explicit and implicit translates of F_{k} used during the process and since these translates were always chosen to be maximally disjoint within the available space, the $\Delta_{k^{-}}$ translates of F_{k} should be maximally disjoint. However, this is not the case. With the greedy algorithm, the Δ_{0}-translates of F_{0} will definitely by maximally disjoint within G, but this is not necessarily the case for the Δ_{n}-translates of F_{n} for $n>0$ (see Figure 5.6 for an illustration of the potential problem). In fact, the situation can be so bad that for all finite sets $A \subseteq G, \Delta_{1} A \neq G$.

This approach to constructing a blueprint is salvagable with a more careful implementation. Choosing δ_{n-1}^{n} so that its translates of F_{n-1} are contained and maximally disjoint within H_{n} is the right thing to do, but with δ_{n-2}^{n} we should be more careful. It is likely that in order for the Δ_{n-1}-translates of F_{n-1} to be maximally disjoint, a translate of F_{n-1} must be used which intersects H_{n} but is not contained in it (as is the case of Figure 5.6 for $n=2$). If δ_{n-2}^{n}-translates of F_{n-2} fill up too much of the "boundary" of H_{n}, then this will be a problem. Also, we could have the δ_{n-2}^{n}-translates of F_{n-2} fill up a lot of the "boundary" of F_{n}, so the problem could be made worse when constructing F_{n+1}. (Translates of F_{n-2} could again fill up the boundary of H_{n+1}, and just after these F_{n-2} 's could be translates of F_{n} which therefore also have translates of F_{n-2} making up their boundary. The translates of F_{n-2} could therefore fill up an even thicker portion of the boundary of H_{n+1}.) So the idea is we should make sure there is a buffer between the $\delta_{n-2^{-}}^{n}$ translates of F_{n-2} and the complement of H_{n}. By similar reasoning, we should keep

Figure 5.6. A scenario when the greedy algorithm fails to produce a maximally disjoint family. The upper half of the figure illustrates the construction of F_{2} by the greedy algorithm: first fill H_{2} with a maximally disjoint family of translates of F_{1} (generically marked as λF_{1}), and then fill the remaining part of H_{2} with a maximally disjoint family of translates of F_{0} (unmarked). In the lower half of the figure, F_{3} is constructed similarly, starting with a maximally disjoint family of translates of F_{2} in H_{3} (note the translate of F_{2} on the right). Apparently the resulting collection of translates of F_{1} is not maximally disjoint.
the δ_{n-3}^{n}-translates of F_{n-3} away from the boundary of the region where we were placing the δ_{n-2}^{n}-translates of F_{n-2}. We put this idea in place after the following definition.

Definition 5.3.2. Let G be a countably infinite group. A growth sequence is a sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G satisfying:
(i) $1_{G} \in H_{0}$;
(ii) $\bigcup_{n \in \mathbb{N}} H_{n}=G$;
(iii) $H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right) \subseteq H_{n}$ for each $n \geq 1$;
(iv) for each $n \geq 1$, if $\Delta \subseteq H_{n}$ has the property that $g H_{n-1} \cap \Delta H_{n-1} \neq \varnothing$ whenever $g H_{n-1} \subseteq H_{n}$, then $|\Delta| \geq 3$.

It is easy to construct a sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ satisfying (i), (ii), and (iii). Condition (iv) is not difficult to satisfy either, but might not be as obvious. Condition (iv) will be studied more in the next section.

Theorem 5.3.3. Let G be a countably infinite group and let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be a growth sequence. Then there is a maximally disjoint, centered, directed blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ satisfying
(i) $F_{0}=H_{0}$;
(ii) $F_{n} \subseteq H_{n}$ for all $n \geq 1$;
(iii) for all $n \geq 1$ the D_{n-1}^{n}-translates of F_{n-1} are contained and maximally disjoint within H_{n};
(iv) for all $n \geq 1$ and $0 \leq k<n$ the D_{k}^{n}-translates of F_{k} are maximally disjoint within H_{n-1}.
Proof. Set $F_{0}=H_{0}$ so (i) is satisfied. Suppose F_{0} through F_{n-1} have been constructed with each $F_{i} \subseteq H_{i}$. Choose δ_{n-1}^{n} so that $1_{G} \in \delta_{n-1}^{n}$ and the $\delta_{n-1^{-}}^{n}$ translates of F_{n-1} are contained and maximally disjoint within H_{n}. Note that by the definition of a growth sequence we must have $\left|\delta_{n-1}^{n}\right| \geq 3$. Once δ_{n-1}^{n} through δ_{k+1}^{n} have been defined with $0 \leq k<n-1$, let δ_{k}^{n} be such that the δ_{k}^{n}-translates of F_{k} are contained and maximally disjoint within

$$
B_{k}^{n}-\bigcup_{k<m<n} \bigcup_{\gamma \in \delta_{m}^{n}} \gamma F_{m}=B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}
$$

where

$$
B_{k}^{n}=\left\{g \in G:\{g\}\left(F_{k+1}^{-1} F_{k+1}\right)\left(F_{k+2}^{-1} F_{k+2}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq H_{n}\right\}
$$

Note that $H_{n-1} \subseteq B_{k}^{n}$, so $B_{k}^{n} \neq \varnothing$. Finally, define

$$
F_{n}=\bigcup_{0 \leq k<n} \delta_{k}^{n} F_{k}
$$

Clearly $F_{n} \subseteq H_{n}$. See Figure 5.7 for an illustration of the construction of F_{n}.
The F_{n} 's and δ_{k}^{n} 's satisfy the assumptions of Lemma 5.3.1. So if $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is as defined in the proof of that lemma, then $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a centered and directed pre-blueprint. Clearly this pre-blueprint satisfies (i), (ii), and (iii).

The use of the B_{k}^{n} 's is the key ingredient in this proof. Intuitively, they create the buffer we discussed prior to this theorem. In other words, B_{k}^{n} buffers the δ_{k}^{n} translates of F_{k} from "the boundary" of F_{n}. The smaller the value of k, the larger the buffer. If a translate of F_{k} meets F_{n}, then the δ_{t}^{n}-translates of F_{t} for $t<k$ are kept so close to the center of F_{n} that this translate of F_{k} cannot meet $\delta_{t}^{n} F_{t}$ for $t<k$ without also meeting $\delta_{m}^{n} F_{m}$ for some $k \leq m<n$. This is formalized in (1) below.

We proceed to verify the following three facts.
(1) If $n>k, g \in G$, and $g F_{k} \cap F_{n} \neq \varnothing$, then $g F_{k} \cap \delta_{m}^{n} F_{m} \neq \varnothing$ for some $k \leq m<n$;
(2) $g F_{k} \cap F_{n} \neq \varnothing \Longrightarrow g F_{k} \cap D_{k}^{n} F_{k} \neq \varnothing$ for all $g \in G$ and $k \leq n$;
(3) the D_{k}^{n}-translates of F_{k} are maximally disjoint within B_{k}^{n} for all $n, k \in \mathbb{N}$ with $k<n$.
(Proof of 1). It is important to note we require $m \geq k$ as otherwise the claim would be trivial. Let $n>k$ and $g \in G$ satisfy $g F_{k} \cap F_{n} \neq \varnothing$. It suffices to show that if $g F_{k} \cap \delta_{m}^{n} F_{m}=\varnothing$ for all $k<m<n$ then $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$ (since this will validate the claim with $m=k$). As $F_{n}=\bigcup_{0 \leq t<n} \delta_{t}^{n} F_{t}$, there is $0 \leq t \leq k$ with $g F_{k} \cap \delta_{t}^{n} F_{t} \neq \varnothing$. If $t=k$, then we are done. So suppose $t<k$. We have

$$
g F_{k} \subseteq \delta_{t}^{n} F_{t} F_{k}^{-1} F_{k} \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right)\left(F_{t+2}^{-1} F_{t+2}\right) \cdots\left(F_{k}^{-1} F_{k}\right)
$$

Figure 5.7. The construction of F_{n}. The figure shows the first three steps of the construction. In the first step a maximal disjoint family of translates of F_{n-1} within H_{n} is selected. In the second step a maximal disjoint family of translates of F_{n-2} within the available part of B_{n-2}^{n} is selected. In the third step a maximal disjoint family of translates of F_{n-3} (smallest circles without labels in the figure) within the available part of B_{n-3}^{n} is selected. This induction process is repeated n times.

Hence

$$
g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right)
$$

However, by definition $\delta_{t}^{n} F_{t} \subseteq B_{t}^{n}$. So the right hand side of the expression above is contained within H_{n}, and therefore $g F_{k} \subseteq B_{k}^{n}$. Thus

$$
g F_{k} \subseteq B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}
$$

It now follows from the definition of δ_{k}^{n} that $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$. This substantiates our claim.
(Proof of 2). Fix $k \in \mathbb{N}$. If $n=k$ then the claim is clear. Now assume the claim is true for all $k \leq m<n$. Let $g \in G$ satisfy $g F_{k} \cap F_{n} \neq \varnothing$. By (1) we have that $g F_{k} \cap \delta_{m}^{n} F_{m} \neq \varnothing$ for some $k \leq m<n$. Let $\gamma \in \delta_{m}^{n}$ be such that $g F_{k} \cap \gamma F_{m} \neq \varnothing$. Then $\gamma^{-1} g F_{k} \cap F_{m} \neq \varnothing$, so by the induction hypothesis $\gamma^{-1} g F_{k} \cap D_{k}^{m} F_{k} \neq \varnothing$. By the definition of D_{k}^{n} we have $\gamma D_{k}^{m} \subseteq \delta_{m}^{n} D_{k}^{m} \subseteq D_{k}^{n}$. Thus, $g F_{k} \cap D_{k}^{n} F_{k} \neq \varnothing$. The claim now follows from induction.
(Proof of 3). Fix $k<n$ and let $g \in G$ be such that $g F_{k} \subseteq B_{k}^{n}$. We must show $g F_{k} \cap D_{k}^{n} F_{k} \neq \varnothing$. We are done if $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$ since $\delta_{k}^{n}=\delta_{k}^{n} D_{k}^{k} \subseteq D_{k}^{n}$.

So suppose $g F_{k} \cap \delta_{k}^{n} F_{k}=\varnothing$. Recall that in the construction of F_{n} we defined δ_{n-1}^{n} through δ_{k+1}^{n} first and then chose δ_{k}^{n} so that its translates of F_{k} would be maximally disjoint within $B_{k}^{n}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$. Thus we cannot have $g F_{k} \subseteq B_{k}^{n}-$ $\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$ as this would violate the definition of δ_{k}^{n}. Since $g F_{k} \subseteq B_{k}^{n}$, we must have $g F_{k} \cap\left(\bigcup_{k<m<n} \delta_{m}^{n} F_{m}\right) \neq \varnothing$. Let $k<m<n$ and $\gamma \in \delta_{m}^{n}$ be such that $g F_{k} \cap \gamma F_{m} \neq \varnothing$. Then $\gamma^{-1} g F_{k} \cap F_{m} \neq \varnothing$ and thus $\gamma^{-1} g F_{k} \cap D_{k}^{m} F_{k} \neq \varnothing$ by (2). Now we have $\gamma D_{k}^{m} \subseteq \delta_{m}^{n} D_{k}^{m} \subseteq D_{k}^{n}$ so that $g F_{k} \cap D_{k}^{n} F_{k} \neq \varnothing$. This completes the proof of (3).

Considering (3), we have that in particular the D_{k}^{n}-translates of F_{k} are maximally disjoint within (though likely not contained in) H_{n-1} since $H_{n-1} \subseteq B_{k}^{n}$. This establishes (iv). Since $\bigcup_{n \in \mathbb{N}} H_{n}=G$, it follows that the Δ_{k}-translates of F_{k} are maximally disjoint within G. By clause (ii) of Lemma 5.1.5, $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a maximally disjoint blueprint.

The previous theorem motivates the following definition.
Definition 5.3.4. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint and let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be a growth sequence. We say the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is guided by the growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ if the numbered clauses of Theorem 5.3.3 are satisfied. Specifically, if:
(i) $F_{0}=H_{0}$;
(ii) $F_{n} \subseteq H_{n}$ for all $n \geq 1$;
(iii) for all $n \geq 1$ the D_{n-1}^{n}-translates of F_{n-1} are contained and maximally disjoint within H_{n};
(iv) for all $n \geq 1$ and $0 \leq k<n$ the D_{k}^{n}-translates of F_{k} are maximally disjoint within H_{n-1}.

Notice that the blueprint in the previous definition is not required to be centered, maximally disjoint, nor directed. However, we do have the following.

Lemma 5.3.5. Let G be a countably infinite group and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$. Then
(i) If $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is centered, then it is directed and maximally disjoint within G;
(ii) $H_{n} \subseteq F_{n+2} F_{0}^{-1}$ for all $n \in \mathbb{N}$;
(iii) $\psi F_{k} \cap \gamma H_{n} \neq \varnothing \Longrightarrow \psi F_{k} \subseteq \gamma H_{n+1} \Longrightarrow \psi F_{k} \subseteq \gamma F_{n+2}$, for all $n \geq k$, $\psi \in \Delta_{k}$, and $\gamma \in \Delta_{n+2}$;
(iv) $\gamma h \in \Delta_{k} B \Longleftrightarrow \sigma h \in \Delta_{k} B$, for all $n \geq k, h \in H_{n}, \gamma, \sigma \in \Delta_{n+2}$, and $B \subseteq F_{k}$.

Proof. (i). Since the blueprint is centered $D_{k}^{n}=1_{G} D_{k}^{n} \subseteq \Delta_{k}$ by conclusion (i) of Lemma 5.1.4. Therefore Δ_{k} is maximally disjoint within H_{n-1} for all $n>k$ by clause (iv) of Definition 5.3.4. Since $\bigcup_{n>k} H_{n-1}=G$ by clauses (ii) and (iii) of Definition 5.3.2, it follows that the Δ_{k}-translates of F_{k} are maximally disjoint within G. Now let $\psi_{1}, \psi_{2} \in \Delta_{k}$. Then $\psi_{1} F_{k} \cup \psi_{2} F_{k} \subseteq H_{n-1}$ for some $n>k$. So $\psi_{1} F_{k}$ and $\psi_{2} F_{k}$ must meet $D_{k}^{n} F_{k}$ by clause (iv) of Definition 5.3.4. However $D_{k}^{n} \subseteq \Delta_{k}$, so it must be that $\psi_{1}, \psi_{2} \in D_{k}^{n}=1_{G} D_{k}^{n} \subseteq 1_{G} F_{n}$. Thus $\psi_{1} F_{k} \cup \psi_{2} F_{k} \subseteq 1_{G} F_{n}$ and $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is directed.
(ii). If $g \in H_{n}$ then $g F_{0} \subseteq H_{n} H_{0} \subseteq H_{n+1}$. So by clause (iv) of Definition 5.3.4, $g F_{0} \cap D_{0}^{n+2} F_{0} \neq \varnothing$. By conclusion (ii) of Lemma 5.1.4, $D_{0}^{n+2} F_{0} \subseteq F_{n+2}$. Thus $g F_{0} \cap F_{n+2} \neq \varnothing$ and $g \in F_{n+2} F_{0}^{-1}$.
(iii). If $\psi F_{k} \cap \gamma H_{n} \neq \varnothing$ then $\psi F_{k} \subseteq \gamma H_{n} F_{k}^{-1} F_{k} \subseteq \gamma H_{n+1}$. By clause (iv) of Definition 5.3.4, we have $\psi F_{k} \cap \gamma D_{k}^{n+2} F_{k} \neq \varnothing$. However, $\gamma D_{k}^{n+2} \subseteq \Delta_{k}$ by conclusion (i) of Lemma 5.1.4 and so it must be that $\psi \in \gamma D_{k}^{n+2}$. It then follows that $\psi F_{k} \subseteq \gamma D_{k}^{n+2} F_{k} \subseteq \gamma F_{n+2}$ by conclusion (ii) of Lemma 5.1.4.
(iv). Suppose $\psi \in \Delta_{k}$ and $\gamma h \in \psi B$. Then $\gamma h \in \psi F_{k} \cap \gamma H_{n}$, so by (iii) $\psi F_{k} \subseteq \gamma F_{n+2}$ and hence $\psi \in \gamma D_{k}^{n+2}$. It follows $\sigma \gamma^{-1} \psi \in \sigma D_{k}^{n+2} \subseteq \Delta_{k}$ and

$$
\sigma h=\sigma \gamma^{-1} \gamma h \in \sigma \gamma^{-1} \psi B \subseteq \Delta_{k} B
$$

Centered blueprints guided by a growth sequence are centered, maximally disjoint, directed, and on top of this the close relationship between the blueprint and the growth sequence is quite useful as well. These blueprints are the strongest type of blueprints which we know exist for every countably infinite group.

We end this section with a quick application of blueprints. We do not know a proof of this theorem which does not use blueprints. The theorem therefore appears to be nontrivial.

Theorem 5.3.6. Let G be a countable group. Then the set of minimal elements of 2^{G} is dense.

Proof. If G is finite then every element of 2^{G} is minimal. So suppose G is countably infinite and let $1_{G}=g_{0}, g_{1}, g_{2}, \ldots$ be the enumeration of G used in defining the metric d on 2^{G}. Let $x \in 2^{G}$ and let $\epsilon>0$. Let $r \in \mathbb{N}$ be such that $2^{-r}<\epsilon$, and set $A=\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a directed maximally disjoint blueprint with $A \subseteq F_{0}$ (use Theorem 5.3.3).

Define $y \in 2^{G}$ by

$$
y(g)= \begin{cases}x(a) & \text { if } \gamma \in \Delta_{0}, a \in A, \text { and } g=\gamma a \\ 0 & \text { otherwise }\end{cases}
$$

Since the Δ_{0}-translates of F_{0} are disjoint and $A \subseteq F_{0}, y$ is well defined. Also, we have $d\left(x, \gamma^{-1} \cdot y\right)<\epsilon$ for any $\gamma \in \Delta_{0}$. It remains to show that y is minimal (in which case $\gamma^{-1} \cdot y$ is minimal as well). Let $B \subseteq G$ be finite. By conclusion (vi) of Lemma 5.1.5 there is a finite $T \subseteq G$ so that for any $g \in G$ there is $t \in T$ such that

$$
\forall b \in B A^{-1}\left(g t b \in \Delta_{0} \Longleftrightarrow b \in \Delta_{0}\right)
$$

Let $g \in G$ be arbitrary, and let $t \in T$ be such that $g t b \in \Delta_{0}$ if and only if $b \in \Delta_{0}$ for every $b \in B A^{-1}$. If $b \in B$ and $g t b=\gamma a$ for some $\gamma \in \Delta_{0}$ and $a \in A$, then $g t b a^{-1}=\gamma \in \Delta_{0}$. Hence $b a^{-1} \in \Delta_{0}$ and $b \in \Delta_{0} a$. Similarly, if $b \in \Delta_{0} a$ then $g t b \in \Delta_{0} a$. It follows that $y(g t b)=y(b)$ for all $b \in B$. Thus y is minimal by Lemma 2.4.5.

5.4. Growth of blueprints

We will soon see that fundamental functions are highly useful. In fact, all forthcoming results rely on these functions. Recall that canonical functions are only partial functions. Their "free points" are precisely $\Delta_{n} \Lambda_{n} b_{n-1}$ for $n \geq 1$. In order for these functions to be useful, we need to be able to ensure that they have many free points. In other words, we want to be able to make $\left|\Lambda_{n}\right|=\left|D_{n-1}^{n}\right|-3$ large for every $n \geq 1$. In this section we will achieve this goal in the best possible
way. Specifically, we will show that each Λ_{n} can be made as large as possible relative to the size of F_{n}.

Let G be a group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. Define

$$
\rho(B ; A)=\min \{|D|: D \subseteq B \text { and } \forall g \in B(g A \subseteq B \Rightarrow g A \cap D A \neq \varnothing)\}
$$

This is well defined since B is finite. We tailored the definition of ρ so that it would have the following properties.

Lemma 5.4.1. Let $A, B \subseteq G$ be finite with $1_{G} \in A$.
(i) If $\Delta \subseteq B$ and the Δ-translates of A are contained and maximally disjoint within B, then $|\Delta| \geq \rho(B ; A)$;
(ii) If $1_{G} \in A^{\prime} \subseteq A$ then $\rho\left(B ; A^{\prime}\right) \geq \rho(B ; A)$;
(iii) If $C \subseteq G$ is finite and $C A^{-1} A \subseteq B$ then $\rho(B ; A) \leq \rho(B-C ; A)+$ $\rho\left(C A^{-1} A ; A\right)$;

Proof. For finite $A^{\prime}, B^{\prime} \subseteq G$ with $1_{G} \in A^{\prime}$ define

$$
S\left(B^{\prime} ; A^{\prime}\right)=\left\{D: D \subseteq B^{\prime} \text { and } \forall g \in B^{\prime}\left(g A^{\prime} \subseteq B^{\prime} \Rightarrow g A^{\prime} \cap D A^{\prime} \neq \varnothing\right)\right\}
$$

So $\rho\left(B^{\prime} ; A^{\prime}\right)=\min \left\{|D|: D \in S\left(B^{\prime} ; A^{\prime}\right)\right\}$.
(i). If $g \in B$ and $g A \subseteq B$, then since the Δ-translates of A are maximally disjoint within B we have $g A \cap \Delta A \neq \varnothing$. Since the Δ-translates of A are contained in B and $1_{G} \in A$ we have $\Delta \subseteq B$. Therefore $\Delta \in S(B ; A)$ so we have $|\Delta| \geq \rho(B ; A)$.
(ii). Let $D \in S\left(B ; A^{\prime}\right)$ be such that $|D|=\rho\left(B ; A^{\prime}\right)$. If $g \in B$ and $g A \subseteq B$ then $g A^{\prime} \subseteq g A \subseteq B$ so $g A^{\prime} \cap D A^{\prime} \neq \varnothing$. So

$$
\varnothing \neq g A^{\prime} \cap D A^{\prime} \subseteq g A \cap D A
$$

Therefore $D \in S(B ; A)$ and $\rho\left(B ; A^{\prime}\right)=|D| \geq \rho(B ; A)$.
(iii). Let $D_{1} \in S(B-C ; A)$ and $D_{2} \in S\left(C A^{-1} A ; A\right)$ be such that $\left|D_{1}\right|=$ $\rho(B-C ; A)$ and $\left|D_{2}\right|=\rho\left(C A^{-1} A ; A\right)$. Set $D=D_{1} \cup D_{2}$. Then $D \subseteq B$. Let $g \in B$ be such that $g A \subseteq B$. We proceed by cases. Case 1: $g A \subseteq B-C$. Then we must have $g A \cap D_{1} A \neq \varnothing$. In particular, $g A \cap D A \neq \varnothing$. Case 2: $g A \cap C \neq \varnothing$. Then $g A \subseteq C A^{-1} A$, so $g A \cap D_{2} A \neq \varnothing$ and hence $g A \cap D A \neq \varnothing$. Therefore $D \in S(B ; A)$. So we have

$$
\rho(B ; A) \leq|D| \leq \rho(B-C ; A)+\rho\left(C A^{-1} A ; A\right)
$$

Note that clause (iv) of Definition 5.3 .2 is equivalent to $\rho\left(H_{n} ; H_{n-1}\right) \geq 3$. Clauses (i) and (ii) listed in the lemmma above were implicitly used in verifying the growth property of the blueprint constructed in Theorem 5.3.3.

Lemma 5.4.2. Let G be an infinite group, and let $A, B \subseteq G$ be finite with $1_{G} \in A$. For any $\epsilon>0$ there exists a finite $C \subseteq G$ containing B such that $\rho(C ; A)>\frac{|C|}{|A|}(1-\epsilon)$.

Proof. Let $\Delta \subseteq G$ be countably infinite and such that the Δ-translates of $A A^{-1}$ are disjoint and $\Delta A A^{-1} A \cap B=\varnothing$. Let $\lambda_{1}, \lambda_{2}, \ldots$ be an enumeration of Δ. For each $n \geq 1$, define

$$
B_{n}=B \cup\left(\bigcup_{1 \leq k \leq n} \lambda_{k} A\right)
$$

Fix $n \geq 1$, and let $D \subseteq B_{n}$ be such that $g A \cap D A \neq \varnothing$ whenever $g \in B_{n}$ with $g A \subseteq B_{n}$. It follows that for each $1 \leq i \leq n$ there is $d_{i} \in D$ with $d_{i} A \cap \lambda_{i} A \neq \varnothing$. Then

$$
d_{i} \in \lambda_{i} A A^{-1}
$$

Since the Δ-translates of $A A^{-1}$ are disjoint, the d_{i} 's are all distinct. Additionally, $d_{i} A \cap B \subseteq \Delta A A^{-1} A \cap B=\varnothing$ so that $\rho\left(B_{n} ; A\right)-n \geq \rho(B ; A)$. Therefore we have

$$
\rho\left(B_{n} ; A\right) \frac{|A|}{\left|B_{n}\right|} \geq \frac{n|A|+\rho(B ; A)|A|}{n|A|+|B|} .
$$

Clearly as n goes to infinity the fraction on the right goes to 1 . So there is $n \geq 1$ with $\rho\left(B_{n} ; A\right) \frac{|A|}{\left|B_{n}\right|}>1-\epsilon$ and $\rho\left(B_{n} ; A\right)>\frac{\left|B_{n}\right|}{|A|}(1-\epsilon)$. Setting $C=B_{n}$ completes the proof.

Definition 5.4.3. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to have subexponential growth if for every $u>1$ there is $N \in \mathbb{N}$ so that $f(n)<u^{n}$ for all $n \geq N$. Similarly, $f: \mathbb{N} \rightarrow \mathbb{N}$ is said to have polynomial growth if there are $a, b, d \in \mathbb{N}$ so that for all $n \in \mathbb{N}$ we have $f(n) \leq a \cdot n^{d}+b$.

Lemma 5.4.4. If $f, g: \mathbb{N} \rightarrow \mathbb{N}$ have subexponential growth, then their product has subexponential growth and the function $h: \mathbb{N} \rightarrow \mathbb{N}$ defined by $h(n)=\max \{f(k)$: $k \leq n\}$ has subexponential growth.

Proof. If $u>1$, then there is $N \in \mathbb{N}$ with $f(n)<(\sqrt{u})^{n}$ and $g(n)<(\sqrt{u})^{n}$ for all $n \geq N$. It follows $f(n) \cdot g(n)<u^{n}$ for all $n \geq N$ so $f \cdot g$ has subexponential growth. If the function h is bounded, then the claim is trivial. So suppose h is not bounded. Let $u>1$ and let $N \in \mathbb{N}$ be such that $f(n)<u^{n}$ for all $n \geq N$. Since h is not bounded, there is $M>N$ with $h(M)>h(N)$. It follows that for every $n \geq M$ there is $N<k(n) \leq n$ with $h(n)=f(k(n))$. Thus, for $n \geq M$ we have $h(n)=f(k(n))<u^{k(n)} \leq u^{n}$. We conclude h has subexponential growth.

Lemma 5.4.5. Let G be an infinite group, and let $A, B \subseteq G$ be finite with $1_{G} \in A$. If $f: \mathbb{N} \rightarrow \mathbb{N}$ has subexponential growth, then there exists a finite $C \subseteq G$ containing B such that $2^{\rho(C ; A)}>f(|C|)$.

Proof. Let $N \in \mathbb{N}$ be such that $2^{\frac{n}{2|A|}}>f(n)$ for all $n \geq N$. Let $B^{\prime} \subseteq G$ be a finite set containing B with $\left|B^{\prime}\right| \geq N$. By Lemma 5.4.2 there exists a finite $C \subseteq G$ containing B^{\prime} with $\rho(C ; A)>\frac{1}{2} \frac{\mid \overline{C \mid}}{|A|}$. Then $C \supseteq B$ and as $|C|$ is at least N,

$$
2^{\rho(C ; A)}>2^{\frac{|C|}{2|A|}}>f(|C|)
$$

Definition 5.4.6. Fix a countably infinite group G, and let P be a property of blueprints on G. We say the blueprints with property P can have any prescribed growth (or can have any prescribed polynomial growth) if for any sequence $\left(p_{n}\right)_{n \geq 1}$ of functions of subexponential growth (respectively polynomial growth) there is a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ with property P satisfying for each $n \geq 1$

$$
\left|\Lambda_{n}\right| \geq \log _{2} \max \left(p_{n}\left(\left|F_{n}\right|\right), p_{n}\left(\left|B_{n}\right|\right)\right)
$$

where B_{n} is a finite set satisfying $\Delta_{n} B_{n} B_{n}^{-1}=G$. Similarly, if P is a property of fundamental (or canonical) functions, then we say the collection of fundamental (canonical) functions with property P can have any prescribed growth (or can
have any prescribed polynomial growth) if for any sequence $\left(p_{n}\right)_{n \geq 1}$ of functions of subexponential growth (respectively polynomial growth) there is a function c fundamental (canonical) with respect to a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ such that c has property P and for each $n \geq 1$

$$
\left|\Theta_{n}\right| \geq \log _{2} \max \left(p_{n}\left(\left|F_{n}\right|\right), p_{n}\left(\left|B_{n}\right|\right)\right)
$$

where B_{n} is a finite set satisfying $\Delta_{n} B_{n} B_{n}^{-1}=G$.
In the previous definition, requiring $\Delta_{n} B_{n} B_{n}^{-1}=G$ instead of $\Delta_{n} B_{n}=G$ is a significant detail. The reason is that it is possible for $\left|B_{n} B_{n}^{-1}\right|=\left|B_{n}\right|^{2}$ and therefore $p_{n}\left(\left|B_{n} B_{n}^{-1}\right|\right)=p_{n}\left(\left|B_{n}\right|^{2}\right)$. However, even though p_{n} has subexponential growth, the function q_{n} defined by $q_{n}(k)=p_{n}\left(k^{2}\right)$ may not (for example $p_{n}(k)=2^{\sqrt{k}}$). There is nothing formally wrong with this, but this is the reason why our proofs do not work if the above definition is changed so that $\Delta_{n} B_{n}=G$.

LEMMA 5.4.7. Let G be a countably infinite group. If $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth and $1_{G} \in A \subseteq G$ is finite, then there exists a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $H_{0}=A$ and $\rho\left(H_{n} ; H_{n-1}\right) \geq \log _{2} p_{n}\left(\left|H_{n}\right|\right)$ for all $n \geq 1$.

Proof. Fix a sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ with $A_{0}=A$ and $\bigcup_{n \in \mathbb{N}} A_{n}=G$. Set $H_{0}=$ $A_{0}=A$. Now assume H_{0} through H_{n-1} have been constructed for $n>0$. Apply the previous lemma to find a finite $H_{n} \subseteq G$ satisfying

$$
H_{n} \supseteq A_{n} \cup H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right)
$$

and $\rho\left(H_{n} ; H_{n-1}\right) \geq \max \left(\log _{2} p_{n}\left(\left|H_{n}\right|\right), 3\right)$. It is easily checked that $\left(H_{n}\right)_{n \in \mathbb{N}}$ is a growth sequence with the desired property.

Corollary 5.4.8. Let G be a countably infinite group and let $1_{G} \in A \subseteq G$ be finite. The blueprints $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ on G which are centered, guided by a growth sequence, and have $A \subseteq F_{0}$ can have any prescribed growth. In particular, the blueprints on G which are centered, directed, maximally disjoint, and have $A \subseteq F_{0}$ can have any prescribed growth.

Proof. Let $\left(p_{n}\right)_{n \geq 1}$ be a sequence of functions of subexponential growth. By Lemma 5.4.4, we may assume that each p_{n} is nondecreasing. For $n \geq 1$ and $k \in \mathbb{N}$, define $q_{n}(k)=8 \cdot p_{n}(k)$. Then $\left(q_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Lemma 5.4.7 there is a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $H_{0}=A$ and $\rho\left(H_{n} ; H_{n-1}\right) \geq \log _{2} q_{n}\left(\left|H_{n}\right|\right)$ for all $n \geq 1$. Apply Theorem 5.3.3 to get a maximally disjoint, centered, directed, blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ guided by $\left(H_{n}\right)_{n \in \mathbb{N}}$. Then $A=$ F_{0}. Set $B_{n}=F_{n}$ and notice that $\Delta_{n} B_{n} B_{n}^{-1}=G$. Fix $n \geq 1$. By clause (iii) of Theorem 5.3.3 and by clause (i) of Lemma 5.4.1 we have

$$
\left|D_{n-1}^{n}\right| \geq \rho\left(H_{n} ; F_{n-1}\right)
$$

By clause (ii) of Lemma 5.4.1 we have

$$
\rho\left(H_{n} ; F_{n-1}\right) \geq \rho\left(H_{n} ; H_{n-1}\right) .
$$

Therefore

$$
\begin{gathered}
\left|\Lambda_{n}\right|=\left|D_{n-1}^{n}\right|-3 \geq-3+\log _{2} q_{n}\left(\left|H_{n}\right|\right) \\
=\log _{2} p_{n}\left(\left|H_{n}\right|\right) \geq \log _{2} \max \left(p_{n}\left(\left|F_{n}\right|\right), p_{n}\left(\left|B_{n}\right|\right)\right) .
\end{gathered}
$$

Corollary 5.4.9. Let G be a countably infinite group, let $1_{G} \in A \subseteq G$ be finite, and let $R: A \rightarrow 2$ be a locally recognizable function. The functions which are canonical with respect to a centered blueprint guided by a growth sequence and which are also compatible with R can have any prescribed growth. In particular, the collection of all fundamental functions can have any prescribed growth.

Proof. If $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint and $c \in 2 \subseteq G$ is canonical with respect to this blueprint, then for each $n \geq 1 \Theta_{n}=\Lambda_{n}$. Therefore the claim immediately follows from Corollary 5.4.8 and Theorem 5.2.5.

CHAPTER 6

Basic Applications of the Fundamental Method

In this chapter, we finally get to reap some of the benefits of all the hard work which went into the previous chapter. In this chapter we present quick and easy yet satisfying applications of the tools we have developed. This chapter places emphasis on the wide variety of constructions, properties, and proofs which can be created using the tools from the previous chapter. Each section focuses on a specific object from the previous chapter and relies primarily on this object to prove an important and nontrivial result. All of our work will be in the spirit of a general and recurrent procedure in this paper which we refer to as the fundamental method. The fundamental method refers to the coordinated use of functions of subexponential growth, locally recognizable functions, blueprints, and fundamental functions in achieving a goal of constructing certain special elements of 2^{G}. This chapter will be a first step in convincing the reader that the fundamental method provides tremendous control in constructing special elements of 2^{G}.

6.1. The uniform 2 -coloring property

This section focuses on the use of functions of subexponential growth. We begin by proving that every countably infinite group has a 2 -coloring. Shortly afterwards we strengthen this to show that all countably infinite groups have the uniform 2-coloring property.

Theorem 6.1.1. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and for each $n \geq 1$ let B_{n} be finite with $\Delta_{n} B_{n} B_{n}^{-1}=G$. If $c \in 2^{\subseteq G}$ is fundamental with respect to this blueprint and $\left|\Theta_{n}\right| \geq \log _{2}\left(2\left|B_{n}\right|^{4}+1\right)$ for each $n \geq 1$, then c can be extended to a function c^{\prime} with $\left|\Theta_{n}\left(c^{\prime}\right)\right|>\left|\Theta_{n}(c)\right|-\log _{2}\left(2\left|B_{n}\right|^{4}+\right.$ $1)-1$ such that every $x \in 2^{G}$ extending c^{\prime} is a 2 -coloring. In particular, every countable group has a 2-coloring.

Proof. For each $i \geq 1$, define $\mathbb{B}_{i}: \mathbb{N} \rightarrow\{0,1\}$ so that $\mathbb{B}_{i}(k)$ is the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $\mathbb{B}_{i}(k)=0$ when $k<2^{i-1}$. Also, for each $n \geq 1$, let $s(n)$ be the smallest integer greater than or equal to $\log _{2}\left(2\left|B_{n}\right|^{4}+1\right)$ and fix any distinct $\theta_{1}^{n}, \theta_{2}^{n}, \ldots, \theta_{s(n)}^{n} \in \Theta_{n}$.

Fix an enumeration s_{1}, s_{2}, \ldots of the nonidentity elements of G. For each $n \geq 1$, let Γ_{n} be the graph with vertex set Δ_{n} and edge relation given by

$$
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow \gamma^{-1} \psi \in B_{n} B_{n}^{-1} s_{n} B_{n} B_{n}^{-1} \text { or } \psi^{-1} \gamma \in B_{n} B_{n}^{-1} s_{n} B_{n} B_{n}^{-1}
$$

for distinct $\gamma, \psi \in \Delta_{n}$. Then $\operatorname{deg}_{\Gamma_{n}}(\gamma) \leq 2\left|B_{n}\right|^{4}$ for each $\gamma \in \Delta_{n}$. We can therefore find, via the usual greedy algorithm, a graph-theoretic $\left(2\left|B_{n}\right|^{4}+1\right)$-coloring of Γ_{n}, say $\mu_{n}: \Delta_{n} \rightarrow\left\{0,1, \ldots, 2\left|B_{n}\right|^{4}\right\}$.

Define $c^{\prime} \supseteq c$ by setting

$$
c^{\prime}\left(\gamma \theta_{i}^{n} b_{n-1}\right)=\mathbb{B}_{i}\left(\mu_{n}(\gamma)\right)
$$

for each $n \geq 1, \gamma \in \Delta_{n}$, and $1 \leq i \leq s(n)$. Since $2^{s(n)} \geq 2\left|B_{n}\right|^{4}+1$, all integers 0 through $2\left|B_{n}\right|^{4}$ can be written in binary using $s(n)$ digits. Thus no information is lost between the μ_{n} 's and c^{\prime}. Setting $\Theta_{n}\left(c^{\prime}\right)=\Theta_{n}(c)-\left\{\theta_{1}^{n}, \ldots, \theta_{s(n)}^{n}\right\}$ we clearly have that c^{\prime} is fundamental and

$$
\left|\Theta_{n}\left(c^{\prime}\right)\right|=\left|\Theta_{n}(c)\right|-s(n)>\left|\Theta_{n}(c)\right|-\log _{2}\left(2\left|B_{n}\right|^{4}+1\right)-1
$$

Fix $1_{G} \neq s \in G$. Then $s=s_{n}$ for some $n \geq 1$. Let V be the test region for the Δ_{n} membership test admitted by c. Set $T=B_{n} B_{n}^{-1}\left(V \cup \Theta_{n}(c) b_{n-1}\right)$. Now let $x \in 2^{G}$ be an arbitrary extension of c^{\prime}, and let $g \in G$ be arbitrary. Since $\Delta_{n} B_{n} B_{n}^{-1}=G$, there is $b \in B_{n} B_{n}^{-1}$ with $g b=\gamma \in \Delta_{n}$. We proceed by cases.

Case 1: $g s b \notin \Delta_{n}$. Since $x \supseteq c, g b \in \Delta_{n}$, and $g s b \notin \Delta_{n}$, there is $v \in V$ such that $x(g b v) \neq x(g s b v)$. This completes this case since $b v \in T$.

Case 2: $g s b \in \Delta_{n}$. Then

$$
(g b)^{-1}(g s b)=b^{-1} s b \in B_{n} B_{n}^{-1} s B_{n} B_{n}^{-1}
$$

Thus $(g b, g s b) \in E\left(\Gamma_{n}\right)$ so $\mu_{n}(g b) \neq \mu_{n}(g s b)$. Consequently, there is $1 \leq i \leq s(n)$ with $x\left(g b \theta_{i}^{n} b_{n-1}\right) \neq x\left(g s b \theta_{i}^{n} b_{n-1}\right)$. This completes this case since $b \theta_{i}^{n} b_{n-1} \in T$. We conclude x is a 2 -coloring.

Now we show that every countable group has a 2 -coloring. As mentioned previously, this is immediate for finite groups. So suppose G is a countably infinite group. Define $p_{n}(k)=2 k^{4}+1$ for each $n \geq 1$ and $k \in \mathbb{N}$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Corollary 5.4.9, there is a fundamental function $c \in 2 \subseteq G$ with $\left|\Theta_{n}\right| \geq \log _{2} p_{n}\left(\left|B_{n}\right|\right)$ for all $n \geq 1$. Applying the above construction leads to the conclusion that there is a 2 -coloring on G.

Notice that this proof shows that for every $1_{G} \neq s \in G$ there is a finite set $T \subseteq G$ so that for all $x \in 2^{G}$ extending c^{\prime} and all $g \in G$ we have

$$
\exists t \in T x(g s t) \neq x(g t)
$$

(the main point here is that T did not depend on the extension $x \in 2^{G}$). This is actually a general phenomenon as the following proposition shows.

Proposition 6.1.2. Let G be a countably infinite group, and let $c \in 2^{\subseteq}$ have the property that every $x \in 2^{G}$ extending c is a 2 -coloring. Then
(i) for every nonidentity $s \in G$ there is a finite $T \subseteq G$ so that for all $g \in G$ there is $t \in T$ with $g t, g s t \in \operatorname{dom}(c)$ and $c(g t) \neq c(g s t)$;
(ii) if $E(c)=\left\{x \in 2^{G}: c \subseteq x\right\}$ is the set of full extensions of c, then $\overline{G \cdot E(c)}$ is a free subflow of 2^{G}.
Proof. (i). Towards a contradiction, suppose there is a nonidentity $s \in G$ such that no finite set T exists satisfying (i). First suppose that there is $g \in G$ such that for all $h \in G c(g h)=c(g s h)$ whenever $g h, g h s \in \operatorname{dom}(c)$. Define $x \in 2^{G}$ by setting $x(g h)=c(g s h)$ when $g s h \in \operatorname{dom}(c), x(g s h)=c(g h)$ when $g h \in \operatorname{dom}(c)$, and $x(g h)=x(g s h)=0$ if $g h, g s h \notin \operatorname{dom}(c)$. Then x is well defined and $s^{-1} \cdot\left(g^{-1} \cdot x\right)=$ $g^{-1} \cdot x$. This is a contradiction since x extends c and hence must be a 2 -coloring, in particular must be aperiodic. Now suppose that for every $g \in G$ there is $h \in G$ with $g h, g s h \in \operatorname{dom}(c)$ and $c(g h) \neq c(g s h)$. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of finite subsets of G with $\bigcup_{n \in \mathbb{N}} A_{n}=G$. For each $n \in \mathbb{N}, s$ and A_{n} do not satisfy (i) so there is $g_{n} \in G$ with $c\left(g_{n} a\right)=c\left(g_{n} s a\right)$ whenever $a \in A_{n}$ and $g_{n} a, g_{n} s a \in \operatorname{dom}(c)$. The set $\left\{g_{n}: n \in \mathbb{N}\right\}$ cannot be finite as otherwise we would be in the first case
treated above. Therefore, since the A_{n} 's are increasing we can replace the g_{n} 's with a subsequence if necessary and assume that for $n \neq k \in \mathbb{N}$

$$
\left(g_{n} A_{n} \cup g_{n} s A_{n}\right) \cap\left(g_{k} A_{k} \cup g_{k} s A_{k}\right)=\varnothing .
$$

Define $y \in 2 \subseteq G$ as follows. If $n \in \mathbb{N}$ and $a \in A_{n}$, set $y\left(g_{n} a\right)=c\left(g_{n} s a\right)$ if $g_{n} s a \in$ $\operatorname{dom}(c)$ and $y\left(g_{n} s a\right)=c\left(g_{n} a\right)$ if $g_{n} a \in \operatorname{dom}(c)$. Then $y(h)=c(h)$ whenever $h \in$ $\operatorname{dom}(y) \cap \operatorname{dom}(c)$. So $y \cup c \in 2^{\subseteq G}$. Define $x \in 2^{G}$ by setting $x(h)=(y \cup c)(h)$ if $h \in \operatorname{dom}(y) \cup \operatorname{dom}(c)$ and $x(h)=0$ otherwise. For any $h \in G$ there is $n \in \mathbb{N}$ with $h \in A_{n}$ and hence

$$
\left[s^{-1} \cdot\left(g_{n}^{-1} \cdot x\right)\right](h)=x\left(g_{n} s h\right)=x\left(g_{n} h\right)=\left(g_{n}^{-1} \cdot x\right)(h) .
$$

Since the action of G on 2^{G} is continuous, it follows that if $z \in 2^{G}$ is any limit point of $\left(g_{n}^{-1} \cdot x\right)_{n \in \mathbb{N}}$ then $s^{-1} \cdot z=z$. However, this is a contradiction since x extends c and hence must be a 2 -coloring.
(ii). Fix a nonidentity $s \in G$. Let $T \subseteq G$ be as in (i). Let $x \in E(c)$, let $g \in G$, and let $y=g \cdot x \in G \cdot E(c)$. Then by (i) there is $t \in T$ with

$$
y(t)=(g \cdot x)(t)=x\left(g^{-1} t\right) \neq x\left(g^{-1} s t\right)=(g \cdot x)(s t)=y(s t)=\left(s^{-1} \cdot y\right)(t)
$$

By considering the metric d on 2^{G}, it follows that there is an $\epsilon>0$ depending only on s such that for all $y \in G \cdot E(c) d\left(y, s^{-1} \cdot y\right)>\epsilon$. By the continuity of the action of G on 2^{G} it follows that if $z \in \overline{G \cdot E(c)}$ then $d\left(z, s^{-1} \cdot z\right) \geq \epsilon$. In particular, $s^{-1} \cdot z \neq z$. Since $s \in G-\left\{1_{G}\right\}$ was arbitrary, we conclude that $\overline{G \cdot E(c)}$ is a free subflow.

Proposition 6.1.3. Let G be a countably infinite group, $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ a blueprint, and $c \in 2 \subseteq G$ a fundamental function with $\Theta_{n} \neq \varnothing$ for all $n \geq 1$. Then c can be extended to a function $x \in 2^{G}$ with the property that for every nonidentity $s \in G$ there are infinitely many $g \in G$ with $x(g) \neq x(s g)$.

Proof. Fix any $\theta_{n} \in \Theta_{n}$ for each $n \geq 1$. Enumerate $G-\left\{1_{G}\right\}$ as s_{1}, s_{2}, \ldots so that every nonidentity group element is enumerated infinitely many times. Inductively define an increasing sequence k_{n} of natural numbers as follows. For $n=1$ let $k_{1}=1$. In general suppose $k_{m}, 1 \leq m \leq n$, have all been defined. Then let $k_{n+1}>k_{n}$ be the least such that

$$
\theta_{k_{n+1}} b_{k_{n+1}-1}, s_{n+1} \theta_{k_{n+1}} b_{k_{n+1}-1} \notin\left\{\theta_{k_{m}} b_{k_{m}-1}, s_{m} \theta_{k_{m}} b_{k_{m}-1}: 1 \leq m \leq n\right\}
$$

Such k_{n+1} exists since the set of all $\theta_{n} b_{n-1}, n \geq 1$, is infinite. This finishes the definition of all k_{n}. As a result, the elements

$$
\theta_{k_{1}} b_{k_{1}-1}, s_{1} \theta_{k_{1}} b_{k_{1}-1}, \theta_{k_{2}} b_{k_{2}-1}, s_{2} \theta_{k_{2}} b_{k_{2}-1}, \ldots, \theta_{k_{n}} b_{k_{n}-1}, s_{n} \theta_{k_{n}} b_{k_{n}-1}, \ldots
$$

are all distinct.
Since $\theta_{k_{n}} b_{k_{n}-1} \notin \operatorname{dom}(c)$ for all $n \geq 1$, we can clearly extend c to an $x \in 2^{G}$ such that for all $n \geq 1, x\left(s_{n} \theta_{k_{n}} b_{k_{n}-1}\right) \neq x\left(\theta_{k_{n}} b_{k_{n}-1}\right)$.

An important theorem will be drawn from the previous proposition momentarily, but first we consider orthogonality.

Proposition 6.1.4. Let G be a countably infinite group, and let $c \in 2^{\subseteq} G$ be fundamental with $\Theta_{n} \neq \varnothing$ for each $n \geq 1$. Then for each $\tau \in 2^{\mathbb{N}}$ there is a fundamental $c_{\tau} \supseteq c$ with $\left|\Theta_{n}\left(c_{\tau}\right)\right|=\left|\Theta_{n}(c)\right|-1$ for each $n \geq 1$ and with the property that if $\tau \neq \sigma \in 2^{\mathbb{N}}, x, y \in 2^{G}, x \supseteq c_{\tau}$, and $y \supseteq c_{\sigma}$, then x and y are
orthogonal. Additionally, for each $\tau \in 2^{\mathbb{N}}$ there is $x_{\tau} \in 2^{G}$ extending c_{τ} such that $\left\{x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ is a perfect set.

Proof. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be the blueprint corresponding to c. For each $n \geq 1$ pick $\theta_{n} \in \Theta_{n}$. For $\tau \in 2^{\mathbb{N}}$, we define $c_{\tau} \supseteq c$ by setting

$$
c_{\tau}\left(\gamma \theta_{n} b_{n-1}\right)=\tau(n-1)
$$

for each $n \geq 1$ and $\gamma \in \Delta_{n}$. If we define $x_{\tau} \supseteq c_{\tau}$ by letting x_{τ} be zero on $G-\operatorname{dom}\left(c_{\tau}\right)$, then the map $\tau \mapsto x_{\tau}$ is one-to-one and continuous. Therefore $\left\{x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ is a perfect set.

Let B_{n} be finite with $\Delta_{n} B_{n} B_{n}^{-1}=G$ and let V_{n} be the test region for the Δ_{n} membership test admitted by c. Set $T_{n}=B_{n} B_{n}^{-1}\left(V_{n} \cup\left\{\theta_{n} b_{n-1}\right\}\right)$. Now suppose $\tau \neq \sigma \in 2^{\mathbb{N}}$, and let $n \geq 1$ satisfy $\tau(n-1) \neq \sigma(n-1)$. Let $x, y \in 2^{G}$ with $x \supseteq c_{\tau}$ and $y \supseteq c_{\sigma}$, and let $g_{1}, g_{2} \in G$ be arbitrary. We will show that there is $t \in T_{n}$ with $x\left(g_{1} t\right) \neq y\left(g_{2} t\right)$. There is $b \in B_{n} B_{n}^{-1}$ with $g_{1} b \in \Delta_{n}$. We proceed by cases.

Case 1: $g_{2} b \notin \Delta_{n}$. Since $g_{1} b \in \Delta_{n}$ and $g_{2} b \notin \Delta_{n}$, there is $v \in V_{n}$ with $x\left(g_{1} b v\right) \neq y\left(g_{2} b v\right)$. This completes this case since $b v \in T_{n}$.

Case 2: $g_{2} b \in \Delta_{n}$. Then $x\left(g_{1} b \theta_{n} b_{n-1}\right)=\tau(n-1) \neq \sigma(n-1)=y\left(g_{2} b \theta_{n} b_{n-1}\right)$. This completes this case as $b \theta_{n} b_{n-1} \in T_{n}$.

Notice that in the previous proof, the set witnessing the orthogonality, T_{n}, depended only on the $n \geq 1$ satisfying $\tau(n-1) \neq \sigma(n-1)$. We will need this fact shortly.

The fact that functions of subexponential growth are closed under multiplication together with the abstract nature of the definition of fundamental functions allows one to easily stack constructions on top of one another, as the next three results demonstrate.

Theorem 6.1.5. Every countably infinite group has a strong 2-coloring.
Proof. For $n \geq 1$ and $k \in \mathbb{N}$ define $p_{n}(k)=2 \cdot 2 k^{4}$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Corollary 5.4.9, there is a fundamental $c \in 2^{\subseteq G}$ with

$$
\left|\Theta_{n}\right| \geq \log _{2}\left(4\left|B_{n}\right|^{4}+2\right)=1+\log _{2}\left(2\left|B_{n}\right|^{4}+1\right)
$$

for each $n \geq 1$, where B_{n} satisfies $\Delta_{n} B_{n} B_{n}^{-1}=G$. Now apply Theorem 6.1.1 and Proposition 6.1.3, in that order.

Theorem 6.1.6. If G is a countably infinite group, then G has the uniform 2-coloring property. In particular, there is a perfect set of pairwise orthogonal 2colorings on G.

Proof. The proof is nearly identical to that of the previous theorem. The only difference is to apply Theorem 6.1.1 and Proposition 6.1.4, in that order. This immediately shows that there is a perfect set of pairwise orthogonal 2-colorings on G. The collection of functions constructed, together with the comments immediately following the proofs of Theorem 6.1.1 and Proposition 6.1.4, directly demonstrate that G has the uniform 2 -coloring property.

THEOREM 6.1.7. If G is a countably infinite group, then there is an uncountable collection of pairwise orthogonal strong 2-colorings on G.

Proof. Same proof as the previous two theorems, except use the functions $p_{n}(k)=4\left(2 k^{4}+1\right)$. At the end, apply Theorem 6.1.1, Proposition 6.1.4, and Proposition 6.1.3, in that order.

6.2. Density of 2-colorings

This section focuses on applications of locally recognizable functions. We begin by revealing just how plentiful these functions are.

Proposition 6.2.1. If G is a countably infinite group, $B \subseteq G$ is finite, and $Q: B \rightarrow 2$ is any function, then there exists a nontrivial locally recognizable function $R: A \rightarrow 2$ extending Q.

Proof. By defining $Q\left(1_{G}\right)=0$ if necessary, we may assume $1_{G} \in B$. Set $B_{1}=B$. Choose any $a \neq b \in G-B_{1}$ and set $B_{2}=B_{1} \cup\{a, b\}$. Next chose any $c \in G-\left(B_{2} B_{2} \cup B_{2} B_{2}^{-1}\right)$ and set $B_{3}=B_{2} \cup\{c\}=B_{1} \cup\{a, b, c\}$. Let $A=B_{3} B_{3}$ and define $R: A \rightarrow 2$ by

$$
R(g)= \begin{cases}Q(g) & \text { if } g \in B_{1} \\ Q\left(1_{G}\right) & \text { if } g \in\{a, b, c\} \\ 1-Q\left(1_{G}\right) & \text { if } g \in A-B_{3}\end{cases}
$$

We claim R is a locally recognizable function (it is clearly nontrivial). Towards a contradiction, suppose there is $y \in 2^{G}$ extending R such that for some $1_{G} \neq g \in A$ $y(g h)=y(h)$ for all $h \in A$. In particular, $y(g)=y\left(1_{G}\right)=R\left(1_{G}\right)$ so $g \in B_{3}$. We first point out that at least one of a, b, or c is not an element of $g B_{3}$. We prove this by cases. Case 1: $g \in B_{2}$. Then $c \notin g B_{2} \subseteq B_{2} B_{2}$ and $c \neq g c$ since $g \neq 1_{G}$. Thus $c \notin g B_{3}$. Case 2: $g \in B_{3}-B_{2}=\{c\}$. Then $g=c$. Since $c \notin B_{2} B_{2}^{-1}, a, b \notin c B_{2}$. If $a, b \in c B_{3}$ then we must have $a=c^{2}=b$, contradicting $a \neq b$. We conclude $\{a, b\} \not \subset c B_{3}=g B_{3}$.

The key point now is that $\{a, b, c\} \subseteq\left\{h \in A: y(h)=y\left(1_{G}\right)\right\} \subseteq B_{3}$ but $\{a, b, c\} \nsubseteq g B_{3} \subseteq A$. Therefore

$$
\begin{aligned}
& \left|\left\{h \in B_{3}: y(g h)=y\left(1_{G}\right)\right\}\right|<\left|\left\{h \in A: y(h)=y\left(1_{G}\right)\right\}\right| \\
= & \left|\left\{h \in B_{3}: y(h)=y\left(1_{G}\right)\right\}\right|=\left|\left\{h \in B_{3}: y(g h)=y\left(1_{G}\right)\right\}\right| .
\end{aligned}
$$

This is clearly a contradiction.
Corollary 6.2.2. Let G be a countably infinite group, $x \in 2^{G}$, and $\epsilon>0$. Then there exists a nontrivial locally recognizable function $R: A \rightarrow 2$ such that for any fundamental $c \in 2 \subseteq G$ compatible with R and any $y \in 2^{G}$ extending c there is $g \in G$ with $d(x, g \cdot y)<\epsilon$.

Proof. Let $k \in \mathbb{N}$ be such that $2^{-k}<\epsilon$, and let $B=\left\{g_{0}, g_{1}, \ldots, g_{k}\right\}$, where g_{0}, g_{1}, \ldots is the fixed enumeration of G used in defining the metric d. Set $Q=\left.x\right|_{B}$ and apply the previous proposition to get a nontrivial locally recognizable function $R: A \rightarrow 2$ extending Q.

Now let c be fundamental with respect to some $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and be compatible with R. Let $y \in 2^{G}$ extend c and set $g=\left(\gamma \gamma_{1}\right)^{-1}$ for any $\gamma \in \Delta_{1}$. Then for every $a \in A,(g \cdot y)(a)=y\left(g^{-1} a\right)=R(a)$. So in particular, for every $b \in B$ $(g \cdot y)(b)=y\left(g^{-1} b\right)=R(b)=x(b)$. Therefore $d(x, g \cdot y)<\epsilon$.

Theorem 6.2.3. If G is a countably infinite group, then the collection of 2colorings on G is dense in 2^{G}.

Proof. Arbitrarily fix $x \in 2^{G}$ and $\epsilon>0$. First apply Corollary 6.2 .2 to obtain a nontrivial locally recognizable function R such that for any fundamental c compatible with R and any $y \in 2^{G}$ extending c, there is $g \in G$ with $d(x, g$. $y)<\epsilon$. Next follow the final argument in the proof of Theorem 6.1.1 to obtain a fundamental c compatible with R such that every $y \in 2^{G}$ extending c is a 2 -coloring. Let y be an arbitrary element of 2^{G} extending c. Let $g \in G$ be as promised above. Then y is a 2 -coloring, and so is $g \cdot y$. We now have $d(x, g \cdot y)<\epsilon$. This completes the proof of the theorem.

Theorem 6.2.4. Let G be a countably infinite group, $x \in 2^{G}$, and $\epsilon>0$. Then there is a perfect set of pairwise orthogonal 2-colorings within the ϵ-ball about x.

Proof. Arbitrarily fix $x \in 2^{G}$ and $\epsilon>0$. First appy Corollary 6.2 .2 to obtain a locally recognizable function R, and then apply the final argument in the proof of Theorem 6.1.1 to obtain a fundamental c compatible with R. Next apply Proposition 6.1.4 to obtain a perfect set $\left\{x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ of pairwise orthogonal 2colorings extending c. Now by the proof of Proposition 6.2.2, if we let $g=\left(\gamma \gamma_{1}\right)^{-1}$ for any $\gamma \in \Delta_{1}$, we have $d\left(x, g \cdot x_{\tau}\right)<\epsilon$. Note that this g only depends on the blueprint inducing c, and in particular does not depend on τ. We thus obtained a set $\left\{g \cdot x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ of pairwise orthogonal 2-colorings within the ϵ-ball about x. By the continuity of the group action, $\left\{g \cdot x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}=g \cdot\left\{x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ is still perfect.

We use the following notation. If $c \in 2^{\subseteq G}$, we let $\bar{c} \in 2^{G}$ denote the conjugate of c :

$$
\bar{c}(g)=1-c(g), \text { for all } g \in \operatorname{dom}(c) .
$$

Proposition 6.2.5. Let G be a countably infinite group, let $B \subseteq G$ be finite but nonempty, and let $Q: B \rightarrow 2$ be an arbitrary function. Then there exists a nontrivial locally recognizable function $R: A \rightarrow 2$ extending Q with the property that if $c \in 2^{\subseteq}$ is fundamental and compatible with $R, x, y \in 2^{G}, x \supseteq c, y \supseteq \bar{c}$, then x is orthogonal to y. In particular, if $c \in 2 \subseteq G$ is canonical and compatible with R and $x \in 2^{G}$ extends c, then x is orthogonal to its conjugate \bar{x}.

Proof. By applying Proposition 6.2 .1 if necessary, we may assume Q is a nontrivial locally recognizable function. Choose a finite $C \subseteq G$ disjoint from B and having cardinality strictly greater than B. In particular $|C| \geq 2$. Let R : $B C^{-1} C \cup C \rightarrow 2$ extend Q and have value $1-Q\left(1_{G}\right)$ on $\left(B C^{-1} C \cup C\right)-B$. Then R is a nontrivial locally recognizable function.

Let $c \in 2 \subseteq G$ be fundamental with respect to some $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and compatible with R. Let $x, y \in 2^{G}$ with $x \supseteq c$ and $y \supseteq \bar{c}$. Let H be finite with $\Delta_{1} H=G$. Set $T=H^{-1} \gamma_{1} C$ and let $g_{1}, g_{2} \in G$ be arbitrary. There is $h \in H^{-1}$ with $g_{1} h \in \Delta_{1}$. Then $h \gamma_{1} C \subseteq T$. Towards a contradiction, suppose $x\left(g_{1} h \gamma_{1} \chi\right)=y\left(g_{2} h \gamma_{1} \chi\right)$ for all $\chi \in C$. Then $y\left(g_{2} h \gamma_{1} \chi\right)=1-Q\left(1_{G}\right)$ for all $\chi \in C$. However, it is easy to see that \bar{c} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and compatible with \bar{R}. So

$$
g_{2} h \gamma_{1} C \subseteq\left\{u \in G: y(u)=\bar{R}\left(1_{G}\right)\right\}
$$

By clause (iv) of Theorem 5.2.5 and the definition of fundamental functions,

$$
\left\{u \in G: y(u)=\bar{R}\left(1_{G}\right)\right\} \subseteq \Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right) \cup \bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}
$$

However, it is easy to see that for all $n \geq 1, \Delta_{n} \Lambda_{n} b_{n-1} \subseteq \Delta_{1} D_{0}^{1}$. Hence we actually have that $g_{2} h \gamma_{1} C \subseteq \Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$.

If $g_{2} h \gamma_{1} \chi=\psi \in \Delta_{1}\left(D_{0}^{1}-\left\{\gamma_{1}\right\}\right)$, then since $C=\chi\left(\chi^{-1} C\right) \subseteq \chi F_{0}$ we have $\left(g_{2} h \gamma_{1} C-\left\{g_{2} h \gamma_{1} \chi\right\}\right) \subseteq\left(\psi F_{0}-\{\psi\}\right) \subseteq G-\Delta_{1}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$.
Since $|C| \geq 2$, this is a contradiction to our previous statement. So it must be that $g_{2} h \gamma_{1} C \subseteq \Delta_{1} \gamma_{1} F_{0}$. Let $\psi \in \Delta_{1}$ be such that $g_{2} h \gamma_{1} C \cap \psi \gamma_{1} F_{0} \neq \varnothing$. For $f \in F_{0}$ we have $y\left(\psi \gamma_{1} f\right)=\bar{R}\left(1_{G}\right)=1-Q\left(1_{G}\right)$ only if $f \in B$. So $g_{2} h \gamma_{1} C \cap \psi \gamma_{1} B \neq \varnothing$, and therefore $g_{2} h \gamma_{1} C \subseteq \psi \gamma_{1} B C^{-1} C \subseteq \psi \gamma_{1} F_{0}$. It follows $g_{2} h \gamma_{1} C \subseteq \psi \gamma_{1} B$, but then

$$
|C|=\left|g_{2} h \gamma_{1} C\right| \leq\left|\psi \gamma_{1} B\right|=|B|<|C|
$$

which is a contradiction. Therefore there is $\chi \in C$ with $x\left(g_{1} h \gamma_{1} \chi\right) \neq y\left(g_{2} h \gamma_{1} \chi\right)$. We conclude x and y are orthogonal.

Corollary 6.2.6. Let G be a countably infinite group, $x \in 2^{G}$, and $\epsilon>0$. Then there is a conjugation invariant perfect set of pairwise orthogonal 2-colorings contained in the union of the balls of radius ϵ about x and \bar{x}.

Proof. Fix $x \in 2^{G}$ and $\epsilon>0$. Apply Proposition 6.2 .2 to obtain a locally recognizable function Q, and then use Proposition 6.2 .5 to get a locally recognizable function R extending Q. The rest of the proof follows that of Theorem 6.2.4.

6.3. Characterization of the ACP

This section focuses on the uses of blueprints. We begin by constructing a blueprint which will be needed in Sections 7.5 and 9.3. Afterwards, we construct another blueprint and use it to characterize those groups which have the ACP.

Proposition 6.3.1. Let G be a countably infinite group. Then there is a centered blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ guided by a growth sequence such that for every $g \in G-\mathrm{Z}(G)$ and every $n \geq 1$ there are infinitely many $\gamma \in \Delta_{n}$ with $\gamma g \neq g \gamma$. Furthermore, if $\left(p_{n}\right)_{n \geq 1}$ and $\left(q_{n}\right)_{n \geq 1}$ are functions and each p_{n} has subexponential growth, then there is a blueprint having the properties listed in the previous sentence and with

$$
\left|\Lambda_{n}\right| \geq q_{n}\left(\left|F_{n-1}\right|\right)+\log _{2}\left(p_{n}\left(\left|F_{n}\right|\right)\right)
$$

for all $n \geq 1$.
Proof. Let $\left(p_{n}\right)_{n \geq 1}$ and $\left(q_{n}\right)_{n \geq 1}$ be sequences of functions with each p_{n} of subexponential growth. We may assume that each p_{n} and q_{n} are nondecreasing. Let $R: A \rightarrow 2$ be any nontrivial locally recognizable function. Without loss of generality $1_{G} \in A$. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of finite subsets of G with $A_{0}=A$ and $\bigcup_{n \in \mathbb{N}} A_{n}=G$. Set $H_{0}=A_{0}$. In general, once H_{0} through H_{n-1} have been constructed, define H_{n} as follows. Let C_{n} be a finite set such that the C_{n}-translates of H_{n-1} are disjoint, $C_{n} H_{n-1} \cap H_{n-1}=\varnothing$, and for every $h \in H_{n-1}-\mathrm{Z}(G)$ there is $c \in C_{n}$ with $c h \neq h c$. Then choose H_{n} so that

$$
H_{n} \supseteq C_{n} H_{n-1} \cup A_{n} \cup H_{n-1}\left(H_{0}^{-1} H_{0}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right)
$$

and $\rho\left(H_{n} ; H_{n-1}\right) \geq 3+q_{n}\left(\left|H_{n-1}\right|\right)+\log _{2}\left(p_{n}\left(\left|H_{n}\right|\right)\right)$. The sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ is then a growth sequence.

Recall that in the proof of Theorem 5.3.3 each δ_{n-1}^{n} was chosen arbitrarily aside from the requirement that $1_{G} \in \delta_{n-1}^{n}$ and the δ_{n-1}^{n}-translates of F_{n-1} be maximally disjoint and contained within H_{n}. We may therefore require that $C_{n} \subseteq \delta_{n-1}^{n}$
for every $n \geq 1$. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be the blueprint constructed from Theorem 5.3.3 with this change. Then this blueprint is centered and guided by $\left(H_{n}\right)_{n \in \mathbb{N}}$. Notice $\delta_{n-1}^{n}=D_{n-1}^{n} \subseteq \Delta_{n-1}$. Suppose $g \in G-\mathrm{Z}(G)$. Let $n \geq 1$ be such that $g \in H_{n-1}$. Then by the definition of C_{m} for $m \geq n$, we have that there is $\gamma_{m} \in C_{m} \subseteq \delta_{m-1}^{m} \subseteq \Delta_{m-1}$ with $\gamma_{m} g \neq g \gamma_{m}$. If $k>m \geq n$, then $\gamma_{k} \neq \gamma_{m}$ since $\gamma_{m} \in F_{m} \subseteq F_{k}$ and $\gamma_{k} \neq 1_{G}$. Since $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence (clause (i) of Lemma 5.1.5), it follows that for every $m \geq 1$ there are infinitely many elements of Δ_{m} which do not commute with g (namely γ_{k} for all $k \geq \max (n, m)$).

If we set $B_{n}=F_{n}$, then the last claim is satisfied as well since each p_{n} and each q_{n} is nondecreasing and

$$
\left|\Lambda_{n}\right| \geq \rho\left(H_{n} ; H_{n-1}\right)-3
$$

(see the proof of Corollary 5.4.8).
The proposition below constructs a blueprint which is essential in characterizing which groups have the ACP. Recall the notation $\mathrm{Z}_{G}(g)=\{h \in G: h g=g h\}$.

Proposition 6.3.2. Let G be a countably infinite group with an element $u \neq 1_{G}$ satisfying $\left|\mathrm{Z}_{G}\left(u^{i}\right)\right|<\infty$ whenever $i \in \mathbb{Z}$ and $u^{i} \neq 1_{G}$, and let $1_{G} \in A \subseteq G$ be finite with $u \cdot A=A$. Then there is a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ such that $u \cdot \Delta_{n}=\Delta_{n}$ for every $n \in \mathbb{N}$ and with $F_{0}=A$. Furthermore, the blueprints with this property can have any prescribed polynomial growth.

Proof. Since $\langle u\rangle \subseteq \mathrm{Z}_{G}(u)$, the order of u must be finite. So finding a finite set A with $u \cdot A=A$ is not an obstacle to applying this proposition. Notice for $i, j \in \mathbb{Z}, g \in G$, and $F \subseteq G$ we have

$$
u^{i} g F \cap u^{j} g F \neq \varnothing \Longleftrightarrow g^{-1} u^{i-j} g \in F F^{-1}
$$

Also for $g, h \in G$ and $i \in \mathbb{Z}$

$$
g^{-1} u^{i} g=h^{-1} u^{i} h \Longleftrightarrow h g^{-1} \in \mathrm{Z}_{G}\left(u^{i}\right) .
$$

Thus, it follows that if $F \subseteq G$ is finite, then for all but finitely many $g \in G$ the $\langle u\rangle$-translates of $g F$ are disjoint. For finite subsets $F \subseteq G$, define $V(F)$ to be the finite (possibly empty) set consisting of all $g \in G$ with the property that the $\langle u\rangle$-translates of $g F$ are not disjoint. Notice that $u \cdot V(F)=V(F)$. By the above remarks, we have that

$$
V(F)=\left\{g \in G: \exists i \in \mathbb{Z} u^{i} \neq 1_{G} \text { and } g^{-1} u^{i} g \in F F^{-1}\right\} .
$$

So if $M=\max \left\{\left|Z_{G}\left(u^{i}\right)\right|: i \in \mathbb{Z}\right.$ and $\left.u^{i} \neq 1_{G}\right\}$ then

$$
|V(F)| \leq|\langle u\rangle| \cdot M \cdot\left|F F^{-1}\right| .
$$

Notice that if $g, h \in G$ and $h F \cap\langle u\rangle g F=\varnothing$, then immediately we have $\langle u\rangle h F \cap$ $\langle u\rangle g F=\varnothing$. Of particular importance, if $F, H \subseteq G$ are finite, $u \cdot H=H$, and $H \cap V(F)=\varnothing$, then there exists a set δ such that $u \cdot \delta=\delta$ and the δ-translates of F are contained and maximally disjoint within H.

By considering the function V, it is easy to modify the proof of Lemma 5.4.2 to arrive at the following conclusion. If $A, B \subseteq G$ are finite, $1_{G} \in A$, and $\epsilon>0$, then there is a finite $C \subseteq G$ containing B with $u \cdot C=C$ and $\rho(C ; A)>\frac{|C|}{|A|}(1-\epsilon)$. The changes to the proof of Lemma 5.4.2 are the following. Replace B with $\langle u\rangle B$
if necessary so that $u \cdot B=B$. By avoiding the finite set $V\left(A A^{-1}\right)$, one can choose Δ so that $u \cdot \Delta=\Delta$. The computation in the proof shows that

$$
C=B \cup \Lambda A
$$

satisfies $\rho(C ; A)>\frac{|C|}{|A|}(1-\epsilon)$ as long as Λ is a sufficiently large finite subset of Δ. We can of course choose a sufficiently large $\Lambda \subseteq \Delta$ with $u \cdot \Lambda=\Lambda$, and hence we obtain a C satisfying the inequality and with $u \cdot C=C$.

An immediate consequence to the previous paragraph is the following. If $A, B \subseteq$ G are finite, $1_{G} \in A$, and $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function of subexponential growth, then there is a finite $C \subseteq G$ containing B with $u \cdot C=C$ and $2^{\rho(C ; A)}>f(|C|)$ (see Lemma 5.4.5).

Let $\left(p_{n}\right)_{n \geq 1}$ be a sequence of functions of polynomial growth. We may suppose that each p_{n} is nondecreasing. For $n \geq 1$ and $k \in \mathbb{N}$ define

$$
q_{n}(k)=8 p_{n}\left(2 \cdot|\langle u\rangle| \cdot M \cdot k^{4}\right) .
$$

Then $\left(q_{n}\right)_{n \geq 1}$ is a sequence of functions of polynomial growth. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of finite subsets of G with $G=\bigcup_{n \in \mathbb{N}} A_{n}$ and $A_{0}=A$. Set $H_{0}=A_{0}$. Once H_{0} through H_{n-1} have been defined, use the previous paragraph to find a finite $H_{n} \subseteq G$ satisfying $u \cdot H_{n}=H_{n}$,

$$
H_{n} \supseteq A_{n} \cup V\left(H_{n-1}\right) H_{n-1} H_{n-1}^{-1} H_{n-1} \cup H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right),
$$

and

$$
\rho\left(H_{n} ; H_{n-1}\right) \geq \log _{2} q_{n}\left(\left|H_{n}\right|\right)+\rho\left(V\left(H_{n-1}\right) H_{n-1} H_{n-1}^{-1} H_{n-1} ; H_{n-1}\right) .
$$

The sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ is easily checked to be a growth sequence. Notice that by clause (iii) of Lemma 5.4.1

$$
\rho\left(H_{n} ; H_{n-1}\right) \geq \log _{2} q_{n}\left(\left|H_{n}\right|\right)+\rho\left(V\left(H_{n-1}\right) H_{n-1} H_{n-1}^{-1} H_{n-1} ; H_{n-1}\right)
$$

implies

$$
\rho\left(H_{n}-V\left(H_{n-1}\right) H_{n-1} ; H_{n-1}\right) \geq \log _{2} q_{n}\left(\left|H_{n}\right|\right)
$$

Set $F_{0}=H_{0}=A_{0}=A$. Then $1_{G} \in F_{0}$ and $u \cdot F_{0}=F_{0}$. So $1_{G} \in V\left(F_{0}\right)$ and for any finite $F \subseteq G$ containing F_{0} we have $1_{G} \in V(F)$. Suppose F_{0} through F_{n-1} have been defined with the property that for all $0 \leq m<n, u \cdot F_{m}=F_{m}$. Let $\delta \subseteq G$ be such that $u \cdot \delta=\delta$ and the δ-translates of F_{n-1} are contained and maximally disjoint within $H_{n}-V\left(H_{n-1}\right) H_{n-1}$. Notice that

$$
\begin{aligned}
|\delta| & \geq \rho\left(H_{n}-V\left(H_{n-1}\right) H_{n-1} ; F_{n-1}\right) \\
& \geq \rho\left(H_{n}-V\left(H_{n-1}\right) H_{n-1} ; H_{n-1}\right) \geq \log _{2} q_{n}\left(\left|H_{n}\right|\right) \geq 3 .
\end{aligned}
$$

Set $\delta_{n-1}^{n}=\delta \cup\left\{1_{G}\right\}$. Then $\delta_{n-1}^{n} F_{n-1}=\delta F_{n-1} \cup F_{n-1}$, and so

$$
u \cdot\left(\delta_{n-1}^{n} F_{n-1}\right)=\delta_{n-1}^{n} F_{n-1} .
$$

Now suppose that δ_{n-1}^{n} through δ_{k+1}^{n} have been defined for some $0 \leq k<n-1$. Inductively assume that for all $n+1 \geq j \geq k+1, u \cdot\left(\delta_{j}^{n} F_{j}\right)=\delta_{j}^{n} F_{j}$. Define

$$
B_{k}^{n}=\left\{g \in G:\{g\}\left(F_{k+1}^{-1} F_{k+1}\right)\left(F_{k+2}^{-1} F_{k+2}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq H_{n}\right\}
$$

and notice that $u \cdot B_{k}^{n}=B_{k}^{n}$ and $H_{n-1} \subseteq B_{k}^{n}$. Let $\delta_{k}^{n} \subseteq G$ be such that $u \cdot \delta_{k}^{n}=\delta_{k}^{n}$ and the δ_{k}^{n}-translates of F_{k} are contained and maximally disjoint within

$$
B_{k}^{n}-V\left(H_{k}\right) H_{k}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m} .
$$

Denoting the set displayed above by S, then $S \cap V\left(F_{k}\right)=\varnothing$ since $1_{G} \in F_{k} \subseteq H_{k}$ and $V\left(F_{k}\right) \subseteq V\left(H_{k}\right)$. This, together with $u \cdot S=S$, guarantees that δ_{k}^{n} exists. Finally, define

$$
F_{n}=\bigcup_{0 \leq k<n} \delta_{k}^{n} F_{k}
$$

Then $u \cdot F_{n}=F_{n}$.
We now apply Lemma 5.3 .1 to get a pre-blueprint $\left(\tilde{\Delta}_{n}, F_{n}\right)_{n \in \mathbb{N}}$ (conditions (i) through (v) of Lemma 5.3 .1 are clearly satisfied). To be specific, for $k \in \mathbb{N}$ set $\tilde{D}_{k}^{k}=\left\{1_{G}\right\}$ and for $n>k$ define

$$
\tilde{D}_{k}^{n}=\bigcup_{k \leq m<n} \delta_{m}^{n} \tilde{D}_{k}^{m}
$$

Then define $\tilde{\Delta}_{k}=\bigcup_{n \geq k} \tilde{D}_{k}^{n}$.
We claim that $u \cdot\left(\tilde{D}_{k}^{n}-\left\{1_{G}\right\}\right)=\tilde{D}_{k}^{n}-\left\{1_{G}\right\}$ for all $n, k \in \mathbb{N}$ with $n \geq k$. Fix $k \in \mathbb{N}$. The claim is obvious when $n=k$. Now let $n>k$ and suppose the claim is true for $n-1$. Recall from our construction that $u \cdot \delta_{m}^{n}=\delta_{m}^{n}$ for all $0 \leq m<n-1$ and that $u \cdot\left(\delta_{n-1}^{n}-\left\{1_{G}\right\}\right)=\delta_{n-1}^{n}-\left\{1_{G}\right\}$. We have

$$
\tilde{D}_{k}^{n}-\left\{1_{G}\right\}=\left(\bigcup_{k \leq m<n-1} \delta_{m}^{n} \tilde{D}_{k}^{m}\right) \cup\left(\delta_{n-1}^{n}-\left\{1_{G}\right\}\right) \tilde{D}_{k}^{n-1} \cup\left(\tilde{D}_{k}^{n-1}-\left\{1_{G}\right\}\right)
$$

so the claim follows by induction.
We claim that $\left(\tilde{\Delta}_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint. For $k \in \mathbb{N}$ define $T_{k}=V\left(H_{k}\right) H_{k} H_{k}^{-1}$. It will suffice to show that $\tilde{\Delta}_{k} T_{k}=G$. We proceed to verify the following three facts.
(1) If $n>k, g \in G$, and $g F_{k} \cap F_{n} \neq \varnothing$, then either $g \in T_{k}$ or else $g F_{k} \cap \delta_{m}^{n} F_{m} \neq$ \varnothing for some $k \leq m<n$;
(2) $g F_{k} \cap F_{n} \neq \varnothing \Longrightarrow g \in \tilde{D}_{k}^{n} T_{k}$ for all $g \in G$ and $k \leq n$;
(3) $g F_{k} \subseteq B_{k}^{n} \Longrightarrow g \in \tilde{D}_{k}^{n} T_{k}$ for all $g \in G$ and $k<n$.
(Proof of 1). Let $n>k$ and $g \in G$ satisfy $g F_{k} \cap F_{n} \neq \varnothing$. It suffices to show that if $g \notin T_{k}$ and $g F_{k} \cap \delta_{m}^{n} F_{m}=\varnothing$ for all $k<m<n$ then $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$ (since this will validate the claim with $m=k$). As $F_{n}=\bigcup_{0 \leq t<n} \delta_{t}^{n} F_{t}$, there is $0 \leq t \leq k$ with $g F_{k} \cap \delta_{t}^{n} F_{t} \neq \varnothing$. If $t=k$, then we are done. So suppose $t<k$. We have

$$
g F_{k} \subseteq \delta_{t}^{n} F_{t} F_{k}^{-1} F_{k} \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right)\left(F_{t+2}^{-1} F_{t+2}\right) \cdots\left(F_{k}^{-1} F_{k}\right)
$$

Hence

$$
g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \delta_{t}^{n} F_{t}\left(F_{t+1}^{-1} F_{t+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right)
$$

However, by definition $\delta_{t}^{n} F_{t} \subseteq B_{t}^{n}$. So the right hand side of the expression above is contained within H_{n}, and therefore $g F_{k} \subseteq B_{k}^{n}$. Also $g \notin T_{k}$ implies $g F_{k}$ is disjoint from $V\left(H_{k}\right) H_{k}$. Thus

$$
g F_{k} \subseteq B_{k}^{n}-V\left(H_{k}\right) H_{k}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}
$$

It now follows from the definition of δ_{k}^{n} that $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$. This substantiates our claim.
(Proof of 2). Fix $k \in \mathbb{N}$. We prove the claim by an induction on $n \geq k$. If $n=k$ then the claim is clear. Now assume the claim is true for all $k \leq m<n$. Let $g \in G$ satisfy $g F_{k} \cap F_{n} \neq \varnothing$. If $g \in T_{k}$ then we are done since $1_{G} \in \tilde{D}_{k}^{n}$. So we may
assume $g \notin T_{k}$. By (1) we have that $g F_{k} \cap \delta_{m}^{n} F_{m} \neq \varnothing$ for some $k \leq m<n$. Let $\gamma \in \delta_{m}^{n}$ be such that $g F_{k} \cap \gamma F_{m} \neq \varnothing$. Then $\gamma^{-1} g F_{k} \cap F_{m} \neq \varnothing$, so by the induction hypothesis $\gamma^{-1} g \in \tilde{D}_{k}^{m} T_{k}$. By the definition of \tilde{D}_{k}^{n} we have $\gamma \tilde{D}_{k}^{m} \subseteq \delta_{m}^{n} \tilde{D}_{k}^{m} \subseteq \tilde{D}_{k}^{n}$. Thus, $g \in \tilde{D}_{k}^{n} T_{k}$.
(Proof of 3). Fix $k<n$ and let $g \in G$ be such that $g F_{k} \subseteq B_{k}^{n}$. We must show $g \in \tilde{D}_{k}^{n} T_{k}$. We are done if $g F_{k} \cap \delta_{k}^{n} F_{k} \neq \varnothing$ since $F_{k} F_{k}^{-1} \subseteq T_{k}$ and $\delta_{k}^{n}=$ $\delta_{k}^{n} \tilde{D}_{k}^{k} \subseteq \tilde{D}_{k}^{n}$. So suppose $g F_{k} \cap \delta_{k}^{n} F_{k}=\varnothing$. Recall that in the construction of F_{n} we defined δ_{n-1}^{n} through δ_{k+1}^{n} first and then chose δ_{k}^{n} so that its translates of F_{k} would be maximally disjoint within $B_{k}^{n}-V\left(H_{k}\right) H_{k}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$. Thus we cannot have $g F_{k} \subseteq B_{k}^{n}-V\left(H_{k}\right) H_{k}-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$ as this would violate the definition of δ_{k}^{n}. Since $g F_{k} \subseteq B_{k}^{n}$, we must have either $g F_{k} \cap V\left(H_{k}\right) H_{k} \neq \varnothing$ or $g F_{k} \cap\left(\bigcup_{k<m<n} \delta_{m}^{n} F_{m}\right) \neq \varnothing$. If $g F_{k} \cap V\left(H_{k}\right) H_{k} \neq \varnothing$ then $g \in V\left(H_{k}\right) H_{k} F_{k}^{-1} \subseteq$ $T_{k} \subseteq \tilde{D}_{k}^{n} T_{k}$. So we may suppose $g F_{k} \cap\left(\bigcup_{k<m<n} \delta_{m}^{n} F_{m}\right) \neq \varnothing$. Let $k<m<n$ and $\gamma \in \delta_{m}^{n}$ be such that $g F_{k} \cap \gamma F_{m} \neq \varnothing$. Then $\gamma^{-1} g F_{k} \cap F_{m} \neq \varnothing$ and thus $\gamma^{-1} g \in \tilde{D}_{k}^{m} T_{k}$ by (2). Now we have $\gamma \tilde{D}_{k}^{m} \subseteq \delta_{m}^{n} \tilde{D}_{k}^{m} \subseteq \tilde{D}_{k}^{n}$ so that $g \in \tilde{D}_{k}^{n} T_{k}$. This completes the proof of (3).

