A coloring property for countable groups

By SU GAO \dagger, STEVE JACKSON AND BRANDON SEWARD \ddagger
Department of Mathematics, University of North Texas, 1155 Union Circle \#311430,
Denton, TX 76203, U.S.A.
e-mail: sgao@unt.edu, jackson@unt.edu, bs_brandon@yahoo.com

(Received 8 December 2007)

Abstract

Motivated by research on hyperfinite equivalence relations we define a coloring property for countable groups. We prove that every countable group has the coloring property. This implies a compactness theorem for closed complete sections of the free part of the shift action of G on 2^{G}. Our theorems generalize known results about \mathbb{Z}.

1. Introduction

The coloring property we will establish for all countable groups in this paper was motivated by the study of hyperfinite equivalence relations. One of the most well-known results in this area is the hyperfiniteness of the orbit equivalence relation of the shift action of the group \mathbb{Z} on $2^{\mathbb{Z}}$ (c.f. [2]). In the proof of this result a marker lemma of Slaman and Steel ([5]) played an important role.

Lemma $1 \cdot 1$ (Slaman-Steel). Let $F(\mathbb{Z})$ be the free part of $2^{\mathbb{Z}}$ under the shift action of \mathbb{Z}. Then there is an infinite decreasing sequence of Borel complete sections of $F(\mathbb{Z})$

$$
S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{n} \supseteq \cdots
$$

such that $\bigcap_{n} S_{n}=\varnothing$.
This Slaman-Steel marker lemma is true when \mathbb{Z} is replaced by an arbitrary countable group G. In [3] the first two authors studied, among other things, the existence of decreasing sequences of complete sections that are relatively closed in the free part of $2^{\mathbb{Z}}$. If such sequences existed then the hyperfiniteness of $2^{\mathbb{Z}}$ could be strengthened easily (to a continuous embedding of E_{0}). However, in [3] it was noted that, while it is possible to have decreasing sequences of clopen complete sections such that their intersection contains at most one point of each orbit, requiring the intersection to be empty is impossible. (An earlier, weaker version of the following theorem was joint work with Ben Miller.)

THEOREM $1 \cdot 2$ (Gao-Jackson). There is no infinite sequence of closed complete sections of $F(\mathbb{Z})$

$$
S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{n} \supseteq \cdots
$$

such that $\bigcap_{n} S_{n}=\varnothing$.
\dagger Supported by the U.S. NSF grant DMS-0503019.
\ddagger Supported by an REU supplement of the U.S. NSF grant DMS-0501039.

In this paper the above theorem is generalized to an arbitrary countable group G.
THEOREM 1•3. Let $F(G)$ be the free part of the shift action on 2^{G} by G. Then there is no infinite sequence of closed complete sections of $F(G)$

$$
S_{0} \supseteq S_{1} \supseteq \cdots \supseteq S_{n} \supseteq \cdots
$$

such that $\bigcap_{n} S_{n}=\varnothing$.
This can be interpreted as a compactness theorem for closed complete sections of $F(G)$. The proof of the theorem, however, turns out to rely on a combinatorial analysis of the group G, and ultimately boils down to the following coloring property.

Definition 1.4. Let G be a countable group. A 2-coloring on G is a function $c: G \rightarrow$ $\{0,1\}$ such that for any $s \in G$ with $s \neq 1_{G}$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T c(g t) \neq c(g s t)
$$

We say that G has the coloring property if there is a 2-coloring on G.
Our main theorem of the paper is the following.
THEOREM 1.5. Every countable group has the coloring property.
In fact we demonstrate a stronger theorem which asserts the existence of continuum many distinct 2 -colorings on any countably infinite group G. The proof of our main theorem is entirely algebraic.

After an earlier version of this paper was completed we learned that Glasner and Uspenskij [4] have asked the general question whether every countable group has the coloring property and obtained partial results on this problem.

It is worth noting that although our results imply that the Slaman-Steel lemma cannot be improved to closed complete sections, it is true that the shift equivalence relation on $2^{\mathbb{Z}}$ is continuously embeddable into $E_{0}([\mathbf{1}])$. Moreover, the same is true even when \mathbb{Z} is replaced by \mathbb{Z}^{n} for any $n \geqslant 1$ or by $\mathbb{Z}^{<\omega}$, the direct sum of infinitely many copies of \mathbb{Z} ([3]). The proof of these results are much more sophisticated, and the necessity of the sophistication is suggested by our results here.

The rest of the paper is organized as follows. In Section 2 we give the connection between the coloring property and the compactness theorem for closed complete sections. We also introduce a concept of orthogonality and characterize it topologically. In Section 3 we prove our main theorems that every countably infinite group has the coloring property, and moreover on any countably infinite group there is a perfect set of pairwise orthogonal 2colorings.

2. Definitions and connections

We reformulate the coloring property in a slightly broader context.
Definition $2 \cdot 1$. Let G be a countable group and $k \geqslant 2$ an integer. A k-coloring on G is a function $c: G \rightarrow k$ such that for any $s \in G$ with $s \neq 1_{G}$ there is a finite set $T \subseteq G$ such that

$$
\forall g \in G \exists t \in T c(g t) \neq c(g s t)
$$

We also consider the following concept of orthogonality.

Definition 2.2. Let G be a countable group, $k \geqslant 2$ an integer and $c_{0}, c_{1} k$-colorings on G. We say that c_{0} and c_{1} are orthogonal, denoted $c_{0} \perp c_{1}$, if there is a finite set $T \subseteq G$ such that

$$
\forall g_{0}, g_{1} \in G \exists t \in T c_{0}\left(g_{0} t\right) \neq c_{1}\left(g_{1} t\right)
$$

If two k-colorings are orthogonal we regard them to be different in an effective way. We will see below that the orthogonality corresponds to a nice topological characterization. We note that this concept was used in essential ways in some of our earlier partial results. In the current proof the concept is not explicitly used but a local version of it is still instrumental in the proof of our main theorem.

We next give some topological characterizations for these concepts.
Fix a countable group G and an integer $k \geqslant 2$. Let G be enumerated without repetition as $1_{G}=g_{0}, g_{1}, g_{2}, \ldots$ Define a metric on $k^{G}=\{0, \ldots, k-1\}^{G}$ by

$$
d_{k}(x, y)= \begin{cases}2^{-n}, & \text { if } x \neq y \text { and } n \in \omega \text { is the least such that } x\left(g_{n}\right) \neq y\left(g_{n}\right) \\ 0, & \text { if } x=y\end{cases}
$$

Then d_{k} is an ultrametric on k^{G} compatible with the compact product topology on k^{G}, where $k=\{0, \ldots, k-1\}$ is endowed with the discrete topology.

The shift action of G on k^{G} is given by

$$
(g \cdot x)(h)=x\left(g^{-1} h\right) .
$$

This action is continuous. Let F_{k} be the free part of this action, i.e., $x \in F_{k}$ iff $\forall g \in G-$ $\left\{1_{G}\right\} g \cdot x \neq x$. Then F_{k} is an invariant dense G_{δ} subset of k^{G}.

For each $x \in k^{G}$ let $[x]$ denote the orbit of x, i.e., the set of elements $g \cdot x$ for $g \in G$. Then we have the following characterization.

Lemma 2•1. For any $x \in k^{G}$, x is a k-coloring on G iff $\overline{[x]} \subseteq F_{k}$.
Proof. (\Rightarrow) Assume that x is a k-coloring on G. Suppose $z \in \overline{[x]}$, that is, there are $h_{m} \in G$ with $h_{m} \cdot x \rightarrow z$ as $m \rightarrow \infty$. We show that $z \in F_{k}$. Assume not and suppose $s \cdot z=z$ for $s \neq 1_{G}$. Then by the continuity of the action we have that $s^{-1} h_{m} \cdot x \rightarrow s^{-1} \cdot z=z$. Let $T \subseteq G$ be a finite set such that for any $g \in G$ there is $t \in T$ with $x(g t) \neq x(g s t)$. Let n be large enough so that $T \subseteq\left\{g_{0}, \ldots, g_{n}\right\}$ and let $m \geqslant n$ be such that $d\left(h_{m} \cdot x, z\right), d\left(s^{-1} h_{m} \cdot x, z\right)<$ 2^{-n}. Now fix $t \in T$ with $\left(h_{m} \cdot x\right)(t)=x\left(h_{m}^{-1} t\right) \neq x\left(h_{m}^{-1} s t\right)=\left(s^{-1} h_{m} \cdot x\right)(t)$. Then $z(t)=\left(h_{m} \cdot x\right)(t) \neq\left(s^{-1} h_{m} \cdot x\right)(t)=z(t)$, a contradiction.
(\Leftarrow) Assume $\overline{[x]} \subseteq F_{k}$. Denote $C=\overline{[x]}$. Fix any $s \in G$ with $s \neq 1_{G}$. Then for any $y \in C$, $s^{-1} \cdot y \neq y$, and hence there is $t \in G$ with $\left(s^{-1} \cdot y\right)(t) \neq y(t)$. Define a function $\tau: C \rightarrow G$ by letting $\tau(y)=g_{n}$ where n is the least so that $\left(s^{-1} \cdot y\right)\left(g_{n}\right) \neq y\left(g_{n}\right)$. Then τ is a continuous function. Since C is compact we get that $\tau(C) \subseteq G$ is finite. Let $T=\tau(C)$. Then for any $g \in G$, there is a $t \in T$ such that $x(g t)=\left(g^{-1} \cdot x\right)(t) \neq\left(s^{-1} g^{-1} \cdot x\right)(t)=x(g s t)$. This proves that x is a k-coloring.

