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EVERY ACTION OF A NONAMENABLE GROUP
IS THE FACTOR OF A SMALL ACTION

BRANDON SEWARD
(Communicated by Rostislav Grigorchuk)

ABSTRACT. It is well known that if G is a countable amenable group and
G y (Y ,ν) factors onto G y (X ,µ), then the entropy of the first action must
be at least the entropy of the second action. In particular, if G y (X ,µ) has in-
finite entropy, then the action G y (Y ,ν) does not admit any finite generating
partition. On the other hand, we prove that if G is a countable nonamenable
group then there exists a finite integer n with the following property: for ev-
ery probability-measure-preserving action G y (X ,µ) there is a G-invariant
probability measure ν on nG such that G y (nG ,ν) factors onto G y (X ,µ).
For many nonamenable groups, n can be chosen to be 4 or smaller. We also
obtain a similar result with respect to continuous actions on compact spaces
and continuous factor maps.

1. INTRODUCTION

Let G be a countably infinite group. For a compact metrizable space K ,
the (symbolic) Bernoulli shift K G is the set of functions x : G → K , endowed
with the topology of pointwise convergence, together with the left coordinate-
permutation action of G : for g ,h ∈G and x ∈ K G , (g ·x)(h) = x(g−1h). For a Borel
probability measure κ on K , the probability space (K G ,κG ) is called a Bernoulli
shift. The space K G is compact and metrizable, and the action of G on (K G ,κG )
is continuous and measure-preserving. For n ∈N we write nG for {1,2, . . . ,n}G .

We assume that all actions of G are Borel actions on standard Borel spaces.
Given two actions G y Y and G y X , we say that G y Y Borel factors onto
G y X if there is a G-equivariant Borel surjection φ : Y → X . When X and
Y are topological spaces we furthermore say that G y Y continuously factors
onto G y X if φ : Y → X can be chosen to be continuous. If ν and µ are Borel
measures on Y and X , respectively, then we say that G y (Y ,ν) factors onto
G y (X ,µ) if there is a G-equivariant ν-almost-everywhere defined Borel map
φ : Y → X such that ν pushes forward to µ.
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Let G y (Y ,ν) be a probability-measure-preserving action of G on a standard
probability space (Y ,ν), i.e., Y is a standard Borel space and ν is a G-invariant
Borel probability measure. A countable Borel partition P is said to be generat-
ing if the smallest G-invariant σ-algebra containing P coincides, up to ν-null
sets, with the collection of Borel subsets of Y . It is well known that (Y ,ν) ad-
mits a n-piece generating partition if and only if G y (Y ,ν) is isomorphic to
G y (nG ,ν′) for some invariant Borel probability measure ν′ on nG . If G is a
countable amenable group, then a well-known property of entropy states that if
G y (Y ,ν) factors onto G y (X ,µ), then G y (Y ,ν) is larger than G y (X ,µ) in
the sense of entropy, meaning that hG (Y ,ν) ≥ hG (X ,µ). In particular, since the
entropy hG (Y ,ν) is bounded above by log |P | for any finite generating partition
P , we see that if hG (X ,µ) > log(n) then the action G y (Y ,ν) does not admit
any generating partition having n pieces.

In 1987, Ornstein and Weiss [11] discovered the seemingly bizarre property
that for the rank two free group F2, the Bernoulli shift F2 y (2F2 ,uF2

2 ) factors onto

the larger Bernoulli shift F2 y (4F2 ,uF2
4 ). Here, for a natural number n we let un

denote the uniform probability measure on {1,2, . . . ,n}. Ball [1] greatly expanded
upon this example by proving that for every countable nonamenable group
G there is n ∈ N such that G y (nG ,uG

n ) factors onto G y ([0,1]G ,λG ), where
λ is Lebesgue measure. So for every nonamenable group we have a specific
example of a “small” action factoring onto a “large” action. Furthermore, Bowen
[3] improved upon the Ornstein–Weiss example to prove that if G contains F2

as a subgroup then in fact all Bernoulli shifts over G factor onto one-another.
The main purpose of this paper is to show that such examples are not merely
isolated, but rather quite common for actions of nonamenable groups.

THEOREM 1.1. For every countable nonamenable group G there exists an in-
teger n with the following property: If G y (X ,µ) is any probability-measure-
preserving action then there is a G-invariant Borel probability measure ν on nG

such that G y (nG ,ν) factors onto G y (X ,µ). If G is not finitely generated, or
G has a nonamenable subgroup of infinite index, or G has a subgroup with cost
greater than one, then n can be chosen to be 4. If G contains F2 as a subgroup
then n can be chosen to be 2.

We refer the reader to [6] for the definition of cost. We also obtain the fol-
lowing topological analog. To contrast the theorem below, we point out that a
well-known property of topological entropy is that if G is a countable amenable
group and n < m, then there is no compact invariant set Y ⊆ nG which continu-
ously and equivariantly factors onto mG .

THEOREM 1.2. For every countable nonamenable group G there exists an integer
n with the following property: If G y X is any continuous action on a compact
metrizable space, then there is a G-invariant compact set Y ⊆ nG such that G y
Y continuously factors onto G y X . If G contains F2 as a subgroup then n can
be chosen to be 2.
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It is an immediate consequence of the above theorems and the definition
of sofic entropy (see [10]) that for any nonamenable sofic group G there is an
integer n such that every action of G is the factor of an action having sofic
entropy at most log(n). This is true both in the setting of probability-measure-
preserving actions and measure entropy and in the setting of continuous ac-
tions on compact metrizable spaces and topological entropy. Similarly, it is an
immediate consequence of the definition of f-invariant entropy (see [2]) that ev-
ery probability-measure-preserving action of a noncyclic finite rank free group
is the factor of a probability-measure-preserving action having f-invariant en-
tropy at most log(2). Finally, since the existence of a factor map implies weak
containment (see [9]) we deduce that, with G and n as in Theorem 1.1, every
probability-measure-preserving action of G is weakly contained in a probability-
measure-preserving action of the form G y (nG ,ν).

The mechanics of the proofs of the above theorems yield the following in-
teresting results which hold for all countably infinite groups. In particular, the
results below hold for infinite amenable groups. Recall that a measure µ on X is
quasi-invariant for G y X if translates of µ-null sets are µ-null. Quasi-invariant
measures need not be finite or σ-finite.

THEOREM 1.3. Let G be a countably infinite group. For every Borel action G y X
and every quasi-invariant Borel measure µ on X , there is a quasi-invariant Borel
measure ν on 4G such that G y (4G ,ν) factors onto G y (X ,µ).

Recall that a topological space is Polish if it contains a countable dense subset
and admits a compatible complete metric. If X is Polish and Y ⊆ X , then Y is a
Polish subspace if the subspace topology on Y is Polish. This is equivalent to Y
being a Gδ subset of X [8, Theorem 3.11].

THEOREM 1.4. Let G be a countably infinite group. For every continuous action
G y X on a Polish space X , there is a G-invariant Polish subspace Y ⊆ 4G such
that G y Y continuously factors onto G y X .