Recall that we have $H_{n-1} \subseteq B_{k}^{n}$. To see $\tilde{\Delta}_{k} T_{k}=G$, fix $g \in G$. Then for sufficiently large $n>k$ we have $g F_{k} \subseteq H_{n-1}$ since $\left\{H_{n}\right\}_{n \in \mathbb{N}}$ is increasing. Thus $g F_{k} \subseteq B_{k}^{n}$, and by (3), $g \in \tilde{D}_{k}^{n} T_{k}$. We thus conclude $\left(\tilde{\Delta}_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint.

Pick a nonidentity $\gamma_{n} \in \tilde{\Delta}_{n}$ and define $T_{n}^{\prime}=T_{n} \cup \gamma_{n}^{-1} T_{n}$. For each $n \in \mathbb{N}$ define $\Delta_{n}=\tilde{\Delta}_{n}-\left\{1_{G}\right\}$. Then $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint satisfying $u \cdot \Delta_{n}=\Delta_{n}$ for each $n \in \mathbb{N}$. To see this is a blueprint, just notice that $\Delta_{n} T_{n}^{\prime}=G$ for each $n \in \mathbb{N}$. We also have that

$$
\left|T_{n}^{\prime}\right| \leq 2\left|T_{n}\right|=2\left|V\left(H_{n}\right) H_{n} H_{n}^{-1}\right| \leq 2 \cdot\left|V\left(H_{n}\right)\right| \cdot\left|H_{n}\right|^{2} \leq 2 \cdot|\langle u\rangle| \cdot M \cdot\left|H_{n}\right|^{4} .
$$

Therefore

$$
\begin{gathered}
\left|\Lambda_{n}\right|=\left|D_{n-1}^{n}\right|-3=\left|\delta_{n-1}^{n}-\left\{1_{G}\right\}\right|-3 \geq-3+\log _{2} q_{n}\left(\left|H_{n}\right|\right) \\
=-3+\log _{2}\left(8 p_{n}\left(2 \cdot|\langle u\rangle| \cdot M \cdot\left|H_{n}\right|^{4}\right)\right) \\
=\log _{2} p_{n}\left(2 \cdot|\langle u\rangle| \cdot M \cdot\left|H_{n}\right|^{4}\right) \geq \log _{2} p_{n}\left(\left|T_{n}^{\prime}\right|\right) .
\end{gathered}
$$

So the blueprint satisfies the growth condition.
We are now ready to characterize which groups have the ACP (almost 2-coloring property).

Theorem 6.3.3. Let G be a countably infinite group. Then G has the ACP if and only if for every $1_{G} \neq u \in G$ there is $1_{G} \neq v \in\langle u\rangle$ with $\left|\mathrm{Z}_{G}(v)\right|=\infty$.

Proof. If G has the stated property, then it was proved in Proposition 2.5.7 that G has the ACP. So it will suffice to assume that there is $1_{G} \neq u \in G$ with $\left|\mathrm{Z}_{G}\left(u^{i}\right)\right|<\infty$ whenever $u^{i} \neq 1_{G}$ and then show that 2^{G} contains an almost 2coloring which is not a 2 -coloring. Fix $u \in G$ with this property.

For $n \geq 1$ and $k \in \mathbb{N}$ define $p_{n}(k)=8|\langle u\rangle| k^{4}+1$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of polynomial growth. Pick any nontrivial locally recognizable function $R: A \rightarrow 2$. By the previous proposition, there is a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and finite sets $\left(B_{n}\right)_{n \in \mathbb{N}}$ with $F_{0}=A$ and such that for every $n \in \mathbb{N} u \cdot \Delta_{n}=\Delta_{n}$, $\Delta_{n} B_{n} B_{n}^{-1}=G$, and

$$
\left|\Lambda_{n+1}\right| \geq \log _{2} p_{n+1}\left(\left|B_{n+1}\right|\right)
$$

Apply Theorem 5.2.5 to get a function c canonical with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and compatible with R. Recall that the value of c on $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}$ and $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}$ is arbitrary. We may therefore assume that c is constant on $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}$ and $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}$. Notice that

$$
u \cdot \bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}
$$

and similarly with the a_{n} 's replaced with b_{n} 's.
We claim that $u \cdot c=c$. Notice that

$$
G-\operatorname{dom}(c)=\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}
$$

is invariant under left multiplication by u. Now fix $g \in \operatorname{dom}(c)$. We will show that $c(g)=c(u g)$. We proceed by cases.

Case 1: $g \in \bigcap_{n \in \mathbb{N}} \Delta_{n}\left\{a_{n}, b_{n}\right\}$. Then by our earlier comment we immediately have $c(g)=c(u g)$.

Case 2: There is $n \geq 1$ with $g \in \Delta_{n}\left\{a_{n}, b_{n}\right\}-\Delta_{n+1}\left\{a_{n+1}, b_{n+1}\right\}$. Subcase A: $g \in \Delta_{n+1} F_{n+1}$. Let $\gamma \in \Delta_{n+1}$ and $f \in F_{n+1}$ be such that $g=\gamma f$. Then $f \neq$ a_{n+1}, b_{n+1}. Since $u \cdot \Delta_{n+1}=\Delta_{n+1}$, we have that $u \gamma \in \Delta_{n+1}$. So $c(g)=c(\gamma f)=$ $c(u \gamma f)=c(u g)$ by conclusion (vi) of Theorem 5.2.5. Subcase B: $g \notin \Delta_{n+1} F_{n+1}$. Then we also have $u g \in \Delta_{n}\left\{a_{n}, b_{n}\right\}-\Delta_{n+1} F_{n+1}$. From the proof of Theorem 5.2.5 it can be seen that

$$
c\left(\Delta_{n}\left\{a_{n}, b_{n}\right\}-\Delta_{n+1} F_{n+1}\right)=\{0\} .
$$

So $c(g)=c(u g)$.
Case 3: $g \notin \Delta_{1}\left\{a_{1}, b_{1}\right\}$. Subcase A: $g \in \Delta_{1} F_{1}$. Let $\gamma \in \Delta_{1}$ and $f \in F_{1}$ be such that $g=\gamma f$. Then $f \neq a_{1}, b_{1}$ and $u \gamma \in \Delta_{1}$. So $c(g)=c(\gamma f)=c(u \gamma f)=c(u g)$ by conclusion (vi) of Theorem 5.2.5. Subcase B: $g \notin \Delta_{1} F_{1}$. Then $u g \notin \Delta_{1} F_{1}$. By conclusion (iv) of Theorem 5.2.5 we have $c(g)=1-R\left(1_{G}\right)=c(u g)$.

We conclude that $u \cdot c=c$ as claimed. Fix an enumeration s_{1}, s_{2}, \ldots of the nonidentity group elements of G. Let V_{n} be the test region for the $\Delta_{n^{-}}$ membership test admitted by c. Set $T_{n}=B_{n} B_{n}^{-1}\left(V_{n} \cup F_{n}\right)$. Pick any $h_{n} \in$ $G-\left\{1_{G}, s_{n}^{-1}\right\}\left\{1_{G}, s_{n}\right\} T_{n} T_{n}^{-1}$. For each $n \geq 1$ let Γ_{n} be the graph with vertex set $\left\{\langle u\rangle \gamma: \gamma \in \Delta_{n}\right\}$ and edge relation given by

$$
\begin{gathered}
(\langle u\rangle \gamma,\langle u\rangle \psi) \in E(\Gamma) \Longleftrightarrow \exists i \in \mathbb{Z} \\
\gamma^{-1} u^{i} \psi \in B_{n} B_{n}^{-1}\left\{1_{G}, h_{n}^{-1}\right\}\left\{s_{n}, s_{n}^{-1}\right\}\left\{1_{G}, h_{n}\right\} B_{n} B_{n}^{-1}
\end{gathered}
$$

for disinct $\langle u\rangle \gamma$ and $\langle u\rangle \psi$. Notice that this edge relation is well defined. We have that

$$
\operatorname{deg}_{\Gamma_{n}}(\langle u\rangle \gamma) \leq 8|\langle u\rangle|\left|B_{n}\right|^{4}
$$

Therefore we can find a graph-theoretic $\left(8|\langle u\rangle|\left|B_{n}\right|^{4}+1\right)$-coloring of Γ_{n}, say μ_{n} : $V\left(\Gamma_{n}\right) \rightarrow\left\{0,1, \ldots, 8|\langle u\rangle|\left|B_{n}\right|^{4}\right\}$.

For each $i \geq 1$, define $\mathbb{B}_{i}: \mathbb{N} \rightarrow\{0,1\}$ so that $\mathbb{B}_{i}(k)$ is the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $\mathbb{B}_{i}(k)=0$ when $k<2^{i-1}$.

For $n \geq 1$ set $s(n)=\left|\Lambda_{n}\right|$ and let $\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{s(n)}^{n}$ be an enumeration of Λ_{n}. Define $y \supseteq c$ by setting

$$
y\left(\gamma \lambda_{i}^{n} b_{n-1}\right)=\mathbb{B}_{i}\left(\mu_{n}(\langle u\rangle \gamma)\right)
$$

for each $n \geq 1, \gamma \in \Delta_{n}$, and $1 \leq i \leq s(n)$. Since $2^{s(n)} \geq 8|\langle u\rangle|\left|B_{n}\right|^{4}+1$, all integers 0 through $8|\langle u\rangle|\left|B_{n}\right|^{4}$ can be written in binary using $s(n)$ digits. Thus no information is lost between the μ_{n} 's and y. Since

$$
G-\operatorname{dom}(c)=\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}
$$

we have that $y \in 2^{G}$. Also, it is easily checked from the definition of y and the fact that $u \cdot c=c$ that $u \cdot y=y$. Thus y is periodic. We will show that y is an almost 2-coloring.

Define $x \in 2^{G}$ by setting $x\left(1_{G}\right)=1-y\left(1_{G}\right)$ and $x(g)=y(g)$ for $1_{G} \neq g \in G$. Clearly $x={ }^{*} y$. We claim that x is a 2 -coloring of G. Fix $1_{G} \neq s \in G$. Then for some $n \geq 1$ we have $s=s_{n}$. Define

$$
W=\left\{g \in G: \exists i \in \mathbb{Z} g u^{i} g^{-1}=s_{n}\right\}
$$

Notice that $W=V\left(\left\{s_{n}\right\}\right)^{-1}$ is finite. Set $T=W \cup T_{n} \cup h_{n} T_{n}$ and let $g \in G$ be arbitrary.

If $g^{-1} \in W$ and $g^{-1} u^{i} g=s_{n}$ then we have

$$
x\left(g g^{-1}\right)=x\left(1_{G}\right) \neq y\left(1_{G}\right)=y\left(u^{i}\right)=x\left(u^{i}\right)=x\left(g s_{n} g^{-1}\right)
$$

In this case we are done since $g^{-1} \in W \subseteq T$. So we may suppose that $g^{-1} \notin W$. It follows that $\langle u\rangle g \neq\langle u\rangle g s_{n}$ and furthermore

$$
\langle u\rangle g t \neq\langle u\rangle g s_{n} t
$$

for all $t \in T$.
Notice that by our choice of h_{n},

$$
1_{G} \notin T_{n}^{-1}\left\{1_{G}, s_{n}^{-1}\right\}\left\{1_{G}, s_{n}\right\} h_{n} T_{n}
$$

So if $g T_{n}$ or $g s_{n} T_{n}$ contains 1_{G} then g is an element of $T_{n}^{-1}\left\{1_{G}, s_{n}^{-1}\right\}$ and therefore 1_{G} is neither an element of $g h_{n} T_{n}$ nor $g s_{n} h_{n} T_{n}$. If $1_{G} \notin g T_{n} \cup g s_{n} T_{n}$ then set $k=1_{G}$ and otherwise set $k=h_{n}$. In any case we have that $1_{G} \notin g k T_{n} \cup g s_{n} k T_{n}$. In particular, for all $t \in T_{n}$

$$
x(g k t)=y(g k t) \text { and } x\left(g s_{n} k t\right)=y\left(g s_{n} k t\right)
$$

Since $\Delta_{n} B_{n} B_{n}^{-1}=G$, there is $b \in B_{n} B_{n}^{-1}$ with $g k b \in \Delta_{n}$. We proceed by cases. Case 1: $g s_{n} k b \notin \Delta_{n}$. Since c admits a Δ_{n}-memebership test with test region V_{n}, there must be $v \in V_{n}$ with

$$
x(g k b v)=y(g k b v) \neq y\left(g s_{n} k b v\right)=x\left(g s_{n} k b v\right)
$$

The equalities hold because $b \in B_{n} B_{n}^{-1}$ and $v \in V_{n}$, and therefore $b v \in T_{n}$ and $k b v \in T$. This case is completed as we have shown $x(g t) \neq x\left(g s_{n} t\right)$ for $t=k b v \in T$. Case 2: $g s_{n} k b \in \Delta_{n}$. Then we have

$$
(g k b)^{-1}\left(g s_{n} k b\right)=b^{-1} k^{-1} s_{n} k b \in B_{n} B_{n}^{-1}\left\{1_{G}, h_{n}^{-1}\right\} s_{n}\left\{1_{G}, h_{n}\right\} B_{n} B_{n}^{-1}
$$

It follows that $\left(\langle u\rangle g k b,\langle u\rangle g s_{n} k b\right) \in E\left(\Gamma_{n}\right)$ since $\langle u\rangle g k b \neq\langle u\rangle g s_{n} k b$. Thus from the definition of y we have that there is $1 \leq i \leq s(n)$ with

$$
x\left(g k b \lambda_{i}^{n} b_{n-1}\right)=y\left(g k b \lambda_{i}^{n} b_{n-1}\right) \neq y\left(g s_{n} k b \lambda_{i}^{n} b_{n-1}\right)=x\left(g s_{n} k b \lambda_{i}^{n} b_{n-1}\right)
$$

The equalities hold because $b \in B_{n} B_{n}^{-1}$ and $\lambda_{k}^{n} b_{n-1} \in F_{n}$, and therefore $b \lambda_{i}^{n} b_{n-1} \in$ T_{n}. Also we have $k b \lambda_{i}^{n} b_{n-1} \in T$. This completes the proof.

We give an example of a group without the ACP. Consider the group $G=$ $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. The group has the presentation

$$
G=\left\langle a, b \mid a^{2}=b^{2}=1_{G}\right\rangle .
$$

One can check that $\mathrm{Z}_{G}(a)=\langle a\rangle$. So by the proof of Theorem 6.3.3 there is an almost 2-coloring $y \in 2^{G}$ with $a \cdot y=y$. This gives the promised counterexample to the converse of Lemma 2.5.4 (b). Let $x=^{*} y$ be a 2 -coloring on G. Then x is not a strong 2 -coloring by Lemma 2.5.4 (e). Thus x is a counterexample to the converse of Lemma 2.5.4 (a).

Notice that the group G considered above is polycyclic and virtually abelian. Since all polycyclic groups are solvable, we have that in general solvable, polycyclic, and virtually abelian groups do not necessarily have the ACP.

The above theorem has a very nice general corollary.
Corollary 6.3.4. For a countable group G, the following are equivalent:
(i) for every compact Hausdorff space X on which G acts continuously and every $x \in X$, if every limit point of $[x]$ is aperiodic then x is hyper aperiodic;
(ii) for every nonidentity $u \in G$ there is a nonidentity $v \in\langle u\rangle$ having infinite centralizer in G.

Proof. Very minor modifications to the proof of Proposition 2.5.7 give the implication (ii) \Rightarrow (i). On the other hand, suppose G does not satisfy (ii). Then by the previous theorem there is a periodic almost 2 -coloring x on G. Set $X=\overline{[x]}$. Then X is a compact Hausdorff space on which G acts continuously. By clause (c) of Lemma 2.5.4 and by Lemma 2.5.3, every limit point of $[x]$ is aperiodic. However, x is periodic and is therefore not hyper aperiodic (not a 2 -coloring).

CHAPTER 7

Further Study of Fundamental Functions

In this chapter, we will focus on developing general tools which aid in implementing the fundamental method. These tools are developed primarily because we need them in later chapters, however we will develop these tools in more generality than they will be used. The tools developed in this chapter will help with three tasks: understanding the relationship between a fundamental function and the points in the closure of its orbit; understanding how minimality relates to fundamental functions and building minimal fundamental functions; and controlling when two fundamental functions generate topologically conjugate subflows. The first section focuses on the closure of the orbit of fundamental functions. The next three sections deal with minimality, and the final section focuses on topological conjugacy among the subflows generated by fundamental functions.

7.1. Subflows generated by fundamental functions

In this section we will go through some basic observations regarding the closure of the orbit of a fundamental function. We will see that if $x \in 2^{G}$ is fundamental with respect to a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and $y \in \overline{[x]}$, then there are sets Δ_{n}^{y} such that y is fundamental with respect to the blueprint $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$. Finding the sets Δ_{n}^{y} is made easy by the Δ_{n} membership test admitted by x for $n \geq 1$.

Fix a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and let $x \in 2^{G}$ be fundamental with respect to this blueprint. For each $n \geq 1$, let $V_{n} \subseteq \gamma_{n} F_{n-1} \subseteq F_{n}$ be the test region for the simple Δ_{n} membership test admitted by x (clause (ii) of Theorem 5.2.5), and let $P_{n} \in 2^{V_{n}}$ be the corresponding test function. So for $n \geq 1$ and $g \in G$, we have $g \in \Delta_{n}$ if and only if $x(g v)=P_{n}(v)$ for all $v \in V_{n}$. Now if $y \in \overline{[x]}$, we define Δ_{n}^{y} for $n \geq 1$ by

$$
\Delta_{n}^{y}=\left\{g \in G: \forall v \in V_{n} y(g v)=P_{n}(v)\right\} .
$$

Notice that $\Delta_{n}^{x}=\Delta_{n}$ and $\Delta_{n}^{g \cdot y}=g \cdot \Delta_{n}^{y}$ for all $n \geq 1$ and all $g \in G$.
Proposition 7.1.1. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. Then for every $y \in \overline{[x]}$ we have:
(i) if $y=\lim h_{m} \cdot x$ then $\Delta_{n}^{y}=\bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{n}$ for all $n \geq 1$;
(ii) if $n \geq 1, B \subseteq G$ is finite, and $\Delta_{n} B=G$ then $\Delta_{n}^{y} B=G$;
(iii) $\gamma^{-1}\left(\Delta_{k}^{y} \cap \gamma F_{n}\right)=D_{k}^{n}$, for all $n \geq k \geq 1$ and $\gamma \in \Delta_{n}^{y}$;
(iv) $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint, where Δ_{0}^{y} is defined by the formula in (i).

Proof. Let $1_{G}=g_{0}, g_{1}, \ldots$ be the fixed enumeration of G used in defining the metric d on 2^{G}. For each $n \geq 1$, let $V_{n} \subseteq \gamma_{n} F_{n-1} \subseteq F_{n}$ be the test region for the simple Δ_{n} membership test admitted by x (clause (ii) of Theorem 5.2.5),
and let $P_{n} \in 2^{V_{n}}$ be the corresponding test function. Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ be such that $y=\lim _{n \rightarrow \infty} h_{n} \cdot x$.
(i). Let $n \geq 1$, and let $\gamma \in \Delta_{n}^{y}$. Let $r \in \mathbb{N}$ be such that $\gamma V_{n} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$. Let $k \in \mathbb{N}$ be such that $d\left(h_{m} \cdot x, y\right)<2^{-r}$ for all $m \geq k$. Then for all $m \geq k$ and all $v \in V_{n}$

$$
x\left(h_{m}^{-1} \gamma v\right)=\left(h_{m} \cdot x\right)(\gamma v)=y(\gamma v)=P_{n}(v) .
$$

Therefore $h_{m}^{-1} \gamma \in \Delta_{n}^{x}$ and $\gamma \in h_{m} \Delta_{n}^{x}$ for all $m \geq k$.
Now let $n \geq 1$ and suppose $\gamma \in \bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{n}^{x}$. Let $r \in \mathbb{N}$ be such that $\gamma V_{n} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$, let $k \in \mathbb{N}$ be such that $\gamma \in \bigcap_{m \geq k} h_{m} \Delta_{n}^{x}$, and let $m \geq k$ be such that $d\left(h_{m} \cdot x, y\right)<2^{-r}$. Then for all $v \in V_{n}$

$$
y(\gamma v)=\left(h_{m} \cdot x\right)(\gamma v)=x\left(h_{m}^{-1} \gamma v\right)=P_{n}(v) .
$$

The last equality follows from the fact that $h_{m}^{-1} \gamma \in \Delta_{n}^{x}$ since $\gamma \in h_{m} \Delta_{n}^{x}$. It follows that $\gamma \in \Delta_{n}^{y}$.
(ii). Fix $g \in G$. Let $r \in \mathbb{N}$ be such that $g B^{-1} V_{n} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$. Let $m \in \mathbb{N}$ be such that $d\left(h_{m} \cdot x, y\right)<2^{-r}$. Clearly $h_{m} \Delta_{n}^{x} B=G$, so there is $b \in B^{-1}$ with $g b \in h_{m} \Delta_{n}^{x}$, or equivalently $h_{m}^{-1} g b \in \Delta_{n}^{x}$. Then for all $v \in V_{n}$

$$
y(g b v)=\left(h_{m} \cdot x\right)(g b v)=x\left(h_{m}^{-1} g b v\right)=P_{n}(v)
$$

Hence $g b \in \Delta_{n}^{y}$ and $g \in \Delta_{n}^{y} B$. We conclude that $\Delta_{n}^{y} B=G$.
(iii). Fix $n \geq k \in \mathbb{N}$ and $\gamma \in \Delta_{n}^{y}$. If $\lambda \in D_{k}^{n}$, then $\Delta_{n}^{x} \lambda \subseteq \Delta_{k}^{x}$ by clause (i) of Lemma 5.1.4. Right multiplication by λ is a bijection of G, so

$$
\Delta_{n}^{y} \lambda=\bigcup_{i \in \mathbb{N}} \bigcap_{m \geq i} h_{m} \Delta_{n}^{x} \lambda \subseteq \bigcup_{i \in \mathbb{N}} \bigcap_{m \geq i} h_{m} \Delta_{k}^{x}=\Delta_{k}^{y}
$$

Thus $\gamma D_{k}^{n} \subseteq \Delta_{k}^{y} \cap \gamma F_{n}$. On the other hand, since F_{n} is finite we can find $m \in \mathbb{N}$ by (i) with $\gamma \in h_{m} \Delta_{n}^{x}$ and

$$
\Delta_{k}^{y} \cap \gamma F_{n} \subseteq h_{m} \Delta_{k}^{x} \cap \gamma F_{n}=h_{m}\left[\Delta_{k}^{x} \cap h_{m}^{-1} \gamma F_{n}\right]=\gamma\left(\Delta_{k}^{x} \cap F_{n}\right)=\gamma D_{k}^{n}
$$

(iv). Define $\Delta_{0}^{y}=\bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{0}$. One can easily check that (ii) and (iii) remain true when $n>k=0$ and when $n=k=0$. We verify the conditions listed in Definition 5.1.2. (Disjoint). Let $n \in \mathbb{N}$ and $\gamma \neq \psi \in \Delta_{n}^{y}$. Then by (i) there is $m \in \mathbb{N}$ with $\gamma, \psi \in h_{m} \cdot \Delta_{n}^{x}$. Then $h_{m}^{-1} \gamma \neq h_{m}^{-1} \psi \in \Delta_{n}^{x}$ so $h_{m}^{-1} \gamma F_{n} \cap h_{m}^{-1} \psi F_{n}=\varnothing$ and hence $\gamma F_{n} \cap \psi F_{n}=\varnothing$. (Dense). This follows immediately from (ii). (Coherent). Suppose $n \geq k \in \mathbb{N}, \gamma \in \Delta_{n}^{y}, \psi \in \Delta_{k}^{y}$, and $\psi F_{k} \cap \gamma F_{n} \neq \varnothing$. By (i) there is $m \in \mathbb{N}$ with $\gamma \in h_{m} \Delta_{n}^{x}$ and $\psi \in h_{m} \Delta_{k}^{x}$. So $h_{m}^{-1} \gamma \in \Delta_{n}^{x}, h_{m}^{-1} \psi \in \Delta_{k}^{x}$, and $h_{m}^{-1} \psi F_{k} \cap h_{m}^{-1} \gamma F_{n} \neq \varnothing$. It follows that $h_{m}^{-1} \psi F_{k} \subseteq h_{m}^{-1} \gamma F_{n}$ and hence $\psi F_{k} \subseteq \gamma F_{n}$. (Uniform). This follows immediately from (iii). (Growth). The growth condition on blueprints is equivalent to the property $\left|D_{n-1}^{n}\right| \geq 3$. Therefore this follows immediately from (iii). We conclude that $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ is a blueprint.

Technically, the definition of Δ_{0}^{y} in clause (iv) above depends on the sequence $\left(h_{m}\right)$ chosen. However, the set Δ_{0}^{y} is essentially unimportant and the non uniqueness of Δ_{0}^{y} is not a problem for us. It is only important to fix a single choice of Δ_{0}^{y} which satisfies the equation above with respect to some sequence $\left(h_{m}\right)$ with $y=\lim h_{m} \cdot x$. Notice though that for $n \geq 1 \Delta_{n}^{y}=\bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{n}$ for every sequence $\left(h_{m}\right)$ with $y=\lim h_{m} \cdot x$. Thus, if we have a particular Δ_{0}^{y} in mind, we can always choose to work with the sequence $\left(h_{m}\right)$ with $y=\lim h_{m} \cdot x$ and $\Delta_{0}^{y}=\bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{0}$.

Recall that in general for a blueprint α_{n}, β_{n}, and γ_{n} are assumed only to be distinct members of D_{n-1}^{n}, and these group elements are used to define Λ_{n}, a_{n}, and b_{n}. Therefore the objects $\alpha_{n}, \beta_{n}, \gamma_{n}, a_{n}, b_{n}$, and Λ_{n} can all be used with the blueprint $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ and all the conclusions of Lemmas 5.1.4 and 5.1.5 will hold. This is a very important observation.

Lemma 7.1.2. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. Then for every $y \in \overline{[x]}$ we have:
(i) if $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is decreasing then so is $\left(\Delta_{n}^{y}\right)_{n \in \mathbb{N}}$;
(ii) if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is maximally disjoint then so is $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$;
(iii) if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, then $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ is guided by the same growth sequence;
(iv) if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is centered, directed, and the Δ_{k}-translates of F_{k} are maximally disjoint for some $k \in \mathbb{N}$ then

$$
\left|\bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}\right| \leq 1
$$

(v) if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is centered and directed and $g \in \bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}$ for some $g \in G$, then $g \Delta_{n} \subseteq \Delta_{n}^{y}$ for all $n \in \mathbb{N}$;
(vi) if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is centered, directed, and maximally disjoint and $g \in G$ satisfies $g \in \bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}$, then $g \Delta_{n}=\Delta_{n}^{y}$ for all $n \in \mathbb{N}$.

Proof. (i). Since $\left(\Delta_{n}^{x}\right)_{n \in \mathbb{N}}$ is a decreasing sequence, we have

$$
\Delta_{n+1}^{y}=\bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{n+1}^{x} \subseteq \bigcup_{k \in \mathbb{N}} \bigcap_{m \geq k} h_{m} \Delta_{n}^{x}=\Delta_{n}^{y}
$$

(ii). This follows immediately from clause (ii) of the previous proposition (with $B=F_{n} F_{n}^{-1}$).
(iii). By referring back to Definition 5.3 .4 we see that the property of being guided by a growth sequence only depends on the sets $\left(F_{n}\right)_{n \in \mathbb{N}},\left(H_{n}\right)_{n \in \mathbb{N}}$, and $\left(D_{k}^{n}\right)_{n \geq k \in \mathbb{N}}$.
(iv). Let $g, h \in \bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}$. Since the Δ_{k}^{x}-translates of F_{k} are maximally disjoint within G, there is $\psi \in \Delta_{k}$ with $h^{-1} g \in \psi F_{k} F_{k}^{-1}$. Since $\left(\Delta_{n}^{x}, F_{n}\right)_{n \in \mathbb{N}}$ is centered and directed, by clause (iv) of Lemma 5.1.5 there is $n \geq k$ with $\psi F_{k} \subseteq F_{n}$. Then $h^{-1} g \in F_{n} F_{k}^{-1}$. By clause (i) of Lemma 5.1.5, $F_{k} \subseteq F_{n}$ and therefore $h^{-1} g \in$ $F_{n} F_{n}^{-1}$. It follows that $g F_{n} \cap h F_{n} \neq \varnothing$. Since $g, h \in \Delta_{n}^{y}$ we must have $g=h$.
(v). Suppose $g \in \Delta_{n}^{y}$ for all $n \in \mathbb{N}$. Fix $k \in \mathbb{N}$. If $\gamma \in \Delta_{k}^{x}$, then since $\left(\Delta_{n}^{x}, F_{n}\right)_{n \in \mathbb{N}}$ is centered and directed, there is $n>k$ with $\gamma \in F_{n}$. In particular, $\gamma \in D_{k}^{n}$. Thus $\Delta_{k}^{x} \subseteq \bigcup_{n \geq k} D_{k}^{n}$. On the other hand, $\bigcup_{n \geq k} D_{k}^{n} \subseteq \Delta_{k}^{x}$ by clause (i) of Lemma 5.1.4 (since $\left(\Delta_{n}^{x}, F_{n}\right)_{n \in \mathbb{N}}$ is centered). Thus $\Delta_{k}^{x}=\bigcup_{n \geq k} D_{k}^{n}$. Again by clause (i) of Lemma 5.1.4 we have

$$
g \Delta_{k}^{x}=g \bigcup_{n \geq k} D_{k}^{n} \subseteq \Delta_{k}^{y}
$$

(vi). Suppose $g \in \Delta_{n}^{y}$ for all $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$. By (v) we have $g \Delta_{n}^{x} \subseteq \Delta_{n}^{y}$. Let $\gamma \in \Delta_{n}^{y}$. Since the Δ_{n}^{x}-translates of F_{n} are maximally disjoint, there is $\psi \in \Delta_{n}^{x}$ with $\psi F_{n} \cap g^{-1} \gamma F_{n} \neq \varnothing$. Thus $g \psi \in g \Delta_{n}^{x} \subseteq \Delta_{n}^{y}$ and $g \psi F_{n} \cap \gamma F_{n} \neq \varnothing$. By the
disjoint property of blueprints we must have that $\gamma=g \psi \in g \Delta_{n}^{x}$. We conclude that $g \Delta_{n}^{x}=\Delta_{n}^{y}$.

We now show that every function in the closure of the orbit of a fundamental function is fundamental.

Proposition 7.1.3. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. Then every $y \in \overline{[x]}$ is fundamental with respect to $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$.

Proof. Let $1_{G}=g_{0}, g_{1}, \ldots$ be the fixed enumeration of G used in defining the metric d on 2^{G}. For each $n \geq 1$, let $V_{n} \subseteq \gamma_{n} F_{n-1} \subseteq F_{n}$ be the test region for the simple Δ_{n} membership test admitted by x (clause (ii) of Theorem 5.2.5), and let $P_{n} \in 2^{V_{n}}$ be the corresponding test function. Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ be such that $y=\lim _{n \rightarrow \infty} h_{n} \cdot x$.

Since x is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$, the restriction of x to $G-$ $\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1}$, call this function x^{\prime}, is canonical with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$. By the definition of canonical, this means that there is a locally recognizable function $R: A \rightarrow 2$ such that x^{\prime}, R, and $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ satisfy the conclusions of Theorem 5.2.5. Let y^{\prime} be the restriction of y to $G-\bigcup_{n>1} \Delta_{n}^{y} \Lambda_{n} b_{n-1}$. If we show that y^{\prime}, R, and $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ satisfy the conclusions of Theorem 5.2 .5 , then y^{\prime} will be canonical with respect to $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ and hence y will be fundamental with respect to $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$. So we proceed to check the numbered conclusions of Theorem 5.2.5.
(i). Let $\gamma \in \Delta_{1}^{y}$. Let $r \in \mathbb{N}$ be such that $\gamma \gamma_{1} F_{0} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$, and let $m \in \mathbb{N}$ be such that $\gamma \in h_{m} \Delta_{1}^{x}$ and $d\left(h_{m} \cdot x, y\right)<2^{-r}$. Then

$$
y\left(\gamma \gamma_{1} f\right)=\left(h_{m} \cdot x\right)\left(\gamma \gamma_{1} f\right)=x\left(h_{m}^{-1} \gamma \gamma_{1} f\right)=R(f)
$$

for all $f \in F_{0}$ (the last equality follows since x is fundamental). We notice that $\Delta_{1}^{y} \gamma_{1} F_{0}$ is disjoint from $\bigcup_{n \geq 1} \Delta_{n}^{y} \Lambda_{n} b_{n-1}$ since these sets are disjoint for any preblueprint, as shown in the proof of Theorem 5.2.5. Thus $y^{\prime}\left(\gamma \gamma_{1} f\right)=R(f)$ for all $\gamma \in \Delta_{1}^{y}$ and $f \in F_{0}$.
(ii). This is clear by the definition of Δ_{n}^{y} for $n \geq 1$.
(iii). By definition, $G-\operatorname{dom}\left(y^{\prime}\right)=\bigcup_{n \geq 1} \Delta_{n}^{y} \Lambda_{n} b_{n-1}$. In the proof of Theorem 5.2.5, it was shown that this union is disjoint for all pre-blueprints.
(iv). Notice that $\Delta_{n}^{x} \Lambda_{n} b_{n-1} \subseteq \Delta_{1}^{x} b_{1} \cup \Delta_{1}^{x} \Lambda_{1} \subseteq \Delta_{1}^{x} D_{0}^{1}$ for $n \geq 1$. If $g \in \operatorname{dom}\left(x^{\prime}\right)$ and $x^{\prime}(g)=R\left(1_{G}\right)$ then $g \in \Delta_{1}^{x}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$ since x^{\prime} is canonical. If $g \in G-\operatorname{dom}\left(x^{\prime}\right)$ then $g \in \Delta_{n}^{x} \Lambda_{n} b_{n-1}$ for some $n \geq 1$ and hence $g \in \Delta_{1}^{x} D_{0}^{1}$. Thus for all $g \in G$, $x(g)=R\left(1_{G}\right)$ implies $g \in \Delta_{1}^{x}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$. Suppose $g \in G$ satisfies $y(g)=R\left(1_{G}\right)$. Let $r \in \mathbb{N}$ be such that $g F_{1}^{-1} F_{1} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}$ and let $m \in \mathbb{N}$ be such that $d\left(h_{m} \cdot x, y\right)<2^{-r}$. Then $x\left(h_{m}^{-1} g\right)=\left(h_{m} \cdot x\right)(g)=y(g)=R\left(1_{G}\right)$ so $h_{m}^{-1} g \in$ $\Delta_{1}^{x}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$. Let $f \in \gamma_{1} F_{0} \cup D_{0}^{1}$ be such that $h_{m}^{-1} g f^{-1} \in \Delta_{1}^{x}$. Then for all $v \in V_{1}$

$$
y\left(g f^{-1} v\right)=\left(h_{m} \cdot x\right)\left(g f^{-1} v\right)=x\left(h_{m}^{-1} g f^{-1} v\right)=P_{1}(v)
$$

So $g f^{-1} \in \Delta_{1}^{y}$ and $g \in \Delta_{1}^{y} f \subseteq \Delta_{1}^{y}\left(\gamma_{1} F_{0} \cup D_{0}^{1}\right)$.
(v). This follows abstractly from (iii) for any pre-blueprint, as shown in the proof of Theorem 5.2.5.
(vi). Fix $n \geq 1, \gamma, \sigma \in \Delta_{n}^{y}$, and

$$
f \in F_{n}-\left\{a_{n}, b_{n}\right\}-\bigcup_{1 \leq k \leq n} D_{k}^{n} \Lambda_{k} b_{k-1}
$$

Let $m \in \mathbb{N}$ be such that $\gamma, \sigma \in h_{m} \Delta_{n}^{x}, y(\gamma f)=\left(h_{m} \cdot x\right)(\gamma f)$, and $y(\sigma f)=\left(h_{m}\right.$. $x)(\sigma f)$. Then $h_{m}^{-1} \gamma, h_{m}^{-1} \sigma \in \Delta_{n}^{x}$ so $x\left(h_{m}^{-1} \gamma f\right)=x\left(h_{m}^{-1} \sigma f\right)$ since x is fundamental. It follows that

$$
y(\gamma f)=\left(h_{m} \cdot x\right)(\gamma f)=x\left(h_{m}^{-1} \gamma f\right)=x\left(h_{m}^{-1} \sigma f\right)=\left(h_{m} \cdot x\right)(\sigma f)=y(\sigma f)
$$

(vii). This follows abstractly from (v) and (vi) for any pre-blueprint, as shown in the proof of Theorem 5.2.5.

Conclusion (vi) of Lemma 7.1.2 motivates the following definition.
Definition 7.1.4. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered, directed, and maximally disjoint blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. A function $y \in \overline{[x]}$ is called x-regular if for some $g \in G$

$$
g \in \bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}
$$

If $g=1_{G}$, then y is called x-centered.
Notice that the group element g in the previous definition must be unique by clause (iv) of Lemma 7.1.2. Also, if $y \in \overline{[x]}$ is x-regular then every element in the orbit of y is x-regular, and if $g \in \bigcap_{n \in \mathbb{N}} \Delta_{n}^{y}$ then $g^{-1} \cdot y$ is the unique x-centered element in the orbit of y.

The next lemma presents a nontrivial way of testing when $y \in \overline{[x]}$ is x-regular, at least in the case of blueprints which are centered and guided by a growth sequence. The precise numbers and combinations of F_{n} 's appearing in this lemma are ad-hoc; this lemma will be used for a specific purpose in the final section of this chapter. If needed, one could find similar tests to the one below.

Lemma 7.1.5. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, let $x \in 2^{G}$ be fundamental with respect to this blueprint, and let $y \in \overline{[x]}$. Then y is x-regular if and only if for all but finitely many $n \equiv 1 \bmod 10$ the set $F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap \Delta_{n+17}^{y}$ is nonempty.

Proof. First suppose that y is x-regular with $\gamma \in \Delta_{n}^{y}$ for all $n \in \mathbb{N}$. Recall that by the definition of a growth sequence we have $G=\bigcup_{n \in \mathbb{N}} H_{n}$. Thus there is $N \in \mathbb{N}$ with $\gamma \in H_{N}$. By clause (ii) of Lemma 5.3.5, $\gamma \in H_{N} \subseteq F_{N+2} F_{0}^{-1}$. Since $\left(\Delta_{n}^{x}, F_{n}\right)_{n \in \mathbb{N}}$ is centered, $\left(F_{n}\right)_{n \in \mathbb{N}}$ is increasing. So it follows that $\gamma \in F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap$ Δ_{n+17}^{y} for every $n \geq N+2$.

Now suppose $y \in \overline{[x]}$ and $m \equiv 1 \bmod 10$ satisfy $F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap \Delta_{n+17}^{y} \neq \varnothing$ for all $n \geq m$ congruent to 1 modulo 10 . Let $n \geq m$ be congruent to 1 modulo 10 and fix $\gamma \in F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap \Delta_{n+17}^{y}$. We will show $\gamma \in \Delta_{(n+10)+17}^{y}$. Since $n+10>m$, our assumption on y gives

$$
1_{G} \in \Delta_{n+27}^{y} F_{n+14} F_{n+10} F_{n+10}^{-1}
$$

By making repeated uses of clause (iii) of Definition 5.3.2, clause (ii) of Definition 5.3.4, and clause (ii) of Lemma 5.3.5, we have

$$
\begin{gathered}
\gamma \in F_{n} F_{n}^{-1} F_{n+4}^{-1} \subseteq H_{n} H_{n+1} H_{n+4}^{-1} \subseteq H_{n+5} \\
\subseteq F_{n+7} F_{n+7}^{-1} \subseteq \Delta_{n+27}^{y} F_{n+14} F_{n+10} F_{n+10}^{-1} F_{n+7} F_{n+7}^{-1} \\
\subseteq \Delta_{n+27}^{y} H_{n+14} H_{n+10} H_{n+11} H_{n+12} H_{n+13} \subseteq \Delta_{n+27}^{y} H_{n+15}
\end{gathered}
$$

By clause (i) of Lemma 5.3.5, clause (i) of Lemma 5.1.5, and clause (i) of Lemma 7.1.2 we have that $\left(\Delta_{n}^{y}\right)_{n \in \mathbb{N}}$ is a decreasing sequence. By clause (iii) of Lemma 7.1.2 $\left(\Delta_{n}^{y}, F_{n}\right)_{n \in \mathbb{N}}$ is also guided by $\left(H_{n}\right)_{n \in \mathbb{N}}$. Since $\gamma \in \Delta_{n+17}^{y} \subseteq \Delta_{n+15}^{y}$ we have

$$
\gamma \in \gamma F_{n+15} \cap \Delta_{n+27}^{y} H_{n+15}
$$

and therefore by clause (iii) of Lemma 5.3.5 $\gamma \in \gamma F_{n+15} \subseteq \Delta_{n+27}^{y} F_{n+17}$. However, $\gamma \in \Delta_{n+17}^{y}$, the Δ_{n+17}^{y}-translates of F_{n+17} are disjoint, and $\Delta_{n+27}^{y} \subseteq \Delta_{n+17}^{y}$. So we must have that $\gamma \in \Delta_{n+27}^{y}$. In particular,

$$
\gamma \in F_{n+10} F_{n+10}^{-1} F_{n+14}^{-1} \cap \Delta_{n+27}^{y}
$$

We can repeat the above argument and apply induction to conclude that $\gamma \in \Delta_{k+17}^{y}$ for all $k \geq n$ congruent to 1 modulo 10 . Therefore $\gamma \in \Delta_{n}^{y}$ for all $n \in \mathbb{N}$ since $\left(\Delta_{n}^{y}\right)_{n \in \mathbb{N}}$ is decreasing. We conclude that y is x-regular.

7.2. Pre-minimality

This section is devoted to studying the significance of following property in the context of fundamental functions.

Definition 7.2.1. Let G be a countably infinite group, and let $c \in 2 \subseteq G$. The function c is called pre-minimal if there is a minimal $c^{\prime} \in 2^{G}$ extending c.

Our goal in this section is to provide several ways of testing when fundamental functions are pre-minimal. It would be nice if pre-minimality was highly reliant on the structure of the blueprint used, however this turns out not to be the case. Nevertheless, with increased restrictions on the blueprint this comes closer to being the case. This section consists of several characterizations of pre-minimal functions. We begin by assuming as little as possible about the fundamental function and its blueprint, and as we proceed through the section we place more and more restrictions on the blueprint in order to arrive at nicer and nicer characterizations of pre-minimality.

Recall from clause (vii) of Lemma 5.1.5 that if a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is directed, then $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}$ is either empty or a singleton.

Lemma 7.2.2. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint and have the property that c is constant on $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}$. Then c is pre-minimal if and only if either c_{0} or c_{1} is minimal, where $c_{i} \in 2^{G}$ is the function which extends c and satisfies $c_{i}(g)=i$ for $g \notin \operatorname{dom}(c)$.

Proof. If $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n} \neq \varnothing$, then let i be the constant value that c takes on this set. If $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$, then let i be either 0 or 1 .

Clearly if either c_{0} or c_{1} is minimal then c is pre-minimal. So assume that c is pre-minimal. We will show that c_{i} is minimal. Since c is pre-minimal, there is a minimal $d \in 2^{G}$ extending c. We will use Lemma 2.4.5 to show that c_{i} is minimal. Let $A \subseteq G$ be finite. Recall that $\left(\Delta_{n} b_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence. Since A is finite we may fix $k \in \mathbb{N}$ so that

$$
\forall a \in A a \in \Delta_{k} b_{k} \Longrightarrow a \in \bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}
$$

Set

$$
B=\bigcup_{0 \leq n \leq k} A F_{n}^{-1} F_{n}
$$

Since d is minimal, there is a finite $T \subseteq G$ so that for all $g \in G$ there is $t \in T$ with $d(g t b)=d(b)$ for all $b \in B$.

Fix an arbitrary $g \in G$, and let $t \in T$ be such that $d(g t b)=d(b)$ for all $b \in B$. We will show that $c_{i}($ gta $)=c_{i}(a)$ for all $a \in A$.

Fix $a \in A, n \leq k$, and $f \in F_{n}$. We claim that $a \in \Delta_{n} f$ if and only if $g t a \in \Delta_{n} f$. First suppose $a \in \Delta_{n} f$. Say $a=\gamma f$ with $\gamma \in \Delta_{n}$. Then

$$
\gamma F_{n} \subseteq a F_{n}^{-1} F_{n} \subseteq A F_{k}^{-1} F_{k}=B
$$

Since c admits a Δ_{n} membership test with test region a subset of F_{n} and $d(g t b)=$ $d(b)$ for all $b \in B$, it follows that $g t a f^{-1} \in \Delta_{n}$ and thus $g t a \in \Delta_{n} f$. The argument that $g t a \in \Delta_{n} f$ implies $a \in \Delta_{n} f$ is identical.

A consequence of the previous paragraph is that for $a \in A$ and $n \leq k$,

$$
a \in \Delta_{n} \Theta_{n} b_{n-1} \Longleftrightarrow g t a \in \Delta_{n} \Theta_{n} b_{n-1}
$$

Set $A^{\prime}=A-\Delta_{k} b_{k}$. For $n>k, \Delta_{n} \Theta_{n} b_{n-1}$ is contained in $\Delta_{k} b_{k}$. Since $A^{\prime} \cap \Delta_{k} b_{k}=\varnothing$, we have $g t A^{\prime} \cap \Delta_{k} b_{k}=\varnothing$ as well. As

$$
\operatorname{dom}(c)=G-\bigcup_{n \geq 1} \Delta_{n} \Theta_{n} b_{n-1}
$$

it follows that

$$
\left(g t A^{\prime}\right) \cap \operatorname{dom}(c)=g t\left(A^{\prime} \cap \operatorname{dom}(c)\right) .
$$

Therefore $c_{i}(g t a)=i=c_{i}(a)$ for all $a \in A^{\prime}-\operatorname{dom}(c)$. Since d extends c and $d(g t a)=d(a)$ for all $a \in A$, we have $c(g t a)=c(a)$ for all $a \in A^{\prime} \cap \operatorname{dom}(c)$. Putting these together we have $c_{i}(g t a)=c_{i}(a)$ for all $a \in A^{\prime}$. If $a \in A-A^{\prime}$ then $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n} \neq \varnothing$ and we have $d(g t a)=d(a)=c(a)=i$. In general for $h \in G$, $d(h)=i$ implies $c_{i}(h)=i$. So $c_{i}(g t a)=c_{i}(a)=i$ for all $a \in A-A^{\prime}$. We conclude that $c_{i}(g t a)=c_{i}(a)$ for all $a \in A$. Thus c_{i} is minimal as claimed.

Recall from the proof of clause (viii) of Lemma 5.1.5 that if $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is a centered and directed blueprint and $\beta_{n} \neq 1_{G}$ for infinitely many $n \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$.

Corollary 7.2.3. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$, and let $c \in 2^{\subseteq G}$ be fundamental with respect to this blueprint. Then c is pre-minimal if and only if for every finite $A \subseteq G$ there is a finite $T \subseteq G$ with the property that for every $g \in G$ there is $t \in T$ satisfying

$$
\begin{gathered}
(g t A) \cap \operatorname{dom}(c)=g t(A \cap \operatorname{dom}(c)), \text { and } \\
\forall a \in A \cap \operatorname{dom}(c) c(g t a)=c(a)
\end{gathered}
$$

Proof. If c has the stated property then the function c_{0} (as well as c_{1}) defined in the previous lemma is clearly minimal and thus c is pre-minimal. Conversely, suppose c is pre-minimal. If we let $A \subseteq G$ be finite and follow the argument in the proof of the previous lemma, then $A^{\prime}=A$ and we find that c satisfies the condition stated above.

Lemma 7.2.4. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a directed blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that for some $k \in \mathbb{N}$ the Δ_{k}-translates of F_{k} are maximally disjoint. Let $c \in 2^{\subseteq G}$ be fundamental with
respect to this blueprint. Then c is pre-minimal if and only if for every finite $A \subseteq G$ there is $n>k \in \mathbb{N}$ and $g \in G$ so that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{k}^{n}$ satisfying:

$$
\gamma \lambda g[A \cap \operatorname{dom}(c)]=(\gamma \lambda g A) \cap \operatorname{dom}(c)
$$

and

$$
\forall a \in A \cap \operatorname{dom}(c) c(\gamma \lambda g a)=c(a)
$$

Proof. First suppose that c has the property stated above. Define $c^{\prime}: G \rightarrow 2$ to be the function which extends c and satisfies $c^{\prime}(g)=0$ for all $g \notin \operatorname{dom}(c)$. We will use Lemma 2.4.5 to show that c^{\prime} is minimal. So fix a finite $A \subseteq G$, and let $n>k$ and $g \in G$ be so as to satisfy the above stated condition satisfied by c. Let $B \subseteq G$ be finite such that $\Delta_{n} B=G$. Set $T=B^{-1} D_{k}^{n} g$. Now let $h \in G$ be arbitrary. Since $\Delta_{n} B=G$, there is $b \in B^{-1}$ with $h b \in \Delta_{n}$. It follows there is $\lambda \in D_{k}^{n}$ with

$$
h b \lambda g[A \cap \operatorname{dom}(c)]=(h b \lambda g A) \cap \operatorname{dom}(c)
$$

and

$$
\forall a \in A \cap \operatorname{dom}(c) c(h b \lambda g a)=c(a)
$$

It immediately follows that $c^{\prime}(h b \lambda g a)=c^{\prime}(a)$ for all $a \in A$. Also we have $b \lambda g \in T$. We conclude c^{\prime} is minimal and hence c is pre-minimal.

Now assume that c is pre-minimal. Let $A \subseteq G$ be finite. By enlarging A if necessary, we may assume that $\psi F_{k} \subseteq A$ for some $\psi \in \Delta_{k}$. Set $g=\psi^{-1}$. By Corollary 7.2.3 there is a finite $T \subseteq G$ so that for all $h \in G$ there is $t \in T$ with

$$
\begin{aligned}
& h t(A \cap \operatorname{dom}(c))=(h t A) \cap \operatorname{dom}(c), \text { and } \\
& \quad \forall a \in A \cap \operatorname{dom}(c) c(h t a)=c(a)
\end{aligned}
$$

By clause (iii) of Lemma 5.1.5, there is $n>k$ and $\sigma \in \Delta_{n}$ with

$$
T A F_{k} F_{k} F_{k} F_{k}^{-1} \cap \Delta_{k} \subseteq \sigma F_{n}
$$

Now let $\gamma \in \Delta_{n}$ be arbitrary. Let $t \in T$ be such that

$$
\begin{gathered}
\gamma \sigma^{-1} t(A \cap \operatorname{dom}(c))=\left(\gamma \sigma^{-1} t A\right) \cap \operatorname{dom}(c), \text { and } \\
\forall a \in A \cap \operatorname{dom}(c) c\left(\gamma \sigma^{-1} t a\right)=c(a) .
\end{gathered}
$$

Since $\psi F_{k} \subseteq A$ and c has a Δ_{k} membership test, it must be that $\gamma \sigma^{-1} t \psi \in \Delta_{k}$. By clause (v) of Lemma 5.1.5 we have that

$$
\Delta_{k} \cap \gamma \sigma^{-1} T A=\gamma \sigma^{-1}\left(\Delta_{k} \cap T A\right) \subseteq \gamma D_{k}^{n}
$$

Therefore $\gamma \sigma^{-1} t \psi \in \gamma D_{k}^{n}$, so $\lambda=\sigma^{-1} t \psi \in D_{k}^{n}$. We have $\gamma \lambda g=\gamma \sigma^{-1} t$ so
$\gamma \lambda g(A \cap \operatorname{dom}(c))=(\gamma \lambda g A) \cap \operatorname{dom}(c)$, and $\forall a \in A \cap \operatorname{dom}(c) c(\gamma \lambda g a)=c(a)$.
Thus c has the claimed property.
In the previous lemma, we only assume that the blueprint is directed and that the Δ_{k}-translates of F_{k} are maximally disjoint in order to apply the conclusion of clause (v) of Lemma 5.1.5. In all of the following results in this section we assume that the blueprint is directed and that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$, but it is still the case that all we really need is to be able to apply clause (v) of Lemma 5.1.5. Clause (v) of Lemma 5.1.5 therefore plays a special role in this section and the next. Really we are using clause (v) to get a more descriptive version of clause (vi) of Lemma 5.1 .5 where 0 is replaced by i (where $i \in\{0,1\}$ is such that the Δ_{i}-translates of F_{i} are maximally disjoint). Thus,
the minimal property mentioned in (vi) seems to be related to the pre-minimality of fundamental functions.

Lemma 7.2.5. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a directed blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$. Let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. Then c is pre-minimal if and only if for every $k \geq 1$ and $\psi \in \Delta_{k}$ there is $n>k$ so that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{k}^{n}$ satisfying:

$$
(\gamma \lambda)^{-1}\left[\left(\gamma \lambda F_{k}\right) \cap \operatorname{dom}(c)\right]=\psi^{-1}\left[\left(\psi F_{k}\right) \cap \operatorname{dom}(c)\right]
$$

and

$$
\forall f \in \psi^{-1}\left[\left(\psi F_{k}\right) \cap \operatorname{dom}(c)\right] c(\gamma \lambda f)=c(\psi f) .
$$

Proof. Notice that the last two expressions are equivalent to $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright$ $F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright F_{k}$. Fix $i \in\{0,1\}$ so that the Δ_{i}-translates of F_{i} are maximally disjoint. First assume that c has the stated property. We will show that c is preminimal by applying Corollary 7.2.3. Let $A \subseteq G$ be finite. By directedness, there is $k \geq 1$ and $\psi \in \Delta_{k}$ with

$$
\Delta_{i} \cap A F_{1}^{-1} F_{1} F_{i} F_{i} F_{i}^{-1} \subseteq \psi F_{k} .
$$

Notice that the set on the left is necessarily contained in ψD_{i}^{k}. Also notice that $\left(\Delta_{1} \cap A F_{1}^{-1}\right) a_{1} a_{i}^{-1}$ is contained in the set on the left, so by the coherent property of blueprints

$$
\left(\Delta_{1} \cap A F_{1}^{-1}\right) F_{1} \subseteq \psi F_{k}
$$

By assumption, there is $n>k$ so that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{k}^{n}$ satisfying $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright F_{k}$. Let $B \subseteq G$ be finite with $\Delta_{n} B=G$. Set $T=$ $B^{-1} D_{k}^{n} \psi^{-1}$ and let $g \in G$ be arbitrary. Then there is $b \in B^{-1}$ with $g b=\gamma \in \Delta_{n}$. Let $\lambda \in D_{k}^{n}$ be such that $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright F_{k}$. Set $t=b \lambda \psi^{-1} \in T$ and notice $\gamma \lambda=g t \psi$. So $\left[(g t \psi)^{-1} \cdot c\right] \upharpoonright F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright F_{k}$ and therefore

$$
\left[(g t)^{-1} \cdot c\right] \upharpoonright \psi F_{k}=c \upharpoonright \psi F_{k}
$$

We will be done if we can show that $\left[(g t)^{-1} \cdot c\right] \upharpoonright A=c \upharpoonright A$. For this it suffices to fix $a \in A-\psi F_{k}$ and show that $a, g t a \in \operatorname{dom}(c)$ and $c(g t a)=c(a)$. Since $\left(\Delta_{1} \cap A F_{1}^{-1}\right) F_{1} \subseteq \psi F_{k}$, we must have that $a \notin \Delta_{1} F_{1}$. By our choice of k and clause (v) of Lemma 5.1.5 we have that

$$
\Delta_{1} \cap \gamma \lambda \psi^{-1} a F_{1}^{-1}=\gamma \lambda \psi^{-1}\left(\Delta_{1} \cap a F_{1}^{-1}\right)=\varnothing
$$

So $\gamma \lambda \psi^{-1} a=g t a \notin \Delta_{1} F_{1}$. It follows from Definition 5.2.7 and conclusions (iii) and (iv) of Theorem 5.2.5 that $a, g t a \in \operatorname{dom}(c)$ and $c(g t a)=c(a)$.

Now assume that c is pre-minimal. Fix $k \geq 1$ and $\psi \in \Delta_{k}$. By Corollary 7.2.3, there is a finite $T \subseteq G$ so that for all $g \in G$ there is $t \in T$ with $\left[(g t)^{-1} \cdot c\right] \upharpoonright \psi F_{k}=$ $c \upharpoonright \psi F_{k}$. By directedness, there is $n \geq k$ and $\sigma \in \Delta_{n}$ with

$$
\Delta_{i} \cap T \psi F_{k} F_{i} F_{i} F_{i}^{-1} \subseteq \sigma F_{n}
$$

Notice that the set on the left is necessarily contained in σD_{i}^{n}. Also notice that $\left(\Delta_{k} \cap T \psi\right) a_{k} a_{i}^{-1}$ is contained in the set on the left, so by the coherent property of blueprints we have

$$
\Delta_{k} \cap T \psi \subseteq \sigma D_{k}^{n}
$$

Now let $\gamma \in \Delta_{n}$ be arbitrary. Let $t \in T$ be such that $\left[\left(\gamma \sigma^{-1} t\right)^{-1} \cdot c\right] \upharpoonright \psi F_{k}=c \upharpoonright \psi F_{k}$. Then $\left[\left(\gamma \sigma^{-1} t \psi\right)^{-1} c\right] \upharpoonright F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright F_{k}$ so it suffices to show that $\sigma^{-1} t \psi \in D_{k}^{n}$.

Since c has a Δ_{k} membership test and $\psi \in \Delta_{k}$, it must be that $\gamma \sigma^{-1} t \psi \in \Delta_{k}$. By clause (v) of Lemma 5.1.5 we have that

$$
\Delta_{k} \cap \gamma \sigma^{-1} T \psi=\gamma \sigma^{-1}\left(\Delta_{k} \cap T \psi\right) \subseteq \gamma \sigma^{-1} \sigma D_{k}^{n}=\gamma D_{k}^{n}
$$

Therefore $\gamma \sigma^{-1} t \psi \in \gamma D_{k}^{n}$, so $\lambda=\sigma^{-1} t \psi \in D_{k}^{n}$. Thus c has the stated property.
Corollary 7.2.6. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a directed and centered blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$. Let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. Then c is pre-minimal if and only if for every $k \geq 1$ there is $n>k$ so that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{k}^{n}$ satisfying:

$$
\gamma \lambda\left[F_{k} \cap \operatorname{dom}(c)\right]=\left(\gamma \lambda F_{k}\right) \cap \operatorname{dom}(c)
$$

and

$$
\forall f \in F_{k} \cap \operatorname{dom}(c) c(\gamma \lambda f)=c(f)
$$

Proof. If c is pre-minimal, then by picking any $k \geq 1$, setting $\psi=1_{G} \in \Delta_{k}$, and applying the previous lemma we see that c has the stated property. Now assume that c has the stated property. We will apply the previous lemma to show that c is pre-minimal. Pick $k \in \mathbb{N}$ and $\psi \in \Delta_{k}$. By clause (iv) of Lemma 5.1.5, there is $m \geq k$ with $\psi F_{k} \subseteq F_{m}$. Let $n>m$ be such that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{m}^{n}$ with $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright F_{m}=c \upharpoonright F_{m}$. Now let $\gamma \in \Delta_{n}$ be arbitrary, and let $\lambda \in D_{m}^{n}$ be such that $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright F_{m}=c \upharpoonright F_{m}$. In particular, $\left[(\gamma \lambda)^{-1} \cdot c\right] \upharpoonright F_{k}=c \upharpoonright F_{k}$ (clause (i) of Lemma 5.1.5) and hence $\left[(\gamma \lambda \psi)^{-1} \cdot c\right] \upharpoonright \psi F_{k}=\left[\psi^{-1} \cdot c\right] \upharpoonright \psi F_{k}$. Notice that $\psi \in \Delta_{k} \cap F_{m}=D_{k}^{m}$ and therefore $\lambda \psi \in D_{k}^{n}$. So we have shown that c satisfies the condition stated in the previous lemma. We conclude that c is pre-minimal.

The following proposition is especially useful.
Proposition 7.2.7. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a directed blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$. Then any $c \in 2 \subseteq G$ which is canonical with respect to this blueprint is pre-minimal.

Proof. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}, i \in\{0,1\}$, and $c \in 2^{\subseteq} G$ be as stated. We will apply Lemma 7.2 .5 to show that c is pre-minimal. So fix $k \geq 1$ and $\psi \in \Delta_{k}$. Since $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and the blueprint is directed, there is $n \geq k$ and $\sigma \in \Delta_{n}$ with $\psi F_{k} \subseteq \sigma F_{n}$ and $\psi F_{k} \cap \Delta_{n}\left\{a_{n}, b_{n}\right\}=\varnothing$. So $\psi F_{k} \subseteq \sigma\left(F_{n}-\left\{a_{n}, b_{n}\right\}\right)$. Notice that $\sigma^{-1} \psi \in D_{k}^{n}$. Now let $\gamma \in \Delta_{n}$ be arbitrary and set $\lambda=\sigma^{-1} \psi$. By conclusion (vii) of Theorem 5.2.5

$$
\gamma^{-1}\left[\left(\gamma F_{n}-\left\{\gamma a_{n}, \gamma b_{n}\right\}\right) \cap \operatorname{dom}(c)\right]=\sigma^{-1}\left[\left(\sigma F_{n}-\left\{\sigma a_{n}, \sigma b_{n}\right\}\right) \cap \operatorname{dom}(c)\right]
$$

and

$$
\forall f \in \sigma^{-1}\left[\left(\sigma F_{n}-\left\{\sigma a_{n}, \sigma b_{n}\right\}\right) \cap \operatorname{dom}(c)\right] c(\gamma f)=c(\sigma f)
$$

Since $\sigma^{-1} \psi F_{k} \subseteq F_{n}-\left\{a_{n}, b_{n}\right\}$ and $\psi=\sigma \lambda$, it follows that

$$
(\gamma \lambda)^{-1}\left[\left(\gamma \lambda F_{k}\right) \cap \operatorname{dom}(c)\right]=\psi^{-1}\left[\left(\psi F_{k}\right) \cap \operatorname{dom}(c)\right]
$$

and

$$
\forall f \in \psi^{-1}\left[\left(\psi F_{k}\right) \cap \operatorname{dom}(c)\right] c(\gamma \lambda f)=c(\psi f)
$$

By Lemma 7.2.5 we conclude that c is pre-minimal.

7.3. Δ-minimality

In the previous section we saw that even for the most special blueprints the best characterization for pre-minimality (best in terms of relating pre-minimality with blueprint structure) we could get was Corollary 7.2.6. Since blueprints are such an important feature of fundamental functions, we want to study a property which is more closely related to blueprint structure. We also want this property to be stronger than pre-minimality.

Definition 7.3.1. Let G be a countably infinite group and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint. A function $f \in \mathbb{N} \subseteq G$ is Δ-minimal (relative to $\left.\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}\right)$ if for every finite $A \subseteq G$ there is $n \in \mathbb{N}$ and $\sigma \in \Delta_{n}$ so that for all $\gamma \in \Delta_{n}$

$$
\gamma \sigma^{-1} A \cap \operatorname{dom}(f)=\gamma \sigma^{-1}(A \cap \operatorname{dom}(f))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(f) f\left(\gamma \sigma^{-1} a\right)=f(a)
$$

We first observe that Δ-minimality is indeed stronger than pre-minimality.
Lemma 7.3.2. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $c \in 2^{\subseteq G}$ be any function. If c is Δ-minimal, then it is pre-minimal.

Proof. Assume c is Δ-minimal. Let $c^{\prime} \in 2^{G}$ be the function which extends c and satisfies $c^{\prime}(g)=0$ for all $g \in G-\operatorname{dom}(c)$. We will show that c^{\prime} is minimal by applying Lemma 2.4.5. So let $A \subseteq G$ be finite. Let $n \in \mathbb{N}$ and $\sigma \in \Delta_{n}$ be such that for all $\gamma \in \Delta_{n}$

$$
\gamma \sigma^{-1} A \cap \operatorname{dom}(c)=\gamma \sigma^{-1}(A \cap \operatorname{dom}(c))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(c) c\left(\gamma \sigma^{-1} a\right)=c(a)
$$

It follows that $c^{\prime}\left(\gamma \sigma^{-1} a\right)=c^{\prime}(a)$ for all $\gamma \in \Delta_{n}$ and $a \in A$. Let $B \subseteq G$ be finite with $\Delta_{n} B=G$. Set $T=B^{-1} \sigma^{-1}$ and let $g \in G$ be arbitrary. Then there is $b \in B^{-1}$ with $g b \in \Delta_{n}$ and hence $c^{\prime}\left(g b \sigma^{-1} a\right)=c^{\prime}(a)$ for all $a \in A$. We conclude that c^{\prime} is minimal and thus c is pre-minimal.

Usually we will be interested in Δ-minimal functions in the context of centered and directed blueprints. As the next lemma shows, when the blueprint is centered and directed the definition for Δ-minimal takes a very nice form.

Lemma 7.3.3. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint, and let $f \in \mathbb{N} \subseteq G$ be any function. Then f is Δ-minimal if and only if for every finite $A \subseteq G$ there is $n \in \mathbb{N}$ so that for all $\gamma \in \Delta_{n}$

$$
\gamma A \cap \operatorname{dom}(f)=\gamma(A \cap \operatorname{dom}(f))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(f) f(\gamma a)=f(a)
$$

Proof. Clearly f is Δ-minimal if it satisfies the above condition since one can choose $\sigma=1_{G} \in \Delta_{n}$ in Definition 7.3.1. So suppose that f is Δ-minimal. Let $A \subseteq G$ be finite and let $k \in \mathbb{N}$ and $\sigma \in \Delta_{k}$ be such that for all $\gamma \in \Delta_{k}$

$$
\gamma \sigma^{-1} A \cap \operatorname{dom}(f)=\gamma \sigma^{-1}(A \cap \operatorname{dom}(f))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(f) f\left(\gamma \sigma^{-1} a\right)=f(a)
$$

By clause (iv) of Lemma 5.1.5, there is $n \geq k$ with $\sigma F_{k} \subseteq F_{n}$. In particular, $\sigma \in D_{k}^{n}$. So if $\gamma \in \Delta_{n}$ then $\gamma \sigma \in \Delta_{k}$ and since $\gamma \sigma \sigma^{-1}=\gamma$ we have

$$
\gamma A \cap \operatorname{dom}(f)=\gamma(A \cap \operatorname{dom}(f))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(f) f(\gamma a)=f(a)
$$

By comparing Corollary 7.2 .6 to the lemma below, one can see that among centered and directed blueprints the advantage to Δ-minimality is that instead of having uncertainty as to which $\lambda \in D_{k}^{n}$ "works," we know that specifically $1_{G} \in D_{k}^{n}$ "works."

Lemma 7.3.4. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$. Let $c \in 2^{\subseteq G}$ be fundamental with respect to this blueprint. Then c is Δ-minimal if and only if for every $k \geq 1$ there is $n>k$ with the property that for all $\gamma \in \Delta_{n}$

$$
\gamma F_{k} \cap \operatorname{dom}(c)=\gamma\left(F_{k} \cap \operatorname{dom}(c)\right)
$$

and

$$
\forall f \in F_{k} \cap \operatorname{dom}(c) c(\gamma f)=c(f)
$$

Proof. By taking $A=F_{k}$ in Lemma 7.3.3, we see that if c is Δ-minimal then it has the property stated above. Now assume that c has the property stated above. Fix $i \in\{0,1\}$ so that the Δ_{i}-translates of F_{i} are maximally disjoint. Let $A \subseteq G$ be finite. By directedness, there is $k \geq 1$ and $\psi \in \Delta_{k}$ with

$$
\Delta_{i} \cap A F_{1}^{-1} F_{1} F_{i} F_{i} F_{i}^{-1} \subseteq \psi F_{k}
$$

By assumption, there is $n>k$ so that $\left(\gamma^{-1} \cdot c\right) \upharpoonright F_{k}=c \upharpoonright F_{k}$ for all $\gamma \in \Delta_{n}$. Fix $\gamma \in \Delta_{n}$. We will show that $\left(\gamma^{-1} \cdot c\right) \upharpoonright A=c \upharpoonright A$. For this it suffices to fix $a \in A-F_{k}$ and show that $a, \gamma a \in \operatorname{dom}(c)$ and $c(\gamma a)=c(a)$. Since $\Delta_{1} \cap A F_{1}^{-1} \subseteq F_{k}$, by the coherent property of blueprints we must have that $a \notin \Delta_{1} F_{1}$. By our choice of k and clause (v) of Lemma 5.1.5 we have that

$$
\Delta_{1} \cap \gamma a F_{1}^{-1}=\gamma\left(\Delta_{1} \cap a F_{1}^{-1}\right)=\varnothing
$$

So $\gamma a \notin \Delta_{1} F_{1}$. It follows from Definition 5.2 .7 and clauses (iii) and (iv) of Theorem 5.2.5 that $a, \gamma a \in \operatorname{dom}(c)$ and $c(\gamma a)=c(a)$.

The previous lemma allows us to extend Proposition 7.2.7 to the proposition below. The proof of this proposition is nearly identical to that of Proposition 7.2.7 except Lemma 7.2 .5 is replaced by the lemma above. Nevertheless, we include the proof for completeness.

Proposition 7.3.5. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint with $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ and with the property that the Δ_{i}-translates of F_{i} are maximally disjoint for either $i=0$ or $i=1$. Then any $c \in 2 \subseteq G$ which is canonical with respect to this blueprint is Δ-minimal.

Proof. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}, i \in\{0,1\}$, and $c \in 2^{\subseteq} G$ be as stated. We will apply Lemma 7.3 .4 to show that c is Δ-minimal. So fix $k \geq 1$. Since $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=$ $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$, there is $n \geq k$ with $F_{k} \cap \Delta_{n}\left\{a_{n}, b_{n}\right\}=\varnothing$. Notice that $F_{k} \subseteq F_{n}$ by clause (i) of Lemma 5.1.5. So $F_{k} \subseteq F_{n}-\left\{a_{n}, b_{n}\right\}$. Now let $\gamma \in \Delta_{n}$ be arbitrary. By conclusion (vii) of Theorem 5.2.5

$$
\gamma^{-1}\left[\left(\gamma F_{n}-\left\{\gamma a_{n}, \gamma b_{n}\right\}\right) \cap \operatorname{dom}(c)\right]=\left(F_{n}-\left\{a_{n}, b_{n}\right\}\right) \cap \operatorname{dom}(c)
$$

and

$$
\forall f \in\left(F_{n}-\left\{a_{n}, b_{n}\right\}\right) \cap \operatorname{dom}(c) c(\gamma f)=c(f)
$$

Since $F_{k} \subseteq F_{n}-\left\{a_{n}, b_{n}\right\}$, it follows that

$$
\gamma^{-1}\left[\left(\gamma F_{k}\right) \cap \operatorname{dom}(c)\right]=F_{k} \cap \operatorname{dom}(c)
$$

and

$$
\forall f \in F_{k} \cap \operatorname{dom}(c) c(\gamma f)=c(f) .
$$

By Lemma 7.3.4 we conclude that c is Δ-minimal.
For the rest of this section we study properties of Δ-minimal functions. We will see that Δ-minimal functions behave well under unions and that the subflows they generate have nice properties. These nice properties are the reason why we define and study Δ-minimality. We begin by looking at unions.

Lemma 7.3.6. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint. If c_{1} and c_{2} are both Δ-minimal and agree on $\operatorname{dom}\left(c_{1}\right) \cap \operatorname{dom}\left(c_{2}\right)$, then $c_{1} \cup c_{2}$ is Δ-minimal as well.

Proof. Let $A \subseteq G$ be finite. Let n_{1} and n_{2} be as in Lemma 7.3.3 relative to c_{1} and c_{2} respectively. Since the blueprint is centered, $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is decreasing. It is then easy to see that for $c=c_{1} \cup c_{2}, n=\max \left(n_{1}, n_{2}\right)$, and $\gamma \in \Delta_{n}$ we have

$$
\gamma A \cap \operatorname{dom}(c)=\gamma(A \cap \operatorname{dom}(c))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(c) c(\gamma a)=c(a)
$$

Since A was arbitrary, we conclude that $c=c_{1} \cup c_{2}$ is Δ-minimal.
Lemma 7.3.7. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint. If c_{1} is fundamental with respect to this blueprint and pre-minimal, c_{2} is Δ-minimal, and c_{1} and c_{2} agree on $\operatorname{dom}\left(c_{1}\right) \cap \operatorname{dom}\left(c_{2}\right)$, then $c_{1} \cup c_{2}$ is pre-minimal.

Proof. Let $d \in 2^{G}$ be a minimal extension of c_{1}, and define $x \in 2^{G}$ by $x(g)=\left(c_{1} \cup c_{2}\right)(g)$ if $g \in \operatorname{dom}\left(c_{1}\right) \cup \operatorname{dom}\left(c_{2}\right)$ and $x(g)=d(g)$ otherwise. It suffices to show that x is minimal. Let $A \subseteq G$ be finite. Let $n \in \mathbb{N}$ and $\sigma \in \Delta_{n}$ be such that for all $\gamma \in \Delta_{n}$

$$
\gamma \sigma^{-1} A \cap \operatorname{dom}\left(c_{2}\right)=\gamma \sigma^{-1}\left(A \cap \operatorname{dom}\left(c_{2}\right)\right)
$$

and

$$
\forall a \in A \cap \operatorname{dom}\left(c_{2}\right) c_{2}\left(\gamma \sigma^{-1} a\right)=c_{2}(a)
$$

Since d is minimal, there is a finite set $T \subseteq G$ so that for all $g \in G$ there is $t \in T$ with

$$
\forall h \in A \cup \sigma F_{n} d(g t h)=d(h) .
$$

Fix $g \in G$ and let $t \in T$ be such that the expression above is satisfied. Since $c_{1} \subseteq d$ is fundamental, d admits a simple Δ_{n}-membership test with test region a subset
of F_{n}. So we must have $g t \sigma \in \Delta_{n}$. Therefore for all $a \in A \cap \operatorname{dom}\left(c_{2}\right)$ we have $g t a \in \operatorname{dom}\left(c_{2}\right)$ and

$$
x(g t a)=c_{2}(g t a)=c_{2}(a)=x(a)
$$

On the other hand, if $a \in A-\operatorname{dom}\left(c_{2}\right)$ then $g t a \notin \operatorname{dom}\left(c_{2}\right)$ and hence

$$
x(g t a)=d(g t a)=d(a)=x(a)
$$

We concluded that x is minimal and hence $c_{1} \cup c_{2}$ is pre-minimal.
Lemma 7.3.8. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of elements of $2 \subseteq G$ which are all fundamental with respect to this blueprint. If each c_{n} is Δ-minimal then $c=$ $\bigcup_{n \in \mathbb{N}} c_{n}$ is Δ-minimal as well.

Proof. Let $A \subseteq G$ be finite. Let $k \in \mathbb{N}$ be such that

$$
\forall a \in A a \in \Delta_{k} b_{k} \Longrightarrow a \in \bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}
$$

Let $m \in \mathbb{N}$ be such that for all $1 \leq i \leq k$

$$
\Theta_{i}\left(c_{m}\right)=\Theta_{i}(c)
$$

and

$$
A \cap \operatorname{dom}\left(c_{m}\right)=A \cap \operatorname{dom}(c)
$$

Such an m exists since $\left(\Theta_{i}\left(c_{n}\right)\right)_{n \in \mathbb{N}}$ is a decreasing sequence of subsets of the finite set Λ_{i}. Since c_{m} is Δ-minimal, there is $n \in \mathbb{N}$ and $\sigma \in \Delta_{n}$ so that for all $\gamma \in \Delta_{n}$

$$
\gamma \sigma^{-1} A b_{k}^{-1} F_{k} \cap \operatorname{dom}\left(c_{m}\right)=\gamma \sigma^{-1}\left(A b_{k}^{-1} F_{k} \cap \operatorname{dom}\left(c_{m}\right)\right)
$$

and

$$
\forall a \in A b_{k}^{-1} F_{k} \cap \operatorname{dom}\left(c_{m}\right) c_{m}\left(\gamma \sigma^{-1} a\right)=c_{m}(a)
$$

Notice that $b_{k} \in F_{k}$ so $A \subseteq A b_{k}^{-1} F_{k}$ and hence $\left(\sigma \gamma^{-1} \cdot c_{m}\right) \upharpoonright A=c_{m} \upharpoonright A$ for all $\gamma \in \Delta_{n}$.

Fix $\gamma \in \Delta_{n}$. To finish the proof it suffices to show that

$$
\gamma \sigma^{-1} A \cap \operatorname{dom}(c)=\gamma \sigma^{-1} A \cap \operatorname{dom}\left(c_{m}\right)
$$

Clearly $\gamma \sigma^{-1} A \cap \operatorname{dom}\left(c_{m}\right) \subseteq \gamma \sigma^{-1} A \cap \operatorname{dom}(c)$ since c extends c_{m}. Pick $a \in A$ with $\gamma \sigma^{-1} a \in \operatorname{dom}(c)$ and towards a contradiction suppose $\gamma \sigma^{-1} a \notin \operatorname{dom}\left(c_{m}\right)$. Since $\Theta_{i}(c)=\Theta_{i}\left(c_{m}\right)$ for all $1 \leq i \leq k$, we have by Definition 5.2.7 that

$$
\operatorname{dom}(c)-\operatorname{dom}\left(c_{m}\right)=\bigcup_{i=k+1}^{\infty} \Delta_{i}\left(\Theta_{i}\left(c_{m}\right)-\Theta_{i}(c)\right) b_{i-1} \subseteq \Delta_{k} b_{k}
$$

So $\gamma \sigma^{-1} a \in \Delta_{k} b_{k}$. Let $\psi \in \Delta_{k}$ be such that $\gamma \sigma^{-1} a=\psi b_{k}$. Then ψ passes the Δ_{k} membership test and $\psi F_{k} \subseteq \gamma \sigma^{-1} A b_{k}^{-1} F_{k}$. It follows that $\sigma \gamma^{-1} \psi$ must also pass the Δ_{k} membership test and thus $\sigma \gamma^{-1} \psi \in \Delta_{k}$. Then $a=\sigma \gamma^{-1} \psi b_{k} \in \Delta_{k} b_{k}$ so by our choice of k we have $a \in \bigcap_{i \in \mathbb{N}} \Delta_{i} b_{i}$. By Definition 5.2.7 and clause (iii) of Theorem 5.2.5 we have $a \in \operatorname{dom}\left(c_{m}\right)$. But then $\gamma \sigma^{-1} a \in \operatorname{dom}\left(c_{m}\right)$, a contradiction.

Now we look at subflows generated by Δ-minimal functions.
Lemma 7.3.9. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered, directed, and maximally disjoint blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. If $c \subseteq x$ is Δ-minimal and $y \in \overline{[x]}$ is x-centered, then

$$
\forall g \in \operatorname{dom}(c) y(g)=x(g)
$$

Proof. Let A be an arbitrary finite subset of G. We will show $y(a)=x(a)$ for all $a \in A \cap \operatorname{dom}(c)$. Since c is Δ-minimal and the blueprint is centered and directed, there is $n \in \mathbb{N}$ so that for all $\gamma \in \Delta_{n}$,

$$
\gamma A \cap \operatorname{dom}(c)=\gamma(A \cap \operatorname{dom}(c))
$$

and

$$
\forall a \in A \cap \operatorname{dom}(c) c(\gamma a)=c(a)
$$

Since $y \in \overline{[x]}$, there is $g \in G$ so that $y(h)=\left(g^{-1} \cdot x\right)(h)=x(g h)$ for all $h \in F_{n} \cup A$. Since y is x-centered, $1_{G} \in \Delta_{n}^{y}$. Consequently, we must have $g \in \Delta_{n}^{x}$. It follows that for all $a \in A \cap \operatorname{dom}(c)$

$$
y(a)=x(g a)=c(g a)=c(a)=x(a)
$$

As A was an arbitrary finite subset of G, we conclude $y(g)=x(g)$ for all $g \in$ $\operatorname{dom}(c)$.

Lemma 7.3.10. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered, directed, and maximally disjoint blueprint, and let $x \in 2^{G}$ be fundamental with respect to this blueprint. The following are equivalent:
(i) x is Δ-minimal;
(ii) $\{y \in \overline{[x]}: y$ is x-regular $\}=[x]$.

Proof. First assume that x is Δ-minimal. If $z \in \overline{[x]}$ is x-regular, then there is an x-centered $y \in[z]$. By the previous lemma, $x=y \in[z]$ so $z \in[x]$. On the other hand, it is clear that every element of $[x]$ is x-regular.

Now assume that x is not Δ-minimal. Then there is a finite $A \subseteq G$ such that for all $n \in \mathbb{N}$ we can find $\gamma_{n} \in \Delta_{n}$ with $x\left(\gamma_{n} a\right) \neq x(a)$ for some $a \in A$. Let y be a limit point of the sequence $\left(\gamma_{n}^{-1} \cdot x\right)_{n \in \mathbb{N}}$. Since $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence, $1_{G} \in \gamma_{n}^{-1} \Delta_{k}$ for all $n \geq k$. So by clause (i) of Proposition 7.1.1, $1_{G} \in \Delta_{k}^{y}$ for all $k \in \mathbb{N}$. Thus y is x-centered and in particular x-regular. If $y \in[x]$ then there is $z \in[y]$ with $z=x$. Such a z would be have to be x-centered, but y is x-centered and every orbit in $\overline{[x]}$ contains at most one x-centered element (clause (iv) of Lemma 7.1.2). So $y \in[x]$ if and only if $y=x$. However, since A is finite there is $a \in A$ and $n \in \mathbb{N}$ with $y(a)=\left(\gamma_{n}^{-1} \cdot x\right)(a)=x\left(\gamma_{n} a\right) \neq x(a)$. Thus $y \neq x$ and $y \notin[x]$. We conclude that the set of x-regular elements of $\overline{[x]}$ does not coincide with $[x]$.

7.4. Minimality constructions

In showing that every group has a 2 -coloring (Theorem 6.1.1) and in characterizing groups with the ACP (Theorem 6.3.3), we have seen that putting a graph structure on the sets Δ_{n} can be very useful. Indeed, the undefined points of a fundamental function c are very useful for controlling which elements of $[c]$ are close, or look similar, and which are far apart. Usually, when one has an application in mind one has a specific idea of which points of $[c]$ should look similar and which ones should not. Since the Δ_{n} 's organize the positioning of the undefined points of c, such requirements are best studied in the form of a graph on Δ_{n}. We will see that this approach is relied upon heavily in the next section. This section develops methods for extending Δ-minimal functions to new Δ-minimal functions through the analysis of graphs on Δ_{n}.

The next definition is very much in the spirit of Definition 7.3.1. However, note that in the definition below Δ appears with a subscript while it does not in Definition 7.3.1.

Definition 7.4.1. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and let $n \geq 1$. A symmetric relation $E \subseteq \Delta_{n} \times \Delta_{n}$ is called Δ_{n}-minimal if
(i) there is a finite $A \subseteq G$ such that $(\gamma, \psi) \in E$ implies $\psi \in \gamma A$;
(ii) for every $\psi_{1}, \psi_{2} \in \Delta_{n}$, there is $m \in \mathbb{N}$ and $\sigma \in \Delta_{m}$ with $\Delta_{m} \sigma^{-1}\left\{\psi_{1}, \psi_{2}\right\} \subseteq$ Δ_{n} and such that for every $\gamma \in \Delta_{m}\left(\gamma \sigma^{-1} \psi_{1}, \gamma \sigma^{-1} \psi_{2}\right) \in E$ if and only if $\left(\psi_{1}, \psi_{2}\right) \in E$.
As before, the definition takes a simpler form if we place more assumptions on the blueprint.

