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Abstract

Motivated by research on hyperfinite equivalence relations we define a coloring property
for countable groups. We prove that every countable group has the coloring property. This
implies a compactness theorem for closed complete sections of the free part of the shift
action of G on 2G . Our theorems generalize known results about Z.

1. Introduction

The coloring property we will establish for all countable groups in this paper was motiv-
ated by the study of hyperfinite equivalence relations. One of the most well-known results
in this area is the hyperfiniteness of the orbit equivalence relation of the shift action of the
group Z on 2Z (c.f. [2]). In the proof of this result a marker lemma of Slaman and Steel ([5])
played an important role.

LEMMA 1·1 (Slaman–Steel). Let F(Z) be the free part of 2Z under the shift action of Z.
Then there is an infinite decreasing sequence of Borel complete sections of F(Z)

S0 ⊇ S1 ⊇ · · · ⊇ Sn ⊇ · · ·
such that

⋂
n Sn = ∅.

This Slaman–Steel marker lemma is true when Z is replaced by an arbitrary countable
group G. In [3] the first two authors studied, among other things, the existence of decreasing
sequences of complete sections that are relatively closed in the free part of 2Z. If such se-
quences existed then the hyperfiniteness of 2Z could be strengthened easily (to a continuous
embedding of E0). However, in [3] it was noted that, while it is possible to have decreas-
ing sequences of clopen complete sections such that their intersection contains at most one
point of each orbit, requiring the intersection to be empty is impossible. (An earlier, weaker
version of the following theorem was joint work with Ben Miller.)

THEOREM 1·2 (Gao–Jackson). There is no infinite sequence of closed complete sections
of F(Z)

S0 ⊇ S1 ⊇ · · · ⊇ Sn ⊇ · · ·
such that

⋂
n Sn = ∅.
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In this paper the above theorem is generalized to an arbitrary countable group G.

THEOREM 1·3. Let F(G) be the free part of the shift action on 2G by G. Then there is no
infinite sequence of closed complete sections of F(G)

S0 ⊇ S1 ⊇ · · · ⊇ Sn ⊇ · · ·
such that

⋂
n Sn = ∅.

This can be interpreted as a compactness theorem for closed complete sections of F(G).
The proof of the theorem, however, turns out to rely on a combinatorial analysis of the group
G, and ultimately boils down to the following coloring property.

Definition 1·4. Let G be a countable group. A 2-coloring on G is a function c : G →
{0, 1} such that for any s ∈ G with s � 1G there is a finite set T ⊆ G such that

∀g ∈ G ∃t ∈ T c(gt)� c(gst).

We say that G has the coloring property if there is a 2-coloring on G.

Our main theorem of the paper is the following.

THEOREM 1·5. Every countable group has the coloring property.

In fact we demonstrate a stronger theorem which asserts the existence of continuum many
distinct 2-colorings on any countably infinite group G. The proof of our main theorem is
entirely algebraic.

After an earlier version of this paper was completed we learned that Glasner and Uspenskij
[4] have asked the general question whether every countable group has the coloring property
and obtained partial results on this problem.

It is worth noting that although our results imply that the Slaman–Steel lemma cannot be
improved to closed complete sections, it is true that the shift equivalence relation on 2Z is
continuously embeddable into E0 ([1]). Moreover, the same is true even when Z is replaced
by Z

n for any n � 1 or by Z
<ω, the direct sum of infinitely many copies of Z ([3]). The

proof of these results are much more sophisticated, and the necessity of the sophistication is
suggested by our results here.

The rest of the paper is organized as follows. In Section 2 we give the connection between
the coloring property and the compactness theorem for closed complete sections. We also
introduce a concept of orthogonality and characterize it topologically. In Section 3 we
prove our main theorems that every countably infinite group has the coloring property, and
moreover on any countably infinite group there is a perfect set of pairwise orthogonal 2-
colorings.

2. Definitions and connections

We reformulate the coloring property in a slightly broader context.

Definition 2·1. Let G be a countable group and k � 2 an integer. A k-coloring on G is a
function c : G → k such that for any s ∈ G with s � 1G there is a finite set T ⊆ G such
that

∀g ∈ G ∃t ∈ T c(gt)� c(gst).

We also consider the following concept of orthogonality.
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Definition 2·2. Let G be a countable group, k � 2 an integer and c0, c1 k-colorings on G.
We say that c0 and c1 are orthogonal, denoted c0⊥c1, if there is a finite set T ⊆ G such that

∀g0, g1 ∈ G ∃t ∈ T c0(g0t)� c1(g1t).

If two k-colorings are orthogonal we regard them to be different in an effective way. We
will see below that the orthogonality corresponds to a nice topological characterization. We
note that this concept was used in essential ways in some of our earlier partial results. In the
current proof the concept is not explicitly used but a local version of it is still instrumental
in the proof of our main theorem.

We next give some topological characterizations for these concepts.
Fix a countable group G and an integer k � 2. Let G be enumerated without repetition as

1G = g0, g1, g2, . . . . Define a metric on kG = {0, . . . , k − 1}G by

dk(x, y) =
{

2−n, if x � y and n ∈ ω is the least such that x(gn)� y(gn),
0, if x = y.

Then dk is an ultrametric on kG compatible with the compact product topology on kG , where
k = {0, . . . , k − 1} is endowed with the discrete topology.

The shift action of G on kG is given by

(g · x)(h) = x(g−1h).

This action is continuous. Let Fk be the free part of this action, i.e., x ∈ Fk iff ∀g ∈ G −
{1G} g · x � x . Then Fk is an invariant dense Gδ subset of kG .

For each x ∈ kG let [x] denote the orbit of x , i.e., the set of elements g · x for g ∈ G.
Then we have the following characterization.

LEMMA 2·1. For any x ∈ kG, x is a k-coloring on G iff [x] ⊆ Fk.