Thus we have the following proposition (also due independently to Pestov and can be found in [4]).

PROPOSITION 2•2. Let G be a countable group. Then the following are equivalent:

(i) G has the coloring property;
(ii) $\overline{[x]} \subseteq F_{2}$ for some $x \in 2^{G}$;
(iii) F_{2} contains a compact invariant subset.

The compactness theorem for complete sections is now a corollary of the coloring property. Recall that a complete section of F_{2} is a subset $A \subseteq F_{2}$ so that $A \cap[x] \neq \varnothing$ for every $x \in F_{2}$.

THEOREM $2 \cdot 5$. Let G be a countably infinite group with the coloring property. Suppose $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \cdots \supseteq S_{n} \supseteq \cdots$ is a decreasing sequence of closed complete sections in F_{2}. Then $\bigcap_{n} S_{n} \neq \varnothing$.

Proof. Let $x \in 2^{G}$ be a 2-coloring on G. Then $\overline{[x]} \subseteq F_{2}$. Now each S_{n} is a complete section and therefore $S_{n} \cap[x] \neq \varnothing$. Thus the sequence $S_{n} \cap \overline{[x]}$ is a decreasing sequence of nonempty closed subsets of a compact space $\overline{[x]}$ and therefore $\bigcap_{n}\left(S_{n} \cap \overline{[x]}\right) \neq \varnothing$. In particular, $\bigcap_{n} S_{n} \neq \varnothing$.

We also give the promised topological characterization for orthogonality.
LEMMA 2•6. Let G be a countable group, $k \geqslant 2$ an integer and $c_{0}, c_{1} k$-colorings on G. Then $c_{0} \perp c_{1}$ iff $\overline{\left[c_{0}\right]} \cap \overline{\left[c_{1}\right]}=\varnothing$.

Proof. (\Rightarrow) Let n be large enough such that $T \subseteq\left\{g_{0}, \ldots, g_{n}\right\}$. Then for any $x_{0} \in\left[c_{0}\right]$ and $x_{1} \in\left[c_{1}\right]$, there is $t \in T$ such that $x_{0}(t) \neq x_{1}(t)$, and thus $d\left(x_{0}, x_{1}\right) \geqslant 2^{-n}$. It follows that $d\left(y_{0}, y_{1}\right) \geqslant 2^{-n}$ for any $y_{0} \in \overline{\left[c_{0}\right]}$ and $y_{1} \in \overline{\left[c_{1}\right]}$, and therefore $\overline{\left[c_{0}\right]} \cap \overline{\left[c_{1}\right]}=\varnothing$.
(\Leftarrow) Conversely, suppose $\overline{\left[c_{0}\right]} \cap \overline{\left[c_{1}\right]}=\varnothing$. Since they are both compact it follows that there is some $\delta>0$ such that for any $y_{0} \in \overline{\left[c_{0}\right]}$ and $y_{1} \in \overline{\left[c_{1}\right]}, d\left(y_{0}, y_{1}\right) \geqslant \delta$. Let n be large enough such that $\delta \geqslant 2^{-n}$. Then in particular for any $x_{0} \in\left[c_{0}\right]$ and $x_{1} \in\left[c_{1}\right], d\left(x_{0}, x_{1}\right) \geqslant 2^{-n}$. This implies that there is $t \in\left\{g_{0}, \ldots, g_{n}\right\}$ such that $x_{0}(t) \neq x_{1}(t)$.

We briefly turn our attention to finite groups. It is easy to see that every finite group has the coloring property. In fact if G is finite we may let $c\left(1_{G}\right)=0$ and $c(g)=1$ for all $g \neq 1_{G}$; then c is a 2 -coloring on G. It is not clear, however, how many pairwise orthogonal 2-colorings a general finite group G can have. The group \mathbb{Z}_{2} has only two 2-colorings, but they are in the same orbit, and therefore not orthogonal.

3. The proof of the main theorem

In this section we prove our main result that every countably infinite group has the coloring property. The proof is technical but elementary. Before we give the presentation of the coloring we will prove some preparatory propositions and lemmas about the combinatorial structure of the group. The first major step is Proposition 3.2 below. We will use the following concept in its proof.

Definition 3•1. Let G be a group and let $A, B, \Delta \subseteq G$. We say that the Δ-translates of A are maximally disjoint within B if the following properties hold:
(i) for all $\gamma, \psi \in \Delta$, if $\gamma \neq \psi$ then $\gamma A \bigcap \psi A=\varnothing$;
(ii) for every $g \in G$, if $g A \subseteq B$ then there exists $\gamma \in \Delta$ with $g A \bigcap \gamma A \neq \varnothing$.

When property (i) holds we say that the Δ-translates of A are disjoint. Furthermore, we say that the Δ-translates of A are contained and maximally disjoint within B if the Δ-translates of A are maximally disjoint within B and $\Delta A \subseteq B$.

Notice that in the definition above we were referring to the left translates of A by Δ but never explicitly used the term left translates. Throughout this section when we use the word translate(s) it will be understood that we are always referring to left translate(s).

Proposition 3.2. Let G be a countably infinite group. Given a sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G such that $1_{G} \in H_{0}, \bigcup_{n \in \mathbb{N}} H_{n}=G$, and such that for all $n \geqslant 1$

$$
H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right) \subseteq H_{n}
$$

there exists an increasing sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G and a sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of subsets of G such that:
(i) $F_{0}=H_{0}$;
(ii) $F_{n} \subseteq H_{n}$ for all $n \geqslant 1$;
(iii) $1_{G} \in \Delta_{n}$ for all $n \in \mathbb{N}$;
(iv) for all $n \in \mathbb{N}$ the Δ_{n}-translates of F_{n} are maximally disjoint within G;
(v) for all $n \geqslant 1$ the $\Delta_{n-1} \bigcap F_{n}$-translates of F_{n-1} are contained and maximally disjoint within H_{n};
(vi) $\gamma\left(\Delta_{k} \bigcap F_{n}\right)=\Delta_{k} \bigcap \gamma F_{n}$ for all $n \geqslant k$ and $\gamma \in \Delta_{n}$;
(vii) $\left(\Delta_{k} \bigcap F_{n}\right) F_{k} \subseteq F_{n}$ for all $n \geqslant k$.

Proof. Set $F_{0}=H_{0}$ so (i) is satisfied. We will construct $\left(F_{n}\right)_{n \in \mathbb{N}}$. Let δ_{0}^{1} be such that $1_{G} \in \delta_{0}^{1}$ and such that the δ_{0}^{1}-translates of F_{0} are contained and maximally disjoint within H_{1}. Then define $F_{1}=\bigcup_{\gamma \in \delta_{0}^{1}} \gamma F_{0}$ and note $F_{1} \subseteq H_{1}$.

We will continue the construction inductively. Assume F_{0} through F_{n-1} have been defined with $n>1$ and with $F_{m} \subseteq H_{m}$ for $m<n$. Let δ_{n-1}^{n} be such that $1_{G} \in \delta_{n-1}^{n}$ and such that the δ_{n-1}^{n}-translates of F_{n-1} are contained and maximally disjoint within H_{n}. Once δ_{n-1}^{n} through δ_{n-k+1}^{n} have been defined with $1<k \leqslant n$, choose δ_{n-k}^{n} such that the δ_{n-k}^{n}-translates of F_{n-k} are contained and maximally disjoint within

$$
\beta(n, n-k)-\bigcup_{1 \leqslant m<k} \bigcup_{\gamma \in \delta_{n-m}^{n}} \gamma F_{n-m}=\beta(n, n-k)-\bigcup_{1 \leqslant m<k} \delta_{n-m}^{n} F_{n-m}
$$

where for $r, s \in \mathbb{N}$ with $r<s$

$$
\beta(s, r)=\left\{g \in G \mid\{g\}\left(F_{r+1}^{-1} F_{r+1}\right)\left(F_{r+2}^{-1} F_{r+2}\right) \cdots\left(F_{s-1}^{-1} F_{s-1}\right) \subseteq H_{s}\right\}
$$

We placed the requirement that $H_{n-1}\left(H_{0}^{-1} H_{0}\right)\left(H_{1}^{-1} H_{1}\right) \cdots\left(H_{n-1}^{-1} H_{n-1}\right) \subseteq H_{n}$ in order to ensure that $H_{n-1} \subseteq \beta(n, n-k)$ for all $k \leqslant n$ so that $\beta(n, n-k) \neq \varnothing$ and more importantly (later on) $\bigcup_{n>k} \beta(n, k)=G$ for fixed $k \in \mathbb{N}$. Intuitively we want to control how translates of F_{n-k} are placed in order for this collection of translates to eventually become maximally disjoint within G (in fact eventually become Δ_{n-k}). Requiring the δ_{n-k}^{n}-translates of F_{n-k} to be contained in $\beta(n, n-k)$ currently seems like an obscurity but will later be shown to give us what we desire.