Lemma 7.4.2. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint, let $n \geq 1$, and let $E \subseteq \Delta_{n} \times \Delta_{n}$ be a symmetric relation. Then E is Δ_{n}-minimal if and only if the following hold:
(i) there is a finite $A \subseteq G$ such that $(\gamma, \psi) \in E$ implies $\psi \in \gamma A$;
(ii) for every $\psi_{1}, \psi_{2} \in \Delta_{n}$, there is $m \geq n$ with $\psi_{1}, \psi_{2} \in D_{n}^{m}$ and for every $\gamma \in \Delta_{m}\left(\gamma \psi_{1}, \gamma \psi_{2}\right) \in E$ if and only if $\left(\psi_{1}, \psi_{2}\right) \in E$.
Proof. First suppose that E is Δ_{n}-minimal. Clearly property (i) above is satisfied. Fix $\psi_{1}, \psi_{2} \in \Delta_{n}$ and let $m \in \mathbb{N}$ and $\sigma \in \Delta_{m}$ be such that $\Delta_{m} \sigma^{-1}\left\{\psi_{1}, \psi_{2}\right\} \subseteq$ Δ_{n} and for every $\gamma \in \Delta_{m},\left(\gamma \sigma^{-1} \psi_{1}, \gamma \sigma^{-1} \psi_{2}\right) \in E$ if and only if $\left(\psi_{1}, \psi_{2}\right) \in E$. By clause (iv) of Lemma 5.1.5 there is $k \geq n$ with $\psi_{1}, \psi_{2}, \sigma \in F_{k}$ and hence $\psi_{1}, \psi_{2} \in D_{n}^{k}$ and $\sigma \in D_{m}^{k}$. If $\gamma \in \Delta_{k}$, then $\gamma \sigma \in \bar{\Delta}_{k} D_{m}^{k} \subseteq \Delta_{m}$. Since $\gamma \sigma \sigma^{-1}=\gamma$, we have that $\left(\gamma \psi_{1}, \gamma \psi_{2}\right) \in E$ if and only if $\left(\psi_{1}, \psi_{2}\right) \in E$. Thus E has the property above.

Now suppose that E has the property above. The property $\psi_{1}, \psi_{2} \in D_{n}^{m}$ implies $\Delta_{m}\left\{\psi_{1}, \psi_{2}\right\} \subseteq \Delta_{n}$. Since the blueprint is centered, we can pick $\sigma=1_{G} \in \Delta_{m}$ to see that E is Δ_{n}-minimal.

Lemma 7.4.3. Let G be a countably infinite group, and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint. Let $m \geq n \geq 1$, let $\lambda \in D_{n}^{m}$, and let $A \subseteq G$ be finite. Define $E \subseteq \Delta_{n} \times \Delta_{n}$ by

$$
\left(\psi_{1}, \psi_{2}\right) \in E \Longleftrightarrow\left(\psi_{1} \in \Delta_{m} \lambda \wedge \psi_{2} \in \psi_{1} A\right) \vee\left(\psi_{2} \in \Delta_{m} \lambda \wedge \psi_{1} \in \psi_{2} A\right)
$$

Then E is Δ_{n}-minimal.
Proof. We will apply Lemma 7.4.2. Clearly clause (i) is satisfied. We only need to check clause (ii). Fix $\psi_{1}, \psi_{2} \in \Delta_{n}$. By clause (iv) of Lemma 5.1.5 there is $k>m$ with $\psi_{1}, \psi_{2} \in F_{k}$. Fix $\gamma \in \Delta_{k}$. Clearly,

$$
\psi_{1}^{-1} \psi_{2} \in A \Longleftrightarrow\left(\gamma \psi_{1}\right)^{-1}\left(\gamma \psi_{2}\right) \in A \text { and } \psi_{2}^{-1} \psi_{1} \in A \Longleftrightarrow\left(\gamma \psi_{2}\right)^{-1}(\gamma \psi) \in A
$$

and by conclusion (vii) of Lemma 5.1.4

$$
\psi_{i} \in \Delta_{m} \lambda \Longleftrightarrow \gamma \psi_{i} \in \Delta_{m} \lambda
$$

Therefore $\left(\gamma \psi_{1}, \gamma \psi_{2}\right) \in E$ if and only if $\left(\psi_{1}, \psi_{2}\right) \in E$. We conclude E is $\Delta_{n^{-}}$ minimal.

Lemma 7.4.4. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered and directed blueprint, let $n \geq 1$, and let $E_{1}, E_{2} \subseteq \Delta_{n} \times \Delta_{n}$ be symmetric relations.

If E_{1} is Δ_{n}-minimal and $E_{1} \cap E_{2}=\varnothing$, then $E_{1} \cup E_{2}$ is Δ_{n}-minimal if and only if E_{2} is Δ_{n}-minimal.

Proof. Since the blueprint is centered, $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is decreasing and $\left(D_{n}^{m}\right)_{m \geq n}$ is increasing (n is fixed). Suppose E_{2} is Δ_{n}-minimal. Pick $\psi_{1}, \psi_{2} \in \Delta_{n}$ and apply Lemma 7.4.2 to E_{1} and E_{2} to get numbers m_{1} and m_{2} in clause (ii). Clearly then taking $m=\max \left(m_{1}, m_{2}\right)$ shows that $E_{1} \cup E_{2}$ satisfies (ii) for ψ_{1} and ψ_{2}. We conclude that $E_{1} \cup E_{2}$ is Δ_{n}-minimal.

Now assume $E_{1} \cup E_{2}$ is Δ_{n}-minimal. Then E_{2} satisfies clause (i) of Lemma 7.4.2. So we only need to check clause (ii). For any $\psi_{1}, \psi_{2} \in \Delta_{n}$ we have

$$
\left(\psi_{1}, \psi_{2}\right) \in E_{2} \Longleftrightarrow\left(\psi_{1}, \psi_{2}\right) \in E_{1} \cup E_{2} \text { and }\left(\psi_{1}, \psi_{2}\right) \notin E_{1} .
$$

So if $\psi_{1}, \psi_{2} \in \Delta_{n}$ and m_{1} and m_{2} are as in clause (ii) for E_{1} and $E_{1} \cup E_{2}$, respectively, then $m=\max \left(m_{1}, m_{2}\right)$ shows that E_{2} satisfies (ii) for ψ_{1} and ψ_{2}. We conclude that E_{2} is Δ_{n}-minimal.

Lemma 7.4.5. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, let $c \in 2^{\subseteq G}$ be fundamental with respect to this blueprint, and let $n, t \geq 1$ satisfy $\left|\Theta_{n}\right| \geq t$. If $\mu: \Delta_{n} \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$ then there is $c^{\prime} \supseteq c$ such that
(i) c^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$;
(ii) $c^{\prime} \upharpoonright\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal if μ is Δ-minimal;
(iii) $\left|\Theta_{n}\left(c^{\prime}\right)\right|=\left|\Theta_{n}(c)\right|-t$;
(iv) for all $\gamma, \psi \in \Delta_{n}$

$$
\mu(\gamma)=\mu(\psi) \Longleftrightarrow \forall f \in F_{n} \cap\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right) c^{\prime}(\gamma f)=c^{\prime}(\psi f) .
$$

Proof. For each $i \geq 1$, define $\mathbb{B}_{i}: \mathbb{N} \rightarrow\{0,1\}$ so that $\mathbb{B}_{i}(k)$ is the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $\mathbb{B}_{i}(k)=0$ when $k<2^{i-1}$. Fix distinct $\theta_{1}, \theta_{2}, \ldots, \theta_{t} \in \Theta_{n}$. Define $c^{\prime} \supseteq c$ by setting

$$
c^{\prime}\left(\gamma \theta_{i} b_{n-1}\right)=\mathbb{B}_{i}(\mu(\gamma))
$$

for each $\gamma \in \Delta_{n}$ and $1 \leq i \leq t$. Clearly c^{\prime} satisfies (i) and (iii). Also, since t binary digits are sufficient to encode the values of μ, property (iv) is also satisfied. We proceed to check (ii).

Assume μ is Δ-minimal. Let $A \subseteq G$ be finite. Since μ is Δ-minimal, there is $m \in \mathbb{N}$ and $\sigma \in \Delta_{m}$ such that for all $\gamma \in \Delta_{m}$

$$
\gamma \sigma^{-1} A \Theta_{n}(c)^{-1} \cap \Delta_{n}=\gamma \sigma^{-1}\left(A \Theta_{n}(c) \cap \Delta_{n}\right)
$$

and

$$
\forall a \in A \Theta_{n}(c)^{-1} \cap \Delta_{n} \mu\left(\gamma \sigma^{-1} a\right)=\mu(a)
$$

Fix $\gamma \in \Delta_{n}, a \in A$, and $1 \leq i \leq t$. By the above expressions we have that $\gamma \sigma^{-1} a \in \Delta_{n} \theta_{i}$ if and only if $a \in \Delta_{n} \theta_{i}$. By varying i between 1 and t we see that $\gamma \sigma^{-1} a \in \operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)$ if and only if $a \in \operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)$. If $a \in$ $\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)$, then there are $\psi_{1}, \psi_{2} \in \Delta_{n}$ and $1 \leq i \leq t$ with $a=\psi_{1} \theta_{i}$ and $\gamma \sigma^{-1} a=\psi_{2} \theta_{i}$. By the Δ-minimality of μ we have that $\mu\left(\psi_{1}\right)=\mu\left(\psi_{2}\right)$ and therefore

$$
c^{\prime}\left(\gamma \sigma^{-1} a\right)=\mathbb{B}_{i}\left(\mu\left(\psi_{2}\right)\right)=\mathbb{B}_{i}\left(\mu\left(\psi_{1}\right)\right)=c^{\prime}(a) .
$$

We conclude that $c^{\prime} \upharpoonright\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal.

Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, let $n \geq 1$, and let Γ a graph with vertex set Δ_{n}. If $F \subseteq E(\Gamma)$ is symmetric, define
$[F]=\left\{(\gamma, \psi): \exists \sigma_{1}, \sigma_{2}, \ldots, \sigma_{m} \in \Delta_{n} \gamma=\sigma_{1} \wedge \psi=\sigma_{m} \wedge \forall 1 \leq i<m\left(\sigma_{i}, \sigma_{i+1}\right) \in F\right\}$.
Note that $[F]$ is an equivalence relation on Γ, even in the case F is empty (the reflexive property follows by taking $m=1$). For $\gamma \in \Delta_{n}$, let $[\gamma]$ denote the $[F]$ equivalence class of γ. We define $\Gamma /[F]$ to be the graph with vertices the equivalence classes of $[F]$ and with edge relation

$$
([\gamma],[\psi]) \in E(\Gamma /[F]) \Longleftrightarrow([\gamma] \neq[\psi]) \wedge(\exists \sigma \in[\gamma], \lambda \in[\psi](\sigma, \lambda) \in E(\Gamma))
$$

The next theorem is quite useful in constructing minimal elements of 2^{G} with various properties. Here we use the term "partition" loosely and allow the empty set to be a member of a partition.

THEOREM 7.4.6. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint, and let $n, t \geq 1$ satisfy $\left|\Theta_{n}\right| \geq t$. Let Γ be a graph with vertex set Δ_{n}, and let $\left\{E_{1}, E_{2}\right\}$ be a partition of $E(\Gamma)$ with $E_{1} \cap\left[E_{2}\right]=\varnothing$. If the degree of every vertex in $\Gamma /\left[E_{2}\right]$ is less than 2^{t} then there is $c^{\prime} \supseteq c$ such that
(i) c^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$;
(ii) $c^{\prime} \upharpoonright\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal if E_{1} and $\left[E_{2}\right]$ are Δ_{n}-minimal;
(iii) $\left|\Theta_{n}\left(c^{\prime}\right)\right|=\left|\Theta_{n}(c)\right|-t$;
(iv) $(\gamma, \psi) \in E_{1}$ implies $c^{\prime}(\gamma f) \neq c^{\prime}(\psi f)$ for some $f \in F_{n} \cap\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$;
(v) $(\gamma, \psi) \in E_{2}$ implies $c^{\prime}(\gamma f)=c^{\prime}(\psi f)$ for all $f \in F_{n} \cap\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$.

Proof. We remind the reader that our blueprint is centered, directed, and maximally disjoint by clause (i) of Lemma 5.3.5 and that $\left(\Delta_{k}\right)_{k \in \mathbb{N}}$ is decreasing by clause (i) of Lemma 5.1.5. The plan is to construct $\mu: \Delta_{n} \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$ which is Δ-minimal if E_{1} and $\left[E_{2}\right]$ are Δ_{n}-minimal and which satisfies

$$
\begin{gathered}
(\gamma, \psi) \in E_{1} \Longrightarrow \mu(\gamma) \neq \mu(\psi), \text { and } \\
(\gamma, \psi) \in E_{2} \Longrightarrow \mu(\gamma)=\mu(\psi)
\end{gathered}
$$

After doing this, applying Lemma 7.4 .5 will complete the proof.
First suppose E_{1} or $\left[E_{2}\right]$ is not Δ_{n}-minimal. Since each vertex of $\Gamma /\left[E_{2}\right]$ has degree less than 2^{t}, there is a graph-theoretic $\left(2^{t}\right)$-coloring of $\Gamma /\left[E_{2}\right]$, say $\bar{\mu}: V\left(\Gamma /\left[E_{2}\right]\right) \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$. Define $\mu: V(\Gamma) \rightarrow\left\{0,1, \ldots, 2^{t}-1\right\}$ by $\mu(\gamma)=\bar{\mu}([\gamma])$ for $\gamma \in \Delta_{n}$, where $[\gamma]$ is the $\left[E_{2}\right]$-equivalence class containing γ. Clearly, if $(\gamma, \psi) \in E_{2}$ then $[\gamma]=[\psi]$ and $\mu(\gamma)=\mu(\psi)$. On the other hand, if $(\gamma, \psi) \in E_{1}$ then $[\gamma] \neq[\psi]$ since $E_{1} \cap\left[E_{2}\right]=\varnothing$, and hence $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$ so $\mu(\gamma)=\bar{\mu}([\gamma]) \neq \bar{\mu}([\psi])=\mu(\psi)$.

Now suppose E_{1} and $\left[E_{2}\right]$ are Δ_{n}-minimal. Then there is a finite $A \subseteq G$ such that $(\gamma, \psi) \in E_{1} \cup\left[E_{2}\right]$ implies $\psi \in \gamma A$ (and by symmetry $\gamma \in \psi A$). Let $m(0) \geq n$ be such that $A \subseteq H_{m(0)}$. Let $i \in \mathbb{N}, \sigma \in \Delta_{m(0)+3+i}$, and $\gamma \in \sigma F_{m(0)+i} \cap \Delta_{n}$. If $\psi \in \Delta_{n}$ and $(\psi, \gamma) \in E_{1} \cup\left[E_{2}\right]$ then

$$
\psi \in \gamma A \subseteq \sigma F_{m(0)+i} H_{m(0)} \subseteq \sigma H_{m(0)+1+i}
$$

by clause (ii) of Definition 5.3.4 and clause (iii) of Definition 5.3.2. So $\psi \in$ $\sigma F_{m(0)+3+i}$ by clause (iii) of Lemma 5.3.5. This is an important property one should remember for this proof.

In order to define μ, we construct a sequence of functions $\left(\mu_{k}\right)_{k \geq 1}$ mapping into $\left\{0,1, \ldots, 2^{t}-1\right\}$, and a sequence $(m(k))_{k \in \mathbb{N}}$ satisfying for each $k \geq 1$:
(1) $\mu_{k+1} \supseteq \mu_{k}$;
(2) $m(k+1) \geq m(k)+9$;
(3) $\operatorname{dom}\left(\mu_{k}\right)=\bigcup_{0 \leq i<k} \Delta_{m(i+1)} D_{n}^{m(i)}$;
(4) $([\gamma],[\psi]) \in E\left(\bar{\Gamma} /\left[E_{2}\right]\right) \Rightarrow \mu_{k}(\gamma) \neq \mu_{k}(\psi)$ and $(\gamma, \psi) \in\left[E_{2}\right] \Rightarrow \mu_{k}(\gamma)=$ $\mu_{k}(\psi)$ whenever $\gamma, \psi \in \operatorname{dom}\left(\mu_{k}\right)$;
(5) For all $\sigma \in \Delta_{m(k)}$ and all $\gamma \in D_{n}^{m(k-1)}, \mu_{k}(\gamma)=\mu_{k}(\sigma \gamma)$;

We begin by constructing μ_{1}. We can of course fix a labeling of $D_{n}^{m(0)}=$ $F_{m(0)} \cap \Delta_{n}$ such that two members are labeled differently if their $\left[E_{2}\right]$ classes are adjacent and are labeled the same if they are in the same $\left[E_{2}\right]$ class. We can choose our labels from the set $\left\{0,1, \ldots, 2^{t}-1\right\}$ since each vertex of $\Gamma /\left[E_{2}\right]$ has degree less than 2^{t}. Since our blueprint is centered and directed, since $\left(\Delta_{k}\right)_{k \in \mathbb{N}}$ is decreasing, since $D_{n}^{m(0)}$ is finite, and since E_{1} and $\left[E_{2}\right]$ are Δ_{n}-minimal, there is $m(1) \geq m(0)+9$ such that for all $\gamma, \psi \in D_{n}^{m(0)+9}$ and all $\sigma \in \Delta_{m(1)}$,

$$
(\gamma, \psi) \in E_{1} \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in E_{1},
$$

and

$$
(\gamma, \psi) \in\left[E_{2}\right] \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in\left[E_{2}\right] .
$$

Since E_{1} and $\left[E_{2}\right]$ look identical on each $\Delta_{m(1)}$-translate of $D_{n}^{m(0)+9}$, we can copy this labeling on every $\Delta_{m(1)}$-translate of $D_{n}^{m(0)}$ to get the function μ_{1}. Clearly (2), (3), and (5) are then satisfied. Let $\gamma, \psi \in \operatorname{dom}\left(\mu_{1}\right)$, say $\gamma \in \sigma_{1} D_{n}^{m(0)}$ and $\psi \in \sigma_{2} D_{n}^{m(0)}$ with $\sigma_{1}, \sigma_{2} \in \Delta_{m(1)}$. First suppose that $(\gamma, \psi) \in\left[E_{2}\right]$. Then $\psi \in$ $\sigma_{1} F_{m(0)+3} \cap \sigma_{2} F_{m(0)}$, so we must have $\sigma_{1}=\sigma_{2}$ since $m(1)>m(0)+3$. So $\gamma, \psi \in$ $\sigma_{1} D_{n}^{m(0)}$, so $\left(\sigma_{1}^{-1} \gamma, \sigma_{1}^{-1} \psi\right) \in\left[E_{2}\right]$ by the definition of $m(1)$. Therefore

$$
\mu_{1}(\gamma)=\mu_{1}\left(\sigma_{1}^{-1} \gamma\right)=\mu_{1}\left(\sigma_{1}^{-1} \psi\right)=\mu_{1}(\psi)
$$

Now suppose that $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$. Then there are $\gamma^{\prime} \in[\gamma]$ and $\psi^{\prime} \in[\psi]$ with $\left(\gamma^{\prime}, \psi^{\prime}\right) \in E_{1}$. Since $m(1) \geq m(0)+9$, as before we find that $\gamma^{\prime} \in \sigma_{1} F_{m(0)+3}$, $\psi^{\prime} \in \sigma_{1} F_{m(0)+6}$, and $\psi \in \sigma_{1} F_{m(0)+9}$. So $\sigma_{2}=\sigma_{1}, \psi \in \sigma_{1} F_{m(0)}$ and $\psi^{\prime} \in \sigma_{1} F_{m(0)+3}$. Again by the definition of $m(1)$ we have that $\sigma_{1}^{-1} \gamma^{\prime} \in\left[\sigma_{1}^{-1} \gamma\right], \sigma_{1}^{-1} \psi^{\prime} \in\left[\sigma_{1}^{-1} \psi\right]$, and $\left(\sigma_{1}^{-1} \gamma^{\prime}, \sigma_{1}^{-1} \psi^{\prime}\right) \in E_{1}$. Therefore $\left(\left[\sigma_{1}^{-1} \gamma\right],\left[\sigma_{1}^{-1} \psi\right]\right) \in E\left(\Gamma /\left[E_{2}\right]\right)$ and

$$
\mu_{1}(\gamma)=\mu_{1}\left(\sigma_{1}^{-1} \gamma\right) \neq \mu_{1}\left(\sigma^{-1} \psi\right)=\mu_{1}(\psi)
$$

Therefore μ_{1} satisfies (4).
Now suppose μ_{k} has been constructed and $m(k)$ has been defined. Again, since $D_{n}^{m(k)}=F_{m(k)} \cap \Delta_{n}$ is finite, there is $m(k+1) \geq m(k)+9$ such that for all $\gamma, \psi \in D_{n}^{m(k)+9}$ and all $\sigma \in \Delta_{m(k+1)}$

$$
(\gamma, \psi) \in E_{1} \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in E_{1},
$$

and

$$
(\gamma, \psi) \in\left[E_{2}\right] \Longleftrightarrow(\sigma \gamma, \sigma \psi) \in\left[E_{2}\right] .
$$

Let $\sigma \in \Delta_{m(k+1)}$, and let $\gamma \in \operatorname{dom}\left(\mu_{k}\right) \cap F_{m(k)+9}$. Then by (3) there is $0 \leq i<k$ with $\gamma \in \Delta_{m(i+1)} F_{m(i)}$. Let $\eta \in \Delta_{m(i+1)}$ and $\lambda \in D_{n}^{m(i)}$ be such that $\gamma=\eta \lambda$. By the coherent property of blueprints, $\eta \in F_{m(k)+9}$. So $\eta \in D_{m(i+1)}^{m(k)+9} \subseteq D_{m(i+1)}^{m(k+1)}$ and $\sigma \eta \in \Delta_{m(i+1)}$. We apply (5) twice to get

$$
\mu_{k}(\sigma \gamma)=\mu_{k}((\sigma \eta) \lambda)=\mu_{i+1}((\sigma \eta) \lambda)
$$

$$
=\mu_{i+1}(\lambda)=\mu_{i+1}(\eta \lambda)=\mu_{k}(\eta \lambda)=\mu_{k}(\gamma)
$$

We therefore have four important facts:

$$
\begin{gathered}
\forall \gamma, \psi \in D_{n}^{m(k)+9}\left[(\gamma, \psi) \in E_{1} \Longleftrightarrow \forall \sigma \in \Delta_{m(k+1)}(\sigma \gamma, \sigma \psi) \in E_{1}\right] \\
\forall \gamma, \psi \in D_{n}^{m(k)+9}\left[(\gamma, \psi) \in\left[E_{2}\right] \Longleftrightarrow \forall \sigma \in \Delta_{m(k+1)}(\sigma \gamma, \sigma \psi) \in\left[E_{2}\right]\right] ; \\
\forall \gamma \in D_{n}^{m(k)+9}\left[\gamma \in \operatorname{dom}\left(\mu_{k}\right) \Longleftrightarrow \forall \sigma \in \Delta_{m(k+1)} \sigma \gamma \in \operatorname{dom}\left(\mu_{k}\right)\right] ; \\
\forall \gamma \in D_{n}^{m(k)+9} \cap \operatorname{dom}\left(\mu_{k}\right) \forall \sigma \in \Delta_{m(k+1)} \mu_{k}(\gamma)=\mu_{k}(\sigma \gamma) .
\end{gathered}
$$

The first two follow from our choice of $m(k+1)$, the third from (3) and conclusion (vii) of Lemma 5.1.4, and the fourth was just verified. These four statements say that μ_{k}, E_{1}, and $\left[E_{2}\right]$ each look the same on every $\Delta_{m(k+1)}$-translate of $F_{m(k)+9}$.

We choose an extension, $\tilde{\mu_{k}}$, of μ_{k} to $\operatorname{dom}\left(\mu_{k}\right) \cup D_{n}^{m(k)}$ with the property that if $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$ then γ and ψ are labeled differently, and if $(\gamma, \psi) \in\left[E_{2}\right]$ then they are labeled the same. The function $\tilde{\mu_{k}}$ exists since μ_{k} satisfies (4), and $\tilde{\mu_{k}}$ can be assumed to take values in the set $\left\{0,1, \ldots, 2^{t}-1\right\}$ since the degree of every vertex of $\Gamma /\left[E_{2}\right]$ is less than 2^{t}. We copy $\tilde{\mu_{k}} \upharpoonright D_{n}^{m(k)}$ to all $\Delta_{m(k+1)}$-translates of $D_{n}^{m(k)}$ and union with μ_{k} to get μ_{k+1}. Clearly μ_{k+1} satisfies (1), (2), (3), and (5). To verify (4), we essentially repeat the argument used to show that μ_{1} satisfies (4). Let $\gamma, \psi \in \operatorname{dom}\left(\mu_{k+1}\right)$ with $(\gamma, \psi) \in\left[E_{2}\right]$ or $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$. If $\gamma, \psi \in \operatorname{dom}\left(\mu_{k}\right)$, then there is nothing to show. So we may suppose that $\gamma \notin \operatorname{dom}\left(\mu_{k}\right)$ and hence $\gamma \in$ $\sigma D_{n}^{m(k)}$ for some $\sigma \in \Delta_{m(k+1)}$. Arguing as we did for μ_{1}, we find that $\psi \in \sigma F_{m(k)+9}$. By the definition of $m(k+1)$, we have that $\left(\sigma^{-1} \gamma, \sigma^{-1} \psi\right) \in E_{1}$ if and only if $(\gamma, \psi) \in E_{1}$. Similarly, by again using the definition of $m(k+1)$ and picking $\gamma^{\prime} \in[\gamma]$ and $\psi^{\prime} \in[\psi]$ with $\left(\gamma^{\prime}, \psi^{\prime}\right) \in E_{1}$ if necessary, we have $\left(\left[\sigma^{-1} \gamma\right],\left[\sigma^{-1} \psi\right]\right) \in E\left(\Gamma /\left[E_{2}\right]\right)$ if and only if $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$. Now we have

$$
\mu_{k+1}(\gamma)=\tilde{\mu_{k}}\left(\sigma^{-1} \gamma\right) \neq \tilde{\mu_{k}}\left(\sigma^{-1} \psi\right)=\mu_{k+1}(\psi)
$$

if $([\gamma],[\psi]) \in E\left(\Gamma /\left[E_{2}\right]\right)$ and

$$
\mu_{k+1}(\gamma)=\tilde{\mu_{k}}\left(\sigma^{-1} \gamma\right)=\tilde{\mu_{k}}\left(\sigma^{-1} \psi\right)=\mu_{k+1}(\psi)
$$

if $(\gamma, \psi) \in\left[E_{2}\right]$. Thus μ_{k+1} satisfies (4).
We finish by setting $\mu=\bigcup_{k \geq 1} \mu_{k}$. By clause (iv) of Lemma 5.1.5 we see that $\operatorname{dom}(\mu)=\Delta_{n}$. Property (5) together with clauses (iv) and (v) of Lemma 5.1.5 imply that μ is Δ-minimal. Finally, property (4) gives

$$
\begin{gathered}
(\gamma, \psi) \in E_{1} \Longrightarrow \mu(\gamma) \neq \mu(\psi), \text { and } \\
(\gamma, \psi) \in E_{2} \Longrightarrow \mu(\gamma)=\mu(\psi) .
\end{gathered}
$$

Applying Lemma 7.4.5 completes the proof.
We can give a few immediate consequences.
Corollary 7.4.7. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint, and for each $n \geq 1$ let B_{n} be finite with $\Delta_{n} B_{n} B_{n}^{-1}=G$. If $c \in 2 \subseteq G$ is Δ minimal and fundamental with respect to this blueprint and $\left|\Theta_{n}\right| \geq \log _{2}\left(2\left|B_{n}\right|^{4}+\right.$ 1) for each $n \geq 1$, then there exists a Δ-minimal and fundamental $c^{\prime} \supseteq c$ with $\left|\Theta_{n}\left(c^{\prime}\right)\right|>\left|\Theta_{n}(c)\right|-\log _{2}\left(2\left|B_{n}\right|^{4}+1\right)-1$ and with the property that any $x \in 2^{G}$ extending c^{\prime} is a 2-coloring. In particular, every countable group has a minimal 2 -coloring.

Proof. Recall that in the proof of Theorem 6.1.1 we defined the graph Γ_{n} on the vertex set Δ_{n} with edge relation given by

$$
(\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow \gamma^{-1} \psi \in B_{n} B_{n}^{-1} s_{n} B_{n} B_{n}^{-1} \text { or } \psi^{-1} \gamma \in B_{n} B_{n}^{-1} s_{n} B_{n} B_{n}^{-1} .
$$

We seek to apply Theorem 7.4 .6 with respect to the "partition" $\left\{E\left(\Gamma_{n}\right), \varnothing\right\}$ of $E\left(\Gamma_{n}\right)$. To establish our claims we need only check that $E\left(\Gamma_{n}\right)$ is Δ_{n}-minimal for every $n \geq 1$. However, this follows from Lemma 7.4.3.

TheOrem 7.4.8. If G is a countably infinite group, then the collection of minimal 2-colorings is dense in 2^{G}.

We omit this proof since the following theorem is stronger.
THEOREM 7.4.9. Let G be a countably infinite group, $x \in 2^{G}$, and $\epsilon>0$. Then there is a perfect set of pairwise orthogonal minimal 2-colorings in the ball of radius ϵ about x.

Proof. Let $x \in 2^{G}$ and $\epsilon>0$. Apply Corollary 6.2 .2 to get a nontrivial locally recognizable $R: A \rightarrow 2$. Now apply Corollary 5.4.9 to get a function c which is canonical with respect to a centered blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ guided by a growth sequence, compatible with R, and satisfies

$$
\left|\Lambda_{n}\right| \geq \log _{2}\left(4\left|F_{n}\right|^{4}+2\right)=1+\log _{2}\left(2\left|F_{n}\right|^{4}+1\right)
$$

for all $n \geq 1$. By clause (i) of Lemma 5.3.5 and clause (viii) of Lemma 5.1.5 we can require the blueprint satisfy

$$
\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing
$$

By Proposition 7.3.5 c is Δ-minimal. Now apply Corollary 7.4.7 to get a fundamental and Δ-minimal c^{\prime} for which every extension is a 2-coloring and with $\left|\Theta_{n}\left(c^{\prime}\right)\right|>0$ for all $n \geq 1$. We apply Proposition 6.1.4 to get a perfect set $\left\{x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ of pairwise orthogonal functions extending c^{\prime}. If $n \geq 1, \theta \in \Theta_{n}\left(c^{\prime}\right)$, and $i \in\{0,1\}$, then the constant function $d: \Delta_{n} \theta b_{n-1} \rightarrow\{i\}$ is Δ-minimal by clause (vii) of Lemma 5.1.4. By the proof of Proposition 6.1.4, we see that each x_{τ} can be constructed by taking the union of c^{\prime} with a sequence of such functions d with disjoint domains. By Lemma 7.3.6, the union of c^{\prime} with finitely many of these d 's is Δ-minimal, and so by Lemma 7.3.8 each x_{τ} is Δ-minimal. So each x_{τ} is minimal and extends c and c^{\prime}. So each x_{τ} is a 2-coloring and if $\gamma \in \Delta_{1}$ then $d\left(\left(\gamma \gamma_{1}\right)^{-1} \cdot x_{\tau}, x\right)<\epsilon$. So $\left\{\left(\gamma \gamma_{1}\right)^{-1} \cdot x_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ is a perfect set of pairwise orthogonal minimal 2-colorings contained in the ball of radius ϵ about x.

The next two corollaries draw interest from descriptive set theory. The first relates to subflows of $\left(2^{\mathbb{N}}\right)^{G}$ (as discussed in Section 2.7), and the second is a strengthening of one of the main results of the authors' previous paper [GJS].

Corollary 7.4.10. Let G be a countably infinite group, $x \in\left(2^{\mathbb{N}}\right)^{G}$, and $\epsilon>0$. Then there is a perfect set of pairwise orthogonal minimal hyper aperiodic points in the ball of radius ϵ about x.

Proof. Let $C \subseteq G$ and $L \subseteq \mathbb{N}$ be finite sets with the property that for every $y \in\left(2^{\mathbb{N}}\right)^{G}$

$$
\forall c \in C \forall n \in L y(c)(n)=x(c)(n) \Longrightarrow d(x, y)<\epsilon
$$

Fix a bijection ϕ between 2^{L} and $2^{|L|}=\left\{0,1, \ldots, 2^{|L|}-1\right\}$. Set $k=2^{|L|}$, and define $\tilde{x} \in k^{G}$ by $\tilde{x}(g)=\phi(x(g) \upharpoonright L)$. As we have mentioned before, in this paper we work in the most restrictive case of Bernoulli flows of the form 2^{G}. However, all of our proofs and results trivially generalize to arbitrary Bernoulli flows m^{G}. So by the previous theorem, there exists a perfect set \tilde{P} consisting of pairwise orthogonal minimal k-colorings with the property that $\tilde{y} \upharpoonright C=\tilde{x} \upharpoonright C$ for all $\tilde{y} \in \tilde{P}$. Now define $\theta: k^{G} \rightarrow\left(2^{\mathbb{N}}\right)^{G}$ by

$$
\theta(\tilde{y})(g)(n)= \begin{cases}\phi^{-1}(\tilde{y}(g))(n) & \text { if } n \in L \\ 0 & \text { otherwise }\end{cases}
$$

Then θ is a homeomorphic embedding which commutes with the action of G. Thus $P=\{\theta(\tilde{y}): \tilde{y} \in \tilde{P}\}$ is a perfect set of pairwise orthogonal minimal hyper aperiodic points. Moreover, if $y=\theta(\tilde{y}) \in P$ then $\tilde{y} \upharpoonright C=\tilde{x} \upharpoonright C$ and therefore $y(g)(n)=$ $x(g)(n)$ for all $g \in C$ and $n \in L$. Thus P is contained in the ball of radius ϵ about x.

Recall that a set $A \subseteq F(G)$ is a complete section if and only if $A \cap[x] \neq \varnothing$ for every $x \in F(G)$. We refer the reader to [GJS] for the descriptive set theoretic motivation to the following result.

Corollary 7.4.11. If G is a countably infinite group and $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of closed complete sections of $F(G)$, then

$$
G \cdot\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)
$$

is dense in 2^{G}.
Proof. Let $x \in 2^{G}$ and let $\epsilon>0$. By the previous theorem, there is a minimal 2 -coloring y with $d(x, y)<\epsilon$. Now $\overline{[y]}$ is a compact set contained in $F(G)$, so there is $z \in \overline{[y]} \cap\left(\bigcap_{n \in \mathbb{N}} A_{n}\right)$. Since y is minimal, $\overline{[z]}=\overline{[y]}$. So $\overline{[z]} \cap B(x ; \epsilon)=\overline{[y]} \cap B(x ; \epsilon) \neq \varnothing$. Since $B(x ; \epsilon)$ is open, it follows that $[z] \cap B(x ; \epsilon) \neq \varnothing$.

7.5. Rigidity constructions for topological conjugacy

In this section we develop tools to control when $\overline{[x]}$ and $\overline{[y]}$ are topologically conjugate for functions $x, y \in 2^{G}$ which are fundamental with respect to a centered blueprint guided by a growth sequence. Section 9.3 is highly dependent on our work in this section. We remind the reader the definition of topologically conjugate.

Definition 7.5.1. Let G be a countable group and let $S_{1}, S_{2} \subseteq 2^{G}$ be subflows. S_{1} is topologically conjugate to S_{2} or is a topological conjugate of S_{2} if there is a homeomorphism $\phi: S_{1} \rightarrow S_{2}$ satisfying $\phi(g \cdot x)=g \cdot \phi(x)$ for all $x \in S_{1}$ and $g \in G$. Such a function ϕ is called a conjugacy between S_{1} and S_{2}. If $\phi: S_{1} \rightarrow S_{2}$ is a function satisfying $\phi(g \cdot x)=g \cdot \phi(x)$ for all $g \in G$ and $x \in S_{1}$, then we say that ϕ commutes with the action of G. The property of being topologically conjugate induces an equivalence relation on the set of all subflows of 2^{G}. We call this equivalence relation the topological conjugacy relation.

The complexity of the topological conjugacy relation will be studied in Chapter 9. Here we will be interested in developing a type of rigidity for the topological conjugacy relation. In other words, we seek a method for constructing a collection
of functions with the property that any two of these functions generate topologically conjugate subflows if and only if there is a particularly nice conjugacy between the subflows they generate. In order to exert control over the topological conjugacy class of $\overline{[x]}$, one must be able to exert control over the behavior of elements of $\overline{[x]}$. For fundamental $x \in 2^{G}$ this is a difficult task. Especially bothersome are the elements of $\overline{[x]}$ which are not x-regular. Such elements are difficult to work with and difficult to control. The x-regular elements are better understood, and x-centered elements are best understood of all, partially in view of Lemma 7.3.9. The usefulness of the main result of this section should therefore be appreciated. Starting from a fundamental $c \in 2 \subseteq G$ (with a few assumptions), we present a method to extend c to a fundamental c^{\prime} with the property that for $x, y \in 2^{G}$ extending c^{\prime} (and satisfying a few conditions), $\overline{[x]}$ and $\overline{[y]}$ are topologically conjugate if and only if there is a conjugacy from $\overline{[x]}$ onto $\overline{[y]}$ sending x to a y-centered element of $\overline{[y]}$. We prove this with two independent theorems.

We begin with two lemmas. In this first lemma, \forall^{∞} denotes "for all but finitely many," \exists^{∞} denotes "there exists infinitely many," and g^{A} denotes $\left\{a g a^{-1}: a \in A\right\}$ for $A \subseteq G$ and $g \in G$.

Lemma 7.5.2. Let G be an infinite group, let $A \subseteq G$ be finite, and let $C \subseteq G$ be infinite. Then

$$
\forall^{\infty} \psi \in C \nexists^{\infty} \gamma \in C \psi \notin\left(\gamma^{-1} \psi\right)^{A} \cup\left(\gamma^{-1}\right)^{A} \cup \gamma\left(\gamma^{-1}\right)^{A}
$$

Proof. For each $a \in A$, the map $g \mapsto a g a^{-1}$ is an automorphism of G, so since A is finite we have that for every $\psi \in C$ there can only be finitely many $\gamma \in C$ with $\psi \in\left(\gamma^{-1} \psi\right)^{A} \cup\left(\gamma^{-1}\right)^{A}$. It will therefore suffice to show that for all but finitely many $\psi \in C$ there are infinitely many $\gamma \in C$ with $\psi \notin \gamma\left(\gamma^{-1}\right)^{A}$.

Let $D=\left\{\psi \in C: \exists^{\infty} \gamma \in C \psi \notin \gamma\left(\gamma^{-1}\right)^{A}\right\}$. We will show $|C-D| \leq n=|A|$. Suppose $\psi_{1}, \psi_{2}, \ldots, \psi_{n+1} \in C-D$. Then

$$
\begin{gathered}
\forall 1 \leq i \leq n+1 \forall^{\infty} \gamma \in C \psi_{i} \in \gamma\left(\gamma^{-1}\right)^{A} \\
\Longrightarrow \forall^{\infty} \gamma \in C \psi_{1}, \psi_{2}, \ldots, \psi_{n+1} \in \gamma\left(\gamma^{-1}\right)^{A} .
\end{gathered}
$$

However, $\left|\gamma\left(\gamma^{-1}\right)^{A}\right| \leq|A|=n$. So for some $i \neq j$ we have $\psi_{i}=\psi_{j}$. We conclude $|C-D| \leq n$.

Lemma 7.5.3. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, and let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. If $n \geq 1$ and $\gamma, \psi \in \Delta_{n+2}$ satisfy

$$
\gamma^{-1}\left[\gamma F_{n+2} \cap \operatorname{dom}(c)\right]=\psi^{-1}\left[\psi F_{n+2} \cap \operatorname{dom}(c)\right]
$$

and

$$
\forall f \in \gamma^{-1}\left[\gamma F_{n+2} \cap \operatorname{dom}(c)\right] c(\gamma f)=c(\psi f),
$$

then

$$
\forall h \in \gamma^{-1}\left[\gamma H_{n} \cap \operatorname{dom}(c)\right] c(\gamma h)=c(\psi h)
$$

Proof. Let $h \in H_{n}-F_{n+2}$. If $\lambda \in \Delta_{1}$ and $\gamma h \in \lambda F_{1}$, then $\gamma h \in \lambda F_{1} \subseteq \gamma F_{n+2}$ by clause (iii) of Lemma 5.3 .5 which contradicts $h \notin F_{n+2}$. So $\gamma h \notin \Delta_{1} F_{1}$ and by an identical argument $\psi h \notin \Delta_{1} F_{1}$ as well. It follows from clause (iv) of Theorem 5.2.5 and the fact that $\bigcup_{n \geq 1} \Delta_{n} \Lambda_{n} b_{n-1} \subseteq \Delta_{1} F_{1}$ that $\gamma h, \psi h \in \operatorname{dom}(c)$ and $c(\gamma h)=$ $c(\psi h)$. Therefore $c(\gamma h)=\bar{c}(\psi h)$ for all

$$
h \in\left(H_{n}-F_{n+2}\right) \cup \gamma^{-1}\left[\gamma F_{n+2} \cap \operatorname{dom}(c)\right]=\gamma^{-1}\left[\gamma H_{n} \cap \operatorname{dom}(c)\right] .
$$

We introduce a useful tool from symbolic dynamics known as block codes.
Definition 7.5.4. Let G be a countable group. A block code is any function $\hat{f}: 2^{H} \rightarrow\{0,1\}$ where H is a finite subset of G. A function $f: A \rightarrow B$, where $A, B \in \mathrm{~S}(G)$, is induced by a block code \hat{f} if for all $x \in A$ and $g \in G$

$$
f(x)(g)=\hat{f}\left(\left(g^{-1} \cdot x\right) \upharpoonright H\right)
$$

where $H=\operatorname{dom}(\hat{f})$.
The following theorem is usually stated for $G=\mathbb{Z}$. The generalization to other groups is immediate and well known. We include a proof for completeness.

Theorem 7.5.5 ([LM], Proposition 1.5.8). Let G be a countable group. A function $f: A \rightarrow B$, where A and B are subflows of 2^{G}, is continuous and commutes with the action of G if and only if f is induced by a block code.

Proof. First suppose f is induced by a block code \hat{f}. Let $H=\operatorname{dom}(\hat{f})$. If we fix $g \in G$, then for all $x \in A$ we have $f(x)(g)=\hat{f}\left(\left(g^{-1} \cdot x\right) \upharpoonright H\right)$. Thus if $y \in 2^{G}$ agrees with x on the finite set $g H$, then $f(y)(g)=f(x)(g)$. So f is continuous. Also, for $x \in A$ and $g, h \in G$

$$
f(g \cdot x)(h)=\hat{f}\left(\left(h^{-1} g \cdot x\right) \upharpoonright H\right)=f(x)\left(g^{-1} h\right)=(g \cdot f(x))(h) .
$$

So $f(g \cdot x)=g \cdot f(x)$.
Now suppose f is continuous and commutes with the shift action of G. Since A is a compact metric space, f is uniformly continuous. So there is a finite $H \subseteq G$ such that for all $x, y \in A$

$$
\forall h \in H x(h)=y(h) \Longrightarrow f(x)\left(1_{G}\right)=f(y)\left(1_{G}\right) .
$$

So we may define $\hat{f}: 2^{H} \rightarrow\{0,1\}$ by

$$
\hat{f}(z)= \begin{cases}f(x)\left(1_{G}\right) & \text { if there is } x \in A \text { with } x \upharpoonright H=z \\ 0 & \text { otherwise }\end{cases}
$$

Then we have for all $x \in A$ and all $g \in G$

$$
f(x)(g)=\left(g^{-1} \cdot f(x)\right)\left(1_{G}\right)=f\left(g^{-1} \cdot x\right)\left(1_{G}\right)=\hat{f}\left(\left(g^{-1} \cdot x\right) \upharpoonright H\right)
$$

So f is induced by the block code \hat{f}.
Now we are ready to present the first rigidity construction.
THEOREM 7.5.6. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $\gamma_{n}=1_{G}$ for all $n \geq 1$, and let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. Suppose that for every $n \geq 1$ there are infinitely many $\gamma \in \Delta_{n}$ with $c \upharpoonright F_{n}=\left(\gamma^{-1} \cdot c\right) \upharpoonright F_{n}$ (c being Δ-minimal would be sufficient for this) and that $\left|\Theta_{n}\right| \geq \log _{2}\left(12\left|F_{n}\right|^{2}+1\right)$ for each $n \equiv 1 \bmod 10$. Then there are $\nu_{1}^{n}, \nu_{2}^{n} \in \Delta_{n+5}$ for each $n \equiv 1 \bmod 10$ and $c^{\prime} \supseteq c$ with the following properties:
(i) c^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$;
(ii) $c^{\prime} \upharpoonright\left(\operatorname{dom}\left(c^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal;
(iii) $\left|\Theta_{n}\left(c^{\prime}\right)\right|>\left|\Theta_{n}(c)\right|-\log _{2}\left(12\left|F_{n}\right|^{2}+1\right)-1$ for $n \equiv 1 \bmod 10$, and $\Theta_{n}\left(c^{\prime}\right)=$ $\Theta_{n}(c)$ otherwise;
(iv) $c^{\prime}(f)=c^{\prime}\left(\nu_{1}^{n} f\right)=c^{\prime}\left(\nu_{2}^{n} f\right)$ for all $f \in F_{n+4} \cap \operatorname{dom}\left(c^{\prime}\right)$ and all $n \equiv 1$ $\bmod 10$;
(v) if $x, y \in 2^{G}$ extend c^{\prime} and $x(f)=x\left(\nu_{1}^{n} f\right)=x\left(\nu_{2}^{n} f\right)$ for all $f \in F_{n+4}$ and all $n \equiv 1 \bmod 10$, then any conjugacy between $\overline{[x]}$ and $\overline{[y]}$ must map x to a y-regular element of $\overline{[y]}$.

Note that $F_{n+4} \subseteq F_{n+5}-\left\{b_{n+5}\right\}$ since $\beta_{n+5} \neq \gamma_{n+5}=1_{G}$. Therefore in (iv) $\nu_{1}^{n} f, \nu_{2}^{n} f \in \operatorname{dom}\left(c^{\prime}\right)$ since $1_{G}, \nu_{1}^{n}, \nu_{2}^{n} \in \Delta_{n+5}$ (see Lemma 5.2.9).

Proof. We will actually prove something slightly more general which would have been too cumbersome to include in the statement of the theorem. The overall approach will be to make use of Lemma 7.1.5. We wish to construct a sequence of functions $\left(c_{n}\right)_{n \geq-1}$ and a sequence $\left(\nu_{1}^{10 n+1}, \nu_{2}^{10 n+1}\right)_{n \geq 1}$ satisfying for each $n \in \mathbb{N}$:
(1) $1_{G}, \nu_{1}^{10 n+1}$, and $\nu_{2}^{10 n+1}$ are distinct elements of $\Delta_{10 n+6}$;
(2) $c_{-1}=c$;
(3) $c_{n} \supseteq c_{n-1}$;
(4) c_{n} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and $c_{n} \upharpoonright\left(\operatorname{dom}\left(c_{n}\right)-\right.$ $\operatorname{dom}(c))$ is Δ-minimal;
(5) $\left|\Theta_{10 n+1}\left(c_{n}\right)\right|>\left|\Theta_{10 n+1}\left(c_{n-1}\right)\right|-\log _{2}\left(12\left|F_{10 n+1}\right|^{2}+1\right)-1$, and $\Theta_{m}\left(c_{n}\right)=$ $\Theta_{m}\left(c_{n-1}\right)$ for all $m \neq 10 n+1$;
(6) $c_{n}(f)=c_{n}\left(\nu_{1}^{10 n+1} f\right)=c_{n}\left(\nu_{2}^{10 n+1} f\right)$ for all $f \in F_{10 n+5} \cap \operatorname{dom}\left(c_{n}\right)$;
(7) If $\gamma \in \Delta_{10 n+1}, a \in F_{10 n+1} F_{10 n+1}^{-1}, \gamma a^{-1} \nu_{1}^{10 n+1} a, \gamma a^{-1} \nu_{2}^{10 n+1} a \in \Delta_{10 n+1}$, and

$$
c_{n}(\gamma f)=c_{n}\left(\gamma a^{-1} \nu_{1}^{10 n+1} a f\right)=c_{n}\left(\gamma a^{-1} \nu_{2}^{10 n+1} a f\right)
$$

for all $f \in\left(F_{10 n+1}-\left\{b_{10 n+1}\right\}\right) \cap \operatorname{dom}\left(c_{n}\right)$, then $\gamma \in \Delta_{10 n+18} F_{10 n+5}$.
Set $c_{-1}=c$, and suppose c_{-1} through c_{n-1} have been constructed. Here is where we introduce the extra bit of generality not mentioned in the statement of the theorem. If desired, one could extend c_{n-1} to any c_{n-1}^{\prime} satisfying: c_{n-1}^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}} ; c_{n-1}^{\prime} \upharpoonright\left(\operatorname{dom}\left(c_{n-1}^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal; $\Theta_{m}\left(c_{n-1}^{\prime}\right)=\Theta_{m}\left(c_{n-1}\right)$ for all $m \leq 10(n-1)+5 ;\left|\Theta_{m}\left(c_{n-1}^{\prime}\right)\right| \geq \log _{2}\left(12\left|F_{m}\right|^{2}+1\right)$ for all $m>10(n-1)+5$ congruent to 1 modulo 10 . We will construct c_{n} to extend c_{n-1}^{\prime}. To arrive at the exact stated conclusions of the theorem, one must chose $c_{n-1}^{\prime}=c_{n-1}$ at every stage in the construction. If at some stage one chooses to have $c_{n-1}^{\prime} \neq c_{n-1}$, then (iii) and (5) will no longer be true, but the remaining properties from (i) through (v) and (1) through (7) will still hold.

Set $m=10 n+1$ and let

$$
C=\left\{\nu \in \Delta_{m+5}: \nu \neq 1_{G} \wedge \forall f \in F_{m+4} \cap \operatorname{dom}\left(c_{n-1}^{\prime}\right) c_{n-1}^{\prime}(\nu f)=c_{n-1}^{\prime}(f)\right\}
$$

Since $c_{n-1}^{\prime} \upharpoonright\left(\operatorname{dom}\left(c_{n-1}^{\prime}\right)-\operatorname{dom}(c)\right)$ is Δ-minimal, our assumption on c gives that C is infinite. By applying Lemma 7.5.2, we see that there are distinct $\nu_{1}, \nu_{2} \in C$ satisfying for every $a \in F_{m} F_{m}^{-1}$ and every $\lambda \in D_{m}^{m+4}$:

$$
\begin{gathered}
\nu_{2} \neq a \lambda^{-1} \nu_{1}^{-1} \lambda a^{-1} \\
\nu_{2} \neq a \lambda^{-1} \nu_{1}^{-1} \nu_{2} \lambda a^{-1} ; \\
\nu_{2} \neq \lambda a^{-1} \nu_{1}^{-1} a \lambda^{-1} ; \\
\nu_{2} \neq \nu_{1} \lambda a^{-1} \nu_{1}^{-1} a \lambda^{-1} ;
\end{gathered}
$$

For notational convenience, let $\nu_{0}=1_{G}$.

Set $A=\left\{a^{-1} \nu_{i} a: i=1,2 \wedge a \in F_{m} F_{m}^{-1}\right\}$ and let $k \geq m+17$ be such that $\left\{1_{G}, \nu_{1}, \nu_{2}\right\} F_{m+4} \subseteq F_{k}$. Define $E_{1}, E_{2} \subseteq \Delta_{m} \times \Delta_{m}$ by:

$$
\begin{gathered}
E_{2}=\left\{\left(\sigma \nu_{i} \lambda, \sigma \nu_{j} \lambda\right): i \neq j \in\{0,1,2\}, \sigma \in \Delta_{k}, \text { and } \lambda \in D_{m}^{m+4}\right\} ; \\
(\gamma, \psi) \in E_{1} \Longleftrightarrow\left[(\gamma, \psi) \notin E_{2}\right] \wedge[\psi \in \gamma A \vee \gamma \in \psi A] .
\end{gathered}
$$

Let Γ be the graph with vertex set Δ_{m} and edge relation $E(\Gamma)=E_{1} \cup E_{2}$. Our immediate goal is to apply Theorem 7.4.6.

Since the Δ_{k}-translates of F_{k} are disjoint, our choice of k implies $\left[E_{2}\right]=E_{2}$, and every $\left[E_{2}\right]$ equivalence class consists of three members. So $E_{1} \cap\left[E_{2}\right]=\varnothing$. By applying Lemma 7.4 .3 for each $i \neq j \in\{0,1,2\}$ and each $\lambda \in D_{m}^{m+4}$ and taking unions, we see that E_{2} is Δ_{m}-minimal (for the set A in Lemma 7.4.3, use a singleton of the form $\left\{\lambda^{-1} \nu_{i}^{-1} \nu_{j} \lambda\right\}$). It is also clear from Lemma 7.4.3 that $E_{1} \cup E_{2}$ is Δ_{m} minimal as well (in the lemma use $m=n$ and $\lambda=1_{G}$). Since $E_{1} \cap E_{2}=\varnothing, E_{1}$ is Δ_{m}-minimal by Lemma 7.4.4. Since $|A| \leq 2\left|F_{m}\right|^{2}$, each vertex of Γ has at most $4\left|F_{m}\right|^{2} E_{1}$-neighbors. Therefore each vertex of $\Gamma /\left[E_{2}\right]$ has degree at most $12\left|F_{m}\right|^{2}$ (since every $\left[E_{2}\right]$ class consists of three vertices of Γ). Let t be the least integer greater than or equal to $\log _{2}\left(12\left|F_{m}\right|^{2}+1\right)$ and apply Theorem 7.4.6 to get c_{n} from c_{n-1}^{\prime}. Define $\nu_{1}^{m}=\nu_{1}$ and $\nu_{2}^{m}=\nu_{2}$. Properties (1) through (6), with the exception of (5) if $c_{n-1}^{\prime} \neq c_{n-1}$, are clearly satisfied. We proceed to verify (7).

Suppose $\gamma \in \Delta_{m}$ and $a \in F_{m} F_{m}^{-1}$ are such that $\gamma a^{-1} \nu_{1} a, \gamma a^{-1} \nu_{2} a \in \Delta_{m}$ and for all $f \in\left(F_{m}-\left\{b_{m}\right\}\right) \cap \operatorname{dom}\left(c_{n}\right)$

$$
c_{n}(\gamma f)=c_{n}\left(\gamma a^{-1} \nu_{1} a f\right)=c_{n}\left(\gamma a^{-1} \nu_{2} a f\right) .
$$

We cannot have $\left(\gamma, \gamma a^{-1} \nu_{1} a\right) \in E_{1}$ nor $\left(\gamma, \gamma a^{-1} \nu_{2} a\right) \in E_{1}$. However, we have $\gamma a^{-1} \nu_{1} a, \gamma a^{-1} \nu_{2} a \in \gamma A$, so it must be that $\left(\gamma, \gamma a^{-1} \nu_{i} a\right) \in E_{2}$ for $i=1,2$. Clearly $\gamma, \gamma a^{-1} \nu_{1} a, \gamma a^{-1} \nu_{2} a$ are all distinct since $1_{G}, \nu_{1}, \nu_{2}$ are distinct. It follows that there is $\sigma \in \Delta_{k}$ and $\lambda \in D_{m}^{m+4}$ such that

$$
\left\{\gamma, \gamma a^{-1} \nu_{1} a, \gamma a^{-1} \nu_{2} a\right\}=\left\{\sigma \lambda, \sigma \nu_{1} \lambda, \sigma \nu_{2} \lambda\right\}
$$

If $\gamma=\sigma \lambda$ then we are done since $\sigma \in \Delta_{m+17}$. Towards a contradiction, suppose $\gamma \neq \sigma \lambda$. We have two cases to consider.

Case 1: $\gamma=\sigma \nu_{1} \lambda$. Observe that

$$
\gamma a^{-1} \nu_{2} a=\sigma \lambda \Longrightarrow \sigma \nu_{1} \lambda a^{-1} \nu_{2} a=\sigma \lambda \Longrightarrow \nu_{2}=a \lambda^{-1} \nu_{1}^{-1} \lambda a^{-1},
$$

and

$$
\gamma a^{-1} \nu_{2} a=\sigma \nu_{2} \lambda \Longrightarrow \sigma \nu_{1} \lambda a^{-1} \nu_{2} a=\sigma \nu_{2} \lambda \Longrightarrow \nu_{2}=a \lambda^{-1} \nu_{1}^{-1} \nu_{2} \lambda a^{-1} .
$$

Now by our previous remarks one of the two rightmost statements must be true, but both are in contradiction of our choice of ν_{1} and ν_{2}.

Case 2: $\gamma=\sigma \nu_{2} \lambda$. We have

$$
\gamma a^{-1} \nu_{1} a=\sigma \lambda \Longrightarrow \sigma \nu_{2} \lambda a^{-1} \nu_{1} a=\sigma \lambda \Longrightarrow \nu_{2}=\lambda a^{-1} \nu_{1}^{-1} a \lambda^{-1}
$$

and

$$
\gamma a^{-1} \nu_{1} a=\sigma \nu_{1} \lambda \Longrightarrow \sigma \nu_{2} \lambda a^{-1} \nu_{1} a=\sigma \nu_{1} \lambda \Longrightarrow \nu_{2}=\nu_{1} \lambda a^{-1} \nu_{1}^{-1} a \lambda^{-1} .
$$

Again, one of the two rightmost statements must be true, however both contradict our choice of ν_{1} and ν_{2}. We conclude (7) is satisfied.

Let $c^{\prime}=\bigcup_{n \in \mathbb{N}} c_{n}$. Then c^{\prime} satisfies (i) and (ii). If $c_{n-1}^{\prime}=c_{n-1}$ for all $n \in \mathbb{N}$ then c^{\prime} satisfies (iii) as well. For (iv), just note that $1_{G}, \nu_{1}^{10 n+1}, \nu_{2}^{10 n+1} \in \Delta_{10 n+6}$
and $\Delta_{10 n+6} F_{10 n+5} \cap \operatorname{dom}\left(c^{\prime}\right)=\Delta_{10 n+6} F_{10 n+5} \cap \operatorname{dom}\left(c_{n}\right)$ since $\Delta_{10 n+6} F_{10 n+5} \cap$ $\Delta_{m} \Lambda_{m} b_{m-1}=\varnothing$ for $m \geq 10 n+6$ (since $\left.1_{G}=\gamma_{m} \notin \Lambda_{m} \cup\left\{\beta_{m}\right\}\right)$.

Now let $x, y \in 2^{G}$ extend c^{\prime} with $x(f)=x\left(\nu_{1}^{n} f\right)=x\left(\nu_{2}^{n} f\right)$ for all $f \in F_{n+4}$ and all $n \equiv 1 \bmod 10$. If $\overline{[x]}$ and $\overline{[y]}$ are not topologically conjugate, then there is nothing to show. So assume $\overline{[x]}$ is topologically conjugate to $\overline{[y]}$ and let $\phi: \overline{[x]} \rightarrow \overline{[y]}$ be a conjugacy. By Lemma 7.1.5 it suffices to show that $F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap \Delta_{n+17}^{z} \neq \varnothing$ for each $n \equiv 1 \bmod 10$, where $z=\phi(x) \in \overline{[y]}$.

Since ϕ is induced by a block code, there is a finite $K \subseteq G$ such that for all $g, h \in G$

$$
\forall k \in K x(g k)=x(h k) \Longrightarrow\left(g^{-1} \cdot x\right) \upharpoonright K=\left(h^{-1} \cdot x\right) \upharpoonright K \Longrightarrow z(g)=z(h)
$$

Let $n \equiv 1 \bmod 10$ satisfy $K \subseteq H_{n}$. By clause (ii) of Lemma 7.1.2, the Δ_{n}^{z} translates of F_{n} are maximally disjoint within G. So there is $a \in F_{n} F_{n}^{-1}$ with $a \in \Delta_{n}^{z}$. Note that

$$
a F_{n} K \subseteq F_{n} F_{n}^{-1} F_{n} H_{n} \subseteq H_{n+1} H_{n} \subseteq H_{n+2},
$$

so

$$
\forall g, h \in G\left(\forall k \in H_{n+2} x(g k)=x(h k) \Longrightarrow \forall f \in F_{n} z(g a f)=z(h a f)\right)
$$

Since $1_{G}, \nu_{1}^{n}, \nu_{2}^{n} \in \Delta_{n+5}$ and $x(f)=x\left(\nu_{1}^{n} f\right)=x\left(\nu_{2}^{n} f\right)$ for all $f \in F_{n+4}$, it follows from Lemma 7.5.3 that $x(h)=x\left(\nu_{1}^{n} h\right)=x\left(\nu_{2}^{n} h\right)$ for all $h \in H_{n+2}$. Therefore $z(a f)=z\left(\nu_{1}^{n} a f\right)=z\left(\nu_{2}^{n} a f\right)$ for all $f \in F_{n}$.

Let $r \in \mathbb{N}$ be such that

$$
\left\{1_{G}, \nu_{1}^{n}, \nu_{2}^{n}\right\} a F_{n} \cup a F_{n+4}^{-1} F_{n+17} \subseteq\left\{g_{0}, g_{1}, \ldots, g_{r}\right\}
$$

(where g_{0}, g_{1}, \ldots is the enumeration of G used for defining the metric on 2^{G}). Let $p \in G$ be such that $d\left(p^{-1} \cdot y, z\right)<2^{-r}$. Then

$$
\forall g \in\left\{1_{G}, \nu_{1}^{n}, \nu_{2}^{n}\right\} a F_{n} \cup a F_{n+4}^{-1} F_{n+17} y(p g)=\left(p^{-1} \cdot y\right)(g)=z(g) .
$$

As $a \in \Delta_{n}^{z}$, it must be that $p a \in \Delta_{n}^{y}$. Let $\gamma=p a \in \Delta_{n}^{y}$. Then for all $f \in F_{n}$ and $i=1,2$

$$
y(\gamma f)=y(p a f)=z(a f)=z\left(\nu_{i}^{n} a f\right)=y\left(p \nu_{i}^{n} a f\right)=y\left(\gamma a^{-1} \nu_{i}^{n} a f\right) .
$$

So by considering the Δ_{n}^{y} membership test we have that $\gamma a^{-1} \nu_{i}^{n} a \in \Delta_{n}^{y}$. It follows from (7) that $\gamma \in \Delta_{n+17}^{y} F_{n+4}$. In particular, there is $s \in F_{n+4}^{-1}$ with $\gamma s \in \Delta_{n+17}^{y}$. This gives that for all $f \in F_{n+17}$

$$
z(a s f)=y(p a s f)=y(\gamma s f)
$$

so as $\in \Delta_{n+17}^{z}$. In particular, $F_{n} F_{n}^{-1} F_{n+4}^{-1} \cap \Delta_{n+17}^{z} \neq \varnothing$.
THEOREM 7.5.7. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be one of the blueprints referred to in Proposition 6.3 .1 with $\gamma_{n}=1_{G}$ for all $n \geq 1$, let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be the corresponding growth sequence, and let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. Suppose that c is Δ-minimal and that $\left|\Theta_{n}\right| \geq$ $\log _{2}\left(2\left|F_{n}\right|^{4}+1\right)$ for each $n \equiv 6 \bmod 10$. Then for each $n \equiv 6 \bmod 10$ there are $\nu_{1}^{n}, \nu_{2}^{n}, \ldots, \nu_{s(n)}^{n} \in \Delta_{n+5}$, where $s(n)=\left|F_{n} F_{n}^{-1}-\mathrm{Z}(G)\right|$, and $c^{\prime} \supseteq c$ with the following properties:
(i) c^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$;
(ii) c^{\prime} is Δ-minimal;
(iii) $\left|\Theta_{n}\left(c^{\prime}\right)\right|>\left|\Theta_{n}(c)\right|-\log _{2}\left(2\left|F_{n}\right|^{4}+1\right)-1$ for $n \equiv 6 \bmod 10$, and $\Theta_{n}\left(c^{\prime}\right)=$ $\Theta_{n}(c)$ otherwise;
(iv) $c^{\prime}(f)=c^{\prime}\left(\nu_{i}^{n} f\right)$ for all $1 \leq i \leq s(n), f \in F_{n+4} \cap \operatorname{dom}\left(c^{\prime}\right)$, and $n \equiv 6$ $\bmod 10$;
(v) if $x, y \in 2^{G}$ extend c^{\prime} and $x(f)=x\left(\nu_{i}^{n} f\right)$ for all $1 \leq i \leq s(n), f \in F_{n+4}$, and $n \equiv 6 \bmod 10$, then for any y-regular $z \in \overline{[y]}$
there is a conjugacy between $\overline{[x]}$ and $\overline{[y]}$ sending x into $[z]$ if and only if there is a conjugacy between $\overline{[x]}$ and $\overline{[y]}$ sending x to the unique y-centered element of $[z]$.

Proof. As in the previous theorem, we will actually prove something a little more general. We wish to construct a sequence of functions $\left(c_{n}\right)_{n \geq-1}$ and a collection $\left\{\nu_{i}^{n}: n \equiv 6 \bmod 10,1 \leq i \leq s(n)\right\}$ satisfying for each $n \in \mathbb{N}$:
(1) $1_{G}, \nu_{1}^{10 n+6}, \nu_{2}^{10 n+6}, \ldots, \nu_{s(10 n+6)}^{10 n+6}$ are all distinct elements of $\Delta_{10 n+11}$;
(2) $c_{-1}=c$;
(3) $c_{n} \supseteq c_{n-1}$
(4) c_{n} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and is Δ-minimal;
(5) $\left|\Theta_{10 n+6}\left(c_{n}\right)\right|>\left|\Theta_{10 n+6}\left(c_{n-1}\right)\right|-\log _{2}\left(2\left|F_{10 n+6}\right|^{4}+1\right)-1$, and $\Theta_{m}\left(c_{n}\right)=$ $\Theta_{m}\left(c_{n-1}\right)$ for $m \neq 10 n+6$;
(6) $c_{n}(f)=c_{n}\left(\nu_{i}^{10 n+6} f\right)$ for all $1 \leq i \leq s(10 n+6)$, and $f \in F_{10 n+10} \cap \operatorname{dom}\left(c_{n}\right)$;
(7) for all $a \in F_{10 n+6} F_{10 n+6}^{-1}-\mathrm{Z}(G)$ there is $1 \leq i \leq s(10 n+6)$ and $f \in$ $F_{10 n+6} \cap \operatorname{dom}\left(c_{n}\right)$ with $c_{n}(f) \neq c_{n}\left(a^{-1} \nu_{i}^{10 n+6} a f\right)$.
Set $c_{-1}=c$, and suppose c_{-1} through c_{n-1} have been constructed. As in the previous theorem, if desired, one could extend c_{n-1} to any c_{n-1}^{\prime} satisfying: c_{n-1}^{\prime} is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}} ; c_{n-1}^{\prime}$ is Δ-minimal; $\Theta_{m}\left(c_{n-1}^{\prime}\right)=$ $\Theta_{m}\left(c_{n-1}\right)$ for all $m \leq 10 n ;\left|\Theta_{m}\left(c_{n-1}^{\prime}\right)\right| \geq \log _{2}\left(2\left|F_{m}\right|^{4}+1\right)$ for all $m>10 n$ congruent to 6 modulo 10 . We will construct c_{n} to extend c_{n-1}^{\prime}. To arrive at the exact stated conclusions of the theorem, one must chose $c_{n-1}^{\prime}=c_{n-1}$ at every stage in the construction. If at some stage one chooses to have $c_{n-1}^{\prime} \neq c_{n-1}$, then (iii) and (5) will no longer be true, but the remaining properties from (i) through (v) and (1) through (7) will still hold.

Set $m=10 n+6$, and enumerate $F_{m} F_{m}^{-1}-\mathrm{Z}(G)$ as $a_{1}, a_{2}, \ldots, a_{s(m)}$. Using Proposition 6.3.1 and the fact that c_{n-1}^{\prime} is Δ-minimal, we can pick distinct, nonidentity $\nu_{1}, \nu_{2}, \ldots, \nu_{s(m)} \in \Delta_{m+5}$ one at a time so that they satisfy:

$$
\begin{gathered}
\forall 1 \leq i \leq s(m) \forall f \in F_{m+4} \cap \operatorname{dom}\left(c_{n-1}^{\prime}\right) c_{n-1}^{\prime}\left(\nu_{i} f\right)=c_{n-1}^{\prime}(f) ; \\
\forall 1 \leq i \leq s(m) a_{i}^{-1} \nu_{i} a_{i} \neq \nu_{i} ; \\
\forall 1 \leq i \neq j \leq s(m)\left\{\nu_{i}, a_{i}^{-1} \nu_{i} a_{i}\right\} \cap\left\{\nu_{j}, a_{j}^{-1} \nu_{j} a_{j}\right\}=\varnothing
\end{gathered}
$$

For notational convenience, let $\nu_{0}=1_{G}$.
Let k be such that $\nu_{i} F_{m+4} \subseteq F_{k}$ for each $1 \leq i \leq s(m)$. Define $F_{1}, F_{2}, E_{1}, E_{2} \subseteq$ $\Delta_{m} \times \Delta_{m}$ by:

$$
\begin{gathered}
F_{1}=\left\{\left(\sigma, \sigma a_{i}^{-1} \nu_{i} a_{i}\right): 1 \leq i \leq s(m), \sigma \in \Delta_{k}, \sigma a_{i}^{-1} \nu_{i} a_{i} \in \Delta_{m}\right\} \\
(\gamma, \psi) \in E_{1} \Longleftrightarrow\left[(\gamma, \psi) \in F_{1}\right] \vee\left[(\psi, \gamma) \in F_{1}\right] \\
F_{2}=\left\{\left(\sigma \nu_{i} \lambda, \sigma \nu_{j} \lambda\right): 0 \leq i \neq j \leq s(m), \sigma \in \Delta_{k}, \lambda \in D_{m}^{m+4}\right\} \\
(\gamma, \psi) \in E_{2} \Longleftrightarrow\left[(\gamma, \psi) \in F_{2}\right] \vee\left[(\psi, \gamma) \in F_{2}\right]
\end{gathered}
$$

Let Γ be the graph with vertex set Δ_{m} and edge relation $E(\Gamma)=E_{1} \cup E_{2}$. Once again, our plan is to apply Theorem 7.4.6 with respect to Γ and the partition $\left\{E_{1}, E_{2}\right\}$ of $E(\Gamma)$.

Note that, by our choice of $k,\left[E_{2}\right]=E_{2}$ and each $\left[E_{2}\right]$ equivalence class has exactly $s(m)+1$ members. Also, note that $E_{1} \cap\left[E_{2}\right]=\varnothing$ (use the fact that if $(\gamma, \psi) \in E_{1}$ then either $\gamma \in \Delta_{k}$ or $\left.\psi \in \Delta_{k}\right)$. By fixing $\lambda \in D_{m}^{m+4}$ and $0 \leq i \neq j \leq$ $s(m)$, applying Lemma 7.4.3, and then taking unions over all λ, i, and j, we see that E_{1} and $\left[E_{2}\right]$ are both Δ_{m}-minimal. Each vertex in Γ has at most $s(m)$ many $E_{1^{-}}$ neighbors, so each vertex of $\Gamma /\left[E_{2}\right]$ has degree at most $s(m)(s(m)+1) \leq 2 s(m)^{2} \leq$ $2\left|F_{m}\right|^{4}$. Let t be the least integer greater than or equal to $\log _{2}\left(2\left|F_{m}\right|^{4}+1\right)$, and apply Theorem 7.4.6 to get c_{n} from c_{n-1}^{\prime}. Set $\nu_{i}^{m}=\nu_{i}$ for each $1 \leq i \leq s(m)$. Properties (1) through (6), with the exception of (5) if $c_{n-1}^{\prime} \neq c_{n-1}$, are then clearly satisfied. To verify (7), just notice that $1_{G} \in \Delta_{k}$ and either $a_{i}^{-1} \nu_{i} a_{i} \notin \Delta_{m}$, in which case it fails the Δ_{m} membership test while 1_{G} passes, or $\left(1_{G}, a_{i}^{-1} \nu_{i} a_{i}\right) \in E_{1}$, in which case the claim follows by the definition of c_{n}.

Let $c^{\prime}=\bigcup_{n \in \mathbb{N}} c_{n}$. Properties (i) and (ii) clearly hold (for (ii) use Lemma 7.3.8). If $c_{n-1}^{\prime}=c_{n-1}$ for each $n \in \mathbb{N}$, then (iii) holds as well. To see property (iv), just note that $1_{G}, \nu_{i}^{n} \in \Delta_{10 n+11}$, and $\Delta_{10 n+11} F_{10 n+10} \cap \operatorname{dom}\left(c^{\prime}\right)=\Delta_{10 n+11} F_{10 n+10} \cap \operatorname{dom}\left(c_{n}\right)$ since $\Delta_{10 n+11} F_{10 n+10} \cap \Delta_{m} \Lambda_{m} b_{m-1}=\varnothing$ for $m \geq 10 n+11$ (since $1_{G}=\gamma_{m} \notin$ $\left.\Lambda_{m} \cup\left\{\beta_{m}\right\}\right)$.

Now let $x, y \in 2^{G}$ extend c^{\prime} with $x(f)=x\left(\nu_{i}^{n} f\right)$ for all $n \equiv 6 \bmod 10,1 \leq i \leq$ $s(n)$, and $f \in F_{n+4}$. Let $z \in \overline{[y]}$ be y-regular. If there is no conjugacy between $\overline{[x]}$ and $\overline{[y]}$ mapping x into $[z]$ then there is nothing to show. So suppose $\phi: \overline{[x]} \rightarrow \overline{[y]}$ is a conjugacy with $\phi(x) \in[z]$. Without loss of generality, we may assume that z itself is y-centered.

Let $a \in G$ be such that $\phi(x)=a \cdot z$. Now if $a \in \mathrm{Z}(G)$, then there is an automorphism (self conjugacy) of $\overline{[z]}=\phi(\overline{[x]})=\overline{[y]}$ sending $a \cdot z$ to z (the automorphism being $w \mapsto a^{-1} \cdot w$ for $w \in \overline{[y]}$; this is clearly continuous and it commutes with the action of G since $a \in \mathrm{Z}(G)$). Since z is y-centered, our claim would follow by composing this automorphism with ϕ. Towards a contradiction, suppose $a \notin \mathrm{Z}(G)$. Since ϕ is induced by a block code, there is a finite $K \subseteq G$ such that for all $g, h \in G$
$\forall k \in K x(g k)=x(h k) \Longrightarrow\left(g^{-1} \cdot x\right) \upharpoonright K=\left(h^{-1} \cdot x\right) \upharpoonright K \Longrightarrow(a \cdot z)(g)=(a \cdot z)(h)$. Let $n \equiv 6 \bmod 10$ be such that $a \in H_{n-2} \subseteq F_{n} F_{n}^{-1}$ and $K \subseteq H_{n}$. Note that

$$
a F_{n} K \subseteq F_{n} F_{n}^{-1} F_{n} H_{n} \subseteq H_{n+1} H_{n} \subseteq H_{n+2}
$$

Therefore

$$
\forall g, h \in G\left(\forall k \in H_{n+2} x(g k)=x(h k) \Longrightarrow \forall f \in F_{n}(a \cdot z)(g a f)=(a \cdot z)(h a f)\right)
$$

Since $1_{G}, \nu_{i}^{n} \in \Delta_{n+5}$ and $x(f)=x\left(\nu_{i}^{n} f\right)$ for all $f \in F_{n+4}$ and all $1 \leq i \leq s(n)$, it follows from Lemma 7.5.3 that $x(h)=x\left(\nu_{i}^{n} h\right)$ for all $h \in H_{n+2}$ and all $1 \leq i \leq s(n)$. Therefore, for all $f \in F_{n}$ and all $1 \leq i \leq s(n)$.

$$
z(f)=(a \cdot z)(a f)=(a \cdot z)\left(\nu_{i}^{n} a f\right)=z\left(a^{-1} \nu_{i}^{n} a f\right)
$$

However, $y \supseteq c^{\prime}$ and c^{\prime} is Δ-minimal, so this is in contradiction with property (7) and Lemma 7.3.9. Thus it must be that $a \in \mathrm{Z}(G)$.

These two proofs taken together, give us the following.
Corollary 7.5.8. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be one of the blueprints referred to in Proposition 6.3 .1 with $\gamma_{n}=1_{G}$ for all $n \geq$ 1, let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be the corresponding growth sequence, and let $c \in 2 \subseteq G$ be fundamental with respect to this blueprint. Suppose that c is Δ-minimal and that
$\left|\Theta_{n}\right| \geq \log _{2}\left(12\left|F_{n}\right|^{4}+1\right)$ for each $n \equiv 1 \bmod 5$. Then for every $n \in \mathbb{N}$ there are $\nu_{1}^{10 n+1}, \nu_{2}^{10 n+1} \in \Delta_{10 n+6}$ and $\nu_{1}^{10 n+6}, \nu_{2}^{10 n+6}, \ldots, \nu_{s(10 n+6)}^{10 n+6} \in \Delta_{10 n+11}$ (where $s(n)$ is defined as in the previous theorem) and $c^{\prime} \supseteq c$ which simultaneously satisfy both the conclusions of Theorem 7.5.6 and the conclusions of Theorem 7.5.7.

Proof. The added generality of the two previous theorems allows the inductive constructions appearing in the proofs to be interwoven.

We point out that our results in this section are not only applicable in the context of conjugacies, but also in the more general context of continuous functions commuting with the action of G. For example, if x and y are as in clause (v) of Theorem 7.5.6 then any continuouos $\phi: \overline{[x]} \rightarrow \overline{[y]}$ which commutes with the action of G must map x to a y-regular element of $\overline{[y]}$. Similarly, if x and y are as in clause (v) of Theorem 7.5.7, then any ϕ as in the previous sentence must satisfy $\phi(x) \in \mathrm{Z}(G) \cdot z$ where z is some y-centered element of $\overline{[y]}$. These statements can be easily verified by looking back at the proofs of Theorems 7.5.6 and 7.5.7. We will not make use of these more general facts.

CHAPTER 8

The Descriptive Complexity of Sets of 2-Colorings

In the following three chapters we study some further problems involving 2colorings on countably infinite groups. In doing this we make use of the fundamental method and its variations as well as employing additional results and methods in descriptive set theory, combinatorial group theory, and topological dynamics.

In this chapter we study the descriptive complexity of sets of 2-colorings, minimal elements, and minimal 2-colorings on any countably infinite group G. It is obvious that all these sets are $\boldsymbol{\Pi}_{3}^{0}$ (i.e. $F_{\sigma \delta}$) subsets of 2^{G}. We characterize the exact descriptive complexity of these sets.

8.1. Smallness in measure and category

We have shown in the preceding chapter that for any countably infinite group G, the set of minimal 2-colorings on G is dense (Theorem 7.4.8). In addition, within any given open set in 2^{G} there are perfectly many minimal 2 -colorings on G (Theorem 7.4.9). These manifest the largeness of the sets in some sense. In this section we show that in the sense of measure or category, both the sets of 2-colorings and of minimal elements are small.

The space 2^{G} carries the Bernoulli product measure μ. For any $p \in 2^{<G}$ (with $\operatorname{dom}(p)$ finite),

$$
\mu\left(N_{p}\right)=\mu\left(\left\{x \in 2^{G}: p \subseteq x\right\}\right)=2^{-|\operatorname{dom}(p)|} .
$$

Lemma 8.1.1. Let G be a countably infinite group and $s \in G$ with $s \neq 1_{G}$. Then the set of all elements $x \in 2^{G}$ blocking s is meager and has μ measure 0 in 2^{G}.

Proof. For any finite $T \subseteq G$, let

$$
B_{T}=\left\{x \in 2^{G}: \forall g \in G \exists t \in T x(g t) \neq x(g s t)\right\}
$$

It is clear that B_{T} is closed. We first show that each B_{T} is nowhere dense.
Otherwise, there is a nonempty open set in which B_{T} is dense. It follows that there is $p \in 2^{<G}$ such that $N_{p} \subseteq B_{T}$. Define $x \in 2^{G}$ by

$$
x(g)= \begin{cases}p(g), & \text { if } g \in \operatorname{dom}(p) \\ 0, & \text { otherwise }\end{cases}
$$

Then $x \in N_{p}$ and so $x \in B_{T}$. Let $F=\operatorname{dom}(p) T^{-1} \cup \operatorname{dom}(p) T^{-1} s^{-1}$. Since F is finite, there is $g_{0} \notin F$. Then for all $t \in T, g_{0} t \notin \operatorname{dom}(p)$ and $g_{0} s t \notin \operatorname{dom}(p)$. This implies that for all $t \in T, x\left(g_{0} t\right)=0=x\left(g_{0} s t\right)$, and so $x \notin B_{T}$, a contradiction.

The above argument shows that B_{T} is meager, and in particular it cannot have a nonempty interior. To see that B_{T} has μ measure 0 , we use the fact that μ is actually ergodic, i.e., any invariant Borel subset of 2^{G} must have μ measure 0 or 1 . It is clear that B_{T} is invariant. Toward a contradiction, assume $\mu\left(B_{T}\right) \neq 0$. Then
it has μ measure 1 , and its complement, being open and of μ measure 0 , must be empty. This shows that $B_{T}=2^{G}$, a contradiction.

Lemma 8.1.2. Let G be a countably infinite group and $A \subseteq G$ finite and nonempty. Then the set of all elements $x \in 2^{G}$ with a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T \forall a \in A x(g t a)=x(a)
$$

is meager and has μ measure 0 .
Proof. For any finite $T \subseteq G$, let

$$
R_{T}=\left\{x \in 2^{G}: \forall g \in G \exists t \in T \forall a \in A x(g t a)=x(a)\right\}
$$

Similar to the preceding proof, it suffices to show that each R_{T} is meager and has μ measure 0. Assume not. Since R_{T} is closed, it has a nonempty interior. Let $p \in 2^{<G}$ be such that $N_{p} \subseteq R_{T}$. We consider two cases. Case 1: $A \subseteq \operatorname{dom}(p)$. Fix any $a_{0} \in A$. Define $y \in 2^{G}$ by

$$
y(g)= \begin{cases}p(g), & \text { if } g \in \operatorname{dom}(p) \\ 1-p\left(a_{0}\right), & \text { otherwise }\end{cases}
$$

Then $y \in N_{p}$ and so $y \in R_{T}$. Let $F=\operatorname{dom}(p) A^{-1} T^{-1}$. Since F is finite, there is $g_{0} \notin F$. Then for any $t \in T$ and $a \in A, g_{0} t a \notin \operatorname{dom}(p)$ and $y\left(g_{0} t a\right)=1-p\left(a_{0}\right)$. In particular for any $t \in T, y\left(g_{0} t a_{0}\right) \neq y\left(a_{0}\right)$. This shows that $y \notin R_{T}$, a contradiction. Case 2: $A \nsubseteq \operatorname{dom}(p)$. In this case let $b_{0} \in A-\operatorname{dom}(p)$. Define $z \in 2^{G}$ by

$$
z(g)= \begin{cases}p(g), & \text { if } g \in \operatorname{dom}(p) \\ 1, & \text { if } g=b_{0} \\ 0, & \text { otherwise }\end{cases}
$$

Then $z \in N_{p}$ and so $z \in R_{T}$. Let $K=\left(\operatorname{dom}(p) \cup\left\{b_{0}\right\}\right) A^{-1} T^{-1}$. Since K is finite, there is $h_{0} \notin K$. Then for any $t \in T$ and $a \in A, h_{0} t a \notin \operatorname{dom}(p) \cup\left\{b_{0}\right\}$ and so $z\left(h_{0} t a\right)=0$. In particular for any $t \in T, z\left(h_{0} t b_{0}\right) \neq z\left(b_{0}\right)$. This shows again that $z \notin R_{T}$, a contradiction.

Theorem 8.1.3. For any countably infinite group G the set of all 2-colorings on G and the set of all minimal elements are meager and have μ measure 0 .

Proof. This follows immediately from the above lemmas.

