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Abstract. We continue the study of Rokhlin entropy, an isomorphism invari-

ant for p.m.p. actions of countable groups introduced in the previous paper.
We prove that every free ergodic action with finite Rokhlin entropy admits

generating partitions which are almost Bernoulli, strengthening the theorem

of Abért–Weiss that all free actions weakly contain Bernoulli shifts. We then
use this result to study the Rokhlin entropy of Bernoulli shifts. Under the

assumption that every countable group admits a free ergodic action of positive

Rokhlin entropy, we prove that: (i) the Rokhlin entropy of a Bernoulli shift is
equal to the Shannon entropy of its base; (ii) Bernoulli shifts have completely

positive Rokhlin entropy; and (iii) Gottschalk’s surjunctivity conjecture and

Kaplansky’s direct finiteness conjecture are true.

1. Introduction

Let (X,µ) be a standard probability space, meaning X is a standard Borel
space and µ is a Borel probability measure. Let G be a countable group and let
Gy (X,µ) be a probability-measure-preserving (p.m.p.) action. For a collection C
of Borel subsets of X, we let σ-algG(C) denote the smallest G-invariant σ-algebra
containing C ∪{X} and the null sets. A Borel partition α is generating if σ-algG(α)
is the entire Borel σ-algebra B(X). For finite T ⊆ G we write αT for the join of
the translates t · α, t ∈ T , where t · α = {t ·A : A ∈ α}. The Shannon entropy of a
countable Borel partition α is

H(α) =
∑
A∈α
−µ(A) · log(µ(A)).

A probability vector is a finite or countable ordered tuple p̄ = (pi) of positive real
numbers which sum to 1. We write |p̄| for the length of p̄ and H(p̄) =

∑
−pi · log(pi)

for the Shannon entropy of p̄.
In Part I of this series [31], we defined the Rokhlin entropy of a p.m.p. action

Gy (X,µ) as

hRok
G (X,µ) = inf

{
H(α|I ) : α is a countable partition and σ-algG(α)∨I = B(X)

}
,

where I is the σ-algebra of G-invariant sets. In this paper, we will only be inter-
ested in ergodic actions, in which case the Rokhlin entropy simplifies to

hRok
G (X,µ) = inf

{
H(α) : α is a countable generating partition

}
.
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When G is amenable and the action is free, the Rokhlin entropy coincides with clas-
sical Kolmogorov–Sinai entropy [33, 2]. Rokhlin entropy is thus a natural analog of
classical entropy. The main theorem of the prequel was the following generalization
of Krieger’s finite generator theorem.

Theorem 1.1 ([31]). Let G be a countably infinite group acting ergodically, but
not necessarily freely, by measure-preserving bijections on a non-atomic standard
probability space (X,µ). If p̄ = (pi) is any finite or countable probability vector with
hRok
G (X,µ) < H(p̄), then there is a generating partition α = {Ai : 0 ≤ i < |p̄|} with
µ(Ai) = pi for every 0 ≤ i < |p̄|.

In the present paper we use the above theorem to study the Rokhlin entropy of
Bernoulli shifts. Recall that for a standard probability space (L, λ) the Bernoulli
shift over G with base space (L, λ) is simply the product space (LG, λG) equipped
with the natural left-shift action of G:

for g, h ∈ G and x ∈ LG (g · x)(h) = x(g−1h).

The Shannon entropy of the base space is

H(L, λ) =
∑
`∈L

−λ(`) · log λ(`)

if λ has countable support, and H(L, λ) = ∞ otherwise. Every Bernoulli shift
(LG, λG) comes with the canonical, possibly uncountable, generating partition L =
{R` : ` ∈ L}, where

R` = {x ∈ LG : x(1G) = `}.
Note that if H(L, λ) < ∞ then L is countable and H(L ) = H(L, λ). Thus one
always has hRok

G (LG, λG) ≤ H(L, λ).
A fundamental open problem in ergodic theory is to determine, for every count-

ably infinite group G, whether (2G, uG2 ) can be isomorphic to (3G, uG3 ). Here we
write n for {0, . . . , n−1} and un for the normalized counting measure on {0, . . . , n−
1}. Note that H(n, un) = log(n). For amenable groups G, the Bernoulli shift
(LG, λG) has Kolmogorov–Sinai entropy H(L, λ), and thus (2G, uG2 ) and (3G, uG3 )
are non-isomorphic. In 2010, groundbreaking work of Bowen [4], together with
improvements by Kerr and Li [21], created the notion of sofic entropy for p.m.p.
actions of sofic groups. We remind the reader that the class of sofic groups contains
the countable amenable groups, and it is an open question whether every countable
group is sofic. Sofic entropy extends Kolmogorov–Sinai entropy, as when the acting
sofic group is amenable the two notions coincide [5, 22]. For sofic G, the Bernoulli
shift (LG, λG) has sofic entropy H(L, λ) [4, 23]. Thus (2G, uG2 ) and (3G, uG3 ) are
non-isomorphic for sofic G. Based on these results, it seems that the following
statement may be true of all countably infinite groups G:

INV : H(L, λ) is an isomorphism invariant for (LG, λG).