Proof. (⇒) Assume that x is a k-coloring on G. Suppose z ∈ [x], that is, there are hm ∈ G
with hm · x → z as m → ∞. We show that z ∈ Fk . Assume not and suppose s · z = z for
s � 1G . Then by the continuity of the action we have that s−1hm ·x → s−1 ·z = z. Let T ⊆ G
be a finite set such that for any g ∈ G there is t ∈ T with x(gt) � x(gst). Let n be large
enough so that T ⊆ {g0, . . . , gn} and let m � n be such that d(hm · x, z), d(s−1hm · x, z) <

2−n . Now fix t ∈ T with (hm · x)(t) = x(h−1
m t) � x(h−1

m st) = (s−1hm · x)(t). Then
z(t) = (hm · x)(t)� (s−1hm · x)(t) = z(t), a contradiction.

(⇐) Assume [x] ⊆ Fk . Denote C = [x]. Fix any s ∈ G with s � 1G . Then for any y ∈ C ,
s−1 · y � y, and hence there is t ∈ G with (s−1 · y)(t)� y(t). Define a function τ : C → G
by letting τ(y) = gn where n is the least so that (s−1 · y)(gn)� y(gn). Then τ is a continuous
function. Since C is compact we get that τ(C) ⊆ G is finite. Let T = τ(C). Then for any
g ∈ G, there is a t ∈ T such that x(gt) = (g−1 · x)(t) � (s−1g−1 · x)(t) = x(gst). This
proves that x is a k-coloring.

Thus we have the following proposition (also due independently to Pestov and can be
found in [4]).

PROPOSITION 2·2. Let G be a countable group. Then the following are equivalent:
(i) G has the coloring property;

(ii) [x] ⊆ F2 for some x ∈ 2G;
(iii) F2 contains a compact invariant subset.
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The compactness theorem for complete sections is now a corollary of the coloring prop-
erty. Recall that a complete section of F2 is a subset A ⊆ F2 so that A � [x] � ∅ for every
x ∈ F2.

THEOREM 2·5. Let G be a countably infinite group with the coloring property. Suppose
S0 ⊇ S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · is a decreasing sequence of closed complete sections in F2.
Then

⋂
n Sn �∅.

Proof. Let x ∈ 2G be a 2-coloring on G. Then [x] ⊆ F2. Now each Sn is a complete
section and therefore Sn � [x] � ∅. Thus the sequence Sn � [x] is a decreasing sequence
of nonempty closed subsets of a compact space [x] and therefore

⋂
n(Sn � [x]) � ∅. In

particular,
⋂

n Sn �∅.

We also give the promised topological characterization for orthogonality.

LEMMA 2·6. Let G be a countable group, k � 2 an integer and c0, c1 k-colorings on G.
Then c0⊥c1 iff [c0] � [c1] = ∅.

Proof. (⇒) Let n be large enough such that T ⊆ {g0, . . . , gn}. Then for any x0 ∈ [c0]
and x1 ∈ [c1], there is t ∈ T such that x0(t) � x1(t), and thus d(x0, x1) � 2−n . It follows
that d(y0, y1) � 2−n for any y0 ∈ [c0] and y1 ∈ [c1], and therefore [c0] � [c1] = ∅.

(⇐) Conversely, suppose [c0]�[c1] = ∅. Since they are both compact it follows that there
is some δ > 0 such that for any y0 ∈ [c0] and y1 ∈ [c1], d(y0, y1) � δ. Let n be large enough
such that δ � 2−n . Then in particular for any x0 ∈ [c0] and x1 ∈ [c1], d(x0, x1) � 2−n . This
implies that there is t ∈ {g0, . . . , gn} such that x0(t)� x1(t).

We briefly turn our attention to finite groups. It is easy to see that every finite group has
the coloring property. In fact if G is finite we may let c(1G) = 0 and c(g) = 1 for all
g � 1G ; then c is a 2-coloring on G. It is not clear, however, how many pairwise orthogonal
2-colorings a general finite group G can have. The group Z2 has only two 2-colorings, but
they are in the same orbit, and therefore not orthogonal.

3. The proof of the main theorem

In this section we prove our main result that every countably infinite group has the col-
oring property. The proof is technical but elementary. Before we give the presentation of
the coloring we will prove some preparatory propositions and lemmas about the combinat-
orial structure of the group. The first major step is Proposition 3·2 below. We will use the
following concept in its proof.

Definition 3·1. Let G be a group and let A, B, � ⊆ G. We say that the �-translates of
A are maximally disjoint within B if the following properties hold:

(i) for all γ, ψ ∈ �, if γ �ψ then γ A
⋂

ψ A = ∅;
(ii) for every g ∈ G, if g A ⊆ B then there exists γ ∈ � with g A

⋂
γ A �∅.

When property (i) holds we say that the �-translates of A are disjoint. Furthermore, we say
that the �-translates of A are contained and maximally disjoint within B if the �-translates
of A are maximally disjoint within B and �A ⊆ B.

Notice that in the definition above we were referring to the left translates of A by � but
never explicitly used the term left translates. Throughout this section when we use the word
translate(s) it will be understood that we are always referring to left translate(s).
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PROPOSITION 3·2. Let G be a countably infinite group. Given a sequence (Hn)n∈N of
finite subsets of G such that 1G ∈ H0,

⋃
n∈N

Hn = G, and such that for all n � 1

Hn−1(H−1
0 H0)(H−1

1 H1) · · · (H−1
n−1 Hn−1) ⊆ Hn

there exists an increasing sequence (Fn)n∈N of finite subsets of G and a sequence (�n)n∈N of
subsets of G such that:

(i) F0 = H0;
(ii) Fn ⊆ Hn for all n � 1;

(iii) 1G ∈ �n for all n ∈ N;
(iv) for all n ∈ N the �n-translates of Fn are maximally disjoint within G;
(v) for all n � 1 the �n−1

⋂
Fn-translates of Fn−1 are contained and maximally disjoint

within Hn;
(vi) γ (�k

⋂
Fn) = �k

⋂
γ Fn for all n � k and γ ∈ �n;

(vii) (�k
⋂

Fn)Fk ⊆ Fn for all n � k.