Finally, define

$$
F_{n}=\bigcup_{0 \leqslant m<n} \bigcup_{\gamma \in \delta_{m}^{n}} \gamma F_{m}=\bigcup_{0 \leqslant m<n} \delta_{m}^{n} F_{m}
$$

and note $F_{n} \subseteq H_{n}$ since $\beta(n, k) \subseteq H_{n}$ for all $0 \leqslant k<n-1$.
The construction of $\left(F_{n}\right)_{n \in \mathbb{N}}$ is now complete and satisfies (i) and (ii). The collection $\left(\delta_{k}^{n}\right)_{k<n}$ was useful in constructing $\left(F_{n}\right)_{n \in \mathbb{N}}$ but is inadequate for our further needs. For $k \leqslant n$ we wish to recognize exactly how translates of F_{k} were both explicitly and implicitly used in constructing F_{n} and all of the parts of F_{n}. For example, for $k<m<n \delta_{k}^{m} F_{k} \subseteq F_{m}$ and $\delta_{m}^{n} F_{m} \subseteq F_{n}$ so $\delta_{m}^{n} \delta_{k}^{m} F_{k} \subseteq F_{n}$. Thus informally we would say the $\delta_{m}^{n} \delta_{k}^{m}$-translates of F_{k} were implicitly used in constructing F_{n}. However if for $g \in F_{n}$ we only have $g F_{k} \subseteq F_{n}$ we would not necessarily want to say the g-translate of F_{k} was used in constructing F_{n}. Hopefully we

Fig. 1. The composition of F_{n}.
have made the point that we only wish to consider translates which, in some sense, were either explicitly or implicitly used. Informally, we wish to define D_{k}^{n} to be the set of all γ 's in F_{n} (recall $1_{G} \in F_{k}$) such that the γ-translate of F_{k} was used in constructing F_{n}. For $k \in \mathbb{N}$ define $D_{k}^{k}=\left\{1_{G}\right\}, D_{k}^{k+1}=\delta_{k}^{k+1}$, and in general for $n>k$

$$
D_{k}^{n}=\delta_{n-1}^{n} D_{k}^{n-1} \bigcup \delta_{n-2}^{n} D_{k}^{n-2} \bigcup \cdots \bigcup \delta_{k+1}^{n} D_{k}^{k+1} \bigcup \delta_{k}^{n}=\bigcup_{k \leqslant m<n} \delta_{m}^{n} D_{k}^{m}
$$

Note that $D_{k}^{n} F_{k} \subseteq F_{n}$ for all $k, n \in \mathbb{N}$ with $k \leqslant n$. This follows from the fact that $D_{k}^{k} F_{k}=F_{k}$ and assuming $D_{k}^{m} F_{k} \subseteq F_{m}$ for all $k \leqslant m<n$ we have

$$
D_{k}^{n} F_{k}=\bigcup_{k \leqslant m<n} \delta_{m}^{n} D_{k}^{m} F_{k} \subseteq \bigcup_{k \leqslant m<n} \delta_{m}^{n} F_{m} \subseteq F_{n}
$$

Additionally we have that for all $s, n, k \in \mathbb{N}$ with $s \geqslant n \geqslant k D_{n}^{s} D_{k}^{n} \subseteq D_{k}^{s}$. Clearly when $s=n D_{n}^{s} D_{k}^{n}=D_{n}^{n} D_{k}^{n}=D_{k}^{n}$ and if we assume $D_{n}^{r} D_{k}^{n} \subseteq D_{k}^{r}$ for all $n \leqslant r<s$ then

$$
D_{n}^{s} D_{k}^{n}=\bigcup_{n \leqslant r<s} \delta_{r}^{s} D_{n}^{r} D_{k}^{n} \subseteq \bigcup_{n \leqslant r<s} \delta_{r}^{s} D_{k}^{r} \subseteq \bigcup_{k \leqslant r<s} \delta_{r}^{s} D_{k}^{r}=D_{k}^{s} .
$$

We wish to show that for all $k, n \in \mathbb{N}$ with $k \leqslant n$ the D_{k}^{n}-translates of F_{k} are disjoint. This is clear when $n=k$ and $n=k+1$ since $D_{k}^{k}=\left\{1_{G}\right\}$ and $D_{k}^{k+1}=\delta_{k}^{k+1}$. Fix k and $n>k+1$ and assume the D_{k}^{m}-translates of F_{k} are disjoint for all $k \leqslant m<n$. Recall $D_{k}^{n}=\bigcup_{k \leqslant m<n} \delta_{m}^{n} D_{k}^{m}$. If $k \leqslant r, s<n$ and $r \neq s$ then $\delta_{r}^{n} D_{k}^{r} F_{k} \bigcap \delta_{s}^{n} D_{k}^{s} F_{k}=\varnothing$ since $\delta_{r}^{n} D_{k}^{r} F_{k} \subseteq \delta_{r}^{n} F_{r}$, similarly $\delta_{s}^{n} D_{k}^{s} F_{k} \subseteq \delta_{s}^{n} F_{s}$, and $\delta_{r}^{n} F_{r} \bigcap \delta_{s}^{n} F_{s}=\varnothing$ by construction. Also for $k \leqslant m<n$ and $\gamma, \psi \in \delta_{m}^{n}$ with $\gamma \neq \psi, \gamma D_{k}^{m} F_{k} \bigcap \psi D_{k}^{m} F_{k}=\varnothing$ since again $D_{k}^{m} F_{k} \subseteq F_{m}$ and the δ_{m}^{n}-translates of F_{m} are disjoint. Finally by the induction hypothesis, for $k \leqslant m<n$ the D_{k}^{m}-translates of F_{k} are disjoint. It then clearly follows that the D_{k}^{n}-translates of F_{k} are disjoint as well and our claim follows by induction.

The D_{k}^{n} 's we have constructed are a discrete version of the Δ_{k} 's which we will soon construct to fulfill (iii) through (vii). However there is one more thing we must establish
first. We claim that for all $n, k \in \mathbb{N}$ with $k<n$ the D_{k}^{n}-translates of F_{k} are maximally disjoint within $\beta(n, k)$. This is clearly true whenever $n=k+1$ (we take $\beta(n, n-1)=$ H_{n}). Fix $k \in \mathbb{N}$ and towards a contradiction suppose $n>k+1$ is minimal such that the D_{k}^{n}-translates of F_{k} are not maximally disjoint within $\beta(n, k)$. Fix $g \in \beta(n, k)$ such that $g F_{k} \subseteq \beta(n, k)$ and $g F_{k} \bigcap D_{k}^{n} F_{k}=\varnothing$. Our argument will rely on inductively creating a finite sequence of natural numbers. We first detail how the starting number v_{0} is determined. Recall that in the construction of $F_{n} \delta_{n-1}^{n}$ through δ_{k+1}^{n} are defined first and then δ_{k}^{n} is chosen maximally disjoint within $\beta(n, k)-\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$. We cannot have $g F_{k} \subseteq \beta(n, k)-$ $\bigcup_{k<m<n} \delta_{m}^{n} F_{m}$ since the δ_{k}^{n}-translates of F_{k} are maximally disjoint within this region and $g F_{k} \bigcap \delta_{k}^{n} F_{k}=g F_{k} \bigcap \delta_{k}^{n} D_{k}^{k} F_{k} \subseteq g F_{k} \bigcap D_{k}^{n} F_{k}=\varnothing$. As $g F_{k} \subseteq \beta(n, k)$ we must have $g F_{k} \bigcap\left(\bigcup_{k<m<n} \delta_{m}^{n} F_{m}\right) \neq \varnothing$. Therefore there exists $v_{0} \in \mathbb{N}$ with $k<v_{0}<n$ and $\alpha_{0} \in \delta_{v_{0}}^{n}$ such that $g F_{k} \bigcap \alpha_{0} F_{v_{0}} \neq \varnothing$. Note that $\alpha_{0} D_{k}^{v_{0}} \subseteq \delta_{v_{0}}^{n} D_{k}^{v_{0}} \subseteq D_{k}^{n}$ so $\alpha_{0}^{-1} g F_{k} \bigcap D_{k}^{v_{0}} F_{k}=$ $\alpha_{0}^{-1}\left(g F_{k} \bigcap \alpha_{0} D_{k}^{v_{0}} F_{k}\right)=\varnothing$.