Remark 1.2. Another important question is whether H(L, λ) = H(K,κ) implies
that (LG, λG) is isomorphic to (KG, κG). In 1970, Ornstein famously answered
this question positively for G = Z, thus completely classifying Bernoulli shifts
over Z up to isomorphism [26, 27]. This result was extended to amenable groups
by Ornstein and Weiss in 1987 [28]. Work of Stepin shows that this property is
retained under passage to supergroups [34], so the isomorphism result extends to
all groups which contain an infinite amenable subgroup. In 2012, Bowen proved
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that for every countably infinite group G, if H(L, λ) = H(K,κ) and the supports of
λ and κ each have cardinality at least 3, then (LG, λG) is isomorphic to (KG, κG)
[6]. Thus, this question is nearly resolved with only the case of a two atom base
space incomplete.

We previously noted that one always has hRok
G (LG, λG) ≤ H(L, λ). When

G is sofic, Rokhlin entropy is bounded below by sofic entropy [4, 2] and thus
hRok
G (LG, λG) = H(L, λ) whenever G is sofic. Since the definition of Rokhlin entropy

does not require the acting group to be sofic, the statement

RBS : hRok
G (LG, λG) = H(L, λ) for every standard probability space (L, λ).

(acronym for Rokhlin entropy of Bernoulli Shifts) may be true for all countably
infinite groups G. Notice that RBS ⇒ INV.

In this paper we investigate RBS and its consequences. We first show in Section
3 that Rokhlin entropy cannot be realized by a generating partition whose translates
are correlated.

Theorem 1.3. Let G be a countably infinite group, let Gy (X,µ) be a free p.m.p.
ergodic action, and let α be a countable generating partition. If T ⊆ G is finite,
ε > 0, and 1

|T | ·H(αT ) < H(α)− ε, then hRok
G (X,µ) < H(α)− ε/(16|T |3).

Remark 1.4. This result was later improved to hRok
G (X,µ) ≤ infT

1
|T | ·H(αT ), where

the infimum is over all finite T ⊆ G [32].

When H(α) <∞, the equality H(αT ) = |T | ·H(α) implies that the T -translates
of α are mutually independent. So we obtain the following.

Corollary 1.5. Let G be a countably infinite group acting freely and ergodically
on a standard probability space (X,µ) by measure-preserving bijections. If α is a
countable generating partition and

hRok
G (X,µ) = H(α) <∞,

then (X,µ) is isomorphic to a Bernoulli shift.

As sofic entropy is always bounded above by Rokhlin entropy [4, 2], we have the
following immediate corollary.

Corollary 1.6. Let G be a sofic group with sofic approximation Σ, and let G act
freely and ergodically on a standard probability space (X,µ) by measure-preserving
bijections. If α is a countable generating partition and the sofic entropy hΣ

G(X,µ)
satisfies hΣ

G(X,µ) = H(α) <∞, then (X,µ) is isomorphic to a Bernoulli shift.

With the above corollary we answer a question of N.-P. Chung in [9, Question
5.4] regarding equilibrium states for sofic pressure for a certain class of functions.
See Corollary 3.6.

From Theorem 1.3 we derive in Section 4 a few properties which would follow
if RBS were found to be true. Recall that an action G y (X,µ) of an amenable
group G is said to have completely positive entropy if every factor G y (Y, ν) of
(X,µ), with Y not essentially a single point, has positive Kolmogorov–Sinai entropy.
For G = Z, these actions are also called Kolmogorov or K-automorphisms. The
standard example of completely positive entropy actions are Bernoulli shifts (see
[29]). In fact, for amenable groups factors of Bernoulli shifts are Bernoulli [28], but
it is unknown if this holds for any non-amenable group. Recently, it was proven by
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Kerr that Bernoulli shifts over sofic groups have completely positive sofic entropy
[20]. Along these lines, we obtain the following corollary of Theorem 1.3.

Corollary 1.7. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for all standard probability spaces (L, λ). Then every Bernoulli shift over
G has completely positive Rokhlin entropy.