For the sake of completeness we deduce a Borel dynamics version of these
results. Its proof is based on a simple application of the Kuratowski–Mycielski
Theorem [8, Theorem 19.1].

PROPOSITION 1.5. Let G be a countable group, and let G y Y be a Borel action.
Suppose there is an uncountable invariant set Y0 ⊆ Y such that the action G y Y0

is free. Then for every Borel action G y X there is a G-invariant Borel set Z ⊆ Y
such that G y Z Borel factors onto G y X . Moreover, if X has a fixed point then
G y Y Borel factors onto G y X .

COROLLARY 1.6. If G is a countably infinite group, then all (symbolic) Bernoulli
shifts over G Borel factor onto one another.

This corollary is immediate since every Bernoulli shift has a fixed point. This
result is entirely distinct from the question as to which Bernoulli shifts fac-
tor onto one another (with their Bernoulli measures) since, for example, for
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amenable groups entropy considerations imply that G y (2G ,uG
2 ) does not fac-

tor onto G y (4G ,uG
4 ).

Recall that a set T ⊆ X is a transversal for an action G y X if T meets every
G-orbit precisely once. We mention that Weiss [15] proved that if Zy Y is a
free Borel action which does not admit any Borel transversal, and Zy X is any
other Borel action, then there is an invariant Borel set Z ⊆ Y such that the action
Zy Z does not admit any Borel transversal and there is an equivariant Borel
map f : Z → X .

All of the above theorems are based on a single key lemma. This lemma
roughly states that if G and the rank two free group F2 both act on a standard
Borel space Z with each F2-orbit contained in a G-orbit, and with a sufficiently
nice cocycle α relating the actions, then G y 2G×Z is Borel isomorphic to a nice
extension of G y (2N)G×Z . The proof of this makes use of the original Ornstein–
Weiss example [11]. We then deduce each of the above theorems by choosing
a suitable space Z with suitable actions of G and F2. In particular, the proof of
Theorem 1.1 relies on the Gaboriau–Lyons solution [7] to the measurable von
Neumann conjecture, and the proof of Theorem 1.2 relies on Whyte’s solution
[16] to the geometric von Neumann conjecture. These techniques furthermore
allow us to present a short proof of an unpublished result due to Lewis Bowen.
We thank Bowen for his permission to include it here.

Recall that the Shannon entropy H(M ,µ) of a probability space (M ,µ) is

H(M ,µ) = ∑
m∈M

−µ(m) logµ(m)

if there is a countable subset of M having full measure, and H(M ,µ) =∞ other-
wise.

THEOREM 1.7 (Bowen). Let G be a countable nonamenable group. Let f (G) be
the infimum of H(M ,µ) over all probability spaces (M ,µ) with the property that
G y (MG ,µG ) factors onto all other Bernoulli shifts over G. Let v(G) be the infi-
mum of H(M ,µ) over all probability spaces (M ,µ) with the property that there is
an essentially free action of F2 on (MG ,µG ) such that µG -almost-every F2-orbit
is contained in a G-orbit. Then f (G) = v(G) <∞.

We remark that, by Bowen’s isomorphism theorem [4], if a probability space
(M ,µ) contains at least three points in its support and satisfies H(M ,µ) > f (G) =
v(G) then G y (MG ,µG ) factors onto all other Bernoulli shifts over G , and there
is an essentially free action of F2 on (MG ,µG ) such that µG -almost-every F2-orbit
is contained in a G-orbit.

The quantity f (G) = v(G) is known to be finite provided G is nonamenable.
The finiteness of f (G) is due to Ball [1], and the finiteness of v(G) is due to
Gaboriau and Lyons [7]. Bowen [3] proved that f (G) = 0 if G contains F2 as a
subgroup, and Gaboriau–Lyons [7] proved that v(G) = 0 if G has a subgroup
of cost greater than one. We observe in Lemma 3.3 that f (G) = v(G) = 0 if the
nonamenable group G is either not finitely generated or has a nonamenable
subgroup of infinite index. It is unknown if f (G) = v(G) = 0 for all countable
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nonamenable groups. The quantity f (G) = v(G) has significance to our main
theorem, Theorem 1.1. Specifically, in that theorem one can always use n = 2m
where m ≥ 3 satisfies f (G) = v(G) < log(m).

In Section 2 below we prove the key lemma, in Section 3 we prove the measure-
theoretic theorems, and in Section 4 we prove the topological theorems and
Proposition 1.5.

2. THE KEY LEMMA

Before stating the key lemma, we quickly review some terminology. Let G
and H be countable groups, and let G act on a set X . A G-cocycle is a map
α : G ×X → H satisfying the cocycle identity:

∀g1, g2 ∈G ∀x ∈ X α(g2g1, x) =α(g2, g1 · x) ·α(g1, x).

Note that if α is independent of the X coordinate then it must be a group homo-
morphism from G to H . If H acts on a set Y and α : G × X → H is a G-cocycle,
then we can form the skew product action of G on Y ×X , denoted G y Y oα X ,
defined by

g · (y, x) = (α(g , x) · y, g · x).

Lastly, recall that for an abelian group K , a map φ : K → K is affine if there is a
group automorphism σ of K and t ∈ K such that φ(k) =σ(k) · t for all k ∈ K . In
particular, affine maps are bijective. We let Aff(K ) denote the collection of Borel
affine maps on a compact metrizable abelian group K .

KEY LEMMA 2.1. Let G be a countably infinite group, and let F2 be the rank two
free group. Let G and F2 both act on the standard Borel space Z , not necessarily
freely. Assume that every F2-orbit is contained in a G-orbit. Further assume
that there is a Borel F2-cocycle α : F2 × Z → G satisfying α( f , z) · z = f · z for all
f ∈ F2 and z ∈ Z , and such that the map f ∈ F2 7→ α( f , z) ∈ G is injective for
each z ∈ Z . Then there is a compact metrizable abelian group K , a G-cocycle
β : G × (2N)G ×Z → Aff(K ), and a G-equivariant Borel isomorphism

φ : 2G ×Z ∼= K oβ

(
(2N)G ×Z

)
.

Moreover, if G and F2 act continuously on Z and α is continuous, then the in-
duced projection π : 2G ×Z → (2N)G is continuous.

It is important to note that we do not require G and F2 to act freely on Z .
Indeed, when F2 is a subgroup of G we will find it advantageous to let Z = {z}
be a singleton (with G and F2 acting trivially) and let α : F2×{z} →G correspond
to an injective homomorphism. The requirement that f 7→α( f , z) be injective
for each z ∈ Z is needed in order to compensate for the fact that G and F2 might
not act freely on Z .

For the remainder of this section we let F = F2 denote the rank two free group.
We first obtain a specialized version of the key lemma when G = F.
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LEMMA 2.2. There is a compact metrizable abelian group K0, a F-cocycle β0 : F×
(2N)F → Aff(K0), and an F-equivariant Borel isomorphism

φ0 : 2F ∼= K0 oβ0 (2N)F.

Moreover, the induced F-equivariant projection π0 : 2F → (2N)F is continuous.