Now assume v_{0} through v_{i-1} have been defined and $\alpha_{j} \in \delta_{v_{j}}^{v_{j-1}}$ has been fixed for each $0<j \leqslant i-1$ such that:
(a) $n>v_{0}>v_{1}>\cdots>v_{i-1}>k$;
(b) $g F_{k} \bigcap \alpha_{0} \alpha_{1} \cdots \alpha_{i-1} F_{v_{i-1}} \neq \varnothing$; and
(c) $\left(\alpha_{0} \alpha_{1} \cdots \alpha_{i-1}\right)^{-1} g F_{k} \bigcap D_{k}^{v_{i-1}} F_{k}=\varnothing$.

We will find a new number v_{i} and from here the sequence may either terminate or continue further. Since $F_{v_{i-1}}=\bigcup_{0 \leqslant m<v_{i-1}} \delta_{m}^{v_{i-1}} F_{m}$, by (b) there exists $0 \leqslant v_{i}<v_{i-1}$ and $\alpha_{i} \in \delta_{v_{i}}^{v_{i-1}}$ such that $g F_{k} \bigcap \alpha_{0} \alpha_{1} \cdots \alpha_{i} F_{v_{i}} \neq \varnothing$. If $v_{i}=k$ then we would have $\alpha_{i} F_{v_{i}} \subseteq \delta_{k}^{v_{i-1}} F_{k}=$ $\delta_{k}^{v_{i-1}} D_{k}^{k} F_{k} \subseteq D_{k}^{v_{i-1}} F_{k}$ which would be in contradiction with (c) of the induction hypothesis, so $v_{i} \neq k$. If $v_{i}>k$ then $\alpha_{i} D_{k}^{v_{i}} F_{k} \subseteq \delta_{v_{i}}^{v_{i-1}} D_{k}^{v_{i}} F_{k} \subseteq D_{k}^{v_{i-1}} F_{k}$ which, together with the induction hypothesis (c), shows that (c) is again satisfied. Therefore if $v_{i}>k$ then (a) and (c) are satisfied and we can continue this construction further. But as we are constructing a strictly decreasing sequence with initial term $k<v_{0}<n$ the process will eventually terminate. Note that in the case when $v_{i}<k$, property (b) is satisfied for i. Also it is important to note that if $k=0$ then we can never have $v_{i}<k$ and since the sequence we are constructing is strictly decreasing we eventually have $v_{i}=k$ which contradicts property (c) of the induction hypothesis as stated earlier. Thus if $k=0$ we have already arrived at our contradiction.

Assume that $k>0$ and that the process above terminates at stage j. Since v_{0} was explicitly found with $k<v_{0}<n$, it must be that $j \geqslant 1$. Set $w=v_{j}$ and $p=v_{j-1}$ so that $w<$ $k<p<n$. For $\alpha=\alpha_{0} \alpha_{1} \cdots \alpha_{j-1}$ we have $\alpha^{-1} g F_{k} \bigcap \alpha_{j} F_{w} \neq \varnothing$ therefore $\alpha^{-1} g F_{k} \subseteq$ $\alpha_{j} F_{w} F_{k}^{-1} F_{k}$ and

$$
\alpha^{-1} g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{p-1}^{-1} F_{p-1}\right) \subseteq \alpha_{j} F_{w} F_{k}^{-1} F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{p-1}^{-1} F_{p-1}\right) .
$$

Additionally as $\alpha_{j} \in \delta_{w}^{p}$,

$$
\alpha_{j} F_{w}\left(F_{k}^{-1} F_{k}\right) \cdots\left(F_{p-1}^{-1} F_{p-1}\right) \subseteq \alpha_{j} F_{w}\left(F_{w+1}^{-1} F_{w+1}\right) \cdots\left(F_{p-1}^{-1} F_{p-1}\right) \subseteq H_{p}
$$

We therefore see that $\alpha^{-1} g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{p-1}^{-1} F_{p-1}\right) \subseteq H_{p}$ and hence $\alpha^{-1} g F_{k} \subseteq$ $\beta(p, k)$. Also by property (c) $\alpha^{-1} g F_{k} \bigcap D_{k}^{p} F_{k}=\varnothing$. But then the D_{k}^{p}-translates of F_{k} are not maximally disjoint within $\beta(p, k)$ which contradicts the minimality of n.

In particular for all $n>k$ the D_{k}^{n}-translates of F_{k} are maximally disjoint within H_{n-1} since $H_{n-1} \subseteq \beta(n, k)$ by construction. We remark that $D_{k}^{n} \subseteq D_{k}^{n+1}$ since $\delta_{n}^{n+1} D_{k}^{n} \subseteq D_{k}^{n+1}$ and $1_{G} \in \delta_{n}^{n+1}$. As $\left(H_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence with $\bigcup_{n \in \mathbb{N}} H_{n}=G$, for each $k \in$
$\mathbb{N} \Delta_{k}=\bigcup_{n \geqslant k} D_{k}^{n}$ is such that the Δ_{k}-translates of F_{k} are maximally disjoint within G. Properties (iii) and (iv) are immediately satisfied.

We will now prove that for $n \geqslant k$ and $\gamma \in \Delta_{n} \Delta_{k} \bigcap \gamma F_{n}=\gamma D_{k}^{n}$. Properties (vi) and (vii) will clearly follow and since $D_{n-1}^{n}=\delta_{n-1}^{n}$ (v) will follow from how we defined δ_{n-1}^{n}.

Clearly when $n=k$ and $\gamma \in \Delta_{k}$ we have $\Delta_{k} \bigcap \gamma F_{k}=\{\gamma\}$ since $\gamma \in \Delta_{k} \bigcap \gamma F_{k}$ and the Δ_{k}-translates of F_{k} are disjoint. Note that $\{\gamma\}=\gamma D_{k}^{k}$. Now fix $k, n \in \mathbb{N}$ with $k<n$ and assume that for all $k \leqslant m<n$ and $\psi \in \Delta_{m} \Delta_{k} \bigcap \psi F_{m}=\psi D_{k}^{m}$. Fix $\gamma \in \Delta_{n}$. For some $s \geqslant n \quad \gamma \in D_{n}^{s}$, so for any $0 \leqslant m<n \gamma \delta_{m}^{n} \subseteq D_{n}^{s} \delta_{m}^{n} D_{m}^{m} \subseteq D_{n}^{s} D_{m}^{n} \subseteq D_{m}^{s} \subseteq \Delta_{m}$. We then have

$$
\begin{gathered}
\Delta_{k} \bigcap \gamma F_{n}=\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<n} \gamma \delta_{m}^{n} F_{m}\right) \\
=\left(\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)\right) \bigcup\left(\bigcup_{k \leqslant m<n}\left(\Delta_{k} \bigcap \gamma \delta_{m}^{n} F_{m}\right)\right) \\
=\left(\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)\right) \bigcup\left(\bigcup_{k \leqslant m<n} \gamma \delta_{m}^{n} D_{k}^{m}\right) \\
=\left(\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)\right) \bigcup \gamma D_{k}^{n} .
\end{gathered}
$$

By our construction $\left(\bigcup_{0 \leqslant m<k} \delta_{m}^{n} F_{m}\right) \bigcap\left(\bigcup_{k \leqslant m<n} \delta_{m}^{n} F_{m}\right)=\varnothing$. Thus γD_{k}^{n} is disjoint with $\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)$. We will show $\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)=\varnothing$. Towards a contradiction suppose $g \in \Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)$. Fix $0 \leqslant m<k$ such that $g \in \Delta_{k} \bigcap \gamma \delta_{m}^{n} F_{m}$. Since $1_{G} \in F_{k}$ we have $g F_{k} \subseteq \gamma \delta_{m}^{n} F_{m} F_{k}^{-1} F_{k}$ and

$$
g F_{k}\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \gamma \delta_{m}^{n} F_{m}\left(F_{k}^{-1} F_{k}\right)\left(F_{k+1}^{-1} F_{k+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right)
$$