Our next corollary relates to two well-known open conjectures from outside er-
godic theory. The first is Kaplansky’s direct finiteness conjecture, which states that
for every countable group G and every field K, if a and b are elements of the group
ring K[G] and satisfy ab = 1 then ba = 1. Kaplansky proved this for K = C in
1972 [16] (see also a shorter proof by Burger and Valette [7]). For general fields K,
this conjecture was proven for abelian groups by Ara, O’Meara, and Perera in 2002
[3], and then proven for sofic groups by Elek and Szabó in 2004 [11].

The second conjecture is Gottschalk’s surjunctivity conjecture, which states that
if G is a countable group, n ∈ N, and φ : nG → nG is a continuous G-equivariant
injection, then φ is surjective. This conjecture has a simple topological proof when
G is residually finite (this is due to Lawton, see [13] or [35]), and can be proven for
amenable groups using topological entropy. Gromov proved the conjecture for sofic
groups, and in fact he defined the class of sofic groups for this purpose [15, 35].
Later, after the discovery of sofic entropy, a topological entropy proof was given
for sofic groups [21]. We point out that it is known that Gottschalk’s surjunctivity
conjecture implies Kaplansky’s direct finiteness conjecture [8, Section I.5].

From Corollary 1.5 we deduce the following.

Corollary 1.8. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for all standard probability spaces (L, λ). Then G satisfies Gottschalk’s
surjunctivity conjecture and Kaplansky’s direct finiteness conjecture.

If we define the statements

CPE : Every Bernoulli shift over G has completely positive Rokhlin entropy.

GOT : G satisfies Gottschalk’s surjunctivity conjecture.

KAP : G satisfies Kaplansky’s direct finiteness conjecture.

then from earlier comments and Corollaries 1.7 and 1.8 we deduce that for every
countably infinite group G

RBS ⇒ INV + CPE + GOT + KAP.

Beginning with Section 5, the rest of the paper investigates the validity of RBS.
We remark that, a priori, there is nothing obvious one can say about hRok

G (LG, λG)
except that

hRok
G ((L×K)G, (λ× κ)G) ≤ hRok

G (LG, λG) + hRok
G (KG, κG) ≤ H(L, λ) + H(K,κ).

Indeed, we do not know if Rokhlin entropy is additive under direct products, even
for Bernoulli shifts.

For a countably infinite group G, define

hRok
sup (G) = sup

Gy(X,µ)

hRok
G (X,µ),

where the supremum is taken over all free ergodic p.m.p. actions G y (X,µ)
with hRok

G (X,µ) < ∞. We will relate the validity of RBS to the following two
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statements.

POS : There is a free ergodic p.m.p. action Gy (X,µ) with hRok
G (X,µ) > 0.

INF : hRok
sup (G) =∞.

Both statements are known to be true when G is a countably infinite sofic group
since sofic entropy is a lower bound to Rokhlin entropy. We do not know whether
POS implies INF (see the discussion following Corollary 7.7).

Our main tool to study RBS is the construction, in Section 5, of generating
partitions α which are almost Bernoulli in the sense that H(αT )/|T | > H(α) − ε
for some large but finite T ⊆ G and some small ε > 0. By well known properties
of Shannon entropy [10, Fact 3.1.3], this condition is equivalent to saying that the
T -translates of α are close to being mutually independent. The theorem below
may be viewed as a generalization of a similar result obtained by Grillenberger and
Krengel for G = Z [14].

Theorem 1.9. Let G be a countably infinite group acting freely and ergodically on
a standard probability space (X,µ) by measure-preserving bijections. If p̄ = (pi) is
any finite or countable probability vector with hRok

G (X,µ) < H(p̄) < ∞, then for
every finite T ⊆ G and ε > 0 there is a generating partition α = {Ai : 0 ≤ i < |p̄|}
with µ(Ai) = pi for every 0 ≤ i < |p̄| and

1

|T |
·H(αT ) > H(α)− ε.

Note that H(α) could be tremendously larger than hRok
G (X,µ).

The above theorem strengthens the result of Abért and Weiss that all free actions
weakly contain a Bernoulli shift [1]. Specifically, assuming only that H(p̄) > 0, they
proved the existence of an α which is not necessarily generating but otherwise
satisfies the conditions stated in the above theorem.

In Section 6 we establish two semi-continuity properties of Rokhlin entropy, and
then we use these semi-continuity properties and Theorem 1.9 in order to prove the
theorem below. This theorem addresses the validity of RBS when H(L, λ) <∞.

Theorem 1.10. Let G be a countably infinite group and let (L, λ) be a standard
probability space with H(L, λ) <∞. Then

hRok
G (LG, λG) = min

(
H(L, λ), hRok

sup (G)
)
.