8.2. Σ_{2}^{0}-hardness and Π_{3}^{0}-completeness

In this section we show that for any countably infinite group G, the set of all 2-colorings on G is $\boldsymbol{\Sigma}_{2}^{0}$-hard and the set of all minimal elements in 2^{G} is $\boldsymbol{\Pi}_{3}^{0}-$ complete. This completely characterizes the descriptive complexity for the set of all minimal elements. For the set of all 2-colorings the complete characterization for its descriptive complexity will be given in the next two sections.

We first briefly review the related descriptive set theory. For further results and unexplained terminology the reader can consult [K] (especially [K] Sections 22 and 23).

Let X be an uncountable Polish space, i.e., separable completely metrizable topological space. A subset $Y \subseteq X$ is $\boldsymbol{\Sigma}_{2}^{0}$-hard if for any $\boldsymbol{\Sigma}_{2}^{0}$ (i.e. F_{σ}) subset Z of the Baire space $\mathbb{N}^{\mathbb{N}}$ there is a continuous function $f: \mathbb{N}^{\mathbb{N}} \rightarrow X$ such that $Z=f^{-1}[Y]$, i.e., for all $z \in \mathbb{N}^{\mathbb{N}}$,

$$
z \in Z \Longleftrightarrow f(z) \in Y
$$

A set is $\boldsymbol{\Sigma}_{2}^{0}$-complete if it is $\boldsymbol{\Sigma}_{2}^{0}$ and is also $\boldsymbol{\Sigma}_{2}^{0}$-hard. Intuitively, a set is $\boldsymbol{\Sigma}_{2}^{0}$-complete if it is the most complex $\boldsymbol{\Sigma}_{2}^{0}$ set in a Polish space, and a set is $\boldsymbol{\Sigma}_{2}^{0}$-hard if it is at least as complex as any $\boldsymbol{\Sigma}_{2}^{0}$ set. Define

$$
S=\left\{\alpha \in 2^{\mathbb{N}}: \exists n \forall m>n \alpha(m)=0\right\} .
$$

Then S is known to be $\boldsymbol{\Sigma}_{2}^{0}$-complete. For any subset Y of an uncountable Polish space X, Y is $\boldsymbol{\Sigma}_{2}^{0}$-hard iff there is a continuous $f: 2^{\mathbb{N}} \rightarrow X$ such that $S=f^{-1}[Y]$.

Similar definitions can be given for $\boldsymbol{\Pi}_{3}^{0}$-hardness and $\boldsymbol{\Pi}_{3}^{0}$-completeness. Define

$$
P=\left\{\alpha \in 2^{\mathbb{N} \times \mathbb{N}}: \forall k \geq 1 \exists n>k \forall m \geq n \alpha(k, m)=0\right\} .
$$

Then P is known to be Π_{3}^{0}-complete. Using this fact we can give the following alternative definitions for Π_{3}^{0}-hardness and Π_{3}^{0}-completeness. For any subset Y of an uncountable Polish space X, Y is $\boldsymbol{\Pi}_{3}^{0}$-hard iff there is a continuous function $f: 2^{\mathbb{N} \times \mathbb{N}} \rightarrow X$ such that $P=f^{-1}[Y] ; Y$ is Π_{3}^{0}-complete if Y is Π_{3}^{0} and Π_{3}^{0}-hard.

By the definition of 2 -coloring it is obvious that for any countable group G the set of all 2 -colorings on G is $\boldsymbol{\Pi}_{3}^{0}$. When G is finite then there are only finitely many orbits in 2^{G}, and every orbit is closed. In this case the set of all 2-colorings on G coincides with the free part and is also closed. Below we show that for any countably infinite group G, the set of all 2 -colorings is $\boldsymbol{\Sigma}_{2}^{0}$-hard.

Theorem 8.2.1. For any countably infinite group G, the set of all 2 -colorings on G is $\boldsymbol{\Sigma}_{2}^{0}$-hard.

Proof. We give two short proofs for this theorem. The first proof uses Wadge determinacy and shows a general claim in descriptive set theory: any dense meager set is $\boldsymbol{\Sigma}_{2}^{0}$-hard. Let X be a Polish space and $C \subseteq X$ dense and meager. If C is not $\boldsymbol{\Sigma}_{2}^{0}$-hard then for some $\boldsymbol{\Sigma}_{2}^{0}$ set $Y \subseteq \mathbb{N}^{\mathbb{N}}, Y \not \mathbb{Z}_{W} C$. Then by Wadge determinacy (c.f. $[\mathbf{K}]$ Theorem 21.14) $C \leq_{W}\left(\mathbb{N}^{\mathbb{N}}-Y\right)$. This shows that C is $\boldsymbol{\Pi}_{2}^{0}$, or G_{δ}. Thus C is a dense G_{δ} in 2^{G}, and therefore comeager, a contradiction.

For readers not familiar with descriptive set theory we offer the following direct proof. Fix a strong 2-coloring $x \in 2^{G}$ (given by Theorem 6.1.5). Fix an increasing sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G with $\bigcup_{n} A_{n}=G$, and a sequence $\left(h_{n}\right)_{n \in \mathbb{N}}$ with $h_{m} A_{m} \cap h_{k} A_{k}=\varnothing$ for $m \neq k$. For $\alpha \in 2^{\mathbb{N}}$, define $f(\alpha) \in 2^{G}$ by

$$
f(\alpha)(g)= \begin{cases}x(g), & \text { if } g \notin \bigcup_{k} h_{k} A_{k} \\ x(g), & \text { if for some } k, g \in h_{k} A_{k} \text { and } \alpha(k)=0 \\ 1, & \text { if for some } k, g \in h_{k} A_{k} \text { and } \alpha(k)=1\end{cases}
$$

Clearly f is continuous. If $\alpha \in S$, then $f(\alpha)$ and x differ at finitely many coordinates. Since x is a strong 2-coloring, this implies $f(\alpha)$ is a 2 -coloring. On the other hand, if $\alpha \notin S$ then the set $N=\{k \in \mathbb{N}: \alpha(k)=1\}$ is infinite, and so $\lim _{k \in N} h_{k}^{-1} \cdot f(\alpha)$ is the constant 1 function in 2^{G}; hence $f(\alpha)$ is not a 2 -coloring.

The following theorem completely characterize the descriptive complexity for the set of all minimal elements in 2^{G} for any countably infinite group G.

TheOrem 8.2.2. For any countably infinite group G, the set of all minimal elements of 2^{G} is $\boldsymbol{\Pi}_{3}^{0}$-complete.

Proof. Let G be a countably infinite group and $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, with $\alpha_{n} \neq \gamma_{n}=1_{G} \neq \beta_{n}$ for all $n \geq 1$. Then $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is in fact directed and maximally disjoint by clause (i) of Lemma 5.3.5, and $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ by clause (viii) of Lemma 5.1.5.

For such blueprints Corollary 7.2 .6 applies. If $x \in 2^{G}$ is fundamental with respect to this blueprint, then x is minimal iff x is pre-minimal iff for every $k \geq 1$ there is $n>k$ such that

$$
\forall \gamma \in \Delta_{n} \exists \lambda \in D_{k}^{n} \forall f \in F_{k} x(\gamma \lambda f)=x(f)
$$

Let $c \in 2 \subseteq G$ be Δ-minimal and fundamental with respect to this blueprint, with $\Theta_{n}=\Theta_{n}(c)$ nonempty for all $n \geq 1$. By Proposition 7.3.5 it suffices to take c to be canonical with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$. Recall from Definition 5.2.7 that

$$
G-\operatorname{dom}(c)=\bigcup_{n \geq 1} \Delta_{n} \Theta_{n} b_{n-1}
$$

and for distinct $n, m \geq 1, \Delta_{n} \Theta_{n} b_{n-1}$ and $\Delta_{m} \Theta_{m} b_{m-1}$ are disjoint (clause (iii) of Theorem 5.2.5). We define a continuous function $\Phi: 2^{\mathbb{N} \times \mathbb{N}} \rightarrow 2^{G}$ so that for all $\alpha \in 2^{\mathbb{N} \times \mathbb{N}}, \alpha \in P$ iff $\Phi(\alpha)$ is a minimal element in 2^{G}.

For $k \geq 1$, and $\gamma \in \Delta_{k}$ define

$$
R_{k}(\gamma)=\max \left\{n \geq k: n=k \text { or else } \gamma \in\left(\Delta_{n}-\left\{1_{G}\right\}\right) F_{n}\right\}
$$

and

$$
S_{k}(\gamma)=\text { the unique } \lambda \in \Delta_{R_{k}(\gamma)} \text { with } \gamma \in \lambda F_{R_{k}(\gamma)}
$$

Note the following basic properties of these functions. If $n>k$ and $\gamma \in F_{n}$ then $R_{k}(\gamma)<n$. If $R_{k}(\gamma)=k$ then $S_{k}(\gamma)=\gamma$. If $R_{k}(\gamma)>k$ then $R_{k}\left(S_{k}(\gamma)^{-1} \gamma\right)<R_{k}(\gamma)$ since $S_{k}(\gamma)^{-1} \gamma \in F_{R_{k}(\gamma)}$. Intuitively the function R_{k} is a rank function for elements of Δ_{k}. These properties make it possible to use the following kind of induction on γ. The base case of the induction is $\gamma=1_{G}$. In general, the case for γ makes use of the inductive case for $S_{k}(\gamma)^{-1} \gamma$.

Given $\alpha \in 2^{\mathbb{N} \times \mathbb{N}}$, we define $\Phi(\alpha) \in 2^{G}$ to extend c as follows. For $k \geq 1$, $\gamma \in \Delta_{k}$, and $\theta \in \Theta_{k}$, we inductively define $\Phi(\alpha)\left(1_{G} \theta b_{k-1}\right)=0$ and

$$
\Phi(\alpha)\left(\gamma \theta b_{k-1}\right)=\max \left\{\alpha\left(k, R_{k}(\gamma)\right), \Phi(\alpha)\left(S_{k}(\gamma)^{-1} \gamma \theta b_{k-1}\right)\right\}
$$

Then Φ is continuous.
Suppose $\alpha \in P$. We will apply Lemma 7.3 .4 to verify that $f(\alpha)$ is indeed Δ minimal. First note that our blueprint satisfies all the requirements of Lemma 7.3.4. To check Δ-minimality, fix $k \geq 1$. Since c is Δ-minimal, there is $K>k$ so that for all $\gamma \in \Delta_{K}$ we have $\left(\gamma^{-1} \cdot c\right) \upharpoonright\left(F_{k} \cap \operatorname{dom}(c)\right)=c \upharpoonright\left(F_{k} \cap \operatorname{dom}(c)\right)$. Let $n>K$ be such that $\alpha(t, m)=0$ for all $t \leq k$ and $m \geq n$. It suffices to verify that for all $\gamma \in \Delta_{n}$ and $f \in F_{k}-\operatorname{dom}(c), \Phi(\alpha)(\gamma f)=\Phi(\alpha)(f)$. Consider a fixed $f \in F_{k}-\operatorname{dom}(c)$. Since $f \notin \operatorname{dom}(c)$, there is $t \geq 1$ with $f \in \Delta_{t} \Theta_{t} b_{t-1}$. For $t>k$, we have $1_{G}=\gamma_{t} \notin \Theta_{t}$ and therefore $\Delta_{t} F_{t-1}$ and $\Delta_{t} \Theta_{t} F_{t-1}$ are disjoint. So for $t>k, F_{k} \subseteq \Delta_{t} F_{t-1}$ is disjoint from $\Delta_{t} \Theta_{t} b_{t-1} \subseteq \Delta_{t} \Theta_{t} F_{t-1}$. Thus we must have $f \in \Delta_{t} \Theta_{t} b_{t-1}$ for some $t \leq k$. Thus there are $\lambda \in D_{t}^{k}$ and $\theta \in \Theta_{t}$ such that $f=\lambda \theta b_{t-1}$. Now we need to verify that for all $\gamma \in \Delta_{n}$,

$$
\Phi(\alpha)\left(\gamma \lambda \theta b_{t-1}\right)=\Phi(\alpha)\left(\lambda \theta b_{t-1}\right)
$$

We do this by induction on $R_{t}(\gamma \lambda)$. For the base case of the induction $\gamma=1_{G}$, and the identity holds trivially. For the general inductive case, since $\gamma \in \Delta_{n}-\left\{1_{G}\right\}$, we have $R_{t}(\gamma \lambda) \geq n$. Thus $\alpha\left(t, R_{t}(\gamma \lambda)\right)=0$, and

$$
\Phi(\alpha)\left(\gamma \lambda \theta b_{t-1}\right)=\Phi(\alpha)\left(S_{t}(\gamma \lambda)^{-1} \gamma \lambda \theta b_{t-1}\right)
$$

Since $R_{t}\left(S_{t}(\gamma \lambda)^{-1} \gamma \lambda\right)<R_{t}(\gamma \lambda)$, we have by the inductive hypothesis that

$$
\Phi(\alpha)\left(S_{t}(\gamma \lambda)^{-1} \gamma \lambda \theta b_{t-1}\right)=\Phi(\alpha)\left(\lambda \theta b_{t-1}\right)
$$

This shows that $\Phi(\alpha)\left(\gamma \lambda \theta b_{t-1}\right)=\Phi(\alpha)\left(\lambda \theta b_{t-1}\right)$ as needed, and so $\Phi(\alpha)$ is Δ minimal by Lemma 7.3.4.

For the converse, suppose $\alpha \notin P$. We will apply Corollary 7.2 .6 to show that $\Phi(\alpha)$ is not pre-minimal. Let $k \in \mathbb{N}$ be such that $\alpha(k, n)=1$ for infinitely many $n \in \mathbb{N}$. Let $N=\{n \in \mathbb{N}: \alpha(k, n)=1\}$. For any $n \in N$ and $\lambda \in D_{k}^{n}$, $R_{k}\left(\alpha_{n+1} \lambda\right)=n$ since $\alpha_{n+1} \in \Delta_{n}-\left\{1_{G}\right\}$. Thus for all $n \in N, \lambda \in D_{k}^{n}$, and $\theta \in \Theta_{k}$, $\Phi(\alpha)\left(\alpha_{n+1} \lambda \theta b_{k-1}\right)=\alpha\left(k, R_{k}\left(\alpha_{n+1} \lambda\right)\right)=1 \neq 0=\Phi(\alpha)\left(1_{G} \theta b_{k-1}\right)=\Phi(\alpha)\left(\theta b_{k-1}\right)$.
This shows that $\Phi(\alpha)$ is not pre-minimal, hence is not minimal.
The above proof has the following immediate corollary.
Corollary 8.2.3. For any countably infinite group G, the set of all minimal 2 -colorings on G is Π_{3}^{0}-complete.

Proof. In the above proof we may suppose c is a Δ-minimal fundamental function with the property that any $x \in 2^{G}$ extending c is a 2 -coloring. Such elements exist by Proposition 7.3.5 and Corollary 7.4.7. Then for any $\alpha \in 2^{\mathbb{N} \times \mathbb{N}}$, $\Phi(\alpha)$ is a 2-coloring, and $\alpha \in P$ iff $\Phi(\alpha)$ is a minimal 2-coloring on G.

8.3. Flecc groups

In the rest of this chapter we characterize the exact descriptive complexity for the set of all 2-colorings on a countably infinite group. In contrast to Theorem 8.2.2 and Corollary 8.2.3, the set of all 2-colorings is not always Π_{3}^{0}-complete. In this section we isolate a group theoretic concept implying that the complexity is simpler than $\boldsymbol{\Pi}_{3}^{0}$.

Definition 8.3.1. A countable group G is called flecc if there exists a finite set $A \subseteq G-\left\{1_{G}\right\}$ such that for all $g \in G-\left\{1_{G}\right\}$ there is $i \in \mathbb{Z}$ and $h \in G$ such that

$$
h^{-1} g^{i} h \in A
$$

We first justify the terminology by giving a characterization for flecc groups.
Definition 8.3.2. Let G be a countable group and $g \in G$.
(1) The extended conjugacy class (ecc) of g is defined as the set

$$
\operatorname{ecc}(g)=\left\{h^{-1} g^{i} h: i \in \mathbb{Z}, h \in G\right\} .
$$

(2) For g of infinite order, we call the set $\bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n}\right)$ the limit extended conjugacy class (lecc) of g, and denote it by lecc (g).
(3) If $g \neq 1_{G}$ is of finite order, we call any $\operatorname{ecc}\left(g^{k}\right)$, where $\operatorname{order}(g) / k$ is prime, a lecc of g.

We need the following basic property of lecc's.
Lemma 8.3.3. Two lecc's coincide if they have a nontrivial intersection.
Proof. We first claim that for any $g \in G$ of infinite order and $1_{G} \neq g^{\prime} \in$ $\operatorname{lecc}(g), \operatorname{lecc}(g)=\operatorname{lecc}\left(g^{\prime}\right)$. On the one hand, it is obvious that $g^{\prime} \in \operatorname{ecc}(g)$ and hence $\operatorname{ecc}\left(g^{\prime}\right) \subseteq \operatorname{ecc}(g)$ and $\operatorname{ecc}\left(g^{\prime n}\right) \subseteq \operatorname{ecc}\left(g^{n}\right)$ for any $n \in \mathbb{N}$. Hence $\operatorname{lecc}\left(g^{\prime}\right) \subseteq \operatorname{lecc}(g)$. On the other hand, let $i \in \mathbb{N}_{+}$be the least such that for some $h \in G, h^{-1} g^{i} h=g^{\prime}$. Then $\operatorname{ecc}\left(g^{i}\right)=\operatorname{ecc}\left(g^{\prime}\right)$ and so for any $n \in \mathbb{N}, \operatorname{ecc}\left(g^{i n}\right) \subseteq \operatorname{ecc}\left(g^{\prime n}\right)$. This implies that

$$
\operatorname{lecc}(g)=\bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n}\right) \subseteq \bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{i n}\right) \subseteq \bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{\prime n}\right)=\operatorname{lecc}\left(g^{\prime}\right)
$$

Thus lecc $(g)=\operatorname{lecc}\left(g^{\prime}\right)$.
By a similar argument we can show that the same holds for $g \neq 1_{G}$ of finite order. If order $(g) / k=p$ is prime, then $\left\langle g^{k}\right\rangle$ is a cyclic group of order p. Thus any nonidentity element in $\left\langle g^{k}\right\rangle$ is a generator. The rest of the proof is similar as above.

Now suppose $\operatorname{lecc}(g) \cap \operatorname{lecc}\left(g^{\prime}\right) \neq\left\{1_{G}\right\}$. Let $k \in \operatorname{lecc}(g) \cap \operatorname{lecc}\left(g^{\prime}\right)$ so that $k \neq 1_{G}$. Then $\operatorname{lecc}(g)=\operatorname{lecc}(k)=\operatorname{lecc}\left(g^{\prime}\right)$.

Proposition 8.3.4. Let G be a countable group. Then G is flecc iff
(a) for any $g \in G$ of infinite order, the lecc of g is not $\left\{1_{G}\right\}$, and
(b) there are only finitely many distinct lecc's in G.

Proof. (\Rightarrow) Suppose G is flecc. Let $A \subseteq G-\left\{1_{G}\right\}$ be finite such that for all $g \in G-\left\{1_{G}\right\}$ there is $i \in \mathbb{Z}$ and $h \in G$ such that $h^{-1} g^{i} h \in A$. Fix $g \in G$ of infinite order. For any $n \in \mathbb{N}, \operatorname{ecc}\left(g^{n!}\right) \subseteq \operatorname{ecc}\left(g^{n}\right)$. Hence the lecc of g can also be written as $\bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n!}\right)$. Note that $\operatorname{ecc}\left(g^{n!}\right) \supseteq \operatorname{ecc}\left(g^{(n+1)!}\right)$ for all n. If $\bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n!}\right)=\left\{1_{G}\right\}$, then for any $a \in A$, there is $n_{a} \in \mathbb{N}_{+}$such that $a \notin \operatorname{ecc}\left(g^{n_{a}!}\right)$. Let $n \geq n_{a}$ for all $a \in A$. Then $\operatorname{ecc}\left(g^{n!}\right) \cap A=\varnothing$, contradicting the definition of flecc group. We thus have shown that (a) holds. It is clear that if $g \neq 1_{G}$ is of finite order, then any lecc of g is also nontrivial.

To prove (b) we assume there are infinitely many distinct lecc's in G. Then by Lemma 8.3.3 the pairwise intersections of these lecc's are trivial. Thus for any finite subset $A \subseteq G-\left\{1_{G}\right\}$ there is $g \in G$ such that $\operatorname{lecc}(g) \neq\left\{1_{G}\right\}$ but $\operatorname{lecc}(g) \cap A=\varnothing$. By an argument similar to the one in the preceding paragraph, we get that for some $n, \operatorname{ecc}\left(g^{n!}\right) \neq\left\{1_{G}\right\}$ and $\operatorname{ecc}\left(g^{n!}\right) \cap A=\varnothing$, contradicting the definition of flecc group.
(\Leftarrow) Suppose (a) and (b) both hold. Then let $A \subseteq G$ be finite so that for any $g \in G, A \cap \operatorname{lecc}(g) \neq \varnothing$. Then in fact for any $g \in G, A \cap \operatorname{ecc}(g) \neq \varnothing$. This shows that G is flecc.

Thus the terminology flecc represents the phrase that G has only finitely many distinct limit extended conjugacy classes. It does not appear that this concept has been studied before. The rest of this section is devoted to a study of this concept.

Next we give some further characterizations of flecc groups. For simplicity we use \mathbb{Z}^{*} to denote the set $\mathbb{Z}-\{0\}$, the set of all nonzero integers. We also use \sim to denote the conjugacy equivalence relation in the group G, i.e., $g \sim g^{\prime}$ iff there is $h \in G$ such that $g^{\prime}=h^{-1} g h$. Using this notation, we can express the fleccness of G as there being a finite set $A \subseteq G$ of nonidentity elements such that for any nonidentity $g \in G$ there is $i \in \mathbb{Z}$ with $g^{i} \sim a$ for some $a \in A$, i.e., any nonidentity element of the group has a power which is conjugate to some element of A.

We also note the following characterization of nontriviality of lecc.
Lemma 8.3.5. Let G be a group and $g \in G$ of infinite order. Then $\operatorname{lecc}(g) \neq$ $\left\{1_{G}\right\}$ iff $\exists k \in \mathbb{Z}^{*} \forall n \in \mathbb{Z}^{*} \exists i \in \mathbb{Z}^{*}\left(g^{i n} \sim g^{k}\right)$.

Proof. Let $g \in G$ have infinite order, and suppose $\operatorname{lecc}(g) \neq\left\{1_{G}\right\}$. Let $h \in \operatorname{lecc}(g)-\left\{1_{G}\right\}$. Since $h \in \bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n}\right)$, we have $\forall n \in \mathbb{Z}^{*} \exists i \in \mathbb{Z}^{*}\left(g^{i n} \sim h\right)$. In particular, h is conjugate to a power of g. Let g^{k} be such a power. Then $\forall n \in \mathbb{Z}^{*} \exists i \in \mathbb{Z}^{*}\left(g^{i n} \sim h \sim g^{k}\right)$. Conversely, suppose $k \in \mathbb{Z}^{*}$ is such that $\forall n \in \mathbb{Z}^{*} \exists i \in \mathbb{Z}^{*}\left(g^{i n} \sim g^{k}\right)$. Then $g^{k} \neq 1_{G}$ and $g^{k} \in \bigcap_{n \in \mathbb{N}} \operatorname{ecc}\left(g^{n}\right)$. Thus $\operatorname{lecc}(g) \neq\left\{1_{G}\right\}$.

When we try to determine whether a given group is flecc, it is easier to consider the elements of finite order and those of infinite order separately. Note that the lecc classes of the elements of finite order are just the conjugacy classes of elements of prime order. Thus in a flecc group there are only finitely many conjugacy classes among the elements of prime order. We have the following alternative characterization.

Proposition 8.3.6. A group G is flecc iff all the following hold:
(1) There are only finitely many conjugacy classes among the elements of prime order.
(2) For every $g \in G$ of infinite order we have:

$$
\exists k \in \mathbb{Z}^{*} \forall n \in \mathbb{Z}^{*} \exists i \in \mathbb{Z}^{*}\left(g^{i n} \sim g^{k}\right)
$$

(3) There is a finite set A of elements of infinite order such that for any $g \in G$ of infinite order there is an $a \in A$ and $i, m \in \mathbb{Z}^{*}$ such that $g^{i} \sim a^{m}$.
Proof. (\Rightarrow) This is immediate from Proposition 8.3.4 and Lemma 8.3.5. Only note that in (3) we may take $m=1$.
(\Leftarrow) Assume (2) and (3). It suffices to verify that there is a finite set $B \subseteq G$ of elements of infinite order such that for all $g \in G$ of infinite order there is $i \in \mathbb{Z}^{*}$ such that $g^{i} \sim b$ for some $b \in B$. For this, let $A=\left\{a_{1}, \ldots, a_{N}\right\}$ be given as in (3). For each $a_{j} \in A$, let $k_{j} \in \mathbb{Z}^{*}$ be given as in (2). Set $B=\left\{a_{1}^{k_{1}}, \ldots, a_{N}^{k_{N}}\right\}$. We check that B is as required. Suppose $g \in G$ has infinite order. By (3) there is an $a_{j} \in A$ and $p, m \in \mathbb{Z}^{*}$ such that $g^{p} \sim a_{j}^{m}$. By (2) and our choice of k_{j}, there is $i \in \mathbb{Z}^{*}$ such that $a_{j}^{i m} \sim a_{j}^{k_{j}}$. Thus $g^{i p} \sim a_{j}^{i m} \sim a_{j}^{k_{j}} \in B$.

We note some basic properties of flecc groups and give some examples of flecc and nonflecc groups below.

Any finite group is obviously a flecc group. The following lemma gives some simple closure properties of the flecc groups.

Lemma 8.3.7. Let G, H be countable groups. If $G \times H$ is flecc then G and H are flecc. If G, H are flecc and one of them is finite, then $G \times H$ is flecc. Also, if $G_{n}, n \in \mathbb{N}$, are nontrivial, then $\oplus_{n} G_{n}$ is not flecc.

Proof. Suppose first that $G \times H$ is flecc. If $g \in G$, then $\operatorname{lecc}(g) \times\left\{1_{H}\right\}=$ $\operatorname{lecc}\left(g, 1_{H}\right)$. It follows from Proposition 8.3.4 immediately that G is flecc if $G \times H$ is.

Suppose next that G, H are flecc and H is finite. Let $A_{1} \subseteq G-\left\{1_{G}\right\}$ witness that G is flecc. Let $A=\left(A_{1} \times H\right) \cup\left(\left\{1_{G}\right\} \times H-\left\{\left(1_{G}, 1_{H}\right)\right\}\right.$, so A is a finite subset of $G \times H-\left\{\left(1_{G}, 1_{H}\right)\right\}$. To see A works, let $(g, h) \in G \times H-\left\{\left(1_{G}, 1_{H}\right)\right\}$. If $g=1_{G}$, then $h \neq 1_{H}$ and so $(1, h)$ is an element of A. If $g \neq 1_{G}$, then for some i and $g^{\prime} \in G$ we have $g^{\prime-1} g^{i} g^{\prime}=a_{1} \in A_{1}$. But then $\left(g^{\prime}, 1_{H}\right)^{-1}(g, h)^{i}\left(g^{\prime}, 1_{H}\right) \in A$.

To see the last statement, suppose that $G=\oplus_{n} G_{n}$, where each G_{n} is nontrivial. Then for any n and $1_{G_{n}} \neq g_{n} \in G_{n}, \operatorname{lecc}\left(g_{n}\right) \times \prod_{m \neq n}\left\{1_{G_{m}}\right\}$ is an lecc in $\oplus_{n} G_{n}$. If any of them is trivial, $\oplus_{n} G_{n}$ is not flecc. Assuming all of them are nontrivial, then there are infinitely many distinct lecc's in $\oplus_{n} G_{n}$, so again $\oplus_{n} G_{n}$ is not flecc.

Among countably infinite groups, the simplest example of a flecc group is the quasicyclic group $\mathbb{Z}\left(p^{\infty}\right)$. The fact that it is flecc is straightforward to check. The group \mathbb{Z}, however, is not flecc. The following proposition completely characterize
abelian flecc groups. Note that this class of groups coincide with the class of all abelian groups with the minimal condition (c.f. [R] Theorem 4.2.11).

Proposition 8.3.8. An abelian group is flecc iff it is a direct sum of finitely many quasicyclic groups and cyclic groups of prime-power order.

Proof. (\Leftarrow) By Lemma 8.3.7 it suffices to show that a finite product of quasicyclic groups is flecc. Consider

$$
G=\mathbb{Z}\left(p_{1}^{\infty}\right) \times \cdots \times \mathbb{Z}\left(p_{n}^{\infty}\right)
$$

Here we regard $\mathbb{Z}\left(p^{j}\right)$ as the mod 1 additive group of fractions of the form $\frac{a}{p^{j}}$, where $0 \leq a<p^{j}$. Then $\mathbb{Z}\left(p^{\infty}\right)=\bigcup_{j \in \mathbb{N}} \mathbb{Z}\left(p^{j}\right)$. Since every element of G has finite order, and the group is abelian, we only need to verify that there are only finitely many elements of prime order in G. For this note that given $g \in G$, i.e.,

$$
g=\left(\frac{a_{1}}{p_{1}^{j_{1}}}, \cdots, \frac{a_{n}}{p_{n}^{j_{n}}}\right)
$$

g is of prime order iff g is of order p_{k} for some $1 \leq k \leq n$. Moreover, assuming $a_{k} \neq 0 \rightarrow\left(a_{k}, p_{k}\right)=1$ for all $1 \leq k \leq n$, we have that $p_{k} g=0$ iff
(i) for all l with $1 \leq l \leq n$ and $p_{l} \neq p_{k}, a_{l}=0$, and
(ii) for all l with $1 \leq l \leq n$ and $p_{l}=p_{k}$, if $a_{l} \neq 0$ then $j_{l}=1$.

Obviously, there are only finitely many elements in G of this form.
(\Rightarrow) Assume G is an abelian flecc group. Then G can be written as the direct sum of a divisible subgroup D and a reduced group R. Recall that a divisible abelian group is a (possibly infinite) sum of quasicyclic groups and copies of \mathbb{Q}. From Lemma 8.3.7 the sum is actually a finite sum in this case. Also by Lemma 8.3.7, both D and R are also flecc. Since an abelian flecc group must be a torsion group (by Proposition 8.3.4 (a) an abelian flecc group cannot contain an element of infinite order), it follows that the divisible group D is a direct sum of finitely many quasicyclic groups. It remains to show that the reduced group R is finite. Again by Proposition 8.3.4 R is a torsion group. Also the primary decomposition of R cannot contain infinitely many summands by Lemma 8.3.7. Thus the proof reduces to the case R being a reduced p-group. Now the definition of flecc in the case of abelian p-groups is equivalent to there being only finitely many distinct subgroups of order p. This implies that R is finite, as follows. Define a relation \leq in R by letting $g \leq h$ iff $p g=h$. Then the transitive closure of \leq, still denoted by \leq, is a partial order. $0=1_{R}$ is the largest element, and by the fleccness 0 has only finitely many immediate predecessors. This implies that every element has finitely many immediate predecessors, since if $p g_{1}=p g_{2}$ then $p\left(g_{1}-g_{2}\right)=0$. Thus \leq is a finite splitting tree. If R is infinite then by König's lemma there is an infinite branch, which implies that there is a divisible subgroup of R. But R is reduced, contradiction. Thus we have shown that an abelian flecc group is a direct sum of finitely many quasicyclic groups and a finite group. A finite abelian group is a direct sum of finitely many cyclic groups of prime-power order.

If a countable group has finitely many conjugacy classes then it is obviously flecc. By a well known theorem (c.f. [R] Theorem 6.4.6) of Higman, Neumann, and Neumann using HNN extensions, every countable torsion-free group is the subgroup of a countable group with only two conjugacy classes. It follows that
every countable torsion-free group is the subgroup of a countable flecc group. In fact, we have the following.

Proposition 8.3.9. A group G is a subgroup of a flecc group iff there are only finitely many primes p such that G has an element of order p.

Proof. If p, q are distinct primes, then any elements x, y of order p and q respectively cannot be conjugate in any group H containing G. So, if G is contained in a flecc group then there can be only finitely many primes p such that there is an element of order p in G. Conversely, suppose that there are only finitely many such primes. Call this set P. By Higman, Neumann and Neumann, there is a group H containing G such that any two elements of H of the same order are conjugate in H. So, for each of the finitely many primes $p \in P$ there is only one conjugacy class of elements of order p in H. Also, the HNN extension H has the property that if H has an element of finite order n, then so does G. Thus there are only finitely many conjugacy classes of elements of prime-power order in H. This shows that there are only finitely many flecc classes in H for elements of finite order. For elements of infinite order in H, just note that any two elements of H of infinite order are conjugate.

Although the flecc groups are not closed under subgroups, we have the following simple fact.

Proposition 8.3.10. If G is flecc and $H \unlhd G$, then H is flecc.
Proof. Let $A \subseteq G-\left\{1_{G}\right\}$ be finite satisfying Definition 8.3.1. Let $A^{\prime}=A \cap H$. Let $1_{H} \neq h \in H$. Then for some $i \in \mathbb{Z}^{*}$ and $a \in A, h^{i} \sim a \in A$. As H is normal in $G, a \in H$, so $a \in A^{\prime}$. Therefore, A^{\prime} witnesses that H is flecc.

We do not know if the class of flecc groups is closed under products or quotients. The following is the best partial result we know of.

Proposition 8.3.11. If G is a flecc group and H is a torsion flecc group, then $G \times H$ is flecc. If T is the torsion subgroup of the flecc group G, then G / T is flecc.

Proof. Suppose G, H are flecc and H is torsion. To show $G \times H$ is flecc, we consider its elements of prime order and those of infinite order separately. For any prime p, any element of $G \times H$ of order p is of the form (g, h) where g, h have order 1 or p. But if $g \sim g^{\prime}$ in G and $h \sim h^{\prime}$ in H, then $(g, h) \sim\left(g^{\prime}, h^{\prime}\right)$ in $G \times H$. It follows that there are only finitely many primes p such that some element of G or H has order p. Since G, H are flecc, there are only finitely many possibilities for the conjugacy classes of g and h in G and H respectively. Thus, there are only finitely many conjugacy classes of elements of prime order in $G \times H$.

Turning to elements of infinite order, let $A \subseteq G$ be finite and consist of elements of infinite order such that for all nonidentity $g \in G$ of infinite order there is $i \in \mathbb{Z}$ and $a \in A$ with $g^{i} \sim a$. Suppose (g, h) has infinite order in $G \times H$. Since H is torsion, g must have infinite order in G. Let $i_{0} \in \mathbb{Z}^{*}$ be such that $h^{i_{0}}=1_{H}$, so $(g, h)^{i_{0}}=\left(g^{i_{0}}, 1_{H}\right)$. Since $g^{i_{0}}$ still has infinite order in G, there is an $i_{1} \in \mathbb{Z}^{*}$ such that $\left(g^{i_{0}}\right)^{i_{1}} \sim a$ for some $a \in A$. Then $(g, h)^{i_{0} i_{1}} \sim\left(a, 1_{H}\right)$. We have shown that $A \times\left\{1_{H}\right\}$ witnesses the fleccness for elements of infinite order in $G \times H$.

Suppose next that T is the torsion subgroup of the flecc group G. Since G / T is torsion-free, we need only consider elements of infinite order in G / T. Let $A \subseteq G$ be a finite set of elements of infinite order such that for all $g \in G$ of infinite order
there is $i \in \mathbb{Z}^{*}$ and $a \in A$ with $g^{i} \sim a$. Then $\bar{A}=\{a T: a \in A\} \subseteq G / T$ is a finite set of elements of infinite order in G / T. If $\bar{g}=g T$ has infinite order in G / T, then g has infinite order in G and so for some $i \in \mathbb{Z}^{*}$ we have $g^{i} \sim a \in A$. But then $\bar{g}^{i} \sim \bar{a}=T a$ in G / T.

Flecc groups are relevant to our study because of the following observation.
Lemma 8.3.12. Let G be a countable flecc group and $x \in 2^{G}$. Let $A \subseteq G-\left\{1_{G}\right\}$ be finite such that for all $g \in G-\left\{1_{G}\right\}$ there is $i \in \mathbb{Z}$ and $h \in G$ such that $h^{-1} g^{i} h \in A$. Then x is a 2-coloring on G iff x blocks all $s \in A$, i.e., for all $s \in A$ there is a finite $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T x(g t) \neq x(g s t)
$$

Proof. The (\Rightarrow) direction is trivial. We only show (\Leftarrow). Assume x is not a 2 -coloring on G. Then there is a periodic element $y \in \overline{[x]}$ with period g, i.e., $g \cdot y=y$. By fleccness there is $i \in \mathbb{Z}$ and $h \in G$ with $h^{-1} g^{i} h \in A$, and we have $\left(h^{-1} g^{i} h\right) \cdot\left(h^{-1} \cdot y\right)=h^{-1} \cdot y$. This means that there is $s=h^{-1} g^{i} h \in A$ and $z=h^{-1} \cdot y \in \overline{[x]}$ such that $s \cdot z=z$. By Corollary 2.2.6 x does not block $s \in A$.

Theorem 8.3.13. If G is a countably infinite flecc group, then the set of all 2 -colorings on G is $\boldsymbol{\Sigma}_{2}^{0}$-complete.

Proof. If G is a countably infinite flecc group, then the characterization in Lemma 8.3.12 for the set of all 2-colorings on G is $\boldsymbol{\Sigma}_{2}^{0}$. By Theorem 8.2.1 this set is $\boldsymbol{\Sigma}_{2}^{0}$-hard, hence it is $\boldsymbol{\Sigma}_{2}^{0}$-complete.

This completely characterizes the descriptive complexity of the set of all 2colorings for any countably infinite flecc group.

8.4. Nonflecc groups

In this section we show that the set of all 2-colorings on any countably infinite nonflecc group is $\boldsymbol{\Pi}_{3}^{0}$-complete. Since the proof is rather involved, we first illustrate the main ideas of the proof.

We again consider the $\boldsymbol{\Pi}_{3}^{0}$-complete set

$$
P=\left\{\alpha \in 2^{\mathbb{N} \times \mathbb{N}}: \forall k \geq 1 \exists n>k \forall m \geq n \alpha(k, m)=0\right\}
$$

and define a continuous function $f: 2^{\mathbb{N} \times \mathbb{N}} \rightarrow 2^{G}$ so that for any $\alpha \in 2^{\mathbb{N} \times \mathbb{N}}, f(\alpha)$ is a 2-coloring on G iff $\alpha \in P$. To define $f(\alpha)$ we start with a fixed 2-coloring x on G, identify infinitely many pairwise disjoint fixed finite sets K_{n}, and modify the detail of x on K_{n} according to α. When $\alpha \notin P$, i.e., when there exists $k \geq 1$ such that $\alpha(k, n)=1$ for infinitely many $n>k$, the definition of $f(\alpha) \upharpoonright K_{n}$ for these infinitely many $n>k$ will give rise to a periodic element in $\overline{[f(\alpha)]}$. Denote the period for this element by s_{k}. We will make sure that for each n with $\alpha(k, n)=1$, some left translate of $f(\alpha) \upharpoonright K_{n}$ already has period s_{k}. On the other hand, when $\alpha \in P$, we need to make sure that $f(\alpha)$ blocks all nonidentity $s \in G$. Thus in the situation $\alpha(k, n)=1$ but $\alpha(1, n)=\cdots=\alpha(k-1, n)=0$, we will make sure that $f(\alpha)$ blocks enough s, e.g. all $s \in H_{k-1}$. In particular $f(\alpha) \upharpoonright K_{n}$ blocks all $s \in H_{k-1}$. Putting the two requirements together, when $\alpha(k, n)=1$ and $\alpha(1, n)=\cdots=\alpha(k-1, n)=0$, we need some left translate of $f(\alpha) \upharpoonright K_{n}$ to have a period s_{k} (with s_{k} not depending on n) and at the same time to block all $s \in H_{k-1}$. In the following we first focus on showing that it is possible to construct such partial functions for nonflecc groups.

The next two theorems produce, for any countable nonflecc group G, a periodic element of 2^{G} that blocks a specific finite subset of elements in G. The method of proof is a variation of the fundamental method: we first create some layered regular marker structures, then use a membership test and an orthogonality scheme similar to the proof of Theorem 6.1.1. The following theorem constructs the marker structures. These marker structures use objects Γ_{i} which play roles similar to the sets Δ_{i} used in blueprints. For clarity, in the rest of this section we do not use the abbreviated notation D_{k}^{n} but instead write out $\Delta_{k} \cap F_{n}$.

Theorem 8.4.1. Let G be a countable nonflecc group, $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ a centered blueprint, $k \geq 1$, and $A \subseteq G$ a finite set with $F_{k} F_{k}^{-1} \subseteq A$. Suppose for any $i<j \leq k$ and $g \in G$, if $g F_{i} \cap F_{j} \neq \varnothing$ then $g F_{i} \cap\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$. Then there is $s_{k} \in G$ and a sequence $\left(\Gamma_{i}\right)_{i \leq k}$ of subsets of G such that
(i) $1_{G} \in \Gamma_{i}$ for all $i \leq k$;
(ii) for all $i<k, \Gamma_{i+1} \subseteq \Gamma_{i}$;
(iii) for all $i \leq k$, the Γ_{i}-translates of F_{i} are maximally disjoint within G;
(iv) for all $g \in G$ and $l \in \mathbb{Z}^{*}, g^{-1} s_{k}^{l} g \notin A-\left\{1_{G}\right\}$;
(v) for all $i \leq k$ and $g \in G, g \in \Gamma_{i}$ iff $s_{k} g \in \Gamma_{i}$;
(vi) for all $i \leq j \leq k$ and $\delta \in \Gamma_{j}, \Gamma_{i} \cap \delta F_{j}=\delta\left(\Delta_{i} \cap F_{j}\right)$;
(vii) for all $i \leq j \leq k, \gamma \in \Gamma_{i}$, and $\delta \in \Gamma_{j}$, if $\gamma F_{i} \cap \delta F_{j} \neq \varnothing$, then $\gamma F_{i} \subseteq \delta F_{j}$.

Proof. Since $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ is centered, we have $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is decreasing, with $1_{G} \in \Delta_{n}$ for all $n \in \mathbb{N}$.

Let $A_{0}=A-\left\{1_{G}\right\}$. Since G is nonflecc, there is $s_{k} \in G-\left\{1_{G}\right\}$ such that for all $g \in G$ and $l \in \mathbb{Z}, g^{-1} s_{k}^{l} g \notin A_{0}$. Fix such an s_{k}. Then (iv) is satisfied. Next we define Γ_{k-j} by induction on $0 \leq j \leq k$. Fix an enumeration $1_{G}=g_{0}, g_{1}, \ldots$ of all elements of G.

We first define Γ_{k} in infinitely many stages. At each stage $m \in \mathbb{N}$ we define a set $\Gamma_{k, m}$, and eventually let $\Gamma_{k}=\bigcup_{m} \Gamma_{k, m}$. The sets $\Gamma_{k, m}$ are defined by induction on m. For $m=0$ let $\Gamma_{k, 0}=\left\langle s_{k}\right\rangle$. In general suppose $\Gamma_{k, m}$ is already defined. If there is an n such that $g_{n} F_{k} \cap \Gamma_{k, m} F_{k}=\varnothing$, let n_{m} be the least such n, and let $\Gamma_{k, m+1}=\Gamma_{k, m} \cup\left\langle s_{k}\right\rangle g_{n_{m}}$. Otherwise let $\Gamma_{k, m+1}=\Gamma_{k, m}$. This finishes the definition of $\Gamma_{k, m}$ for all m, and also of Γ_{k}.

It is obvious that $1_{G} \in \Gamma_{k}$. Also obvious is that $\left\langle s_{k}\right\rangle \Gamma_{k, m}=\Gamma_{k, m}$ for all m, and therefore $\left\langle s_{k}\right\rangle \Gamma_{k}=\Gamma_{k}$, and (v) holds for Γ_{k}. Before defining $\Gamma_{i}, i<k$, we verify that (iii) holds for Γ_{k}.

First we show by induction on m that the $\Gamma_{k, m}$-translates of F_{k} are pairwise disjoint. For $m=0$ this reduces to the statement that for all $l \neq r \in \mathbb{Z}, s_{k}^{l} F_{k} \cap$ $s_{k}^{r} F_{k}=\varnothing$. Since $F_{k} F_{k}^{-1} \subseteq A$, we have this required property by (iv). In general suppose all $\Gamma_{k, m}$-translates of F_{k} are pairwise disjoint. Suppose also $\Gamma_{k, m+1}=$ $\Gamma_{k, m} \cup\left\langle s_{k}\right\rangle g_{n_{m}}$. Then by (iv) we have that $s_{k}^{l} g_{n_{m}} F_{k} \cap s_{k}^{r} g_{n_{m}} F_{k}=\varnothing$ for all $l \neq$ $r \in \mathbb{Z}$. Also, since $g_{n_{m}} F_{k} \cap \Gamma_{k, m} F_{k}=\varnothing$ and $\left\langle s_{k}\right\rangle \Gamma_{k, m}=\Gamma_{k, m}$, we have that $\left\langle s_{k}\right\rangle g_{n_{m}} F_{k} \cap \Gamma_{k, m} F_{k}=\varnothing$. This shows that the $\Gamma_{k, m+1}$-translates of F_{k} are pairwise disjoint. It follows that the Γ_{k}-translates of F_{k} are all pairwise disjoint. To see that the Γ_{k}-translates of F_{k} form a maximally disjoint collection, simply note that if $g_{m} F_{k} \cap \Gamma_{k} F_{k}=\varnothing$, then $m<n_{m}$, contradicting the definition of n_{m}. We have thus defined Γ_{k} to satisfy all requirements (i) through (v).

The version of (vi) that makes sense so far states that for all $\delta \in \Gamma_{k}, \Gamma_{k} \cap \delta F_{k}=$ $\delta\left(\Delta_{k} \cap F_{k}\right)$, which is trivially true since both sides of the equation are the singleton
$\{\delta\}$. The version of (vii) that makes sense so far states that if $\gamma, \delta \in \Gamma_{k}$ and $\gamma F_{k} \cap \delta F_{k} \neq \varnothing$ then $\gamma F_{k} \subseteq \delta F_{k}$. This follows immediately from the disjointness of Γ_{k}-translates of F_{k}. In fact, under the assumption we have $\gamma=\delta$ and therefore $\gamma F_{k}=\delta F_{k}$.

In general, suppose $\Gamma_{i+1}, \ldots, \Gamma_{k}$ have been defined to satisfy (i) through (vii), we define $\Gamma_{i} \supseteq \Gamma_{i+1}$ as follows. By induction on $m \in \mathbb{N}$ we define two increasing sequences $S_{i, m}$ and $\Gamma_{i, m}$, and then take $\Gamma_{i}=\bigcup_{m} \Gamma_{i, m}$. For $m=0$ let

$$
S_{i, 0}=\Gamma_{i+1} F_{i+1} \cup \cdots \cup \Gamma_{k} F_{k}
$$

and

$$
\Gamma_{i, 0}=\Gamma_{i+1}\left(\Delta_{i} \cap F_{i+1}\right) \cup \cdots \cup \Gamma_{k}\left(\Delta_{i} \cap F_{k}\right)
$$

In general suppose $S_{i, m}$ and $\Gamma_{i, m}$ have been defined. If there is $n \in \mathbb{N}$ such that $g_{n} F_{i} \cap S_{i, m}=\varnothing$, then let n_{m} be the least such n, and let

$$
S_{i, m+1}=S_{i, m} \cup\left\langle s_{k}\right\rangle g_{n_{m}} F_{i}
$$

and

$$
\Gamma_{i, m+1}=\Gamma_{i, m} \cup\left\langle s_{k}\right\rangle g_{n_{m}}
$$

This finishes the definition of $S_{i, m}$ and $\Gamma_{i, m}$ for all m, and hence that of Γ_{i}.
We verify that (i) through (vii) hold with this inductive construction. Since $1_{G} \in \Delta_{i} \cap F_{i+1}$, we have that $\Gamma_{i} \supseteq \Gamma_{i, 0} \supseteq \Gamma_{i+1}$. It follows that (i) and (ii) hold. Also obvious is that $\left\langle s_{k}\right\rangle S_{i, m}=S_{i, m}$ and $\left\langle s_{k}\right\rangle \Gamma_{i, m}=\Gamma_{i, m}$, and (v) follows for Γ_{i}. Next we proceed to verify (iii), (vi) and (vii).

To show that all Γ_{i}-translates of F_{i} are pairwise disjoint, it suffices to show that all $\Gamma_{i, 0}$-translates of F_{i} are pairwise disjoint, since then the argument as above will show inductively that the $\Gamma_{i, m}$-translates of F_{i} are pairwise disjoint for all $m>0$. Note that for all $i<j \leq k$, the $\left(\Delta_{i} \cap F_{j}\right)$-translates of F_{i} are pairwise disjoint and are contained in F_{j} by the disjoint and coherent properties of a blueprint. Since all Γ_{j}-translates of F_{j} are pairwise disjoint, it follows that all $\Gamma_{j}\left(\Delta_{i} \cap F_{j}\right)$-translates of F_{i} are pairwise disjoint. Next suppose $i<j<j^{\prime} \leq k$,

$$
\gamma \in \Gamma_{j}, \delta \in \Delta_{i} \cap F_{j}, \gamma^{\prime} \in \Gamma_{j^{\prime}}, \delta^{\prime} \in \Delta_{i} \cap F_{j^{\prime}}
$$

and $\gamma \delta F_{i} \cap \gamma^{\prime} \delta^{\prime} F_{i} \neq \varnothing$. We need to show that $\gamma \delta=\gamma^{\prime} \delta^{\prime}$.
Note that $\delta F_{i} \subseteq F_{j}$ and $\delta^{\prime} F_{i} \subseteq F_{j^{\prime}}$, so we have that $\gamma F_{j} \cap \gamma^{\prime} F_{j^{\prime}} \neq \varnothing$. By the inductive hypothesis (vii), $\gamma F_{j} \subseteq \gamma^{\prime} F_{j^{\prime}}$. Thus $\gamma \in \Gamma_{j} \cap \gamma^{\prime} F_{j}=\gamma^{\prime}\left(\Delta_{j} \cap F_{j^{\prime}}\right)$ by the inductive hypothesis (vi). This means that there is $\eta \in \Delta_{j} \cap F_{j^{\prime}}$ such that $\gamma=\gamma^{\prime} \eta$.

Now $\gamma \delta=\gamma^{\prime} \eta \delta \in \Gamma_{j^{\prime}}\left(\Delta_{i} \cap F_{j^{\prime}}\right)$. This is because $\eta \delta \in \Delta_{j}\left(\Delta_{i} \cap F_{j}\right) \subseteq \Delta_{i}$ and $\eta \delta \in \eta F_{j} \subseteq F_{j^{\prime}}$ by the coherent property of the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$. Since the $\Gamma_{j^{\prime}}\left(\Delta_{i} \cap F_{j^{\prime}}\right)$-translates of F_{i} are pairwise disjoint, we have $\gamma \delta=\gamma^{\prime} \delta^{\prime}$ as needed.

Next we verify that the Γ_{i}-translates of F_{i} are maximally disjoint within G. For this assume $g \in G$ is such that $g F_{i} \cap \Gamma_{i} F_{i}=\varnothing$. We claim first that $g F_{i} \cap S_{i, 0} \neq \varnothing$. Otherwise $g F_{i} \cap S_{i, 0}=\varnothing$. Let $g=g_{m}$. Then $m<n_{m}$, contradicting the definition of n_{m}. Now suppose $j>i$ and $g F_{i} \cap \Gamma_{j} F_{j} \neq \varnothing$. By the assumption of the theorem $g F_{i} \cap \Gamma_{j}\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$. Thus there is $\gamma \in \Gamma_{j}\left(\Delta_{i} \cap F_{j}\right) \subseteq \Gamma_{i, 0} \subseteq \Gamma_{i}$ such that $g F_{i} \cap \gamma F_{i} \neq \varnothing$, a contradiction.

Now the inductive version of (vi) to be verified states that if j is such that $i \leq j \leq k$ and $\delta \in \Gamma_{j}$, then $\Gamma_{i} \cap \delta F_{j}=\delta\left(\Delta_{i} \cap F_{j}\right)$. If $j=i$ then this is trivially true since both sides of the equality are the singleton $\{\delta\}$. We assume $j>i$. By our definition $\delta\left(\Delta_{i} \cap F_{j}\right) \subseteq \Gamma_{i, 0}$, and thus $\delta\left(\Delta_{i} \cap F_{j}\right) \subseteq \Gamma_{i} \cap \delta F_{j}$. Conversely, suppose $\gamma \in \Gamma_{i} \cap \delta F_{j}$. Then $\delta^{-1} \gamma \in F_{j}$ and in particular $\delta^{-1} \gamma F_{i} \cap F_{j} \neq \varnothing$. So by assumption
on the blueprint, $\delta^{-1} \gamma F_{i} \cap\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$ and hence $\gamma F_{i} \cap \delta\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$. However, $\gamma_{i} \in \Gamma_{i}$ and $\delta\left(\Delta_{i} \cap F_{j}\right) \in \Gamma_{i}$, so $\gamma \in \delta\left(\Delta_{i} \cap F_{j}\right)$ since the Γ_{i}-translates of F_{i} are disjoint. Thus $\Gamma_{i} \cap \delta F_{j} \subseteq \delta\left(\Delta_{i} \cap F_{j}\right)$ and $\Gamma_{i} \cap \delta F_{j}=\delta\left(\Delta_{i} \cap F_{j}\right)$, establishing (vi).

Finally we verify the inductive version of (vii) which states that if j is such that $i \leq j \leq k$ and $\gamma \in \Gamma_{i}, \delta \in \Gamma_{j}$, and $\gamma F_{i} \cap \delta F_{j} \neq \varnothing$, then $\gamma F_{i} \subseteq \delta F_{j}$. For $j=i$ this follows immediately from the pairwise disjointness of Γ_{i}-translates of F_{i}. We assume $j>i$. Since $\delta F_{j} \subseteq S_{i, 0}$, we have that $\gamma \in \Gamma_{i, 0}$. Thus there is j^{\prime} with $i<j^{\prime} \leq k$ and $\delta^{\prime} \in \Gamma_{j^{\prime}}$ such that $\gamma \in \delta^{\prime}\left(\Delta_{i} \cap F_{j^{\prime}}\right)$. Let j^{\prime} be the smallest such index. By the coherent property of the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ we have $\gamma F_{i} \subseteq \delta^{\prime} F_{j^{\prime}}$. If $j^{\prime} \leq j$ then by the inductive hypothesis we have $\delta^{\prime} F_{j^{\prime}} \subseteq \delta F_{j}$ since $\delta^{\prime} F_{j^{\prime}} \cap \delta F_{j} \supseteq \gamma F_{i} \cap \delta F_{j} \neq \varnothing$. It follows that $\gamma F_{i} \subseteq \delta F_{j}$ as we needed. If $j^{\prime}>j$ we have $\delta F_{j} \subseteq \delta^{\prime} F_{j^{\prime}}$ from the inductive hypothesis again since $\delta F_{j} \cap \delta^{\prime} F_{j^{\prime}} \supseteq \delta F_{j} \cap \gamma F_{i} \neq \varnothing$. In particular $\delta \in \delta^{\prime} F_{j^{\prime}}$. By (vi) $\delta \in \delta^{\prime}\left(\Delta_{j} \cap F_{j^{\prime}}\right)$. Now $\delta^{\prime-1} \delta \in \Delta_{j} \cap F_{j^{\prime}}$ and $\delta^{\prime-1} \gamma \in \Delta_{i} \cap F_{j^{\prime}}$, and $\delta^{\prime-1} \delta F_{j} \cap \delta^{\prime-1} \gamma F_{i} \neq \varnothing$. By the coherent property of the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$, we conclude that $\delta^{\prime-1} \gamma F_{i} \subseteq \delta^{\prime-1} \delta F_{j}$, and therefore $\gamma F_{i} \subseteq \delta F_{j}$ as we needed.

Note that the assumption in the above theorem is true for the blueprint constructed in Theorem 5.3.3 (clause (2) in that proof). Thus it does not lose generality to assume that all blueprints we are working with have this property. In fact the sequence $\left(\Gamma_{i}, F_{i}\right)_{i \leq k}$ satisfies all axioms for a centered and maximally disjoint blueprint except that the length of the sequence is finite.

The next theorem gives the promised periodic element blocking a finite set of elements. The proof uses Γ_{i} membership tests that are taken directly from the proof of Theorem 5.2.5. It also employs a coding technique similar to the proof of Theorem 6.1.1.

Theorem 8.4.2. Let G be a countable nonflecc group, $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $\gamma_{1}=1_{G}, R: H_{0} \rightarrow 2 a$ nontrivial locally recognizable function, $k \geq 1$, and $A \subseteq G$ a finite set. Let $M_{n}=$ $H_{n} \cup H_{n}^{-1}$ for all $n \in \mathbb{N}$. Assume that
(a) for all $i<k, M_{i}^{4} \subseteq H_{i+1}$;
(b) for all $i \leq k,\left|\Lambda_{i}\right|>23 \log _{2}\left|M_{i}\right|$;
(c) $M_{k}^{23} \subseteq A$;
(d) for any $i<j \leq k$ and $g \in G$, if $g F_{i} \cap F_{j} \neq \varnothing$ then $g F_{i} \cap\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$.

Let $s_{k} \in G$ and $\Gamma_{i}, i \leq k$, satisfy the conclusions of Theorem 8.4.1. Then there is $x_{k} \in 2^{G}$ such that
(i) $s_{k}^{-1} \cdot x_{k}=x_{k}$, i.e., for all $g \in G, x_{k}\left(s_{k} g\right)=x_{k}(g)$;
(ii) for all $1 \leq i \leq k, x_{k}$ admits a simple Γ_{i} membership test with test region a subset of F_{i};
(iii) x_{k} is compatible with R, and $x_{k}(g)=1-R\left(1_{G}\right)$ for all $g \in G-\Gamma_{1}\left(F_{0} \cup D_{0}^{1}\right)$;
(iv) for all $i \leq k$, if $\gamma, \gamma^{\prime} \in \Gamma_{i}$ and $\gamma^{\prime} \in \gamma M_{i}^{23}$, then there is $t \in F_{i}$ such that $x_{k}(\gamma t) \neq x_{k}\left(\gamma^{\prime} t\right)$.

Proof. Let $D=G-\bigcup_{1<i<k} \Gamma_{i} \Lambda_{i} b_{i-1}$. The displayed union in the equality is disjoint. Note that $\left\langle s_{k}\right\rangle D=\bar{D}$. Since $\left(\Gamma_{i}, F_{i}\right)_{i \leq k}$ satisfies all conditions required of a pre-blueprint for $i \leq k$, a definition of x_{k} on D can be made in the same fashion as in the proof of Theorem 5.2.5. This ensures (iii) by clause (iv) of Theorem 5.2.5 and the assumption $\gamma_{1}=1_{G}$. Also $x_{k} \upharpoonright D$ admits a simple Γ_{i} membership test for
$i \geq 1$, with test region a subset of F_{i}, by clause (ii) of Theorem 5.2.5. In fact, all conclusions of Theorem 5.2.5 are true for $n \leq k$. Since $\left\langle s_{k}\right\rangle \Gamma_{i}=\Gamma_{i}$ for all $i \leq k$, by Theorem 5.2.5 (vi) and (vii), $x_{k}\left(s_{k} g\right)=x_{k}(g)$ for all $g \in D$.

To define x_{k} on $G-D$ we use the technique presented in the proof of Theorem 6.1.1. For each $1 \leq i \leq k$ let R_{i} be the graph with vertex set Γ_{i} and edge relation given by

$$
\left(\gamma, \gamma^{\prime}\right) \in E\left(R_{i}\right) \Longleftrightarrow \gamma^{\prime} \in \gamma M_{i}^{23}
$$

Since $M_{i}^{-1}=M_{i}, E\left(R_{i}\right)$ is a symmetric relation. A usual greedy algorithm gives a graph theoretic $\left(\left|M_{i}\right|^{23}+1\right)$-coloring of $R_{i}, \mu_{i}: \Gamma_{i} \rightarrow\left\{0,1, \ldots,\left|M_{i}\right|^{23}\right\}$. We claim that μ_{i} can be obtained so that $\mu_{i}\left(s_{k} \gamma\right)=\mu_{i}(\gamma)$ for all $\gamma \in \Gamma_{i}$. To see this, apply the greedy algorithm in infinitely many stages as follows. Enumerate all elements of Γ_{i} as $1_{G}=\gamma_{0}, \gamma_{1}, \ldots$ At stage $m=0$, let $S_{0}=\left\langle s_{k}\right\rangle \gamma_{0}$, assign $\mu_{i}\left(\gamma_{0}\right)$ arbitrarily, and then let $\mu_{i}\left(s_{k}^{l} \gamma_{0}\right)=\mu_{i}\left(\gamma_{0}\right)$ for all $l \in \mathbb{Z}$. Since for any $g \in G$ and $l \in \mathbb{Z}^{*}, g^{-1} s_{k}^{l} g \notin A-\left\{1_{G}\right\}$ and $M_{i}^{23} \subseteq M_{k}^{23} \subseteq A$, we have $g^{-1} s_{k}^{l} g \notin M_{i}^{23}-\left\{1_{G}\right\}$. It follows that for any $l \neq r \in \mathbb{Z},\left(s_{k}^{l} \gamma_{0}, s_{k}^{r} \gamma_{0}\right) \notin E\left(R_{i}\right)$. In general suppose S_{m} and $\mu_{i} \upharpoonright S_{m}$ have been defined. We define S_{m+1} by induction. If there is n such that $\gamma_{n} \notin S_{m}$, let n_{m} be the least such n, and let $S_{m+1}=S_{m} \cup\left\langle s_{k}\right\rangle \gamma_{n_{m}}$. Define $\mu_{i}\left(\gamma_{n_{m}}\right)$ arbitrarily using the greedy algorithm: since $\gamma_{n_{m}}$ has at most $\left|M_{i}\right|^{23}$ many adjacent vertices there is some $v \in\left\{0,1, \ldots,\left|M_{i}\right|^{23}\right\}$ such that by assigning $\mu_{i}\left(\gamma_{n_{m}}\right)=v$ the resulting function is a partial graph-theoretic coloring. Arbitrarily choose such a v, and let $\mu_{i}\left(s_{k}^{l} \gamma_{n_{m}}\right)=v$ for all $l \in \mathbb{Z}$. By a similar argument as above, $\left(s_{k}^{l} \gamma_{n_{m}}, s_{k}^{r} \gamma_{n_{m}}\right) \notin E\left(R_{i}\right)$ for any $l \neq r \in \mathbb{Z}$. Suppose $\left(s_{k}^{l} \gamma_{n_{m}}, \psi\right) \in E\left(R_{i}\right)$ for some $l \in \mathbb{Z}$ and $\psi \in S_{m}$. Then $\left(\gamma_{n_{m}}, s_{k}^{-l} \psi\right) \in E\left(R_{i}\right)$, where $s_{k}^{-l} \psi \in S_{m}$ since $\left\langle s_{k}\right\rangle S_{m}=S_{m}$. By induction $\mu_{i}(\psi)=\mu_{i}\left(s_{k}^{-l} \psi\right)$. Thus

$$
\mu_{i}\left(s_{k}^{l} \gamma_{n_{m}}\right)=v=\mu_{i}\left(\gamma_{n_{m}}\right) \neq \mu_{i}\left(s_{k}^{-1} \psi\right)=\mu_{i}(\psi)
$$

We conclude that $\mu_{i} \upharpoonright S_{m+1}$ is a partial graph-theoretic coloring. To summarize, we have defined μ_{i} on all of Γ_{i} so that $\mu_{i}\left(s_{k} \gamma\right)=\mu_{i}(\gamma)$ for all $\gamma \in \Gamma_{i}$.

The rest of the proof follows that of Theorem 6.1.1. We thus constructed x_{k} to satisfy (i) through (iv).

Again, the assumptions of the theorem are easy to arrange. Growth sequences satisfying (a) and (b) can be obtained by Corollary 5.4.8, since $\left|M_{n}\right| \leq 2\left|H_{n}\right|$; condition (c) is simply a largeness condition for the finite set A; blueprints satisfying (d), as we remarked before, arise from the proof of Theorem 5.3.3. One might have noticed that some of these hypotheses are not needed in the theorem. They will be only needed in some of our later proofs, but we state them here just to keep our assumptions about the blueprint explicitly isolated.

We note the following corollary of the proof of Theorem 8.4.2.
Corollary 8.4.3. Let G be a countable nonflecc group and $A \subseteq G-\left\{1_{G}\right\}$ be finite. Then there is a periodic $x \in 2^{G}$ which blocks all elements of A.

For the convenience of our later arguments we also note some finer details of the Γ_{i} membership test constructed in the above theorem. By the proof of Theorem 5.2.5, we have the following "standard form" of the membership tests. For the Γ_{1} membership test, we have

$$
g \in \Gamma_{1} \text { iff } \forall f \in F_{0} x_{k}(g f)=R(f)
$$

Note that here we used the hypothesis that $\gamma_{1}=1_{G}$. The general Γ_{i} membership test for $i>1$ is defined by induction on i with test region $V_{i}=\gamma_{i}\left(V_{i-1} \cup\right.$ $\left.\left\{a_{i-1}, b_{i-1}\right\}\right)$. Specifically, for $i>1$,

$$
g \in \Gamma_{i} \text { iff } g \gamma_{i} \in \Gamma_{i-1} \wedge x_{k}\left(g \gamma_{i} a_{i-1}\right)=x_{k}\left(g \gamma_{i} b_{i-1}\right)=1
$$

An important feature of these membership tests is that they only depend on the locally recognizable function R and the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$. In particular, they do not depend on the number $k \geq 1$. In other words, if $k \neq k^{\prime} \geq 1$ and if the above theorem is applied to k and k^{\prime} respectively, with the same locally recognizable function R and the same blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$, then the resulting membership tests take the same form. This point will come up in the proof of our main theorem below.

In the proof of our main theorem only a finite part of x_{k} will be used at each stage. However, we need such finite parts to maintain their integrity when it comes to Γ_{i} membership tests for $i \leq k$. For this purpose we define the following saturation operation for finite sets. Given a finite set $B \subseteq G$, let

$$
\operatorname{sat}_{0}(B)=\bigcup\left\{\gamma F_{0}: \gamma \in \Gamma_{0}, \gamma F_{0} \cap B \neq \varnothing\right\}
$$

and

$$
\operatorname{sat}_{k}(B)=\operatorname{sat}_{0}(B) \cup \bigcup_{i \leq k}\left(\Gamma_{i} \cap \operatorname{sat}_{0}(B)\right) F_{i}
$$

It is important to note that B is not necessarily contained in either $\operatorname{sat}_{0}(B)$ or $\operatorname{sat}_{k}(B)$, but $B \cap \Gamma_{0} F_{0} \subseteq \operatorname{sat}_{0}(B)$ by definition. Moreover, $\operatorname{sat}_{k}(B)$ has the obvious property that for all $\gamma \in \Gamma_{0}$, if $\gamma F_{0} \cap B \neq \varnothing$ then $\gamma F_{0} \subseteq \operatorname{sat}_{k}(B)$. We also have the following strengthened property.

Lemma 8.4.4. For all $i \leq k$ and $\gamma \in \Gamma_{i} \cap \operatorname{sat}_{k}(B), \gamma F_{i} \subseteq \operatorname{sat}_{k}(B)$.
Proof. Fix $i \leq k$ and $\gamma \in \Gamma_{i} \cap \operatorname{sat}_{k}(B)$. If $\gamma \in \operatorname{sat}_{0}(B)$ then $\gamma \in \Gamma_{i} \cap \operatorname{sat}_{0}(B)$ and therefore $\gamma F_{i} \subseteq \operatorname{sat}_{k}(B)$ by definition. Suppose instead $\gamma \in\left(\Gamma_{j} \cap \operatorname{sat}_{0}(B)\right) F_{j}$ for some $j \leq k$. Then there is some $\delta \in \Gamma_{j} \cap \operatorname{sat}_{0}(B)$ such that $\gamma \in \delta F_{j}$. If $j \geq i$, then by clause (vii) of Theorem 8.4.1 $\gamma F_{i} \subseteq \delta F_{j}$, and therefore $\gamma F_{i} \subseteq \delta F_{j} \subseteq \operatorname{sat}_{k}(B)$ by definition. If $j<i$, then by clause (ii) of Theorem 8.4.1 $\gamma \in \Gamma_{j}$. Since the Γ_{j}-translates of F_{j} are pairwise disjoint, we have $\gamma=\delta$. This means that $\delta \in \Gamma_{i}$, and so $\gamma F_{i}=\delta F_{i} \subseteq\left(\Gamma_{i} \cap \operatorname{sat}_{0}(B)\right) F_{i} \subseteq \operatorname{sat}_{k}(B)$.

For any $n>k$, we also define

$$
K_{n, k}=\operatorname{sat}_{k}\left(M_{n} M_{k}^{3} M_{k-1}^{3} \ldots M_{0}^{3}\right),
$$

where $M_{i}=H_{i} \cup H_{i}^{-1}$, and define $x_{k}^{n}=x_{k} \upharpoonright K_{n, k} . x_{k}^{n}$ will be the finite part of x_{k} used in our main construction.

In our main construction the background will be colored differently from some translates of the regions $K_{n, k}$. However, in the coloring of both parts we use some blueprint and some membership test for center points. To make the membership tests distinct we need the following lemma similar to Proposition 6.2.1.

Lemma 8.4.5. Let G be a countably infinite group, $B \subseteq G$ a finite set, and $Q: B \rightarrow 2$ any function. Then there exist a finite set $A \supseteq B$ and two nontrivial locally recognizable functions $R, R^{\prime}: A \rightarrow 2$ both extending Q such that for all $x, x^{\prime} \in 2^{G}$ with $x \upharpoonright A=R$ and $x^{\prime} \upharpoonright A=R^{\prime}$,

$$
\forall g \in A \exists h \in A x(g h) \neq x^{\prime}(h)
$$

and

$$
\forall g \in A \exists h \in A x^{\prime}(g h) \neq x(h)
$$

Proof. The proof is also similar to that of Proposition 6.2.1. For clarity we give a self-contained argument below. By defining $Q\left(1_{G}\right)=0$ if necessary, we may assume $1_{G} \in B$. Set $B_{1}=B$. Choose distinct elements $a, b, a^{\prime}, b^{\prime} \in G-B_{1}$ and set $B_{2}=B_{1} \cup\left\{a, b, a^{\prime}, b^{\prime}\right\}$. Next chose any $c \in G-\left(B_{2} B_{2} \cup B_{2} B_{2}^{-1}\right)$ and set $B_{3}=B_{2} \cup\{c\}=B_{1} \cup\left\{a, b, a^{\prime}, b^{\prime}, c\right\}$. Let $A=B_{3} B_{3}$. Define $R: A \rightarrow 2$ by

$$
R(g)= \begin{cases}Q(g) & \text { if } g \in B_{1} \\ Q\left(1_{G}\right) & \text { if } g \in\{a, b, c\} \\ 1-Q\left(1_{G}\right) & \text { if } g \in\left\{a^{\prime}, b^{\prime}\right\} \\ 1-Q\left(1_{G}\right) & \text { if } g \in A-B_{3} .\end{cases}
$$

R^{\prime} is similarly defined, with the role of a, b and respectively of a^{\prime}, b^{\prime} interchanged. Thus for all $g \in A-\left\{a, b, a^{\prime}, b^{\prime}\right\}, R(g)=R^{\prime}(g)$, and for $g \in\left\{a, b, a^{\prime}, b^{\prime}\right\}, R(g)=$ $1-R^{\prime}(g)$. It is obvious that both R and R^{\prime} are nontrivial (Definition 5.2.2).

We claim that for any nonidentity $g \in B_{3}$, at least one of a, b, or c is not an element of $g B_{3}$. To see this, consider the following cases. Case 1: $g \in B_{2}$. Then $c \notin g B_{2} \subseteq B_{2} B_{2}$ and $c \neq g c$ since $g \neq 1_{G}$. Thus $c \notin g B_{3}$. Case 2: $g \in B_{3}-B_{2}=$ $\{c\}$. Then $g=c$. Since $c \notin B_{2} B_{2}^{-1}$, we have $a, b \notin c B_{2}$. If $a, b \in c B_{3}$ then we must have $a=c^{2}=b$, contradicting $a \neq b$. We conclude $\{a, b\} \nsubseteq c B_{3}=g B_{3}$.

By symmetry we also have that for any $g \in B_{3}$, at least one of a^{\prime}, b^{\prime}, or c is not an element of $g B_{3}$.

We verify that R is locally recognizable. Towards a contradiction, suppose there is $y \in 2^{G}$ extending R such that for some $1_{G} \neq g \in A, y(g h)=y(h)$ for all $h \in A$. In particular, $y(g)=y\left(1_{G}\right)=R\left(1_{G}\right)$ so $g \in B_{3}$. By the above claim we have $\{a, b, c\} \nsubseteq g B_{3} \subseteq A$, but $\{a, b, c\} \subseteq\left\{h \in A \mid y(h)=y\left(1_{G}\right)\right\} \subseteq B_{3}$. Therefore

$$
\begin{aligned}
& \left|\left\{h \in B_{3} \mid y(g h)=y\left(1_{G}\right)\right\}\right|<\left|\left\{h \in A \mid y(h)=y\left(1_{G}\right)\right\}\right| \\
= & \left|\left\{h \in B_{3} \mid y(h)=y\left(1_{G}\right)\right\}\right|=\left|\left\{h \in B_{3} \mid y(g h)=y\left(1_{G}\right)\right\}\right|,
\end{aligned}
$$

a contradiction.
A symmetric argument with a, b replaced by a^{\prime}, b^{\prime}, respectively proves that R^{\prime} is locally recognizable.

To complete the proof of the lemma, we let $x, x^{\prime} \in 2^{G}$ extending R, R^{\prime}, respectively, and toward a contradiction assume that for some $g \in A, x(g h)=x^{\prime}(h)$ for all $h \in A$. Since $R \neq R^{\prime}$ we know that $g \neq 1_{G}$. Since $R(g)=x(g)=x^{\prime}\left(1_{G}\right)=Q\left(1_{G}\right)$, we also know that $g \in B_{3}$. Again we have $\{a, b, c\} \nsubseteq g B_{3} \subseteq A$, and therefore

$$
\begin{aligned}
& \left|\left\{h \in B_{3} \mid x(g h)=Q\left(1_{G}\right)\right\}\right|<\left|\left\{h \in A \mid x(h)=Q\left(1_{G}\right)\right\}\right| \\
= & \left|\left\{h \in A \mid x^{\prime}(h)=Q\left(1_{G}\right)\right\}\right|=\left|\left\{h \in B_{3} \mid x^{\prime}(h)=Q\left(1_{G}\right)\right\}\right| \\
= & \left|\left\{h \in B_{3} \mid x(g h)=Q\left(1_{G}\right)\right\}\right|,
\end{aligned}
$$

a contradiction. Finally a symmetric argument gives that for all $g \in A$ there is $h \in A$ such that $x^{\prime}(g h) \neq x(h)$. This finishes the proof of the lemma.

We are now ready to prove our main theorem of this section.
THEOREM 8.4.6. Let G be a countable nonflecc group. Then the set of all 2-colorings on G is $\boldsymbol{\Pi}_{3}^{0}$-complete.

Proof. Let $H_{0} \subseteq G$ be a finite set with $1_{G} \in H_{0}$, and $R, R^{\prime}: H_{0} \rightarrow 2$ be two distinct nontrivial locally recognizable functions given by Lemma 8.4.5, with $R\left(1_{G}\right)=R^{\prime}\left(1_{G}\right)=1$. Let $\left(H_{n}\right)_{n \in \mathbb{N}}$ be a growth sequence with the additional properties that, for all $n \in \mathbb{N}$, letting $M_{n}=H_{n} \cup H_{n}^{-1}$,
(1) $M_{n}^{4} \subseteq H_{n+1}$;
(2) $M_{n}^{3} M_{n-1}^{3} \ldots M_{0}^{3} \subseteq H_{n+1}$.

Such sequences are easy to construct. Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by $\left(H_{n}\right)_{n \in \mathbb{N}}$, with $\gamma_{1}=1_{G}$, such that
(3) for all $n \in \mathbb{N},\left|\Lambda_{n}\right|>23 \log _{2}\left|M_{n}\right|+1$.

The existence of such blueprints follows from Corollary 5.4.8, since $\left|M_{n}\right| \leq 2\left|H_{n}\right|$ for all $n \in \mathbb{N}$. The construction of the blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ follows the proof of Theorem 5.3.3, and therefore we have
(4) for all $i<j$ and $g \in G$, if $g F_{i} \cap F_{j} \neq \varnothing$, then $g F_{i} \cap\left(\Delta_{i} \cap F_{j}\right) F_{i} \neq \varnothing$.

Now apply Theorem 6.1.5 to obtain a strong 2-coloring $z \in 2^{G}$ fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and compatible with R^{\prime}.

For each $n \geq 1$, let $K_{n}=M_{n}^{4}$. Fix an enumeration of $G-\left\{1_{G}\right\}$ as $\sigma_{1}, \sigma_{2}, \ldots$ so that each $s \in G-\left\{1_{G}\right\}$ is enumerated infinitely many times. We inductively define two sequences $\left(\pi_{n}\right)_{n \geq 1}$ and $\left(w_{n}\right)_{n \geq 1}$ of elements of G so that
(5) for all $n \neq m \in \mathbb{N}$, the sets $\pi_{n} K_{n}, \pi_{m} K_{m},\left\{w_{n}, \sigma_{n} w_{n}\right\}$, and $\left\{w_{m}, \sigma_{m} w_{m}\right\}$ are pairwise disjoint;
(6) for all $n \geq 1, z\left(w_{n}\right) \neq z\left(\sigma_{n} w_{n}\right)$; and
(7) for all $1 \leq n<n^{\prime}, \pi_{n} K_{n} M_{n}^{23} \cap \pi_{n^{\prime}} K_{n^{\prime}}=\varnothing$.

For $n=1$ let $\pi_{1}=1_{G}$. Since z is a strong 2 -coloring, there are infinitely many $w \in G$ such that $z\left(\sigma_{1} w\right) \neq z(w)$. Let $w_{1} \notin \pi_{1} K_{1} \cup \sigma_{1}^{-1} \pi_{1} K_{1}$ be such a w. Then $w_{1}, \sigma_{1} w_{1} \notin \pi_{1} K_{1}$. So $\left\{w_{1}, \sigma_{1} w_{1}\right\} \cap \pi_{1} K_{1}=\varnothing$. In general suppose π_{m} and w_{m} have been defined for all $1 \leq m \leq n$ to satisfy (5) through (7). Let

$$
B=\bigcup_{1 \leq m \leq n}\left(\left\{w_{m}, \sigma_{m} w_{m}\right\} \cup \pi_{m} K_{m} M_{m}^{23}\right)
$$

Then B is finite and we may find $\pi_{n+1} \notin B K_{n+1}^{-1}$ and $w_{n+1} \notin\left\{1_{G}, \sigma^{-1}\right\}(B \cup$ $\left.\pi_{n+1} K_{n+1}\right)$. Then we have that $\pi_{n+1} K_{n+1} \cap B=\varnothing$ and $\left\{w_{n+1}, \sigma_{n+1} w_{n+1}\right\} \cap(B \cup$ $\left.\pi_{n+1} K_{n+1}\right)=\varnothing$. Therefore the sequences are as required.

For each $k \geq 1$ we apply Theorem 8.4.1 with $A=M_{k}^{23}$ to obtain an $s_{k} \in G$ and a sequence $\left(\Gamma_{i}\right)_{i \leq k}$. Note that s_{k} only depends on k. The sequence $\left(\Gamma_{i}\right)_{i \leq k}$ also depends on k. However, for simplicity we will not introduce k into the notation. The reader should be aware that at various places we might be referring to different Γ_{i} 's coming from different k values. With k fixed we continue to apply Theorem 8.4.2 to obtain x_{k} compatible with R. For $n>k$, we also defined the set $K_{n, k}$ and $x_{k}^{n}=x_{k} \upharpoonright K_{n, k}$. Note that by (1) and (2) above,

$$
\begin{aligned}
K_{n, k}=\operatorname{sat}_{k}\left(M_{n} M_{k}^{3} \ldots M_{0}^{3}\right) & \subseteq\left(M_{n} M_{k}^{3} \ldots M_{0}^{3}\right) F_{0}^{-1} F_{0} F_{k} \\
& \subseteq M_{n} M_{k+1} M_{k}^{3} \subseteq M_{n}^{3} \subseteq K_{n}
\end{aligned}
$$

We are finally ready to define a continuous function $f: 2^{\mathbb{N} \times \mathbb{N}} \rightarrow 2^{G}$ so that $f(\alpha)$ is a 2-coloring on G iff $\alpha \in P$, where

$$
P=\left\{\alpha \in 2^{\mathbb{N} \times \mathbb{N}}: \forall k \geq 1 \exists n>k \forall m \geq n \alpha(k, m)=0\right\}
$$

Given $\alpha \in 2^{\mathbb{N} \times \mathbb{N}}$, we let $f(\alpha)(g)=z(g)$ if $g \notin \bigcup_{n \geq 1} \pi_{n} K_{n}$. Then for each $n \geq 1$, $f(\alpha) \upharpoonright \pi_{n} K_{n}$ will be defined according to the values $\alpha(1, n), \ldots, \alpha(n, n)$, as follows. Let $1 \leq k<n$ be the least such that $\alpha(k, n)=1$. If k is undefined then we define $f(\alpha)(g)=z(g)$ for all $g \in \pi_{n} K_{n}$. Suppose k is defined. Then we let $f(\alpha)\left(\pi_{n} g\right)=x_{k}^{n}(g)$ for all $g \in K_{n, k}$. For $g \in \pi_{n}\left(K_{n}-K_{n, k}\right)$, if $g \notin \Delta_{0} F_{0}$ then note that $z(g)=0$ and we let $f(\alpha)(g)=0$ as well. If $g \in \pi_{n}\left(K_{n}-K_{n, k}\right)$ but $g \in \Delta_{0} F_{0}$, let $\gamma \in \Delta_{0}$ be the unique element such that $g \in \gamma F_{0}$. If $\gamma F_{0} \cap \pi_{n} K_{n, k}=\varnothing$ we let $f(\alpha)(g)=z(g)$, otherwise let $f(\alpha)(g)=0$. Note that in case $\gamma F_{0} \cap \pi_{n} K_{n, k} \neq \varnothing$, we have

$$
\gamma F_{0} \subseteq \pi_{n} K_{n, k} F_{0}^{-1} F_{0} \subseteq \pi_{n} M_{n}^{3} M_{1} \subseteq \pi_{n} K_{n}
$$

and therefore $f(\alpha) \upharpoonright \gamma F_{0}$ is well defined. This finishes the definition of $f(\alpha)$.
It is obvious that each $f(\alpha) \in 2^{G}$ and it is routine to check that f is a continuous function. We argue first that if $\alpha \notin P$ then $f(\alpha)$ is not a 2-coloring. Assume $\alpha \notin P$. Let $k \geq 1$ be the least such that for infinitely many $n>k, \alpha(k, n)=1$. Let n_{0} be large enough such that for all $1 \leq i<k$ and $n \geq n_{0}, \alpha(i, n)=0$. Then for infinitely many $n>n_{0}, k$ is the least m such that $\alpha(m, n)=1$. By the definition of $f(\alpha)$, for infinitely many such $n>k, f(\alpha)\left(\pi_{n} g\right)=x_{k}^{n}(g)$ for $g \in K_{n, k}$. In other words, for infinitely many $n>k,\left(\pi_{n}^{-1} \cdot f(\alpha)\right) \upharpoonright K_{n, k}=x_{k}^{n}$. We claim that $\left(\pi_{n}^{-1} \cdot f(\alpha)\right) \upharpoonright H_{n}=x_{k} \upharpoonright H_{n}$. This implies that $x_{k} \in \overline{[f(\alpha)]}$. Since x_{k} is periodic, $f(\alpha)$ is not a 2-coloring. To prove the claim, fix such an $n>k$ and let $g \in H_{n}$. If $g \in K_{n, k}$ then there is nothing to prove. Assume $g \notin K_{n, k}$. Since the Γ_{0}-translates of F_{0} are maximally disjoint within G, there is $\gamma \in \Gamma_{0}$ such that $g F_{0} \cap \gamma F_{0} \neq \varnothing$. For any such γ, we have $\gamma \in g F_{0} F_{0}^{-1} \subseteq H_{n} F_{0} F_{0}^{-1} \subseteq K_{n}$, and therefore $\gamma F_{0} \subseteq K_{n, k}$. This implies that $g \notin \Gamma_{0} F_{0}$. It follows from our definition of $f(\alpha)$ that $f(\alpha)\left(\pi_{n} g\right)=0$. Also by Theorem 8.4 .2 (iii) we have $x_{k}^{n}(g)=0$. This completes the proof of the claim, and hence we have shown that if $\alpha \notin P$ then $f(\alpha)$ is not a 2 -coloring.