Proof. Set F0 = H0 so (i) is satisfied. We will construct (Fn)n∈N. Let δ1
0 be such that

1G ∈ δ1
0 and such that the δ1

0-translates of F0 are contained and maximally disjoint within
H1. Then define F1 = ⋃

γ∈δ1
0
γ F0 and note F1 ⊆ H1.

We will continue the construction inductively. Assume F0 through Fn−1 have been defined
with n > 1 and with Fm ⊆ Hm for m < n. Let δn

n−1 be such that 1G ∈ δn
n−1 and such that the

δn
n−1-translates of Fn−1 are contained and maximally disjoint within Hn . Once δn

n−1 through
δn

n−k+1 have been defined with 1 < k � n, choose δn
n−k such that the δn

n−k-translates of Fn−k

are contained and maximally disjoint within

β(n, n − k) −
⋃

1�m<k

⋃
γ∈δn

n−m

γ Fn−m = β(n, n − k) −
⋃

1�m<k

δn
n−m Fn−m

where for r, s ∈ N with r < s

β(s, r) = {g ∈ G | {g}(F−1
r+1 Fr+1)(F−1

r+2 Fr+2) · · · (F−1
s−1 Fs−1) ⊆ Hs}.

We placed the requirement that Hn−1(H−1
0 H0)(H−1

1 H1) · · · (H−1
n−1 Hn−1) ⊆ Hn in order to

ensure that Hn−1 ⊆ β(n, n − k) for all k � n so that β(n, n − k)�∅ and more importantly
(later on)

⋃
n>k β(n, k) = G for fixed k ∈ N. Intuitively we want to control how translates

of Fn−k are placed in order for this collection of translates to eventually become maximally
disjoint within G (in fact eventually become �n−k). Requiring the δn

n−k-translates of Fn−k to
be contained in β(n, n − k) currently seems like an obscurity but will later be shown to give
us what we desire.

Finally, define

Fn =
⋃

0�m<n

⋃
γ∈δn

m

γ Fm =
⋃

0�m<n

δn
m Fm

and note Fn ⊆ Hn since β(n, k) ⊆ Hn for all 0 � k < n − 1.
The construction of (Fn)n∈N is now complete and satisfies (i) and (ii). The collection

(δn
k )k<n was useful in constructing (Fn)n∈N but is inadequate for our further needs. For k � n

we wish to recognize exactly how translates of Fk were both explicitly and implicitly used
in constructing Fn and all of the parts of Fn . For example, for k < m < n δm

k Fk ⊆ Fm and
δn

m Fm ⊆ Fn so δn
mδm

k Fk ⊆ Fn . Thus informally we would say the δn
mδm

k -translates of Fk were
implicitly used in constructing Fn . However if for g ∈ Fn we only have gFk ⊆ Fn we would
not necessarily want to say the g-translate of Fk was used in constructing Fn . Hopefully we
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Fig. 1. The composition of Fn .

have made the point that we only wish to consider translates which, in some sense, were
either explicitly or implicitly used. Informally, we wish to define Dn

k to be the set of all γ ’s
in Fn (recall 1G ∈ Fk) such that the γ -translate of Fk was used in constructing Fn . For k ∈ N

define Dk
k = {1G}, Dk+1

k = δk+1
k , and in general for n > k

Dn
k = δn

n−1 Dn−1
k

⋃
δn

n−2 Dn−2
k

⋃
· · ·

⋃
δn

k+1 Dk+1
k

⋃
δn

k =
⋃

k�m<n

δn
m Dm

k .

Note that Dn
k Fk ⊆ Fn for all k, n ∈ N with k � n. This follows from the fact that

Dk
k Fk = Fk and assuming Dm

k Fk ⊆ Fm for all k � m < n we have

Dn
k Fk =

⋃
k�m<n

δn
m Dm

k Fk ⊆
⋃

k�m<n

δn
m Fm ⊆ Fn.

Additionally we have that for all s, n, k ∈ N with s � n � k Ds
n Dn

k ⊆ Ds
k . Clearly when

s = n Ds
n Dn

k = Dn
n Dn

k = Dn
k and if we assume Dr

n Dn
k ⊆ Dr

k for all n � r < s then

Ds
n Dn

k =
⋃

n�r<s

δs
r Dr

n Dn
k ⊆

⋃
n�r<s

δs
r Dr

k ⊆
⋃

k�r<s

δs
r Dr

k = Ds
k .

We wish to show that for all k, n ∈ N with k � n the Dn
k -translates of Fk are disjoint.

This is clear when n = k and n = k + 1 since Dk
k = {1G} and Dk+1

k = δk+1
k . Fix k and

n > k + 1 and assume the Dm
k -translates of Fk are disjoint for all k � m < n. Recall

Dn
k = ⋃

k�m<n δn
m Dm

k . If k � r, s < n and r � s then δn
r Dr

k Fk
⋂

δn
s Ds

k Fk = ∅ since
δn

r Dr
k Fk ⊆ δn

r Fr , similarly δn
s Ds

k Fk ⊆ δn
s Fs , and δn

r Fr
⋂

δn
s Fs = ∅ by construction. Also for

k � m < n and γ, ψ ∈ δn
m with γ � ψ , γ Dm

k Fk
⋂

ψ Dm
k Fk = ∅ since again Dm

k Fk ⊆ Fm

and the δn
m-translates of Fm are disjoint. Finally by the induction hypothesis, for k � m < n

the Dm
k -translates of Fk are disjoint. It then clearly follows that the Dn

k -translates of Fk are
disjoint as well and our claim follows by induction.