Since $\delta_{m}^{n} F_{m} \subseteq \beta(n, m)$ we have

$$
\gamma \delta_{m}^{n} F_{m}\left(F_{k}^{-1} F_{k}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \gamma \delta_{m}^{n} F_{m}\left(F_{m+1}^{-1} F_{m+1}\right) \cdots\left(F_{n-1}^{-1} F_{n-1}\right) \subseteq \gamma H_{n}
$$

Thus $g F_{k} \subseteq \gamma \beta(n, k)$. We showed earlier that the D_{k}^{n}-translates of F_{k} are maximally disjoint within $\beta(n, k)$ so we have $g F_{k} \bigcap \gamma D_{k}^{n} F_{k} \neq \varnothing$. Additionally as $\gamma \in D_{n}^{s} \gamma D_{k}^{n} \subseteq D_{n}^{s} D_{k}^{n} \subseteq$ $D_{k}^{s} \subseteq \Delta_{k}$. But the Δ_{k}-translates of F_{k} are disjoint and $g \in \Delta_{k}$ so we must have $g \in$ γD_{k}^{n}. But this contradicts $\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)$ being disjoint with γD_{k}^{n}. We conclude $\Delta_{k} \bigcap\left(\bigcup_{0 \leqslant m<k} \gamma \delta_{m}^{n} F_{m}\right)=\varnothing$ and $\Delta_{k} \bigcap \gamma F_{n}=\gamma D_{k}^{n}$. By induction this establishes (v), (vi), and (vii).

Let G be a group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. We define $\rho(B ; A)$ to be the minimal size of a set $D \subseteq B$ such that for every $g \in B$ with $g A \subseteq B$ there exists $d \in D$ with $g A \bigcap d A \neq \varnothing$. Such a minimum size exists since $D \subseteq B$ which is finite. Note that if $A^{\prime} \subseteq A$ then $\rho\left(B ; A^{\prime}\right) \geqslant \rho(B ; A)$.

Proposition 3.3. Let G be a countably infinite group and let $A, B \subseteq G$ be finite with $1_{G} \in A$. For any $\epsilon>0$ there exists a finite $C \subseteq G$ such that $C \supseteq B$ and $\rho(C ; A)>$ $(|C| /|A|)(1-\epsilon)$.

Proof. Let $\Delta \subseteq G$ be countably infinite and such that the Δ-translates of $A A^{-1} A$ are disjoint and $\Delta A A^{-1} A \bigcap B=\varnothing$. Let $\lambda_{1}, \lambda_{2}, \ldots$ be an enumeration of Δ. For each $n \in$ \mathbb{N}^{+}define $B_{n}=B \cup \bigcup_{1 \leqslant k \leqslant n} \lambda_{k} A$. Fix $n \in \mathbb{N}^{+}$and let $D \subseteq B_{n}$ be such that for every $g \in B_{n}$ with $g A \subseteq B_{n} g A \bigcap D A \neq \varnothing$. It follows that for each $1 \leqslant i \leqslant n$ there is $d_{i} \in D$ with $d_{i} A \bigcap \lambda_{i} A \neq \varnothing$. Since the Δ-translates of $A A^{-1} A$ are disjoint and for each $1 \leqslant i \leqslant n d_{i} A \subseteq \lambda_{i} A A^{-1} A$, the d_{i} 's are all distinct. Additionally $\Delta A A^{-1} A \bigcap B=\varnothing$ so $\rho\left(B_{n} ; A\right)-n \geqslant \rho(B ; A)$. Therefore we have

$$
\rho\left(B_{n} ; A\right) \frac{|A|}{\left|B_{n}\right|} \geqslant \frac{n|A|+\rho(B ; A)|A|}{n|A|+|B|} .
$$

Clearly as n goes to infinity the fraction on the right goes to 1 . So for some $n \in \mathbb{N}^{+}$ $\rho\left(B_{n} ; A\right)\left(|A| /\left|B_{n}\right|\right)>1-\epsilon$ and $\rho\left(B_{n} ; A\right)>\left(\left|B_{n}\right| /|A|\right)(1-\epsilon) . B_{n} \supseteq B$ so we are done.

PROPOSITION 3.4. If G is a countably infinite group and $A, B \subseteq G$ are finite with $1_{G} \in$ A then there exists a finite $C \subseteq G$ such that $C \supseteq B$ and $2^{\rho(C ; A)}>32|C|^{5}$.

Proof. Clearly there exists $N \in \mathbb{N}$ such that for all $n \geqslant N 2^{\frac{n}{2|A|}}>32 n^{5}$. Thus let $B^{\prime} \subseteq G$ be finite such that $B^{\prime} \supseteq B$ and $\left|B^{\prime}\right| \geqslant N$. By Proposition 3.3 there exists a finite $C \subseteq G$ with $C \supseteq B^{\prime}$ and $\rho(C ; A)>(1 / 2)(|C| /|A|)$. Then $C \supseteq B$ and as $n=|C|$ is at least N,

$$
2^{\rho(C ; A)}>2^{\frac{1}{2} \frac{|C|}{|A|}}=2^{\frac{n}{2 A \mid}}>32 n^{5}=32|C|^{5}
$$

LEMmA 3.5. If G is a countably infinite group then there exists a finite $A \subseteq G$ such that $1_{G} \in A,|A|>1$, and for all $a \in A$ if $a \neq 1_{G}$ then $a A \neq A$.

Proof. Choose a finite $A_{0} \subseteq G$ with $1_{G} \in A_{0}$ and $\left|A_{0}\right|>1$. Fix $a \in G-A_{0} A_{0} \cup A_{0} A_{0}^{-1}$. Let $A=A_{0} \cup\{a\}$. Immediately we have $a A_{0} \bigcap A_{0}=\varnothing$ since $a \notin A_{0} A_{0}^{-1}$. Thus we must have $a A \neq A$ since $\left|A_{0}\right|>1$. Now let $g \in A_{0}$ with $g \neq 1_{G}$. We have two cases to consider. Case 1: $g A_{0}=A_{0}$. Then $g A \neq A$ since otherwise we would have $g a=a$ contradicting $g \neq 1_{G}$. Case 2: $g A_{0} \neq A_{0}$. Since $a \notin A_{0} A_{0}$ we have $g A \neq A$ as well. We have shown A satisfies the requirements.

THEOREM 3.6. If G is a countably infinite group then G has the coloring property.
Proof. Fix an increasing sequence of finite sets $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{n} \subseteq \cdots$ with $\bigcup_{n \in \mathbb{N}^{+}} A_{n}=G$.

We will first construct a sequence $\left(H_{n}\right)_{n \in \mathbb{N}}$ of finite subsets of G. Using Lemma 3.5 we may let $H_{0} \subseteq G$ be finite such that $1_{G} \in H_{0},\left|H_{0}\right|>1$, and for all $h \in H_{0}-\left\{1_{G}\right\}$ $h H_{0} \neq H_{0}$. Next let $H_{1} \subseteq G$ be finite such that $A_{1} \bigcup H_{0} H_{0}\left(H_{0}^{-1} H_{0}^{-1} H_{0} H_{0}\right) \subseteq H_{1}$ and such that $2^{\rho\left(H_{1} ; H_{0} H_{0}\right)}>32\left|H_{1}\right|^{5}$.

The construction is continued inductively. Once H_{0} through H_{k-1} have been defined for $k>1$, let $H_{k} \subseteq G$ be finite such that

$$
A_{k} \bigcup H_{k-1}\left(H_{0}^{-1} H_{0}^{-1} H_{0} H_{0}\right)\left(H_{1}^{-1} H_{1}\right)\left(H_{2}^{-1} H_{2}\right) \cdots\left(H_{k-1}^{-1} H_{k-1}\right) \subseteq H_{k}
$$

and such that $2^{\rho\left(H_{k} ; H_{k-1}\right)}>32\left|H_{k}\right|^{5}$.
With the exception of F_{0}, let $\left(F_{n}\right)$ and $\left(\Delta_{n}\right)$ be as in Proposition 3.2 with respect to the sequence $H_{0} H_{0}, H_{1}, H_{2}, H_{3}, \ldots, H_{n}, \ldots$ Let $F_{0}=H_{0}$.

For each $n \geqslant 1 \quad F_{n}$ is finite so we may let $\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{s(n)+4}^{n}$ enumerate $\Delta_{n-1} \bigcap F_{n}$ where $s(n)=\left|\Delta_{n-1} \bigcap F_{n}\right|-4$. Notice that for $n \geqslant 2$ the $\Delta_{n-1} \bigcap F_{n}$-translates of F_{n-1} are contained and maximally disjoint within H_{n} so $s(n)+4 \geqslant \rho\left(H_{n} ; F_{n-1}\right) \geqslant \rho\left(H_{n} ; H_{n-1}\right)$
as $F_{n-1} \subseteq H_{n-1}$. Also for $n=1$ the $\Delta_{0} \bigcap F_{1}$-translates of $F_{0} F_{0}=H_{0} H_{0}$ are maximally disjoint within H_{1} so $s(1)+4 \geqslant \rho\left(H_{1} ; H_{0} H_{0}\right)$. Throughout this proof we will frequently invoke properties (vi) and (vii) of Proposition 3.2, usually with respect to Δ_{n}-translates of the λ_{i}^{n} 's and without explicit mention of invoking the properties.