Proof. Let a and b freely generate F. Let ψ0 : 2F → (2×2)F be the Ornstein–Weiss
factor map [11] defined by

ψ0(x)( f ) =
(

x( f )+x( f a), x( f )+x( f b)

)
mod 2.

Note that the value ψ0(x)( f ), f ∈ F, reveals for each edge e ∈ {( f , f a), ( f , f b)} in
the Cayley graph of F whether x labels the end-points of e with the same value
or with different values. Since the Cayley graph of F is a tree, it easily follows
from this observation that ψ0 is an F-equivariant 2-to-1 surjection onto (2×2)F.
Now we follow Ádám Timár’s method [1, Prop. 2.1] to obtain an F-equivariant
map from 2F onto (2N)F. Specifically, after noting that (2×2)F = 2F ×2F, we see in
Figure 1 a sequence of maps which stabilize in the limit to a map ψ : 2F → (2N)F.
The map ψ is continuous since ψ0 is continuous. It is not hard to see that the
image of ψ is dense. Thus by continuity and the compactness of 2F we deduce
that ψ is surjective. Furthermore, ψ is F-equivariant since ψ0 is F-equivariant.

The spaces 2F and (2N)F are compact metrizable abelian groups under the
operation of coordinatewise addition modulo 2, and ψ is a continuous group ho-
momorphism. Therefore the kernel K0�2F of ψ is a compact metrizable abelian
group. Since ψ−1(y) is a K0-coset, it is compact for each y ∈ (2N)F. Therefore
there is a one-sided Borel inverse σ : (2N)F → 2F such that ψ(σ(y)) = y for all
y ∈ (2N)F [8, Theorem 18.18]. Define a Borel bijection

φ0 : K0 × (2N)F → 2F

by φ0(k, y) = k +σ(y).
Define β0 : F× (2N)F → Aff(K0) by

β0( f , y)(k) = f ·k + f ·σ(y)−σ( f · y).

Note that K0 is invariant under the action of F since ψ is F-equivariant. Addi-
tionally, F acts on 2F by automorphisms and thus acts on K0 by automorphisms.
Therefore for each f ∈ F and y ∈ (2N)F, β0( f , y) ∈ Aff(K0) as required. This cocy-
cle gives us a skew product action FyK0oβ0 (2N)F. Now to complete the proof,
observe that for k ∈ K0 and y ∈ (2N)F

φ0

(
β0( f , y)(k), f · y

)
=β0( f , y)(k)+σ( f · y) = f ·k + f ·σ(y) = f ·φ0(k, y).

Thus φ0 is F-equivariant.

For the remainder of this section we assume the requirements of the Key
Lemma 2.1 are satisfied. That is, fix a countable group G , fix a standard Borel
space Z , and fix Borel actions of G and F on Z (not necessarily free actions).
Assume that every F-orbit is contained in a G-orbit and assume that there is a
Borel F-cocycle α : F× Z → G with α( f , z) · z = f · z for all f ∈ F and z ∈ Z and
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2F

?
ψ0

2F ×2F

?
id

?
ψ0

2F ×2F ×2F

?
id

?
id

?
ψ0

2F ×2F ×2F ×2F

...

FIGURE 1. A sequence of maps which stabilize in the limit. Here
id denotes the identity map.

such that the map f 7→α( f , z) is injective for every z ∈ Z . We will deduce the key
lemma from the above lemma by using a coinduction argument, in a fashion
similar to work of Bowen [4], Epstein [5], and Stepin [14]. Basically, the idea is
to use the F-action on Z in order to view 2G ×Z as 2F×N×Z (here the N appears
since each G-orbit on Z may break into a countably infinite number of F-orbits)
and then apply the above lemma to obtain a bijection with KN

0 × (2N)F×N× Z
which, finally, may be viewed as KN

0 × (2N)G ×Z .
Recall that given a Borel action G y X , a set T ⊆ X is a transversal for the

G-orbits if T meets every G-orbit in precisely one point.

LEMMA 2.3. Fix an injective homomorphism ι : F → F whose image has infinite
index in F. Then the operation

f · (g , z) =
(
g ·α(ι( f ), g−1 · z)−1, z

)
defines a free Borel action of F on G×Z which commutes with the diagonal action
of G. Furthermore, there is a Borel injection c : N×Z →G ×Z whose image is a
transversal of the F-orbits and which satisfies c(n, z) ∈G × {z} and c(0, z) = (1G , z)
for all z ∈ Z and n ∈N.

Proof. We temporarily consider the operation f ∗ (g , z) = (g ·α( f , g−1 · z)−1, z),
where ι is intentionally excluded (compare with the statement of the lemma).
Fix u, f ∈ F, g ∈G , and z ∈ Z . Note that α( f , g−1 · z) · g−1 · z = f · (g−1 · z). So by
the cocycle identity

α
(
u, α( f , g−1 · z) · g−1 · z

)
=α

(
u, f · (g−1 · z)

)
=α

(
u, f · (g−1 · z)

)
·α

(
f , g−1 · z

)
·α

(
f , g−1 · z

)−1

=α(u f , g−1 · z) ·α
(

f , g−1 · z
)−1

.
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Therefore, setting h = g ·α( f , g−1 · z)−1 ∈G , we have

α
(
u,h−1 · z

)
·h−1 =α

(
u, α( f , g−1 · z) · g−1 · z

)
·α

(
f , g−1 · z

)
· g−1

=α
(
u f , g−1 · z

)
· g−1.

It follows that

u ∗ f ∗ (g , z) = u ∗ (h, z) = (h ·α(u,h−1 · z)−1, z)

= (g ·α(u f , g−1 · z)−1, z) = (u f )∗ (g , z).

So ∗ is an action of F.
Since the map f 7→ α( f , z) ∈ G is injective for all z ∈ Z , the action ∗ of F on

G ×Z is free. The operation · defined in the statement of this lemma is related
to ∗ by f · (g , z) = ι( f )∗ (g , z). So · is a free action of F on G × Z . Since ∗ is a
free action and the image of ι has infinite index in F, each ∗ invariant set G ×{z}
decomposes into a countably infinite number of · F-orbits. Fix an enumeration
1G = g0, g1, . . . of G . For z ∈ Z set c(0, z) = (1G , z) and inductively define

c(n, z) = (gk , z),

where k is least with (gk , z) 6= f · c(i , z) for all f ∈ F and 0 ≤ i < n. Note that
c(n, z) is defined since the set G × {z} contains infinitely many F-orbits. Then
c is a Borel injection and its image is a transversal of the F-orbits. Finally, this
action commutes with the diagonal action of G since for g ,h ∈G and f ∈ F we
have α(ι( f ), g−1 · z) =α(ι( f ), g−1h−1 · (h · z)).

LEMMA 2.4. Define δ : G ×Z → Sym(N) by

δ(g , z)(n) = k ⇐⇒ g · c(n, z) ∈ F · c(k, g · z).

Then δ is a G-cocycle.