The rest of the proof is devoted to showing that if $\alpha \in P$, then $f(\alpha)$ is a 2 coloring. We first note that for any $n \geq 1$, since $w_{n}, \sigma_{n} w_{n} \notin \bigcup_{m>1} \pi_{m} K_{m}$, we have $f(\alpha)\left(w_{n}\right)=z\left(w_{n}\right) \neq z\left(\sigma_{n} w_{n}\right)=f(\alpha)\left(\sigma_{n} w_{n}\right)$. Thus in particular $f(\alpha)$ is aperiodic. By Lemma 2.5.4, to show that $f(\alpha)$ is a 2 -coloring it suffices to show that it is a near 2-coloring. Fix $\alpha \in P$ and any $i \geq 1$. Fix any $s \in H_{i}$ with $s \neq 1_{G}$. Let $n_{0}>i$ be large enough such that for all $n \geq n_{0}$ and $1 \leq j \leq i$, $\alpha(j, n)=0$. Let $S=\bigcup_{1 \leq m \leq n_{0}} \pi_{m} K_{m}$ and $T=M_{i}^{11} F_{i}$. We verify that $f(\alpha)$ nearly blocks s by showing that for all $g \notin S F_{i}^{-1} F_{i} F_{i}^{-1}\left\{1_{G}, s^{-1}\right\}$ there is $t \in T$ with $f(\alpha)(g s t) \neq f(\alpha)(g t)$.

To simplify notation denote $f(\alpha)$ by y. Also denote, for $k \geq 1$,

$$
N_{k}=\{n \geq 1: n>k \text { and } k \text { is the least } m \text { with } \alpha(m, n)=1\}
$$

and

$$
X_{k}=\bigcup\left\{\pi_{n} K_{n, k}: n \in N_{k}\right\}
$$

Then X_{k} is the set on which the definition of y is given by the periodic element x_{k}. Let

$$
N=\bigcup_{k \geq 1} N_{k} \quad \text { and } \quad X=\bigcup_{k \geq 1} X_{k}
$$

Then N contains (and is most likely equal to) the set of all $n \geq 1$ such that $y \upharpoonright \pi_{n} K_{n} \neq z \upharpoonright \pi_{n} K_{n}$. Note that $N_{k} \cap N_{k^{\prime}}=\varnothing$ and $X_{k} \cap X_{k^{\prime}}=\varnothing$ for $k \neq k^{\prime} \geq 1$.

For a fixed $k \geq 1$, if $j \leq k$, we define

$$
\Gamma_{j}^{*}=\bigcup\left\{\pi_{n} \Gamma_{j} \cap X_{k}: n \in N_{k}\right\} .
$$

Then $\Gamma_{j}^{*} F_{j} \subseteq X_{k}$ by the definition of $K_{n, k}$ and Lemma 8.4.4. By Theorem 8.4.2 elements of $\Gamma_{j}^{*}, j \geq 1$, satisfy a simple membership test induced by R with test region a subset of F_{j}. Moreover, by the remark following Theorem 8.4.2, these membership tests do not depend on k since they are obtained from applying Theorem 5.2.5 by using the same locally recognizable function R and the same blueprint. In other words, if $k \neq k^{\prime} \geq 1$ and $j \leq k, k^{\prime}$, then the membership tests for elements of Γ_{j} in the constructions of x_{k} and $x_{k^{\prime}}$ take the same form. For this reason, and for simplicity of notation, we refrained from mentioning k in the notation Γ_{j}^{*}. We will refer to the membership test involved as simply the Γ_{j} membership test.

For any $j \in \mathbb{N}$ define

$$
\Delta_{j}^{*}=\left\{\gamma \in \Delta_{j}: \gamma F_{j} \cap X=\varnothing\right\}
$$

In particular, if $k \geq 1$ and $j \leq k$, then $\Delta_{j}^{*} F_{j} \cap X_{k}=\varnothing$. Since the construction of the strong 2 -coloring z also comes from the proof of Theorem 5.2 .5 by using the same blueprint, elements of $\Delta_{j}, j \geq 1$, satisfy a similar simple membership test (for z), except it is induced by R^{\prime} instead, also with test region a subset of F_{j}. We refer to it as the Δ_{j} membership test.

We remark that the Δ_{j} membership test (for z) takes exactly the same form as the Γ_{j} membership test (for any x_{k} with $k \geq j$), except that instead of the locally recognizable function R we use R^{\prime}. Since R and R^{\prime} are distinct, the Γ_{1} membership test (for any x_{k} with $k \geq 1$) and the Δ_{1} membership test (for z) are different. For $j>1$, the $\Gamma_{j}\left(\Delta_{j}\right)$ membership test is constructed by the same induction using Γ_{j-1} $\left(\Delta_{j-1}\right)$ membership tests. Hence the Γ_{j} membership test and the Δ_{j} membership tests are also different.

We note that elements of Δ_{j}^{*} satisfy the Δ_{j} membership test on y. Conversely, we do not necessarily have that elements satisfying the Δ_{j} membership test on y must be in Δ_{j}^{*}. Instead, we note that if $g \in G$ is such that $g F_{j} \cap X=\varnothing$ and g satisfies the Δ_{j} membership test, then $g \in \Delta_{j}^{*}$. This is easily seen by induction on $j \geq 1$. When $j=1$ we assume $g F_{1} \cap X=\varnothing$ and g satisfies the Δ_{1} membership test, which is $y(g a)=R^{\prime}(a)$ for all $a \in F_{0}$. By the properties of R^{\prime} and our definition of $y, g \in \Delta_{1}$. Since $g F_{1} \cap X=\varnothing$, we have $g \in \Delta_{1}^{*}$. The proof of the inductive step follows routinely from the definition of the Γ_{j} membership test.

We now claim that for any $j \geq 1$ and $g \in G, g \in \Gamma_{j}^{*}$ iff g satisfies the Γ_{j} membership test in y. In other words, the Γ_{j}^{*} membership test on y takes exactly the same form as the Γ_{j} membership test on x_{k} for $k \geq j$. We first verify this claim for $j=1$. Thus we are to show that $g \in \Gamma_{1}^{*}$ iff g satisfies the Γ_{1} membership test in y. The nontrivial direction is to show that if g satisfies the Γ_{1} membership test, then $g \in \Gamma_{1}^{*}$. Since $y(g f)=R(f)$ for all $f \in F_{0}$ we in particular have $y(g)=R\left(1_{G}\right)=1$. If $g \notin X$, then since $y(g)=R\left(1_{G}\right)=1$ we must have that $g \in \gamma F_{0}$ for some unique $\gamma \in \Delta_{0}$. From the definition of y we cannot have that $\gamma F_{0} \cap X \neq \varnothing$ as otherwise $y(g)=0$. So, $y \upharpoonright \gamma F_{0}=z \upharpoonright \gamma F_{0}$. But then if follows from Lemma 8.4.5 that g cannot satisfy the Γ_{1} membership test in y. So, we may assume $g \in X$. We may therefore assume $g \in X_{k}$ for some $k \geq 1$. Fix $n>k$ such that $g \in \pi_{n} K_{n, k}$. Since $y(g)=1$ we have that for some $\gamma \in \Gamma_{0}$ that $g \in \pi_{n} \gamma F_{0}$. By the 0 -saturation of $K_{n, k}$ we have that $\pi_{n} \gamma F_{0} \subseteq \pi_{n} K_{n, k}$. We must have that $g=\pi_{n} \gamma$ and $\gamma \in \Gamma_{1}$ as otherwise g would not pass the Γ_{1} membership test in y (c.f. Lemma 5.2.3). To see
this, note that if $\gamma \notin \Gamma_{1}$, then since $y(g)=1$ we have $\gamma=\gamma^{\prime} \delta$ for some $\gamma^{\prime} \in \Gamma_{1}$ and $\delta \in D_{0}^{1}-\left\{1_{G}\right\}$. Also in this case we must have $g=\pi_{n} \gamma^{\prime} \delta$ as $y(g)=1$. However, on the one hand, g satisfies the Γ_{1} membership test, which means that for all $f \in F_{0}$,

$$
y(g f)=x_{k}\left(\pi_{n}^{-1} g f\right)=R(f)
$$

On the other hand, for any $\gamma^{\prime} \in \Gamma_{1}$ and $\delta \in D_{0}^{1}-\left\{1_{G}\right\}=D_{0}^{1}-\left\{\gamma_{1}\right\}$, the construction of the Γ_{1} membership test using Theorem 5.2.5 gives that

$$
\left|\left\{f \in F_{0}: x_{k}\left(\gamma^{\prime} \delta f\right)=R\left(1_{G}\right)=1\right\}\right| \leq 1
$$

Since R is nontrivial, it follows that $\pi_{n}^{-1} g \notin \gamma^{\prime}\left(D_{0}^{1}-\left\{1_{G}\right\}\right)$. Thus we must have $\pi_{n}^{-1} g \in \gamma F_{0}$ for $\gamma \in \Gamma_{1}$. Since $\pi_{n}^{-1} g \in K_{n, k}, \gamma \in \Gamma_{1}^{*}$. As $\pi_{n} \gamma F_{0} \subseteq \pi_{n} K_{n, k}$ by $0-$ stauration, we have that $y \upharpoonright \pi_{n} \gamma F_{0}=x_{k} \upharpoonright \pi_{n} \Gamma F_{0}$. Since R is locally recognizable, we have $g=\pi_{n} \gamma \in \Gamma_{1}^{*}$, as required.

Suppose next that $j>1$ and g passes the Γ_{j} membership test in y. Since g also passes the Γ_{1} membership test we have that $g \in \Gamma_{1}^{*}$, say $g=\pi_{n} \gamma$ where $\gamma \in \Gamma_{1} \cap K_{n, k}$. Suppose first that $j \leq k$ and assume inductively that $\gamma \in \Gamma_{j-1}$. As g satisfies the Γ_{j} membership test in y we have that $\pi_{n} \gamma \gamma_{j}$ satisfies the Γ_{j-1} membership test in y. From the $j=1$ case we have that $\pi_{n} \gamma \gamma_{j} \in X$ and hence $\pi_{n} \gamma \gamma_{j} \in \pi_{n} K_{n, k}$ as $\gamma_{j} \in F_{k}$ and $\pi_{n} K_{n} F_{k}$ is disjoint from all K_{m} for $m \neq n$. Since $j \leq k$ we have by saturation that $\pi_{n} \gamma \gamma_{j} F_{j} \subseteq \pi_{n} K_{n, k}$. It follows that γ passes the Γ_{j} membership test in x_{k}. Thus, $\gamma \in \Gamma_{j}$ and so $g=\pi_{n} \gamma \in \pi_{n} \Gamma_{j} \cap \pi_{n} K_{n, k} \subseteq \Gamma_{j}^{*}$. Suppose now $j>k$, and g passes the $k+1$ membership test in y. As above we get that $g=\pi_{n} \gamma$ where $\gamma \in \Gamma_{k}$ and $\gamma \gamma_{k} \in \Gamma_{k}$ where $\pi_{n} \gamma \gamma_{k} F_{k} \subseteq \pi_{n} K_{n, k}$. Since g passes the $k+1$ menbership test in y we see that $y\left(\pi_{n} \gamma \gamma_{k} a_{k}\right)=y\left(\pi_{n} \gamma \gamma_{k} b_{k}\right)=1$ and so $x_{k}\left(\gamma \gamma_{k} a_{k}\right)=x_{k}\left(\gamma \gamma_{k} b_{k}\right)=1$. This is a contradiction as for any $\gamma^{\prime} \in \Gamma_{k}$ we have that $x_{k}\left(\gamma^{\prime} a_{k}\right)$ and $x_{k}\left(\gamma^{\prime} b_{k}\right)$ are not both 1 from the definition of x_{k} (we may assume x_{k} has this property without loss of generality). So, there is no $g \in \pi_{n} K_{n, k}$ which passes the γ_{k+1} membership test. This establishes the claim.

We fix $g \notin S F_{i}^{-1} F_{i} F_{i}^{-1}\left\{1_{G}, s^{-1}\right\}$. Consider the following cases below.
Case 1a: $g F_{i} F_{i}^{-1} F_{i} \cap X \neq \varnothing$. Thus there is $\delta_{0} \in g F_{i} F_{i}^{-1}$ such that $\delta_{0} F_{i} \cap X \neq \varnothing$. Then for some $k \geq 1$ and $n>k, \delta_{0} F_{i} \cap \pi_{n} K_{n, k} \neq \varnothing$. Fix such $\delta_{0}, k \geq 1$ and $n>k$.

Since $g \notin S F_{i}^{-1} F_{i} F_{i}^{-1}$ but $g \in \delta_{0} F_{i} F_{i}^{-1}$, we have $\delta_{0} \notin S F_{i}^{-1}$ and $\delta_{0} F_{i} \cap S=\varnothing$. Thus $n>n_{0}$, where n_{0} is defined in the definition of S. Recall that k is the least integer with $1 \leq k<n$ such that $\alpha(k, n)=1$. Since $\alpha(j, n)=0$ for all $1 \leq j \leq i$, we know that $i<k$.

Let $C=M_{n} M_{k}^{3} \ldots M_{i}^{3} \ldots M_{0}^{3}$. Recall that $K_{n, k}=\operatorname{sat}_{k}(C)$. It follows that there is $1 \leq j \leq k$ and $\delta_{1} \in \pi_{n} \operatorname{sat}_{0}(C) \cap \Gamma_{j}^{*}$ such that $\delta_{0} F_{i} \cap \delta_{1} F_{j} \neq \varnothing$. If $j \geq i$ then by (4) we may assume $j=i$, and thus we have found $\delta_{1} \in \Gamma_{i}^{*}$ with $\delta_{0} F_{i} \cap \delta_{1} F_{i} \neq \varnothing$. Noting that $g^{-1} \delta_{0}, \delta_{0}^{-1} \delta_{1} \in F_{i} F_{i}^{-1}$, we have that $g^{-1} \delta_{1} \in$ $M_{i}^{4} \subseteq M_{i}^{11}$. Alternatively, assume $j<i$. Then $\delta_{0}^{-1} \delta_{1} \in F_{i} F_{j}^{-1}$. Since $\pi_{n}^{-1} \delta_{1} \in$ $\operatorname{sat}_{0}(C) \subseteq M_{n} M_{k}^{3} \ldots M_{0}^{3} F_{0} F_{0}^{-1}$, then there is $\delta_{2} \in \pi_{n} M_{n} M_{k}^{3} \ldots M_{i+1}^{3}$ such that $\delta_{2}^{-1} \delta_{1} \in M_{i}^{3} M_{i-1}^{3} \ldots M_{0}^{3} F_{0} F_{0}^{-1}$. By (2) $\delta_{2}^{-1} \delta_{1} \in M_{i}^{3} M_{i} F_{0} F_{0}^{-1}=M_{i}^{4} F_{0} F_{0}^{-1}$. Since $M_{i}^{-1}=M_{i}$ we have $\delta_{1}^{-1} \delta_{2} \in F_{0} F_{0}^{-1} M_{i}^{4}$. Now $\pi_{n}^{-1} \delta_{2} F_{i} \subseteq M_{n} M_{k}^{3} \ldots M_{i+1}^{3} F_{i} \subseteq K_{n, k}$, and thus there is $\delta_{3} \in \Gamma_{i}$ such that $\pi_{n}^{-1} \delta_{2} F_{i} \cap \delta_{3} F_{i} \neq \varnothing$ by the maximal disjointness of Γ_{i}-translates of F_{i} by Theorem 8.4.1 (iii). Since $\delta_{2}^{-1} \pi_{n} \delta_{3} \in F_{i} F_{i}^{-1}$, we have

$$
\delta_{3}=\pi_{n}^{-1} \delta_{2}\left(\delta_{2}^{-1} \pi_{n} \delta_{3}\right) \in M_{n} M_{k}^{3} \ldots M_{i+1}^{3} F_{i} F_{i}^{-1} \subseteq M_{n} M_{k}^{3} \ldots M_{i+1}^{3} M_{i}^{2} \subseteq C
$$

and $\delta_{3} F_{i} \subseteq M_{n} M_{k}^{3} \ldots M_{i}^{3} \subseteq C$. This shows that $\pi_{n} \delta_{3} \in \Gamma_{i}^{*}$. Thus we have found $\pi_{n} \delta_{3} \in \Gamma_{i}^{*}$ such that

$$
\begin{aligned}
g^{-1} \pi_{n} \delta_{3} & =\left(g^{-1} \delta_{0}\right)\left(\delta_{0}^{-1} \delta_{1}\right)\left(\delta_{1}^{-1} \delta_{2}\right)\left(\delta_{2}^{-1} \pi_{n} \delta_{3}\right) \\
& \in\left(F_{i} F_{i}^{-1}\right)\left(F_{i} F_{j}^{-1}\right)\left(F_{0} F_{0}^{-1} M_{i}^{4}\right)\left(F_{i} F_{i}^{-1}\right) \subseteq M_{i}^{11} .
\end{aligned}
$$

In either case of $j<i$ or $j \geq i$, we have found $\gamma \in \Gamma_{i}^{*}$ such that $g^{-1} \gamma \in M_{i}^{11}$.
Let $t_{0}=g^{-1} \gamma$. Then $g t_{0}$ satisfies the Γ_{i} membership test. If $g s t_{0}$ does not satisfy the Γ_{i} membership test, then there is $t_{1} \in F_{i}$ such that $y\left(g t_{0} t_{1}\right) \neq y\left(g s t_{0} t_{1}\right)$ by Theorem 8.4.2 (ii). Since $t_{0} t_{1} \in M_{i}^{11} F_{i}=T$, we are done. Otherwise, assume $g s t_{0}$ satisfies the Γ_{i} membership test. We have

$$
\left(g t_{0}\right)^{-1}\left(g s t_{0}\right)=t_{0}^{-1} s t_{0} \in M_{i}^{11} H_{i} M_{i}^{11}=M_{i}^{23} .
$$

By (7) gst ${ }_{0} \in \Gamma_{i}^{*} \cap \pi_{n} K_{n}$. By Theorem 8.4.2 (iv) there is $t_{1} \in F_{i}$ such that $y\left(g t_{0} t_{1}\right) \neq y\left(g s t_{0} t_{1}\right)$. Again $t_{0} t_{1} \in M_{i}^{11} F_{i}$.

Case 1b: $g s F_{i} F_{i}^{-1} F_{i} \cap X \neq \varnothing$. The argument is similar to the above argument in Case 1a, with $g s$ now playing the role of g in that argument.

Case 2: Otherwise, $g F_{i} F_{i}^{-1} F_{i} \cap X=\varnothing$ and $g s F_{i} F_{i}^{-1} F_{i} \cap X=\varnothing$. In particular, for every $\delta \in \Delta_{i}$ with $g F_{i} \cap \delta F_{i} \neq \varnothing$, we have that $\delta F_{i} \cap X=\varnothing$. Thus for every $\delta \in \Delta_{i}$ with $g F_{i} \cap \delta F_{i} \neq \varnothing, \delta \in \Delta_{i}^{*}$. Similarly for every $\delta \in \Delta_{i}$ with $g s F_{i} \cap \delta F_{i} \neq \varnothing$, we also have $\delta \in \Delta_{i}^{*}$. As usual there is $t_{0} \in F_{i} F_{i}^{-1}$ such that $g t_{0} \in \Delta_{i}^{*}$. If $g s t_{0} \in \Delta_{i}^{*}$ then we may find $t_{1} \in F_{i}$ so that $y\left(g t_{0} t_{1}\right) \neq y\left(g s t_{0} t_{1}\right)$, since $\left(g t_{0}\right)^{-1}\left(g s t_{0}\right) \in M_{i}^{23}$, and we are done. Assume $g s t_{0} \notin \Delta_{i}^{*}$. Since $g s t_{0} F_{i} \cap X=\varnothing$, we have that $g s t_{0}$ fails the Δ_{i} membership test on y. Now that $g t_{0}$ does satisfy the Δ_{i} membership test, we routinely find $t_{1} \in F_{i}$ with $y\left(g t_{0} t_{1}\right) \neq y\left(g s t_{0} t_{1}\right)$.

This shows that $y=f(\alpha)$ is a 2 -coloring, and our proof is complete.
We also draw the following corollaries from the proof.
Theorem 8.4.7. For any countable nonflecc group G the set of all strong 2colorings on G is $\boldsymbol{\Pi}_{3}^{0}$-complete.

Proof. It suffices to note that, in the above proof if $\alpha \in P$ then $f(\alpha)$ is in fact a strong 2 -coloring on G. This is because $y\left(w_{n}\right)=z\left(w_{n}\right)$ and $y\left(\sigma_{n} w_{n}\right)=z\left(\sigma_{n} w_{n}\right)$ for all $n \geq 1$ by (5) and the definition of y. $\mathrm{By}(6), y\left(w_{n}\right) \neq y\left(\sigma_{n} w_{n}\right)$ for all $n \geq 1$. Thus for each $s \neq 1_{G}$ there are infinitely many $t \in G$ such that $y(t) \neq y(s t)$.

The following corollary summarizes our findings.
Corollary 8.4.8. Let G be a countable group. Then the following hold:
(1) If G is finite, then the set of all 2 -colorings on G is closed.
(2) If G is an infinite flecc group, then the set of all 2-colorings on G is Σ_{2}^{0}-complete;
(3) If G is not flecc, then the set of all 2-colorings on G is $\boldsymbol{\Pi}_{3}^{0}$-complete.

The Complexity of the Topological Conjugacy Relation

In this chapter we study the complexity of the topological conjugacy relation among subflows of 2^{G}. We remind the reader the definition of topological conjugacy.

Definition 9.0.9. Let G be a countable group and let $S_{1}, S_{2} \subseteq 2^{G}$ be subflows. S_{1} is topologically conjugate to S_{2} or is a topological conjugate of S_{2} if there is a homeomorphism $\phi: S_{1} \rightarrow S_{2}$ satisfying $\phi(g \cdot x)=g \cdot \phi(x)$ for all $x \in S_{1}$ and $g \in G$. Such a function ϕ is called a conjugacy between S_{1} and S_{2}. The property of being topologically conjugate induces an equivalence relation on the set of all subflows of 2^{G}. We call this equivalence relation the topological conjugacy relation.

The purpose of this chapter is to study the complexity of the topological conjugacy relation, meaning, in some sense, how difficult it is to determine when two subflows are topologically conjugate. The precise mathematical way of discussing the complexity of equivalence relations is via the theory of Borel equivalence relations. In the first section, we present a basic introduction to the aspects of the theory of countable Borel equivalence relations which will be needed in this chapter. The second section consists mostly of preparatory work and basic lemmas. In the third section, we show that for every countably infinite group the equivalence relation E_{0}, which we will define in section one, is a lower bound to the complexity of the topological conjugacy relation restricted to free minimal subflows. In the fourth section, we give a complete classification of the complexity of both the topological conjugacy relation and the restriction of the topological conjugacy relation to free subflows.

9.1. Introduction to countable Borel equivalence relations

In this section we review common notation and terminology and basic facts related to the theory of countable Borel equivalence relations. Some references for this material include $[\mathbf{J K L}]$ and $[\mathbf{G}]$. Throughout this chapter we will also work with descriptive set theory, and we refer the reader to $[\mathbf{K}]$ for any missing details.

Let X be a Polish space, that is, a topological space which is separable and which admits a complete metric compatible with its topology. Recall that the Borel sets of X are the members of the σ-algebra generated by the open sets. Informally, the Borel subsets of X are considered to be the definable subsets of X. A Borel equivalence relation on X is an equivalence relation on X which is a Borel subset of $X \times X$, where $X \times X$ has the product topology. Given two Polish spaces X and Y, a function $f: X \rightarrow Y$ is Borel if the pre-image of every Borel set in Y is Borel in X. As with Borel sets, Borel functions are viewed informally as being definable.

We compare Borel equivalence relations and discuss their complexity relative to one another via the notion of Borel reducibility. If E is a Borel equivalence relation
on X and F is a Borel equivalence relation on Y, then E is Borel reducible to F, written $E \leq_{B} F$, if there is a Borel function $f: X \rightarrow Y$ such that $f\left(x_{1}\right) F f\left(x_{2}\right) \Leftrightarrow$ $x_{1} E x_{2}$ for all $x_{1}, x_{2} \in X$. Such a function f is called a reduction, and if f is injective then we say E is Borel embeddable into F, written $E \sqsubseteq_{B} F$. Furthermore, E is continuously reducible (or continuously embeddable) to F, written $E \leq_{c} F$ (respectively $E \sqsubseteq_{c} F$), if the reduction (respectively embedding) f is continuous.

Intuitively, if E is Borel reducible to F, then E is considered to be no more complicated than F, and F is considered to be at least as complicated as E. To illustrate, suppose E is Borel reducible to F and $f: X \rightarrow Y$ is a Borel reduction. If there were a definable (Borel) way to determine when two elements of Y are F-equivalent, then by using the Borel function f there would be a definable (Borel) way to determine when two elements of X are E-equivalent. The theory of Borel equivalence relations therefore allows us to compare the relative complexity of classification problems.

An equivalence relation E is finite if every E-equivalence class is finite, and E is countable if every E-equivalence class is countable. A universal countable Borel equivalence relation F is a countable Borel equivalence relation with the property that if E is any other countable Borel equivalence relation then E is Borel reducible to F. Thus, the universal countable Borel equivalence relations are the most complicated among all countable Borel equivalence relations. Let \mathbb{F} be the nonabelian free group on two generators. Then the equivalence relation E_{∞} on $2^{\mathbb{F}}$ defined by $x E_{\infty} y \Leftrightarrow \exists f \in \mathbb{F} f \cdot x=y$ is a universal countable Borel equivalence relation.

On the other hand, one of the least complicated classes of Borel equivalence relations are the smooth equivalence relations. A Borel equivalence relation E is smooth if there is a Polish space Y and a Borel $f: X \rightarrow Y$ such that $x_{1} E x_{2} \Leftrightarrow$ $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in X$. This condition is equivalent to E being Borel reducible to the equality equivalence relation on Y. Smooth equivalence relations are considered to be the simplest Borel equivalence relations because there is a definable way to determine when two elements are equivalent. The universal countable Borel equivalence relations are not smooth. Note that if E is not smooth and is Borel reducible to F then F is not smooth.

A Borel equivalence relation E is hyperfinite if $E=\bigcup_{n \in \mathbb{N}} E_{n}$, where $\left(E_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of finite Borel equivalence relations. The canonical example of a hyperfinite equivalence relation is E_{0}, which is the equivalence relation on $2^{\mathbb{N}}$ defined by

$$
x E_{0} y \Longleftrightarrow \exists m \forall n \geq m x(n)=y(n) .
$$

E_{0} is not smooth.

9.2. Basic properties of topological conjugacy

The purpose of this section is to develop some of the basic facts regarding the topological conjugacy relation which will be needed in later sections. Of particular importance is to prove that the topological conjugacy relation is a countable Borel equivalence relation.

When discussing the topological conjugacy relation, we will employ the following notation:

$$
\begin{gathered}
\mathrm{S}(G)=\left\{A \subseteq 2^{G}: A \text { is a subflow of } 2^{G}\right\} \\
\mathrm{S}_{\mathrm{M}}(G)=\{A \in \mathrm{~S}(G): A \text { is minimal }\}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{S}_{\mathrm{F}}(G)=\{A \in \mathrm{~S}(G): A \text { is free }\} \\
\quad \mathrm{S}_{\mathrm{MF}}(G)=\mathrm{S}_{\mathrm{M}}(G) \cap \mathrm{S}_{\mathrm{F}}(G)
\end{gathered}
$$

$\mathrm{TC}(G)=$ the topological conjugacy relation on $\mathrm{S}(G)$;

$$
\begin{gathered}
\mathrm{TC}_{\mathrm{M}}(G)=\mathrm{TC}(G) \upharpoonright\left(\mathrm{S}_{\mathrm{M}}(G) \times \mathrm{S}_{\mathrm{M}}(G)\right) ; \\
\mathrm{TC}_{\mathrm{F}}(G)=\mathrm{TC}(G) \upharpoonright\left(\mathrm{S}_{\mathrm{F}}(G) \times \mathrm{S}_{\mathrm{F}}(G)\right) ; \\
\mathrm{TC}_{\mathrm{MF}}(G)=\mathrm{TC}_{\mathrm{M}}(G) \cap \mathrm{TC}_{\mathrm{F}}(G) ; \\
\mathrm{TC}_{\mathrm{p}}(G)=\left\{(x, y) \in 2^{G} \times 2^{G}: \exists \text { conjugacy } \phi: \overline{x]} \rightarrow \overline{[y]} \text { with } \phi(x)=y\right\} ;
\end{gathered}
$$

We easily have the following.
Lemma 9.2.1. For countable groups G, the equivalence relations $\mathrm{TC}(G), \mathrm{TC}_{\mathrm{M}}(G)$, $\mathrm{TC}_{\mathrm{F}}(G), \mathrm{TC}_{\mathrm{MF}}(G)$, and $\mathrm{TC}_{\mathrm{p}}(G)$ are all countable equivalence relations.

Proof. Let $A \in \mathrm{~S}(G)$. Then for every $B \in \mathrm{~S}(G)$ topologically conjugate to A there is a conjugacy $\phi_{B}: A \rightarrow B$ which is induced by a block code $\hat{\phi}_{B}$ (Theorem 7.5.5). Clearly if $\hat{\phi}_{B}=\hat{\phi}_{C}$ then $\phi_{B}=\phi_{C}$ and $B=C$. Since there are only countably many block codes, the $\mathrm{TC}(G)$-equivalence class of A must be countable. Similar arguments work for the other equivalence relations.

Let X be a Polish space, and let $K(X)=\{K \subseteq X: K$ compact $\}$. The Vietoris topology on $K(X)$ is the topology generated by subbasic open sets of the form

$$
\{K \in K(X): K \subseteq U\} \text { and }\{K \in K(X): K \cap U \neq \varnothing\}
$$

where U varies over open subsets of X. It is well known that $K(X)$ with the Vietoris topology is a Polish space (see for example $[\mathbf{K}]$). In fact, a compatible complete metric on $K(X)$ is the Hausdorff metric. The Hausdorff metric, d_{H}, is defined by

$$
d_{H}(A, B)=\max \left(\sup _{a \in A} \inf _{b \in G} d(a, b), \sup _{b \in B} \inf _{a \in A} d(a, b)\right)
$$

where $A, B \in K(X)$ and d is a complete metric on X compatible with its topology.
Lemma 9.2.2. For every countable group $G, \mathrm{~S}(G)$ and $\mathrm{S}_{\mathrm{F}}(G)$ are Polish spaces with the subspace topology inherited from $K\left(2^{G}\right)$.

Proof. Since G_{δ} subsets of Polish spaces are Polish ([K]), it will suffice to show that $\mathrm{S}(G)$ and $\mathrm{S}_{\mathrm{F}}(G)$ are G_{δ} in $K\left(2^{G}\right)$. Let $\left\{U_{n}: n \in \mathbb{N}\right\}$ be a countable base for the topology on 2^{G} consisting of clopen sets. For $n \in \mathbb{N}$ and $g \in G$ define $V_{n, g}=\left\{K \in K\left(2^{G}\right):\left(K \cap U_{n} \neq \varnothing \wedge K \cap g \cdot U_{n} \neq \varnothing\right) \vee K \subseteq\left(2^{G}-\left(U_{n} \cup g \cdot U_{n}\right)\right)\right\}$
Notice that $V_{n, g}$ is open in $K\left(2^{G}\right)$ since U_{n} is clopen and G acts on 2^{G} by homeomorphisms. For $A \in K\left(2^{G}\right)$ we have

$$
\begin{gathered}
A \in \mathrm{~S}(G) \Longleftrightarrow \forall g \in G g \cdot A=A \\
\Longleftrightarrow \forall n \in \mathbb{N} \forall g \in G\left(A \cap U_{n} \neq \varnothing \Leftrightarrow A \cap g \cdot U_{n} \neq \varnothing\right) \\
\Longleftrightarrow A \in \bigcap_{n \in \mathbb{N}} \bigcap_{g \in G} V_{n, g}
\end{gathered}
$$

So $\mathrm{S}(G)$ is G_{δ} in $K\left(2^{G}\right)$ and hence Polish.
It now suffices to show $\mathrm{S}_{\mathrm{F}}(G)$ is G_{δ} in $\mathrm{S}(G)$. A modification of the proof of Lemma 2.2.4 shows that for $A \in \mathrm{~S}(G)$

$$
A \in \mathrm{~S}_{\mathrm{F}}(G) \Longleftrightarrow \forall s \in G-\left\{1_{G}\right\} \exists \text { finite } T \subseteq G \forall x \in A \exists t \in T x(s t) \neq x(t)
$$

$$
\begin{gathered}
\Longleftrightarrow \forall s \in G-\left\{1_{G}\right\} \exists \text { finite } T \subseteq G A \subseteq\left\{y \in 2^{G}: \exists t \in T y(s t) \neq y(t)\right\} \\
\Longleftrightarrow A \in \bigcap_{s \in G-\left\{1_{G}\right\}} \bigcup_{\text {finite } T \subseteq G}\left\{B \in \mathrm{~S}(G): B \subseteq\left\{y \in 2^{G}: \exists t \in T y(s t) \neq y(t)\right\}\right\} .
\end{gathered}
$$

The set $\left\{y \in 2^{G}: \exists t \in T y(s t) \neq y(t)\right\}$ is open, and therefore $\mathrm{S}_{\mathrm{F}}(G)$ is G_{δ} in $\mathrm{S}(G)$.

Lemma 9.2.3. For countable groups G, the map $x \in 2^{G} \mapsto \overline{[x]}$ is Borel.
Proof. For $x \in 2^{G}$, define $f(x)=\overline{[x]}$. We check that the inverse images of the subbasic open sets in $K\left(2^{G}\right)$ are Borel. If U is open in 2^{G}, then $f(x) \cap U \neq \varnothing$ if and only if $[x] \cap U \neq \varnothing$. Therefore

$$
f^{-1}(\{A \in \mathrm{~S}(G): A \cap U \neq \varnothing\})=\bigcup_{g \in G} g \cdot U
$$

which is Borel (in fact open). For an open $U \subseteq 2^{G}$, define $U_{n}=\{y \in U$: $\left.d\left(y, 2^{G}-U\right) \geq 1 / n\right\}$. Then each U_{n} is closed and $f(x) \subseteq U$ if and only if $\overline{[x]} \subseteq U_{n}$ for some n (by compactness). This is equivalent to the condition that $x \in \bigcap_{g \in G} g \cdot U_{n}$ for some n. Thus

$$
f^{-1}(\{A \in \mathrm{~S}(G): A \subseteq U\})=\bigcup_{n \in \mathbb{N}} \bigcap_{g \in G} g \cdot U_{n} .
$$

We conclude f is Borel.
For the next lemma we need to review some terminology. A measurable space (X, S) (a set X and a σ-algebra S on X) is said to be a standard Borel space if there is a Polish topology on X for which S coincides with the collection of Borel sets in this topology. Thus standard Borel spaces are essentially Polish spaces, but the topology is not emphasized. If (X, S) is a measurable space and $Y \subseteq X$, then the relative σ-algebra on Y inherited from X is the σ-algebra consisting of sets of the form $Y \cap A$, where A ranges over all elements of S. We will view every Polish space as a measurable space with the σ-algebra of Borel sets. A well known result is that if X is a Polish space and $Y \subseteq X$ is Borel, then Y is a standard Borel space with the relative σ-algebra inherited from X (see $[\mathbf{K}]$).

LEMMA 9.2.4. For every countable group $G, \mathrm{~S}_{\mathrm{M}}(G)$ and $\mathrm{S}_{\mathrm{MF}}(G)$ are standard Borel spaces with the relative σ-algebra inherited from $\mathrm{S}(G)$.

Proof. It suffices to show that $\mathrm{S}_{\mathrm{M}}(G)$ is a Borel subset of $\mathrm{S}(G)$. We will need a Borel function $f: \mathrm{S}(G) \rightarrow 2^{G}$ for which $f(A) \in A$ for every $A \in \mathrm{~S}(G)$. Such a function is called a Borel selector, and by standard results in descriptive set theory they are known to exist within this context (see $[\mathbf{K}]$). For clarity and to minimize pre-requisites, we construct a Borel selector f explicitly. Fix an enumeration g_{0}, g_{1}, \ldots of G, and define a partial order, \prec, on 2^{G} by

$$
x \prec y \Longleftrightarrow(x=y) \vee\left(\exists n \in \mathbb{N} \forall k<n x\left(g_{k}\right)=y\left(g_{k}\right) \wedge x\left(g_{n}\right)<y\left(g_{n}\right)\right) .
$$

By compactness, if $A \in \mathrm{~S}(G)$ then A contains a \prec-least element. Define $f: \mathrm{S}(G) \rightarrow$ 2^{G} by letting $f(A)$ be the \prec-least element of A. One can show that f is continuous and hence Borel.

By Lemma 2.4.5 we have that for $A \in \mathrm{~S}(G)$

$$
A \in \mathrm{~S}_{\mathrm{M}}(G) \Longleftrightarrow A=\overline{[f(A)]} \wedge(\forall \text { finite } H \subseteq G \exists \text { finite } T \subseteq G
$$

$$
\forall g \in G \exists t \in T \forall h \in H f(A)(g t h)=f(A)(h))
$$

$\Longleftrightarrow A=\overline{[f(A)]} \wedge f(A) \in \bigcap_{\text {finite } H \subseteq G} \bigcup_{\text {finite } T \subseteq G} \bigcap_{g \in G} \bigcup_{t \in T} \bigcap_{h \in H}\left\{y \in 2^{G}: y(g t h)=y(h)\right\}$.
Note that this last set on the right is Borel. Finally, if we define $g: \mathrm{S}(G) \rightarrow$ $\mathrm{S}(G) \times \mathrm{S}(G)$ by $g(A)=(A, \overline{[f(A)]})$, then g is Borel and

$$
A=\overline{[f(A)]} \Longleftrightarrow A \in g^{-1}(\{(B, B): B \in \mathrm{~S}(G)\})
$$

We conclude $\mathrm{S}_{\mathrm{M}}(G)$ is a Borel subset of $\mathrm{S}(G)$, in fact $\mathrm{S}_{\mathrm{M}}(G)$ is $\boldsymbol{\Pi}_{3}^{0}$ in $\mathrm{S}(G)$. Clearly $\mathrm{S}_{\mathrm{MF}}(G)=\mathrm{S}_{\mathrm{M}}(G) \cap \mathrm{S}_{\mathrm{F}}(G)$ is a Borel $\left(\boldsymbol{\Pi}_{3}^{0}\right)$ subset of $\mathrm{S}(G)$ as well.

We now prove that all of the equivalence relations we are working with are countable Borel equivalence relations.

Proposition 9.2.5. For countable groups G, the equivalence relations $\mathrm{TC}(G)$, $\mathrm{TC}_{\mathrm{M}}(G), \mathrm{TC}_{\mathrm{F}}(G), \mathrm{TC}_{\mathrm{MF}}(G)$, and $\mathrm{TC}_{\mathrm{p}}(G)$ are all countable Borel equivalence relations.

Proof. We saw at the beginning of this section that they are all countable equivalence relations. So we only need to check that they are all Borel. Since $\mathrm{S}_{\mathrm{M}}(G), \mathrm{S}_{\mathrm{F}}(G)$, and $\mathrm{S}_{\mathrm{MF}}(G)$ are Borel subsets of $\mathrm{S}(G)$, we only need to check that $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{p}}(G)$ are Borel.

For a block code \hat{f}, we will let $f: 2^{G} \rightarrow 2^{G}$ be the function induced by \hat{f}. Let $\left\{U_{n}: n \in \mathbb{N}\right\}$ be a countable base for the topology on 2^{G}. For $A, B \in \mathrm{~S}(G)$ we have

$$
\begin{gathered}
(A, B) \in \mathrm{TC}(G) \Longleftrightarrow \exists \text { block codes } \hat{f}_{1}, \hat{f}_{2} \\
f_{1}(A)=B \wedge f_{2}(B)=A \wedge\left(f_{2} \circ f_{1}\right) \upharpoonright A=\operatorname{id}_{A} \wedge\left(f_{1} \circ f_{2}\right) \upharpoonright B=\operatorname{id}_{B}
\end{gathered}
$$

For a fixed block code \hat{f}_{1} the set $\left\{(A, B) \in \mathrm{S}(G)^{2}: f_{1}(A)=B\right\}$ is Borel (in fact G_{δ}) since

$$
\begin{gathered}
f_{1}(A)=B \Longleftrightarrow\left(\forall n \in \mathbb{N} B \cap U_{n} \neq \varnothing \Leftrightarrow A \cap f_{1}^{-1}\left(U_{n}\right) \neq \varnothing\right) \\
\Longleftrightarrow(A, B) \in \bigcap_{n \in \mathbb{N}}\left(\left\{\left(K_{1}, K_{2}\right) \in \mathrm{S}(G)^{2}: K_{1} \cap f_{1}^{-1}\left(U_{n}\right) \neq \varnothing \wedge K_{2} \cap U_{n} \neq \varnothing\right\}\right. \\
\left.\cup\left\{\left(K_{1}, K_{2}\right) \in \mathrm{S}(G)^{2}: K_{1} \subseteq 2^{G}-f_{1}^{-1}\left(U_{n}\right) \wedge K_{2} \subseteq 2^{G}-U_{n}\right\}\right) .
\end{gathered}
$$

Also, for fixed block codes \hat{f}_{1} and \hat{f}_{2}, the set of $A \in \mathrm{~S}(G)$ with $\left(f_{2} \circ f_{1}\right) \upharpoonright A=\operatorname{id}_{A}$ is Borel (in fact closed) since $\left\{x \in 2^{G}: f_{2} \circ f_{1}(x) \neq x\right\}$ is open and

$$
\left(f_{2} \circ f_{1}\right) \upharpoonright A=\operatorname{id}_{A} \Longleftrightarrow A \cap\left\{x \in 2^{G}: f_{2} \circ f_{1}(x) \neq x\right\}=\varnothing
$$

So we conclude that $\operatorname{TC}(G)$ is a Borel equivalence relation (in fact it is $\boldsymbol{\Sigma}_{3}^{0}$).
Now we consider $\mathrm{TC}_{\mathrm{p}}(G)$. Note that if \hat{f}_{1} is a block code and $f_{1}(x)=y$, then $f_{1}(\overline{[x]})=\overline{[y]}$ since f_{1} is continuous and $\overline{[x]}$ is compact. Also, if \hat{f}_{2} is another block code, then $\left\{z \in 2^{G}: f_{2} \circ f_{1}(z)=z\right\}$ is closed and G-invariant. So $\left(f_{2} \circ f_{1}\right) \upharpoonright \overline{[x]}=$ $\mathrm{id}_{\overline{[x]}}$ if and only if $f_{2} \circ f_{1}(x)=x$. Therefore

$$
\begin{gathered}
(x, y) \in \mathrm{TC}_{\mathrm{p}}(G) \Longleftrightarrow \exists \text { block codes } \hat{f}_{1}, \hat{f}_{2} f_{1}(x)=y \wedge f_{2}(y)=x \\
\Longleftrightarrow(x, y) \in \bigcup_{\text {block codes } \hat{f}_{1}, \hat{f}_{2}}\left(\left\{\left(z, f_{1}(z)\right): z \in 2^{G}\right\} \cap\left\{\left(f_{2}(z), z\right): z \in 2^{G}\right\}\right)
\end{gathered}
$$

We conclude that $\mathrm{TC}_{\mathrm{p}}(G)$ is a Borel equivalence relation (in fact it is F_{σ}).

Corollary 9.2.6. For countable groups G and $x, y \in 2^{G}, x \mathrm{TC}_{\mathrm{p}}(G) y$ if and only if there is a finite set H such that

$$
\begin{gathered}
\forall g_{1}, g_{2} \in G\left(\forall h \in H x\left(g_{1} h\right)=x\left(g_{2} h\right) \Longrightarrow y\left(g_{1}\right)=y\left(g_{2}\right)\right), \text { and } \\
\forall g_{1}, g_{2} \in G\left(\forall h \in H y\left(g_{1} h\right)=y\left(g_{2} h\right) \Longrightarrow x\left(g_{1}\right)=x\left(g_{2}\right)\right)
\end{gathered}
$$

Proof. We showed in the proof of the previous proposition that x and y are $\mathrm{TC}_{\mathrm{p}}(G)$-equivalent if and only if there are block codes \hat{f}_{1} and \hat{f}_{2} such that $f_{1}(x)=y$ and $f_{2}(y)=x$, where f_{1} and f_{2} are the functions induced by \hat{f}_{1} and \hat{f}_{2} respectively. The existence of such block codes is equivalent to the condition in the statement of this corollary.

Lemma 9.2.7. Let G be a countable group. Then
(i) $\mathrm{TC}_{\mathrm{MF}}(G) \sqsubseteq \mathrm{TC}_{\mathrm{M}}(G)$;
(ii) $\mathrm{TC}_{\mathrm{MF}}(G) \sqsubseteq \mathrm{TC}_{\mathrm{F}}(G)$;
(iii) $\mathrm{TC}_{\mathrm{M}}(G) \sqsubseteq \mathrm{TC}(G)$;
(iv) $\mathrm{TC}_{\mathrm{F}}(G) \sqsubseteq_{c} \mathrm{TC}(G)$;

Proof. Use the inclusion map for each embedding. The first three embeddings are only Borel because we never formally fixed Polish topologies on $\mathrm{S}_{\mathrm{M}}(G)$ and $\mathrm{S}_{\mathrm{MF}}(G)$.

In section four, after presenting a complete classification of $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ it will be a corollary that $\mathrm{TC}_{\mathrm{F}}(G)$ and $\mathrm{TC}(G)$ are Borel bi-reducible. In the remainder of this section, we present a relationship between the topological conjugacy relations on $2^{H}, 2^{K}$, and $2^{H \times K}$ for countable groups H and K.

Let $2^{H} \times 2^{K}$ have the product topology, and let $H \times K$ act on $2^{H} \times 2^{K}$ in the obvious way. For $(x, y) \in 2^{H} \times 2^{K}$ we let $[(x, y)]$ denote the orbit of (x, y). We call a closed subset of $2^{H} \times 2^{K}$ which is invariant under the action of $H \times K$ a subflow. A subflow of $2^{H} \times 2^{K}$ is free if every point in the subflow has trivial stabilizer, and it is minimal if every orbit in the subflow is dense. Two subflows of $2^{H} \times 2^{K}$ are topologically conjugate if there is a homeomorphism between them which commutes with the action of $H \times K$. Such a homeomorphism is called a conjugacy. Finally, $\mathrm{TC}\left(2^{H} \times 2^{K}\right), \mathrm{TC}_{\mathrm{F}}\left(2^{H} \times 2^{K}\right), \mathrm{TC}_{\mathrm{MF}}\left(2^{H} \times 2^{K}\right), \mathrm{TC}_{\mathrm{M}}\left(2^{H} \times 2^{K}\right)$, and $\mathrm{TC}_{\mathrm{p}}\left(2^{H} \times 2^{K}\right)$ denote the obvious equivalence relations.

Lemma 9.2.8. Let H and K be countable groups, let $A_{1}, A_{2} \in \mathrm{~S}(H)$ and $B_{1}, B_{2} \in \mathrm{~S}(K)$, and let $x_{1}, x_{2} \in 2^{H}$ and $y_{1}, y_{2} \in 2^{K}$. Then
(i) $A_{1} \times B_{1}$ is free if and only if A_{1} and B_{1} are free;
(ii) $A_{1} \times B_{1}$ is minimal if and only if A_{1} and B_{1} are minimal;
(iii) if A_{1}, A_{2}, B_{1}, and B_{2} are minimal then $A_{1} \times B_{1}$ is topologically conjugate to $A_{2} \times B_{2}$ if and only if $A_{1} \mathrm{TC}(H) A_{2}$ and $B_{1} \mathrm{TC}(K) B_{2}$;
(iv) $\left(x_{1}, y_{1}\right) \mathrm{TC}_{\mathrm{p}}\left(2^{H} \times 2^{K}\right)\left(x_{2}, y_{2}\right)$ if and only if both $x_{1} \mathrm{TC}_{\mathrm{p}}(H) x_{2}$ and $y_{1} \mathrm{TC}_{\mathrm{p}}(K) y_{2}$.

Proof. The proofs of clauses (i) and (ii) are trivial. For (iii) it is clear that if $\phi: A_{1} \rightarrow A_{2}$ and $\psi: B_{1} \rightarrow B_{2}$ are conjugacies then $\phi \times \psi$ is a conjugacy between $A_{1} \times B_{1}$ and $A_{2} \times B_{2}$. Now suppose that A_{1}, A_{2}, B_{1}, and B_{2} are minimal and that θ is a conjugacy between $A_{1} \times B_{1}$ and $A_{2} \times B_{2}$. Fix $y_{1} \in B_{1}$ and $x_{1} \in A_{1}$,
let $p_{H}: 2^{H} \times 2^{K} \rightarrow 2^{H}$ and $p_{K}: 2^{H} \times 2^{K} \rightarrow 2^{K}$ be the projection maps, and set $y_{2}=p_{K}\left(\theta\left(x_{1}, y_{1}\right)\right)$. Then for every $h \in H$ we have

$$
y_{2}=p_{K}\left(\theta\left(x_{1}, y_{1}\right)\right)=p_{K}\left(h \cdot \theta\left(x_{1}, y_{1}\right)\right)=p_{K}\left(\theta\left(h \cdot x_{1}, y_{1}\right)\right) .
$$

Since A_{1} is minimal, $A_{1}=\overline{\left[x_{1}\right]}$ and therefore for every $x \in A_{1}$ we have $y_{2}=$ $p_{K}\left(\theta\left(x, y_{1}\right)\right)$. The same reasoning shows that for every $x \in A_{2}$ we have $y_{1}=$ $p_{K}\left(\theta^{-1}\left(x, y_{2}\right)\right)$. Define $\phi: A_{1} \rightarrow A_{2}$ by $\phi(x)=p_{H}\left(\theta\left(x, y_{1}\right)\right)$. This is clearly continuous and commutes with the action of H. It is injective and surjective since $\phi^{-1}(x)=p_{H}\left(\theta^{-1}\left(x, y_{2}\right)\right)$. Thus $A_{1} \mathrm{TC}(H) A_{2}$. A similar argument shows that $B_{1} \mathrm{TC}(K) B_{2}$. The proof of (iv) is essentially the same.

Corollary 9.2.9. For countable groups H and K we have
(i) $\mathrm{TC}_{\mathrm{MF}}(H) \times \mathrm{TC}_{\mathrm{MF}}(K) \sqsubseteq_{c} \mathrm{TC}_{\mathrm{MF}}\left(2^{H} \times 2^{K}\right)$;
(ii) $\mathrm{TC}_{\mathrm{M}}(H) \times \mathrm{TC}_{\mathrm{M}}(K) \sqsubseteq_{c} \mathrm{TC}_{\mathrm{M}}\left(2^{H} \times 2^{K}\right)$;
(iii) $\mathrm{TC}_{\mathrm{p}}(H) \times \mathrm{TC}_{\mathrm{p}}(K) \sqsubseteq_{c} \mathrm{TC}_{\mathrm{p}}\left(2^{H} \times 2^{K}\right)$.

Now we want to relate topological conjugacy in $2^{H} \times 2^{K}$ to topological conjugacy in $2^{H \times K}$. The following lemma makes this easy. In the rest of this section we let 0 denote the element of 2^{H} or 2^{K} which is identically zero.

Lemma 9.2.10. Let H and K be countable groups. There exists a function $f: 2^{H} \times 2^{K} \rightarrow 2^{H \times K}$ with the following properties:
(i) f restricted to $\left(2^{H}-\{0\}\right) \times\left(2^{K}-\{0\}\right)$ is a homeomorphic embedding;
(ii) f commutes with the action of $H \times K$;
(iii) if $A \in \mathrm{~S}(H)$ and $B \in \mathrm{~S}(K)$ then $f(A \times B) \in \mathrm{S}(H \times K)$;
(iv) if $A \in \mathrm{~S}_{\mathrm{M}}(H)$ and $B \in \mathrm{~S}_{\mathrm{M}}(K)$, then $f(A \times B) \in \mathrm{S}_{\mathrm{M}}(H \times K)$;
(v) if $A \in \mathrm{~S}_{\mathrm{F}}(H)$ and $B \in \mathrm{~S}_{\mathrm{F}}(K)$, then $f(A \times B) \in \mathrm{S}_{\mathrm{F}}(H \times K)$.

Proof. For notational convenience, we denote $(h, k) \in H \times K$ by $h k$. For $x \in 2^{H}, y \in 2^{K}, h \in H$, and $k \in K$ define

$$
f(x, y)(h k)=\min (x(h), y(k))=x(h) \cdot y(k) .
$$

So $f(x, y)=x y$ is the product of x and y, as defined at the beginning of Section 3.2.
(i). Clearly f is continuous. Suppose $x_{0}, x_{1} \in 2^{H}-\{0\}$ and $y_{0}, y_{1} \in 2^{K}-$ $\{0\}$ satisfy $f\left(x_{0}, y_{0}\right)=f\left(x_{1}, y_{1}\right)$. We claim $x_{0}=x_{1}$ and $y_{0}=y_{1}$. Towards a contradiction, suppose $x_{0} \neq x_{1}$ (the case $y_{0} \neq y_{1}$ is similar). Let $h \in H$ be such that $x_{0}(h) \neq x_{1}(h)$. Then for some $i=0,1$ we have $x_{i}(h)=0$. Therefore for all $k \in K$

$$
\begin{gathered}
y_{1-i}(k)=x_{1-i}(h) \cdot y_{1-i}(k)=f\left(x_{1-i}, y_{1-i}\right)(h k) \\
=f\left(x_{i}, y_{i}\right)(h k)=x_{i}(h) \cdot y_{i}(k)=0,
\end{gathered}
$$

contradicting $y_{1-i} \neq 0$. We conclude f is one-to-one on $\left(2^{H}-\{0\}\right) \times\left(2^{K}-\{0\}\right)$. Now let $U \subseteq\left(2^{H}-\{0\}\right) \times\left(2^{K}-\{0\}\right)$ be open. Then U is open in $2^{H} \times 2^{K}$, and since $f\left(\{0\} \times 2^{K} \cup 2^{H} \times\{0\}\right)=0 \notin f(U)$, we have

$$
f(U)=f\left(2^{H} \times 2^{K}\right)-f\left(2^{H} \times 2^{K}-U\right)
$$

is open in $f\left(2^{H} \times 2^{K}\right)$ since $f\left(2^{H} \times 2^{K}-U\right)$ is compact. We have verified (i).
(ii). This is easily checked.
(iii). By (ii) $f(A \times B)$ is invariant under the action of $H \times K$. Since $A \times B$ is compact, $f(A \times B)$ is also compact and hence closed.
(iv). Fix $x \in A$ and $y \in B$. Since A and B are minimal, x and y are minimal and $\overline{[x]}=A$ and $\overline{[y]}=B$. So $A \times B=\overline{[(x, y)]}$ and $f(A \times B)=\overline{[f(x, y)]}$ since $f(A \times B)$ is compact. So it suffices to show that $f(x, y) \in 2^{H \times K}$ is minimal. If $f(x, y)$ is identically 0 , then it is trivially minimal. Otherwise, $f(x, y)$ is minimal by clause (iv) of Proposition 3.2.2.
(v). It suffices to show that $f(x, y)$ is a 2 -coloring for every $x \in A$ and $y \in B$. If $x \in A$ and $y \in B$, then x and y are 2-colorings since A and B are free. So $f(x, y)$ is a 2 -coloring by clause (i) of Proposition 3.2.2.

Define $P(H, K)=\left(2^{H}-\{0\}\right) \times\left(2^{K}-\{0\}\right)$. Clauses (i) and (ii) of the previous lemma say that $P(H, K)$ and $f(P(H, K))$ are topologically conjugate. In other words, they have identical topology and dynamics arising from the action of $H \times K$. If we define $A(H)=\left\{x \in 2^{H}: 0 \notin \overline{[x]}\right\}$ and $A(K)=\left\{y \in 2^{K}: 0 \notin \overline{[y]}\right\}$ then we have the following.

Theorem 9.2.11. If H and K are countable groups then
(i) $\left(\mathrm{TC}_{\mathrm{p}}(H) \upharpoonright A(H)\right) \times\left(\mathrm{TC}_{\mathrm{p}}(K) \upharpoonright A(K)\right) \sqsubseteq_{c} \mathrm{TC}_{\mathrm{p}}(H \times K)$;
(ii) $\mathrm{TC}_{\mathrm{M}}(H) \times \mathrm{TC}_{\mathrm{M}}(K) \leq_{B} \mathrm{TC}_{\mathrm{M}}(H \times K)$;
(iii) $\mathrm{TC}_{\mathrm{MF}}(H) \times \mathrm{TC}_{\mathrm{MF}}(K) \sqsubseteq_{c} \mathrm{TC}_{\mathrm{MF}}(H \times K)$.

Proof. (i) and (iii) follow immediately from Corollary 9.2 .9 and the previous lemma. Let 1 denote the element of 2^{H} which has constant value 1. Define Q_{H} : $\mathrm{S}_{\mathrm{M}}(H) \rightarrow \mathrm{S}_{\mathrm{M}}(H)$ by

$$
Q_{H}(A)= \begin{cases}A & \text { if } 0 \notin A \\ 1 & \text { if } 0 \in A\end{cases}
$$

Notice that if $0 \in A$ then $A=\{0\}$ by minimality of A. Also, note $Q_{H}(A) \mathrm{TC}_{\mathrm{M}}(H) A$, so that $Q_{H}\left(A_{1}\right) \mathrm{TC}_{\mathrm{M}}(H) Q_{H}\left(A_{2}\right)$ if and only if $A_{1} \mathrm{TC}_{\mathrm{M}}(H) A_{2}$. Define Q_{K} similarly. Then Q_{H} and Q_{K} are Borel. Now the map $f \circ\left(Q_{H} \times Q_{K}\right): \mathrm{S}_{\mathrm{M}}(H) \times \mathrm{S}_{\mathrm{M}}(K) \rightarrow$ $\mathrm{S}_{\mathrm{M}}(H \times K)$ is a Borel reduction of $\mathrm{TC}_{\mathrm{M}}(H) \times \mathrm{TC}_{\mathrm{M}}(K)$ to $\mathrm{TC}_{\mathrm{M}}(H \times K)$.

9.3. Topological conjugacy of minimal free subflows

In this section, we show that E_{0} continuously embeds into $\mathrm{TC}_{\mathrm{p}}(G)$ and Borel embeds into $\mathrm{TC}_{\mathrm{MF}}(G)$ for every countably infinite group G. Something which makes E_{0} easy to work with is that it deals with one-sided infinite sequences, as do our blueprints. The basic idea will be the following. We will fix a fundamental function $c \in 2^{\subseteq}$, and for each $x \in 2^{\mathbb{N}}$ we will build a function $e(x) \in 2^{G}$ extending c in such a way that, for every $n \geq 1, e(x) \upharpoonright \Delta_{n} \Theta_{n}(c)$ will depend only on $x \upharpoonright\{i \in$ $\mathbb{N}: i \geq n-1\}$. If $x, y \in 2^{\mathbb{N}}$ are E_{0}-equivalent, then $e(x)$ and $e(y)$ will only be different on a small scale. So, we should be able to build a conjugacy between $\overline{e(x)]}$ and $\overline{[e(y)]}$ using a block code with a large domain. On the other hand, if x and y are not E_{0}-equivalent, then on arbitrarily large subsets of $G e(x)$ and $e(y)$ will have distinctly different behavior and therefore will not be topologically conjugate. With this basic outline of the proof in mind, the details should be easy to follow.

We begin with a very simple lemma. We point out that an immediate consequence of Theorem 7.5.5 is that every continuous function which commutes with the action of G and is defined on a subflow of 2^{G} can be extended (not necessarily uniquely) to a continuous function commuting with the action of G defined on all of 2^{G}.

Lemma 9.3.1. Let G be a countably infinite group, let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$, and let $c \in 2^{G}$ be fundamental with respect to this blueprint. If $y \in 2^{G}$ and if there is a continuous function from 2^{G} to itself which commutes with the action of G and sends c to y, then there is $n \geq 1$ so that

$$
\forall \gamma, \psi \in \Delta_{n+3}\left(\forall f \in F_{n+3} c(\gamma f)=c(\psi f) \Longrightarrow \forall f \in F_{n} y(\gamma f)=y(\psi f)\right)
$$

Proof. Let $\phi: 2^{G} \rightarrow 2^{G}$ be a function satisfying the hypothesis. Then ϕ is induced by a block code $\hat{\phi}$, and there is $n \in \mathbb{N}$ with $\operatorname{dom}(\hat{\phi}) \subseteq H_{n}$. Let $\gamma, \psi \in \Delta_{n+3}$ satisfy $c(\gamma f)=c(\psi f)$ for all $f \in F_{n+3}$. Then it follows from Lemma 7.5.3 that $c(\gamma h)=c(\psi h)$ for all $h \in H_{n+1}$. Thus, for $f \in F_{n}$ we have $f \operatorname{dom}(\hat{\phi}) \subseteq H_{n} H_{n} \subseteq$ H_{n+1}, so

$$
\left(f^{-1} \gamma^{-1} \cdot c\right) \upharpoonright \operatorname{dom}(\hat{\phi})=\left(f^{-1} \psi^{-1} \cdot c\right) \upharpoonright \operatorname{dom}(\hat{\phi})
$$

It follows that $y(\gamma f)=\phi(c)(\gamma f)=\phi(c)(\psi f)=y(\psi f)$.
Let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$. Recall that such a blueprint is necessarily directed and maximally disjoint and furthermore $\left(F_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence and $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence (see Lemma 5.3.5 and clause (i) of Lemma 5.1.5). The following two functions will be very useful in defining the function $e: 2^{\mathbb{N}} \rightarrow 2^{G}$. Define

$$
r: \bigcup_{n \geq 1}\left(\Delta_{n} \times\{n\}\right) \rightarrow \mathbb{N}
$$

by

$$
r(\gamma, n)=\min \left\{k>n: \gamma \in \Delta_{k} F_{k}\right\}
$$

for $(\gamma, n) \in \operatorname{dom}(r)$. Additionally, define

$$
L: \bigcup_{n \geq 1}\left(\Delta_{n} \times\{n\}\right) \rightarrow \Delta_{1}
$$

so that for $(\gamma, n) \in \operatorname{dom}(L) L(\gamma, n)=\psi$, where ψ is the unique element of $\Delta_{r(\gamma, n)}$ with $\gamma \in \psi F_{r(\gamma, n)}$. Intuitively, the functions r and L together allow one to "lift" a Δ_{k}-translate of F_{k}, say γF_{k}, to a Δ_{m}-translate of F_{m} containing γF_{k}, where $m>k$ is least with $\gamma F_{k} \subseteq \Delta_{m} F_{m}$. Formally this is expressed as $\gamma F_{k} \subseteq L(\gamma, k) F_{r(\gamma, k)}$. For convenience we let $L^{0}(\gamma, n)=\gamma, r^{0}(\gamma, n)=n, L^{1}=L$, and $r^{1}=r$. In general, for $k>1$ let

$$
r^{k}(\gamma, n)=r\left(L^{k-1}(\gamma, n), r^{k-1}(\gamma, n)\right)
$$

and

$$
L^{k}(\gamma, n)=L\left(L^{k-1}(\gamma, n), r^{k-1}(\gamma, n)\right)
$$

These functions will only be used in this section.
Lemma 9.3.2. Let G be a countably infinite group and let $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ be a centered blueprint guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$. Then we have the following:
(i) if $n \geq 1, \gamma \in \Delta_{n}$, and $1 \leq k<n$ then $r(\gamma, k)=k+1$ and $L(\gamma, k)=\gamma$;
(ii) $\gamma \in L^{k}(\gamma, n) F_{r^{k}(\gamma, n)}$ for all $n \geq 1, \gamma \in \Delta_{n}$, and $k \in \mathbb{N}$;
(iii) if $\gamma \in \Delta_{n}, m \geq n \geq 1, \sigma \in \Delta_{m}$, and $\gamma \in \sigma F_{m}$, then there exists $k \in \mathbb{N}$ with $r^{k}(\gamma, n)=m$ and $L^{k}(\gamma, n)=\sigma$;
(iv) for all $n \geq 1$ and $\gamma \in \Delta_{n}$, there is $N \in \mathbb{N}$ so that for all $k \geq N L^{k}(\gamma, n)=$ 1_{G} and $r^{k}(\gamma, n)=k-N+r^{N}(\gamma, n)$;
(v) for all $1 \leq k \leq n, \lambda \in D_{k}^{n}$, and $\gamma \in \Delta_{n}$, if $m \in \mathbb{N}$ satisfies either $r^{m}(\lambda, k)=n$ or $r^{m}(\gamma \lambda, k)=n$ then for all $0 \leq i \leq m$

$$
\begin{gathered}
r^{i}(\gamma \lambda, k)=r^{i}(\lambda, k), \text { and } \\
L^{i}(\gamma \lambda, k)=\gamma L^{i}(\lambda, k)
\end{gathered}
$$

(vi) for all $n \geq 1, \gamma \in \Delta_{n}$, and $m \geq 1$

$$
L\left(\left[L^{m}(\gamma, n)\right]^{-1} L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=1_{G}
$$

and

$$
r\left(\left[L^{m}(\gamma, n)\right]^{-1} L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=r^{m}(\gamma, n)
$$

Proof. (i). Clearly $\gamma \in \Delta_{k}$ and $\gamma \in \gamma F_{k}$ for all $1 \leq k \leq n$.
(ii). By definition $\gamma \in L^{1}(\gamma, n) F_{r^{1}(\gamma, n)}$. Suppose $\gamma \in L^{m}(\gamma, n) F_{r^{m}(\gamma, n)}$. Then $L^{m}(\gamma, n) \in \Delta_{r^{m}(\gamma, n)}$ and $L^{m}(\gamma, n) \in L^{m+1}(\gamma, n) F_{r^{m+1}(\gamma, n)}$. So by the coherent property of blueprints

$$
\gamma \in L^{m}(\gamma, n) F_{r^{m}(\gamma, n)} \subseteq L^{m+1}(\gamma, n) F_{r^{m+1}(\gamma, n)} .
$$

(iii). Note that in general for $(\psi, i) \in \operatorname{dom}(r), r(\psi, i)>i$. If $n=m$ then $\gamma=\sigma$ and (iii) is satisfied by taking $k=0$. Otherwise, let $k \in \mathbb{N}$ be maximal with $r^{k}(\gamma, n)<m$. Then by (ii) $L^{k}(\gamma, n) F_{r^{k}(\gamma, n)} \cap \sigma F_{m} \neq \varnothing$. By the coherent property of blueprints $L^{k}(\gamma, n) \in \sigma F_{m}$. Since k is maximal with $r^{k}(\gamma, n)<m$, it follows from the definition of r and L that $r^{k+1}(\gamma, n)=m$ and $L^{k+1}(\gamma, n)=\sigma$.
(iv). This follows from clause (iv) of Lemma 5.1.5 together with (iii) and (i).
(v). Notice that must exist by (iii). If $m=0$ then $k=n, \lambda=1_{G}$, and the claim is trivial. So assume $m>0$. Clearly $\lambda, \gamma \lambda \in \Delta_{n} F_{n}$, so $r(\lambda, k), r(\gamma \lambda, k) \leq n$. By clause (vii) of Lemma 5.1.4, $\lambda \in \Delta_{s} F_{s}$ if and only if $\gamma \lambda \in \Delta_{s} F_{s}$ for $k<s \leq n$. It then follows from the definition of r that $r(\lambda, k)=r(\gamma \lambda, k)=t \leq n$. Set $\psi=L(\lambda, k) \in \Delta_{t}$. We have $\lambda \in F_{n} \cap \psi F_{t}$, so by the coherent property of blueprints $\psi \in D_{t}^{n}$. Since $\gamma \psi \in \Delta_{t}$ and $\gamma \lambda \in \gamma \psi F_{t}$, we have $L(\gamma \lambda, k)=\gamma \psi$. Thus we have verified the claim for $i=0$ and $i=1$. The claim then follows by induction: replace λ with ψ and k with t.
(vi). $L^{m-1}(\gamma, n) \in L^{m}(\gamma, n) F_{r^{m}(\gamma, n)}$, so there is $\lambda \in D_{r^{m-1}(\gamma, n)}^{r^{m}(\gamma, n)}$ such that $L^{m-1}(\gamma, n)=L^{m}(\gamma, n) \lambda$. Then by (v)

$$
L^{m}(\gamma, n)=L\left(L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=L^{m}(\gamma, n) L\left(\lambda, r^{m-1}(\gamma, n)\right)
$$

which implies

$$
L\left(\left[L^{m}(\gamma, n)\right]^{-1} L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=L\left(\lambda, r^{m-1}(\gamma, n)\right)=1_{G} .
$$

Clause (v) also implies that

$$
r\left(\left[L^{m}(\gamma, n)\right]^{-1} L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=r\left(L^{m-1}(\gamma, n), r^{m-1}(\gamma, n)\right)=r^{m}(\gamma, n)
$$

We are now prepared to prove the main theorem of this section. The following theorem appears to be quite nontrivial as it relies on all of the machinery developed in Chapters 5 and 7.

Theorem 9.3.3. For any countably infinite group G, E_{0} continuously embeds into $\mathrm{TC}_{\mathrm{p}}(G)$ and embeds into $\mathrm{TC}(G), \mathrm{TC}_{\mathrm{F}}(G), \mathrm{TC}_{\mathrm{M}}(G)$, and $\mathrm{TC}_{\mathrm{MF}}(G)$.

Proof. For $n \geq 1$ and $k \in \mathbb{N}$ define $p_{n}(k)=4 \cdot\left(2 k^{4}+1\right) \cdot\left(12 k^{4}+1\right)$ and $q_{n}(k)=2 k^{3}$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Proposition 6.3.1, there is a centered blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ guided by a growth sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ with $\left|\Lambda_{n}\right| \geq q_{n}\left(\left|F_{n-1}\right|\right)+\log _{2} p_{n}\left(\left|F_{n}\right|\right)$ for each $n \geq 1$ and such that for every $g \in G-\mathrm{Z}(G)$ and every $n \geq 1$ there are infinitely many $\gamma \in \Delta_{n}$ with $\gamma g \neq g \gamma$. We are free to pick any distinct $\alpha_{n}, \beta_{n}, \gamma_{n} \in D_{n-1}^{n}$ for each $n \geq 1$. We choose $\gamma_{n}=1_{G}$ and let α_{n} and β_{n} be arbitrary for every $n \geq 1$. By clause (i) of Lemma 5.3 .5 the blueprint is directed and maximally disjoint, and by clause (viii) of Lemma 5.1.5 $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$. Apply Theorem 5.2.5 to get a function $c \in 2 \subseteq G$ which is canonical with respect to this blueprint. By Proposition 7.3.5 the function c is Δ-minimal. Apply Corollary 7.4.7 to get a function $c^{\prime} \supseteq c$ which is fundamental with respect to $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$, is Δ-minimal, has $\left|\Theta_{n}\left(c^{\prime}\right)\right|>1+\log _{2}\left(12\left|F_{n}\right|^{4}+1\right)$ for each $n \geq 1$, and has the property that every extension of c^{\prime} to all of G is a 2 -coloring. Now apply Corollary 7.5 .8 to get a fundamental and Δ-minimal $c^{\prime \prime} \supseteq c^{\prime}$ and a collection $\left\{\nu_{i}^{n} \in \Delta_{n+5}: n \equiv 1\right.$ $\bmod 5,1 \leq i \leq s(n)\}$ where $s(n)=2$ if $n \equiv 1 \bmod 10$ and $s(n)=\left|F_{n} F_{n}^{-1}-\mathrm{Z}(G)\right|$ otherwise. We have that $\left|\Theta_{n}\left(c^{\prime \prime}\right)\right| \geq 1$ for all $n \geq 1, c^{\prime \prime}(f)=c^{\prime \prime}\left(\nu_{i}^{n} f\right)$ for all $n \equiv 1$ $\bmod 5,1 \leq i \leq s(n)$, and $f \in F_{n+4} \cap \operatorname{dom}\left(c^{\prime \prime}\right)$, and if $x, y \in 2^{G}$ extend $c^{\prime \prime}$ and $x(f)=x\left(\nu_{i}^{n} f\right)$ for all $n \equiv 1 \bmod 5,1 \leq i \leq s(n)$, and $f \in F_{n+4}$ then $\overline{[x]}$ and $\overline{[y]}$ are topologically conjugate if and only if there is a conjugacy mapping x to a y centered element of $\overline{[y]}$. By using Lemma 7.4.5 (with μ identically 0), Lemma 7.3.6, and Lemma 7.3 .8 , we may suppose without loss of generality that $\left|\Theta_{n}\left(c^{\prime \prime}\right)\right|=1$ for all $n \geq 1$.

For $k \in \mathbb{N}$, let r^{k} and L^{k} be defined as in the paragraph preceding Lemma 9.3.2. We wish to find a function

$$
\mu: \bigcup_{n \geq 2}\left(\left\{\gamma \in D_{k}^{n}: 1 \leq k<n, r(\gamma, k)=n\right\} \times\{n\}\right) \rightarrow\{0,1\}
$$

which satisfies:
(1) for each $n \geq 2 \mu\left(1_{G}, n\right)=0$;
(2) for each $n \geq 2$ there is $\psi \in D_{n-1}^{n}$ with $\mu(\psi, n)=1$;
(3) if $(\gamma, n) \in \operatorname{dom}(\mu)$ and $\gamma \notin D_{n-1}^{n}$ then $\mu(\gamma, n)=0$;
(4) for every $k \equiv 1 \bmod 5,1 \leq i \leq s(k)$, and $m \in \mathbb{N}$

$$
\begin{gathered}
\mu\left(\left[L^{m+1}\left(\nu_{i}^{k}, k+5\right)\right]^{-1} L^{m}\left(\nu_{i}^{k}, k+5\right), r^{m+1}\left(\nu_{i}^{k}, k+5\right)\right) \\
=\mu\left(1_{G}, r^{m+1}\left(\nu_{i}^{k}, k+5\right)\right)=0
\end{gathered}
$$

It may aid the reader to note that $\operatorname{dom}(\mu)$ may be expressed in a possibly more understandable form. Let $\pi_{1}: G \times \mathbb{N} \rightarrow G$ be the first component projection map. Then

$$
\operatorname{dom}(\mu)=\bigcup_{n \geq 2} \pi_{1}\left[L^{-1}\left(1_{G}\right) \cap r^{-1}(n)\right] \times\{n\}
$$

Note that $D_{n-1}^{n} \times\{n\} \subseteq \operatorname{dom}(\mu)$ for each $n \geq 2$, and that the expression in (4) lies in the domain of μ by conclusion (vi) of Lemma 9.3.2.

Clearly (1), (2), and (3) are achievable, and (4) is consistent with (1) and (3). The only difficulty is to show that (2) and (4) can be simultaneously achieved.

However, we only need to observe that if $r^{m+1}\left(\nu_{i}^{k}, k+5\right)=n$ then $k+5<n$ and

$$
\sum_{\substack{k \equiv 1 \bmod 5 \\ k<n-5}} s(k)<\sum_{k \equiv 1 \bmod 5_{k<n-5}\left|F_{k}\right|^{2}<n \cdot\left|F_{n-1}\right|^{2}<\left|F_{n-1}\right|^{3} \leq \frac{1}{2}\left|D_{n-1}^{n}\right| .}
$$

The last inequality holds due to the definition of q_{n} and c in the first paragraph. Therefore (2) and (4) can be simultaneously achieved, and such a function μ exists.

For each $n \geq 1$, let θ_{n} be the unique element of $\Theta_{n}\left(c^{\prime \prime}\right)$. For $x \in 2^{\mathbb{N}}$ define $e(x) \in 2^{G}$ so that $e(x) \supseteq c^{\prime \prime}$ and for $n \geq 1$ and $\gamma \in \Delta_{n}$
$e(x)\left(\gamma \theta_{n} b_{n-1}\right)=\sum_{k=0}^{\infty} x\left(r^{k}(\gamma, n)-1\right) \cdot \mu\left(\left[L^{k+1}(\gamma, n)\right]^{-1} L^{k}(\gamma, n), r^{k+1}(\gamma, n)\right) \bmod 2$.
This sum is finite by clause (iv) of Lemma 9.3 .2 and property (1) of μ. Moreover, the number of indices for which the summand is nonzero is bounded independent of $x \in 2^{\mathbb{N}}$. It is therefore easy to see that $e: 2^{\mathbb{N}} \rightarrow 2^{G}$ is continuous (where $2^{\mathbb{N}}$ has the product topology). By Lemma 9.2.3 the map $x \mapsto \overline{[e(x)]}$ is Borel. The expression above is well defined as clause (vi) of Lemma 9.3.2 implies that

$$
\left(\left[L^{k+1}(\gamma, n)\right]^{-1} L^{k}(\gamma, n), r^{k+1}(\gamma, n)\right) \in \operatorname{dom}(\mu)
$$

for all $k \in \mathbb{N}, n \geq 1$, and $\gamma \in \Delta_{n}$. The function $e(x)$ has two useful properties which we list below.
(a) Let $x \in 2^{\mathbb{N}}, 1 \leq k \leq n, \gamma \in \Delta_{n}$, and $\lambda_{1}, \lambda_{2} \in D_{k}^{n}$ satisfy $r\left(\lambda_{1}, k\right)=$ $r\left(\lambda_{2}, k\right)=n$. If $x(k-1)=1$ then

$$
e(x)\left(\gamma \lambda_{1} \theta_{k} b_{k-1}\right)=e(x)\left(\gamma \lambda_{2} \theta_{k} b_{k-1}\right) \Longleftrightarrow \mu\left(\lambda_{1}, n\right)=\mu\left(\lambda_{2}, n\right)
$$

and if $x(k-1)=0$ then $e(x)\left(\gamma \lambda_{1} \theta_{k} b_{k-1}\right)=e(x)\left(\gamma \lambda_{2} \theta_{k} b_{k-1}\right)$ always.
(b) Let $x \in 2^{\mathbb{N}}, n \geq 1$, and $\gamma \in \Delta_{n+1}$. Then for every $f \in F_{n}-\operatorname{dom}\left(c^{\prime \prime}\right)$

$$
e(x)\left(\gamma \theta_{n+1} b_{n}\right)=e(x)\left(\theta_{n+1} b_{n}\right) \Longleftrightarrow e(x)(\gamma f)=e(x)(f)
$$

We spend the next two paragraphs establishing the validity of (a) and (b).
(a). By clause (v) of Lemma 9.3.2 $r\left(\gamma \lambda_{1}, k\right)=r\left(\gamma \lambda_{2}, k\right)=n$, and so by the definition of L we must have $L\left(\gamma \lambda_{1}, k\right)=L\left(\gamma \lambda_{2}, k\right)=\gamma$. By the definition of L^{m} and r^{m}, it follows that $r^{m}\left(\gamma \lambda_{1}, k\right)=r^{m}\left(\gamma \lambda_{2}, k\right)$ and $L^{m}\left(\gamma \lambda_{1}, k\right)=L^{m}\left(\gamma \lambda_{2}, k\right)$ for all $m \geq 1$. Thus when considering the summations defining $e(x)\left(\gamma \lambda_{1} \theta_{k} b_{k-1}\right)$ and $e(x)\left(\gamma \lambda_{2} \theta_{k} b_{k-1}\right)$, we see that all the summands are equal except possibly the first. If $x(k-1)=1$, then the first summands are equal if and only if $\mu\left(\lambda_{1}, n\right)=\mu\left(\lambda_{2}, n\right)$. If $x(k-1)=0$, then the first summands are always equal. Property (a) now clearly follows.
(b). Fix $f \in F_{n}-\operatorname{dom}\left(c^{\prime \prime}\right)$. Since $G-\operatorname{dom}\left(c^{\prime \prime}\right)=\bigcup_{k \geq 1} \Delta_{k} \theta_{k} b_{k-1}$, there is $k \geq 1$ with $f \in \Delta_{k} \theta_{k} b_{k-1}$. Since $\gamma_{n+1}=1_{G}, 1_{G} \in \Delta_{n+1}$, and $\beta_{n+1} \neq \gamma_{n+1} \in D_{n}^{n+1}$, we have that if $k>n+1$ then

$$
\varnothing \neq F_{n} \cap \Delta_{k} \theta_{k} b_{k-1} \subseteq \Delta_{n+1} \gamma_{n+1} F_{n} \cap \Delta_{n+1} \beta_{n+1} F_{n}=\varnothing
$$

a contradiction. So $k \leq n+1$ (one can further show that $k \leq n$, but we do not need this). Since $f \in F_{n+1} \cap \Delta_{k} F_{k}$ (recall $F_{n} \subseteq F_{n+1}$ since our blueprint is centered), it follows by the coherent property of blueprints that there is $\lambda \in$ D_{k}^{n+1} with $f=\lambda \theta_{k} b_{k-1}$. Let $m \in \mathbb{N}$ be such that $r^{m}(\lambda, k)=n+1$. Then $L^{m}(\lambda, k)=1_{G}$. By clause (v) of Lemma 9.3.2 we have that $r^{i}(\gamma \lambda, k)=r^{i}(\lambda, k)$
and $L^{i}(\gamma \lambda, k)=\gamma L^{i}(\lambda, k)$ for all $0 \leq i \leq m$. It follows that in the summations defining $e(x)\left(\gamma \lambda \theta_{k} b_{k-1}\right)$ and $e(x)\left(\lambda \theta_{k} b_{k-1}\right)$, the first m terms (the terms where the index of the sum is between 0 and $m-1$, inclusive) are respectively equal. Let S denote the common value of the sums of the first m terms. For $i>m$ we have that $L^{i}(\lambda, k)=L^{i-m}\left(1_{G}, n+1\right), r^{i}(\lambda, k)=r^{i-m}\left(1_{G}, n+1\right), r^{i}(\gamma \lambda, k)=r^{i-m}(\gamma, n+1)$, and $L^{i}(\gamma \lambda, k)=L^{i-m}(\gamma, n+1)$. Therefore we see that

$$
e(x)\left(\gamma \lambda \theta_{k} b_{k-1}\right)=S+e(x)\left(\gamma \theta_{n+1} b_{n}\right)
$$

and

$$
e(x)\left(\lambda \theta_{k} b_{k-1}\right)=S+e(x)\left(\theta_{n+1} b_{n}\right)
$$

Recalling that $f=\lambda \theta_{k} b_{k-1}$, we conclude

$$
e(x)\left(\gamma \theta_{n+1} b_{n}\right)=e(x)\left(\theta_{n+1} b_{n}\right) \Longleftrightarrow e(x)(\gamma f)=e(x)(f)
$$

For $x \in 2^{\mathbb{N}}$, define $\bar{e}(x)=\overline{[e(x)]}$. We will show that $e: 2^{\mathbb{N}} \rightarrow 2^{G}$ is a continuous embedding of E_{0} into $\mathrm{TC}_{\mathrm{p}}(G)$ and that $\bar{e}: 2^{\mathbb{N}} \rightarrow \mathrm{S}_{\mathrm{MF}}(G)$ is a Borel embedding of E_{0} into $\mathrm{TC}_{\mathrm{MF}}(G)$. From this the validity of the theorem will follow by Lemma 9.2 .7 . As mentioned immediately after the definition of e, the function e is indeed continuous and the function \bar{e} is indeed Borel. In the next two paragraphs we prove that the image of \bar{e} is contained in $\mathrm{S}_{\mathrm{MF}}(G)$ and that \bar{e} is injective. An immediate consequence of this is that e is also injective.