The Dn
k ’s we have constructed are a discrete version of the �k’s which we will soon

construct to fulfill (iii) through (vii). However there is one more thing we must establish
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first. We claim that for all n, k ∈ N with k < n the Dn
k -translates of Fk are maximally

disjoint within β(n, k). This is clearly true whenever n = k + 1 (we take β(n, n − 1) =
Hn). Fix k ∈ N and towards a contradiction suppose n > k + 1 is minimal such that the
Dn

k -translates of Fk are not maximally disjoint within β(n, k). Fix g ∈ β(n, k) such that
gFk ⊆ β(n, k) and gFk

⋂
Dn

k Fk = ∅. Our argument will rely on inductively creating a
finite sequence of natural numbers. We first detail how the starting number v0 is determined.
Recall that in the construction of Fn δn

n−1 through δn
k+1 are defined first and then δn

k is
chosen maximally disjoint within β(n, k)−⋃

k<m<n δn
m Fm . We cannot have gFk ⊆ β(n, k)−⋃

k<m<n δn
m Fm since the δn

k -translates of Fk are maximally disjoint within this region and
gFk

⋂
δn

k Fk = gFk
⋂

δn
k Dk

k Fk ⊆ gFk
⋂

Dn
k Fk = ∅. As gFk ⊆ β(n, k) we must have

gFk
⋂

(
⋃

k<m<n δn
m Fm) � ∅. Therefore there exists v0 ∈ N with k < v0 < n and α0 ∈ δn

v0

such that gFk
⋂

α0 Fv0 � ∅. Note that α0 Dv0
k ⊆ δn

v0
Dv0

k ⊆ Dn
k so α−1

0 gFk
⋂

Dv0
k Fk =

α−1
0 (gFk

⋂
α0 Dv0

k Fk) = ∅.
Now assume v0 through vi−1 have been defined and α j ∈ δ

v j−1
v j has been fixed for each

0 < j � i − 1 such that:
(a) n > v0 > v1 > · · · > vi−1 > k;
(b) gFk

⋂
α0α1 · · · αi−1 Fvi−1 �∅; and

(c) (α0α1 · · · αi−1)
−1gFk

⋂
Dvi−1

k Fk = ∅.
We will find a new number vi and from here the sequence may either terminate or continue
further. Since Fvi−1 = ⋃

0�m<vi−1
δvi−1

m Fm , by (b) there exists 0 � vi < vi−1 and αi ∈ δvi−1
vi

such that gFk
⋂

α0α1 · · ·αi Fvi � ∅. If vi = k then we would have αi Fvi ⊆ δ
vi−1

k Fk =
δ

vi−1

k Dk
k Fk ⊆ Dvi−1

k Fk which would be in contradiction with (c) of the induction hypothesis,
so vi � k. If vi > k then αi Dvi

k Fk ⊆ δvi−1
vi

Dvi
k Fk ⊆ Dvi−1

k Fk which, together with the
induction hypothesis (c), shows that (c) is again satisfied. Therefore if vi > k then (a) and
(c) are satisfied and we can continue this construction further. But as we are constructing
a strictly decreasing sequence with initial term k < v0 < n the process will eventually
terminate. Note that in the case when vi < k, property (b) is satisfied for i . Also it is
important to note that if k = 0 then we can never have vi < k and since the sequence we are
constructing is strictly decreasing we eventually have vi = k which contradicts property (c)
of the induction hypothesis as stated earlier. Thus if k = 0 we have already arrived at our
contradiction.

Assume that k > 0 and that the process above terminates at stage j . Since v0 was explicitly
found with k < v0 < n, it must be that j � 1. Set w = v j and p = v j−1 so that w <

k < p < n. For α = α0α1 · · · α j−1 we have α−1gFk
⋂

α j Fw � ∅ therefore α−1gFk ⊆
α j Fw F−1

k Fk and

α−1gFk(F−1
k+1 Fk+1) · · · (F−1

p−1 Fp−1) ⊆ α j Fw F−1
k Fk(F−1

k+1 Fk+1) · · · (F−1
p−1 Fp−1).

Additionally as α j ∈ δ p
w,

α j Fw(F−1
k Fk) · · · (F−1

p−1 Fp−1) ⊆ α j Fw(F−1
w+1 Fw+1) · · · (F−1

p−1 Fp−1) ⊆ Hp.

We therefore see that α−1gFk(F−1
k+1 Fk+1) · · · (F−1

p−1 Fp−1) ⊆ Hp and hence α−1gFk ⊆
β(p, k). Also by property (c) α−1gFk

⋂
D p

k Fk = ∅. But then the D p
k -translates of Fk are

not maximally disjoint within β(p, k) which contradicts the minimality of n.
In particular for all n > k the Dn

k -translates of Fk are maximally disjoint within Hn−1

since Hn−1 ⊆ β(n, k) by construction. We remark that Dn
k ⊆ Dn+1

k since δn+1
n Dn

k ⊆ Dn+1
k

and 1G ∈ δn+1
n . As (Hn)n∈N is an increasing sequence with

⋃
n∈N

Hn = G, for each k ∈
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N �k = ⋃
n�k Dn

k is such that the �k-translates of Fk are maximally disjoint within G.
Properties (iii) and (iv) are immediately satisfied.

We will now prove that for n � k and γ ∈ �n �k
⋂

γ Fn = γ Dn
k . Properties (vi) and

(vii) will clearly follow and since Dn
n−1 = δn

n−1 (v) will follow from how we defined δn
n−1.

Clearly when n = k and γ ∈ �k we have �k
⋂

γ Fk = {γ } since γ ∈ �k
⋂

γ Fk and the
�k-translates of Fk are disjoint. Note that {γ } = γ Dk

k . Now fix k, n ∈ N with k < n and
assume that for all k � m < n and ψ ∈ �m �k

⋂
ψ Fm = ψ Dm

k . Fix γ ∈ �n . For some
s � n γ ∈ Ds

n , so for any 0 � m < n γ δn
m ⊆ Ds

nδ
n
m Dm

m ⊆ Ds
n Dn

m ⊆ Ds
m ⊆ �m . We then

have

�k

⋂
γ Fn = �k

⋂ ⎛
⎝ ⋃

0�m<n

γ δn
m Fm

⎞
⎠

=
⎛
⎝�k

⋂ ⎛
⎝ ⋃

0�m<k

γ δn
m Fm

⎞
⎠

⎞
⎠ ⋃ ⎛

⎝ ⋃
k�m<n

(
�k

⋂
γ δn

m Fm

)⎞
⎠

=
⎛
⎝�k

⋂ ⎛
⎝ ⋃

0�m<k

γ δn
m Fm

⎞
⎠

⎞
⎠⋃ ⎛

⎝ ⋃
k�m<n

γ δn
m Dm

k

⎞
⎠

=
⎛
⎝�k

⋂ ⎛
⎝ ⋃

0�m<k

γ δn
m Fm

⎞
⎠

⎞
⎠ ⋃

γ Dn
k .