Note that when hRok
G (LG, λG) < H(L, λ), the supremum hRok

sup (G) is achieved by

(LG, λG). We point out that the above theorem places a significant restriction on
the nature of the map H(L, λ) 7→ hRok

G (LG, λG). Prior to obtaining this theorem,
there is no obvious reason why this map should be monotone or even piece-wise
linear.

In Section 6 we also prove the following.

Theorem 1.11. Let P be a countable group containing arbitrarily large finite sub-
groups. If G is any countably infinite group with hRok

sup (G) <∞ then hRok
sup (P ×G) =

0.

Thus (∀G POS)⇒ (∀G INF).
In Section 7 we first establish a formula for the Rokhlin entropy of inverse limits

of actions (Theorem 7.3), and then we use this formula together with Theorem
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1.10 in order to study RBS when H(L, λ) = ∞. In the case H(L, λ) = ∞ we
obtain a result stronger than Theorem 1.10. This is surprising from a historical
perspective, since when Kolmogorov defined entropy in 1958 he could only handle
Bernoulli shifts with a finite Shannon entropy base [24, 25]. It was not until the
improvements of Sinai that infinite Shannon entropy bases could be considered [30].
Similarly, when Bowen defined sofic entropy he studied Bernoulli shifts with both
finite and infinite Shannon entropy bases [4], but he was only fully successful in the
finite case. The infinite case was resolved through improvements by Kerr and Li
[21, 23, 19].

Theorem 1.12. Let G be a countably infinite group and let (L, λ) be a standard
probability space with H(L, λ) = ∞. Then hRok

G (LG, λG) = ∞ if and only if there
exists a free ergodic p.m.p. action Gy (X,µ) with hRok

G (X,µ) > 0.

Thus, if H(L, λ) =∞ then hRok
G (LG, λG) is either 0 or infinity.

It follows from Theorems 1.10 and 1.12 that for every countably infinite group
G

INF⇒ RBS.

By putting all of our results together, we obtain the following.

Corollary 1.13. Assume that every countably infinite group G admits a free ergodic
p.m.p. action with hRok

G (X,µ) > 0. Then:

(i) hRok
G (LG, λG) = H(L, λ) for every countably infinite group G and every

probability space (L, λ);
(ii) Every Bernoulli shift over any countably infinite group has completely pos-

itive Rokhlin entropy;
(iii) Gottschalk’s surjunctivity conjecture is true;
(iv) Kaplansky’s direct finiteness conjecture is true.

This corollary indicates that the validity of (∀G POS) should be considered an
important open problem.

Finally, for convenience to the reader we summarize the implications we uncov-
ered in the two lines below:

INF⇒ RBS⇒ INV + CPE + GOT + KAP

(∀G POS)⇒ (∀G INF).

Acknowledgments. This research was partially supported by the National Sci-
ence Foundation Graduate Student Research Fellowship under Grant No. DGE
0718128. The author thanks his advisor, Ralf Spatzier, for numerous productive
conversations, Tim Austin for many suggestions to improve the paper, and Damien
Gaboriau for helpful discussions. Finally, the author thanks Lewis Bowen for point-
ing out that Corollary 1.6 provides an answer to the question [9, Question 5.4] asked
by N.-P. Chung.

2. Preliminaries

Throughout this paper, whenever working with a probability space (X,µ) we will
generally ignore sets of measure zero. In particular, we write A = B for A,B ⊆ X if
their symmetric difference is null. Similarly, we will use the term probability vector
more freely than described in the introduction. A probability vector p̄ = (pi) will



KRIEGER’S FINITE GENERATOR THEOREM FOR COUNTABLE GROUPS II 7

be any finite or countable ordered tuple of non-negative real numbers which sum
to 1 (so some terms pi may be 0).

Every probability space (X,µ) which we consider will be assumed to be standard.
In particular, X will be a standard Borel space. A well-known property of standard
Borel spaces is that they are countably generated [17, Prop. 12.1], meaning there is a
sequence Bn ⊆ X of Borel sets such that B(X) is the smallest σ-algebra containing
all of the sets Bn. In particular, every sub-σ-algebra F is countably generated mod
µ-null sets, since the factor (Y, ν) of (X,µ) associated to F is standard. For C ⊆
B(X), we let σ-alg(C) denote the smallest sub-σ-algebra containing C∪{X} and the
µ-null sets (not to be confused with the notation σ-algG(C) from the introduction).
When G y X is a Borel action, we write EG(X) for the collection of ergodic
invariant Borel probability measures on X.