Proof. Fix z ∈ Z , g ,h ∈G , and n ∈N. Set k = δ(g , z)(n) and m = δ(h, g · z)(k). By
definition, there are u, v ∈ F with

g · c(n, z) = u · c(k, g · z) and h · c(k, g · z) = v · c(m,hg · z).

By the previous lemma, the actions of F and G on G ×Z commute. Therefore

hg · c(n, z) = h · (u · c(k, g · z)) = u · (h · c(k, g · z)) = uv · c(m,hg · z).

So by the definition of δ we have

δ(hg , z)(n) = m = δ(h, g · z)(k) = δ(h, g · z)◦δ(g , z)(n).

Since n ∈N was arbitrary we conclude that δ(hg , z) = δ(h, g · z)◦δ(g , z).

LEMMA 2.5. Define γ : G ×N×Z → F by

γ(g ,n, z) = u ⇐⇒ g · c(n, z) = u−1 · c(k, g · z) where k = δ(g , z)(n).

Then γ is a G-cocycle.
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Proof. Fix z ∈ Z , n ∈N, and g ,h ∈ G . Set k = δ(g , z)(n) and m = δ(h, g · z)(k) =
δ(hg , z)(n). Also set u = γ(g ,n, z) and v = γ(h,k, g · z). By the definitions of δ
and γ we have

g · c(n, z) = u−1 · c(k, g · z) and h · c(k, g · z) = v−1 · c(m,hg · z).

Therefore, using the commutativity of the actions of G and F on G×Z , we obtain

hg · c(n, z) = h · (u−1 · c(k, g · z)) = u−1 · (h · c(k, g · z)) = u−1v−1 · c(m,hg · z).

Now it follows from the definition of γ that

γ(hg ,n, z) = vu = γ(h,k, g · z) ·γ(g ,n, z).

The action of G on Noδ Z is such that g · (n, z) = (k, g · z). Thus the above
expression is the cocycle identity.

COROLLARY 2.6. The map ψ : F×N×Z →G ×Z defined by

ψ( f ,n, z) = f −1 · c(n, z) ∈G × {z}

is a Borel bijection which conjugates the diagonal action of G on G × Z to the
double skew product action of G on Foγ (Noδ Z ).

Proof. The map ψ is bijective since the image of c is a transversal for the F-
orbits and F acts freely on G ×Z . Also, ψ is Borel since c is Borel and the action
of F is Borel. Finally, fix g ∈ G , f ∈ F, n ∈ N, and z ∈ Z . Set k = δ(g , z)(n) and
u = γ(g ,n, z). From the definitions of δ and γ we have

g · c(n, z) = u−1 · c(k, g · z).

Note that the action G y Foγ (Noδ Z ) is such that g · ( f ,n, z) = (u f ,k, g · z).
Since the actions of G and F on G ×Z commute we obtain

g ·ψ( f ,n, z) = g · f −1 · c(n, z) = f −1 · g · c(n, z)

= f −1u−1 · c(k, g · z) =ψ(u f ,k, g · z)

=ψ(g · ( f ,n, z)).

We conclude that ψ is G-equivariant.

COROLLARY 2.7. For z ∈ Z define ψz : F×N→G implicitly by the relation

ψ( f ,n, z) = (ψz ( f ,n), z).

Then each ψz is a bijection, ψz ( f ,0) = α(ι( f )−1, z)−1, and for g ∈ G, f ∈ F, and
n ∈N

g−1 ·ψg ·z ( f ,n) =ψz

(
γ(g−1,n, g · z) · f , δ(g−1, g · z)(n)

)
.

Proof. Each ψz must be bijective since ψ is bijective. Since c(0, z) = (1G , z) we
have

ψ( f ,0, z) = f −1 · c(0, z) = f −1 · (1G , z) = (α(ι( f )−1, z)−1, z).

JOURNAL OF MODERN DYNAMICS VOLUME 8, NO. 2 (2014), 251–270



260 BRANDON SEWARD

So ψz ( f ,0) = α(ι( f )−1, z)−1 as required. Finally, for g ∈ G , f ∈ F, and n ∈N, we
use the fact that ψ is G-equivariant to obtain(

g−1 ·ψg ·z ( f ,n), z
)
= g−1 ·

(
ψg ·z ( f ,n), g · z

)
= g−1 ·ψ( f ,n, g · z)

=ψ
(
γ(g−1,n, g · z), δ(g−1, g · z)(n), z

)
=

(
ψz

(
γ(g−1,n, g · z), δ(g−1, g · z)(n)

)
, z

)
.

Let F y X be a Borel action of F. Then we obtain an action of G on XN× Z
given by

g · (x, z) = (x ′, g · z), where x ′(n) = γ(g−1,n, g · z)−1 · x
(
δ(g−1, g · z)(n)

)
.(2.1)

When A is a compact metrizable space we will implicitly identify (AF)N with
AF×N. In the special case X = AF, the action of G on XN = AF×N can be described
by the formula

g · (x, z) = (x ′, g · z), where x ′(n)( f ) = x
(
δ(g−1, g · z)(n)

)(
γ(g−1,n, g · z) · f

)
.(2.2)

The utility of these actions is manifest in the following two lemmas.

LEMMA 2.8. Let A be a compact metrizable space. Then the map ψ∗ : AG ×Z →
AF×N×Z given by

ψ∗(x, z) = (ψ∗
z (x), z), where ψ∗

z (x)(n)( f ) = x(ψz ( f ,n))

is a G-equivariant Borel bijection.

Proof. Clearly ψ∗ is a Borel bijection since ψz : F×N→G is a bijection for each
z ∈ Z . Suppose that ψ∗(x, z) = (y, z) and ψ∗(g · x, g · z) = (y ′, g · z). Then, using
only the definition of ψ∗ and Corollary 2.7, we obtain

y ′(n)( f ) = (g · x)
(
ψg ·z ( f ,n)

)
= x

(
g−1 ·ψg ·z ( f ,n)

)
= x

(
ψz

(
γ(g−1,n, g · z) · f , δ(g−1, g · z)(n)

))
= y

(
δ(g−1, g · z)(n)

)(
γ(g−1,n, g · z) · f

)
.

By (2.2) we see that (y ′, g ·z) = g ·(y, z). We conclude that ψ∗ is G-equivariant.

LEMMA 2.9. Let Fy X and Fy Y be Borel actions of F, and suppose that θ : X →
Y is F-equivariant. Then θN× id: XN×Z → Y N×Z is G-equivariant.

Proof. Fix x ∈ XN and z ∈ Z . Then θN× id(x, z) = (y, z) where y(n) = θ(x(n)). Set
(x ′, g · z) = g · (x, z). Then θN× id(x ′, g · z) = (y ′, g · z) where y ′(n) = θ(x ′(n)). The
definition of the G action on XN×Z says that

x ′(n) = γ(g−1,n, g · z)−1 · x
(
δ(g−1, g · z)(n)

)
.
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2G ×Z -ψ∗
( ∏

n∈N
2F

)
×Z

?