By our construction (
⋃

0�m<k δn
m Fm)

⋂
(
⋃

k�m<n δn
m Fm) = ∅. Thus γ Dn

k is disjoint with
�k

⋂
(
⋃

0�m<k γ δn
m Fm). We will show �k

⋂
(
⋃

0�m<k γ δn
m Fm) = ∅. Towards a contradic-

tion suppose g ∈ �k
⋂

(
⋃

0�m<k γ δn
m Fm). Fix 0 � m < k such that g ∈ �k

⋂
γ δn

m Fm . Since
1G ∈ Fk we have gFk ⊆ γ δn

m Fm F−1
k Fk and

gFk(F−1
k+1 Fk+1) · · · (F−1

n−1 Fn−1) ⊆ γ δn
m Fm(F−1

k Fk)(F−1
k+1 Fk+1) · · · (F−1

n−1 Fn−1).

Since δn
m Fm ⊆ β(n, m) we have

γ δn
m Fm(F−1

k Fk) · · · (F−1
n−1 Fn−1) ⊆ γ δn

m Fm(F−1
m+1 Fm+1) · · · (F−1

n−1 Fn−1) ⊆ γ Hn.

Thus gFk ⊆ γβ(n, k). We showed earlier that the Dn
k -translates of Fk are maximally disjoint

within β(n, k) so we have gFk
⋂

γ Dn
k Fk � ∅. Additionally as γ ∈ Ds

n γ Dn
k ⊆ Ds

n Dn
k ⊆

Ds
k ⊆ �k . But the �k-translates of Fk are disjoint and g ∈ �k so we must have g ∈

γ Dn
k . But this contradicts �k

⋂
(
⋃

0�m<k γ δn
m Fm) being disjoint with γ Dn

k . We conclude
�k

⋂
(
⋃

0�m<k γ δn
m Fm) = ∅ and �k

⋂
γ Fn = γ Dn

k . By induction this establishes (v), (vi),
and (vii).

Let G be a group and let A, B ⊆ G be finite with 1G ∈ A. We define ρ(B; A) to be the
minimal size of a set D ⊆ B such that for every g ∈ B with g A ⊆ B there exists d ∈ D
with g A

⋂
d A � ∅. Such a minimum size exists since D ⊆ B which is finite. Note that if

A′ ⊆ A then ρ(B; A′) � ρ(B; A).

PROPOSITION 3·3. Let G be a countably infinite group and let A, B ⊆ G be finite with
1G ∈ A. For any ε > 0 there exists a finite C ⊆ G such that C ⊇ B and ρ(C; A) >

(|C |/|A|)(1 − ε).
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Proof. Let � ⊆ G be countably infinite and such that the �-translates of AA−1 A are
disjoint and �AA−1 A

⋂
B = ∅. Let λ1, λ2, . . . be an enumeration of �. For each n ∈

N
+ define Bn = B �

⋃
1�k�n λk A. Fix n ∈ N

+ and let D ⊆ Bn be such that for every
g ∈ Bn with g A ⊆ Bn g A

⋂
D A � ∅. It follows that for each 1 � i � n there is

di ∈ D with di A
⋂

λi A � ∅. Since the �-translates of AA−1 A are disjoint and for each
1 � i � n di A ⊆ λi AA−1 A, the di ’s are all distinct. Additionally �AA−1 A

⋂
B = ∅ so

ρ(Bn; A) − n � ρ(B; A). Therefore we have

ρ(Bn; A)
|A|
|Bn| � n|A| + ρ(B; A)|A|

n|A| + |B| .

Clearly as n goes to infinity the fraction on the right goes to 1. So for some n ∈ N
+

ρ(Bn; A)(|A|/|Bn|) > 1 − ε and ρ(Bn; A) > (|Bn|/|A|)(1 − ε). Bn ⊇ B so we are done.

PROPOSITION 3·4. If G is a countably infinite group and A, B ⊆ G are finite with 1G ∈
A then there exists a finite C ⊆ G such that C ⊇ B and 2ρ(C;A) > 32|C |5.

Proof. Clearly there exists N ∈ N such that for all n � N 2
n

2|A| > 32n5. Thus let B ′ ⊆ G
be finite such that B ′ ⊇ B and |B ′| � N . By Proposition 3·3 there exists a finite C ⊆ G
with C ⊇ B ′ and ρ(C; A) > (1/2)(|C |/|A|). Then C ⊇ B and as n = |C | is at least N ,

2ρ(C;A) > 2
1
2

|C |
|A| = 2

n
2|A| > 32n5 = 32|C |5.

LEMMA 3·5. If G is a countably infinite group then there exists a finite A ⊆ G such that
1G ∈ A, |A| > 1, and for all a ∈ A if a � 1G then a A � A.

Proof. Choose a finite A0 ⊆ G with 1G ∈ A0 and |A0| > 1. Fix a ∈ G − A0 A0
⋃

A0 A−1
0 .

Let A = A0 � {a}. Immediately we have a A0
⋂

A0 = ∅ since a � A0 A−1
0 . Thus we must

have a A � A since |A0| > 1. Now let g ∈ A0 with g � 1G . We have two cases to consider.
Case 1: g A0 = A0. Then g A � A since otherwise we would have ga = a contradicting
g � 1G . Case 2: g A0 � A0. Since a � A0 A0 we have g A � A as well. We have shown A
satisfies the requirements.