For a countable ordered partition α = {Ai : 0 ≤ i < |α|} we let dist(α) denote
the probability vector p̄ satisfying pi = µ(Ai). For two partitions α and β we write
α ≥ β if α is finer than β. We let PH denote the set of countable Borel partitions
α with H(α) < ∞. The space PH is a complete separable metric space [10, Fact
1.7.15] under the Rokhlin metric dRok

µ defined by

dRok
µ (α, β) = H(α | β) + H(β | α).

We refer the reader to Appendix A for some of the basic properties of this metric.
Let (X,µ) be a probability space, and let F be a sub-σ-algebra. Let π : (X,µ)→

(Y, ν) be the factor associated to F , and let µ =
∫
µy dν(y) be the disintegration of

µ over ν. For a countable Borel partition α of X, the conditional Shannon entropy
of α relative to F is

H(α | F) =

∫
Y

∑
A∈α
−µy(A) · logµy(A) dν(y) =

∫
Y

Hµy (α) dν(y).

When necessary, we will write Hµ(α | F) to emphasize the measure. For a partition
β of X we set H(α | β) = H(α | σ-alg(β)). For B ⊆ X we write

HB(α | F) = HµB (α | F),

where µB is the normalized restriction of µ to B defined by µB(A) = µ(A∩B)/µ(B).
Note that if β ⊆ F is a countable partition of X then

H(α | F) =
∑
B∈β

µ(B) ·HB(α | F).

In particular, H(α | β) =
∑
B∈β µ(B) ·HB(α).

We will need the following standard properties of Shannon entropy (proofs can
be found in [10], specifically Equation 1.3.2 and Facts 1.6.24, 1.6.27, 1.6.38, and
1.6.39):

Lemma 2.1. Let (X,µ) be a standard probability space, let α and β be countable
Borel partitions of X, and let F , Σ, and (Fn)n∈N be sub-σ-algebras. Then

(i) H(α | F) = 0 if and only if α ⊆ F mod null sets;
(ii) H(α | F) ≤ log |α|;
(iii) if α ≥ β then H(α | F) ≥ H(β | F);
(iv) if Σ ⊆ F then H(α | Σ) ≥ H(α | F);
(v) H(α ∨ β | F) = H(β | F) + H(α | β ∨ F);
(vi) if H(α) <∞ then H(α | F) = H(α) if and only if α and F are independent;
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(vii) H(α | F) = supβ H(β | F) where β ranges over all finite partitions coarser
than α;

(viii) H(α |
∨
n∈N Fn) = infn∈N H(α | Fn) if the Fn’s are increasing and the right-

hand side is finite;
(ix) if

∑
n H(αn) <∞ then

∨
n∈N αn is essentially countable and H(

∨
n∈N αn) ≤∑

n H(αn).

A pre-partition of X is a collection of pairwise-disjoint subsets of X. We say
that a partition β extends a pre-partition α, written β w α, if there is an injection
ι : α → β with A ⊆ ι(A) for every A ∈ α. Equivalently, β w α if and only if the
restriction of β to ∪α coincides with α. For a Borel pre-partition α, we define the
reduced σ-algebra σ-algred

G (α) to be the collection of Borel sets R ⊆ X such that
there is a conull X ′ ⊆ X satisfying:

for every r ∈ R∩X ′ and x ∈ X ′\R there is g ∈ G with g·r, g·x ∈ ∪α
and with g · r and g · x lying in distinct classes of α.

It is a basic exercise to verify that σ-algred
G (α) is indeed a σ-algebra. We note two

basic lemmas related to reduced σ-algebras which we will need.

Lemma 2.2 ([31, Lem.2.2]). Let G y (X,µ) be a p.m.p. action, and let α be a

pre-partition. If β is a partition and β w α then σ-algG(β) ⊇ σ-algred
G (α).

Lemma 2.3. Let Gy (X,µ) be a p.m.p. action and let Gy (Y, ν) be a factor of
(X,µ) under the map π : (X,µ) → (Y, ν). If α is a countable pre-partition of Y

then π−1(σ-algred
G (α)) ⊆ σ-algred

G (π−1(α)).