φN0 ×id

KN
0 ×

( ∏
n∈N

(2N)F

)
×Z � id×ψ∗

KN
0 × (2N)G ×Z

FIGURE 2. A sequence of Borel bijections from 2G ×Z onto KN
0 ×

(2N)G ×Z .

Since θ is F-equivariant we obtain

y ′(n) = θ(x ′(n)) = γ(g−1,n, g · z)−1 ·θ
(
x
(
δ(g−1, g · z)(n)

))
= γ(g−1,n, g · z)−1 · y

(
δ(g−1, g · z)(n)

)
.

By (2.1) we see that (y ′, g ·z) = g ·(y, z). We conclude that θN×id is G-equivariant.

We now prove the key lemma. We state here a redacted version of the lemma
with the assumptions omitted.

KEY LEMMA. There is a compact metrizable abelian group K , a G-cocycle β : G ×
(2N)G ×Z → Aff(K ), and a G-equivariant Borel isomorphism

φ : 2G ×Z ∼= K oβ

(
(2N)G ×Z

)
.

Moreover, if G and F act continuously on Z and α is continuous, then the induced
projection π : 2G ×Z → (2N)G is continuous.

Proof. Let φ0, β0, K0, δ, γ, ψ, and ψ∗ be as in the above lemmas. We have
a sequence of Borel bijections taking 2G × Z to KN

0 × (2N)G × Z , as depicted in
Figure 2. We must define a G-cocycle β : G × (2N)G × Z → Aff(KN

0 ) and verify
that the final bijection in Figure 2, id×ψ∗, is G-equivariant. All other bijections
appearing in Figure 2 are G-equivariant by the lemmas above.

We have that ψ∗ : (2N)G ×Z → (2N)F×N×Z is G-equivariant by Lemma 2.8. So
id×ψ∗ : KN

0 × (2N)G ×Z → KN
0 × (2N)F×N×Z will be G-equivariant as long as we

correctly define β : G×(2N)G×Z → Aff(KN
0 ) in terms of β0. Observe that for z ∈ Z

and x ∈ (2N)G we have ψ∗
z (x) ∈ (2N)F×N. Define β : G × (2N)G ×Z → Aff(KN

0 ) by

β(g , x, z)(w)(n)

=β0

(
γ(g−1,n, g · z)−1,ψ∗

z (x)
(
δ(g−1, g · z)(n)

))(
w

(
δ(g−1, g · z)(n)

))
.
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The function β(g , x, z) : KN
0 → KN

0 permutes the N-coordinates and then applies
affine maps coordinatewise. From this observation it follows that β(g , x, z) ∈
Aff(KN

0 ).
Fix g ∈ G , z ∈ Z , x ∈ (2N)G , and w ∈ KN

0 . Let w ′ be such that g · (w, x, z) =
(w ′, g · x, g · z). In other words, w ′ =β(g , x, z)(w), or equivalently for all n ∈N

w ′(n) =β0

(
γ(g−1,n, g · z)−1, ψ∗

z (x)
(
δ(g−1, g · z)(n)

))(
w

(
δ(g−1, g · z)(n)

))
.

Let y, y ′ ∈ (2N)F×N be such that (w, y, z) = id×ψ∗(w, x, z) and (w ′, y ′, g · z) = id×
ψ∗(w ′, g · x, g · z). Note that (y ′, g · z) = g · (y, z) since ψ∗ is G-equivariant. In
order to show that id×ψ∗ is G-equivariant, it suffices to check that g · (w, y, z) =
(w ′, y ′, g · z). The action of G on KN

0 × (2N)F×N× Z is given by (2.1), where X =
K0 × (2N)F. Thus g · (w, y, z) = (t , y ′, g · z) where for n ∈N

(t (n), y ′(n)) = (t , y ′)(n) = γ(g−1,n, g · z)−1 · (w, y)
(
δ(g−1, g · z)(n)

)
= γ(g−1,n, g · z)−1 ·

(
w(δ(g−1, g · z)(n)), y(δ(g−1, g · z)(n))

)
.

By considering the F-action FyK0 oβ0 (2N)F we see that for n ∈N
t (n) =β0

(
γ(g−1,n, g · z)−1, y(δ(g−1, g · z)(n))

)(
w(δ(g−1, g · z)(n))

)
.

By definition (y, z) =ψ∗(x, z) and hence y =ψ∗
z (x). So t =β(g , x, z)(w) = w ′. We

conclude that id×ψ∗ is G-equivariant.
Now suppose that G and F act continuously on Z and that α is continuous.

Let π : 2G × Z → (2N)G be the induced factor map, and let π0 be the function
referred to in Lemma 2.2. Consider x ∈ 2G and z ∈ Z . Let w ∈ KN

0 and x ′ ∈ (2N)G

be such that φ(x, z) = (w, x ′, z), where φ : 2G ×Z → KN
0 ×(2N)G ×Z is the function

constructed via Figure 2. Then x ′ =π(x, z). Set y =ψ∗
z (x) and y ′ =ψ∗

z (x ′). Then
y ∈ 2F×N, y ′ ∈ (2N)F×N and from Figure 2 we see that πN0 (y) = y ′. If g ∈ G and
ψz ( f ,n) = g then the element π(x, z)(g ) ∈ 2N satisfies

π(x, z)(g ) = x ′(g ) =ψ∗
z (x ′)(n)( f ) = y ′(n)( f )

=πN0 (y)(n)( f ) =π0

(
y(n)

)
( f ) =π0

(
ψ∗

z (x)(n)
)
( f ).

Therefore for m ∈N we have

π(x, z)(g )(m) =π0

(
ψ∗

z (x)(n)
)
( f )(m) where ψz ( f ,n) = g .

Since G acts by homeomorphisms on 2G × Z and (2N)G and since π is G-equi-
variant, it suffices to check that for every m ∈N the map (x, z) 7→π(x, z)(1G )(m)
is continuous. Since ψz (1F,0) = 1G , we have

π(x, z)(1G )(m) =π0

(
ψ∗

z (x)(0)
)
(1F)(m).

Evaluation at (1F)(m) is continuous and π0 is continuous by Lemma 2.2, so it is
enough to check that (x, z) 7→ψ∗

z (x)(0) ∈ 2F is continuous. For this we need only
check that

(x, z) 7→ψ∗
z (x)(0)( f )
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is continuous for each fixed f ∈ F. By Lemma 2.8 and Corollary 2.7 we have

ψ∗
z (x)(0)( f ) = x(ψz ( f ,0)) = x(α(ι( f )−1, z)−1).

Fix (x, z) ∈ 2G × Z and f ∈ F. Since α is continuous there is an open neigh-
borhood V of z such that α(ι( f )−1, z ′)−1 = α(ι( f )−1, z)−1 for all z ′ ∈ V . Set g =
α(ι( f )−1, z)−1 and let U be the open set {x ′ ∈ 2G : x ′(g ) = x(g )}. Then for all
(x ′, z ′) ∈ U ×V we have ψ∗

z ′(x ′)(0)( f ) = ψ∗
z (x)(0)( f ). Thus π is continuous as

claimed.

Before closing this section, we present an application of these methods.