THEOREM 3·6. If G is a countably infinite group then G has the coloring property.

Proof. Fix an increasing sequence of finite sets A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · with⋃
n∈N+ An = G.
We will first construct a sequence (Hn)n∈N of finite subsets of G. Using Lemma 3·5 we

may let H0 ⊆ G be finite such that 1G ∈ H0, |H0| > 1, and for all h ∈ H0 − {1G}
h H0 � H0. Next let H1 ⊆ G be finite such that A1

⋃
H0 H0(H−1

0 H−1
0 H0 H0) ⊆ H1 and such

that 2ρ(H1;H0 H0) > 32|H1|5.
The construction is continued inductively. Once H0 through Hk−1 have been defined for

k > 1, let Hk ⊆ G be finite such that

Ak

⋃
Hk−1(H−1

0 H−1
0 H0 H0)(H−1

1 H1)(H−1
2 H2) · · · (H−1

k−1 Hk−1) ⊆ Hk

and such that 2ρ(Hk ;Hk−1) > 32|Hk |5.
With the exception of F0, let (Fn) and (�n) be as in Proposition 3·2 with respect to the

sequence H0 H0, H1, H2, H3, . . . , Hn, . . . . Let F0 = H0.
For each n � 1 Fn is finite so we may let λn

1, λ
n
2, . . . , λ

n
s(n)+4 enumerate �n−1

⋂
Fn

where s(n) = |�n−1
⋂

Fn| − 4. Notice that for n � 2 the �n−1
⋂

Fn-translates of Fn−1 are
contained and maximally disjoint within Hn so s(n) + 4 � ρ(Hn; Fn−1) � ρ(Hn; Hn−1)
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as Fn−1 ⊆ Hn−1. Also for n = 1 the �0
⋂

F1-translates of F0 F0 = H0 H0 are maximally
disjoint within H1 so s(1) + 4 � ρ(H1; H0 H0). Throughout this proof we will frequently
invoke properties (vi) and (vii) of Proposition 3·2, usually with respect to �n-translates of
the λn

i ’s and without explicit mention of invoking the properties.
Define a0 = b0 = 1G and for each n � 1 let an = λn

s(n)+2λ
n−1
s(n−1)+2 · · · λ1

s(1)+2, and
bn = λn

s(n)+3λ
n−1
s(n−1)+3 · · · λ1

s(1)+3. Clearly a0 ∈ F0 and assuming an−1 ∈ Fn−1 we have
an = λn

s(n)+2an−1 ∈ λn
s(n)+2 Fn−1 ⊆ Fn since λn

s(n)+2 ∈ �n−1
⋂

Fn . By induction, and by
a similar argument, we have an, bn ∈ Fn for all n ∈ N. Additionally for every n ∈ N

+

and 1 � i � s(n) + 4 �nλ
n
i an−1 ⊆ �n−1an−1 and �nλ

n
i bn−1 ⊆ �n−1bn−1 since �nλ

n
i ⊆

�n(�n−1
⋂

Fn) = �n−1
⋂

�n Fn ⊆ �n−1 by property (vi) of Proposition 3·2. In particular
�n{an, bn} ⊆ �n−1{an−1, bn−1}. For each n ∈ N

+ define n = ⋃
1�m�n �mλm

s(m)+4am−1 and
note that by our earlier remark n − n−1 ⊆ �nλ

n
s(n)+4an−1 ⊆ �n−1an−1. These last two

statements tell us that in what we are about to introduce properties (i) and (ii) are consistent.
We wish to construct a sequence of functions (cn)n∈N satisfying for each n ∈ N

+:
(i) dom(cn) = G − (�n{an, bn} ⋃

n);
(ii) cn+1 ⊇ cn;

(iii) there exists V ⊆ Fn
⋂

dom(cn) such that for any function c ⊇ cn and g ∈ G,
g ∈ �n ⇐⇒ ∀a ∈ V c(ga) = c(a);

(iv) for any γ, ψ ∈ �n , if γ −1ψ ∈ Hn H−1
n H 2

n H−1
n then there exists a ∈ Fn such that

γ a, ψa ∈ dom(cn) and cn(γ a)� cn(ψa).
After constructing the sequence (cn) it will be an easy task to extract a 2-coloring on

G. The general idea of the construction is as follows. Given ck−1 we first define c′
k−1

to satisfy (iii) using (for the most part) �kλ
k
s(k)+1{ak−1, bk−1}. We then extend c′

k−1 to ck ,
which preserves property (iii), use �k{λk

1, λ
k
2, . . . , λ

k
s(k)}ak−1 to achieve (iv), and then leave

�k{λk
s(k)+2ak−1, λ

k
s(k)+3bk−1} = �k{ak, bk} and �kλ

k
s(k)+4ak−1

⋃
k−1 = k undefined. We

now cover the details.
We first aim to satisfy (iii) and define

c0 : (G − �1{λ1
1, λ

1
2, . . . , λ

1
s(1), λ

1
s(1)+2, λ

1
s(1)+3, λ

1
s(1)+4}) −→ 2

by

c0(g) =
{

1 if g ∈ �1λ
1
s(1)+1 F0

0 otherwise

for g ∈ dom(c0).
Let c : G → 2 with c ⊇ c0 and let g ∈ G be arbitrary. Suppose c(gF0) = {1}.