We check that $e(x)$ is a minimal 2-coloring for all $x \in 2^{\mathbb{N}}$. From this it will follow that the image of \bar{e} is contained in $\mathrm{S}_{\mathrm{MF}}(G)$. The fact that $e(x)$ is a 2-coloring is immediate since $e(x)$ extends $c^{\prime \prime}$. So we check that $e(x)$ is minimal. The function $e(x)$ is defined on all of G and extends the fundamental function $c^{\prime \prime}$. Thus $e(x)$ is fundamental. Since our blueprint is centered, directed, and $\alpha_{n} \neq \gamma_{n}=1_{G} \neq \beta_{n}$ for all $n \geq 1$, we have that $\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$ by clause (viii) of Lemma 5.1.5. So by Corollary 7.2.6, it suffices to show that for every $k \geq 1$ there is $n>k$ so that for all $\gamma \in \Delta_{n}$ there is $\lambda \in D_{k}^{n}$ with $e(x)(\gamma \lambda f)=e(x)(f)$ for all $f \in F_{k}$. So fix $k \geq 1$. Since $c^{\prime \prime}$ is Δ-minimal, there is $m>k$ so that for all $\gamma \in \Delta_{m}$ we have $c^{\prime \prime}(\gamma f)=c^{\prime \prime}(f)$ for all $f \in F_{k} \cap \operatorname{dom}\left(c^{\prime \prime}\right)$. We now proceed by cases. Case 1: $x(i-2)=0$ for all $i>m$. Set $n=m+1$ and let $\gamma \in \Delta_{n}$. Set $\lambda=1_{G} \in \overline{D_{n-1}^{n}}$. After inspecting the summation defining $e(x)$ we see that

$$
e(x)\left(\gamma \lambda \theta_{n-1} b_{n-2}\right)=e(x)\left(\gamma \theta_{n-1} b_{n-2}\right)=0=e(x)\left(\theta_{n-1} b_{n-2}\right)
$$

We have that $\gamma \lambda \in \Delta_{n-1}=\Delta_{m}$, so by our choice of m and property (b) we have $e(x)(\gamma \lambda f)=e(x)(f)$ for all $f \in F_{k}$. Thus $e(x)$ is minimal. Case 2: There is $n>m$ with $x(n-2)=1$. Fix $\gamma \in \Delta_{n}$. By (a) and properties (1) and (2) of μ there must be $\lambda \in D_{n-1}^{n}$ with $e(x)\left(\gamma \lambda \theta_{n-1} b_{n-2}\right)=e(x)\left(\theta_{n-1} b_{n-2}\right)$. Again by (b) and our choice of m we have $e(x)(\gamma \lambda f)=e(x)(f)$ for all $f \in F_{k}$. We conclude that $e(x)$ is minimal.

Now we check that $\overline{[e(x)]} \neq \overline{[e(y)]}$ for $x \neq y \in 2^{\mathbb{N}}$. It will suffice to show that $e(x)$ and $e(y)$ are orthogonal. Fix $x \neq y \in 2^{\mathbb{N}}$, and let $n \geq 1$ be such that $x(n-1) \neq$ $y(n-1)$. Set $T=F_{n+1} F_{n+1}^{-1} F_{n+1}$, and let $g_{1}, g_{2} \in G$ be arbitrary. Let $t \in F_{n+1} F_{n+1}^{-1}$ be such that $g_{1} t \in \Delta_{n+1}$. If $g_{2} t \notin \Delta_{n+1}$ or if $e(x)\left(g_{1} t \theta_{n} b_{n-1}\right) \neq e(y)\left(g_{2} t \theta_{n} b_{n-1}\right)$ then we are done. So suppose $g_{2} t \in \Delta_{n+1}$ and $e(x)\left(g_{1} t \theta_{n} b_{n-1}\right)=e(y)\left(g_{2} t \theta_{n} b_{n-1}\right)$. By property (2) of μ, let $\psi \in D_{n}^{n+1}$ be such that $\mu(\psi, n+1)=1 \neq 0=\mu\left(1_{G}, n+1\right)$. Then it follows from (a) that $e(x)\left(g_{1} t \psi \theta_{n} b_{n-1}\right) \neq e(y)\left(g_{2} t \psi \theta_{n} b_{n-1}\right)$. As $t \psi \theta_{n} b_{n-1} \in$ T, we conclude $e(x)$ is orthogonal to $e(y)$ and $\overline{[e(x)]} \neq \overline{[e(y)]}$.

Now we move into the final stage of the proof. The remaining task is to show that for $x, y \in 2^{\mathbb{N}}$

$$
x E_{0} y \Longleftrightarrow e(x) \mathrm{TC}_{\mathrm{p}}(G) e(y) \Longleftrightarrow \bar{e}(x) \mathrm{TC}_{\mathrm{MF}}(G) \bar{e}(y)
$$

In order to achieve this task, we rely on the rigidity constructions from Section 7.5. In particular, we invoke the fact that $c^{\prime \prime}$ originated from Corollary 7.5.8. In the next paragraph, we will show that $e(x)\left(\nu_{i}^{n} f\right)=e(x)(f)$ for all $n \equiv 1 \bmod 5,1 \leq i \leq$ $s(n), f \in F_{n+4}$, and $x \in 2^{\mathbb{N}}$. So by Corollary 7.5.8, we have that $\bar{e}(x) \operatorname{TC}_{\mathrm{MF}}(G) \bar{e}(y)$ if and only if there is a conjugacy sending $e(x)$ to an $e(y)$-centered element of $[e(y)]$. Therefore, in the second paragraph we briefly study $e(x)$-centered elements of $\overline{[e(x)]}$ for $x \in 2^{\mathbb{N}}$. Then in the final two paragraphs we prove the validity of the displayed expression above, completing the proof of the theorem.

For $x \in 2^{\mathbb{N}}, n \equiv 1 \bmod 5$, and $1 \leq i \leq s(n)$, by considering property (4) of μ and the summation defining $e(x)$, we see that

$$
e(x)\left(\nu_{i}^{n} \theta_{n+5} b_{n+4}\right)=0=e(x)\left(\theta_{n+5} b_{n+4}\right) .
$$

By the definition of $c^{\prime \prime}$ we have that $e(x)\left(\nu_{i}^{n} f\right)=e(x)(f)$ for all $f \in F_{n+4} \cap \operatorname{dom}\left(c^{\prime \prime}\right)$. So by (b) we have

$$
e(x)\left(\nu_{i}^{n} f\right)=e(x)(f)
$$

for all $n \equiv 1 \bmod 5,1 \leq i \leq s(n), f \in F_{n+4}$, and $x \in 2^{\mathbb{N}}$.
We now briefly discuss $e(x)$-centered elements of $\overline{[e(x)]}$. Let $w \in \overline{[e(x)]}$ be $e(x)$-centered. By Lemma 7.3.9 we have that $w(g)=e(x)(g)$ for all $g \in \operatorname{dom}\left(c^{\prime \prime}\right)$. Fix $g \notin \operatorname{dom}\left(c^{\prime \prime}\right)$. Then there is $k \geq 1$ and $\psi \in \Delta_{k}$ with $g=\psi \theta_{k} b_{k-1}$. Since our blueprint is centered and directed, there is $n \geq k$ with $\psi F_{k} \subseteq F_{n}$ (clause (iv) of Lemma 5.1.5). Let $m>n$ and note $\psi \in D_{k}^{n} \subseteq D_{k}^{m}$. Since w is an $e(x)$-centered element of $\overline{[e(x)]}$, by clause (i) of Proposition 7.1.1 there is $\gamma \in \Delta_{m}$ with $w(f)=$ $\left(\gamma^{-1} \cdot e(x)\right)(f)=e(x)(\gamma f)$ for all $f \in F_{m}$. We have the following equivalences:

$$
\begin{gathered}
w(g)=e(x)(g) \Longleftrightarrow w\left(\psi \theta_{k} b_{k-1}\right)=e(x)\left(\psi \theta_{k} b_{k-1}\right) \Longleftrightarrow \\
e(x)\left(\gamma \psi \theta_{k} b_{k-1}\right)=e(x)\left(\psi \theta_{k} b_{k-1}\right) \Longleftrightarrow e(x)\left(\gamma \theta_{m} b_{m-1}\right)=e(x)\left(\theta_{m} b_{m-1}\right) \\
\Longleftrightarrow w\left(\theta_{m} b_{m-1}\right)=e(x)\left(\theta_{m} b_{m-1}\right)
\end{gathered}
$$

(the second line is due to (b)). Therefore, we have that $w(g)=e(x)(g)$ if and only if $w\left(\theta_{m} b_{m-1}\right)=e(x)\left(\theta_{m} b_{m-1}\right)$ for all sufficiently large m. Since the second condition does not depend on $g \in G-\operatorname{dom}\left(c^{\prime \prime}\right)$, we have that either $w=e(x)$ or else

$$
w(g)= \begin{cases}e(x)(g) & \text { if } g \in \operatorname{dom}\left(c^{\prime \prime}\right) \\ 1-e(x)(g) & \text { otherwise }\end{cases}
$$

So $\overline{[e(x)]}$ contains at most two $e(x)$-centered elements (counting $e(x)$ itself). Moreover, an important observation is that if $w \neq e(x)$ is an $e(x)$-centered element of $\overline{[e(x)]}$, then w satisfies properties (a) and (b) with respect to the sequence $x \in 2^{\mathbb{N}}$. Although we will not make any use of this fact whatsoever, we do mention that if $\overline{[e(x)]}$ does contain two $e(x)$-centered elements, then they are never $\mathrm{TC}_{\mathrm{p}}(G)$ equivalent, despite their strong similarities.

In the remaining two paragraphs we prove that for $x, y \in 2^{\mathbb{N}}$

$$
x E_{0} y \Longleftrightarrow e(x) \mathrm{TC}_{\mathrm{p}}(G) e(y) \Longleftrightarrow \bar{e}(x) \mathrm{TC}_{\mathrm{MF}}(G) \bar{e}(y) .
$$

Here we prove that the negation of the leftmost expression implies the negations of the other two. In the next and final paragraph we prove that the leftmost expression
implies the other two expressions. Let $x, y \in 2^{\mathbb{N}}$ be such that $\neg\left(x E_{0} y\right)$, or in other words $x(n) \neq y(n)$ for infinitely many $n \in \mathbb{N}$. Without loss of generality we may assume $x(n)=0 \neq y(n)$ for infinitely many $n \in \mathbb{N}$. Towards a contradiction, suppose $e(x)$ is $\mathrm{TC}_{\mathrm{p}}(G)$-equivalent to some $e(y)$-centered $z \in \overline{[e(y)]}$ (potentially $z=e(y))$. By Lemma 9.3.1, there is $n \geq 1$ such that if $\gamma, \psi \in \Delta_{n+3}$ and $e(x)(\gamma f)=$ $e(x)(\psi f)$ for all $f \in F_{n+3}$ then $z(\gamma f)=z(\psi f)$ for all $f \in F_{n}$. Since $c^{\prime \prime}$ is Δ-minimal, there is $m>n+3$ so that $e(x)(\gamma f)=e(x)(f)$ for all $\gamma \in \Delta_{m}$ and $f \in F_{n+3} \cap$ $\operatorname{dom}\left(c^{\prime \prime}\right)$. Pick $k>m$ with $x(k-1)=0 \neq y(k-1)$, and pick $\gamma \in D_{k}^{k+1} \subseteq \Delta_{k}$ with $\mu(\gamma, k+1)=1$. Then $L(\gamma, k)=1_{G}=L\left(1_{G}, k\right)$ and $r(\gamma, k)=k+1=r\left(1_{G}, k\right)$, so by (a) $e(x)\left(\gamma \theta_{k} b_{k-1}\right)=e(x)\left(\theta_{k} b_{k-1}\right)$ and $z\left(\gamma \theta_{k} b_{k-1}\right) \neq z\left(\theta_{k} b_{k-1}\right)$ (since z satisfies properties (a) and (b) with respect to the sequence $y \in 2^{\mathbb{N}}$). Since $\gamma \in \Delta_{k} \subseteq \Delta_{m}$ and $k-1 \geq n+3$, we have by (b) that $e(x)(\gamma f)=e(x)(f)$ for all $f \in F_{n+3}$. It follows that $z(\gamma f)=z(f)$ for all $f \in F_{n}$. In particular, $z\left(\gamma \theta_{n} b_{n-1}\right)=z\left(\theta_{n} b_{n-1}\right)$ which, by (b), is in contradiction with $z\left(\gamma \theta_{k} b_{k-1}\right) \neq z\left(\theta_{k} b_{k-1}\right)$.

Now let $x, y \in 2^{\mathbb{N}}$ be such that $x E_{0} y$. To complete the proof of the theorem, it suffices to show that $e(x) \mathrm{TC}_{\mathrm{p}} e(y)$. Let $N \in \mathbb{N}$ be such that $x(n-1)=y(n-1)$ for all $n \geq N$. Set $K=F_{N}^{-1} F_{N}$. To show $e(x) \mathrm{TC}_{\mathrm{p}}(G) e(y)$, it is sufficient, by Corollary 9.2.6, to show that

$$
\begin{gathered}
\forall g, h \in G(\forall k \in K e(x)(g k)=e(x)(h k) \Longrightarrow e(y)(g)=e(y)(h)), \text { and } \\
\forall g, h \in G(\forall k \in K e(y)(g k)=e(y)(h k) \Longrightarrow e(x)(g)=e(x)(h)) .
\end{gathered}
$$

By symmetry of information regarding x and y, it will be enough to verify the first property above. Let $g, h \in G$ be such that $e(x)(g k)=e(x)(h k)$ for all $k \in K$. We will show $e(y)(g)=e(y)(h)$. Note that $e(x)$ and $e(y)$ agree on $\operatorname{dom}\left(c^{\prime \prime}\right)$ and on $\bigcup_{n \geq N} \Delta_{n} \theta_{n} b_{n-1}$. So we may suppose at least one of g, h is in

$$
G-\left(\operatorname{dom}\left(c^{\prime \prime}\right) \cup \bigcup_{m \geq N} \Delta_{m} \theta_{m} b_{m-1}\right)=\bigcup_{1 \leq m<N} \Delta_{m} \theta_{m} b_{m-1}
$$

However, by our choice of K, for $m<N$ one of g or h is in $\Delta_{m} \theta_{m} b_{m-1}$ if and only if both are (since $e(x)$ has a Δ_{m} membership test with test region a subset of $\left.F_{m} \subseteq F_{N}\right)$. So let $1 \leq m<N$ be such that $g, h \in \Delta_{m} \theta_{m} b_{m-1}$. Let $n \leq N$ be maximal with $g \in \Delta_{n} F_{n}$. Again, since $e(x)$ has a Δ_{n} membership test, this same n equals the maximal $i \leq N$ with $h \in \Delta_{i} F_{i}$. It follows that there are $\gamma, \psi \in \Delta_{n}$ and $\lambda \in D_{m}^{n}$ with $g=\gamma \lambda \theta_{m} b_{m-1}$ and $h=\psi \lambda \theta_{m} b_{m-1}$. Let $k \geq-1$ be such that $r^{k+1}(\gamma \lambda, m)=n$. By conclusion (v) of Lemma 9.3.2, for any $w \in 2^{\mathbb{N}}$

$$
\begin{aligned}
& \sum_{i=0}^{k} w\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \quad \bmod 2 \\
= & \sum_{i=0}^{k} w\left(r^{i}(\psi \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\psi \lambda, m)\right]^{-1} L^{i}(\psi \lambda, m), r^{i+1}(\psi \lambda, m)\right) \quad \bmod 2 .
\end{aligned}
$$

In particular, the first $k+1$ terms of the sums defining $e(y)(g)$ and $e(y)(h)$ are respectively equal. Since $e(x)(g)=e(x)(h)$, the above equality implies

$$
\sum_{i=k+1}^{\infty} x\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \quad \bmod 2
$$

$$
=\sum_{i=k+1}^{\infty} x\left(r^{i}(\psi \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\psi \lambda, m)\right]^{-1} L^{i}(\psi \lambda, m), r^{i+1}(\psi \lambda, m)\right) \quad \bmod 2
$$

If $n=N$, then $r^{k+1}(\gamma \lambda, m)=r^{k+1}(\psi \lambda, m)=N$ so

$$
\begin{aligned}
& \sum_{i=k+1}^{\infty} x\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \quad \bmod 2 \\
= & \sum_{i=k+1}^{\infty} y\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \quad \bmod 2
\end{aligned}
$$

and similarly for ψ in place of γ. On the other hand, if $n<N$, then since $r^{k+2}(\gamma \lambda, m), r^{k+2}(\psi \lambda, m)>N$, property (3) of μ gives

$$
\begin{aligned}
& \sum_{i=k+1}^{\infty} x\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \bmod 2 \\
= & 0+\sum_{i=k+2}^{\infty} x\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \bmod 2 \\
= & 0+\sum_{i=k+2}^{\infty} y\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \bmod 2 \\
= & \sum_{i=k+1}^{\infty} y\left(r^{i}(\gamma \lambda, m)-1\right) \cdot \mu\left(\left[L^{i+1}(\gamma \lambda, m)\right]^{-1} L^{i}(\gamma \lambda, m), r^{i+1}(\gamma \lambda, m)\right) \bmod 2
\end{aligned}
$$

and similarly for ψ in place of γ. Therefore all terms after the $(k+1)^{\text {st }}$ term in the sums defining $e(y)(g)$ and $e(y)(h)$ are respectively equal. We conclude that $e(y)(g)=e(y)(h)$.

The above theorem has two immediate corollaries. We point out that on the space of all subflows of k^{G} we use the Vietoris topology (see Section 9.2), or equivalently the topology induced by the Hausdorff metric. In symbolic and topological dynamics there is a lot of interest in finding invariants, and in particular searching for complete invariants, for topological conjugacy, particularly for subflows of Bernoulli flows over \mathbb{Z} or \mathbb{Z}^{n}. The following corollary says that, up to the use of Borel functions, there are no complete invariants for the topological conjugacy relation on any Bernoulli flow.

Corollary 9.3.4. Let G be a countably infinite group and let $k>1$ be an integer. Then there is no Borel function defined on the space of subflows of k^{G} which computes a complete invariant for any of the equivalence relations $\mathrm{TC}, \mathrm{TC}_{\mathrm{F}}$, TC_{M}, or $\mathrm{TC}_{\mathrm{MF}}$. Similarly, there is no Borel function on k^{G} which computes a complete invariant for the equivalence relation TC_{p}.

The above theorem and corollary imply that from the viewpoint of Borel equivalence relations, the topological conjugacy relation on subflows of a common Bernoulli flow is quite complicated as no Borel function can provide a complete invariant. However, the above results do not rule out the possibility of the existence of algorithms for computing complete invariants among subflows described by finitary data, such as subflows of finite type.

The above theorem also leads to another nice corollary. We do not know if the truth of the following corollary was previously known.

Corollary 9.3.5. For every countably infinite group G, there are uncountably many pairwise non-topologically conjugate free and minimal continuous actions of G on compact metric spaces.

9.4. Topological conjugacy of free subflows

In this section we present a complete classification of the complexity of both $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ for every countably infinite group G. We show that for a countably infinite group G, the equivalence relations $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ are both Borel bi-reducible with E_{0} if G is locally finite and are both universal countable Borel equivalence relations if G is not locally finite. In particular, by Lemma 9.2.7 we have that for every countably infinite locally finite group G, all of the equivalence relations $\mathrm{TC}_{\mathrm{p}}(G), \mathrm{TC}_{\mathrm{MF}}(G), \mathrm{TC}_{\mathrm{M}}(G), \mathrm{TC}_{\mathrm{F}}(G)$, and $\mathrm{TC}(G)$ are Borel bi-reducible with E_{0}. We remind the reader the definition of a locally finite group.

Definition 9.4.1. A group G is locally finite if every finite subset of G generates a finite subgroup.

We first consider locally finite groups. The main theorem of the previous section allows us to quickly classify the associated equivalence relations. We need the following simple lemma.

LEmma 9.4.2. Let G be a countable group, and let $f, g: 2^{G} \rightarrow 2^{G}$ be functions induced by the block codes $\hat{f}: 2^{H} \rightarrow 2$ and $\hat{g}: 2^{K} \rightarrow 2$, respectively. Then $f \circ g$ is induced by a block code on HK.

Proof. Clearly, $f \circ g$ is continuous and commutes with the shift action of G. So by Theorem 7.5.5, $f \circ g$ is induced by a block code. It therefore suffices to show that if $x, y \in 2^{G}$ agree on $H K$ then $[f \circ g(x)]\left(1_{G}\right)=[f \circ g(y)]\left(1_{G}\right)$. So fix $x, y \in 2^{G}$ with $x \upharpoonright H K=y \upharpoonright H K$. Then for each $h \in H$ we have $\left(h^{-1} \cdot x\right) \upharpoonright K=\left(h^{-1} \cdot y\right) \upharpoonright K$. Therefore for $h \in H$

$$
g(x)(h)=\hat{g}\left(\left(h^{-1} \cdot x\right) \upharpoonright K\right)=\hat{g}\left(\left(h^{-1} \cdot y\right) \upharpoonright K\right)=g(y)(h) .
$$

So $g(x) \upharpoonright H=g(y) \upharpoonright H$ and therefore $f(g(x))\left(1_{G}\right)=f(g(y))\left(1_{G}\right)$.
Theorem 9.4.3. Let G be a countably infinite, locally finite group. Then $\mathrm{TC}(G), \mathrm{TC}_{\mathrm{F}}(G), \mathrm{TC}_{\mathrm{M}}(G), \mathrm{TC}_{\mathrm{MF}}(G)$, and $\mathrm{TC}_{\mathrm{p}}(G)$ are all Borel bi-reducible with E_{0}. In particular, these equivalence relations are nonsmooth and hyperfinite.

Proof. By Theorem 9.3.3 we have that E_{0} Borel embeds into each of the equivalence relations. By Lemma 9.2.7, it will suffice to show that both $\operatorname{TC}(G)$ and $\mathrm{TC}_{\mathrm{p}}(G)$ are hyperfinite since it is well known that hyperfinite equivalence relations Borel reduce to $E_{0}([\mathbf{D J K}])$. We remind the reader that a Borel equivalence relation is hyperfinite if it is the increasing union of finite Borel equivalence relations.

Since G is locally finite, we can find an increasing sequence, $\left(H_{n}\right)_{n \in \mathbb{N}}$, of finite subgroups of G whose union is G. For each $n \in \mathbb{N}$, define $E_{n} \subseteq \mathrm{~S}(G) \times \mathrm{S}(G)$ by the rule: $A E_{n} B$ if and only if there is a conjugacy ϕ between A and B for which both ϕ and ϕ^{-1} are induced by block codes on H_{n}. Then E_{n} is an equivalence relation as transitivity follows from the previous lemma (since H_{n} is a subgroup of G). Also the proof of Proposition 9.2.5 immediately shows that each equivalence relation E_{n} is Borel. Since $\bigcup_{n \in \mathbb{N}} H_{n}=G$, we have that $\operatorname{TC}(G)=\bigcup_{n \in \mathbb{N}} E_{n}$. Now we use the fact that G is locally finite. Each H_{n} is finite, so there are only finitely many block codes on H_{n} and hence each equivalence relation E_{n} is finite. We conclude
that $\mathrm{TC}(G)$ is hyperfinite, and therefore Borel reducible to E_{0}. A similar argument shows that $\mathrm{TC}_{\mathrm{p}}(G)$ is hyperfinite as well.

The proof of the previous theorem seems quite simple, but one should not overlook the fact that it relies on Theorem 9.3.3. The authors do not know if there is a simpler proof of Theorem 9.3.3 in the context of locally finite groups.

Now we change our focus to nonlocally finite groups. We prove that for countably infinite nonlocally finite groups G the equivalence relations $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ are universal countable Borel equivalence relations. Unfortunately, we are unable to classify $\mathrm{TC}_{\mathrm{M}}(G), \mathrm{TC}_{\mathrm{MF}}(G)$, and $\mathrm{TC}_{\mathrm{p}}(G)$ for nonlocally finite groups.

The authors' original interest in studying the complexity of the topological conjugacy relation, $\mathrm{TC}(G)$, stemmed from the following theorem of John Clemens.

Theorem 9.4.4 ([C]). TC($\left.\mathbb{Z}^{n}\right)$ is a universal countable Borel equivalence relation for every $n \geq 1$.

Our proof roughly follows Clemens' proof for \mathbb{Z}. However, substantial additions and changes to his proof are required since we want to both extend his result to all nonlocally finite groups and extend it from TC to TC_{F}. One of the crucial components of our proof is constructing elements of 2^{G} which mimic the behavior of elements of $2^{\mathbb{Z}}$. The following lemma is a small step towards this construction. After this lemma are three more lemmas followed by the main theorem.

In this section, for $x \in 2^{\mathbb{Z}}$ we let $-x$ denote the element of $2^{\mathbb{Z}}$ defined by $-x(n)=x(-n)$ for all $n \in \mathbb{Z}$. Clearly $x \in 2^{\mathbb{Z}}$ is a 2 -coloring if and only if $-x$ is a 2-coloring.

Lemma 9.4.5. There is a 2 -coloring $\pi \in 2^{\mathbb{Z}}$ for which π and $-\pi$ are orthogonal.
Proof. Let c be any 2 -coloring on \mathbb{Z}. Define

$$
\pi(n)= \begin{cases}1 & \text { if } n \equiv 0 \bmod 8 \\ 1 & \text { if } n \equiv 1 \bmod 8 \\ 0 & \text { if } n \equiv 2 \bmod 8 \\ 1 & \text { if } n \equiv 3 \bmod 8 \\ 0 & \text { if } n \equiv 4 \bmod 8 \\ c(m) & \text { if } n=8 m+5 \\ 0 & \text { if } n \equiv 6 \bmod 8 \\ 0 & \text { if } n \equiv 7 \bmod 8\end{cases}
$$

Then π is a 2 -coloring since it clearly blocks $8 n$ for all $n \in \mathbb{Z}$ (see Corollary 2.2.6). Let $g_{1}, g_{2} \in \mathbb{Z}$ and set $T=\{0,1,2, \ldots, 10\}$. Clearly there is $0 \leq n \leq 7$ with $g_{1}+n \equiv 0 \bmod 8$ and hence $\pi\left(g_{1}+n\right)=\pi\left(g_{1}+n+1\right)=1$. If $-\pi\left(g_{2}+n\right) \neq 1$ or $-\pi\left(g_{2}+n+1\right) \neq 1$ then we are done since $n, n+1 \in T$. Otherwise we must have that $-g_{2}-n \equiv 1 \bmod 8$. It follows that $-g_{2}-n-3 \equiv 6 \bmod 8$ and thus $\pi\left(g_{1}+n+3\right)=1 \neq 0=-\pi\left(g_{2}+n+3\right)$. Since $n+3 \in T$, this completes the proof that π and $-\pi$ are orthogonal.

The following is a technical lemma which will be needed briefly for a very specific purpose in the proof of the main theorem.

Lemma 9.4.6. Let X be a compact metric space, let \mathbb{Z} act continuously on X, let $y \in X$ be minimal, and let $d \in \mathbb{N}$. Let $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ and $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ be sequences of
functions from \mathbb{N} to \mathbb{N}. Suppose that each such function is monotone increasing and tends to infinity. Then there exists an increasing function $s: \mathbb{N} \rightarrow \mathbb{N}_{+}$such that $y=\lim s(n) \cdot y$ and for $n, n^{\prime}, k \in \mathbb{N}$ we have the implication:

$$
\begin{gathered}
-2 d+\nu_{k}((4 d+1)(s(k+1)-s(k)-8)-2 d) \\
\leq(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right| \leq \\
2 d+\xi_{k}((4 d+1)(s(k+1)-s(k)+8)+2 d)
\end{gathered}
$$

implies $\max \left(n, n^{\prime}\right)=k+1$.
Proof. Let ρ be the metric on X. We claim that if $\epsilon>0$ and $n \in \mathbb{N}$, then there is $k \geq n$ with $\rho(k \cdot y, y)<\epsilon$. To see this, let z be any limit point of $\{k \cdot y: k \geq n\}$ (a limit point must exist since X is compact). By minimality of y, we must have $y \in \overline{[z]}$. In particular, there is $m \in \mathbb{Z}$ with $\rho(m \cdot z, y)<\frac{\epsilon}{2}$. Since \mathbb{Z} acts continuously on $X, m \cdot z$ is a limit point of $\{(m+k) \cdot y: k \geq n\}$. So there is $k \geq n$ with $m+k \geq n$ and $\rho((m+k) \cdot y, m \cdot z)<\frac{\epsilon}{2}$. Then $\rho((m+k) \cdot y, y)<\epsilon$ and $m+k \geq n$, completing the proof of the claim.

Fix a sequence $\left(\epsilon_{n}\right)_{n \in \mathbb{N}}$ of positive real numbers tending to 0 . We will choose a function $s: \mathbb{N} \rightarrow \mathbb{N}_{+}$which will have the additional property that $\rho(s(n) \cdot y, y)<\epsilon_{n}$ for all $n \in \mathbb{N}$. Pick $s(0)>0$ with $\rho(s(0) \cdot y, y)<\epsilon_{0}$. Let $t_{1} \geq s(0)$ be such that

$$
-2 d+\nu_{0}\left((4 d+1)\left(t_{1}-8\right)-2 d\right)>0
$$

$\left(t_{1}\right.$ exists since ν_{0} tends to infinity). Pick $s(1)>s(0)+t_{1}$ with $\rho(s(1) \cdot y, y)<\epsilon_{1}$. Suppose that $s(0), s(1), \cdots, s(n-1)$ have been defined and satisfy all of the required properties. Let $m \in \mathbb{N}$ be the maximal element of the union

$$
\begin{gathered}
\left\{2 d+\xi_{k}((4 d+1)(s(k+1)-s(k)+8)+2 d: k+1<n\}\right. \\
\bigcup\left\{(4 d+1)\left|s\left(k^{\prime}\right)-s(k)\right|: k, k^{\prime}<n\right\} .
\end{gathered}
$$

Let $t_{n} \geq m$ be such that

$$
-2 d+\nu_{n-1}\left((4 d+1)\left(t_{n}-8\right)-2 d\right)>m>0
$$

$\left(t_{n}\right.$ exists since ν_{n-1} tends to infinity). Now pick $s(n)>s(n-1)+t_{n}$ with $\rho(s(n)$. $y, y)<\epsilon_{n}$. This defines the function $s: \mathbb{N} \rightarrow \mathbb{N}_{+}$.

Clearly we have $y=\lim s(n) \cdot y$. Let $n, n^{\prime}, k \in \mathbb{N}$ satisfy $\max \left(n, n^{\prime}\right) \neq k+1$. We must show that either

$$
-2 d+\nu_{k}((4 d+1)(s(k+1)-s(k)-8)-2 d)>(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right|
$$

or

$$
(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right|>2 d+\xi_{k}((4 d+1)(s(k+1)-s(k)+8)+2 d)
$$

By swapping n and n^{\prime}, we may suppose that $n \geq n^{\prime}$. If $n=n^{\prime}$ then we are done since

$$
\begin{gathered}
(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right|=0<-2 d+\nu_{k}\left((4 d+1)\left(t_{k+1}-8\right)-2 d\right) \leq \\
-2 d+\nu_{k}((4 d+1)(s(k+1)-s(k)-8)-2 d),
\end{gathered}
$$

where the second inequality follows from ν_{k} being monotone increasing. If $n>k+1$ then by our construction we have

$$
\begin{gathered}
(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right| \geq(4 d+1)(s(n)-s(n-1)) \geq s(n)-s(n-1) \\
>t_{n} \geq 2 d+\xi_{k}((4 d+1)(s(k+1)-s(k)+8)+2 d) .
\end{gathered}
$$

Finally, if $n<k+1$ then $n^{\prime}<k+1$ and

$$
\begin{aligned}
& (4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right|<-2 d+\nu_{k}\left((4 d+1)\left(t_{k+1}-8\right)-2 d\right) \\
& \quad \leq-2 d+\nu_{k}((4 d+1)(s(k+1)-s(k)-8)-2 d)
\end{aligned}
$$

where again the second inequality follows from ν_{k} being monotone increasing. This completes the proof.

Let G be a finitely generated countably infinite group. Call a set $S \subseteq G$ symmetric if $S=S^{-1}$. Let S be a finite symmetric set which generates G. The (right) Cayley graph of G with respect to S, Γ_{S}, is the graph with vertex set G and edge set $\{(g, g s): g \in G, s \in S\}$. Since S generates G, this graph is connected. Also, G acts on Γ_{S} by multiplication on the left and this action is by automorphisms of Γ_{S}. This is the only action of G on Γ_{S} which we will discuss. We define a metric, ρ_{S}, on $G=\mathrm{V}\left(\Gamma_{S}\right)$ by setting $\rho_{S}(g, h)$ equal to the length of the shortest path joining g and h in Γ_{S}. This metric is left-invariant, meaning that $\rho_{S}(t g, t h)=\rho_{S}(g, h)$ for all $t, g, h \in G$. In particular, G acts on Γ_{S} by isometries. We will call ρ_{S} the leftinvariant word length metric associated to S. For $g, h \in G$, we let $[g, h]_{S}$ denote the set of shortest paths $P:\left\{0,1, \ldots, \rho_{S}(g, h)\right\} \rightarrow \mathrm{V}\left(\Gamma_{S}\right)$ which begin at g and end at h. Notice that for $t, g, h \in G$ we have that $t \cdot[g, h]_{S}=[t g, t h]_{S}$, where $(t \cdot P)(n)=t \cdot P(n)$ for paths P.

Lemma 9.4.7. Let G be a countably infinite group generated by a finite symmetric set S. Let ρ_{S} be the left-invariant word-length metric associated to S, and let $d \geq 1$. Then there is a bi-infinite sequence $P: \mathbb{Z} \rightarrow G$ such that $\rho_{S}(P(n), P(k))=$ $d|n-k|$ for all $n, k \in \mathbb{Z}$.

Proof. Let Γ_{S} be the (right) Cayley graph of G with respect to S. Since $G=\bigcup_{n \in \mathbb{N}} S^{n}$ is infinite and S is finite, we must have that $S^{n+1} \nsubseteq S^{n}$ for all $n \in \mathbb{N}$. For every $n \geq 1$, pick $g_{n} \in S^{2 n}-S^{2 n-1}$ and $Q_{n} \in\left[1_{G}, g_{n}\right]_{S}$. Notice that $\rho_{S}\left(1_{G}, g_{n}\right)=2 n$ and therefore $\operatorname{dom}\left(Q_{n}\right)=\{0,1, \ldots, 2 n\}$. Also notice that $\rho_{S}\left(Q_{n}\left(k_{1}\right), Q_{n}\left(k_{2}\right)\right)=\left|k_{1}-k_{2}\right|$ whenever $k_{1}, k_{2} \in \operatorname{dom}\left(Q_{n}\right)$. For $n \geq 1$ define $P_{n}:\{-n,-n+1, \ldots, n\} \rightarrow \mathrm{V}\left(\Gamma_{S}\right)$ by setting

$$
P_{n}(k)=Q_{n}(n)^{-1} \cdot Q_{n}(k+n) .
$$

Clearly each P_{n} is a path in Γ_{S} and furthermore by the left-invariance of ρ_{S} we have that $\rho_{S}\left(P_{n}\left(k_{1}\right), P_{n}\left(k_{2}\right)\right)=\left|k_{1}-k_{2}\right|$ whenever $k_{1}, k_{2} \in \operatorname{dom}\left(P_{n}\right)$. Clearly $P_{n}(0)=1_{G}$, and since P_{n} is a path in Γ_{S} we must have that $P_{n}(k) \in S^{k}$ for all $k \in \operatorname{dom}\left(P_{n}\right)$. Since S^{k} is a finite set, there is a subsequence $\left(P_{n(i)}\right)_{i \in \mathbb{N}}$ such that for all $k \in \mathbb{Z}$ the sequence of group elements $\left(P_{n(i)}(k)\right)_{i \in \mathbb{N}}$ is eventually constant. Define $\tilde{P}: \mathbb{Z} \rightarrow G$ by letting $\tilde{P}(k)$ be the eventual value of $\left(P_{n(i)}(k)\right)_{i \in \mathbb{N}}$. Clearly $\tilde{P}(0)=1_{G}$ and $\rho_{S}\left(\tilde{P}\left(k_{1}\right), \tilde{P}\left(k_{2}\right)\right)=\left|k_{1}-k_{2}\right|$ for all $k_{1}, k_{2} \in \mathbb{Z}$. The proof is complete after defining $P: \mathbb{Z} \rightarrow G$ by $P(n)=\tilde{P}(d n)$.

We let $\mathbb{F}=\langle a, b\rangle$ denote the nonabelian free group on the generators a and b. Recall that E_{∞} denotes the equivalence relation on $2^{\mathbb{F}}$ given by $x E_{\infty} y \Leftrightarrow[x]=[y]$. E_{∞} is a universal countable Borel equivalence relation, or in other words, it is the most complicated countable Borel equivalence relation.

We introduce some terminology which will be helpful in the next lemma. If $g \in$ \mathbb{F} is not the identity element, then the reduced word representation of g is the unique ordered tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $g=s_{1} \cdot s_{2} \cdots s_{n}$, each $s_{i} \in\left\{a, a^{-1}, b, b^{-1}\right\}$, and
$s_{i} \neq s_{i-1}^{-1}$ for $1<i \leq n$. If $s \in\left\{a, a^{-1}, b, b^{-1}\right\}$ then we say that $g \in \mathbb{F}$ begins with s if g is not the identity element and the first member of the reduced word representation of g is s. We call the nonidentity elements of $\langle a\rangle \cup\langle b\rangle$ segments. A segment is even if the length of its reduced word representation is even and is otherwise called odd. For $s \in\left\{a, a^{-1}, b, b^{-1}\right\}$ we say a segment g is of type s if there is $n \geq 1$ with $g=s^{n}$. For nonidentity $g \in \mathbb{F}$, the segment representation of g is the unique ordered tuple $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ where $g=s_{1} \cdot s_{2} \cdots s_{n}$, each s_{i} is a segment, and for $1<i \leq n$ the type of s_{i} is neither the type of s_{i-1} nor the inverse of the type of s_{i-1}. For example, if $g=a^{3} b^{-2} a$ then the reduced word representation of g is

$$
\left(a, a, a, b^{-1}, b^{-1}, a\right)
$$

and the segment representation of g is

$$
\left(a^{3}, b^{-2}, a\right)
$$

For nonidentity $g \in \mathbb{F}$, the segments of g are the members of the segment representation of g, and the $n^{\text {th }}$ segment of g is the $n^{\text {th }}$ member of the segment representation of g.

The following lemma is due to John Clemens. We include a proof for completeness.

Lemma 9.4.8 ([C]). There is a Borel set $J \subseteq 2^{\mathbb{F}}$ which is invariant under the action of \mathbb{F} and satisfies:
(i) $E_{\infty} \sqsubseteq_{B} E_{\infty} \upharpoonright J$, so $E_{\infty} \upharpoonright J$ is a universal countable Borel equivalence relation;
(ii) For $x, y \in J$ with $\neg\left(x E_{\infty} y\right)$ there are infinitely many $g \in \mathbb{F}$ with $x(g) \neq$ $y(g)$;
(iii) For every $x \in J$ there are infinitely many $g \in \mathbb{F}$ with $x(g)=1$.

Proof. Let $H \subseteq \mathbb{F}$ be the subgroup generated by a^{2} and b^{2}. Let $\phi: \mathbb{F} \rightarrow H$ be the isomorphism induced by $\phi(a)=a^{2}$ and $\phi(b)=b^{2}$. For $x \in 2^{\mathbb{F}}$ define $f(x) \in 2^{\mathbb{F}}$ by

$$
f(x)(w)= \begin{cases}x(u) & \text { if } w=\phi(u) \text { for some } u \text { or } w=\phi(u) a b v \text { for some } u \text { and } v \\ & \text { with } v \text { not beginning with } b^{-1} \\ 1 & \text { otherwise }\end{cases}
$$

Then f is a continuous injection, so the image of f is Borel. Let $J=\bigcup_{g \in \mathbb{F}} g \cdot f\left(2^{\mathbb{F}}\right)$. Clearly J is Borel. Clause (iii) is immediately satisfied.

Suppose $x, y \in 2^{\mathbb{F}}$ satisfy $x E_{\infty} y$. Then $y=g \cdot x$ for some $g \in \mathbb{F}$ and it is easy to check that $f(y)=f(g \cdot x)=\phi(g) \cdot f(x)$. Thus $f(x) E_{\infty} f(y)$. Pick any $x, y \in 2^{\mathbb{F}}$ and $g \in \mathbb{F}$. To complete the proof, it suffices to show that if $f(y)$ and $g \cdot f(x)$ agree at all but finitely many coordinates then $[y]=[x]$ (and hence $[f(x)]=[f(y)]$). If $f(y)$ has value 1 at all but finitely many coordinates, then $f(y)$ is identically 1 , as are $f(x), x$, and y and hence $[y]=[x]$. So we may suppose that there is $k \in \mathbb{F}$ with $y(k)=0$ and hence $f(y)(\phi(k))=f(y)(\phi(k) a b v)=0$ for all $v \in \mathbb{F}$ which do not begin with b^{-1}. Let $t, h \in \mathbb{F}$ be such that $g=h \phi(t)$ and such that the reduced word representation of h does not end in $a a, a^{-1} a^{-1}, b b$, or $b^{-1} b^{-1}$. Then

$$
f(y)={ }^{*} g \cdot f(x)=h \cdot f(t \cdot x)=h \cdot f\left(x^{\prime}\right)
$$

($={ }^{*}$ denotes equality at all but finitely many coordinates) where $x^{\prime}=t \cdot x$. If $h=1_{\mathbb{F}}$, then we are done since f is injective. Towards a contradiction, suppose that $h \neq 1_{\mathbb{F}}$.

If $h^{-1} \phi(k) a b=b^{2 m}$ for $m \in \mathbb{Z}$ (possibly $m=0$) then set $s_{1}=b$ and $s_{2}=a^{-1}$. Otherwise let $s_{1} \in\left\{a, a^{-1}\right\}$ be such that s_{1}^{-1} is not the last element in the reduced word representation of $h^{-1} \phi(k) a b$, and let $s_{2}=b$. We must have that for some $n \geq 1$

$$
0=f(y)\left(\phi(k) a b\left(s_{1} s_{2}\right)^{n}\right)=\left[h \cdot f\left(x^{\prime}\right)\right]\left(\phi(k) a b\left(s_{1} s_{2}\right)^{n}\right)=f\left(x^{\prime}\right)\left(h^{-1} \phi(k) a b\left(s_{1} s_{2}\right)^{n}\right) .
$$

By the definition of f, there must be $p, v \in \mathbb{F}$ with v not beginning with b^{-1} and

$$
h^{-1} \phi(k) a b\left(s_{1} s_{2}\right)^{n}=\phi(p) a b v \text { or } h^{-1} \phi(k) a b\left(s_{1} s_{2}\right)^{n}=\phi(p) .
$$

By choosing a larger value of n if necessary, we can assume $h^{-1} \phi(k) a b\left(s_{1} s_{2}\right)^{n}=$ $\phi(p) a b v$. Notice that since the first segment of h^{-1} is odd, the first segment of $h^{-1} \phi(k)$ must also be odd. If the initial segment of $h^{-1} \phi(k) a b$ is not odd, then $h^{-1} \phi(k)$ must have at most two segments and $h^{-1} \phi(k) a b$ must be either $a^{2 m} b$ or $b^{2 m}$ for some $m \in \mathbb{Z}$ (possibly $m=0$). In $\phi(p) a b v$, the first odd segment of type b is preceded by an odd segment of type a or a^{-1}. So for $m \in \mathbb{Z}$ we have

$$
a^{2 m} b a^{ \pm 1} s_{2}\left(s_{1} s_{2}\right)^{n-1} \neq \phi(p) a b v \neq b^{2 m} b a^{-1}\left(s_{1} s_{2}\right)^{n-1} .
$$

Therefore $a^{2 m} b \neq h^{-1} \phi(k) a b \neq b^{2 m}$ (recall the definition of s_{1} and s_{2}). Thus the initial segment of $h^{-1} \phi(k) a b$ must be odd. So the initial segment of $\phi(p) a b v$ must be odd and thus we must have that $\phi(p)=a^{2 m}$ for some $m \in \mathbb{Z}$. Then the initial segment of $h^{-1} \phi(k) a b$ must be of type a or a^{-1} and hence the initial segment of $h^{-1} \phi(k)$ is of type a or a^{-1}. We cannot have $h^{-1} \phi(k) \in\langle a\rangle$ as otherwise the initial segment of $h^{-1} \phi(k) a b$ would be even. So $h^{-1} \phi(k)$ has at least two segments and the first segment is of type a or a^{-1}. Since

$$
h^{-1} \phi(k) a b\left(s_{1} s_{2}\right)^{n}=a^{2 m+1} b v
$$

the second segment of $h^{-1} \phi(k)$ must be of type b (as opposed to being of type b^{-1}).
Let $t_{1} \in\left\{b, b^{-1}\right\}$ be such that t_{1}^{-1} is not the last element of the reduced word representation of $h^{-1} \phi(k)$. Set $t_{2}=a$. Then there is $N \in \mathbb{N}$ with

$$
f(y)\left(\phi(k)\left(t_{1} t_{2}\right)^{N}\right)=\left[h \cdot f\left(x^{\prime}\right)\right]\left(\phi(k)\left(t_{1} t_{2}\right)^{N}\right)
$$

Clearly $\phi(k)\left(t_{1} t_{2}\right)^{N}$ is not in the image of ϕ. Also, the first odd segment of $\phi(k)\left(t_{1} t_{2}\right)^{N}$ is of type b or b^{-1}, so there cannot exist $k^{\prime}, v^{\prime} \in \mathbb{F}$ with v^{\prime} not beginning with b^{-1} and $\phi(k)\left(t_{1} t_{2}\right)^{N}=\phi\left(k^{\prime}\right) a b v^{\prime}$. By the definition of f we have $f(y)\left(\phi(k)\left(t_{1} t_{2}\right)^{N}\right)=1$. However, there is $v^{\prime} \in \mathbb{F}$ not beginning with b^{-1} with

$$
h^{-1} \phi(k)\left(t_{1} t_{2}\right)^{N}=\phi(p) a b v^{\prime}
$$

(where p is the same as in the last paragraph). We have

$$
\left[h \cdot f\left(x^{\prime}\right)\right]\left(\phi(k)\left(t_{1} t_{2}\right)^{N}\right)=f\left(x^{\prime}\right)\left(\phi(p) a b v^{\prime}\right)=f\left(x^{\prime}\right)(\phi(p) a b v)=0
$$

This is a contradiction. We conclude $h=1_{\mathbb{F}}$.
We are now ready for the final theorem of this chapter. This theorem states that $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ are universal countable Borel equivalence relations when G is not locally finite. We mention that John Clemens claims to have an independent proof of this theorem, however as of yet he has not made his proof public.

To give a very rough outline of the proof, we will construct elements of 2^{G} which have behavior very similar to elements of $2^{\mathbb{Z}}$ and then we will adapt and implement Clemens' proof of this result for $\mathrm{TC}(\mathbb{Z})$.

Theorem 9.4.9. Let G be a countably infinite, nonlocally finite group. Then $\mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ are universal countable Borel equivalence relations.

Proof. Since G is not locally finite, there is a finite symmetric $1_{G} \in S \subseteq G$ with $\langle S\rangle$ infinite. Set $p_{1}(k)=16 \cdot\left(2 k^{4}+1\right)$ and for $n>1$ set $p_{n}(k)=2 k^{4}+1$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Corollary 5.4.8 there is a centered, directed, and maximally disjoint blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ with $\left|\Lambda_{n}\right| \geq \log _{2} p_{n}\left(\left|F_{n}\right|\right)$ for all $n \geq 1$. It is easy to see from the proof of Corollary 5.4.8 that the blueprint can be chosen to have the additional property that $F_{1} \subseteq\langle S\rangle$. Recall that we are free to fix a choice of distinct $\alpha_{n}, \beta_{n}, \gamma_{n} \in D_{n-1}^{n}$ for all $n \geq 1$. For $n \geq 1$ set $\gamma_{n}=1_{G}$ and let $\alpha_{n}, \beta_{n} \in D_{n-1}^{n}-\left\{1_{G}\right\}$ be arbitrary but distinct. By clause (viii) of Lemma 5.1.5, we have $\bigcap_{n \in \mathbb{N}} \Delta_{n} a_{n}=\bigcap_{n \in \mathbb{N}} \Delta_{n} b_{n}=\varnothing$. Apply Theorem 5.2.5 to get a function c which is canonical with respect to this blueprint. By Proposition 7.3.5 c is Δ-minimal. Apply Corollary 7.4.7 to get a fundamental and Δ-minimal c^{\prime} with $\left|\Theta_{1}\left(c^{\prime}\right)\right| \geq \log _{2}(16)=4$ and with the property that every element of 2^{G} extending c^{\prime} is a 2 -coloring. A trivial application of Lemma 7.4.5 (with μ identically 0), Lemma 7.3.6, and Lemma 7.3 .8 gives us a fundamental and Δ-minimal $x \in 2 \subseteq G$ extending c^{\prime} and with the property that $\left|\Theta_{1}(x)\right|=4$ and $\Theta_{n}(x)=\varnothing$ for $n>1$. Let $\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}$ be the distinct elements of $\Theta_{1}(x)$. From this point forward Θ_{1} will denote $\Theta_{1}(x)$.

Equip $\langle S\rangle$ with the left-invariant word length metric ρ induced by the generating set S. We define a norm on $\langle S\rangle$ and on finite subsets of $\langle S\rangle$ by

$$
\|g\|=\rho\left(g, 1_{G}\right), \text { and }
$$

$$
\|A\|=\max \left\{\rho\left(a, 1_{G}\right): a \in A\right\}
$$

for $g \in\langle S\rangle$ and finite $A \subseteq\langle S\rangle$. Notice that if $A, B \subseteq\langle S\rangle$ are finite then $\|A B\| \leq$ $\|A\|+\|B\|$. Set

$$
d=\left\|F_{1} F_{1}^{-1}\right\|
$$

This expression is meaningful since $F_{1} \subseteq\langle S\rangle$. Apply Lemma 9.4.7 with respect to the number $4 d+1$ to get $P: \mathbb{Z} \rightarrow\langle S\rangle \subseteq G$. Recall that $1_{G} \in S$ and therefore for $m \in \mathbb{N}$

$$
\bigcup_{i=0}^{m} S^{i}=S^{m}
$$

We claim that for every $n \in \mathbb{Z}$

$$
\left\{k \in \mathbb{Z}: P(k) F_{1} F_{1}^{-1} \cap P(n) F_{1} F_{1}^{-1} F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} \neq \varnothing\right\}=\{n-1, n, n+1\} .
$$

Indeed, if $k \in \mathbb{Z}$ is in the set on the left then

$$
P(n)^{-1} P(k) \in F_{1} F_{1}^{-1} F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} F_{1} F_{1}^{-1}
$$

so

$$
|k-n|(4 d+1)=\left\|P(k)^{-1} P(n)\right\| \leq d+d+(4 d+1)+d+d=8 d+1
$$

Thus $|k-n| \leq 1$. On the other hand, if $k \in \mathbb{Z}$ and $|k-n| \leq 1$ then $P(k) \in P(n) S^{4 d+1}$ since $\left\|P(n)^{-1} P(k)\right\|=|k-n|(4 d+1) \leq 4 d+1$. For each $n \in \mathbb{Z}$, pick $Q(n) \in \Delta_{1}$ with $Q(n) \in P(n) F_{1} F_{1}^{-1}$. Note that $Q(n) \neq Q(k)$ for $n \neq k$. Also, we have that for all $n \in \mathbb{Z}$

$$
\left\{k \in \mathbb{Z}: Q(k) \cap Q(n) F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} \neq \varnothing\right\}=\{n-1, n, n+1\}
$$

Let $\pi \in 2^{\mathbb{Z}}$ be a 2 -coloring with π and $-\pi$ orthogonal (see Lemma 9.4.5). Define $x^{\prime} \in 2^{G}$ by

$$
x^{\prime}(g)= \begin{cases}x(g) & \text { if } g \in \operatorname{dom}(x) \\ \pi(n) & \text { if } g=Q(n) \theta_{2} \\ 1 & \text { if } g \in Q(\mathbb{Z}) \theta_{3} \\ 0 & \text { otherwise }\end{cases}
$$

Note that x^{\prime} admits a $Q(\mathbb{Z})$ membership test. Specifically,

$$
g \in Q(\mathbb{Z}) \Longleftrightarrow g \in \Delta_{1} \text { and } x^{\prime}\left(g \theta_{3}\right)=1
$$

Set

$$
X=\left\{w \in \overline{\left[x^{\prime}\right]}: 1_{G} \in \Delta_{1}^{w} \text { and } w\left(\theta_{3}\right)=1\right\}
$$

Notice that $X \cap\left[x^{\prime}\right]=Q(\mathbb{Z})^{-1} \cdot x^{\prime}$. It follows from the definition of Δ_{1}^{w} (see Section 7.1) that X is a clopen subset of $\overline{\left[x^{\prime}\right]}$. Therefore, if $w=\lim g_{n} \cdot x^{\prime} \in X$ then $g_{n} \cdot x^{\prime} \in X$ and $g_{n}^{-1} \in Q(\mathbb{Z})$ for all but finitely many $n \in \mathbb{N}$. So approximating $w \in X$ by points in $X \cap\left[x^{\prime}\right]=Q(\mathbb{Z})^{-1} \cdot x^{\prime}$ gives

$$
\left|F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} \cdot w \cap X\right|=3
$$

Notice that w is in the set on the left. We put a graph structure, Γ, on X as follows: $w, w^{\prime} \in X$ are adjacent in Γ if and only if $w \neq w^{\prime}$ and

$$
w^{\prime} \in F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} \cdot w
$$

Then every element of X has degree precisely 2 in Γ. Note that for $k \in \mathbb{Z}$ the vertices adjacent to $Q(k)^{-1} \cdot x^{\prime}$ are precisely $Q(k-1)^{-1} \cdot x^{\prime}$ and $Q(k+1)^{-1} \cdot x^{\prime}$. Again, approximating points in X by points in $X \cap\left[x^{\prime}\right]=Q(\mathbb{Z})^{-1} \cdot x^{\prime}$ shows that every connected component of Γ is infinite and in particular is isomorphic to the standard Cayley graph of \mathbb{Z}.

We claim that for $w \in X$ the connected component of Γ containing w is precisely $[w] \cap X$. Clearly the connected component of Γ containing w is contained in $[w] \cap X$. We now show the opposite inclusion. So suppose that $h \in G$ and $h \cdot w \in X$. We can approximate w by points in $\left[x^{\prime}\right] \cap X$ to find $g \in G$ such that $g \cdot x^{\prime}, h g \cdot x^{\prime} \in X$. Since $\left[x^{\prime}\right] \cap X \subseteq\langle S\rangle \cdot x^{\prime}$ and x^{\prime} has trivial stabilizer, we have that $g, g h \in\langle S\rangle$ and thus $h \in\langle S\rangle$. Let $n \in \mathbb{N}$ be such that $\|h\| \leq n(4 d+1)+2 d$. Again, approximating w by points in $\left[x^{\prime}\right] \cap X$, we find $g^{\prime} \in G$ such that $t g^{\prime} \cdot x^{\prime} \in X \Leftrightarrow t \cdot w \in X$ for every $t \in S^{n(4 d+1)+2 d}$. So $g^{\prime} \cdot x^{\prime}, h g^{\prime} \cdot x^{\prime} \in X$ and thus there are $-n \leq m \leq n$ and $k \in \mathbb{Z}$ with $g^{\prime}=Q(k)^{-1}$ and $h=Q(k+m)^{-1} Q(k)$. So for $|i| \leq|m|$ we have $Q(k+i)^{-1} Q(k) g^{\prime} \cdot x^{\prime} \in X$ and thus $Q(k+i)^{-1} Q(k) \cdot w \in X$. Therefore there is a path in Γ from $w=Q(k)^{-1} Q(k) \cdot w$ to $h \cdot w=Q(k+m)^{-1} Q(k) \cdot w$. We conclude that $[w] \cap X$ is precisely the connected component of Γ containing w. We point out for future reference that this argument showed that if $w \in X$ and $h \cdot w \in X$ then $h \in Q(\mathbb{Z})^{-1} Q(\mathbb{Z})$.

We now define an action, $*$, of \mathbb{Z} on X. Let $M \in \mathbb{N}$ be such that for all $n_{1}, n_{2} \in \mathbb{Z}$ there is $-M \leq t \leq M$ with $\pi\left(n_{1}+t\right) \neq \pi\left(n_{2}-t\right)$ (M exists since π is orthogonal to $-\pi$). Fix $w \in X$. Set $w_{0}=w$ and let $w_{-M}, w_{-M+1} \ldots, w_{M-1}, w_{M} \in X$ be the vertices which can be joined to w_{0} in Γ by a path of length at most M. Rearranging the indices if necessary, we may assume that $\left(w_{i}, w_{i+1}\right) \in \mathrm{E}(\Gamma)$ for each $-M \leq i<$ M. By approximating w_{0} by elements of $\left[x^{\prime}\right] \cap X$, we see that there is $n \in \mathbb{Z}$ with either $w_{i}\left(\theta_{2}\right)=\pi(n+i)$ for all $-M \leq i \leq M$ or $w_{i}\left(\theta_{2}\right)=-\pi(-n+i)=\pi(n-i)$ for all $-M \leq i \leq M$. By the definition of M, one of these two possibilities must
fail for all $n \in \mathbb{Z}$ so in particular the two possibilities cannot be simultaneously satisfied. By swapping w_{i} and w_{-i} for each $-M \leq i \leq M$ if necessary, we may assume that there is $n \in \mathbb{Z}$ with $w_{i}\left(\theta_{2}\right)=\pi(n+i)$ for all $-M \leq i \leq M$. We define $0 * w_{0}=w_{0}, 1 * w_{0}=w_{1}$, and $-1 * w_{0}=w_{-1}$. In general, recursively define $k * w_{0}=1 *\left((k-1) * w_{0}\right)$ and $-k * w_{0}=-1 *\left((-k+1) * w_{0}\right)$ for $k>1$ and $w_{0} \in X$.

We claim this action of \mathbb{Z} on X is continuous. Since X is clopen in $\overline{\left[x^{\prime}\right]}$, there is a finite $1_{G} \in B \subseteq G$ and $V \subseteq 2^{B}$ such that for $w^{\prime} \in \overline{\left[x^{\prime}\right]}$ we have $w^{\prime} \in X$ if and only if $w^{\prime} \upharpoonright B \in V$. By approximating $w=w_{0} \in X$ by elements of $\left[x^{\prime}\right] \cap X$ and recalling the definitions of P and Q we see that

$$
w_{-M}, w_{-M+1}, \ldots, w_{M} \in F_{1} F_{1}^{-1} S^{M(4 d+1)} F_{1} F_{1}^{-1} \cdot w_{0} \subseteq S^{M(4 d+1)+2 d} \cdot w_{0}
$$

Let $w^{\prime} \in X$ and let $w_{-M}^{\prime}, \ldots, w_{M}^{\prime}$ be defined similarly to before, with $w_{0}^{\prime}=w^{\prime}$. For $-M \leq i \leq M$ let $g_{i} \in G$ be such that $w_{i}=g_{i} \cdot w_{0}$. If

$$
w_{0}^{\prime} \upharpoonright S^{M(4 d+1)+2 d} B\left\{1_{G}, \theta_{2}\right\}=w_{0} \upharpoonright S^{M(4 d+1)+2 d} B\left\{1_{G}, \theta_{2}\right\}
$$

then $\left(f \cdot w_{0}^{\prime}\right) \upharpoonright B=\left(f \cdot w_{0}\right) \upharpoonright B$ for all $f \in S^{M(4 d+1)+2 d}$ and hence $w_{i}^{\prime}=g_{i} \cdot w_{0}^{\prime}$ and $w_{i}^{\prime}\left(\theta_{2}\right)=w_{i}\left(\theta_{2}\right)$ for all $-M \leq i \leq M$. So if w^{\prime} and w satisfy the displayed expression above and if w^{\prime} is sufficiently close to w, then $1 * w^{\prime}=g_{1} \cdot w^{\prime}$ is close to $1 * w=g_{1} \cdot w$ since the action of G on 2^{G} is continuous. Similarly $-1 * w^{\prime}$ is close to $-1 * w$. We conclude that the action of \mathbb{Z} on X is continuous. In fact, since X is compact, for each $k \in \mathbb{Z}$ the map $w \mapsto k * w$ is uniformly continuous.
X is a clopen subset of $\overline{\left[x^{\prime}\right]}$ and is therefore compact and Hausdorff. Therefore, there is $y \in X$ which is minimal with respect to the action of \mathbb{Z} (Lemma 2.4.2). For notational simplicity for the rest of the proof, we redefine $\pi \in 2^{\mathbb{Z}}$ by

$$
\pi(n)=(n * y)\left(\theta_{2}\right)
$$

Notice that this new π is in the closure of the orbit of the old π, the new π is a 2 -coloring, and it is orthogonal to its reflection $-\pi$.

Fix an increasing sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G with $1_{G} \in C_{0}, C_{n}=$ C_{n}^{-1}, and $\bigcup_{n \in \mathbb{N}} C_{n}=G$. For $n \in \mathbb{N}$ define $\xi_{n}: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
\xi_{n}(m)=\left\|C_{n}^{-1} S^{m} C_{n} \cap\langle S\rangle\right\| .
$$

Then for each $n \in \mathbb{N}$ the function ξ_{n} is monotone increasing, tends to infinity, and $m \leq \xi_{n}(m) \leq \xi_{n+1}(m)$ for all $m \in \mathbb{N}$. The functions ξ_{n} may not map bijectively onto \mathbb{N}, but we define functions ν_{n} which behave similar to ξ_{n}^{-1}. For $n, k \in \mathbb{N}$ we define

$$
\nu_{n}(k)=\min \left\{m \in \mathbb{N}: \xi_{n}(m) \geq k\right\}
$$

We again have that for each $n \in \mathbb{N}$ the function ν_{n} is monotone increasing, tends to infinity, and $\nu_{n+1}(k) \leq \nu_{n}(k) \leq k$.

Apply Lemma 9.4.6 to get an increasing function $s: \mathbb{N} \rightarrow \mathbb{N}_{+}$such that $\lim s(n) * y=y$ and for all $n, n^{\prime}, k \in \mathbb{N}$ the following implication holds:

$$
\begin{gathered}
-2 d+\nu_{k}((4 d+1)(s(k+1)-s(k)-8)-2 d) \\
\leq(4 d+1)\left|s(n)-s\left(n^{\prime}\right)\right| \leq \\
2 d+\xi_{k}((4 d+1)(s(k+1)-s(k)+8)+2 d)
\end{gathered}
$$

implies $\max \left(n, n^{\prime}\right)=k+1$. The reader is discouraged from thinking too much about the technical condition above. The technical requirement on the function s is needed briefly for a very specific purpose near the end of the proof. Aside from
this, we will only make use of the fact that $\lim s(n) * y=y$ and that $s(n)>0$ for all $n \in \mathbb{N}$.

For $n \in \mathbb{Z}$ let $q_{n} \in G$ be the unique group element with $q_{n}^{-1} \cdot y=n * y$. Note that $q_{0}=1_{G},\left\{q_{n}: n \in \mathbb{Z}\right\} \subseteq \Delta_{1}^{y} \subseteq\langle S\rangle$, and for $n, k \in \mathbb{Z}$

$$
(4 d+1)|n-k|-2 d \leq\left\|q_{n}^{-1} q_{k}\right\| \leq(4 d+1)|n-k|+2 d
$$

Although it is a bit of a misnomer, we will refer to $\left(q_{n}\right)_{n \in \mathbb{Z}}$ as a bi-infinite path, and for $t \in \mathbb{Z}$ we will refer to $\left(q_{n}\right)_{n \geq t}$ as a right-infinite path and $\left(q_{n}\right)_{n \leq t}$ as a left-infinite path. The point $y \in 2^{G}$ in some sense mimics $\pi \in 2^{\mathbb{Z}}$. The rest of the proof will proceed by working with certain elements of 2^{G} which agree with y on all coordinates not in $\Delta_{1}^{y} \Theta_{1}$. Find a sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ in G with $y=\lim g_{n} \cdot x^{\prime}$ and set $z=\lim g_{n} \cdot x$. Note that the limit exists, $1_{G} \in \Delta_{1}^{z}=\Delta_{1}^{y}$, and for all $g \notin \Delta_{1}^{y} \Theta_{1}$ $z(g)=y(g)$. Since $z \in \overline{[x]}, z$ is Δ-minimal, every element of 2^{G} extending z is a 2 -coloring, and $G-\operatorname{dom}(z)=\Delta_{1}^{z} \Theta_{1}$. We also have the useful property that $\lim q_{s(n)}^{-1} \cdot z=z$. From this point forward we will work with y and extensions of z and therefore no longer need x or x^{\prime}.

Let \mathbb{F} denote the nonabelian free group with two generators a and b. Let $J \subseteq 2^{\mathbb{F}}$ be as referred to in Lemma 9.4.8. Define $c: \mathbb{F} \rightarrow 2^{<\mathbb{N}}$ by setting

$$
\begin{array}{cl}
c\left(1_{\mathbb{F}}\right) & =11000011, \\
c(a) & =11100011, \\
c\left(a^{-1}\right) & =11010011, \\
c(b) & =11001011, \\
c\left(b^{-1}\right) & =11000111,
\end{array}
$$

and

$$
c(g)=c\left(e_{1}\right) \frown c\left(e_{2}\right) \frown \ldots \frown c\left(e_{n}\right)
$$

where \frown denotes concatenation, $g \in \mathbb{F}-\left\{1_{\mathbb{F}}\right\}, e_{i} \in\left\{a, a^{-1}, b, b^{-1}\right\}$, and $g=e_{1}$. $e_{2} \cdots e_{n}$ is the unique reduced word representation of g. Note that $c(g)$ has length 8 times as long as the length of the reduced word representation of g (for $g \neq 1_{\mathbb{F}}$).

Let $\left(h_{i}\right)_{i \in \mathbb{N}}$ be an enumeration of \mathbb{F} with $h_{0}=1_{\mathbb{F}}$. For $i, k \in \mathbb{N}$ and $u \in J$ define

$$
f(u, i, k)(g)= \begin{cases}z(g) & \text { if } g \in \operatorname{dom}(z) \\ c\left(h_{i}\right)(n-s(k)) & \text { if } n \geq s(k) \wedge n-s(k) \in \operatorname{dom}\left(c\left(h_{i}\right)\right) \wedge g=q_{n} \theta_{1} \\ \pi(n) & \text { if } n \geq s(k) \wedge g=q_{n} \theta_{2} \\ 1 & \text { if } n \geq s(k) \wedge g=q_{n} \theta_{3} \\ \left(h_{i} \cdot u\right)\left(h_{k}\right) & \text { if } g=\theta_{4} \\ 0 & \text { otherwise }\end{cases}
$$

The values of $f(u, i, k)$ are shown in Figure 9.4. Basically, $f(u, i, k)$ extends z and has special values at θ_{4} and along the right-infinite path $\left(q_{n}\right)_{n \geq s(k)}$ and is zero elsewhere. Along the path $\left(q_{n}\right)_{n \geq s(k)}, \theta_{1}$ is used to record $c\left(h_{i}\right), \theta_{2}$ is used to record π, and θ_{3} provides a simple $\left\{q_{n}: n \geq s(k)\right\}$ membership test. The single point θ_{4} is used to record $\left(h_{i} \cdot u\right)\left(h_{k}\right)$. For $u \in J$ we define the subflow $A(u)$ to be

$$
A(u)=\overline{G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}} .
$$

By clause (ii) of Proposition 6.1.2, $A(u)$ is a free subflow of 2^{G} for every $u \in J$. To complete the proof, it suffices, by Lemma 9.2.7 and clause (i) of Lemma 9.4.8,

invisible path
visible path data
c data and path data

Figure 9.1. The values of $f(u, i, k)$ for $n \geq s(k)$ and for $g \in \operatorname{dom}(z)$.
to show that A is a Borel reduction from $E_{\infty} \upharpoonright J$ to $\mathrm{TC}_{\mathrm{F}}(G)$. In other words, we must show that $A: J \rightarrow \mathrm{~S}_{\mathrm{F}}(G)$ is a Borel function and

$$
u E_{\infty} v \Longleftrightarrow A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)
$$

for all $u, v \in J$. Recall that by definition $u E_{\infty} v$ if and only if $[u]=[v]$.
We first prove that $A: J \rightarrow \mathrm{~S}_{\mathrm{F}}(G)$ is Borel. Recall that the topology on $\mathrm{S}_{\mathrm{F}}(G)$ is generated by the subbasic open sets

$$
\left\{K \in \mathrm{~S}_{\mathrm{F}}(G): K \subseteq U\right\} \text { and }\left\{K \in \mathrm{~S}_{\mathrm{F}}(G): K \cap U \neq \varnothing\right\}
$$

where U varies over the open subsets of 2^{G} (see Section 9.2). Let $U \subseteq 2^{G}$ be open. Temporarily define $f_{i, k}(u)=f(u, i, k)$. Then each $f_{i, k}: J \rightarrow 2^{G}$ is continuous. Since U is open we have $A(u) \cap U \neq \varnothing$ if and only if there are $i, k \in \mathbb{N}$ with
$[f(u, i, k)] \cap U \neq \varnothing$, or equivalently $f(u, i, k) \in \bigcup_{g \in G} g \cdot U$. Therefore

$$
A^{-1}\left(\left\{K \in \mathrm{~S}_{\mathrm{F}}(G): K \cap U \neq \varnothing\right\}\right)=\bigcup_{i, k \in \mathbb{N}} f_{i, k}^{-1}\left(\bigcup_{g \in G} g \cdot U\right)
$$

which is Borel since each $f_{i, k}$ is continuous. Define $U_{n}=\left\{x \in 2^{G}: d\left(x, 2^{G}-U\right) \geq\right.$ $1 / n\}$. Then each U_{n} is closed and we have that $A(u) \subseteq U$ if and only if there is $n \geq 1$ so that for all $i, k \in \mathbb{N}[f(u, i, k)] \subseteq U_{n}$ (this follows from the compactness of $A(u)$). The condition $[f(u, i, k)] \subseteq U_{n}$ is equivalent to $f(u, i, k) \in \bigcap_{g \in G} g \cdot U_{n}$. Therefore

$$
A^{-1}\left(\left\{K \in \mathrm{~S}_{\mathrm{F}}(G): K \subseteq U\right\}\right)=\bigcup_{n \geq 1 i, k \in \mathbb{N}} f_{i, k}^{-1}\left(\bigcap_{g \in G} g \cdot U_{n}\right)
$$

which is Borel since each $f_{i, k}$ is continuous. We conclude $A: J \rightarrow \mathrm{~S}_{\mathrm{F}}(G)$ is Borel.
For $u \in J$ we define $X(u) \subseteq A(u)$ similar to how we defined X before. Specifically, $w \in A(u)$ is an element of $X(u)$ if and only if $1_{G} \in \Delta_{1}^{w}$ and $w\left(\theta_{3}\right)=1$. We point out that $X(u)$ is a clopen subset of $A(u)$. Notice that for $i, k \in \mathbb{N}$ the elements of $[f(u, i, k)] \cap X(u)$ are precisely the points $q_{n}^{-1} \cdot f(u, i, k)$ for $n \geq s(k)$. We put a graph structure, $\Gamma(u)$, on $X(u)$ just as before. There is an edge between $w, w^{\prime} \in X(u)$ if and only if $w \neq w^{\prime}$ and

$$
w^{\prime} \in F_{1} F_{1}^{-1} S^{4 d+1} F_{1} F_{1}^{-1} \cdot w .
$$

It is clear from the definition of $A(u)$ that every element of $X(u)$ has degree either 1 or 2 in $\Gamma(u)$. As before, by approximating $w \in X(u)$ by elements of $X(u) \cap G$. $\{f(u, i, k): i, k \in \mathbb{N}\}$ we see that every connected component of $\Gamma(u)$ is infinite and that for $w \in X(u)$ the connected component of $\Gamma(u)$ containing w is precisely $[w] \cap X(u)$. Since some vertices in $\Gamma(u)$ have degree 1, we cannot define an action of \mathbb{Z} on $X(u)$ similar to before. We can however define an action of \mathbb{N} on $X(u)$ which we again denote by $*$. If $w \in X(u)$, then w lies in an infinite connected component of $\Gamma(u)$, so there are $w_{0}, w_{1}, \ldots, w_{2 M} \in X(u)$ (where M is as before) with $\left(w_{i}, w_{i+1}\right) \in \mathrm{E}(\Gamma(u))$ for each $0 \leq i<2 M$ and with $w=w_{k}$ for some $0 \leq k \leq 2 M$. By re-indexing the w_{i} 's if necessary, we may assume that there is $n \in \mathbb{Z}$ with $w_{i}\left(\theta_{2}\right)=\pi(n+i)$ for all $0 \leq i \leq 2 M$. If $k<2 M$ then we define $1 * w=1 * w_{k}=w_{k+1}$. If $k=2 M$ then an approximation by elements of $X(u) \cap G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}$ shows that w has degree 2 in $\Gamma(u)$ and hence there is $w_{2 M+1} \neq w_{2 M-1}$ which is adjacent to $w_{k}=w_{2 M}$. In this case, we define $1 * w=w_{2 M+1}$. In general, define $m * w=1 *((m-1) * w)$ and $0 * w=w$. This action is well defined due to the properties of M and π. The same argument as for the action of \mathbb{Z} on X shows that the action of \mathbb{N} on $X(u)$ is continuous, and hence for each $k \in \mathbb{N}$ the map $w \mapsto k * w$ is uniformly continuous. In fact, that previous argument shows something stronger which we will need. There is a finite set $B \subseteq G$ such that if $t \geq 2 M$ and $w, w^{\prime} \in X(u)$ satisfy

$$
w \upharpoonright S^{t(4 d+1)+2 d} B \Theta_{1}=w^{\prime} \upharpoonright S^{t(4 d+1)+2 d} B \Theta_{1}
$$

then for $g \in G$ and $0 \leq i \leq t$ we have

$$
\begin{gathered}
i * w=g \cdot w \Longleftrightarrow i * w^{\prime}=g \cdot w^{\prime}, \\
i *(g \cdot w)=w \Longleftrightarrow i *\left(g \cdot w^{\prime}\right)=w^{\prime},
\end{gathered}
$$

and if $g \cdot w \in X(u)$ and $i *(g \cdot w)=w$ or $i * w=g \cdot w$ then $(g \cdot w) \upharpoonright \Theta_{1}=\left(g \cdot w^{\prime}\right) \upharpoonright \Theta_{1}$.
We will now prove that if $u, v \in J$ and $u E_{\infty} v$ then $A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)$. So fix $u, v \in J$ with $u E_{\infty} v$, or in other words $[u]=[v]$. Let $g \in \mathbb{F}$ be such that $u=g \cdot v$. By considering the reduced word representation of g in the generators a and b and using the fact that $\mathrm{TC}_{\mathrm{F}}(G)$, being an equivalence relation, is transitive and symmetric, we see that it suffices to consider the cases $u=a \cdot v$ and $u=b \cdot v$. We will treat the case $u=a \cdot v$ as the case $u=b \cdot v$ is nearly identical. We must show that $A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)$. Define the permutation $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ by setting $\sigma(i)=j$ if $h_{i} a=h_{j}$. Let ϕ be the function sending $g \cdot f(u, i, k)$ to $g \cdot f(v, \sigma(i), k)$ for each $g \in G$ and $i, k \in \mathbb{N}$. The function ϕ is well defined as it is easy to check that $[f(u, i, k)] \neq[f(u, j, m)]$ for $i, j, k, m \in \mathbb{N}$ with $(i, k) \neq(j, m)$ (since $f(u, i, k)$ and $f(u, j, m)$ extend z, one can apply clause (i) of Proposition 6.1.2). Notice that

$$
f(u, i, k)\left(\theta_{4}\right)=\left(h_{i} \cdot u\right)\left(h_{k}\right)=\left(h_{i} a \cdot v\right)\left(h_{k}\right)=\left(h_{\sigma(i)} \cdot v\right)\left(h_{k}\right)=f(v, \sigma(i), k)\left(\theta_{4}\right)
$$

Therefore ϕ is only changing the $c\left(h_{i}\right)$ data in $g \cdot f(u, i, k)$ to the $c\left(h_{\sigma(i)}\right)$ data in $g \cdot f(v, \sigma(i), k)$. Notice that in order to change $c\left(h_{i}\right)$ to $c\left(h_{\sigma(i)}\right)$ one only needs to either append $c(a)$ (if $c\left(h_{i}\right)$ does not end with $c\left(a^{-1}\right)$ and $h_{i} \neq 1_{\mathbb{F}}$), change the last 8 digits of $c\left(h_{i}\right)$ (if $h_{i}=a^{-1}$ or $h_{i}=1_{\mathbb{F}}$), or delete the last 8 digits of $c\left(h_{i}\right)$ (if $c\left(h_{i}\right)$ ends with $c\left(a^{-1}\right)$ and $\left.h \neq a^{-1}\right)$. Therefore if ℓ_{i} denotes the length of $c\left(h_{i}\right)$ then $g \cdot f(u, i, k)$ and $g \cdot f(v, \sigma(i), k)$ agree on

$$
G-g\left\{q_{n}: s(k)+\ell_{i}-8 \leq n \leq s(k)+\ell_{i}+8\right\} \theta_{1} .
$$

To show that ϕ is induced by a block code, it suffices to show that the map $w \mapsto$ $\phi(w)\left(1_{G}\right)$ is uniformly continuous for $w \in G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}$. If $\phi(w)\left(1_{G}\right) \neq$ $w\left(1_{G}\right)$, then there must be $i, k, n \in \mathbb{N}$ with $n \geq s(k)$ and $w=\left(q_{n} \theta_{1}\right)^{-1} \cdot f(u, i, k)$, in which case $w \in \theta_{1}^{-1} \cdot X(u)$ as $q_{n}^{-1} \cdot f(u, i, k) \in X(u)$. So for w not in $\theta_{1}^{-1} \cdot X(u)$ we have $\phi(w)\left(1_{G}\right)=w\left(1_{G}\right)$, and thus the map $w \mapsto \phi(w)\left(1_{G}\right)$ is uniformly continuous outside of $\theta_{1}^{-1} \cdot X(u)$. Since $\theta_{1}^{-1} \cdot X(u)$ is clopen, it suffices to show that the map $w \mapsto \phi(w)\left(1_{G}\right)$ is uniformly continuous on

$$
\left(\theta_{1}^{-1} \cdot X(u)\right) \cap(G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}) .
$$

But on this set the map $w \mapsto \phi(w)\left(1_{G}\right)$ is the composition of the maps $w \mapsto \theta_{1} \cdot w$ (with domain the set above) and $g \cdot f(u, i, k) \mapsto(g \cdot f(v, \sigma(i), k))\left(\theta_{1}\right)$ (with domain $X(u) \cap G \cdot\{f(u, i, k): i, k \in \mathbb{N}\})$. The first map is clearly uniformly continuous, and the uniform continuity of the second map follows from our discussion on how to change $c\left(h_{i}\right)$ to $c\left(h_{\sigma(i)}\right)$ and from the final remark of the previous paragraph. Therefore ϕ is induced by a block code and so extends to a continuous function $\phi: A(u) \rightarrow A(v)$ which commutes with the action of G. The set $\phi(A(u))$ is compact, hence closed, and contains a dense subset of $A(v)$. So $\phi(A(u))=A(v)$. By considering the block code for ϕ, it is easy to see that ϕ is injective (alternatively, we could have just as easily shown that the inverse map $\phi^{-1}: G \cdot\{f(v, i, k): i, k \in$ $\mathbb{N}\} \rightarrow G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}$ is induced by a block code and so extends to $\left.\phi^{-1}: A(v) \rightarrow A(u)\right)$. We conclude that $A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)$.

Before proving $A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)$ implies $u E_{\infty} v$, we first have to shed more light on the properties of $A(u)$. In order to better understand the subflow $A(u)$, we
make a few more definitions. For $i \in \mathbb{N}$ define

$$
f(i)(g)= \begin{cases}z(g) & \text { if } g \in \operatorname{dom}(z) \\ c\left(h_{i}\right)(n) & \text { if } n \geq 0 \wedge n \in \operatorname{dom}\left(c\left(h_{i}\right)\right) \wedge g=q_{n} \theta_{1} \\ \pi(n) & \text { if } n \geq 0 \wedge g=q_{n} \theta_{2} \\ 1 & \text { if } n \geq 0 \wedge g=q_{n} \theta_{3} \\ 0 & \text { otherwise }\end{cases}
$$

The function $f(i)$ is very similar to $f(u, i, k)$, but differs in two ways. First, $f(i)$ has special values along the path $\left(q_{n}\right)_{n \geq 0}$, while $f(u, i, k)$ has special values along the path $\left(q_{n}\right)_{n \geq s(k)}$. Second, $f(i)\left(\theta_{4}\right)=0$ while $f(u, i, k)\left(\theta_{4}\right)=\left(h_{i} \cdot u\right)\left(h_{k}\right)$. We define z_{0} to be the extension of z which is zero everywhere z is not defined, and z_{1} by

$$
z_{1}(g)= \begin{cases}z(g) & \text { if } g \in \operatorname{dom}(z) \\ 1 & \text { if } g=\theta_{4} \\ 0 & \text { otherwise }\end{cases}
$$

We call the points in $X(u)$ path data points. If $w \in X(u)$ and there are $0 \leq i, j \leq 8$ and $w^{\prime} \in X(u)$ with $w^{\prime}\left(\theta_{1}\right)=1, i * w^{\prime}=w$, and $(j * w)\left(\theta_{1}\right)=1$ then we call w a c data point (here the " c " is in reference to the function $c: \mathbb{F} \rightarrow 2^{<\mathbb{N}}$). The final remark of the paragraph in which $X(u)$ was defined shows that the set of c data points in $A(u)$ is a clopen subset of $A(u)$. By approximating $w \in X(u)$ by elements of $G \cdot\{f(u, i, k): i, k \in \mathbb{N}\}$ we see that the set of c data points in $[w] \cap X(u)$ is connected in $\Gamma(u)$. The action of \mathbb{N} on $X(u)$ gives us a well defined notion of right and left directions in $X(u)$. Namely, if $w \in X(u)$ then $1 * w$ is to the right of w, and if w has degree 2 in $\Gamma(u)$ then the unique $w^{\prime} \in X(u)$ with $1 * w^{\prime}=w$ is to the left of w. With this convention, calling a connected subset of $\Gamma(u)$ leftinfinite, right-infinite, and bi-infinite has the obvious meaning. We use left-infinite and right-infinite in the strict sense, meaning that any set which is left-infinite or right-infinite cannot be bi-infinite. We say $x \in A(u)$ has infinite, right-infinite, left-infinite, or bi-infinite path data (c data), if $[x] \cap X(u)$ (respectively the c data points in $[x] \cap X(u)$) is infinite, right-infinite, left-infinite, or bi-infinite respectively. We say $x \in A(u)$ has finite path data (finite c data) if $[x] \cap X(u)$ (respectively the c data points in $[x] \cap X(u))$ is nonempty and finite. Finally we say $x \in A(u)$ has no path data (no c data) if $[x] \cap X(u)$ (respectively the set of c data points in $[x] \cap X(u))$ is empty.