Proof. Fix S ∈ σ-algred
G (α) and set R = π−1(S). By definition, there is a conull

Y ′ ⊆ Y so that for all s ∈ S∩Y ′ and all y ∈ Y ′\S there is g ∈ G with g ·s, g ·y ∈ ∪α
and with g ·s and g ·y lying in distinct classes of α. Let X ′ be the conull set π−1(Y ′)
and pick any r ∈ R ∩X ′ and x ∈ X ′ \ R. Then π(r) ∈ S ∩ Y ′ and π(x) ∈ Y ′ \ S.
So there is g ∈ G with π(g · r), π(g · x) ∈ ∪α and with π(g · r) and π(g · x) lying
in distinct classes of α. Clearly then g · r, g · x ∈ ∪π−1(α) and g · r and g · x are in

distinct classes of π−1(α). Therefore R ∈ σ-algred
G (π−1(α)). �

For a p.m.p. action G y (X,µ) and a G-invariant sub-σ-algebra F , we let I
denote the σ-algebra of G-invariant sets and we define the relative Rokhlin entropy
of Gy (X,µ) relative to F , denoted hRok

G (X,µ | F), as

inf
{

H(α|F∨I ) : α is a countable Borel partition and σ-algG(α)∨F∨I = B(X)
}
.

Since we only work with ergodic actions here, I will always be trivial and hence

hRok
G (X,µ|F) = inf

{
H(α|F) : α a countable partition and σ-algG(α)∨F = B(X)}.

When G is amenable and the action is free, the relative Rokhlin entropy coin-
cides with relative Kolmogorov–Sinai entropy [31, 2]. Additionally, similar to the
Rudolph–Weiss theorem [29], it is known that hRok

G (X,µ | F) is invariant under
orbit equivalences for which the orbit-change cocycle is F-measurable [31]. The
following is the strongest version of the main theorem from Part I [31].

Theorem 2.4. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,
and let F be a G-invariant sub-σ-algebra. If ξ is a countable Borel partition of X,
0 < r ≤ 1, and p̄ is a probability vector with H(ξ | F) < r · H(p̄), then there is a
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Borel pre-partition α = {Ai : 0 ≤ i < |p̄|} with µ(∪α) = r, µ(Ai) = rpi for every

0 ≤ i < |p̄|, and σ-algG(ξ) ∨ F ⊆ σ-algred
G (α) ∨ F .

For a p.m.p. ergodic action G y (X,µ), a collection C of Borel sets, and a
G-invariant sub-σ-algebra F , we define the outer Rokhlin entropy as

hRok
G,µ(C|F) = inf

{
H(α|F) : α is a countable Borel partition and C ⊆ σ-algG(α)∨F

}
.

When F = {X,∅} we simply write hRok
G,µ(C) for hRok

G,µ(C | F). If G y (Y, ν) is a

factor of (X,µ), then we define hRok
G,µ(Y, ν) = hRok

G,µ(Σ), where Σ is the G-invariant
sub-σ-algebra of X associated to Y .

A fundamental property of Rokhlin entropy is that it is countably sub-additive.
This fact will be critical to nearly all the main theorems of this paper.

Corollary 2.5. Let G y (X,µ) be a p.m.p. ergodic action, let C ⊆ B(X), let
Σ be a G-invariant sub-σ-algebra, and let (Fn)n∈N be an increasing sequence of
G-invariant sub-σ-algebras with C ⊆

∨
n∈N Fn ∨ Σ. Then

(2.1) hRok
G,µ(C | Σ) ≤ hRok

G,µ(F1 | Σ) +
∑
n≥2

hRok
G,µ(Fn | Fn−1 ∨ Σ).

Note that we do not assume that µ is non-atomic, and note that one may choose
to have Fn = Fn−1 for all large n (in which case the sum becomes finite).

Proof. Assume that hRok
G,µ(C | Σ) > 0 and that the right-hand side of (2.1) is finite,

as otherwise there is nothing to show.
If µ has an atom, then by ergodicity X is finite. Note that a partition consisting

of a single point and its complement is both generating and of minimum (non-
zero) Shannon entropy. This furthermore remains true when working relative to
a G-invariant sub-σ-algebra. Therefore for any D ⊆ B(X) and G-invariant sub-σ-
algebra Ψ, hRok

G,µ(D | Ψ) is 0 if D ⊆ Ψ and otherwise is the minimum of H(α | Ψ)

among all partitions with H(α |Ψ) > 0. From this observation, we see that the first
non-zero term on the right-hand side of (2.1) is equal to hRok

G,µ(C | Σ).
Now assume that µ is non-atomic. Denote the value of the right-hand side of

(2.1) by h. Fix ε > 0. Set F0 = {X,∅}. For each n ∈ N fix a partition β′n with
H(β′n | Fn−1 ∨ Σ) < hRok

G,µ(Fn | Fn−1 ∨ Σ) + ε/2n and Fn ⊆ σ-algG(β′n) ∨ Fn−1 ∨ Σ.