Since 1G ∈ F0 c(g) = 1 so from how we defined c0 either g ∈ dom(c0) and there-
fore g ∈ �1λ

1
s(1)+1 F0 or g ∈ G − dom(c0). That is, either g ∈ �1λ

1
s(1)+1 F0 or for some

1 � i � s(1) + 4, i � s(1) + 1, g ∈ �1λ
1
i . We claim in fact g ∈ �1λ

1
s(1)+1, so to-

wards a contradiction suppose g � �1λ
1
s(1)+1. Case 1: g ∈ (�1λ

1
s(1)+1 F0 − �1λ

1
s(1)+1). Let

γ ∈ �1 and f ∈ F0 be such that g = γ λ1
s(1)+1 f . Then f � 1G . By construction there

is h ∈ F0 with f h � F0 and therefore γ λ1
s(1)+1 f h � γ λ1

s(1)+1 F0. But also γ λ1
s(1)+1 f h ∈

γ λ1
s(1)+1 F0 F0 ⊆ γ F1 and for 1 � j � s(1) + 4 with j � s(1) + 1 γ λ1

s(1)+1 f h � γ λ1
j

since λ1
s(1)+1 F0 F0

⋂
λ1

j F0 F0 = ∅. Thus c(γ λ1
s(1)+1 f h) � 1, a contradiction. Case 2:

g ∈ �1{λ1
1, λ

1
2, . . . , λ

1
s(1), λ

1
s(1)+2, λ

1
s(1)+3, λ

1
s(1)+4}. Let γ ∈ �1 and 1 � i � s(1) + 4 with

i � s(1)+1 be such that g = γ λ1
i . Since |F0| > 1 there is f ∈ F0, f � 1G , with c(g f ) = 1.

Thus g f ∈ �1λ
1
s(1)+1 F0 or g f ∈ �1{λ1

1, λ
1
2, . . . , λ

1
s(1), λ

1
s(1)+2, λ

1
s(1)+3, λ

1
s(1)+4}. But since

1G ∈ F0 gF0 = γ λ1
i F0 ⊆ γ λ1

i F2
0 ⊆ γ F1 and by construction for 1 � j � s(1) + 4
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with j � i λ1
i F2

0

⋂
λ1

j F2
0 = ∅. Thus it is impossible for c(g f ) to be 1. We conclude

g ∈ �1λ
1
s(1)+1.

We therefore have a test for membership of �1 for any function c ⊇ c0. Since 1G ∈ �1

for any g ∈ G,

g ∈ �1 ⇐⇒ c(gλ1
s(1)+1 F0) = {1} ⇐⇒ ∀ f ∈ λ1

s(1)+1 F0 c(g f ) = c( f ).

Note that λ1
s(1)+1 F0 ⊆ λ1

s(1)+1 F0 F0 ⊆ F1 and λ1
s(1)+1 F0 ⊆ dom(c0).

In constructing c1, and likewise the sequence (cn), it is of much use to consider graphs.
Let � be the graph with vertex set �1 and with edge relation given by

(γ, ψ) ∈ E(�) ⇐⇒ γ −1ψ ∈ H1 H−1
1 H 2

1 H−1
1 or ψ−1γ ∈ H1 H−1

1 H 2
1 H−1

1 .

Then for every vertex v ∈ V (�), deg(v) � 2|H1 H−1
1 H 2

1 H−1
1 | � 2|H1|5. It is a simple

result in graph theory that � is (2|H1|5 + 1)-colorable. Let μ : V (�) → (2|H1|5 + 1) be
a (2|H1|5 + 1)-coloring of �. For each i ∈ N

+ define Bi : N → 2 to be such that Bi (k) is
the i th digit from least to most significant in the binary representation of k when k � 2i−1

and Bi (k) = 0 when k < 2i−1. Note that since 2s(1) � 2ρ(H1;H0 H0)−4 > 2|H1|5 all integers 0
through 2|H1|5 can be written in binary using s(1) digits.

Define c1 : G − (�1{a1, b1} ⋃
1) → 2 to be such that c1 ⊇ c0 and such that for every

γ ∈ �1 and 1 � i � s(1) c(γ λ1
i ) = Bi(μ(γ )). It follows that properties (i) through (iv) are

satisfied (property (iii) was satisfied by c0).
The construction will be continued inductively. Assume c0 through ck−1 have been defined

with k > 1. We will first construct c′
k−1 which will satisfy property (iii). Let c′

k−1 have domain

G −
(
k−1

⋃
�k{λk

1, λ
k
2, . . . , λ

k
s(k), λ

k
s(k)+2, λ

k
s(k)+4}ak−1

⋃
�k{λs(k)+3bk−1}

)
and have the following properties:

c′
k−1 ⊇ ck−1;

∀ψ ∈ (�k−1 − �k{λk
1, λ

k
2, . . . , λ

k
s(k)+4}) c′

k−1(ψak−1) = c′
k−1(ψbk−1) = 0;

∀ψ ∈ (�k−1 − �k{λk
s(k)+1, λ

k
s(k)+3}) c′

k−1(ψbk−1) = 0;
∀γ ∈ �k c′

k−1(γ λk
s(k)+1ak−1) = c′

k−1(γ λk
s(k)+1bk−1) = 1; and

∀γ ∈ �k c′
k−1(γ λk

s(k)+3ak−1) = 0.

Note that k−1
⋃

�kλ
k
s(k)+4ak−1 = k so the domain specified for c′

k−1 does not con-
tain k . Also in the properties listed above we specified the values of c′

k−1 on a subset of
�k−1{ak−1, bk−1} and �k−1{ak−1, bk−1} ⋂

k−1 = ∅. This is since

�1{a1, b1}
⋂

1 = �1{a1, b1}
⋂

�1λ
1
s(1)+4 = ∅

and assuming �n−1{an−1, bn−1} ⋂
n−1 = ∅ we have

�n{an, bn}
⋂

n = (�n{an, bn}
⋂

n−1)
⋃

(�n{an, bn}
⋂

�nλ
n
s(n)+4an−1) = ∅

as �n{an, bn} ⊆ �n−1{an−1, bn−1}.
Let c ⊇ c′

k−1 be any function from G to 2. The function ck−1 was not defined on �k−1bk−1

and, from how we defined c′
k−1, for any ψ ∈ �k−1 c(ψbk−1) = 1 only if ψ ∈ �kλ

k
s(k)+1

or ψ ∈ �kλ
k
s(k)+3. However c′

k−1(�kλ
k
s(k)+1ak−1) = {1} � {0} = c′

k−1(�kλ
k
s(k)+3ak−1) so if
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Fig. 2. The coloring c′
k−1: ensuring a membership test for �k .