For $u \in J$, we define:
$A_{1}(u)=\bigcup_{i, k \in \mathbb{N}}[f(u, i, k)] ;$
$A_{2}(u)=\bigcup_{i \in \mathbb{N}}[f(i)] ;$
$A_{3}(u)=\{w \in A(u): w$ has infinite c data $\} ;$
$A_{4}(u)=\{w \in A(u): w$ has bi-infinite path data but no c data $\} ;$
$A_{5}(u)=\left[z_{1}\right] ;$
$A_{6}(u)=\overline{\left[z_{0}\right]}$.
Note that $A_{1}(u)$ through $A_{5}(u)$ may not be subflows of 2^{G}. We spend the next few paragraphs proving the following:
(i) $\left\{A_{1}(u), A_{2}(u), \ldots, A_{6}(u)\right\}$ is a partition of $A(u)$;
(ii) $A_{1}(u)$ is the set of isolated points of $A(u)$;
(iii) $A_{6}(u)$ is minimal;
(iv) $A_{4}(u) \subseteq \overline{[w]}$ for all $w \in A_{4}(u)$;
(v) $A_{4}(u) \cup A_{6}(u)=\bigcap_{i, k \in \mathbb{N}} \overline{[f(u, i, k)]}$.
(i). We first check that the sets are pairwise disjoint. Notice that the points in $A_{1}(u) \cup A_{2}(u)$ have finite c data, and the points in $A_{5}(u) \cup A_{6}(u)$ have no path data and no c data. So we only need to show that $A_{1}(u) \cap A_{2}(u)=A_{5}(u) \cap A_{6}(u)=\varnothing$. Since $s(k)>0$ for all $k \in \mathbb{N}$, for $i, j \in \mathbb{N}$ we have

$$
f(u, i, k)\left(\theta_{1}\right)=0 \neq 1=f(j)\left(\theta_{1}\right)
$$

and hence $f(u, i, k) \neq f(j)$. If $s \neq 1_{G}$, then by clause (i) of Proposition 6.1.2 there is $t \in G$ with $t, s^{-1} t \in \operatorname{dom}(z)$ and

$$
(s \cdot f(u, i, k))(t)=f(u, i, k)\left(s^{-1} t\right)=z\left(s^{-1} t\right) \neq z(t)=f(j)(t)
$$

Therefore $f(j) \notin[f(u, i, k)]$ and $[f(j)] \cap[f(u, i, k)]=\varnothing$. It follows that $A_{1}(u)$ and $A_{2}(u)$ are disjoint. Finally, we have $z_{1}\left(\theta_{4}\right)=1$ but $w\left(\theta_{4}\right)=0$ for all $w \in A_{6}(u)$ with $1_{G} \in \Delta_{1}^{w}$. So $A_{5}(u)$ and $A_{6}(u)$ are disjoint as well. Now we move on to showing that $A_{r}(u) \subseteq A(u)$ for $1 \leq r \leq 6$. This is clear for $r=1, r=3$, and $r=4$. Since $z=\lim q_{s(n)}^{-1} \cdot z$, a comparison of $f(u, i, k)$ with z shows that

$$
f(i)=\lim q_{s(k)}^{-1} \cdot f(u, i, k)
$$

Therefore $A_{2}(u) \subseteq A(u)$. Clause (iii) of Lemma 9.4.8 implies that z_{1} is an accumulation point of $(f(u, 0, k))_{k \in \mathbb{N}}$, so $A_{5}(u) \subseteq A(u)$. Since

$$
(4 d+1)|n-m|-2 d \leq\left\|q_{n}^{-1} q_{m}\right\| \leq(4 d+1)|n-m|+2 d
$$

some element of $A_{6}(u)$ is an accumulation point of $\left(q_{n}^{-1} \cdot f(u, 0,0)\right)_{n=-1}^{-\infty}$. So, temporarily assuming the validity of clause (iii), we have $A_{6}(u) \subseteq A(u)$. We do point out that $A_{3}(u)$ and $A_{4}(u)$ are nonempty. Any accumulation point of $\left(q_{n}^{-1} \cdot f(u, 0,0)\right)_{n \in \mathbb{N}}$ is an element of $A_{4}(u)$ and any accumulation point of $\left(q_{t(i)}^{-1}\right.$. $f(u, i, 0))_{i \in \mathbb{N}}$ is an element of $A_{3}(u)$, where $t(i)$ is half the length of $c\left(h_{i}\right)$. Finally, we must show that if $w \in A(u)$ then $w \in A_{r}(u)$ for some $1 \leq r \leq 6$. If w has infinite c data then $w \in A_{3}(u)$. If w has no c data but has bi-infinite path data then $w \in A_{4}(u)$. If w has no c data and no path data then it is easy to see that $w \in A_{5}(u) \cup A_{6}(u)$. Finally, if w has finite c data and $w \notin A_{1}(u)$ then w must be in the orbit of a limit point of the form $\lim q_{s(k(n))}^{-1} \cdot f(u, i(n), k(n))$, where $k: \mathbb{N} \rightarrow \mathbb{N}$ tends to infinity. However, since this limit has finite c data, $i(n)$ must eventually be constant, say of value i, and hence $\lim q_{s(k(n))}^{-1} \cdot f(u, i(n), k(n))=f(i)$ (since $\left.\lim q_{s(k(n))}^{-1} \cdot z=z\right)$. Therefore $w \in[f(i)] \subseteq A_{2}(u)$.
(ii). From the definition of $A(u)$ it follows that every isolated point of $A(u)$ must lie in $A_{1}(u)$. Since G acts on $A(u)$ by homeomorphisms, it suffices to show that $\left\{q_{s(k)}^{-1} \cdot f(u, i, k): i, k \in \mathbb{N}\right\}$ consists of isolated points of $A(u)$. Fix $i, k \in \mathbb{N}$ and towards a contradiction suppose there are $q_{s(k)}^{-1} \cdot f(u, i, k) \neq x_{n} \in A(u)$ with $q_{s(k)}^{-1} \cdot f(u, i, k)=\lim x_{n}$. Since $A_{1}(u)$ is dense in $A(u)$, we may suppose without loss of generality that $x_{n} \in A_{1}(u)$ for every $n \in \mathbb{N}$. Since $q_{s(k)}^{-1} \cdot f(u, i, k) \in X(u)$ is not in $1 * X(u)$ (or equivalently, has no member of $X(u)$ to the left of it), we must have that $x_{n} \in X(u)-1 * X(u)$ for all sufficiently large $n \in \mathbb{N}$. For $j, m \in \mathbb{N}$ we have $[f(u, j, m)] \cap(X(u)-1 * X(u))=q_{s(m)}^{-1} \cdot f(u, j, m)$. Therefore there are functions $j, m: \mathbb{N} \rightarrow \mathbb{N}$ such that $x_{n}=q_{s(m(n))}^{-1} \cdot f(u, j(n), m(n))$ for all sufficiently large $n \in \mathbb{N}$. By recalling z and the definition of $s(n)$ and
q_{n}, we see that $\lim q_{s(m(n))}^{-1} \cdot f(u, j(n), m(n))=\lim f(j(n))$. So $q_{s(k)}^{-1} \cdot f(u, i, k)=$ $\lim f(j(n))$. Clearly we must have that $j(n)=i$ for sufficiently large n. Therefore $q_{s(k)}^{-1} \cdot f(u, i, k)=f(i)$, contradicting the fact that $A_{1}(u)$ and $A_{2}(u)$ are disjoint.
(iii). This follows immediately from the definition of z_{0} and the fact that z is Δ-minimal.
(iv). Let $w \in A_{4}(u)$ and let $h \in G$ be such that $h \cdot w \in X(u)$. By definition of $A(u)$, there are $g_{n} \in G$ and functions $i, k: \mathbb{N} \rightarrow \mathbb{N}$ with $w=\lim g_{n} \cdot f(u, i(n), k(n))$. Since $X(u)$ is clopen, $h g_{n} \cdot f(u, i(n), k(n)) \in X(u)$ for sufficiently large $n \in \mathbb{N}$. So for large n we have $h g_{n}=q_{m(n)}^{-1}$ where $m(n) \geq k(n)$ (since the limit $h \cdot w$ is a path data point). Since w has no c data and has bi-infinite path data, we have that $m(n) \gg k(n)+8\|i(n)\|$ for large n (here $\|i(n)\|$ denotes the reduced word length of $i(n) \in \mathbb{F})$. Since y and $f(u, i(n), k(n))$ agree outside of a neighborhood of $\left\{q_{t}:-\infty<t \leq k(n)+8\|i(n)\|\right\}$ we have that

$$
h \cdot w=\lim q_{m(n)}^{-1} \cdot f(u, i(n), k(n))=\lim m(n) * y .
$$

So $h \cdot w \in \overline{\mathbb{Z} * y}$. If $x \in A_{4}(u)$ then we similarly have that there is $g \in G$ with $g \cdot x \in \overline{\mathbb{Z} * y}$. Since y is minimal with respect to the action of \mathbb{Z}, we have $g \cdot x \in$ $\overline{\mathbb{Z} * y}=\overline{\mathbb{Z} *(h \cdot w)}$ (the action of \mathbb{Z} on $h \cdot w$ is defined since $h \cdot w \in \overline{\mathbb{Z} * y})$. Therefore $x \in \overline{[w]}$. We conclude $A_{4}(u) \subseteq \overline{[w]}$.
(v). Let $i, j, k, m \in \mathbb{N}$ with $(i, k) \neq(j, m)$. If $i \neq j \in \mathbb{N}$ then clearly $[f(u, i, k)] \neq$ [$f(u, j, m)$] since $c\left(h_{i}\right)$ and $c\left(h_{j}\right)$ are distinct. If $i=j$ and $k \neq m$ then $f(u, i, k) \neq$ $f(u, i, m)$ and furthermore by clause (i) of Proposition 6.1.2 we have $[f(u, i, k)] \neq$ $[f(u, i, m)]$. So $(i, k) \neq(j, m)$ implies $[f(u, i, k)] \neq[f(u, j, m)]$. So by clause (ii) we have that $A_{1}(u)$ is disjoint from $\bigcap_{i, k \in \mathbb{N}} \overline{[f(u, i, k)]}$. Now fix $i, k \in \mathbb{N}$. Since $f(u, i, k)$ has finite c data, every point of $\overline{[f(u, i, k)]}-[f(u, i, k)]$ must have no c data. Also, if $\gamma \in \Delta_{1}^{z}$ and $f(u, i, k)\left(\gamma \theta_{4}\right)=1$ then $\gamma=1_{G}$. So we cannot have $z_{1} \in \overline{[f(u, i, k)]}$. Therefore

$$
\bigcap_{j, m \in \mathbb{N}} \overline{[f(u, j, m)]} \subseteq A_{4}(u) \cup A_{6}(u) .
$$

Since

$$
(4 d+1)|n-m|-2 d \leq\left\|q_{n} q_{m}^{-1}\right\| \leq(4 d+1)|n-m|+2 d,
$$

there are subsequences of $\left(q_{n}^{-1} \cdot f(u, i, k)\right)_{n=-1}^{-\infty}$ and $\left(q_{n}^{-1} \cdot f(u, i, k)\right)_{n=1}^{\infty}$ converging to points in $A_{6}(u)$ and $A_{4}(u)$ respectively. So by clauses (iii) and (iv) $A_{4}(u) \cup A_{6}(u) \subseteq$ $\overline{[f(u, i, k)]}$. We conclude

$$
A_{4}(u) \cup A_{6}(u)=\bigcap_{i, k \in \mathbb{N}} \overline{[f(u, i, k)]} .
$$

Now we begin the final phase of the proof. All that remains is to show that if $u, v \in J$ and $A(u) \mathrm{TC}_{\mathrm{F}}(G) A(v)$ then $u E_{\infty} v$ (or equivalently $[u]=[v]$). So suppose that $\phi: A(u) \rightarrow A(v)$ is a conjugacy. Our proof proceeds by verifying the following facts:
(vi) $\phi\left(A_{r}(u)\right)=A_{r}(v)$ for all $1 \leq r \leq 6$;
(vii) there is a fixed $g \in G$ with $\phi(\{f(u, i, k): i, k \in \mathbb{N}\})=g \cdot\{f(v, i, k)$: $i, k \in \mathbb{N}\}$;
(viii) there is a finite $D \subseteq G$ such that if $w \in A(u)$ and $\phi(w)$ is a c data point then there is at least one c data point in $D \cdot w$;
(ix) there is a fixed $j \in \mathbb{N}$ so that $\phi(f(u, 0, k))=g \cdot f(v, j, k)$ for all sufficiently large $k \in \mathbb{N}$;
(x) $u E_{\infty} v$.
(vi). By clause (ii) we immediately have that $\phi\left(A_{1}(u)\right)=A_{1}(v)$ and therefore by clause (v) we have $\phi\left(A_{4}(u) \cup A_{6}(u)\right)=A_{4}(v) \cup A_{6}(v)$. If $w \in A_{6}(u)$ and $\phi(w) \in A_{6}(v)$, then since $A_{6}(u)$ and $A_{6}(v)$ are minimal it would immediately follow that $\phi\left(A_{6}(u)\right)=A_{6}(v)$. On the other hand, if $w \in A_{4}(u)$ and $\phi(w) \in A_{6}(v)$ then by clause (iv) we would have $\phi\left(A_{4}(u)\right) \subseteq \phi(\overline{[w]}) \subseteq A_{6}(v)$. In this case we must have $\phi\left(A_{4}(u)\right)=A_{6}(v)$ as otherwise there is $w^{\prime} \in A_{6}(u)$ with $\phi\left(w^{\prime}\right) \in A_{6}(v)$ and hence $\phi\left(A_{6}(u)\right)=A_{6}(v)$, contradicting the fact that ϕ is one-to-one. So either $A_{6}(v)=$ $\phi\left(A_{6}(u)\right)$ or $A_{6}(v)=\phi\left(A_{4}(u)\right)$. The same applies to ϕ^{-1}, so either $\phi\left(A_{6}(u)\right)=$ $A_{6}(v)$ or else $\phi\left(A_{6}(u)\right)=A_{4}(v)$. Towards a contradiction, suppose $\phi\left(A_{6}(u)\right)=$ $A_{4}(v)$. Then $\phi\left(z_{0}\right)$ has bi-infinite path data and no c data. The functions z_{0} and z_{1} differ at only one point, so $\phi\left(z_{0}\right)$ and $\phi\left(z_{1}\right)$ must differ at finitely many points (since ϕ is induced by a block code). So $\phi\left(z_{1}\right)$ has infinite path data and hence $\phi\left(z_{1}\right) \notin A_{5}(v) \cup A_{6}(v)$. By making only a finite number of changes, one cannot turn a bi-infinite path into a right-infinite path. Therefore $\phi\left(z_{1}\right) \notin A_{1}(v) \cup A_{2}(v)$. Also, $\phi\left(z_{1}\right)$ can have at most finite c data, so $\phi\left(z_{1}\right) \notin A_{3}(v)$. Thus we must have $\phi\left(z_{1}\right) \in$ $A_{4}(v)=\phi\left(A_{6}(u)\right)$. This contradicts the fact that ϕ is one-to-one. Therefore we now know that $\phi\left(A_{r}(u)\right)=A_{r}(v)$ for $r=1,4,6$. Since z_{1} and z_{0} differ at only finitely many places and $\phi\left(A_{6}(u)\right)=A_{6}(v)$, we must have that $\phi\left(A_{5}(u)\right)=A_{5}(v)$. Finally, we have $\phi\left(A_{2}(u) \cup A_{3}(u)\right)=A_{2}(v) \cup A_{3}(v)$. For $i, k \in \mathbb{N} f(i)$ differs from $f(u, i, k)$ at only finitely many points. So every member of $A_{2}(u)$ differs at only finitely many points from some member of $A_{1}(u)$. Therefore we must have $\phi\left(A_{2}(u)\right) \subseteq A_{2}(v)$. However, the same argument applies to ϕ^{-1}, so $\phi\left(A_{2}(u)\right)=A_{2}(v)$. We conclude $\phi\left(A_{r}(u)\right)=A_{r}(v)$ for all $1 \leq r \leq 6$.
(vii). Pick $i, k, j, m \in \mathbb{N}$. Let $g, h \in G$ and $i^{\prime}, k^{\prime}, j^{\prime}, m^{\prime} \in \mathbb{N}$ be such that

$$
\phi(f(u, i, k))=g \cdot f\left(v, i^{\prime}, k^{\prime}\right) \text { and } \phi(f(u, j, m))=h \cdot f\left(v, j^{\prime}, m^{\prime}\right) .
$$

We will show that $g=h$. To simplify notation, set

$$
x_{1}=f(u, i, k) ; \quad x_{2}=f(u, j, m) ; \quad y_{1}=f\left(v, i^{\prime}, k^{\prime}\right) ; \quad y_{2}=f\left(v, j^{\prime}, m^{\prime}\right)
$$

Then $\phi\left(x_{1}\right)=g \cdot y_{1}$ and $\phi\left(x_{2}\right)=h \cdot y_{2}$. Recall that, as stated after the definition of $X(v)$, there is a finite set $B \subseteq G$ such that if $w, w^{\prime} \in X(v)$ satisfy

$$
w \upharpoonright S^{6 d+1} B \Theta_{1}=w^{\prime} \upharpoonright S^{6 d+1} B \Theta_{1}
$$

then for every $g \in G$ we have

$$
1 * w=g \cdot w \Longleftrightarrow 1 * w^{\prime}=g \cdot w^{\prime} .
$$

Since x_{1} and x_{2} differ at only finitely many places, so do $g \cdot y_{1}$ and $h \cdot y_{2}$. Let $p \in \mathbb{N}$ be such that

$$
\forall n \geq p\left(g \cdot y_{1}\right) \upharpoonright g q_{n} S^{6 d+1} B \Theta_{1}=\left(h \cdot y_{2}\right) \upharpoonright g q_{n} S^{6 d+1} B \Theta_{1}
$$

Such p exists since $g \cdot y_{1}$ and $h \cdot y_{2}$ differ at only finitely many coordinates and the elements $\left(q_{n}\right)_{n \in \mathbb{N}}$ are pairwise distinct.

Since $X(v)$ is clopen in $A(v)$ and $g \cdot y_{1}$ and $h \cdot y_{2}$ differ at only finitely many coordinates, the sets $g \cdot\left\{q_{n}: n \geq s\left(k^{\prime}\right)\right\}$ and $h \cdot\left\{q_{n}: n \geq s\left(m^{\prime}\right)\right\}$ differ by only
finitely many elements. Let $t \geq \max \left(p, s\left(k^{\prime}\right)\right)$ be such that $g q_{t} \in h \cdot\left\{q_{n}: n \geq\right.$ $\left.s\left(m^{\prime}\right)\right\}$. Say $g q_{t}=h q_{r}$. Then by definition of p

$$
\left(g \cdot y_{1}\right) \upharpoonright g q_{t} S^{6 d+1} B \Theta_{1}=\left(h \cdot y_{2}\right) \upharpoonright g q_{t} S^{6 d+1} B \Theta_{1}=\left(h \cdot y_{2}\right) \upharpoonright h q_{r} S^{6 d+1} B \Theta_{1}
$$

This implies

$$
\left(q_{t}^{-1} \cdot y_{1}\right) \upharpoonright S^{6 d+1} B \Theta_{1}=\left(q_{r}^{-1} \cdot y_{2}\right) \upharpoonright S^{6 d+1} B \Theta_{1} .
$$

Let $f \in G$ be such that $1 *\left(q_{t}^{-1} \cdot y_{1}\right)=f \cdot\left(q_{t}^{-1} \cdot y_{1}\right)$. The equality above and the fact that $q_{t}^{-1} \cdot y_{1}, q_{r}^{-1} \cdot y_{2} \in X(v)$ implies that $1 *\left(q_{r}^{-1} \cdot y_{2}\right)=f \cdot\left(q_{r}^{-1} \cdot y_{2}\right)$. However,

$$
q_{t+1}^{-1} \cdot y_{1}=1 *\left(q_{t}^{-1} \cdot y_{1}\right) \text { and } q_{r+1}^{-1} \cdot y_{2}=1 *\left(q_{r}^{-1} \cdot y_{2}\right)
$$

So $f=q_{t+1}^{-1} q_{t}=q_{r+1}^{-1} q_{r}$. It follows that

$$
g q_{t+1}=g q_{t} f^{-1}=h q_{r} f^{-1}=h q_{r+1}
$$

Since $t+1>t \geq \max \left(p, s\left(k^{\prime}\right)\right)$, we can repeat this argument and conclude that $g q_{t+n}=h q_{r+n}$ for all $n \in \mathbb{N}$. This gives

$$
\pi(t+n)=\left(g \cdot y_{1}\right)\left(g q_{t+n} \theta_{2}\right)=\left(h \cdot y_{2}\right)\left(h q_{r+n} \theta_{2}\right)=\pi(r+n)
$$

for all $n \in \mathbb{N}$. Since π is a 2 -coloring we must have $t=r$, so $g q_{r}=h q_{r}$, and hence $g=h$.
(viii). Let $\left(D_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence of finite subsets of G with $\bigcup_{n \in \mathbb{N}} D_{n}=G$. Towards a contradiction, suppose that for every $n \in \mathbb{N}$ there is $w_{n} \in A(u)$ with $D_{n} \cdot w_{n}$ containing no c data points and with $\phi\left(w_{n}\right)$ a c data point. Let $w \in A(u)$ be an accumulation point of $\left(w_{n}\right)_{n \in \mathbb{N}}$. Since ϕ is continuous and the set of c data points is a closed subset of $A(v)$, we have that $\phi(w)$ is a c data point. If $g \in G$ then $g \cdot w$ is an accumulation point of $\left(g \cdot w_{n}\right)_{n \in \mathbb{N}}$ and there is $n \in \mathbb{N}$ with $g \in D_{n}$. For $k \geq n D_{n} \subseteq D_{k}$, so $g \cdot w_{k}$ is not a c data point. Since the c data points in $A(u)$ is an open subset of $A(u)$ we have that $g \cdot w$ is not a c data point. Since $g \in G$ was arbitrary, we have that $w \in A_{4}(u) \cup A_{5}(u) \cup A_{6}(u)$. However, $\phi(w)$ is a c data point and therefore $\phi(w) \notin A_{4}(v) \cup A_{5}(v) \cup A_{6}(v)$. This contradicts clause (vi).
(ix). Let $g \in G$ be as in clause (vii) and let $D \subseteq G$ be as in clause (viii). Recall the increasing sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ of finite symmetric subsets of G and the functions $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ and $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ used in defining the function $s: \mathbb{N} \rightarrow \mathbb{N}$. Let $n \in \mathbb{N}$ be such that $D \subseteq C_{n}$. Let $k \geq n+2$ and let $j_{0}, j_{1}, j_{2}, m_{0}, m_{1}, m_{2} \in \mathbb{N}$ be such that

$$
\phi(f(u, 0, k-t))=g \cdot f\left(v, j_{t}, m_{t}\right)
$$

for $0 \leq t \leq 2$. Then

$$
\phi\left(q_{s\left(m_{t}\right)}^{-1} g^{-1} \cdot f(u, 0, k-t)\right)=q_{s\left(m_{t}\right)}^{-1} \cdot f\left(v, j_{t}, m_{t}\right)
$$

is a c data point. As the c data points of $[f(u, 0, k-t)]$ are precisely

$$
\left\{q_{r}^{-1}: s(k-t) \leq r \leq s(k-t)+8\right\} \cdot f(u, 0, k-t)
$$

we have that by (viii)

$$
\left\{q_{r}^{-1}: s(k-t) \leq r \leq s(k-t)+8\right\} \cap C_{n} q_{s\left(m_{t}\right)}^{-1} g^{-1} \neq \varnothing .
$$

Therefore

$$
q_{s\left(m_{t}\right)} \in g^{-1}\left\{q_{r}: s(k-t) \leq r \leq s(k-t)+8\right\} C_{n}
$$

and hence for $t=0,1$ we have that $q_{s\left(m_{t}\right)}^{-1} q_{s\left(m_{t+1}\right)}$ is an element of

$$
C_{n}^{-1}\left\{q_{r}^{-1}: s(k-t) \leq r \leq s(k-t)+8\right\}\left\{q_{r}: s(k-t-1) \leq r \leq s(k-t-1)+8\right\} C_{n}
$$

Notice that for $h_{1}, h_{2} \in\langle S\rangle$

$$
h_{1} \in C_{n}^{-1} h_{2} C_{n} \Longrightarrow \nu_{n}\left(\left\|h_{2}\right\|\right) \leq\left\|h_{1}\right\| \leq \xi_{n}\left(\left\|h_{2}\right\|\right)
$$

After recalling that

$$
(4 d+1)|r-t|-2 d \leq\left\|q_{r}^{-1} q_{t}\right\| \leq(4 d+1)|r-t|+2 d
$$

for all $r, t \in \mathbb{N}$, we have that

$$
\begin{gathered}
\nu_{n}((4 d+1)(s(k-t)-s(k-t-1)-8)-2 d) \\
\leq\left\|q_{s\left(m_{t}\right)}^{-1} q_{s\left(m_{t+1}\right)}\right\| \leq \\
(4 d+1)\left|s\left(m_{t+1}\right)-s\left(m_{t}\right)\right|+2 d
\end{gathered}
$$

and

$$
\begin{gathered}
(4 d+1)\left|s\left(m_{t+1}\right)-s\left(m_{t}\right)\right|-2 d \\
\leq\left\|q_{s\left(m_{t}\right)}^{-1} q_{s\left(m_{t+1}\right)}\right\| \leq \\
\xi_{n}((4 d+1)(s(k-t)-s(k-t-1)+8)+2 d)
\end{gathered}
$$

However, for all $r \in \mathbb{N}$ we have $\xi_{n}(r) \leq \xi_{k-t}(r)$ and $\nu_{k-t}(r) \leq \nu_{n}(r)$. So

$$
\begin{aligned}
& \nu_{k-t}((4 d+1)(s(k-t)-s(k-t-1)-8)-2 d) \\
& \leq \nu_{n}((4 d+1)(s(k-t)-s(k-t-1)-8)-2 d)
\end{aligned}
$$

and

$$
\begin{aligned}
& \xi_{n}((4 d+1)(s(k-t)-s(k-t-1)+8)+2 d) \\
\leq & \xi_{k-t}((4 d+1)(s(k-t)-s(k-t-1)+8)+2 d) .
\end{aligned}
$$

Therefore by the definition of $s: \mathbb{N} \rightarrow \mathbb{N}$ we must have that $\max \left\{m_{t}, m_{t+1}\right\}=k-t$. So $m_{1} \leq \max \left(m_{1}, m_{2}\right)=k-1$ and $\max \left(m_{0}, m_{1}\right)=k$ together imply that $m_{0}=k$. This gives $\phi(f(u, 0, k))=g \cdot f\left(v, j_{0}, k\right)$. Since $k \geq n+2$ was arbitrary, we conclude that for all $k \geq n+2$ there is $j(k) \in \mathbb{N}$ with

$$
\phi(f(u, 0, k))=g \cdot f(v, j(k), k)
$$

Since $z=\lim q_{s(r)}^{-1} \cdot z$, we see that $f(0)=\lim q_{s(k)}^{-1} \cdot f(u, 0, k)$. By clause (vi) there is $j \in \mathbb{N}$ and $h \in G$ such that $\phi(f(0))=h \cdot f(j)$. Then $h \cdot f(j)=\lim q_{s(k)}^{-1} g$. $f(v, j(k), k)$. We have that $f(j)=h^{-1} \cdot(h \cdot f(j))$ is in the clopen set $X(v)-1 * X(v)$ and therefore for sufficiently large k we must have $h^{-1} q_{s(k)}^{-1} g \cdot f(v, j(k), k) \in X(v)-$ $1 * X(v)$. Since $[f(v, j(k), k)] \cap(X(v)-1 * X(v))=q_{s(k)}^{-1} \cdot f(v, j(k), k)$, we must have $h^{-1} q_{s(k)}^{-1} g=q_{s(k)}^{-1}$ for all sufficiently large $k \in \mathbb{N}$. Therefore

$$
f(j)=h^{-1} \cdot \lim q_{s(k)}^{-1} g \cdot f(v, j(k), k)=\lim q_{s(k)}^{-1} f(v, j(k), k)
$$

so $j(k)=j$ for sufficiently large $k \in \mathbb{N}$.
(x). Let $g \in G$ be as in clause (vii) and let $j \in \mathbb{N}$ be as in clause (ix). For $i=0,1$ let $K_{i}^{u}=\left\{k \in \mathbb{N}: u\left(h_{k}\right)=i\right\}$ and $K_{i}^{v}=\left\{k \in \mathbb{N}:\left(h_{j} \cdot v\right)\left(h_{k}\right)=i\right\}$. Pick any $i=0,1$ with K_{i}^{u} infinite. We have

$$
\lim _{k \in K_{i}^{u}} f(u, 0, k)=z_{i} .
$$

Applying ϕ to both sides we get

$$
\begin{aligned}
\phi\left(z_{i}\right) & =\phi\left(\lim _{k \in K_{i}^{u}} f(u, 0, k)\right)=\lim _{k \in K_{i}^{u}} \phi(f(u, 0, k)) \\
& =\lim _{k \in K_{i}^{u}} g \cdot f(v, j, k)=g \cdot \lim _{k \in K_{i}^{u}} f(v, j, k) .
\end{aligned}
$$

A priori we know that if $\lim _{k \in K_{i}^{u}} f(v, j, k)$ exists then this limit must be either z_{0} or z_{1}. Since the limit does exist, $\left(h_{j} \cdot v\right)\left(h_{k}\right)$ must be constant for all but finitely many $k \in K_{i}^{u}$ and by clause (vi) and the equations above we have that this constant value must be i. Thus $K_{i}^{u}-K_{i}^{v}$ is finite.

By clause (iii) of Lemma 9.4 .8 we have that K_{1}^{u} is infinite. Thus $K_{1}^{u}-K_{1}^{v}$ is finite. We now consider two cases. Case 1: K_{0}^{u} is infinite. Then $K_{0}^{u}-K_{0}^{v}$ is finite. Since $\mathbb{N}=K_{0}^{u} \cup K_{1}^{u}$, we have that $K=\left(K_{0}^{u} \cap K_{0}^{v}\right) \cup\left(K_{1}^{u} \cap K_{1}^{v}\right)$ is cofinite in \mathbb{N} and $u\left(h_{k}\right)=\left(h_{j} \cdot v\right)\left(h_{k}\right)$ for all $k \in K$. Thus u and $h_{j} \cdot v$ differ at only finitely many coordinates. So by clause (ii) of Lemma 9.4 .8 we have $u E_{\infty} v$. Case 2: K_{0}^{u} is finite. Since $\mathbb{N}=K_{0}^{u} \cup K_{1}^{u}$, we have that K_{1}^{u} is cofinite in \mathbb{N}. Thus both K_{1}^{v} and $K_{1}^{u} \cap K_{1}^{v}$ are cofinite in \mathbb{N}. So for all but finitely many $k \in \mathbb{N}$ we have $u\left(h_{k}\right)=1=\left(h_{j} \cdot v\right)\left(h_{k}\right)$. Thus u and $h_{j} \cdot v$ differ at only finitely many coordinates. So by clause (ii) of Lemma 9.4 .8 we have $u E_{\infty} v$.

Corollary 9.4.10. For every countably infinite group $G, \mathrm{TC}(G)$ and $\mathrm{TC}_{\mathrm{F}}(G)$ are Borel bi-reducible.

Problem 9.4.11. For a countably infinite nonlocally finite group G, what are the complexities of $\mathrm{TC}_{\mathrm{p}}(G), \mathrm{TC}_{\mathrm{M}}(G)$, and $\mathrm{TC}_{\mathrm{MF}}(G)$?

We point out that strangely we do not even know the answer to the above question in the case $G=\mathbb{Z}$.

CHAPTER 10

Extending Partial Functions to 2-Colorings

In this chapter we study the problem when a partial function on a countably infinite group can be extended to a 2 -coloring on the entire group. The answer is immediate (and affirmative) if the partial function has a finite domain, since the set of all 2-colorings is dense (Theorem 6.2.3). Results in this chapter can therefore be regarded as a strengthened form of density. A partial function with cofinite domain has only finitely many extensions. In a group with the ACP such a function can be extended to a 2 -coloring iff any extension of it is a 2 -coloring. However, in a non-ACP group G we know that there are functions with domain $G-\left\{1_{G}\right\}$ so that one of the two extensions is a 2-coloring and the other is periodic (c.f., e.g., the proof of Theorem 6.3.3). These results suggest that it might be difficult to provide a unified solution to the above problem by stating an intrinsic condition on the partial function. Thus in this chapter we focus on the domain of the partial function. In Sections 10.1 and 10.2 we characterize subsets of the group on which any partial function can be extended to a 2-coloring of the full group. In Section 10.4 we determine the countable group(s) G for which any extension of a 2 -coloring on a nontrivial subgroup is a 2 -coloring on G.

10.1. A sufficient condition for extendability

For a countably infinite group G and a subset $A \subseteq G$, we ask when any function with domain A can be extended to a 2-coloring on G. This problem will be the focus of the first two sections of this chapter.

In this section we give a sufficient condition on A for this extendability to hold. Although this result will soon be superseded by the results of the next section, we include it here for two reasons. First, its proof is much easier and shorter than those in the next section. Second, the proof involves a new way to apply the fundamental method. In fact, the following proposition is a strengthening of Theorem 6.1.1 with a similar proof. It results from a careful scrutiny of what the technique used in the proof of Theorem 6.1.1 can achieve.

Proposition 10.1.1. Let G be a countably infinite group and let $r: \mathbb{N} \rightarrow \mathbb{N}$ be any function. Then there exists a sequence $\left(T_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G with the following property: if $\left\{u_{n, i} \in G: n \in \mathbb{N}, 0 \leq i \leq r(n)\right\}$ is any collection of group elements then there is a fundamental $c \in 2 \subseteq \bar{G}$ such that for every $n \in \mathbb{N}$ and $0 \leq i \leq r(n), T_{n}$ witnesses that c blocks $u_{n, i}$.

Proof. For $n \geq 1$, define $p_{n}(k)=2 \cdot k^{4} \cdot(r(n-1)+1)$. Then $\left(p_{n}\right)_{n \geq 1}$ is a sequence of functions of subexponential growth. By Corollaries 5.4.8 and 5.4.9 there is a blueprint $\left(\Delta_{n}, F_{n}\right)_{n \in \mathbb{N}}$ and a fundamental $c_{0} \in 2 \subseteq G$ with

$$
\left|\Theta_{n}\right|>\log _{2}\left(2 \cdot\left|B_{n}\right|^{4} \cdot(r(n-1)+1)\right)
$$

for each $n \geq 1$, where B_{n} satisfies $\Delta_{n} B_{n} B_{n}^{-1}=G$. For $n \geq 1$, let V_{n} be the test region for the Δ_{n} membership test admitted by c_{0}. For $n \geq 1$ define $T_{n}=$ $B_{n+1} B_{n+1}^{-1}\left(V_{n+1} \cup \Theta_{n+1} b_{n}\right)$. We claim $\left(T_{n}\right)_{n \in \mathbb{N}}$ has the desired property.

Let $\left\{u_{n, i} \in G: n \in \mathbb{N}, 0 \leq i \leq r(n)\right\}$ be any collection of elements of G. For $i, k \in \mathbb{N}$ let $\mathbb{B}_{i}(k)$ be the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $\mathbb{B}_{i}(k)=0$ when $k<2^{i-1}$. For $n \geq 1$ let $s(n)=\left|\Theta_{n}\right|$ and let $\theta_{1}^{n}, \ldots, \theta_{s(n)}^{n}$ be an enumeration of Θ_{n}. For $n \geq 1$, let Γ_{n} be the graph with vertex set Δ_{n} and edge relation

$$
\begin{aligned}
& (\gamma, \psi) \in E\left(\Gamma_{n}\right) \Longleftrightarrow \\
& \exists 0 \leq i \leq r(n-1) \gamma^{-1} \psi \in B_{n} B_{n}^{-1} u_{n, i} B_{n} B_{n}^{-1} \text { or } \psi^{-1} \gamma \in B_{n} B_{n}^{-1} u_{n, i} B_{n} B_{n}^{-1}
\end{aligned}
$$

for distinct $\gamma, \psi \in \Delta_{n}$. Then $\operatorname{deg}_{\Gamma_{n}}(\gamma) \leq 2 \cdot\left|B_{n}\right|^{4} \cdot(r(n-1)+1)$ for each $\gamma \in \Delta_{n}$. We can therefore find, via the greedy algorithm, a graph theoretic $\left(2\left|B_{n}\right|^{4}(r(n-\right.$ $1)+1)+1)$-coloring of Γ_{n}, say $\mu_{n}: \Delta_{n} \rightarrow\left\{0,1, \ldots, 2\left|B_{n}\right|^{4}(r(n-1)+1)\right\}$.

Define $c \supseteq c_{0}$ by setting

$$
c\left(\gamma \theta_{i}^{n} b_{n-1}\right)=\mathbb{B}_{i}\left(\mu_{n}(\gamma)\right)
$$

for each $n \geq 1, \gamma \in \Delta_{n}$, and $1 \leq i \leq s(n)$. Since $2^{s(n)}>2\left|B_{n}\right|^{4}(r(n-1)+1)$, all integers 0 through $2\left|B_{n}\right|^{4}(r(n-1)+1)$ can be written in binary using $s(n)$ digits. Thus no information is lost between the μ_{n} 's and c. Setting $\Theta_{n}(c)=$ $\Theta_{n}\left(c_{0}\right)-\left\{\theta_{1}^{n}, \ldots, \theta_{s(n)}^{n}\right\}$ we clearly have that c is fundamental.

Now an argument identical to that appearing in the proof of Theorem 6.1.1 shows that T_{n} witnesses that c blocks $u_{n, i}$.

ThEOREM 10.1.2. If G is a countably infinite group and $A \subseteq G$ satisfies $F A^{-1} A F \neq G$ for all finite sets $F \subseteq G$, then every partial function $c: A \rightarrow 2$ can be extended to a 2-coloring on G.

Proof. For each $n \geq 1$ let $r_{n}: \mathbb{N} \rightarrow \mathbb{N}$ be the function which is constantly 1 . Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be as in the previous proposition. Fix an enumeration s_{1}, s_{2}, \ldots of the nonidentity group elements of G. By assumption we have that

$$
\left\{1_{G}, s_{n}^{-1}\right\}\left\{1_{G}, s_{n}\right\} T_{n} A^{-1} A T_{n}^{-1} \neq G
$$

For each $n \geq 1$ pick

$$
h_{n} \notin\left\{1_{G}, s_{n}^{-1}\right\}\left\{1_{G}, s_{n}\right\} T_{n} A^{-1} A T_{n}^{-1} .
$$

For each $n \geq 1$ set $u_{n, 0}=s_{n}$ and $u_{n, 1}=h_{n}^{-1} s_{n} h_{n}$. Let $c \in 2^{G}$ be fundamental and such that T_{n} witnesses that c blocks $u_{n, 0}$ and $u_{n, 1}$ for each $n \geq 1$.

Let $x \in 2^{A}$ be an arbitrary function. Define $y \in 2^{G}$ by

$$
y(g)= \begin{cases}x(g) & \text { if } g \in A \\ c(g) & \text { otherwise }\end{cases}
$$

So y extends x. We will show that y is a 2 -coloring of G. Fix $1_{G} \neq s \in G$. Then for some $n \geq 1$ we have $s=s_{n}$. Set $T=T_{n} \cup h_{n} T_{n}$ and let $g \in G$ be arbitrary. Notice that $A \cap\left(g T_{n} \cup g s_{n} T_{n}\right) \neq \varnothing$ if and only if $g \in A T_{n}^{-1} \cup A T_{n}^{-1} s_{n}^{-1}$. So by the definition of h_{n} we have that

$$
A \cap\left(g T_{n} \cup g s_{n} T_{n}\right) \neq \varnothing \Longrightarrow A \cap\left(g h_{n} T_{n} \cup g s_{n} h_{n} T_{n}\right)=\varnothing
$$

If $A \cap\left(g T_{n} \cup g s_{n} T_{n}\right)=\varnothing$ then set $k=1_{G}$. Otherwise set $k=h_{n}$. In either case we have $A \cap\left(g k T_{n} \cup g s_{n} k T_{n}\right)=\varnothing$. Therefore for all $t \in T_{n}$

$$
y(g k t)=c(g k t) \text { and } y\left(g s_{n} k t\right)=c\left(g s_{n} k t\right) .
$$

Notice that T_{n} witnesses that c blocks $k^{-1} s_{n} k$. Therefore, there is $t \in T_{n}$ with

$$
y(g k t)=c(g k t) \neq c\left(g k\left(k^{-1} s_{n} k\right) t\right)=c\left(g s_{n} k t\right)=y\left(g s_{n} k t\right) .
$$

This completes the proof since $k t \in T$.
Note that this gives another proof for the density of 2-colorings.

10.2. A characterization for extendability

In this section we continue to consider the problem when any partial function with domain A can be extended to a 2-coloring on G.

There is an obvious obstacle if the set A is too large in the following sense. We let χ_{A} denote the characteristic function of $A \subseteq G$:

$$
\chi_{A}(g)= \begin{cases}1 & \text { if } g \in A \\ 0 & \text { if } g \notin A .\end{cases}
$$

If $1 \in \overline{\left[\chi_{A}\right]}$ then there is no 2 -coloring on G extending $1 \in 2^{A}$, the constant 1 function with domain A. This is because, for any $x \in 2^{G}$ extending $1 \in 2^{A}$ and sequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ of elements of G so that $1=\lim g_{n} \cdot \chi_{A}$, we must have $\lim g_{n} \cdot x=1$, since x can have value 0 only when χ_{A} has value 0 . This shows that x is not a 2 -coloring. A moment of reflection shows that $1 \in \overline{\left[\chi_{A}\right]}$ is indeed a largeness condition since it is equivalent to saying that A contains a translate of any finite subset of G.

The objective of this section is to show that this is the only obstacle for the extendability. We introduce the following terminology.

Definition 10.2.1. We say that $A \subseteq G$ is slender if $1 \notin \overline{\left[\chi_{A}\right]}$.
The following characterizations of slenderness are immediate. We state them without proof.

Lemma 10.2.2. Let G be a countably infinite group. The following are equivalent for $A \subseteq G$:
(i) A is slender, i.e., $1 \notin \overline{\left[\chi_{A}\right]}$;
(ii) $1 \perp \chi_{A}$;
(iii) there exists a finite $T \subseteq G$ so that for every $g \in G$ there is $t \in T$ with $g t \notin A$.

It is easy to see that any proper subgroup is slender. In fact, if $H<G$ and $T=\left\{1_{G}, a\right\}$ for some arbitrary $a \in G-H$, then for any $g \in G, g T \nsubseteq H$.

The main technical result of this section is the following theorem.
Theorem 10.2.3. Let G be a countably infinite group, $A \subseteq G$ a slender subset, $s \in G$ a nonidentity element, and $y \in 2^{A}$. There exist a slender $A^{\prime} \supseteq A$ and $x_{0}, x_{1} \in 2^{A^{\prime}}$ extending y such that
(a) any extension of x_{0} or x_{1} blocks s, and
(b) for any $z_{0}, z_{1} \in 2^{G}$ extending x_{0}, x_{1} respectively, $z_{0} \perp z_{1}$.

Before giving the long and technical proof, we offer some remarks on its structure and main ideas. Then during the proof we give more commentaries to elaborate on the ideas. In this proof we will try to recreate, as much as is possible and needed, the machinery used in our standard construction of a 2-coloring. However, since we only need to block a single element s, we do not need to construct an entire blueprint, but just a single Δ and F. The construction of Δ and F will run parallel to extending y. In extending y, we shall create a membership test for the set Δ. The membership test will rely on counting the number of 1's within a finite test region, but it will not be a simple membership test as used in our original fundamental method. The bulk of the work is to strategically add a lot of 1's at select locations but at the same time make sure they are not visible from other unwanted locations. This makes the Δ-translates of F look different from the background.

Proof of Theorem 10.2.3. Let G, A, s and y be given. Let $T \subseteq G$ be a finite set such that $g T \nsubseteq A$ for any $g \in G$. We fix a finite $B \subseteq G$ with $1_{G} \in B$ such that for every $g \in G$,

$$
|g B \cap(G-A)| \geq 2
$$

Such a B can be taken to be the union of two disjoint (left) translates of T, with one of them containing 1_{G}.

Much of this proof will rely on counting the number of 1's of a partial function within some left translate of B. We define a counting function as follows. For $z \in 2^{\subseteq G}$ and $g \in G$, let

$$
r_{z}(g)=\mid\{b \in B: g b \in \operatorname{dom}(z) \text { and } z(g b)=1\} \mid .
$$

Note that r_{z} is total even if z is partial, and $r_{z}(g) \leq|B|$ in general. Set $N=|B|-2$ so that $\max \left\{r_{y}(g): g \in G\right\} \leq N$.

If we add in more 1's in a particular translate $g B$, then these 1 's will be visible in at most the $g B B^{-1}$-translates of B. In order to control the number of 1 's seen within translates of B, we will often insist that translates of $B B^{-1}$ be disjoint. Let C be a finite symmetric set (meaning $C=C^{-1}$) containing $B B^{-1}$. Elements outside $g C$ will not see in their translate of B newly added 1 's in $g B$. However, since we can not expect to have a locally recognizable function on $g C$, a difficulty is how to pinpoint the precise element of the prospective Δ if we already know it is within $g C$. A natural solution is to look beyond $g C$ and use information in other parts of $g F$ (which requires that the prospective F be sufficiently big). The following function a tells us where to look for this additional information.

For every $c_{1}, c_{2} \in C$, fix $a\left(c_{1}, c_{2}\right) \in G$ so that the following conditions hold:

$$
\begin{gathered}
\forall c_{1}, c_{2} \in C a\left(c_{1}, c_{2}\right)=a\left(c_{2}, c_{1}\right) ; \\
\forall c_{1}, c_{2} \in C c_{1} a\left(c_{1}, c_{2}\right) C \cap C=\varnothing \\
\forall c_{1}, c_{2}, c_{3}, c_{4} \in C\left\{c_{1}, c_{2}\right\} \neq\left\{c_{3}, c_{4}\right\} \Longrightarrow c_{1} a\left(c_{1}, c_{2}\right) C \cap c_{3} a\left(c_{3}, c_{4}\right) C=\varnothing
\end{gathered}
$$

Note that the symmetry in the first condition implies that if $\left\{c_{1}, c_{2}\right\} \neq\left\{c_{3}, c_{4}\right\}$ then $c_{2} a\left(c_{1}, c_{2}\right) C \cap c_{3} a\left(c_{3}, c_{4}\right) C=\varnothing$. Such a function a exists since G is infinite.

Now let $F \subseteq G$ be finite with

$$
F \supseteq C^{3} \cup C \cdot \bigcup_{c_{1}, c_{2} \in C} a\left(c_{1}, c_{2}\right) C
$$

and satisfying

$$
\rho(F ; C)-|C|^{6}-|C|^{3} \geq \log _{2}\left(2|C|^{3 N+3}|F|^{2}+1\right)+\log _{2}(|C|)+4
$$

Such an F exists by Lemma 5.4.5.
Let $D_{0} \subseteq r_{y}^{-1}(N)=\left\{g \in G: r_{y}(g)=N\right\}$ be a maximal subset of $r_{y}^{-1}(N)$ with the D_{0}-translates of $C F$ disjoint. Similarly, let $D_{1} \subseteq r_{y}^{-1}(N-1)$ be a maximal subset of $r_{y}^{-1}(N-1)$ with the D_{1}-translates of $C F$ disjoint and $D_{1} C^{4} F \cap D_{0} C F=$ \varnothing. In general, once D_{0} through D_{m-1} have been defined $(1<m \leq N)$, let $D_{m} \subseteq r_{y}^{-1}(N-m)$ be a maximal subset of $r_{y}^{-1}(N-m)$ with the D_{m}-translates of $C F$ disjoint and

$$
D_{m} C^{3 m+1} F \cap \bigcup_{0 \leq i<m} D_{i} C F=\varnothing
$$

We set $D=\bigcup_{0 \leq i \leq N} D_{i}$. One or more D_{i} might be finite or even empty (including D_{N}), but D is always infinite. To provide some perspective, the set D will soon be modified slightly (each element of D right translated by an element of C) to create Δ.

We point out two important properties of D. First, let $g \in G$ and let $0 \leq m \leq N$ be such that $r_{y}(g)=N-m$. Then by the definition of D_{m} either

$$
g C^{3 m+1} F \cap \bigcup_{0 \leq i<m} D_{i} C F \neq \varnothing
$$

or else $g C F \cap D_{m} C F \neq \varnothing$. In any case,

$$
g \in \bigcup_{0 \leq i \leq m} D_{i} C F F^{-1} C^{3 m+1} \subseteq D C F F^{-1} C^{3 N+1}
$$

Second, let $0 \leq m \leq N$, let $d \in D_{m}$, and let $g \in d C^{3}$. Then for any $t<m$

$$
g C^{3 t+1} F \cap \bigcup_{0 \leq i \leq t} D_{i} C F \subseteq D_{m} C^{3 m+1} F \cap \bigcup_{0 \leq i<m} D_{i} C F=\varnothing
$$

and therefore $r_{y}(g) \neq N-t$. It follows that $r_{y}(g) \leq N-m$ for all $g \in D_{m} C^{3}$. Thus each point in D achieves a local maximum r_{y}-value.

In what follows we will go through a number of consecutive extensions of y, and in the middle of these extensions we will also define Δ. We first extend y to y_{1} so that

$$
\operatorname{dom}\left(y_{1}\right)=\operatorname{dom}(y) \cup D C
$$

and for every $d \in D$ all elements of $d C-\operatorname{dom}(y)$ are assigned the value 0 except for precisely 2 elements in $d B-\operatorname{dom}(y)$ which are assigned the value 1. y_{1} exists since the D translates of C are disjoint $\left(1_{G} \in C \subseteq F\right)$ and every left translate of B contains at least 2 elements not in $\operatorname{dom}(y)$. Notice that for $g \in G$,

$$
r_{y}(g) \leq r_{y_{1}}(g) \leq r_{y}(g)+2
$$

and

$$
r_{y_{1}}(g)>r_{y}(g) \Longrightarrow g \in D C .
$$

Next we extend y_{1} to y_{2} where y_{2} has domain

$$
\operatorname{dom}\left(y_{1}\right) \cup D\left\{c_{1} a\left(c_{1}, c_{2}\right): c_{1} \neq c_{2} \in C\right\} B
$$

and satisfies for each $d \in D$ and each $c_{1} \neq c_{2} \in C$

$$
\exists b \in B y_{2}\left(d c_{1} a\left(c_{1}, c_{2}\right) b\right) \neq y_{2}\left(d c_{2} a\left(c_{1}, c_{2}\right) b\right)
$$

and

$$
r_{y_{2}}\left(d c_{1} a\left(c_{1}, c_{2}\right)\right)+r_{y_{2}}\left(d c_{2} a\left(c_{1}, c_{2}\right)\right) \leq r_{y_{1}}\left(d c_{1} a\left(c_{1}, c_{2}\right)\right)+r_{y_{1}}\left(d c_{2} a\left(c_{1}, c_{2}\right)\right)+1
$$

Notice that for $c_{1}, c_{2} \in C, c_{1} a\left(c_{1}, c_{2}\right) B \subseteq F$, so one can extend y_{1} to y_{2} by considering one D-translate of F at a time. Also, by the construction of the function a we have that for any $d \in D$ and $c_{1}, c_{2} \in C, d c_{1} a\left(c_{1}, c_{2}\right) B \cap D C=\varnothing$. Thus for $d \in D$ and $c_{1}, c_{2} \in C, d c_{1} a\left(c_{1}, c_{2}\right) B$ contains at least 2 elements not in $\operatorname{dom}\left(y_{1}\right)$. When $c_{1} \neq c_{2}, d c_{1} a\left(c_{1}, c_{2}\right) \neq d c_{2} a\left(c_{1}, c_{2}\right)$ so one can achieve the last two requirements listed above. Finally, by construction $d c_{1} a\left(c_{1}, c_{2}\right) B \cap d c_{3} a\left(c_{3}, c_{4}\right) B=\varnothing$ for any $d \in D$ and $c_{1} \neq c_{2}, c_{3} \neq c_{4} \in C$ with $\left\{c_{1}, c_{2}\right\} \neq\left\{c_{3}, c_{4}\right\}$. Therefore the function y_{2} exists. In the above argument, we showed that various group elements had disjoint B translates. However, the reader can easily check that they all have disjoint C translates. We therefore notice that y_{2} has the following properties for every $g \in G$:

$$
\begin{gathered}
r_{y}(g) \leq r_{y_{2}}(g) \leq r_{y}(g)+2 \\
r_{y_{2}}(g)>r_{y}(g) \Longrightarrow g \in D\left(C \cup \bigcup_{c_{1} \neq c_{2} \in C} c_{1} a\left(c_{1}, c_{2}\right) C\right) ; \\
r_{y_{2}}(g)>r_{y}(g)+1 \Longrightarrow g \in D C .
\end{gathered}
$$

For further extensions we set

$$
V=\left\{a\left(c_{1}, c_{2}\right): c_{1} \neq c_{2} \in C\right\} C .
$$

Now extend y_{2} to y_{3} where

$$
\operatorname{dom}\left(y_{3}\right)=\operatorname{dom}\left(y_{2}\right) \cup D C V
$$

and for all $g \in \operatorname{dom}\left(y_{3}\right)-\operatorname{dom}\left(y_{2}\right), y_{3}(g)=0$. Since y_{3} extends y_{2} using only the value $0, y_{3}$ also satisfies the three properties listed above for y_{2}.

Now we can modify D to get Δ. The construction of y_{1} was a naive attempt of creating a membership test for D by placing several 1 's within a translate of B. The problem is that we may not be able to uniformly tell the difference between elements of $D C$ and elements of D only using a finite set. As we will now see, the construction of y_{2} and y_{3} allow us to recognize a particular element of $d C$ for each $d \in D$, though this recognized element may not be d itself.

By the definition of y_{2}, we have for any $d \in D$ and $c_{1} \neq c_{2} \in C$, there is $b \in B$ with $y_{2}\left(d c_{1} a\left(c_{1}, c_{2}\right) b\right) \neq y_{2}\left(d c_{2} a\left(c_{1}, c_{2}\right) b\right)$ and hence

$$
\left(\left(d c_{1}\right)^{-1} \cdot y_{3}\right) \upharpoonright V \neq\left(\left(d c_{2}\right)^{-1} \cdot y_{3}\right) \upharpoonright V .
$$

Also, by definition of y_{3}, for every $d \in D$ and $c \in C,\left((d c)^{-1} \cdot y_{3}\right) \upharpoonright V \in 2^{V}$. Arbitrarily pick a total ordering, \prec, on 2^{V}. We define a function

$$
q: D=\bigcup_{0 \leq m \leq N} D_{m} \rightarrow D C
$$

as follows. If $d \in D_{m}$, then we let $q(d)=d c$, where c is the unique element of

$$
S=\left\{c^{\prime} \in C: r_{y_{3}}\left(d c^{\prime}\right)=N-m+2\right\}
$$

so that $\left((d c)^{-1} \cdot y_{3}\right) \upharpoonright V$ is the \prec-largest among

$$
\left\{\left(\left(d c^{\prime}\right)^{-1} \cdot y_{3}\right) \upharpoonright V: c^{\prime} \in S\right\}
$$

We define $\Delta=q(D)$, and for each $0 \leq m \leq N$ we define $\Delta_{m}=q\left(D_{m}\right)$. Since the D-translates of $C F$ are disjoint, from the definition of q it follows that the Δ-translates of F are disjoint.

Although we have defined the sets Δ and F, a membership test for Δ has to wait until we have further extended y_{3}. One can expect that the prospective membership test will be inductive on Δ_{m}, and it will necessarily use the property
that Δ_{m} elements not only have local maximum values for the counting function, but also achieve the maximum in the \prec-ordering among their local competitors. All these desired properties are already in place by our construction so far. However, it seems that, in order to carry out the induction successfully, we need to make use of the maximal disjointness properties imposed on elements of D when it was defined. It is therefore necessary for us to create also a membership test for D at the same time. And this will be implemented by trying to code information contained in the function q by parities of the counting function values. This extra coding is the main idea of the following extensions.

Let $\Lambda \subseteq F$ be such that the Λ-translates of C are contained and maximally disjoint within F. Notice that:

$$
\begin{gathered}
|\{\lambda \in \Lambda: C \lambda C \cap C \neq \varnothing\}|=\left|\left\{\lambda \in \Lambda: \lambda \in C^{3}\right\}\right| \leq|C|^{3} ; \\
|\{\lambda \in \Lambda: C \lambda C \cap C V \neq \varnothing\}|=\left|\left\{\lambda \in \Lambda: \lambda \in C^{2} V C\right\}\right| \leq|C|^{6} .
\end{gathered}
$$

We have $|\Lambda| \geq \rho(F ; C)$, and therefore there are at least

$$
\log _{2}\left(2|C|^{3 N+3}|F|^{2}+1\right)+\log _{2}(|C|)+4
$$

elements of Λ which are in neither of the sets above. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}$ enumerate the elements of Λ which are in neither of the above sets. Let K be the least integer greater than $\log _{2}(|C|)$. Notice that $M-K-2 \geq \log _{2}\left(2|C|^{3 N+3}|F|^{2}+1\right)$.

As $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}\right\} C \subseteq F$ and the D-translates of $C F$ are disjoint, it follows that the Δ-translates of $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}\right\} C$ are disjoint. Also, by the choice of λ_{1} through λ_{M}, we have for each $1 \leq i \leq M$

$$
\Delta \lambda_{i} C \cap D(C \cup C V) \subseteq D C \lambda_{i} C \cap D(C \cup C V)=\varnothing
$$

Since

$$
y_{3} \upharpoonright(G-D(C \cup C V))=y \upharpoonright(G-D(C \cup C V))
$$

each $\Delta\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}\right\}$-translate of B contains at least 2 elements not in the domain of y_{3}. Let y_{4} extend y_{3} by only assigning the value 0 and have a domain with the property that every $\Delta\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}$-translate of B has exactly one undefined point and that no other points besides these are undefined. To be more precise, we require

$$
\begin{gathered}
\forall g \in \operatorname{dom}\left(y_{4}\right)-\operatorname{dom}\left(y_{3}\right) y_{4}(g)=0, \\
G-\Delta\left\{\lambda_{1}, \ldots, \lambda_{M}\right\} B \subseteq \operatorname{dom}\left(y_{4}\right),
\end{gathered}
$$

and

$$
\left|\left(G-\operatorname{dom}\left(y_{4}\right)\right) \cap \gamma \lambda_{i} B\right|=1
$$

for every $\gamma \in \Delta$ and $1 \leq i \leq M$. It follows from the properties of y_{3}, the properties of the λ_{i} 's, and the definition of y_{4} that for every $g \in G$:

$$
\begin{gathered}
r_{y}(g) \leq r_{y_{4}}(g) \leq r_{y}(g)+2 ; \\
r_{y_{4}}(g)>r_{y}(g) \Longrightarrow g \in D(C \cup C V) ; \\
r_{y_{4}}(g)>r_{y}(g)+1 \Longrightarrow g \in D C .
\end{gathered}
$$

Moreover, we have that if $z \in 2^{G}$ is any extension of y_{4} then for every $g \in G$:

$$
\begin{gathered}
r_{y}(g) \leq r_{z}(g) \leq r_{y}(g)+2 ; \\
r_{z}(g)>r_{y}(g) \Longrightarrow g \in D\left(C \cup C V \cup C\left\{\lambda_{1}, \ldots, \lambda_{M}\right\} C\right) ; \\
r_{z}(g)>r_{y}(g)+1 \Longrightarrow g \in D C .
\end{gathered}
$$

For $i, k \in \mathbb{N}$, we let $\mathbb{B}_{i}(k) \in\{0,1\}$ be the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geq 2^{i-1}$ and $\mathbb{B}_{i}(k)=0$ when $k<2^{i-1}$. Let $p: C \rightarrow 2^{K}$ be any injective function. Extend y_{4} to y_{5} so that

$$
\operatorname{dom}\left(y_{5}\right)=\operatorname{dom}\left(y_{4}\right) \cup \Delta\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{K}\right\} B
$$

and for every $\gamma \in \Delta$ and $1 \leq i \leq K$

$$
r_{y_{5}}\left(\gamma \lambda_{i}\right) \equiv \mathbb{B}_{i}\left(p\left(d^{-1} \gamma\right)\right) \quad \bmod 2
$$

where $d \in D$ is such that $\gamma \in d C$ (or equivalently, $d=q^{-1}(\gamma)$). Recall that $K>\log _{2}(|C|)$, so no information is lost between the function p and its "encoding" into y_{5}. The function y_{5} and any extension of it still satisfy the last 3 properties listed at the end of the previous paragraph.

We claim that for any $0 \leq m \leq N y_{5}$ admits a Δ_{m} membership test if and only if it admits a D_{m} membership test. Fix $0 \leq m \leq N$ and first suppose that y_{5} admits a Δ_{m} membership test. Let $z \in 2^{G}$ be an arbitrary extension of y_{5}. Then for $g \in G, g \in D_{m}$ iff

$$
\text { there is } c \in C \text { so that } g c \in \Delta_{m} \text { and for every } 1 \leq i \leq K
$$

$$
r_{z}\left(g c \lambda_{i}\right) \equiv \mathbb{B}_{i}(p(c)) \quad \bmod 2
$$

If $d \in D_{m}$, then clearly there is $c \in C$ with $d c \in \Delta_{m}$ and the last requirement is satisfied by definition of y_{5}. Now suppose $g \in G$ has the stated properties. Let $c \in C$ be such that $g c \in \Delta_{m}$. It is clear that for any $\gamma \in \Delta$ the parities of $r_{z}\left(\gamma \lambda_{i}\right)$ $(1 \leq i \leq K)$ uniquely determine an element $c^{\prime} \in C$ with $\gamma\left(c^{\prime}\right)^{-1} \in D$. Therefore, the property satisfied by g clearly implies $g \in D_{m}$. Now suppose that y_{5} admits a D_{m} membership test. Let $z \in 2^{G}$ be an arbitrary extension of y_{5}. Since z is defined on all of G, we can define a relation \prec_{z} on G by

$$
g \prec_{z} h \Longleftrightarrow\left(g^{-1} \cdot z\right) \upharpoonright V \prec\left(h^{-1} \cdot z\right) \upharpoonright V
$$

The relation \prec_{z} is a quasiordering, i.e. it is reflexive and transitive, but fails to be antisymmetric. An important property of \prec_{z} is that the construction of y_{3} ensures that \prec_{z} is a total ordering whenever restricted to a single D-translate of C. We claim that for $g \in G, g \in \Delta_{m}$ iff

$$
\begin{aligned}
& r_{z}(g)=N-m+2 \text {, there is } c \in C \text { with } g c \in D_{m} \text {, and } h \prec_{z} g \text { for } \\
& \text { all elements } h \in g c C \text { with } r_{z}(h)=N-m+2 .
\end{aligned}
$$

By the way Δ_{m} was defined, it is clear that elements of Δ_{m} have these properties. If $g \in G$ satisfies these properties, then let $c \in C$ be such that $g c=d \in D_{m}$. Let $\gamma \in \Delta_{m} \cap d C$. By definition, γ is \prec_{z}-largest among all elements $h \in d C$ with $r_{z}(h)=N-m+2$. So $g \prec_{z} \gamma, \gamma \prec_{z} g$, and $\gamma, g \in d C$. Therefore $g=\gamma \in \Delta_{m}$.

Now we will show that y_{5} admits a Δ membership test. For this, it will suffice to show that each Δ_{m} has a membership test. We will use induction on m.

We begin with Δ_{0}. Let $z \in 2^{G}$ be an arbitrary extension of y_{5}. Let \prec_{z} be defined as above. We claim that for $g \in G, g \in \Delta_{0}$ iff

$$
r_{z}(g)=N+2 \text { and } h \prec_{z} g \text { for all } h \in g C^{2} \text { with } r_{z}(h)=N+2 .
$$

First, let $\gamma \in \Delta_{0}$. Then clearly $r_{z}(\gamma)=N+2$. By construction, $C^{3} \subseteq F$, so the D-translates of C^{3} are disjoint. Let $d \in D_{0}$ be such that $\gamma \in d C$. Then $\gamma C^{2} \subseteq d C^{3}$ and therefore if $d^{\prime} \in D$ and $\gamma C^{2} \cap d^{\prime} C \neq \varnothing$, then $d^{\prime}=d$. Additionally, every element $h \in G$ with $r_{z}(h)=N+2$ is an element of $D C$. Therefore,

$$
\left\{h \in \gamma C^{2}: r_{z}(h)=N+2\right\} \subseteq d C
$$

It then follows from the construction of Δ_{0} that $h \prec_{z} \gamma$ for all such h. Conversely, let $g \in G$ be such that $r_{z}(g)=N+2$ and $h \prec_{z} g$ for all $h \in g C^{2}$ with $r_{z}(h)=N+2$. By construction, we immediately have $g \in D_{0} C$. Let $d \in D_{0}$ be such that $g \in d C$. Let $\gamma \in d C \cap \Delta_{0}$. Now $\gamma \in d C \subseteq g C^{2}$ and $r_{z}(\gamma)=N+2$, so $\gamma \prec_{z} g$. However, g and γ are both in $d C$ and by construction $g \prec_{z} \gamma$. It follows $g=\gamma \in \Delta_{0}$.

For the inductive step, let $0<m \leq N$ and suppose that y_{5} admits a $\Delta_{t^{-}}$ membership test for all $t<m$. Then y_{5} also admits a D_{t}-membership test for all $t<m$. Let $z \in 2^{G}$ be an arbitrary extension of y_{5}, and define \prec_{z} as before. We claim that for $g \in G, g \in \Delta_{m}$ iff there is $c \in C$ such that

$$
\begin{gathered}
r_{z}(g)=N-m+2 ; \\
r_{z}(g c)=N-m+2 ; \\
g c C^{3 m+1} F \cap\left(\bigcup_{0 \leq t<m} D_{t} C F\right)=\varnothing ;
\end{gathered}
$$

and $h \prec_{z} g$ for all $h \in g C^{2}$ with $r_{z}(h)=N-m+2$.
Note that one can test the truth of the third requirement by only checking the values of z on a finite set. One only needs to run the D_{t}-membership test for each $0 \leq t<m$ and each element of $g c C^{3 m+1} F F^{-1} C$. First suppose $\gamma \in \Delta_{m}$. Then clearly there is $c \in C$ with $\gamma c=d \in D_{m}$. By construction, $r_{z}(\gamma)=r_{z}(\gamma c)=$ $N-m+2$. Also, from the definition of D_{m} we have that $d=\gamma c$ satisfies the third condition listed above. It follows from the paragraph following the definition of D that $r_{y}(h) \leq N-m$ for all $h \in \gamma C^{2} \subseteq d C^{3}$. Therefore every $h \in \gamma C^{2}$ with $r_{z}(h)=N-m+2$ must lie in $D C$. Since the D-translates of C^{3} are disjoint, it follows that

$$
\left\{h \in \gamma C^{2}: r_{z}(h)=N-m+2\right\} \subseteq d C
$$

So it follows from the definition of Δ_{m} that γ is \prec_{z} largest among all such h.
Conversely, suppose $g \in G$ and $c \in C$ satisfy the conditions above. Then for every $i<m$ we have

$$
g c C^{3 i+1} F \cap\left(\bigcup_{0 \leq t<i} D_{t} C F\right)=\varnothing
$$

and

$$
g c C F \cap D_{i} C F \subseteq g c C^{3 m+1} F \cap D_{i} C F=\varnothing
$$

Therefore, it follows from the definition of D_{i} that for every $0 \leq i<m r_{y}(g c) \neq$ $N-i$. So $r_{y}(g c) \leq N-m$. Since $r_{z}(g c)=N-m+2$, it must be that $r_{y}(g c)=N-m$ and $g c \in D_{i} C$ for some $m \leq i \leq N$. As mentioned in the paragraph following the definition of D, we have $r_{y}(h) \leq N-i$ for all $h \in D_{i} C^{3}$. So we must have $g c \in D_{m} C$. Let $d \in D_{m}$ be such that $g c \in d C$. Then $g \in d C^{2}$. We have $r_{y}(g) \leq N-m$. Since $r_{z}(g)=N-m+2$, it must be that $r_{y}(g)=N-m$ and $g \in D C$. Since the D-translates of C^{2} are disjoint, $g \in d C$. Then $d C \subseteq g C^{2} \subseteq d C^{3}$. It follows that

$$
\left\{h \in g C^{2}: r_{z}(h)=N-m+2\right\} \subseteq d C
$$

If $\gamma \in d C \cap \Delta_{m}$, then $r_{z}(\gamma)=N-m+2$ so $\gamma \prec_{z} g$. By construction of $\Delta_{m}, g \prec_{z} \gamma$. Therefore $g=\gamma \in \Delta_{m}$. This finishes the proof that y_{5} admits a Δ membership test. It follows also that y_{5} admits a D membership test.

The rest of the proof uses familiar techniques in the fundamental method. The remaining tasks are to extend y_{5} to block the element s, to reach further orthogonal extensions, and at the same time to maintain the slenderness of the domain of the partial functions constructed.

Recall that for any $g \in G$

$$
g \in D C F F^{-1} C^{3 N+1}
$$

Therefore, for any $g \in G$

$$
g \in \Delta C^{2} F F^{-1} C^{3 N+1}
$$

Let Γ be the graph with vertex set Δ and edge relation given by

$$
(\gamma, \psi) \in E(\Gamma) \Longleftrightarrow \exists h \in C^{2} F F^{-1} C^{3 N+1}\left(\gamma h s h^{-1}=\psi \vee \psi h s h^{-1}=\gamma\right)
$$

for $\gamma, \psi \in \Delta$. Then each element of Δ has degree at most $2|C|^{3 N+3}|F|^{2}$ in Γ. By applying the greedy algorithm, we can find a graph-theoretic coloring of Γ using $2|C|^{3 N+3}|F|^{2}+1$ many colors, say $\mu: \Delta \rightarrow\left(2|C|^{3 N+3}|F|^{2}+1\right)$. Now we extend y_{5} to x so that

$$
\operatorname{dom}(x)=\operatorname{dom}\left(y_{5}\right) \cup \Delta\left\{\lambda_{K+1}, \lambda_{K+2}, \ldots, \lambda_{M-2}\right\} B
$$

and

$$
r_{x}\left(\gamma \lambda_{K+i}\right) \equiv \mathbb{B}_{i}(\mu(\gamma)) \quad \bmod 2
$$

for all $\gamma \in \Delta$ and $1 \leq i \leq M-K-2$. Since

$$
M-K-2 \geq \log _{2}\left(2|C|^{3 N+3}|F|^{2}+1\right)
$$

no information is lost between μ and x.
We claim that any extension of x blocks s. Let W be the test region for the Δ-membership test admitted by x. Let $T_{0}=C^{3 N+1} F F^{-1} C^{2}, T=T_{0}(F \cup W)$, and let $g \in G$ be arbitrary. Since $\Delta T_{0}^{-1}=G$, there is $t \in T_{0}$ with $g t \in \Delta$. If gst $\notin \Delta$, then $g t$ passes the Δ-membership test while $g s t$ fails. Therefore there is $w \in W$ with $g t w, g s t w \in \operatorname{dom}(x)$ and $x(g t w) \neq x(g s t w)$. As $t w \in T$, this completes this case. Now suppose $g s t \in \Delta$. Then $g s t=g t\left(t^{-1} s t\right)$ so $g t$ and $g s t$ are joined by an edge in Γ. It follows $\mu(g t) \neq \mu(g s t)$. So there is $1 \leq i \leq M-K-2$ with $\mathbb{B}_{i}(\mu(g t)) \neq \mathbb{B}_{i}(\mu(g s t))$. Thus

$$
r_{x}\left(g t \lambda_{K+i}\right) \not \equiv r_{x}\left(g s t \lambda_{K+i}\right) \quad \bmod 2
$$

and therefore there is $b \in B$ with $x\left(g t \lambda_{K+i} b\right) \neq x\left(g s t \lambda_{K+i} b\right)$ (recall $\Delta \lambda_{K+i} B \subseteq$ $\operatorname{dom}(x))$. This completes the proof of the claim since $t \lambda_{K+i} b \in T_{0} F \subseteq T$.

Now for $\iota=0,1$ define x_{ι} so that

$$
\operatorname{dom}\left(x_{\iota}\right)=\operatorname{dom}(x) \cup \Delta \lambda_{M-1} B
$$

and

$$
r_{x}\left(\gamma \lambda_{M-1}\right) \equiv \iota \quad \bmod 2
$$

for all $\gamma \in \Delta$. Let T_{0}, W, and T be as in the previous paragraph. We claim that for any $g_{0}, g_{1} \in G$ there is $\tau \in T$ such that $g_{0} \tau, g_{1} \tau \in \operatorname{dom}\left(x_{0}\right)=\operatorname{dom}\left(x_{1}\right)$ and $x_{0}\left(g_{0} \tau\right) \neq x_{1}\left(g_{1} \tau\right)$. Clearly it follows that $z_{0} \perp z_{1}$ for any $z_{0}, z_{1} \in 2^{G}$ extending x_{0}, x_{1} respectively. To prove the claim, let $g_{0}, g_{1} \in G$. Then there is $t \in T_{0}$ with $g_{0} t \in \Delta$. If $g_{1} t \notin \Delta$ then $g_{0} t$ passes the Δ-membership test while $g_{1} t$ fails. Thus, if $g_{1} t \notin \Delta$ then there is $w \in W$ with $x\left(g_{0} t w\right) \neq x\left(g_{1} t w\right)$. Clearly $t w \in T$. So suppose $g_{1} t \in \Delta$. Then

$$
r_{x_{0}}\left(g_{0} t \lambda_{M-1}\right) \not \equiv r_{x_{1}}\left(g_{1} t \lambda_{M-1}\right) \quad \bmod 2
$$

so there is $b \in B$ with $x_{0}\left(g_{0} t \lambda_{M-1} b\right) \neq x_{1}\left(g_{1} t \lambda_{M-1} b\right)$.
Finally, we verify that $A^{\prime}=\operatorname{dom}\left(x_{i}\right)$ is slender. This is immediate since if T_{0} is as before then for every $g \in G$ there is $t \in T_{0}$ with $g t \in \Delta$ and

$$
\left|g t \lambda_{M} B \cap\left(G-\operatorname{dom}\left(x_{i}\right)\right)\right|=1
$$

The main result of this section now follows quickly.
Theorem 10.2.4. Let G be a countably infinite group and $A \subseteq G$. Then the following are equivalent:
(i) A is slender;
(ii) There exists a 2-coloring on G extending the constant function $1 \in 2^{A}$;
(iii) For every $y \in 2^{A}$ there exists a 2-coloring on G extending y;
(iv) For every $y \in 2^{A}$ there exists a perfect set of pairwise orthogonal 2colorings on G extending y.
Proof. We have shown (ii) \Rightarrow (i) at the beginning of this section by noting that if A is not slender then $1 \in 2^{A}$ cannot be extended to any 2 -coloring on G. The implications (iv) \Rightarrow (iii) \Rightarrow (ii) are obvious.

It suffices to verify (i) \Rightarrow (iv). For this we consider an additional clause:
(v) For any enumeration s_{1}, s_{2}, \ldots of the nonidentity elements of G and $y \in$ 2^{A}, there is a collection $\left\{x_{u} \in 2^{\subseteq G}: u \in 2^{<\mathbb{N}}\right\}$ such that for all $u \in 2^{<\mathbb{N}}$,
(va) $y \subseteq x_{u} \subseteq x_{u \wedge 0}, x_{u \curvearrowleft 1}$,
(vb) x_{u} blocks s_{i} for all $i \leq|u|$,
(vc) for $u \neq v \in 2^{<\mathbb{N}}$ with $|u|=|v|$, if $z_{u}, z_{v} \in 2^{G}$ extend x_{u}, x_{v} respectively, then $z_{u} \perp z_{v}$,
(vd) $\left\{1_{G}, s_{1}, s_{2}, \ldots, s_{|u|}\right\} \subseteq \operatorname{dom}\left(x_{u}\right)$.
We show (i) \Rightarrow (v) \Rightarrow (iv).
(i) $\Rightarrow(\mathrm{v})$. Let s_{1}, s_{2}, \ldots be an enumeration of the nonidentity elements of G and let $y \in 2^{A}$. If necessary, arbitrarily define $y\left(1_{G}\right)$ so that $1_{G} \in \operatorname{dom}(y)$. Applying Theorem 10.2.3 to s_{1} and $u_{\varnothing}=y$, we obtain x_{0} and x_{1}. Again, if necessary, arbitrarily define $x_{0}\left(s_{1}\right)$ and $x_{1}\left(s_{1}\right)$ so that $s_{1} \in \operatorname{dom}\left(x_{0}\right), \operatorname{dom}\left(x_{1}\right)$. In general, given x_{u}, apply Theorem 10.2 .3 to $s_{|u|+1}$ and x_{u} to obtain $x_{u \wedge 0}$ and $x_{u \sim 1}$. Again, arbitrarily define $x_{u \wedge 0}$ and $x_{u \wedge 1}$ on $s_{|u|+1}$ so that $s_{|u|+1} \in \operatorname{dom}\left(x_{u \wedge 0}\right)$, $\operatorname{dom}\left(x_{u \wedge 1}\right)$. The collection $\left\{x_{u}: u \in 2^{<\mathbb{N}}\right\}$ has the desired properties.
(v) \Rightarrow (iv). Let $y \in 2^{A}$, and let $\left\{x_{u}: u \in 2^{<\mathbb{N}}\right\}$ be as in (v) with respect to any enumeration of $G-\left\{1_{G}\right\}$. For $\tau \in 2^{\mathbb{N}}$, let $z_{\tau}=\bigcup_{n \in \mathbb{N}} x_{\tau \upharpoonright n}$. By clause (vd), $z_{\tau} \in 2^{G}$. Each z_{τ} is a 2-coloring, and for $\sigma \neq \tau \in 2^{\mathbb{N}}, z_{\sigma} \perp z_{\tau}$. To see $\left\{z_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ is a perfect set, it suffices to verify that the mapping $\sigma \mapsto z_{\sigma}$ is continuous, since it is obviously injective. Given $\epsilon>0$ there corresponds a finite $B \subseteq G$ with the property that $d\left(w_{1}, w_{2}\right)<\epsilon$ if and only if w_{1} and w_{2} agree on B. By clause (vd) there is $n \in \mathbb{N}$ so that $B \subseteq \operatorname{dom}\left(x_{\tau \uparrow n}\right)$. So z_{τ} and z_{σ} agree on B for any $\sigma \in 2^{\mathbb{N}}$ with $\sigma \upharpoonright n=\tau \upharpoonright n$. Thus the map $\sigma \mapsto z_{\sigma}$ is continuous and injective, so the image, $\left\{z_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$, is perfect.

Since every proper subgroup of G is slender, the following corollary is immediate.

Corollary 10.2.5. Let G be a countably infinite group and $H<G$ a proper subgroup of G. Then every partial function with domain H can be extended to a 2 -coloring on G.

It may not be so obvious to the reader why the condition in Theorem 10.1.2 implies the slenderness of A. Here we give a direct argument. Suppose $F A^{-1} A F \neq$ G for any finite $F \subseteq G$. In particular $A^{-1} A \neq G$. Let $a \in G-A^{-1} A$ be arbitrary.

Then $a \neq 1_{G}$. Let $T=\left\{1_{G}, a\right\}$. Then $T^{-1} T \nsubseteq A^{-1} A$. We claim that T witnesses the slenderness of A. For this let $g \in G$. Then $g T \nsubseteq A$, since otherwise $T^{-1} T=$ $T^{-1} g^{-1} g T \subseteq A^{-1} A$, a contradiction.

By carefully analyzing the proof of Theorem 10.2 .3, we see that we can actually prove something stronger.

Corollary 10.2.6. Let G be a countably infinite group, and let $A \subseteq G$ be slender. Then there is a set of continuous functions $\left\{E_{\tau}: \tau \in 2^{\mathbb{N}}\right\}$ such that $E_{\tau}(y)$ is a 2-coloring on G extending y for each $y \in 2^{A}$ and $\tau \in 2^{\mathbb{N}}$. Moreover, if $\sigma \neq \tau \in 2^{\mathbb{N}}$, then $E_{\sigma}(y)$ and $E_{\tau}(y)$ are orthogonal.

Proof. Fix an enumeration s_{1}, s_{2}, \ldots of the non-identity elements of G. Let Z denote the set of ordered triples (y, T, i) where $y \in 2 \subseteq G$ has slender domain, $T \subseteq G$ is finite and witnesses the slenderness of $\operatorname{dom}(y)$ (meaning that for every $g \in G$ there is $t \in T$ with $g t \notin \operatorname{dom}(y))$, and $i \in \mathbb{N}$ is either 0 or else y blocks s_{l} for every $l \leq i$. We view Z as a subset of $2 \subseteq G \times \mathcal{P}_{\text {fin }}(G) \times \mathbb{N}$, where \mathbb{N} has the discrete topology, $\mathcal{P}_{\text {fin }}(G)$ is the collection of finite subsets of G and has the discrete topology, and $2 \subseteq G$ has the topology coming from 3^{G} as described at the end of Section 2.1. Let π_{1}, π_{2}, and π_{3} denote the projections from Z to its three components. Denote by Z_{i} the set $\pi_{3}^{-1}(i) \subseteq Z$. We claim that there are two continuous functions $E_{0}, E_{1}: Z \rightarrow Z$ satisfying the following:
(i) $E_{0}\left(Z_{i}\right), E_{1}\left(Z_{i}\right) \subseteq Z_{i+1}$ for all $i \in \mathbb{N}$;
(ii) $\left\{1_{G}, s_{1}, s_{2}, \ldots, s_{i+1}\right\} \subseteq \operatorname{dom}\left(\pi_{1}\left(E_{0}(z)\right)\right)$, $\operatorname{dom}\left(\pi_{1}\left(E_{1}(z)\right)\right)$ for all $i \in \mathbb{N}$ and $z \in Z_{i}$;
(iii) $\pi_{1}\left(E_{0}(z)\right)$ and $\pi_{1}\left(E_{1}(z)\right)$ both extend $\pi_{1}(z)$ for every $z \in Z$;
(iii) any extensions of $\pi_{1}\left(E_{0}(z)\right)$ and of $\pi_{1}\left(E_{1}(z)\right)$ to 2^{G} are orthogonal, for every $z \in Z$.
Before defining E_{0} and E_{1}, we show how the statement of this corollary follows from their existence. Fix a slender set $A \subseteq G$. Let $T \subseteq G$ be finite and have the property that for every $g \in G$ there is $t \in T$ with $g t \notin A$. Notice that the inclusion $y \in 2^{A} \mapsto(y, T, 0) \in Z$ is continuous. For $y \in 2^{A}$ and $\tau \in 2^{\mathbb{N}}$ we define

$$
E_{\tau}(y)=\bigcup_{n \in \mathbb{N}} \pi_{1} \circ E_{\tau(n)} \circ E_{\tau(n-1)} \circ \cdots \circ E_{\tau(0)}(y, T, 0)
$$

By clauses (ii) and (iii) we have that $E_{\tau}(y)$ is an element of 2^{G} which extends y. Since E_{0} and E_{1} are continuous, it follows from clause (ii) that the map $y \mapsto E_{\tau}(y)$ is continuous for $y \in 2^{A}$ and fixed $\tau \in 2^{\mathbb{N}}$. Also, by clause (i) and the definition of Z it follows that $E_{\tau}(y)$ is a 2-coloring. Finally, by clause (iii) we have that $E_{\tau}(y)$ and $E_{\sigma}(y)$ are orthogonal for every $y \in 2^{A}$ and $\tau \neq \sigma \in 2^{\mathbb{N}}$.

Now we define E_{0} and E_{1}. This is not too difficult of a task since E_{0} and E_{1} were in some sense implicitly defined in the proof of Theorem 10.2.3. In the proof of that theorem, we began with $y \in 2^{A}$ with A slender a non-identity $s \in G$, we picked a finite set $T \subseteq G$ witnessing the slenderness of A, and we described how to construct a sequence of functions, namely $y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$, and x, which ultimately led to two functions x_{0} and x_{1}. The functions x_{0} and x_{1} had the property that they have slender domain, they extended y, they block s, and any extensions of x_{0} and x_{1} to 2^{G} are orthogonal. If $s=s_{i+1}$ and y blocks all s_{l} for $l \leq i$ then we essentially want to define $E_{0}(y, T, i)=\left(x_{0}, T_{0}, i+1\right)$ and $E_{1}(y, T, i)=\left(x_{1}, T_{1}, i+1\right)$, for some finite sets $T_{0}, T_{1} \subseteq G$ to be specified. So we must simply trace through
the constructions appearing in the proof of Theorem 10.2.3 and show that these can be done in a continuous manner.