THEOREM 2.10 (Bowen). Let G be a countable nonamenable group. Let f (G)
be the infimum of H(M ,µ) over all probability spaces (M ,µ) with the property
that G y (MG ,µG ) factors onto all other Bernoulli shifts over G. Let v(G) be the
infimum of H(M ,µ) over all probability spaces (M ,µ) with the property that there
is an essentially free action of F on (MG ,µG ) such that µG -almost-every F-orbit
is contained in a G-orbit. Then f (G) = v(G) <∞.

Proof. f (G) < ∞ by Ball’s theorem [1] and v(G) < ∞ by the Gaboriau–Lyons
Theorem [7]. Suppose that G y (MG ,µG ) factors onto all other Bernoulli shifts
over G . By the Gaboriau–Lyons Theorem [7], there is an essentially free action
of F on ([0,1]G ,λG ), where λ is Lebesgue measure, such that λG -almost-every
F-orbit is contained in a G-orbit. Define α : F× [0,1]G →G by

α( f , x) = g ⇐⇒ f · x = g · x.

Then α is defined λG -almost-everywhere since G acts on [0,1]G essentially freely
and λG -almost-every F-orbit is contained in a G-orbit. Let G y (MG ,µG ) factor
onto G y ([0,1]G ,λG ) via φ. Then we let F act on (MG ,µG ) by the rule

f · x =α( f ,φ(x)) · x.

This is well-defined µG -almost-everywhere. Furthermore, this action is essen-
tially free and µG -almost-every F-orbit is contained in a G-orbit. It follows that
v(G) ≤ f (G).

Now suppose that there is an essentially free action of F on (MG ,µG ) such
that µG -almost-every F-orbit is contained in a G-orbit. Let Z ⊆ MG be a G-
invariant Borel set of µG -full-measure such that both G and F act freely on Z
and every F-orbit on Z is contained in a G-orbit. Let α be the F-cocycle relating
the F action to the G action. Then we automatically have that α is Borel and
f 7→α( f , z) is injective for each z ∈ Z .

Fix ε > 0 and let (K ,κ) be a probability space with 0 < H(K ,κ) < ε. Also fix
an arbitrary Bernoulli shift (NG ,νG ) over G . By Bowen’s theorem [3], there is
a F-equivariant factor map φ : (K F,κF) → (N F,νF). Since anything not in the
domain of φ can be mapped to a fixed point of N F, we may assume without
loss of generality that φ is F-equivariant and has domain K F. By Lemma 2.8 we
have G-equivariant Borel bijections

ψ∗ : K G ×Z → K F×N×Z and ψ∗ : NG ×Z → N F×N×Z .
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Recall that ψ∗ is defined by

ψ∗(x, z) = (ψ∗
z (x), z) where ψ∗

z (x)(n)( f ) = x(ψz ( f ,n)).

Since ψz : F×N→G is a bijection for each z ∈ Z , ψ∗ is simply permuting coordi-
nates for each z ∈ Z . Since the coordinate values in K G and NG are identically
distributed, we see that

ψ∗(κG ×µG ) = κF×N×µG and ψ∗(νG ×µG ) = νF×N×µG .

By Lemma 2.9 the map

φN× id: K F×N×Z → N F×N×Z

is G-equivariant. As φ(κF) = νF, it follows that

(φN× id)(κF×N×µG ) = νF×N×µG .

Putting these maps together, we obtain a G-equivariant Borel map from K G ×Z
into NG × Z which pushes κG ×µG forward to νG ×µG . Since K G × Z is κG ×
µG -conull in K G ×MG , we deduce that (K G ×MG ,κG ×µG ) factors onto (NG ×
MG ,νG ×µG ), which of course factors onto (NG ,νG ). Thus (K G ×MG ,κG ×µG )
factors onto all other Bernoulli shifts over G and

H(K ×M ,κ×µ) = H(K ,κ)+H(M ,µ) < H(M ,µ)+ε.

Since ε> 0 was arbitrary we deduce that f (G) ≤ v(G).

3. MEASURE-THEORETIC THEOREMS

In this section we prove that for various actions G y (X ,µ) there is a measure
ν on some nG such that G y (nG ,ν) factors onto G y (X ,µ). The following two
simple lemmas will allow us to apply the Key Lemma 2.1.

LEMMA 3.1. Let G be a countable group, and let G y X be a Borel action of G.
Then there is a G-equivariant Borel injection φ : X → (2N)G .

Proof. By assumption X is a standard Borel space. Since all uncountable stan-
dard Borel spaces are Borel isomorphic [8, Theorem 15.6], there is certainly an
injective Borel map θ : X → 2N. Now define φ : X → (2N)G by φ(x)(g ) = θ(g−1 ·x).
This map is G-equivariant since

φ(g · x)(h) = θ(h−1g · x) =φ(x)(g−1h) = [g ·φ(x)](h).

The map φ is easily seen to be Borel and injective.

LEMMA 3.2. Let K be a compact metrizable group, and let κ be the Haar proba-
bility measure on K . Then κ is Aff(K )-invariant.

Proof. Fix θ ∈ Aff(K ). Let σ be an automorphism of K and let t ∈ K be such that
θ(k) =σ(k) · t for all k ∈ K . Note that for k, a ∈ K we have

θ−1(ka) =σ−1(kat−1) =σ−1(k) ·σ−1(at−1) =σ−1(k) ·θ−1(a).

So for a Borel set A ⊆ K and k ∈ K we have

θ(κ)(k · A) = κ(θ−1(k · A)) = κ(σ−1(k) ·θ−1(A)) = κ(θ−1(A)) = θ(κ)(A).
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So θ(κ) is translation-invariant and hence θ(κ) = κ by the uniqueness of Haar
measure.

In order to obtain better estimates on n, we note the following. Recall that
two probability-measure-preserving actions G y (X ,µ) and G y (Y ,ν) are mea-
surably conjugate if there exists a µ-almost-everywhere defined G-equivariant
injective Borel map φ : X → Y which pushes µ forward to ν.

LEMMA 3.3. Let G be a countable nonamenable group. If G is not finitely gener-
ated or has a nonamenable subgroup of infinite index, then for every Bernoulli
shift (MG ,µG ) over G there is an ergodic essentially free action F2 y (MG ,µG )
with µG -almost-every F2-orbit contained in a G-orbit. In particular, f (G) =
v(G) = 0.

Proof. Since every nonamenable group contains a finitely generated nonamen-
able subgroup, under either assumption G contains a nonamenable subgroup
H of infinite index. Consider a Bernoulli shift (MG ,µG ). Then the restricted ac-
tion H y (MG ,µG ) is measurably conjugate to H y ((MG/H )H , (µG/H )H ). Since
H has infinite index in G , (MG/H ,µG/H ) is a nonatomic probability space and
hence isomorphic to ([0,1],λ) where λ is Lebesgue measure. So the action
H y ((MG/H )H , (µG/H )H ) is measurably conjugate to H y ([0,1]H ,λH ). Now by
the Gaboriau–Lyons Theorem [7] there is an ergodic essentially free probability-
measure-preserving action F2 y ([0,1]H ,λH ) with λH -almost-every F2-orbit con-
tained in an H-orbit. Pulling back this action of F2 through the measure conju-
gacies, we obtain the desired action of F2 on (MG ,µG ). For the final conclusion,
apply Theorem 2.10.