we can recognize membership of �k−1 then we can recognize membership of �k . But by
the induction hypothesis we can do just that. Let V ⊆ Fk−1

⋂
dom(ck−1) be such that for

g ∈ G, g ∈ �k−1 ⇐⇒ ∀a ∈ V c(ga) = c(a). We clearly have for g ∈ G, g ∈ �k if and
only if gλk

s(k)+1 ∈ �k−1 and c(gλk
s(k)+1ak−1) = c(gλk

s(k)+1bk−1) = 1. If we set

V ′ = λk
s(k)+1V

⋃
{λk

s(k)+1ak−1, λ
k
s(k)+1bk−1}

then since 1G ∈ �k V ′ ⊆ Fk
⋂

dom(c′
k−1) and for g ∈ G

g ∈ �k ⇐⇒ ∀a ∈ V ′ c(ga) = c(a).

We will construct ck to extend c′
k−1 so that ck will have property (iii).

Let � be the graph with vertex set �k and edge relation given by

(γ, ψ) ∈ E(�) ⇐⇒ γ −1ψ ∈ Hk H−1
k H 2

k H−1
k or ψ−1γ ∈ Hk H−1

k H 2
k H−1

k .

Clearly for v ∈ V (�) deg(v) � 2|Hk |5. So we may let μ : V (�) → (2|Hk |5 + 1) be a
(2|Hk |5 + 1)-coloring of �. Since by construction 2s(k) � 2ρ(Hk ;Hk−1)−4 > 2|Hk |5 all numbers
0 through 2|Hk |5 can be represented in binary with s(k) digits. Recalling the domain of c′

k−1

we see we only need to extend it by �k{λk
1, λ

k
2, . . . , λ

k
s(k)}ak−1 to have the domain of ck as

desired. So we let ck : G − (�k{ak, bk} ⋃
k) → 2 be such that ck ⊇ c′

k−1 and for all
γ ∈ �k and 1 � i � s(k) ck(γ λk

i ak−1) = Bi(μ(γ )). Properties (i) through (iv) are then
clearly satisfied.

Let c = ⋃
n∈N

cn . Then dom(c) ⊆ G −⋃
n∈N+ n . We claim that any function π : G → 2

with π ⊇ c is a 2-coloring on G. Fix such a function π and fix s ∈ G with s � 1G . Since⋃
n∈N

Hn = G we may let i � 1 be minimal such that s ∈ Hi and let T = Fi F−1
i Fi . Let

g ∈ G be arbitrary. We will find t ∈ T such that π(gt) � π(gst). Since the �i -translates
of Fi are maximally disjoint within G gFi

⋂
�i Fi � ∅ so there exists f ∈ Fi F−1

i such
that g f ∈ �i . We have two cases to consider. Case 1: gs f � �i . Since π ⊇ ci we may
let V ⊆ Fi be such that for h ∈ G h ∈ �i ⇐⇒ ∀a ∈ V π(ha) = π(a). As gs f � �i

there exists a ∈ V ⊆ Fi with π(gs f a) � π(a). But g f ∈ �i so π(g f a) = π(a) �
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Fig. 3. The coloring ck : coding a (2|Hk |5 + 1)-coloring of �.

π(gs f a). In addition we have f a ∈ T so we are done. Case 2: gs f ∈ �i . Then we have
(g f )−1(gs f ) = f −1s f ∈ Fi F−1

i Hi Fi F−1
i ⊆ Hi H−1

i H 2
i H−1

i . It follows there exists a ∈ Fi

such that g f a, gs f a ∈ dom(ci) and π(g f a) = ci (g f a) � ci(gs f a) = π(gs f a). Again
f a ∈ T so we are done.

COROLLARY 3·7. If G is a countably infinite group then there is a perfect set of pairwise
orthogonal 2-colorings on G.

Proof. The proof of the previous theorem was precisely constructed to allow for a simple
proof of this corollary. For this reason it will be understood that we will be using objects
from the previous proof as they were defined there. Let c be as in the concluding paragraph
of the previous proof. Recall that

⋃
n∈N+ n = ⋃

n∈N+ �nλ
n
s(n)+4an−1. For each σ ∈ 2ω

define cσ : G → 2 to be such that cσ ⊇ c and such that for every i ∈ N
+ and γ ∈ �i

cσ (γ λi
s(i)+4ai−1) = σ(i − 1). By the proof of the previous theorem, for every σ ∈ 2ω

cσ is a 2-coloring on G. Now let σ, τ ∈ 2ω with σ � τ . We will show cσ and cτ are
orthogonal. Suppose σ(i) � τ(i) and let T = Fi+1 F−1

i+1 Fi+1. Fix h0, h1 ∈ G. We will find
t ∈ T with cσ (h0t) � cτ (h1t). Since the �i+1-translates of Fi+1 are maximally disjoint
within G there exists f ∈ Fi+1 F−1

i+1 such that h0 f ∈ �i+1. We have two cases to consider.
Case 1: h1 f � �i+1. Let V ⊆ Fi+1

⋂
dom(ci+1) be such that for any function π ⊇ ci+1

and any g ∈ G g ∈ �i+1 ⇐⇒ ∀a ∈ V π(ga) = π(a). Since h1 f � �i+1 there is
a ∈ V such that cτ (h1 f a) � cτ (a) = ci+1(a). But h0 f ∈ �i+1 so cσ (h0 f a) = cσ (a) =
ci+1(a) = cτ (a) � cτ (h1 f a). This completes this case as f a ∈ T . Case 2: h1 f ∈ �i+1.
Then cσ (h0 f λi+1

s(i+1)+4ai) = σ(i)� τ(i) = cτ (h1 f λi+1
s(i+1)+4ai ) and f λi+1

s(i+1)+4ai ∈ T .
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