Define $a_{0}=b_{0}=1_{G}$ and for each $n \geqslant 1$ let $a_{n}=\lambda_{s(n)+2}^{n} \lambda_{s(n-1)+2}^{n-1} \cdots \lambda_{s(1)+2}^{1}$, and $b_{n}=\lambda_{s(n)+3}^{n} \lambda_{s(n-1)+3}^{n-1} \cdots \lambda_{s(1)+3}^{1}$. Clearly $a_{0} \in F_{0}$ and assuming $a_{n-1} \in F_{n-1}$ we have $a_{n}=\lambda_{s(n)+2}^{n} a_{n-1} \in \lambda_{s(n)+2}^{n} F_{n-1} \subseteq F_{n}$ since $\lambda_{s(n)+2}^{n} \in \Delta_{n-1} \bigcap F_{n}$. By induction, and by a similar argument, we have $a_{n}, b_{n} \in F_{n}$ for all $n \in \mathbb{N}$. Additionally for every $n \in \mathbb{N}^{+}$ and $1 \leqslant i \leqslant s(n)+4 \Delta_{n} \lambda_{i}^{n} a_{n-1} \subseteq \Delta_{n-1} a_{n-1}$ and $\Delta_{n} \lambda_{i}^{n} b_{n-1} \subseteq \Delta_{n-1} b_{n-1}$ since $\Delta_{n} \lambda_{i}^{n} \subseteq$ $\Delta_{n}\left(\Delta_{n-1} \bigcap F_{n}\right)=\Delta_{n-1} \bigcap \Delta_{n} F_{n} \subseteq \Delta_{n-1}$ by property (vi) of Proposition 3.2. In particular $\Delta_{n}\left\{a_{n}, b_{n}\right\} \subseteq \Delta_{n-1}\left\{a_{n-1}, b_{n-1}\right\}$. For each $n \in \mathbb{N}^{+}$define $\Omega_{n}=\bigcup_{1 \leqslant m \leqslant n} \Delta_{m} \lambda_{s(m)+4}^{m} a_{m-1}$ and note that by our earlier remark $\Omega_{n}-\Omega_{n-1} \subseteq \Delta_{n} \lambda_{s(n)+4}^{n} a_{n-1} \subseteq \Delta_{n-1} a_{n-1}$. These last two statements tell us that in what we are about to introduce properties (i) and (ii) are consistent.

We wish to construct a sequence of functions $\left(c_{n}\right)_{n \in \mathbb{N}}$ satisfying for each $n \in \mathbb{N}^{+}$:
(i) $\operatorname{dom}\left(c_{n}\right)=G-\left(\Delta_{n}\left\{a_{n}, b_{n}\right\} \bigcup \Omega_{n}\right)$;
(ii) $c_{n+1} \supseteq c_{n}$;
(iii) there exists $V \subseteq F_{n} \bigcap \operatorname{dom}\left(c_{n}\right)$ such that for any function $c \supseteq c_{n}$ and $g \in G$, $g \in \Delta_{n} \Longleftrightarrow \forall a \in V \quad c(g a)=c(a) ;$
(iv) for any $\gamma, \psi \in \Delta_{n}$, if $\gamma^{-1} \psi \in H_{n} H_{n}^{-1} H_{n}^{2} H_{n}^{-1}$ then there exists $a \in F_{n}$ such that $\gamma a, \psi a \in \operatorname{dom}\left(c_{n}\right)$ and $c_{n}(\gamma a) \neq c_{n}(\psi a)$.
After constructing the sequence $\left(c_{n}\right)$ it will be an easy task to extract a 2-coloring on G. The general idea of the construction is as follows. Given c_{k-1} we first define c_{k-1}^{\prime} to satisfy (iii) using (for the most part) $\Delta_{k} \lambda_{s(k)+1}^{k}\left\{a_{k-1}, b_{k-1}\right\}$. We then extend c_{k-1}^{\prime} to c_{k}, which preserves property (iii), use $\Delta_{k}\left\{\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{s(k)}^{k}\right\} a_{k-1}$ to achieve (iv), and then leave $\Delta_{k}\left\{\lambda_{s(k)+2}^{k} a_{k-1}, \lambda_{s(k)+3}^{k} b_{k-1}\right\}=\Delta_{k}\left\{a_{k}, b_{k}\right\}$ and $\Delta_{k} \lambda_{s(k)+4}^{k} a_{k-1} \bigcup \Omega_{k-1}=\Omega_{k}$ undefined. We now cover the details.

We first aim to satisfy (iii) and define

$$
c_{0}:\left(G-\Delta_{1}\left\{\lambda_{1}^{1}, \lambda_{2}^{1}, \ldots, \lambda_{s(1)}^{1}, \lambda_{s(1)+2}^{1}, \lambda_{s(1)+3}^{1}, \lambda_{s(1)+4}^{1}\right\}\right) \longrightarrow 2
$$

by

$$
c_{0}(g)= \begin{cases}1 & \text { if } g \in \Delta_{1} \lambda_{s(1)+1}^{1} F_{0} \\ 0 & \text { otherwise }\end{cases}
$$

for $g \in \operatorname{dom}\left(c_{0}\right)$.
Let $c: G \rightarrow 2$ with $c \supseteq c_{0}$ and let $g \in G$ be arbitrary. Suppose $c\left(g F_{0}\right)=\{1\}$. Since $1_{G} \in F_{0} \quad c(g)=1$ so from how we defined c_{0} either $g \in \operatorname{dom}\left(c_{0}\right)$ and therefore $g \in \Delta_{1} \lambda_{s(1)+1}^{1} F_{0}$ or $g \in G-\operatorname{dom}\left(c_{0}\right)$. That is, either $g \in \Delta_{1} \lambda_{s(1)+1}^{1} F_{0}$ or for some $1 \leqslant i \leqslant s(1)+4, i \neq s(1)+1, g \in \Delta_{1} \lambda_{i}^{1}$. We claim in fact $g \in \Delta_{1} \lambda_{s(1)+1}^{1}$, so towards a contradiction suppose $g \notin \Delta_{1} \lambda_{s(1)+1}^{1}$. Case $1: g \in\left(\Delta_{1} \lambda_{s(1)+1}^{1} F_{0}-\Delta_{1} \lambda_{s(1)+1}^{1}\right)$. Let $\gamma \in \Delta_{1}$ and $f \in F_{0}$ be such that $g=\gamma \lambda_{s(1)+1}^{1} f$. Then $f \neq 1_{G}$. By construction there is $h \in F_{0}$ with $f h \notin F_{0}$ and therefore $\gamma \lambda_{s(1)+1}^{1} f h \notin \gamma \lambda_{s(1)+1}^{1} F_{0}$. But also $\gamma \lambda_{s(1)+1}^{1} f h \in$ $\gamma \lambda_{s(1)+1}^{1} F_{0} F_{0} \subseteq \gamma F_{1}$ and for $1 \leqslant j \leqslant s(1)+4$ with $j \neq s(1)+1 \quad \gamma \lambda_{s(1)+1}^{1} f h \neq \gamma \lambda_{j}^{1}$ since $\lambda_{s(1)+1}^{1} F_{0} F_{0} \bigcap \lambda_{j}^{1} F_{0} F_{0}=\varnothing$. Thus $c\left(\gamma \lambda_{s(1)+1}^{1} f h\right) \neq 1$, a contradiction. Case 2 : $g \in \Delta_{1}\left\{\lambda_{1}^{1}, \lambda_{2}^{1}, \ldots, \lambda_{s(1)}^{1}, \lambda_{s(1)+2}^{1}, \lambda_{s(1)+3}^{1}, \lambda_{s(1)+4}^{1}\right\}$. Let $\gamma \in \Delta_{1}$ and $1 \leqslant i \leqslant s(1)+4$ with $i \neq s(1)+1$ be such that $g=\gamma \lambda_{i}^{1}$. Since $\left|F_{0}\right|>1$ there is $f \in F_{0}, f \neq 1_{G}$, with $c(g f)=1$. Thus $g f \in \Delta_{1} \lambda_{s(1)+1}^{1} F_{0}$ or $g f \in \Delta_{1}\left\{\lambda_{1}^{1}, \lambda_{2}^{1}, \ldots, \lambda_{s(1)}^{1}, \lambda_{s(1)+2}^{1}, \lambda_{s(1)+3}^{1}, \lambda_{s(1)+4}^{1}\right\}$. But since $1_{G} \in F_{0} g F_{0}=\gamma \lambda_{i}^{1} F_{0} \subseteq \gamma \lambda_{i}^{1} F_{0}^{2} \subseteq \gamma F_{1}$ and by construction for $1 \leqslant j \leqslant s(1)+4$
with $j \neq i \quad \lambda_{i}^{1} F_{0}^{2} \bigcap \lambda_{j}^{1} F_{0}^{2}=\varnothing$. Thus it is impossible for $c(g f)$ to be 1 . We conclude $g \in \Delta_{1} \lambda_{s(1)+1}^{1}$.