THEOREM 3.4. For every countable nonamenable group G there exists an in-
teger n with the following property: If G y (X ,µ) is any probability-measure-
preserving action then there is a G-invariant Borel probability measure ν on nG

such that G y (nG ,ν) factors onto G y (X ,µ). If G is not finitely generated, or
G has a nonamenable subgroup of infinite index, or G has a subgroup with cost
greater than one, then n can be chosen to be 4. If G contains F2 as a subgroup
then n can be chosen to be 2.

Proof. Fix a nonamenable group G . Suppose there is m ∈N and a G-invariant
Borel probability measure ζ on mG with the property that there is an action of
F2 on mG with ζ-almost-every F2-orbit contained in a G-orbit. Further suppose
that there is a Borel F2-cocycle α : F2 ×mG → G such that for ζ-almost every
z ∈ mG , the map f 7→ α( f , z) is injective and α( f , z) · z = f · z for all f ∈ F2. Let
Z ⊆ mG be a ζ-conull G-invariant Borel set such that for every z ∈ Z , f 7→α( f , z)
is injective and α( f , z) · z = f · z. Set n = 2m.

Consider a probability-measure-preserving action G y (X ,µ). By Lemma 3.1,
we may assume that X = (2N)G . Let φ, K and β : G × (2N)G × Z → Aff(K ) be as
described in the Key Lemma 2.1. Let κ be the Haar probability measure on K .
Then the action of G on

(K oβ (2N)G ×Z , κ×µ×ζ)
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is a probability-measure-preserving action of G and clearly factors onto ((2N)G,µ).
Since φ : K oβ(2N)G×Z → 2G×Z is a G-equivariant Borel bijection, (K oβ(2N)G×
Z ,κ×µ×ζ) is measurably and equivariantly conjugate to (2G ×Z ,ν), where ν is
the push-forward of κ×µ×ζ. Since 2G ×Z ⊆ 2G ×mG = nG , we can view ν as a
measure on nG . Then G y (nG ,ν) factors onto G y ((2N)G ,µ).

If G contains F2 as a subgroup, then we can set m = 1, so 1G = {1} is a single-
ton, and define α : F2 ×1G →G by α( f ,1) = θ( f ) where θ : F2 →G is an injective
homomorphism. In general we can consider a Bernoulli shift (mG ,uG

m), where
um is the uniform probability measure on {1,2, . . . ,m}, having the property that
there is an essentially free action of F2 on mG such that uG

m-almost-every F2-
orbit is contained in a G-orbit. In this case we can take α to be the F2-cocycle
relating the two actions, and we will automatically have that f 7→α( f , z) is injec-
tive for uG

m-almost-every z ∈ mG . The Gaboriau–Lyons Theorem [7] states that
there always exists such an m, and furthermore that one can take m = 2 if G has
a subgroup with cost greater than one. Similarly by Lemma 3.3 one can take
m = 2 if G is not finitely generated or has a nonamenable subgroup of infinite
index.

THEOREM 3.5. Let G be a countably infinite group. For every Borel action G y X
and every quasi-invariant Borel measure µ on X , there is a quasi-invariant Borel
measure ν on 4G such that G y (4G ,ν) factors onto G y (X ,µ).

Proof. Let z ∈ 2G be defined by z(1G ) = 1 and z(g ) = 0 for all 1G 6= g ∈ G . Set
Z =G · z. Fix any quasi-invariant probability measure ζ on the countable set Z
(this can be done by assigning a strictly positive real number to each element
of Z in a manner that the cumulative sum is 1). Fix any bijection F2 → G and
use this bijection to let F2 act transitively on Z . Let α be the F2-cocycle relating
the F2-action to the G-action. Then α is Borel, and f 7→α( f , z ′) is injective for
each z ′ ∈ Z . Now consider a Borel action G y X and let µ be a quasi-invariant
Borel measure on X . By Lemma 3.1 we may assume that X = (2N)G . Let φ, K ,
and β be as in the Key Lemma 2.1. Let κ be the Haar probability measure on K .
Then (K oβ (2N)G ×Z ,κ×µ×ζ) equivariantly factors onto ((2N)G ,µ) since κ×ζ
is a probability measure. Furthermore, κ×µ×ζ is quasi-invariant. Now use the
G-equivariant Borel bijection φ : K × (2N)G × Z → 2G × Z to obtain the desired
Borel measure ν on 2G ×Z ⊆ 4G .

4. TOPOLOGICAL THEOREMS

We now prove topological analogs of the theorems from the previous section.
The role of the Gaboriau–Lyons Theorem [7] in the previous section, which
is considered to be a measurable solution to the von Neumann conjecture, is
replaced in this section by a theorem of Whyte [16] which is considered to be a
geometric solution to the von Neumann conjecture.

Recall that a subset Y of a topological space X is Gδ if it is the intersection
of a countable family of open sets. A basic fact which we will use in this section
is that for a Polish space X , a subspace Y ⊆ X is Polish if and only if Y is a Gδ

subset of X [8, Theorem 3.11].
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LEMMA 4.1. Let G be a countable group and let G y X be a continuous action
of G on a Polish space X . Then there is a G-invariant Polish subspace Y ⊆ (2N)G

such that G y Y continuously factors onto G y X . Furthermore, if X is compact
then Y can be chosen to be compact.

Proof. We first claim that there is a Polish subspace Y0 ⊆ 2N and a continuous
surjection θ : Y0 → X , with Y0 compact if X is compact. Since 2N continuously
surjects onto all compact metric spaces [8, Theorem 4.18], if X is compact we
may take Y0 = 2N and let θ : 2N→ X be a continuous surjection. In the general
case, let Y0 be the set of y ∈ 2N such that y(n) = 1 for infinitely many n. Then
Y0 is Gδ in 2N and thus Polish. Also, Y0 is homeomorphic to NN via the map
ψ : Y0 →NN

ψ(y)(n) = m −k where m,k ∈N are least with
m−1∑
i=0

y(i ) = n +1 and
k−1∑
i=0

y(i ) = n.

Since every Polish space is the continuous image of NN [8, Theorem 7.9], there
is a continuous surjection θ : Y0 → X .

Now consider the Polish space Y G
0 ⊆ (2N)G . Note that it is compact if X is

compact. Define φ : Y G
0 → X by φ(y) = θ(y(1G )). Now we let Y be the set of

points where this map is G-equivariant, specifically

Y = {y ∈ Y G
0 : ∀g ∈G g ·φ(y) =φ(g · y)}.

Note that φ maps Y onto X since θ is surjective. Furthermore, since G acts
continuously and φ is continuous, Y is a closed subset of Y G

0 ⊆ (2N)G . Hence
Y is Polish and is compact if X is compact, and φ : Y → X is a G-equivariant
surjection.