Let $z=(y, T, i) \in Z$. Set $A=\operatorname{dom}(y)$. So A is slender and for every $g \in G$ there is $t \in T$ with $g t \notin A$. Set $s=s_{i+1}$. Looking back at the proof of Theorem 10.2.3, we see that many objects appearing in that proof are defined solely in terms of T. Namely, the following objects are defined solely in terms of $T: B, N, C$, $a: C \times C \rightarrow G, V, \prec$ (the total order on $\left.2^{V}\right), F, \Lambda,\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M}\right\}, K$, and $p: C \rightarrow 2^{K}$. By fixing a choice of each of these objects for every finite $T \subseteq G$, we get that these objects vary continuously with $z \in Z$ (we view these objects as points in a discrete topological space). If x_{0} and x_{1} are as constructed in Theorem 10.2.3 with respect to z and s, then it is explicit in that proof that the finite set $C^{3 N+1} F F^{-1} C^{2} \lambda_{M} B$ witnesses the slenderness of $\operatorname{dom}\left(x_{0}\right)=\operatorname{dom}\left(x_{1}\right)$. We will define $E_{0}(z)$ and $E_{1}(z)$ so that $\pi_{2}\left(E_{0}(z)\right)=\pi_{2}\left(E_{1}(z)\right)=C^{3 N+1} F F^{-1} C^{2} \lambda_{M} B$ and $\pi_{3}\left(E_{0}(z)\right)=\pi_{3}\left(E_{1}(z)\right)=i+1$. Thus E_{0} and E_{1} will be continuous as long as $\pi_{1} \circ E_{0}$ and $\pi_{1} \circ E_{1}$ are continuous. So we only need to show that the functions x_{0} and x_{1} in the proof of Theorem 10.2.3 can be constructed continuously from y, T, and i.

We first show that $D_{N}, D_{N-1}, \ldots, D_{0} \in \mathcal{P}(G)$ can be defined continuously in terms of (y, T, i). Here $\mathcal{P}(G)$ is the power set of $G, \mathcal{P}(G)=\{M: M \subseteq G\}$. We identify $\mathcal{P}(G)$ with 2^{G}, the correspondence being given by characteristic functions, and use the corresponding topology. Fix an enumeration g_{0}, g_{1}, \ldots of G. This enumeration of G gives rise to an order on $\mathcal{P}(G)$ which we will denote $\leq_{\mathcal{P}(G)}$. Specifically, if $M, N \subseteq G$ then $M \leq_{\mathcal{P}(G)} N$ if either $M=N$ or else $g_{n} \in M-N$ where n is least with $g_{n} \in(M-N) \cup(N-M)$. Now if we define D_{N} to be the $\leq_{\mathcal{P}(G)}$-least set satisfying the conditions stated in the proof of Theorem 10.2.3, then it is not difficult to see that D_{N} depends continuously on (y, T, i). Once D_{N} has been defined in this way, we then define D_{N-1} to be the $\leq_{\mathcal{P}(G)}$-least set satisfying the conditions stated in the proof of Theorem 10.2.3. Again, D_{N-1} depends continuously on $\left(y, T, i, D_{N}\right)$ and hence continuously on (y, T, i). Continuing in this manner, we see that $D_{N}, D_{N-1}, \ldots, D_{0}$ can be defined continuously in terms of (y, T, i). In particular, the map $(y, T, i) \mapsto\left(y, T, i, D_{N}, D_{N-1}, \ldots, D_{0}\right)$ is continuous. Similar methods of choosing well orderings and picking the least element satisfying conditions given in the proof of Theorem 10.2.3 show that the functions y_{1}, y_{2}, and y_{3} can be defined continuously in terms of $\left(y, T, i, D_{N}, \ldots, D_{0}\right)$.

As mentioned earlier, both V and the total order \prec on 2^{V} depend continuously on T. Thus it is easy to check that each Δ_{r} is a continuous function of ($y_{3}, T, i, D_{N}, \ldots, D_{0}$). So ($y_{3}, T, i, D_{N}, \ldots, D_{0}, \Delta_{N}, \ldots, \Delta_{0}$) depends continuously on (y, T, i). Again, by picking total orderings and choosing the smallest elements relative to the appropriate conditions, we see that y_{4} and y_{5} depend continuously on $\left(y_{3}, T, i, D_{N}, \ldots, D_{0}, \Delta_{N}, \ldots, \Delta_{0}\right)$. This uses the fact that K and $p: C \rightarrow 2^{K}$ depend continuously on T. Now we must consider the graph coloring of $\Gamma, \mu: \Delta \rightarrow\left(2|C|^{3 N+3}|F|^{2}+1\right)$ (the vertex set of Γ is Δ). We view such functions μ as elements of $\left(2|C|^{3 N+3}|F|^{2}+2\right)^{G}$ by declaring μ to be constantly $2|C|^{3 N+3}|F|^{2}+1$ on $G-\Delta$. We define μ continuously as follows. Recall that g_{0}, g_{1}, \ldots is an enumeration of G. We let $\mu\left(g_{0}\right)$ be 0 if $g_{0} \in \Delta$ and otherwise we let $\mu\left(g_{0}\right)$ be $2|C|^{3 N+3}|F|^{2}+1$. In general, after μ has been defined on $g_{0}, g_{1}, \ldots, g_{n}$, we define $\mu\left(g_{n+1}\right)$ as follows. If $g_{n+1} \notin \Delta$ then we set $\mu\left(g_{n+1}\right)=2|C|^{3 N+3}|F|^{2}+1$. Otherwise we let $\mu\left(g_{n+1}\right)$ be the least number among $\left\{0,1, \ldots, 2|C|^{3 N+2}|F|^{2}\right\}$ not
appearing in the set

$$
\left\{\mu\left(g_{r}\right): 0 \leq r \leq n, g_{r} \in \Delta, \text { and }\left(g_{r}, g_{n+1}\right) \in E(\Gamma)\right\} .
$$

This definition is valid since each vertex of Γ has at most $2|C|^{3 N+3}|F|^{2}$ neighbors. Recall that $(\gamma, \psi) \in E(\Gamma)$ if there is $h \in C^{2} F F^{-1} C^{3 N+1}$ with either $\gamma h s h^{-1}=\psi$ or $\psi h s h^{-1}=\gamma$. The set $C^{2} F F^{-1} C^{3 N+1}$ depends continuously on T, and Δ depends continuously on (y, T, i). Therefore μ depends continuously on (y, T, i). Now it is easy to check that x and $x_{0}=\pi_{1}\left(E_{0}(y, T, i)\right)$ and $x_{1}=\pi_{1}\left(E_{1}(y, T, i)\right)$ can be defined continuously. Note that we must slightly enlarge the x_{0} and x_{1} appearing in the proof of Theorem 10.2.3 in order to have $\left\{1_{G}, s_{1}, s_{2}, \ldots, s_{i+1}\right\} \subseteq \operatorname{dom}\left(x_{0}\right), \operatorname{dom}\left(x_{1}\right)$. However, it is easy to see that this can be done continuously. This completes the proof.

10.3. Almost equality and cofinite domains

Recall that for $x, y \in 2^{G}$ we say that x and y are almost equal, written $x={ }^{*} y$, if x and y disagree on only finitely many elements of G. In this section we take a closer look at the behaviour of points under almost equality. We study the relationship between almost equality and periodicity, and the relationship between almost equality and 2 -colorings. From these results we will derive new findings regarding the extendability of partial functions to 2 -colorings. This section involves a substantial amount of geometric group theory - specifically the notion of the number of ends of a group and Stallings' Theorem. These geometric group theory concepts are introduced below.

We first review the notion of the number of ends of a finitely generated group. Let G be a finitely generated infinite group, and let S be a finite symmetric set of generators. The right Cayley graph of G with respect to $S, \Gamma_{R, S}$, is the graph with vertex set G and edge relation $\{(g, g s): g \in G, s \in S\}$. The left Cayley graph of G with respect to $S, \Gamma_{L, S}$, is defined similarly but with edge set $\{(g, s g): g \in$ $G, s \in S\}$. It is traditional to use right Cayley graphs, however $\Gamma_{L, S}$ and $\Gamma_{R, S}$ are isomorphic as graphs (the isomorphism sending $g \in V\left(\Gamma_{L, S}\right)$ to $\left.g^{-1} \in V\left(\Gamma_{R, S}\right)\right)$. The number of ends of G is defined to be the supremum of the number of infinite connected components of $\Gamma_{R, S}-A$ as A ranges over all finite subsets of G. The number of ends of a group is in fact independent of the finite generating set used and is thus an intrinsic property of the group G. We recall here a well known theorem of geometric group theory.

Theorem 10.3.1 ([$\mathbf{B H}]$, Theorem 8.32). Let G be a finitely generated group.
(i) G must have either $0,1,2$, or infinitely many ends.
(ii) G has 0 ends if and only if G is finite.
(iii) G has 2 ends if and only if G contains \mathbb{Z} as a normal subgroup of finite index.
(iv) G has infinitely many ends if and only if G can be expressed as an almagamated product $A *_{C} B$ or HNN extension $A *_{C}$ with C finite, $[A: C] \geq 3$, and $[B: C] \geq 2$.
As pointed out in $[\mathbf{B H}]$, clauses (i), (ii), and (iii) are due to Hopf while clause (iv) is a celebrated theorem of Stallings. In $[\mathbf{B H}]$, clause (iii) does not contain the word "normal," however normality easily follows in view of Lemma 3.1.5 of this paper.

The following theorem addresses the question of whether or not periodic points are almost equal to aperiodic points.

Theorem 10.3.2. Let G be a countable group. The following are all equivalent:
(i) there is $x \in 2^{G}$ such that every $y \in 2^{G}$ almost equal to x is periodic;
(ii) G contains a finitely generated subgroup having infinitely many ends;
(iii) G contains a subgroup which is the free product of two nontrivial groups at least one of which has more than two elements;
(iv) G contains a nonabelian free subgroup.

Proof. We first show that (ii), (iii), and (iv) are equivalent.
(ii) \Rightarrow (iii). Let $H \leq G$ be finitely generated and have infinitely many ends. By Theorem 10.3.1, H can be expressed as an almagamated product $A *_{C} B$ or HNN extension $A *_{C}$ with C finite, $[A: C] \geq 3$, and $[B: C] \geq 2$. First suppose that H is of the form $A *_{C} B$. If C is trivial then (iii) holds and we are done. So we may suppose that C is nontrivial. We will use Lemma 6.4 of Section III.Г. 6 on page 498 of $[\mathbf{B H}]$. This lemma states, in particular, that if $a_{1} \in A, a_{2}, a_{3}, \ldots, a_{n} \in A-C$, $b_{1}, \ldots, b_{n-1} \in B-C$, and $b_{n} \in B$, then $a_{1} b_{1} a_{2} b_{2} \cdots a_{n} b_{n}$ is not the identity element in $H=A *_{C} B$. Pick any $b_{1}, b_{2} \in B-C$, and pick any $a_{1} \in A-C$. Since $[A: C] \geq 3$, we can also pick $a_{2} \in A-C$ with $a_{2} a_{1} \notin C$. If $b_{2} b_{1} \in C$, then pick $a_{3} \in A-C$ with $a_{3} b_{2} b_{1} a_{1} \notin C$. If $b_{2} b_{1} \notin C$, then pick any $a_{3} \in A-C$. Set $u=a_{1} b_{1} a_{2}$ and $v=b_{1} a_{1} b_{2} a_{3} b_{2}$. Then u and v generate a nonabelian free group. In particular, $\mathbb{Z} * \mathbb{Z} \cong\langle u, v\rangle \leq H \leq G$ so (iii) is satisfied. Now suppose that H is of the form $A *_{C}=\left\langle A, t \mid t^{-1} c t=\phi(c)\right\rangle$ where $[A: C] \geq 3$ and $\phi: C \rightarrow A$ is an injective homomorphism. Let $C^{\prime}=\phi(C)$. We again use Lemma 6.4 of Section III.Г. 6 on page 498 of $[\mathbf{B H}]$. This lemma states, in particular, that if $a_{1}, a_{2}, \ldots, a_{n-1} \in A-\left(C \cup C^{\prime}\right)$ and $m_{1}, m_{2}, \ldots, m_{n} \in \mathrm{Z}-\{0\}$ then $t^{m_{1}} a_{1} t^{m_{2}} a_{2} \cdots t^{m_{n-1}} a_{n-1} t^{m_{n}}$ is not the identity element in $H=A *_{C}$. Since C is finite, C^{\prime} cannot properly contain C and therefore C^{\prime} cannot contain any coset $a C$ with $a \notin C$. Thus there is $a \in A-C \cup C^{\prime}$. Set $u=t a t$ and $v=t^{2} a t^{2}$. Then u and v generate a nonabelian free group. Thus $\mathbb{Z} * \mathbb{Z} \cong\langle u, v\rangle \leq H \leq G$ so (iii) is satisfied.
(iii) \Rightarrow (iv). It suffices to show that if A and B are nontrivial groups and $|B|>2$, then $H=A * B$ contains a free nonabelian subgroup. By Proposition 4 on page 6 of $[\mathbf{S}]$, the kernel of the homomorphism $A * B \rightarrow A \times B$ is a free group with free basis $\left\{a^{-1} b^{-1} a b: 1_{A} \neq a \in A, 1_{B} \neq b \in B\right\}$. So we only need to show that this free basis contains more than one element. Since $|B|>2$, there are nonidentity $b_{1} \neq b_{2} \in B$. Fix any nonidentity $a \in A$. Since $H=A * B$, it is clear that $a^{-1} b_{1}^{-1} a b_{1}$ and $a^{-1} b_{2}^{-1} a b_{2}$ are distinct. Thus the free basis of the kernel contains at least two elements and therefore the kernel is a free nonabelian subgroup.
(iv) \Rightarrow (ii). Clearly every nonabelian free group contains a finitely generated nonabelian free group. Also, it is easy to see that any finitely generated nonabelian free group has infinitely many ends (alternatively, one could use clause (iv) of Theorem 10.3.1 to see this). Thus every nonabelian free group contains a subgroup with infinitely many ends.

Now we show that the negation of (ii) implies the negation of (i). Assume that every finitely generated subgroup of G has finitely many ends. Let $x \in 2^{G}$. Set

$$
P=\left\{u \in G: u \neq 1_{G} \text { and } \exists y={ }^{*} x \text { with } u \cdot y=y\right\} .
$$

We point out that if $u \in G$ and $u \cdot x=^{*} x$ then we may not have that $u \in P$ (consider $G=\mathbb{Z}$ and $x \in 2^{\mathbb{Z}}$ given by: $x(n)=1$ if and only if $n \geq 0$). We now point out a key observation.

Key Observation: Consider $u_{1}, u_{2}, \ldots, u_{k} \in P$ and the subgroup they generate $H=\overline{\left\langle u_{1}, u_{2}, \ldots, u_{k}\right\rangle .}$ Define

$$
B=\left\{g \in G: \exists 1 \leq i \leq k x\left(u_{i} g\right) \neq x(g) \text { or } x\left(u_{i}^{-1} g\right) \neq x(g)\right\}
$$

It follows from the definition of P that B is finite. Now put a graph structure on G by using the edge set $\left\{\left(g, u_{i}^{ \pm 1} g\right): g \in G, 1 \leq i \leq k\right\}$. Then the connected components of G are precisely the right cosets of H in G and x is constant on the connected components of $G-B$. Notice that only finitely many right cosets of H intersect B, and therefore x is constant on all but finitely many right cosets of H. Also notice that every connected component of G (i.e. every right coset of H) is (graph) isomorphic to the left Cayley graph of H with respect to the generating set $\left\{u_{1}^{ \pm 1}, u_{2}^{ \pm 1}, \ldots, u_{k}^{ \pm 1}\right\}$. The number of ends of H will therefore give us useful information about the behaviour of x on the right cosets of H which meet B.

Since G does not contain any finitely generated subgroups with infinitely many ends, every finitely generated subgroup of G must have either 0,1 , or 2 ends. The proof proceeds in cases. The first three cases handle the scenario where $\langle P\rangle$ is finitely generated, and the last three cases handle the scenario where $\langle P\rangle$ is not finitely generated. Note that if $\langle P\rangle$ is finitely generated, then there exists a finite set $S \subseteq P$ with $\langle S\rangle=\langle P\rangle$.

Case 1: $\langle P\rangle$ is finitely generated and has 0 ends. Then $\langle P\rangle$ is finite and thus P is finite. We define $y \in 2^{G}$ by

$$
y(g)= \begin{cases}1 & \text { if } g=1_{G} \\ 0 & \text { if } g \in P \\ x(g) & \text { otherwise }\end{cases}
$$

Clearly $y={ }^{*} x$. If $h \in G$ and $h \cdot y=y$ then

$$
y(h)=\left(h^{-1} \cdot y\right)\left(1_{G}\right)=y\left(1_{G}\right)=1 .
$$

So $h \notin P$ and therefore $h=1_{G}$ and y is an aperiodic point almost equal to x.
Case 2: $\langle P\rangle$ is finitely generated and has 1 end. Use $H=\langle P\rangle$ and consider the Key Observation. Using the fact that $\langle P\rangle$ is one ended, we get that x is constant on a cofinite subset of $\langle P\rangle$. Let i be the value of x on this cofinite set and define $y \in 2^{G}$ by

$$
y(g)=\left\{\begin{array}{ll}
x(g) & \text { if } g \notin\langle P\rangle \\
i & \text { if } g \in\langle P\rangle \\
1-i & \text { if } g=1_{G}
\end{array} \text { and } g \neq 1_{G}\right.
$$

If $h \cdot y=y$ then $h \in P \cup\left\{1_{G}\right\}$ since $y={ }^{*} x$. Then $y\left(h^{-1}\right)=(h \cdot y)\left(1_{G}\right)=y\left(1_{G}\right)=1-i$ so $h=1_{G}$. Thus y is aperiodic and is almost equal to x.

Case 3: $\langle P\rangle$ is finitely generated and has two ends. If x is constant on a cofinite subset of $\langle P\rangle$, then we can repeat the argument appearing in Case 2. So we may suppose that x is not constant on any cofinite subset of $\langle P\rangle$. Since $\langle P\rangle$ has two ends, it follows from the Key Observation that there are disjoint infinte sets $L, R \subseteq\langle P\rangle$ (in some sense, the two ends) such that x is constant on L and R (separately) and $L \cup R$ is cofinite in $\langle P\rangle$. By Theorem 10.3.1, $\langle P\rangle$ contains \mathbb{Z} as a finite index normal subgroup. Although we will not make direct use of this, we point out that
intuitively the Cayley graph of $\langle P\rangle$ is "cylinder-like" and this accounts for the "two ends." Let $v \in\langle P\rangle$ generate an infinite normal cyclic subgroup of finite index. Notice that the map $p \mapsto p v$ induces an isometry of every left Cayley graph of $\langle P\rangle$. Therefore, if $p, q \in\langle P\rangle$ then for all but finitely many $k \in \mathbb{Z}$ we have either $p v^{k}, q v^{k} \in L$ or $p v^{k}, q v^{k} \in R$. Let $a_{0}=1_{G}, a_{1}, \cdots, a_{n}$ be a complete set of distinct coset representatives for the cosets of $\langle v\rangle$ in $\langle P\rangle$. In other words, $a_{s}\langle v\rangle \cap a_{t}\langle v\rangle=\varnothing$ for $s \neq t$ and $\langle P\rangle=\bigcup a_{s}\langle v\rangle$. By swapping L and R if necessary, we may suppose that for all sufficiently large $k>0$ we have

$$
\left\{a_{0}, a_{1}, \ldots, a_{n}\right\} v^{-k} \subseteq L \text { and }\left\{a_{0}, a_{1}, \ldots, a_{n}\right\} v^{k} \subseteq R .
$$

Since x is constant on L, we can let i denote this constant value. Then x is identically $1-i$ on R. Define $\phi, \theta \in 2^{\mathbb{Z}}$ by

$$
\phi(k)=\left\{\begin{array}{ll}
i & \text { if } k<0 \\
1-i & \text { otherwise }
\end{array} ; \quad \theta(k)= \begin{cases}i & \text { if } k<0 \text { or } k=1 \\
1-i & \text { otherwise }\end{cases}\right.
$$

Notice that $[\phi]$ and $[\theta]$ are infinite and are disjoint. Now define $y \in 2^{G}$ by

$$
y(g)= \begin{cases}x(g) & \text { if } g \notin\langle P\rangle \\ \theta(k) & \text { if } \exists s \neq 0 \exists k \in \mathbb{Z} g=a_{s} v^{k} \\ \phi(k) & \text { if } \exists k \in \mathbb{Z} g=v^{k}=a_{0} v^{k}\end{cases}
$$

Then $y={ }^{*} x$. Suppose $h \in G$ and $h \cdot y=y$. Then $h \in P \cup\left\{1_{G}\right\}$. Let s and k be such that $h^{-1}=a_{s} v^{k}$. Then the function

$$
m \mapsto y\left(h^{-1} v^{m}\right)=y\left(a_{s} v^{k} v^{m}\right)=y\left(a_{s} v^{k+m}\right)
$$

lies in $[\phi] \cup[\theta]$. However,

$$
\phi(m)=y\left(v^{m}\right)=(h \cdot y)\left(v^{m}\right)=y\left(h^{-1} v^{m}\right) .
$$

So by the pairwise disjointness of $[\phi]$ and $[\theta]$ we must have that $s=0$ and $h^{-1}=$ $a_{0} v^{k}=v^{k}$. Since the restriction of y to $\langle v\rangle$ is (essentially) ϕ and $v^{k} \cdot y=y$, we must have $k=0$ and therefore $h=1_{G}$. Thus $y={ }^{*} x$ and y is aperiodic.

The three remaining cases deal with the scenario where $\langle P\rangle$ is not finitely generated. Let $H_{0} \leq H_{1} \leq \cdots$ be an increasing sequence of finitely generated subgroups of $\langle P\rangle$ with $\bigcup H_{n}=\langle P\rangle$. Now each H_{n} has either 0 , 1 , or 2 ends. By passing to a subsequence if necessary, we may suppose that the number of ends of H_{n} is independent of $n \in \mathbb{N}$. We proceed by cases on the number of ends of the H_{n} 's.

Case 4: Each H_{n} has 0 ends. Then each H_{n} is finite and $\langle P\rangle$ is locally finite. Let $y \in 2^{G}$ be such that $y(g)=x(g)$ for nonidentity $g \in G$ and $y\left(1_{G}\right)=1-x\left(1_{G}\right)$. It will suffice to show that either x or y is aperiodic. Towards a contradiction, suppose x and y are both periodic. Let $a, b \in G$ be nonidentity group elements with $a \cdot x=x$ and $b \cdot y=y$. Then $a, b \in P$ and therefore $H=\langle a, b\rangle$ is finite. Let Γ be the graph with vertex set H and edge relation $\left\{\left(h, a^{ \pm 1} h\right): h \in H\right\} \cup\left\{\left(h, b^{ \pm 1} h\right)\right.$: $h \in H\}$. Since x and y agree on $G-\left\{1_{G}\right\}$ and $a \cdot x=x$ and $b \cdot y=y$, we have that x must be constant on the connected components of $\Gamma-\left\{1_{G}\right\}$. We have $x(a)=x\left(1_{G}\right) \neq y\left(1_{G}\right)=y(b)=x(b)$. So a and b do not lie in the same connected component of $\Gamma-\left\{1_{G}\right\}$. Thus $\Gamma-\left\{1_{G}\right\}$ is not connected. Since a and b have finite order, a is in the same connected component as a^{-1} and similarly b is in the same connected component as b^{-1}. Every connected component of $\Gamma-\left\{1_{G}\right\}$ must contain a point adjacent to 1_{G}. Therefore there must be precisely two connected
components of $\Gamma-\left\{1_{G}\right\}$, one containing a, call it A, and the other containing b, call it B. Multiplication on the right induces an automorphism of Γ, so for any $h \in H$ the connected components of $\Gamma-\{h\}$ are $A h$ and $B h$. Since H is finite so are A and B. Suppose that $|A| \leq|B|$ (the other case is identical). We have $1_{G} \in A a$ and therefore $1_{G} \notin B a$. However $B a \cup\{a\}$ is connected, hence connected in $\Gamma-\left\{1_{G}\right\}$. Since $a \in B a \cup\{a\}$, we must have that $B a \cup\{a\} \subseteq A$. Therefore $|B|+1 \leq|A|$, contradicting $|A| \leq|B|<\infty$. Thus either x or y is aperiodic. In any case, x is almost equal to an aperiodic element of 2^{G}.

Case 5: Each H_{n} has 1 end. Since each H_{n} has 1 end, each H_{n} must be infinite. By the Key Observation, we have that for every $n \in \mathbb{N}$ and every right coset $H_{n} a$ of H_{n}, x is constant on a cofinite subset of $H_{n} a$. We claim that x is constant on a cofinite subset of $\langle P\rangle$. Notice that x is constant on all but finitely many of the right cosets of H_{0} (although this constant value may change from coset to coset). So if x is not constant on any cofinite subset of $\langle P\rangle$, then there must be right cosets $H_{0} a, H_{0} b \subseteq\langle P\rangle$ such that x takes the value 0 infinitely many times on $H_{0} a$ and x takes the value 1 infinitely many times on $H_{0} b$. Since $\bigcup H_{m}=\langle P\rangle$, there is $n \in \mathbb{N}$ with $H_{0} a, H_{0} b \subseteq H_{n}$. But then x takes the value 0 and the value 1 infinitely many times on H_{n}, contradicting x being constant on a cofinite subset of H_{n}. Thus x must be constant on a cofinite subset of $\langle P\rangle$. Let $i \in\{0,1\}$ be this constant value. Define $y \in 2^{G}$ by $y\left(1_{G}\right)=1-i, y(p)=i$ for $1_{G} \neq p \in\langle P\rangle$, and $y(g)=x(g)$ for $g \notin\langle P\rangle$. Then $y={ }^{*} x$. If $h \in G$ and $h \cdot y=y$ then by definition we have $h \in P \cup\left\{1_{G}\right\}$. So $y\left(h^{-1}\right)=(h \cdot y)\left(1_{G}\right)=y\left(1_{G}\right)$ and therefore $h=1_{G}$ due to how y was defined on $\langle P\rangle$. So y is aperiodic and is almost equal to x.

In Case 6 below, we consider the final possible scenario in which each H_{n} has two ends. Before handling this case, we make the general claim that H_{0} must be of finite index within each H_{n}. To see this, for each n let K_{n} be a normal finite index subgroup of H_{n} isomorphic to \mathbb{Z} (see Theorem 10.3.1). Then $\left(H_{0} K_{n}\right) / K_{n}$ is a subgroup of the finite group H_{n} / K_{n}, and thus $\left(H_{0} K_{n}\right) / K_{n}$ is finite. By the isomorphism theorems of group theory, we have that $H_{0} /\left(H_{0} \cap K_{n}\right) \cong\left(H_{0} K_{n}\right) / K_{n}$ is finite. So $H_{0} \cap K_{n}$ has finite index in H_{0}. However, $H_{0} \cap K_{n}$ is a subgroup of $K_{n} \cong \mathbb{Z}$ and therefore must have finite index within K_{n}. Thus $H_{0} \cap K_{n}$ has finite index in H_{n}, so in particular H_{0} has finite index in H_{n}. This proves the claim. We now continue to Case 6.

Case 6: Each H_{n} has 2 ends. Since each H_{n} has 2 ends, each H_{n} must be infinite. As in Case 3, by Theorem 10.3.1 and the claim above there is $v \in H_{0}$ of infinite order such that $\langle v\rangle$ has finite index in each H_{n}. For each $n \in \mathbb{N}$ there are infinite sets $L_{n}, R_{n} \subseteq H_{n}$ (in some sense corresponding to the two ends of H_{n}) with $L_{n} \cap R_{n}=\varnothing, L_{n} \cup R_{n}$ cofinite within H_{n}, and x constant on each of L_{n} and R_{n}. By swapping L_{n} and R_{n} if necessary, we can assume that for each $h \in H_{n}$ there is $m \in \mathbb{N}$ such that $h v^{-k} \in L_{n}$ and $h v^{k} \in R_{n}$ whenever $k \geq m$ (see Case 3). It follows from this last property that $L_{n} \cap L_{n+1}$ and $R_{n} \cap R_{n+1}$ are nonempty. Since x is constant on each L_{n} and $L_{n} \cap L_{n+1} \neq \varnothing$, it follows that x is constant on $L_{\infty}=\bigcup L_{n}$ and similarly x is constant on $R_{\infty}=\bigcup R_{n}$. We first show that x is constant on $L_{\infty} \cup R_{\infty}$. For this it suffices to show that x is constant on $L_{n} \cup R_{n}$ for some $n \in \mathbb{N}$. By the Key Observation we know that x is constant on all but finitely many of the right cosets of H_{0} in G. Since H_{0} is finitely generated and $\langle P\rangle$ is not, we must have that H_{0} is of infinite index in $\langle P\rangle$. So there is a right coset $H_{0} a$ of H_{0} in $\langle P\rangle$ on which x is constant. Since $\langle P\rangle$ is the increasing union of the
H_{n} 's, there is $n \in \mathbb{N}$ with $H_{0} a \subseteq H_{n}$. Now $\langle v\rangle$ has finite index in H_{n}, so there is $k \in \mathbb{N}$ with $\left\langle v^{k}\right\rangle \triangleleft H_{n}$ (Lemma 3.1.5). So $H_{0} a\left\langle v^{k}\right\rangle=H_{0}\left\langle v^{k}\right\rangle a=H_{0} a$ and therefore we have $L_{n} \cap H_{0} a \neq \varnothing$ and $R_{n} \cap H_{0} a \neq \varnothing$. Since x is constant on $L_{n}, H_{0} a$, and R_{n}, x must be constant on $L_{n} \cup R_{n}$. So for each $n \in \mathbb{N} x$ is constant on $L_{n} \cup R_{n}$, and $L_{n} \cup R_{n}$ is cofinite in H_{n}. Since every right coset of H_{n} in $\langle P\rangle$ is contained in some H_{m}, it follows that x is constant on a cofinite subset of each right coset of each H_{n} in $\langle P\rangle$. An argument identical to that appearing in Case 5 now shows that x is constant on a cofinite subset of $\langle P\rangle$. The construction in Case 5 then shows that there is an aperiodic $y \in 2^{G}$ with $y={ }^{*} x$.

To finish the proof, we show that (iv) implies (i). Suppose that G contains a free nonabelian subgroup. Since every free nonabelian group contains a free nonabelian group of countably infinite rank, there is a free nonabelian subgroup $H \leq G$ of countably infinite rank. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a free generating set for H. Let $C \subseteq G$ be a complete set of representatives of the right cosets of H in G. Specifically, $G=H C$ and for $c \neq d \in C$ we have $H c \cap H d=\varnothing$. Let F be the set of all functions $y: A \rightarrow 2$ where $A \subseteq G$ is finite. Then F is countable, and we can find an injective function $\sigma: F \rightarrow \mathbb{N}$ such that for every $y \in F$ $\operatorname{dom}(y) \subseteq\left\langle a_{0}, a_{1}, \ldots, a_{\sigma(y)}\right\rangle C$. Now recursively define $x \in 2^{G}$ as follows. First set $x(c)=0$ for all $c \in C$. Now fix $g \in G$, and let $h \in H$ be such that $g \in h C$. Let $i \in \mathbb{N}$ be such that the reduced word representation of h begins on the left with a_{i}^{k}, where $k \neq 0$ and $|k|$ is maximized. If there is $y \in F$ with $a_{i}^{-k} g \in \operatorname{dom}(y)$ and $\sigma(y)=i-1$, then set $x(g)=y\left(a_{i}^{-k} g\right)$ (this is well defined since σ is injective). Otherwise, set $x(g)=x\left(a_{i}^{-k} g\right)$ (this case is where the recursion occurs). Clearly $a_{0} \cdot x=x$. So x is periodic. Now suppose z is almost equal to x. Then there is $y \in F$ such that $z(g)=y(g)$ for $g \in \operatorname{dom}(y)$ and $z(g)=x(g)$ for $g \notin \operatorname{dom}(y)$. Let $i=\sigma(y)+1$. We claim that $a_{i} \cdot z=z$. It suffices to show that for every $k \in \mathbb{Z}$, every $c \in C$, and every $h \in H$ not beginning with a_{i} or a_{i}^{-1} we have $z\left(a_{i}^{k} h c\right)=z(h c)$. Fix such k, c, and h. Then $a_{i}^{k} h c \notin \operatorname{dom}(y)$ since $\sigma(y)=i-1$. If $h c \notin \operatorname{dom}(y)$ then $z(h c)=x(h c)=x\left(a_{i}^{k} h c\right)=z\left(a_{i}^{k} h c\right)$ (the second equality follows from the definition of x, for which the second case applies). Similarly, if $h c \in \operatorname{dom}(y)$ then $z(h c)=y(h c)=x\left(a_{i}^{k} h c\right)=z\left(a_{i}^{k} h c\right)$ (by the definition of x in the first case). Thus $a_{i} \cdot z=z$.

A famous problem in group theory was the von Neumann Conjecture which states that a group is nonamenable if and only if it contains a free nonabelian subgroup. The von Neumann Conjecture was disproven by Olshanskii [O] in 1981. However, the above theorem provides us with a dynamical characterization for which groups contain free nonabelian subgroups.

In practice, it may be useful to know for which groups the equivalent properties listed in the previous theorem fail. The following corollary addresses this issue.

Corollary 10.3.3. Let \mathcal{C} be the class of countable groups G which have the property that for every periodic $x \in 2^{G}$ there is an aperiodic $y \in 2^{G}$ with $y={ }^{*} x$. Then \mathcal{C} coincides with the class of countable groups which do not contain free nonabelian subgroups. Moreover, \mathcal{C} contains all countable amenable groups and all countable torsion groups and is closed under the operations of: extensions; increasing unions; passing to subgroups; and taking quotients.

By the operation of extension, we mean that if G is a countable group, $K \triangleleft G$, and both $K, G / K \in \mathcal{C}$, then $G \in \mathcal{C}$.

Proof. The fact that \mathcal{C} coincides with the class of countable groups which do not contain free nonabelian subgroups follows immediately from the previous theorem. Clearly torsion groups cannot contain free subgroups, and it is well known that amenable groups cannot contain any free nonabelian subgroups. Thus these groups are members of \mathcal{C}. It is simple to see that \mathcal{C} is closed under the operations of increasing unions and passing to subgroups. It is also closed under taking quotients, since if a quotient G / K of G contains a free group, then one can pick any two elements $g_{1} K, g_{2} K \in G / K$ which generate a rank two free group and see that g_{1} and g_{2} generate a rank two free group in G. Finally, suppose that G is a countable group and $K \triangleleft G$ satisfies $K, G / K \in \mathcal{C}$. Towards a contradiction, suppose that $G \notin \mathcal{C}$. Then G contains a free nonabelian subgroup H. Since $H \cap K$ is a normal subgroup of the free group H, it must be either trivial or free and nonabelian (if it is free and abelian then it cannot be normal). Since $K \in \mathcal{C}$, we must have that $H \cap K$ is trivial. It follows then that H embeds into G / K, contradicting $G / K \in \mathcal{C}$. We conclude that $G \in \mathcal{C}$ and \mathcal{C} is closed under extensions.

Our argument within Case 4 of the previous theorem suggests defining and studying a new, but related, notion. For $x, y \in 2^{G}$ we write $y=^{* *} x$ if x and y agree everywhere on G except at precisely one point (so $x \not \neq^{* *} x$). In the theorem below, we study how much of the previous theorem still holds when we work with $={ }^{* *}$ instead of almost equality.

Theorem 10.3.4. Let G be a countable group. The following are equivalent:
(i) if $x \in 2^{G}$ is periodic, then every $y={ }^{* *} x$ is aperiodic;
(ii) G does not contain any subgroup which is a free product of nontrivial groups.

Notice the slight difference between clause (ii) of this theorem and clause (iii) of Theorem 10.3.2.

Proof. $\neg($ ii $) \Rightarrow \neg(\mathrm{i})$. By the previous theorem, we are done if G contains a subgroup which is a free product of two nontrivial groups one of which has more than two elements. So all that remains is to handle the case where $\mathbb{Z}_{2} * \mathbb{Z}_{2} \leq G$. Let $a, b \in G$ be involutions (meaning $a^{2}=b^{2}=1_{G}$) with $\langle a, b\rangle \cong \mathbb{Z}_{2} * \mathbb{Z}_{2}$. Set $H=\langle a, b\rangle$. Notice that every nonidentity element of H can be written uniquely in one of the following four forms:

$$
a b a b a b \cdots a b a, \quad b a b a b a \cdots b a b a, \quad a b a b a b \cdots a b a b, \quad b a b a b a \cdots b a b .
$$

We say $h \in H$ ends with a if h can be written in one of the two forms on the left. Otherwise, we say h ends with b. Define $x \in 2^{G}$ by

$$
x(g)= \begin{cases}0 & \text { if } g \notin H \\ 0 & \text { if } g \in H \text { and } g \text { ends with } a \\ 1 & \text { otherwise }\end{cases}
$$

So if $x(g)=1$ then $g \in H$ and either $g=1_{G}$ or else g ends with b. It is easy to see that $b \cdot x=x$. Now let $y \in 2^{G}$ be equal to x everywhere except have the opposite value at 1_{G}. Then it is again easy to check that $a \cdot y=y$.
$\neg(\mathrm{i}) \Rightarrow \neg(\mathrm{ii})$. Now suppose that $x, y \in 2^{G}$ are both periodic and $x={ }^{* *} y$. We must show that G contains a subgroup which is the free product of two nontrivial groups. By replacing (x, y) with $(g \cdot x, g \cdot y)$ if necessary, we can assume that 1_{G} is the
single point at which x and y disagree. Let $A, B \leq G$ be the stabilizer subgroups of x and y, respectively. Set $H=\langle A \cup B\rangle$. We claim that $H \cong A * B$. Fix generating sets (possibly infinite) S_{A} and S_{B} for A and B, respectively. We also require that $1_{G} \notin S_{A} \cup S_{B}, S_{A}=S_{A}^{-1}$, and $S_{B}=S_{B}^{-1}$. Then $S_{A} \cup S_{B}$ generates H. Let Γ be the left Cayley graph of H associated to the generating set $S_{A} \cup S_{B}$. Since A and B are the stabilizers of x and y and x and y differ only at 1_{G}, it follows that x and y are constant and agree on each of the connected components of $\Gamma-\left\{1_{G}\right\}$. Let C_{A} be the union of those connected components of $\Gamma-\left\{1_{G}\right\}$ which contain an element of A. Similarly define C_{B}. If $a \in A-\left\{1_{G}\right\}$ and $b \in B-\left\{1_{G}\right\}$ then

$$
x(a)=x\left(1_{G}\right) \neq y\left(1_{G}\right)=y(b)=x(b) .
$$

From the above inequality we have that $A \cap B=\left\{1_{G}\right\}$ and $S_{A} \cap S_{B}=\varnothing$. More importantly, since x is constant on the connected components of $\Gamma-\left\{1_{G}\right\}$, it follows that $C_{A} \cap C_{B}=\varnothing$. In particular, $B \cap C_{A}=\varnothing$ and $A \cap C_{B}=\varnothing$. Also notice that every connected component of $\Gamma-\left\{1_{G}\right\}$ must contain a vertex adjacent to 1_{G} and therefore $C_{A} \cup C_{B}=H-\left\{1_{G}\right\}$.

Since $H=\langle A \cup B\rangle$, there is a surjective homomorphism $\phi: A * B \rightarrow H$ with $\phi(a)=a$ and $\phi(b)=b$ for all $a \in A$ and $b \in B$. We claim that ϕ is an isomorphism. Define the length of $k \in A * B$ to be 0 if k is the identity and to be

$$
\min \left\{n: k=c_{1} c_{2} \cdots c_{n}, \forall j c_{j} \in S_{A} \cup S_{B}\right\}
$$

otherwise. Towards a contradiction, suppose the kernel of ϕ is nontrivial. Let k be a nontrivial element of the kernel with minimum length. Clearly $k \notin A \cup B$. Let

$$
k=c_{1} c_{2} \cdots c_{n}
$$

be a minimal length representation of k. Then the sequence

$$
1_{G}, \phi\left(c_{n}\right), \phi\left(c_{n-1} c_{n}\right), \ldots, \phi\left(c_{1} c_{2} \cdots c_{n}\right)
$$

is a closed path in Γ beginning and ending at 1_{G}. Therefore (by minimality of the length of the expression), the non-endpoint vertices traversed by this path lie in a single connected component of $\Gamma-\left\{1_{G}\right\}$. Therefore we must have either $c_{1}, c_{n} \in S_{A}$ or $c_{1}, c_{n} \in S_{B}$ (but not both since $S_{A} \cap S_{B}=\varnothing$). We will consider the case $c_{1}, c_{n} \in S_{A}$. The argument for the other case is identical. Let $m \leq n$ be minimal with $c_{m}, c_{m+1}, \ldots, c_{n} \in S_{A}$. Then $m>1$ since $k \notin A$. By conjugating k by $c_{m} c_{m+1} \cdots c_{n}$ we get

$$
k^{\prime}=c_{m} c_{m+1} \cdots c_{n} c_{1} c_{2} \cdots c_{m-1}
$$

Since k^{\prime} is a conjugate of k and the kernel is normal, k^{\prime} must also lie in the kernel. Also, since k^{\prime} is a conjugate of k it must be nontrivial. As k was chosen to have minimal length, it must be that the length of k^{\prime} is greater than or equal to the length of k. However, the above representation of k^{\prime} shows that the length of k^{\prime} is less than or equal to the length of k. So k and k^{\prime} must have the same length, and the above representation of k^{\prime} must be of minimal length. Now k^{\prime} and its representation above have all of the same properties which we assumed of k and its represenation. Therefore, arguing just as we did before, we must have that either $c_{m}, c_{m-1} \in S_{A}$ or $c_{m}, c_{m-1} \in S_{B}$. Since $c_{m} \in S_{A}$ and $S_{A} \cap S_{B}=\varnothing$, we must have $c_{m-1} \in S_{A}$. This contradicts the definition of m. We conclude that ϕ is injective and is thus an isomorphism. So $A * B \cong H \leq G$ as claimed.

In the corollary below, $\operatorname{Stab}(x)$ denotes the stabilizer subgroup of $x \in 2^{G}$.

Corollary 10.3.5. Let G be a countable group and let $x, y \in 2^{G}$. If $x={ }^{* *} y$ then $\langle\operatorname{Stab}(x) \cup \operatorname{Stab}(y)\rangle \cong \operatorname{Stab}(x) * \operatorname{Stab}(y)$.

Proof. Set $A=\operatorname{Stab}(x)$ and $B=\operatorname{Stab}(y)$. The claim is trivial if either $A=\left\{1_{G}\right\}$ or $B=\left\{1_{G}\right\}$. So suppose A and B are nontrivial. Let $g \in G$ be the unique group element with $x(g) \neq y(g)$. Set $x^{\prime}=g^{-1} \cdot x$ and $y^{\prime}=g^{-1} \cdot y$. Then $x^{\prime}\left(1_{G}\right) \neq y^{\prime}\left(1_{G}\right), g^{-1} A g=\operatorname{Stab}\left(x^{\prime}\right)$, and $g^{-1} B g=\operatorname{Stab}\left(y^{\prime}\right)$. Then $\langle A \cup B\rangle=g\left\langle g^{-1} A g \cup g^{-1} B g\right\rangle g^{-1} \cong\left\langle g^{-1} A g \cup g^{-1} B g\right\rangle \cong g^{-1} A g * g^{-1} B g \cong A * B$.
where the second \cong follows from the proof of the previous theorem.
The following corollary summarizes the two previous theorems of this section.
Corollary 10.3.6. Let G be a countable group.
(i) If G does not contain any subgroup which is a free product of nontrivial groups, then for every periodic $x \in 2^{G}$ every $y={ }^{* *} x$ is aperiodic.
(ii) If G contains $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ as a subgroup and if every subgroup of G which is the free product of two nontrivial groups is isomorphic to $\mathbb{Z}_{2} * \mathbb{Z}_{2}$, then for every periodic $x \in 2^{G}$ there is an aperiodic $y \in 2^{G}$ with $y={ }^{*} x$ but there are periodic $w, z \in 2^{G}$ with $w={ }^{* *} z$.
(iii) If G contains a subgroup which is the free product of two nontrivial groups one of which has more than two elements, then there is a periodic $x \in 2^{G}$ such that every $y={ }^{*} x$ is also periodic.
Corollary 10.3.7. Let G be a countable group. For every periodic $x \in 2^{G}$ every $y={ }^{* *} x$ is aperiodic if G is:
(i) finite;
(ii) locally finite;
(iii) a torsion group;
(iv) amenable and does not contain $\mathbb{Z}_{2} * \mathbb{Z}_{2}$.

Proof. By the previous theorem, it suffices to show that G does not contain any subgroups which are free products of nontrivial groups. Free products of nontrivial groups are infinite, have finitely generated subgroups which are infinite, and have elements of infinite order. Therefore finite groups, locally finite groups, and torsion groups must have the stated property. As stated previously, it is well known that amenable groups do not contain free nonabelian subgroups. Therefore, by Theorem 10.3.2, the only possible subgroup of an amenable group which is a free product is $\mathbb{Z}_{2} * \mathbb{Z}_{2}$. Therefore any amenable groups not containing $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ must have the stated property.

Corollary 10.3.8. If G is a finite group and $k>1$ is an integer then k^{G} contains at least $(k-1) k^{|G|-1}$ many aperiodic points.

Proof. We first point out as we did at the beginning of this paper that all of our results for 2^{G} immediately generalize to k^{G} for all $k>1$ (only minor changes need to be made to all of the proofs in this paper). So if G is finite, $k>1$ is an integer, and $x, y \in k^{G}$ differ at precisely one coordinate, then x and y cannot both be periodic. Set $A=G-\left\{1_{G}\right\}$. Then $\left|k^{A}\right|=k^{|G|-1}$. Each element of k^{A} can be extended in k different ways to an element of k^{G}. If $x \in k^{A}$, then at most one extension of x to k^{G} is periodic. Therefore at least $k-1$ extensions of x are aperiodic. Since the extensions of $x, y \in k^{A}$ are distinct if $x \neq y$, we have that k^{G} contains at least $(k-1) k^{|G|-1}$ many aperiodic elements.

Now that we better understand how periodic points behave under almost equality, we can finally prove that every near 2 -coloring is an almost 2 -coloring. In fact, we prove something much stronger.

Theorem 10.3.9. Let G be a countable group and let x be a near 2 -coloring. Then either x is a 2 -coloring or else every $y={ }^{* *} x$ is a 2 -coloring.

Proof. Suppose x is not a 2-coloring. Fix $y={ }^{* *} x$ and towards a contradiction suppose that y is not a 2-coloring. Since x and y are near 2 -colorings but not 2 -colorings, they must be periodic by clause (d) of Lemma 2.5.4. Let $a, b \in G$ be nonidentity elements with $a \cdot x=x$ and $b \cdot y=y$. Set $H=\langle a, b\rangle$. Then $H \cong\langle a\rangle *\langle b\rangle$ by Corollary 10.3.5. Set $h=a b \in H$ and notice that h has infinite order. Let $p \in G$ be the unique element with $x(p) \neq y(p)$. Set

$$
B=\left\{p, b^{-1} p\right\}
$$

Let $A, T \subseteq G$ be finite with the property that

$$
\forall g \in G-A \exists t \in T x(g h t) \neq x(g t)
$$

Now pick $g \in\langle h\rangle$ with

$$
g \notin A \cup B T^{-1} .
$$

Fix $t \in T$. Then $g t \notin B$. Since $b \cdot y=y$ and $g t \neq p \neq b g t$, we have

$$
x(b g t)=y(b g t)=y(g t)=x(g t) .
$$

Since $a \cdot x=x$ we have

$$
x(h g t)=x(a b g t)=x(b g t)=x(g t) .
$$

However, $g \in\langle h\rangle$ so

$$
x(g h t)=x(h g t)=x(g t)
$$

Since $t \in T$ was arbitrary and $g \notin A$ this contradicts x being a near 2-coloring.
Corollary 10.3.10. For every countable group G, every near 2 -coloring is an almost 2-coloring.

Corollary 10.3.11. For a countable group G and $x \in 2^{G}$, the following are equivalent:
(i) either x is a 2 -coloring or else every $y \in 2^{G}$ differing from x on precisely one coordinate is a 2-coloring;
(ii) there is a 2 -coloring $y \in 2^{G}$ which differs from x on at most one coordinate;
(iii) there is a 2 -coloring $y \in 2^{G}$ which differs from x on finitely many coordinates;
(iv) x is an almost 2-coloring;
(v) x is a near 2 -coloring;
(vi) for every nonidentity $s \in G$ there are finite sets $A, T \subseteq G$ so that for all $g \in G-A$ there is $t \in T$ with $x(g t) \neq x(g s t)$;
(vii) every limit point of $[x]$ is aperiodic.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are obvious. (iii) \Rightarrow (iv) is by definition. (iv) $\Rightarrow(\mathrm{v})$ is clause (c) of Lemma 2.5.4. (v), (vi), and (vii) are equivalent by Lemma 2.5.3. (v) \Rightarrow (i) is Theorem 10.3.9.

These results lead to an alternative proof of the density of 2-colorings (the original proof was given in Theorem 6.2.3).

Corollary 10.3.12. For every countably infinite group G, the collection of 2 -colorings on G is dense in 2^{G}.

Proof. By Theorem 6.1.1, there exists a 2-coloring x on G. Let $y \in 2^{G}$ and $\epsilon>0$. Let $r \in \mathbb{N}$ be such that $2^{-r}<\epsilon$, and let g_{0}, g_{1}, \ldots be the enumeration of G used in defining the metric d on 2^{G}. Define x^{\prime} by

$$
x^{\prime}(g)= \begin{cases}y(g) & \text { if } g=g_{i} \text { for } 0 \leq i \leq r \\ x(g) & \text { otherwise }\end{cases}
$$

Then $d\left(x^{\prime}, y\right)<2^{-r}<\epsilon$. If x^{\prime} is a 2 -coloring, then we are done. If x^{\prime} is not a 2 -coloring, then the function $x^{\prime \prime} \in 2^{G}$ defined by

$$
x^{\prime \prime}(g)= \begin{cases}x^{\prime}(g) & \text { if } g \neq g_{r+1} \\ 1-x^{\prime}(g) & \text { if } g=g_{r+1}\end{cases}
$$

is a 2 -coloring by Theorem 10.3.9 (since x^{\prime} is an almost 2-coloring, in particular a near 2-coloring). Also, $d\left(x^{\prime \prime}, y\right)<\epsilon$.

Now we can further characterize extendability of partial functions to 2-colorings.
Corollary 10.3.13. Let $y \in 2^{\subseteq G}$ be a partial function with cofinite domain. The following are equivalent:
(i) there is a 2 -coloring $x \in 2^{G}$ extending y;
(ii) for every $x_{0}, x_{1} \in 2^{G}$ extending y with $x_{0}={ }^{* *} x_{1}$, either x_{0} or x_{1} is a 2-coloring;
(iii) every element of $\overline{[y]} \cap 2^{G}$ is aperiodic.

Proof. (i) \Rightarrow (ii). Let $x \in 2^{G}$ be a 2-coloring extending y, and let $x_{0}, x_{1} \in 2^{G}$ extend y with $x_{0}={ }^{* *} x_{1}$. Since y has cofinite domain, x_{0} almost equals x and hence is an almost 2 -coloring. If x_{0} is not a 2 -coloring, then by the previous theorem x_{1} is a 2 -coloring.
(ii) \Rightarrow (iii). Let $x_{0}, x_{1} \in 2^{G}$ extend y with $x_{0}={ }^{* *} x_{1}$. Without loss of generality, we may suppose that x_{0} is a 2-coloring on G. Then clearly $\overline{[y]} \cap 2^{G} \subseteq \overline{\left[x_{0}\right]}$ since x_{0} extends y. Since x_{0} is a 2 -coloring, every element of $\overline{\left[x_{0}\right]}$ is aperiodic.
(iii) \Rightarrow (i). If $x \in 2^{G}$ extends y, then every limit point of $[x]$ lies in $\overline{[y]} \cap 2^{G}$. Thus every limit point of $[x]$ is aperiodic, and so x is a near 2 -coloring by Lemma 2.5.3 (or by Corollary 10.3 .11 above). By the previous theorem, if x is not a 2 -coloring then we can change the value of x at a point $g \notin \operatorname{dom}(y)$ to get a 2 -coloring x^{\prime} extending y.

So far in this chapter we have studied, among other things, under what conditions on $A \subseteq G$ and $y: A \rightarrow 2$ we can extend y to a 2-coloring on G. Although we were unable to answer this question in fullest generality, we were able to answer it for certain subsets $A \subseteq G$ (specifically for sets A which are either slender or cofinite). In addressing the general question of which partial functions can be extended to 2 -colorings, we make the following conjecture.

Conjecture 10.3.14. Let G be a countable group, let $A \subseteq G$, let $k>1$ be an integer, and let $y: A \rightarrow k$. Then y can be extended to $a k$-coloring if and only if $\overline{[y]} \cap k^{G}$ consists of aperiodic points.

If y can be extended to a k-coloring, then it is easy to see that $\overline{[y]} \cap k^{G}$ consists of aperiodic points. The difficult question to resolve is if this condition is sufficient. Clearly this conjecture implies Corollary 10.3.13. Also, if A is slender and y is as above, then $\overline{[y]} \cap k^{G}$ must be empty. Thus the implication (i) \Rightarrow (iii) appearing in Theorem 10.2.4 also follows from the above conjecture. We would like to emphasize that in all of the results of this paper, the obvious necessary conditions have always been sufficent. This is the main reason that we formally make this conjecture.

10.4. Automatic extendability

We have shown in the last section that any partial function on a proper subgroup of a countably infinite group can be extended to a 2 -coloring of the full group. In this section we consider a curious question: when is it the case that any extension of a 2 -coloring on a subgroup is automatically a 2 -coloring of the full group?

We know from early on that this happens to \mathbb{Z} (see the discussion following Definition 2.2.7). The goal of this section is to determine all countable groups with this automatic extendability property. It will turn out that \mathbb{Z} is the only group with this property.

Proposition 10.4.1. Let G be a countably infinite group and let $H \leq G$ be nontrivial. The following are equivalent:
(i) If $x \in 2^{H}$ is a 2-coloring on H and $y \in 2^{G}$ extends x, then y is a 2-coloring on G;
(ii) $|G: H|$ is finite and for every nonidentity $g \in G,\langle g\rangle \cap H \neq\left\{1_{G}\right\}$.

Proof. (i) \Rightarrow (ii). Towards a contradiction, suppose $|G: H|$ is infinite. Let $H, a_{1} H, a_{2} H, \ldots$ be an enumeration of the left cosets of H in G, and let $x \in 2^{H}$ be a 2-coloring. Extend x to $y \in 2^{G}$ by defining $y(g)=0$ for all $g \in G-\operatorname{dom}(x)$. Then $\lim a_{n}^{-1} \cdot y=0$, a contradiction. We conclude $|G: H|$ is finite.

Again, towards a contradiction suppose $a \in G-\left\{1_{G}\right\}$ satisfies $\langle a\rangle \cap H=\left\{1_{G}\right\}$. Let $x \in 2^{H}$ be a 2 -coloring on H. Extend x to $y \in 2^{G}$ by defining $y\left(a^{n} h\right)=x(h)$ for all $n \in \mathbb{Z}$ and $h \in H$, and set $y(g)=0$ for all other $g \in G$. Then it easy to see that y is well-defined and periodic: $a \cdot y=y$. This is a contradiction.
(ii) \Rightarrow (i). Let $x \in 2^{H}$ be a 2 -coloring on H, and let $y \in 2^{G}$ extend x. It is enough to show that every $w \in \overline{[y]}$ is not periodic. Fix $w \in \overline{[y]}$. Let $a_{0} H=$ $H, a_{1} H, \ldots, a_{n} H$ be an enumeration of all left cosets of H in G. Let $\left(g_{m}\right)_{m \in \mathbb{N}}$ be a sequence of elements of G with $w=\lim g_{m} \cdot y$. By passing to a subsequence if necessary, we can assume that each g_{m} lies in the same left coset of H, say $a_{i} H$. For each $m \in \mathbb{N}$ let $h_{m} \in H$ be such that $g_{m}=a_{i} h_{m}$. Then

$$
\begin{gathered}
w=\lim _{m \rightarrow \infty} g_{m} \cdot y=\lim _{m \rightarrow \infty}\left(a_{i} h_{m}\right) \cdot y \\
=\lim _{m \rightarrow \infty} a_{i} \cdot\left(h_{m} \cdot y\right)=a_{i} \cdot\left(\lim _{m \rightarrow \infty} h_{m} \cdot y\right)=a_{i} \cdot z
\end{gathered}
$$

where $z=\lim h_{m} \cdot y$. We must show that $w=a_{i} \cdot z$ is not periodic, so it will suffice to show that z is not periodic. Suppose $g \in G$ satisfies $g \cdot z=z$. Clearly $\lim h_{m} \cdot x \subseteq z$, so that $z \upharpoonright H$ is a 2 -coloring on H. In particular, $z \upharpoonright H \in 2^{H}$ is not periodic. Thus $\langle g\rangle$ must intersect H trivially, from which it follows that $g=1_{G}$. We conclude y is a 2 -coloring on G.

THEOREM 10.4.2. Let G be a countably infinite group. The following are equivalent:
(i) If $H \leq G$ is any nontrivial subgroup, $x \in 2^{H}$ is any 2-coloring on H, and $y \in 2^{\bar{G}}$ is any extension of x, then y is a 2-coloring on G;
(ii) $G=\mathbb{Z}$.

Proof. (ii) \Rightarrow (i) is clear from the previous proposition.
(i) \Rightarrow (ii). By the previous proposition, every nontrivial subgroup of G has finite index. The result now follows from the next proposition.

Recall that $\mathrm{Z}(G)$ denotes the center of G.
Proposition 10.4.3. If G is an infinite group and every nontrivial subgroup of G has finite index, then $G=\mathbb{Z}$.

Proof. We first show that G posseses the following properties:
(i) G is countable;
(ii) every nonidentity element of G has infinite order;
(iii) for every $g \in G-\left\{1_{G}\right\}$, there is $k>0$ with $\left\langle g^{k}\right\rangle \triangleleft G$;
(iv) every normal cyclic subgroup of G is contained in $\mathrm{Z}(G)$;
(v) $\mathrm{Z}(G)$ is isomorphic to \mathbb{Z};
(vi) $G / \mathrm{Z}(G)$ contains no nontrivial abelian normal subgroups;
(vii) if G is solvable then $G=\mathbb{Z}$.

After establishing these properties we will use them to complete the proof of the proposition. We now proceed to prove each of the clauses above.
(i). This is immediate from considering the cosets of $\langle g\rangle$ for any $g \in G-\left\{1_{G}\right\}$.
(ii). If $g \in G-\left\{1_{G}\right\}$, then $\langle g\rangle$ has finite index in the infinite group G. Hence g has infinite order.
(iii). Let $g \in G-\left\{1_{G}\right\}$, and consider the action of G on the left cosets of $\langle g\rangle$ by left multiplication. This action induces a homomorphism $G \rightarrow S_{n}$ with kernel K, where $n=[G:\langle g\rangle]$. So K is normal and has finite index. As elements of K fix the left coset $1_{G} \cdot\langle g\rangle$, we have $K \subseteq\langle g\rangle$. Thus, $K=\left\langle g^{k}\right\rangle$ for some $k>0$.
(iv). Suppose $\left\{1_{G}\right\} \neq\langle g\rangle \triangleleft G$ and let $h \in G$. We will show $h g=g h$. Since $\langle g\rangle$ is normal, conjugation by h induces an automorphism of $\langle g\rangle$. If $h g h^{-1}=g$, then there is nothing to show. Towards a contradiction, suppose $h g h^{-1}=g^{-1}$. Then $h \neq 1_{G}$, so h has infinite order and $\langle g\rangle$ is normal of finite index, so there are nonzero $k, m \in \mathbb{Z}$ with $h^{k}=g^{m}$. We then have

$$
h^{-k} g^{m}=1_{G}=h 1_{G} h^{-1}=h h^{-k} g^{m} h^{-1}=h^{-k} h g^{m} h^{-1}=h^{-k} g^{-m}
$$

Thus, $g^{m}=g^{-m}$ with $m \neq 0$, contradicting (ii).
(v). By (ii), (iii), and (iv) we have $\mathrm{Z}(G) \neq\left\{1_{G}\right\}$. Let $H=\langle h\rangle$ be a maximal cyclic subgroup of $\mathrm{Z}(G)$. Towards a contradiction, suppose $H \neq \mathrm{Z}(G)$. Let $a \in$ $\mathrm{Z}(G)-H$. Then $\langle a, h\rangle \leq \mathrm{Z}(G)$, so $\langle a, h\rangle$ is abelian. By (ii) $\langle a, h\rangle$ is isomorphic to a subgroup of \mathbb{Z}^{2}. However, \mathbb{Z}^{2} has a nontrivial subgroup of infinite index, so $\langle a, h\rangle \not \not \mathbb{Z}^{2}$. As $h \neq 1_{G}$, we must have $\langle a, h\rangle \cong \mathbb{Z}$. This contradicts the maximality of H.
(vi). Let $K \triangleleft G / \mathrm{Z}(G)$ be abelian, and let $\pi: G \rightarrow G / \mathrm{Z}(G)$ be the quotient map. Now $\mathrm{Z}(G) \leq \pi^{-1}(K) \triangleleft G$, and we want to show that K is trivial. Hence, by (iv) it will suffice to show that $\pi^{-1}(K)$ is cyclic. Let $H=\langle h\rangle$ be a maximal cyclic subgroup of $\pi^{-1}(K)$ containing $\mathrm{Z}(G)$. Towards a contradiction, suppose $H \neq \pi^{-1}(K)$. Let $a \in \pi^{-1}(K)-H$, and let $k>0$ be such that $\left\langle h^{k}\right\rangle=\mathrm{Z}(G)$. We
have $\pi\left(a h a^{-1} h^{-1}\right)=1_{G / \mathrm{Z}(G)}$ so for some $m \in \mathbb{Z}$

$$
a h a^{-1} h^{-1}=h^{m k} \in \mathrm{Z}(G) \text { and } a h a^{-1}=h^{m k+1} .
$$

However, $h^{k} \in \mathrm{Z}(G)$, so

$$
h^{k}=a h^{k} a^{-1}=\left(h^{m k+1}\right)^{k}=h^{m k^{2}+k} .
$$

As h has infinite order, we must have $m=0$. Thus $a h a^{-1}=h$ so a and h commute. Then $\mathbb{Z} \cong\langle a, h\rangle \leq \pi^{-1}(K)$, contradicting the maximality of H.
(vii). If G is solvable then so is $G / \mathrm{Z}(G)$. If $G=\mathrm{Z}(G)$ then we are done by (v). Towards a contradiction, suppose $G \neq \mathrm{Z}(G)$. As $G / \mathrm{Z}(G)$ is solvable, its derived series terminates after finitely many steps. The last nontrivial group appearing in the derived series for $G / \mathrm{Z}(G)$ is normal and abelian, contradicting (vi).

Now we use the properties we have established of G and complete the proof. By clause (v), $\mathrm{Z}(G)$ is nontrivial so $G / \mathrm{Z}(G)$ is a finite group. Let $\pi: G \rightarrow G / \mathrm{Z}(G)$ be the quotient map and let P be any Sylow subgroup of $G / \mathrm{Z}(G)$. Every nontrivial subgroup of $N=\pi^{-1}(P)$ has finite index in N. However, N is nilpotent, in particular solvable. Thus $N \cong \mathbb{Z}$ by clause (vii). In particular, $P=\pi(N)$ is cyclic. We now apply the following theorem of group theory (Theorem 10.1.10 of [R]).

Theorem 10.4.4 (Hölder, Burnside, Zassenhaus). If K is a finite group, then all of its Sylow subgroups are cyclic if and only if K has a presentation

$$
K=\left\langle a, b: a^{m}=1_{K}=b^{n}, b^{-1} a b=a^{r}\right\rangle
$$

where $r^{n} \equiv 1 \bmod m, m$ is odd, $0 \leq r<m$, and m and $n(r-1)$ are coprime.
Let $a, b \in G / \mathrm{Z}(G)$ be as in the presentation above for $K=G / \mathrm{Z}(G)$. Then $\langle a\rangle$ is a normal abelian subgroup of $G / \mathrm{Z}(G)$. Hence by clause (vi) $\langle a\rangle$ is trivial and $a=1_{G / \mathrm{Z}(G)}$. But then $\langle b\rangle=G / \mathrm{Z}(G)$ is a normal abelian (improper) subgroup. Again we conclude $b=1_{G / \mathrm{Z}(G)}$. Thus $G / \mathrm{Z}(G)$ is trivial, so $G=\mathrm{Z}(G)$. Now $G \cong \mathbb{Z}$ by clause (v).

CHAPTER 11

Further Questions

Throughout the paper we have mentioned a number of interesting further questions that we do not have answers to. In this final chapter we collect them together and mention some general directions for further studies. The problems will be listed according to their nature, not in the order of the chapters covering them. To make this chapter a useful reference for the reader, we repeat some definitions, recall some proven facts, and include some remarks on the listed problems.

11.1. Group structures

Much of what we did in the paper was to provide a combinatorial, and in fact almost geometric, analysis of the structure of a general countable group. The results we obtained were sufficient for our purposes. But the analysis is to a large extent incomplete.

The strongest sense of geometric and combinatorial regularity of group structures is given by the notion of a ccc group. Recall that a countable group is ccc if it admits a coherent, cofinal, and centered sequence of tilings. This notion is closely related to the study of monotileable amenable groups by Weiss. In particular, the following problem raised by Weiss was explicit in $[\mathbf{W}]$.

Problem 11.1.1 (Weiss [W]). Is every countable group an MT group? That is, does every countable group admit a cofinal sequence of tilings?

Weiss proved that the class of all MT groups is closed under group extensions and contains all residually finite groups and all solvable groups. In contrast we showed that the class of all ccc groups contains all residually finite groups, free products, nilpotent groups and polycyclic groups. But we only know that the class is closed under products and finite index group extensions. We do not know of any countable group which fails to be ccc. This prompts the following questions.

Problem 11.1.2. Is every countable group ccc? In particular, is every solvable group ccc?

Turning to a different subject, we also introduced the purely group theoretic notion of a flecc group and showed the curious property that a countably infinite group G being flecc corresponds to the class of all 2-colorings of G forming a $\boldsymbol{\Sigma}_{2^{-}}^{0}$ complete subset of 2^{G}. Recall that a countable group G is flecc if there is a finite set $A \subseteq G-\left\{1_{G}\right\}$ such that for every non-identity $g \in G$ there is $n \in \mathbb{Z}$ and $h \in G$ with $h g h^{-1} \in A$. The following basic questions about flecc groups are open.

Problem 11.1.3. Is a quotient of a flecc group flecc?
Problem 11.1.4. Is the product of two flecc groups flecc?

Partial results are given in Section 8.3. In particular, we showed that a normal subgroup of a flecc group is flecc. Also, the product of two flecc groups, where at least one of them is torsion, is flecc. We also completely characterized the abelian flecc groups. It turns out that this class coincides with the class of all abelian groups with the minimal condition.

11.2. 2-colorings

In this paper we succeeded in constructing numerous group colorings with various properties. However, several construction-type problems remain open. In this section we summarize some typical ones.

We have shown that any countably infinite group G admits perfectly many pairwise orthogonal 2-colorings (this even occurs within any given open neighborhood of 2^{G}). It is a trivial consequence that the same holds for k-colorings for any $k \geq 2$. A curious problem is to consider finite groups. Here the group G and the parameter k both matter in determining the maximal number of pairwise orthogonal k-colorings on G.

Problem 11.2.1. For each finite group G compute the maximal number of pairwise orthogonal k-colorings on G for all $k \geq 2$.

We obtained quite a few results involving almost equality $=^{*}$, especially in our proof that all near 2 -colorings are almost 2 -colorings. The fact that a 2 -coloring can be almost equal to a periodic element (which is equivalent to saying that there are groups without the ACP) is still a bit counter-intuitive and surprising. Even if we have given a complete and satisfactory characterization for all groups with the ACP, there are questions which appear to be only slightly more demanding than the ACP and which we do not know the answers to. For instance, the simplest group without the ACP is the meta-abelian group $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ (which can also be expressed as a semidirect product of \mathbb{Z} with \mathbb{Z}_{2}). One can directly construct a 2 -coloring x on $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ so that the result of turning $x\left(1_{G}\right)$ to $1-x\left(1_{G}\right)$ is a periodic element. However, we do not know if the 2-coloring x can be minimal. In general, we have not been able to construct any almost-periodic 2 -coloring that turns out to be minimal.

Problem 11.2.2. Is there a minimal 2-coloring on $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ that is almost equal to a periodic element?

In the last chapter we considered some extension problems about 2-colorings. We showed that \mathbb{Z} is the only countable group with the property that any extension of a 2 -coloring on a subgroup is a 2 -coloring on the whole group. We also completely characterized all subsets $A \subseteq G$ for which an arbitrary function $c: A \rightarrow 2$ can be extended to a 2 -coloring on G. In this direction the ultimate question seems to be: which partial functions on G can be extended to 2-colorings on G ? Here we mention a necessary condition that might be sufficient.

Given a partial function $c: G \rightharpoonup 2$ define $\overline{[c]}$ as follows. Let $c^{*}: G \rightarrow 3$ be defined as $c^{*}(g)=c(g)$ if $g \in \operatorname{dom}(c)$ and $c^{*}(g)=2$ otherwise. Then let $\overline{[c]}=\overline{\left[c^{*}\right]} \cap 2^{G}$.

Problem 11.2.3. Given a partial function c on G, are the following equivalent:
(i) c can be extended to 2 -colorings on G;
(ii) $\overline{[c]} \subseteq F(G)$?

It is easy to see that $(\mathrm{i}) \Rightarrow$ (ii). So the real question is whether the converse holds.

We have seen that the set of 2-colorings always has measure zero and is always meager. Thus, in some sense, the set of 2-colorings is very small. However, on the other hand, we have shown that every non-empty open subset of 2^{G} contains continuum-many 2-colorings with the closure of their orbits pairwise disjoint. This was even further strengthened in Section 10.2. So under certain viewpoints, the set of 2 -colorings is large. The following two questions address other notions of largeness.

Problem 11.2.4 (Juan Souto). For groups G in which a notion of entropy exists, what is the largest possible entropy of a free subflow of 2^{G} ?

Problem 11.2.5 (Juan Souto). For a given group G, what is the largest possible Hausdorff dimension of a free subflow of 2^{G} ?

Finally, the fundamental method has been seen to be a tremendously useful tool for the constructive study of Bernoulli shifts. In Chapter 7 we developed specialized tools which work in conjunction with the fundamental method in order to produce minimal elements of 2^{G} and also pairs of points of 2^{G} whose orbit closures display some rigidity with respect to topological conjugacy. There are likely other general constructions which combine with the fundamental method in order to produce more specialized elements and subflows of 2^{G}. The constructive methods in this paper would be of much more interest to the ergodic theory community if the following question were to have a positive answer.

Problem 11.2.6 (Ralf Spatzier). Can the fundamental method be improved in order to construct a variety subflows of 2^{G} which support ergodic probability measures?

11.3. Generalizations

One of the most intriguing questions for us is: to what extent can the results of this paper be generalized? This takes many forms and can be probed in many directions. The most important direction, it seems to us, is to generalize results about Bernoulli flows to more general dynamical systems.

Problem 11.3.1. Let G be a countable group acting continuously on a Polish space X. Suppose there is at least one aperiodic element in X. Does there exist a hyper aperiodic element?

We do not know the answer even when X is assumed to be compact. In addition, for dynamical systems in which hyper aperiodic elements do exist, one can inquire about their density, orthogonality, etc.

Recall that $\left(2^{\mathbb{N}}\right)^{G}$ is a universal Borel G-space. If X is a compact, zerodimensional Polish space on which G acts continuously, then there is a continuous G-embedding (which is necessarily a homeomorphic embedding preserving G-actions) from X into $\left(2^{\mathbb{N}}\right)^{G}$. Therefore, studying hyper aperiodic elements in $\left(2^{\mathbb{N}}\right)^{G}$ might be relevant to the above general problem, at least for the case when the phase space is compact and zero-dimensional.

We are fairly certain that our methods used in this paper can be used to answer many questions about the space $\left(2^{\mathbb{N}}\right)^{G}$, although we have not worked out their details.

Also throughout the paper we have considered some variations of 2-colorings whenever it is convenient. For instance, for the concept of two-sided 2-colorings, it is trivial to note that for abelian groups they are identical to the concept of 2 -colorings. We also constructed examples of two-sided 2 -colorings for the free groups, and examples of 2 -colorings on free groups that are not two-sided. We have not attempted to systematically study this concept in conjunction with minimality, orthogonality, etc. Any such question is likely open.

Yet another direction of generalization is to consider the concept of 2-colorings on semigroups (with the definition given by the combinatorial formulation of 2colorings). Other than the results we mentioned about \mathbb{N} nothing is known about their general existence and properties.

Finally, the notion of hyper aperiodicity or 2-coloring can each be generalized to the context of uncountable groups and their actions. We do not know of any interesting connection between different formulations and any significant consequence they might entail.

11.4. Descriptive complexity

The most significant application of the fundamental method in this paper is the determination of the descriptive complexity of the topological conjugacy relation for free Bernoulli subflows. Working in conjunction with the method Clemens invented in [C], we showed that, as long as the group is not locally finite, the topological conjugacy relation for free subflows is always universal for all countable Borel equivalence relations (this result was also independently obtained by Clemens). However, understanding the complexity of this relation restricted on minimal free subflows has met significant challenges. The following very concrete problem is still open.

Problem 11.4.1. What is the complexity of the topological conjugacy relation for minimal free subflows of $2^{\mathbb{Z}}$?

We also showed that, for locally finite groups G, the topological conjugacy relation for all subflows of 2^{G} is Borel bireducible with E_{0}. Moreover, the same is true when this relation is restricted on free subflows or minimal free subflows. For general groups G, we only know that the conjugacy relation for minimal free subflows is always at least as complex as E_{0} in the Borel reducibility hierarchy. The general problem of determining their complexity is wide open.

Problem 11.4.2. For an arbitrary countable group G that is not locally finite, what is the complexity of the topological conjugacy relation for minimal free subflows of 2^{G} ?

Bibliography

[BH] M. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature. First edition. Springer-Verlag, Berlin, 2010.
[C] J. Clemens, Isomorphism of subshifts is a universal countable Borel equivalence relation, Israel Journal of Mathematics 170 (2009), 113-123.
[Ch] C. Chou, Elementary amenable groups, Illinois Journal of Mathematics 24 (1980), no. 3, 396-407.
[CFW] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems 1 (1981), 430-450.
[CP] M. Coornaert and A. Papadopoulos, Symbolic Dynamics and Hyperbolic Groups. SpringerVerlag, Berlin, 1993.
[DJK] R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite equivalence relations, Transactions of the American Mathematical Society 341 (1994), no. 1, 193-225.
[DS] A. Dranishnikov and V. Schroeder, Aperiodic colorings and tilings of Coxeter groups, Groups, Geometry, and Dynamics 1 (2007), 301-318.
[FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, I., Transactions of the American Mathematical Society 234 (1977), 289-324.
[Ga] D. Gaboriau, Coût des relations d'équivalence et des groupes, Inventiones Mathematicae 139 (2000), no. 1, 41-98.
[G] S. Gao, Invariant Descriptive Set Theory. Pure and Applied Mathematics, A Series of Monographs and Textbooks, 293. Taylor and Francis Group, 2009.
[GJ] S. Gao and S. Jackson, Countable abelian group actions and hyperfinite equivalence relations, preprint, 2007.
[GJS] S. Gao, S. Jackson, and B. Seward, A coloring property for countable groups, Mathematical Proceedings of the Cambridge Philosophical Society 147 (2009), no. 3, 579-592.
[GU] E. Glasner and V.V. Uspenskij, Effective minimal subflows of Bernoulli flows, Proceedings of the American Mathematical Society 137 (2009), 3147-3154.
[GW] E. Glasner and B. Weiss, Kazhdan's property T and the geometry of the collection of invariant measures, Geometry and Functional Analysis 7 (1997), no. 5, 917-935.
[Go] W. Gottschalk, Some generic dynamical notions, in Recent advances in topological dynamics, 1220-125. Lecture Notes in Mathematics 318, Springer-Verlag, 1973.
[JKL] S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, Journal of Mathematical Logic 2 (2002), no. 1, 1-80.
[K] A. S. Kechris, Classical Descriptive Set Theory. Springer-Verlag, New York, 1995.
[LM] D. Lind and B. Marcus, Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995.
[M] W. Magnus, Residually finite groups, Bulletin of the American Mathematical Society 75 (1969), 305-316.
[MH] M. Morse and G. Hedlund, Symbolic dynamics, American Journal of Mathematics 60 (1938), no. 4, 815-866.
[O] V. Olshanskii, On the question of the existence of an invariant mean on a group, Uspekhi Matematicheskikh Nauk 35 (1980), no. 4, 199-200.
[R] D.J.S. Robinson, A Course in the Theory of Groups. Second edition. Spring-Verlag, New York, 1996.
[S] J.-P. Serre, Trees. (Translated from French by John Stillwell). Second edition. Springer-Verlag, Berlin, 2003.
[SS] T. Slaman and J. Steel, Definable functions on degrees. In Cabal Seminar 81-85, 37-55. Lecture Notes in Mathematics 1333 (Springer-Verlag, 1988).
[W] B. Weiss, Monotileable amenable groups, in Topology, Ergodic Theory, Real Algebraic Geometry, 257-262. American Mathematical Society Translations, Ser. 2, Vol. 202, American Mathematical Society, Providence, RI, 2001.
[Wo] J. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, Journal of Differential Geometry, 2 (1968), pp. 421-446.

Index

(λ, k)-coloring property, 24	$\leq_{c}, 169$
0, 37	$\mathbb{Z}^{*}, 152$
1,37	$\omega, 46$
2-coloring, 21	$\rho(A ; B), 99$
2-coloring on a semigroup, 31	$\sqsubseteq_{B}, 169$
almost 2-coloring, 27	$\sqsubseteq_{c}, 169$
almost 2-coloring property, 29	$a_{n}, 78$
coloring property, 24	$b_{n}, 78$
near 2-coloring, 27	$d(x, y), 19$
right 2-coloring, 31	k-coloring, 21
strong 2-coloring, 27	m-uniform, 86
two-sided 2-coloring, 31	x-centered, 121
uniform 2-coloring property, 43	x-regular, 121
$2^{<G}, 20$	$x \perp y, 23$
$2 \subseteq G, 20$	Π_{3}^{0}-complete, 149
=*, 27	$\boldsymbol{\Pi}_{3}^{\mathbf{0}}$-hard, 149
$=^{* *}, 224$	$\boldsymbol{\Sigma}_{2}^{0}$-complete, 149
$D_{k}^{n}, 78$	$\boldsymbol{\Sigma}_{2}^{0}$-hard, 149
$F(G), 20$	$\mathbb{F}_{\omega}, 46$
G-tail, 75	$\mathbb{F}_{n}, 46$
[F], 134	
[x], 20	ACP, 29
Δ-minimal, 127	almost 2-coloring, 27
Δ_{n}-minimal, 132	almost 2-coloring property, 29
$\Delta_{n}^{y}, 117$	almost equal, 27
$\Gamma /[F], 134$	any prescribed growth, 100
$\Lambda_{n}, 78$	any prescribed polynomial growth, 100
$\mathrm{S}(G), 170$	
$\mathrm{S}_{\mathrm{F}}(G), 170$	Bernoulli G-flow, 19
$\mathrm{S}_{\mathrm{M}}(G), 170$	subflow, 20
$\mathrm{S}_{\mathrm{MF}}(G), 170$	Bernoulli flow, 19
$\mathrm{TC}(G), 170$	subflow, 20
$\mathrm{TC}_{\mathrm{F}}(G), 170$	block, 21, 22
$\mathrm{TC}_{\mathrm{M}}(G), 170$	nearly block, 27
$\mathrm{TC}_{\mathrm{MF}}(G), 170$	strongly block, 27
$\mathrm{TC}_{\mathrm{p}}(G), 170$	block code, 140
$\Theta_{n}, 90$	induced by, 140
$\mathrm{Z}(G), 65$	blueprint, 78
$\mathrm{Z}_{G}(H), 65$	$D_{k}^{n}, 78$
$\mathrm{Z}_{G}(\mathrm{~g}), 29$	$\Lambda_{n}, 78$
$\alpha_{n}, 78$	$\alpha_{n}, 78$
$\beta_{n}, 78$	$\beta_{n}, 78$
$\gamma_{n}, 78$	$\gamma_{n}, 78$
$\leq_{B}, 169$	$a_{n}, 78$

$b_{n}, 78$
any prescribed growth, 100
any prescribed polynomial growth, 100
centered, 78
directed, 78
maximally disjoint, 78
Borel
embeddable, 169
equivalence relation, 169
function, 169
reducible, 169
sets, 169
universal countable equivalence relation, 170
Borel embeddable, 169
Borel equivalence relation, 169
Borel function, 169
Borel reducible, 169
Borel sets, 169
canonical function, 90
any prescribed growth, 100
any prescribed polynomial growth, 100
compatible with locally recognizable function, 90
Cayley graph, 218
Left Cayley Graph, 218
Right Cayley Graph, 218
ccc group, 56
centered, 55, 78
clopen, 2
cofinal, 55
coherent, 55, 78
coloring property, 24
comeager, 4
commutes with the group action, 20
conjugacy, 138
conjugate, 44, 108
continuously embeddable, 169
continuously reducible, 169
countable equivalence relation, 170
dense, 78
directed, 78
ecc, 151
equivalence relation
Borel, 170
countable, 170
finite, 170
hyperfinite, 170
smooth, 170
universal countable Borel, 170
extended conjugacy class, 151
FC group, 30
finite equivalence relation, 170
flecc group, 151
free part, 20
free product, 74
trivial, 74
free subflow, 20
fundamental function, 90
$\Theta_{n}, 90$
any prescribed growth, 100
any prescribed polynomial growth, 100
growth, 78
growth sequence, 94
Hausdorff metric, 171
hyper aperiodic, 21
hyperfinite, 170
lecc, 151
limit extended conjugacy class, 151
locally finite group, 185
locally recognizable function, 85
trivial, 85
marker point, 54
marker region, 54
marker structure, 54
centered, 55
regular, 55
total, 55
maximally disjoint, 77,78
meager, 5
membership test, 85
simple, 85
test functions, 85
test region, 85
minimal, 24
Δ-minimal, 127
Δ_{n}-minimal, 132
pre-minimal, 122
MT group, 56
near 2-coloring, 27
nearly block, 27
orthogonal, 23
positively orthogonal, 46
partial function, 20
period, 20
periodic, 20
Polish space, 169
polycyclic, 66
polynomial growth, 100
positively orthogonal, 46
pre-blueprint, 78
$D_{k}^{n}, 78$
$\Lambda_{n}, 78$
$\alpha_{n}, 78$
$\beta_{n}, 78$
$\gamma_{n}, 78$
$a_{n}, 78$
$b_{n}, 78$
centered, 78
directed, 78
maximally disjoint, 78
pre-minimal, 122
product, 39
regular, 55
residually finite, 70
right action, 30
right 2-coloring, 31
two-sided 2-coloring, 31
sequence of marker structures
centered, 55
cofinal, 55
coherent, 55
slender set, 207
smooth equivalence relation, 170
strong 2 -coloring, 27
strongly block, 27
subexponential growth, 100
subflow, 20
test functions, 85
test region, 85
tile, 55
tiling, 55
ccc, 56
topological conjugacy relation, 138
topological conjugate, 138
topologically conjugate, 20,138
total, 55
tree, 75
two-sided 2-coloring, 31
unidirectional, 31
uniform, 78
m-uniform, 86
uniform 2-coloring property, 43
universal countable Borel equivalence
relation, 170
Vietoris topology, 171