We therefore have a test for membership of Δ_{1} for any function $c \supseteq c_{0}$. Since $1_{G} \in \Delta_{1}$ for any $g \in G$,

$$
g \in \Delta_{1} \Longleftrightarrow c\left(g \lambda_{s(1)+1}^{1} F_{0}\right)=\{1\} \Longleftrightarrow \forall f \in \lambda_{s(1)+1}^{1} F_{0} c(g f)=c(f)
$$

Note that $\lambda_{s(1)+1}^{1} F_{0} \subseteq \lambda_{s(1)+1}^{1} F_{0} F_{0} \subseteq F_{1}$ and $\lambda_{s(1)+1}^{1} F_{0} \subseteq \operatorname{dom}\left(c_{0}\right)$.
In constructing c_{1}, and likewise the sequence $\left(c_{n}\right)$, it is of much use to consider graphs. Let Γ be the graph with vertex set Δ_{1} and with edge relation given by

$$
(\gamma, \psi) \in E(\Gamma) \Longleftrightarrow \gamma^{-1} \psi \in H_{1} H_{1}^{-1} H_{1}^{2} H_{1}^{-1} \text { or } \psi^{-1} \gamma \in H_{1} H_{1}^{-1} H_{1}^{2} H_{1}^{-1}
$$

Then for every vertex $v \in V(\Gamma), \operatorname{deg}(v) \leqslant 2\left|H_{1} H_{1}^{-1} H_{1}^{2} H_{1}^{-1}\right| \leqslant 2\left|H_{1}\right|^{5}$. It is a simple result in graph theory that Γ is $\left(2\left|H_{1}\right|^{5}+1\right)$-colorable. Let $\mu: V(\Gamma) \rightarrow\left(2\left|H_{1}\right|^{5}+1\right)$ be a $\left(2\left|H_{1}\right|^{5}+1\right)$-coloring of Γ. For each $i \in \mathbb{N}^{+}$define $B_{i}: \mathbb{N} \rightarrow 2$ to be such that $B_{i}(k)$ is the $i^{\text {th }}$ digit from least to most significant in the binary representation of k when $k \geqslant 2^{i-1}$ and $B_{i}(k)=0$ when $k<2^{i-1}$. Note that since $2^{s(1)} \geqslant 2^{\rho\left(H_{1} ; H_{0} H_{0}\right)-4}>2\left|H_{1}\right|^{5}$ all integers 0 through $2\left|H_{1}\right|^{5}$ can be written in binary using $s(1)$ digits.

Define $c_{1}: G-\left(\Delta_{1}\left\{a_{1}, b_{1}\right\} \bigcup \Omega_{1}\right) \rightarrow 2$ to be such that $c_{1} \supseteq c_{0}$ and such that for every $\gamma \in \Delta_{1}$ and $1 \leqslant i \leqslant s(1) c\left(\gamma \lambda_{i}^{1}\right)=B_{i}(\mu(\gamma))$. It follows that properties (i) through (iv) are satisfied (property (iii) was satisfied by c_{0}).

The construction will be continued inductively. Assume c_{0} through c_{k-1} have been defined with $k>1$. We will first construct c_{k-1}^{\prime} which will satisfy property (iii). Let c_{k-1}^{\prime} have domain

$$
G-\left(\Omega_{k-1} \bigcup \Delta_{k}\left\{\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{s(k)}^{k}, \lambda_{s(k)+2}^{k}, \lambda_{s(k)+4}^{k}\right\} a_{k-1} \bigcup \Delta_{k}\left\{\lambda_{s(k)+3} b_{k-1}\right\}\right)
$$

and have the following properties:

$$
\begin{gathered}
c_{k-1}^{\prime} \supseteq c_{k-1} ; \\
\forall \psi \in\left(\Delta_{k-1}-\Delta_{k}\left\{\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{s(k)+4}^{k}\right\}\right) c_{k-1}^{\prime}\left(\psi a_{k-1}\right)=c_{k-1}^{\prime}\left(\psi b_{k-1}\right)=0 ; \\
\forall \psi \in\left(\Delta_{k-1}-\Delta_{k}\left\{\lambda_{s(k)+1}^{k}, \lambda_{s(k)+3}^{k}\right\}\right) c_{k-1}^{\prime}\left(\psi b_{k-1}\right)=0 ; \\
\forall \gamma \in \Delta_{k} c_{k-1}^{\prime}\left(\gamma \lambda_{s(k)+1}^{k} a_{k-1}\right)=c_{k-1}^{\prime}\left(\gamma \lambda_{s(k)+1}^{k} b_{k-1}\right)=1 ; \text { and } \\
\forall \gamma \in \Delta_{k} c_{k-1}^{\prime}\left(\gamma \lambda_{s(k)+3}^{k} a_{k-1}\right)=0 .
\end{gathered}
$$

Note that $\Omega_{k-1} \bigcup \Delta_{k} \lambda_{s(k)+4}^{k} a_{k-1}=\Omega_{k}$ so the domain specified for c_{k-1}^{\prime} does not contain Ω_{k}. Also in the properties listed above we specified the values of c_{k-1}^{\prime} on a subset of $\Delta_{k-1}\left\{a_{k-1}, b_{k-1}\right\}$ and $\Delta_{k-1}\left\{a_{k-1}, b_{k-1}\right\} \cap \Omega_{k-1}=\varnothing$. This is since

$$
\Delta_{1}\left\{a_{1}, b_{1}\right\} \bigcap \Omega_{1}=\Delta_{1}\left\{a_{1}, b_{1}\right\} \bigcap \Delta_{1} \lambda_{s(1)+4}^{1}=\varnothing
$$

and assuming $\Delta_{n-1}\left\{a_{n-1}, b_{n-1}\right\} \bigcap \Omega_{n-1}=\varnothing$ we have

$$
\Delta_{n}\left\{a_{n}, b_{n}\right\} \bigcap \Omega_{n}=\left(\Delta_{n}\left\{a_{n}, b_{n}\right\} \bigcap \Omega_{n-1}\right) \bigcup\left(\Delta_{n}\left\{a_{n}, b_{n}\right\} \bigcap \Delta_{n} \lambda_{s(n)+4}^{n} a_{n-1}\right)=\varnothing
$$

as $\Delta_{n}\left\{a_{n}, b_{n}\right\} \subseteq \Delta_{n-1}\left\{a_{n-1}, b_{n-1}\right\}$.
Let $c \supseteq c_{k-1}^{\prime}$ be any function from G to 2 . The function c_{k-1} was not defined on $\Delta_{k-1} b_{k-1}$ and, from how we defined c_{k-1}^{\prime}, for any $\psi \in \Delta_{k-1} c\left(\psi b_{k-1}\right)=1$ only if $\psi \in \Delta_{k} \lambda_{s(k)+1}^{k}$ or $\psi \in \Delta_{k} \lambda_{s(k)+3}^{k}$. However $c_{k-1}^{\prime}\left(\Delta_{k} \lambda_{s(k)+1}^{k} a_{k-1}\right)=\{1\} \neq\{0\}=c_{k-1}^{\prime}\left(\Delta_{k} \lambda_{s(k)+3}^{k} a_{k-1}\right)$ so if

Fig. 2. The coloring c_{k-1}^{\prime} : ensuring a membership test for Δ_{k}.
we can recognize membership of Δ_{k-1} then we can recognize membership of Δ_{k}. But by the induction hypothesis we can do just that. Let $V \subseteq F_{k-1} \bigcap \operatorname{dom}\left(c_{k-1}\right)$ be such that for $g \in G, g \in \Delta_{k-1} \Longleftrightarrow \forall a \in V \quad c(g a)=c(a)$. We clearly have for $g \in G, g \in \Delta_{k}$ if and only if $g \lambda_{s(k)+1}^{k} \in \Delta_{k-1}$ and $c\left(g \lambda_{s(k)+1}^{k} a_{k-1}\right)=c\left(g \lambda_{s(k)+1}^{k} b_{k-1}\right)=1$. If we set

$$
V^{\prime}=\lambda_{s(k)+1}^{k} V \bigcup\left\{\lambda_{s(k)+1}^{k} a_{k-1}, \lambda_{s(k)+1}^{k} b_{k-1}\right\}
$$

then since $1_{G} \in \Delta_{k} V^{\prime} \subseteq F_{k} \bigcap \operatorname{dom}\left(c_{k-1}^{\prime}\right)$ and for $g \in G$

$$
g \in \Delta_{k} \Longleftrightarrow \forall a \in V^{\prime} \quad c(g a)=c(a)
$$