THEOREM 4.2. For every countable nonamenable group G there exists an integer
n with the following property: If G y X is a continuous action on a compact
metrizable space, then there is a G-invariant compact set Y ⊆ nG such that G y
Y continuously factors onto G y X . If G contains F2 as a subgroup then n can
be chosen to be 2.

Proof. Fix a nonamenable group G . Suppose that there is m ∈ N and a G-
invariant compact set Z ⊆ mG with the property that there is a continuous ac-
tion of F2 on Z with every F2-orbit contained in a G-orbit. Further suppose
that there is a continuous F2-cocycle α : F2 × Z → G such that for every z ∈ Z ,
f 7→α( f , z) is injective and α( f , z) · z = f · z for all f ∈ F2. Set n = 2m.

Consider a continuous action G y X where X is a compact metrizable space.
By Lemma 4.1 we may assume that X ⊆ (2N)G . By the Key Lemma 2.1 G y 2G×Z
continuously factors onto G y (2N)G via a map π. Set Y = π−1(X ). Since X is
compact it is a closed subset of (2N)G , and thus Y is closed since π is continuous.
Then Y is a closed subset of the compact space 2G ×Z . Thus Y is compact and
Y ⊆ 2G ×Z ⊆ nG . Furthermore, Y is clearly G-invariant and G y Y continuously
factors onto G y X via π.

If G contains F2 as a subgroup then we can set m = 1, so 1G = {1} is a singleton,
and define α : F2 × 1G → G by α( f ,1) = θ( f ) where θ : F2 → G is an injective
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homomorphism. In the general case, let H ≤ G be a finitely generated non-
amenable subgroup of G , and let a and b freely generate F2. By Whyte’s solution
to the geometric von Neumann conjecture [16], there is a finite set S ⊆ H and
a free action ∗ of F2 on H such that a ∗h,b ∗h ∈ Sh for all h ∈ H (in fact the
action can be chosen to be transitive [12]). Consider the (symbolic) Bernoulli
shift (S ×S)G . We define two maps Ta ,Tb : (S ×S)G → (S ×S)G by

Ta(x) = s · x ⇐⇒ x(1G )(1) = s

Tb(x) = s · x ⇐⇒ x(1G )(2) = s.

Let Z0 consist of those points x ∈ (S ×S)G such that |T −1
a (x)| = |T −1

b (x)| = 1. The
complement of Z0 is open, so Z0 is closed. Set Z1 = ⋂

g∈G g · Z0 and note that
Z1 is closed. We let F2 act on Z1 by setting a · x = Ta(x) and b · x = Tb(x) for
x ∈ Z1. Clearly every F2-orbit on Z1 is contained in a G-orbit, F2 acts continu-
ously, and the F2-cocycle α : F2 ×Z1 →G relating the F2-action to the G-action
is continuous. Now define

Z2 = {x ∈ Z1 : ∀ f ∈ F2 f 6= 1F2 =⇒ f · x 6= x}.

It is readily verified that the complement of Z2 is open, and thus Z2 is closed.
Now set Z =⋂

g∈G g ·Z2. Then Z is a G-invariant closed subset of (S×S)G , hence
G-invariant and compact. Furthermore, f 7→ α( f , z) is injective for each z ∈ Z
since F2 acts freely on Z . Most importantly, by Whyte’s theorem Z is nonempty.
Thus for any nonamenable group there are m, Z , and α with the required prop-
erties.

THEOREM 4.3. Let G be a countably infinite group. For every continuous action
G y X on a Polish space X , there is a G-invariant Polish subspace Y ⊆ 4G such
that G y Y continuously factors onto G y X .

Proof. Let z ∈ 2G be defined by z(1G ) = 1 and z(g ) = 0 for all 1G 6= g ∈ G . Set
Z =G · z. Note that the relative topology on Z from 2G is discrete and thus Z is
Polish. Fix any bijection F2 →G and use this bijection to let F2 act transitively
on Z . Let α be the F2-cocycle relating the F2-action to the G-action. Since the
relative topology on Z is discrete, we see that F2 acts continuously and that α is
continuous. Now consider a continuous action G y X with X Polish. By Lemma
4.1 we may assume X ⊆ (2N)G . By the Key Lemma 2.1 G y 2G ×Z continuously
factors onto G y (2N)G via a map π. Set Y = π−1(X ). Since X is Polish, it is a
Gδ-subset of (2N)G . As π is continuous, Y must be a Gδ subset of the Polish
space 2G ×Z . Thus Y is Polish and Y ⊆ 2G ×Z ⊆ 4G . Finally, we observe that Y
is G-invariant and π : Y → X is a G-equivariant continuous surjection.

Lastly, we prove a simple Borel dynamics analog of these results.

PROPOSITION 4.4. Let G be a countable group, and let G y Y be a Borel action.
Suppose there is an uncountable invariant set Y0 ⊆ Y such that the action G y Y0

is free. Then for every Borel action G y X there is a G-invariant Borel set Z ⊆ Y
such that G y Z Borel factors onto G y X . Moreover, if X has a fixed point then
G y Y Borel factors onto G y X .
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Proof. By letting Y0 be the set of y ∈ Y with g · y 6= y for all 1G 6= g ∈G , we may
assume that Y0 is Borel. Since Y0 ⊆ Y Borel, there is some Polish topology on Y0

which is compatible with the Borel structure Y0 inherits from Y [8, Cor. 13.4].
Fix such a topology. By [8, Theorem 13.11 and Lemma 13.3], we may assume
that G acts continuously on Y0. By the Cantor–Bendixson Theorem [8, Theorem
6.4], there is a G-invariant nonempty closed set Y ′ ⊆ Y0 such that Y ′ is perfect,
meaning it has no isolated points. In particular, every nonempty open set in
Y ′ is uncountable. Let R ⊆ Y ′×Y ′ consist of those pairs (y1, y2) with y1 6∈G · y2.
Then R is a dense Gδ subset of Y ′×Y ′ and thus by the Kuratowski–Mycielski
Theorem [8, Theorem 19.1] there is an uncountable compact set K ⊆ Y ′ such
that (k1,k2) ∈ R for all k1 6= k2 ∈ K . So no two elements of K lie in the same
G-orbit (alternatively, one could obtain a similar conclusion by applying Silver’s
theorem [13]).

Set Z =G ·K . Then Z is G-invariant and Borel, and K is a transversal for the
G-orbits on Z . Now consider a Borel action G y X . Since K is an uncountable
standard Borel space, there is a Borel surjection θ : K → X [8, Theorem 15.6].
Now extend θ to Z by setting θ(g ·k) = g ·θ(k) for g ∈G and k ∈ K . This is well-
defined since G acts freely on Z and each G-orbit in Z contains precisely one
point in K . Clearly θ is G-equivariant and maps Z onto X . Furthermore, θ is
Borel since it is Borel on each class of the countable Borel partition {g ·K : g ∈G}
of Z . Finally, if X has a fixed point x0, meaning g · x0 = x0 for all g ∈G , then we
can extend θ to all of Y be setting θ(y) = x0 for y ∈ Y àZ .
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