Apply Theorem 2.4 to obtain a partition βn with H(βn) < hRok
G,µ(Fn |Fn−1∨Σ)+ε/2n

and with Fn ⊆ σ-algG(βn) ∨ Fn−1 ∨ Σ. Then
∑
n∈N H(βn) < h + ε < ∞, so by

Lemma 2.1 β =
∨
n∈N βn is essentially countable and H(β) < h+ ε. We have

C ⊆
∨
n∈N
Fn ∨ Σ ⊆

∨
n∈N

σ-algG(βn) ∨ Σ ⊆ σ-algG(β) ∨ Σ

and thus hRok
G,µ(C | Σ) ≤ H(β) < h+ ε. Now let ε tend to 0. �

In the remainder of the paper, we will simply refer to Corollary 2.5 as the prop-
erty of sub-additivity.

We mention one last fact we will need.

Theorem 2.6 (Seward–Tucker-Drob [33]). Let G be a countably infinite group and
let G y (X,µ) be a free p.m.p. action. Then for every ε > 0 there is a factor
Gy (Y, ν) of (X,µ) such that hRok

G (Y, ν) < ε and G acts freely on Y .
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3. Translations and independence

In this section we show that if the Rokhlin entropy of a free ergodic action is
finite and is realized by a generating partition, then the action is isomorphic to a
Bernoulli shift.

We recall the following well known lemma. This lemma is a special case of a
more general result due to Kechris–Solecki–Todorcevic [18, Prop. 4.2 and Prop.
4.5].

Lemma 3.1. Let Gy (X,µ) be a p.m.p. action. If Y ⊆ X is Borel and T ⊆ G is
finite, then there exists a Borel set D ⊆ Y such that Y ⊆ T−1T ·D and T ·d∩T ·d′ =
∅ for all d 6= d′ ∈ D.

Lemma 3.2. Let G be a countably infinite group, let G y (X,µ) be a free p.m.p.
action, and let T ⊆ G be finite. Then there is a Borel partition ξ of X such that
for every C ∈ ξ we have µ(C) ≥ 1

4 · |T |
−4 and t · C ∩ s · C = ∅ for all t 6= s ∈ T .

Proof. If |T | = 1 then by setting ξ = {X} we are done. So assume |T | ≥ 2. Since
the action is free, the condition t · C ∩ s · C = ∅ for all t 6= s ∈ T is equivalent to
the condition T · c ∩ T · c′ = ∅ for all c 6= c′ ∈ C. By repeatedly applying Lemma
3.1 we can inductively construct disjoint sets C1, C2, . . . such that for every i

X \ (C1 ∪ C2 ∪ · · · ∪ Ci−1) ⊆ T−1T · Ci

and T · c∩T · c′ = ∅ for all c 6= c′ ∈ Ci. We claim that there is n ≤ |T−1T |+ 1 such
that X = C1 ∪ · · · ∪Cn. If not, then there is x ∈ X \ (C1 ∪ · · · ∪C|T−1T |+1). Then

x ∈ T−1T · Ci for every i and hence T−1T · x meets every Ci, 1 ≤ i ≤ |T−1T |+ 1.
This contradicts the Ci’s being disjoint.

Set ξ = {Ci : 1 ≤ i ≤ n}. If µ(Ci) <
1
4 · |T |

−4 for some i, then since ξ is a

partition of X with |ξ| ≤ 2|T |2, there must be some j with µ(Cj) >
1
2 |T |

−2. So

µ
(
Cj \ T−1T · Ci

)
≥ 1

2|T |2
− |T |

2

4|T |4
=

1

4|T |2
> 2 · 1

4|T |4
.

Thus by removing from Cj a subset B ⊆ Cj \ T−1T · Ci having measure µ(B) =
1
4 · |T |

−4 and by enlarging Ci to contain B, we will have reduced the number of sets

in ξ having measure less than 1
4 · |T |

−4. This process can be repeated until every

set in ξ has measure at least 1
4 · |T |

−4. �

We are ready for the main result of this section.

Theorem 3.3. Let G be a countably infinite group, let G y (X,µ) be a free
p.m.p. ergodic action, and let F be a G-invariant sub-σ-algebra. If α is a countable
partition, T ⊆ G is finite, ε > 0, and 1

|T | ·H(αT |F) < H(α|F)−ε, then hRok
G,µ(α|F) <

H(α | F)− ε/(16|T |3).