We will construct c_{k} to extend c_{k-1}^{\prime} so that c_{k} will have property (iii).
Let Γ be the graph with vertex set Δ_{k} and edge relation given by

$$
(\gamma, \psi) \in E(\Gamma) \Longleftrightarrow \gamma^{-1} \psi \in H_{k} H_{k}^{-1} H_{k}^{2} H_{k}^{-1} \text { or } \psi^{-1} \gamma \in H_{k} H_{k}^{-1} H_{k}^{2} H_{k}^{-1} .
$$

Clearly for $v \in V(\Gamma) \operatorname{deg}(v) \leqslant 2\left|H_{k}\right|^{5}$. So we may let $\mu: V(\Gamma) \rightarrow\left(2\left|H_{k}\right|^{5}+1\right)$ be a $\left(2\left|H_{k}\right|^{5}+1\right)$-coloring of Γ. Since by construction $2^{s(k)} \geqslant 2^{\rho\left(H_{k} ; H_{k-1}\right)-4}>2\left|H_{k}\right|^{5}$ all numbers 0 through $2\left|H_{k}\right|^{5}$ can be represented in binary with $s(k)$ digits. Recalling the domain of c_{k-1}^{\prime} we see we only need to extend it by $\Delta_{k}\left\{\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{s(k)}^{k}\right\} a_{k-1}$ to have the domain of c_{k} as desired. So we let $c_{k}: G-\left(\Delta_{k}\left\{a_{k}, b_{k}\right\} \bigcup \Omega_{k}\right) \rightarrow 2$ be such that $c_{k} \supseteq c_{k-1}^{\prime}$ and for all $\gamma \in \Delta_{k}$ and $1 \leqslant i \leqslant s(k) c_{k}\left(\gamma \lambda_{i}^{k} a_{k-1}\right)=B_{i}(\mu(\gamma))$. Properties (i) through (iv) are then clearly satisfied.

Let $c=\bigcup_{n \in \mathbb{N}} c_{n}$. Then $\operatorname{dom}(c) \subseteq G-\bigcup_{n \in \mathbb{N}^{+}} \Omega_{n}$. We claim that any function $\pi: G \rightarrow 2$ with $\pi \supseteq c$ is a 2-coloring on G. Fix such a function π and fix $s \in G$ with $s \neq 1_{G}$. Since $\bigcup_{n \in \mathbb{N}} H_{n}=G$ we may let $i \geqslant 1$ be minimal such that $s \in H_{i}$ and let $T=F_{i} F_{i}^{-1} F_{i}$. Let $g \in G$ be arbitrary. We will find $t \in T$ such that $\pi(g t) \neq \pi(g s t)$. Since the Δ_{i}-translates of F_{i} are maximally disjoint within $G g F_{i} \bigcap \Delta_{i} F_{i} \neq \varnothing$ so there exists $f \in F_{i} F_{i}^{-1}$ such that $g f \in \Delta_{i}$. We have two cases to consider. Case 1: gsf $\notin \Delta_{i}$. Since $\pi \supseteq c_{i}$ we may let $V \subseteq F_{i}$ be such that for $h \in G h \in \Delta_{i} \Longleftrightarrow \forall a \in V \pi(h a)=\pi(a)$. As $g s f \notin \Delta_{i}$ there exists $a \in V \subseteq F_{i}$ with $\pi(g s f a) \neq \pi(a)$. But $g f \in \Delta_{i}$ so $\pi(g f a)=\pi(a) \neq$

Fig. 3. The coloring c_{k} : coding a $\left(2\left|H_{k}\right|^{5}+1\right)$-coloring of Γ.
$\pi(g s f a)$. In addition we have $f a \in T$ so we are done. Case 2: $g s f \in \Delta_{i}$. Then we have $(g f)^{-1}(g s f)=f^{-1} s f \in F_{i} F_{i}^{-1} H_{i} F_{i} F_{i}^{-1} \subseteq H_{i} H_{i}^{-1} H_{i}^{2} H_{i}^{-1}$. It follows there exists $a \in F_{i}$ such that $g f a, g s f a \in \operatorname{dom}\left(c_{i}\right)$ and $\pi(g f a)=c_{i}(g f a) \neq c_{i}(g s f a)=\pi(g s f a)$. Again $f a \in T$ so we are done.

COROLLARY 3.7. If G is a countably infinite group then there is a perfect set of pairwise orthogonal 2-colorings on G.

Proof. The proof of the previous theorem was precisely constructed to allow for a simple proof of this corollary. For this reason it will be understood that we will be using objects from the previous proof as they were defined there. Let c be as in the concluding paragraph of the previous proof. Recall that $\bigcup_{n \in \mathbb{N}^{+}} \Omega_{n}=\bigcup_{n \in \mathbb{N}^{+}} \Delta_{n} \lambda_{s(n)+4}^{n} a_{n-1}$. For each $\sigma \in 2^{\omega}$ define $c_{\sigma}: G \rightarrow 2$ to be such that $c_{\sigma} \supseteq c$ and such that for every $i \in \mathbb{N}^{+}$and $\gamma \in \Delta_{i}$ $c_{\sigma}\left(\gamma \lambda_{s(i)+4}^{i} a_{i-1}\right)=\sigma(i-1)$. By the proof of the previous theorem, for every $\sigma \in 2^{\omega}$ c_{σ} is a 2 -coloring on G. Now let $\sigma, \tau \in 2^{\omega}$ with $\sigma \neq \tau$. We will show c_{σ} and c_{τ} are orthogonal. Suppose $\sigma(i) \neq \tau(i)$ and let $T=F_{i+1} F_{i+1}^{-1} F_{i+1}$. Fix $h_{0}, h_{1} \in G$. We will find $t \in T$ with $c_{\sigma}\left(h_{0} t\right) \neq c_{\tau}\left(h_{1} t\right)$. Since the Δ_{i+1}-translates of F_{i+1} are maximally disjoint within G there exists $f \in F_{i+1} F_{i+1}^{-1}$ such that $h_{0} f \in \Delta_{i+1}$. We have two cases to consider. Case 1: $h_{1} f \notin \Delta_{i+1}$. Let $V \subseteq F_{i+1} \bigcap \operatorname{dom}\left(c_{i+1}\right)$ be such that for any function $\pi \supseteq c_{i+1}$ and any $g \in G \quad g \in \Delta_{i+1} \Longleftrightarrow \forall a \in V \pi(g a)=\pi(a)$. Since $h_{1} f \notin \Delta_{i+1}$ there is $a \in V$ such that $c_{\tau}\left(h_{1} f a\right) \neq c_{\tau}(a)=c_{i+1}(a)$. But $h_{0} f \in \Delta_{i+1}$ so $c_{\sigma}\left(h_{0} f a\right)=c_{\sigma}(a)=$ $c_{i+1}(a)=c_{\tau}(a) \neq c_{\tau}\left(h_{1} f a\right)$. This completes this case as $f a \in T$. Case 2: $h_{1} f \in \Delta_{i+1}$. Then $c_{\sigma}\left(h_{0} f \lambda_{s(i+1)+4}^{i+1} a_{i}\right)=\sigma(i) \neq \tau(i)=c_{\tau}\left(h_{1} f \lambda_{s(i+1)+4}^{i+1} a_{i}\right)$ and $f \lambda_{s(i+1)+4}^{i+1} a_{i} \in T$.

REFERENCES

[1] C. BOYKIN and S. JACKSON. Some applications of regular markers. In Logic Colloquium '03, 38-55. Lecture Notes in Logic 24, Association for Symbolic Logic (2006).
[2] R. Dougherty, S. Jackson and A. S. Kechris. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc. 341 (1994), no. 1, 193-225.
[3] S. GAO and S. JACKSON. Countable abelian group actions and hyperfinite equivalence relations, preprint (2007).
[4] E. GLASNER and V. Uspenskij. Effective minimal subflows of the Bernoulli flows. To appear in Proc. Amer. Math. Soc.
[5] T. Slaman and J. Steel. Definable functions on degrees. In Cabal Seminar 81-85, 37-55. Lecture Notes in Mathematics 1333 (Springer-Verlag, 1988).