Proof. By invariance of µ and F , H(αsT | F) = H(αT | F) for all s ∈ G. So by
replacing T with a translate sT we may assume that 1G ∈ T . By Theorem 2.6,
there is a factor G y (Z, η) of (X,µ) such that the action of G on Z is free and
hRok
G (Z, η) < ε/(16 · |T |3). Let Σ be the G-invariant sub-σ-algebra of X associated
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to Z. If H(α | F ∨ Σ) ≤ H(α | F)− ε/2, then by sub-additivity (Corollary 2.5)

hRok
G,µ(α | F) ≤ hRok

G,µ(Σ | F) + hRok
G,µ(α | F ∨ Σ)

≤ hRok
G (Z, η) + H(α | F ∨ Σ)

<
ε

16 · |T |3
+ H(α | F)− ε

2

< H(α | F)− ε

16|T |3
,

and thus we are done. So assume H(α | Σ ∨ F) > H(α | F)− ε/2. Note that

1

|T |
·H(αT | F ∨ Σ) ≤ 1

|T |
·H(αT | F) < H(α | F)− ε < H(α | F ∨ Σ)− ε/2.

By definition the action G y (Z, η) is free. So we can apply Lemma 3.2 to obtain
a partition ξ ⊆ Σ of X such that for every C ∈ ξ we have t−1 ·C ∩ s−1 ·C = ∅ for
all t 6= s ∈ T and µ(C) ≥ 1

4 · |T |
−4.

Let π : (X,µ)→ (Y, ν) be the factor associated to F ∨Σ, and let µ =
∫
µy dν(y)

be the disintegration of µ over ν. We have∑
C∈ξ

∫
π(C)

(∑
t∈T

Hµy (t · α)−Hµy (αT )

)
dν(y)

=

∫
Y

(∑
t∈T

Hµy (t · α)−Hµy (αT )

)
dν(y)

=
∑
t∈T

H(t · α | F ∨ Σ)−H(αT | F ∨ Σ)

= |T | ·H(α | F ∨ Σ)−H(αT | F ∨ Σ)

> |T | · ε
2
.

So we can fix D ∈ ξ with∫
π(D)

(∑
t∈T

Hµy (t · α)−Hµy (αT )

)
dν(y) > |T | · ε

2
· µ(D).

Set R = T−1 ·D and observe that µ(R) = |T | · µ(D). Note that for almost-every
y ∈ Y and all g ∈ G we have µy(E) = µg·y(g · E) for Borel E ⊆ X and hence also
Hµy (α) = Hµg·y (g · α). Thus

HR(α | F ∨ Σ)− 1

|T |
·HD(αT | F ∨ Σ)

=
1

µ(R)
·
∫
T−1·π(D)

Hµy (α) dν(y)− 1

|T | · µ(D)
·
∫
π(D)

Hµy (αT ) dν(y)

=
1

|T | · µ(D)
·
∑
t∈T

∫
t−1·π(D)

Hµy (α) dν(y)− 1

|T | · µ(D)
·
∫
π(D)

Hµy (αT ) dν(y)

=
1

|T | · µ(D)
·
∫
π(D)

(∑
t∈T

Hµy (t · α)−Hµy (αT )

)
dν(y)

>
ε

2
.
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Define a new partition

β =
(
α � (X \R)

)
∪
{
R \D

}
∪
(
αT � D

)
.

Observe that D ⊆ R since 1G ∈ T . Let γ be the partition of X consisting of the
sets t−1 ·D, t ∈ T , and X \R. Then γ ⊆ Σ and α is coarser than

α ∨ γ =
(
α � (X \R)

)
∪
⋃
t∈T

(
α � t−1 ·D

)
.

Since α � (X \R) ⊆ β and for each t ∈ T the partition t · (α � t−1 ·D) = (t · α � D)
of D is coarser than αT � D, we see that

α ≤ α ∨ γ ⊆ σ-algG(β) ∨ Σ.

Therefore hRok
G,µ(α | F ∨ Σ) ≤ H(β | F ∨ Σ).

Since R,D ∈ Σ and µ(R) = |T | · µ(D) ≥ 1
4 · |T |

−3 we have

H(β | F ∨ Σ) = µ(X \R) ·HX\R(α | F ∨ Σ) + µ(D) ·HD(αT | F ∨ Σ)

= µ(X \R) ·HX\R(α | F ∨ Σ) + µ(R) · 1

|T |
·HD(αT | F ∨ Σ)

< µ(X \R) ·HX\R(α | F ∨ Σ) + µ(R) ·HR(α | F ∨ Σ)− µ(R) · ε
2

= H(α | F ∨ Σ)− µ(R) · ε
2

≤ H(α | F ∨ Σ)− ε

8|T |3

Therefore

hRok
G,µ(α | F ∨ Σ) + hRok

G (Z, η) ≤ H(β | F ∨ Σ) + hRok
G (Z, η)

< H(α | F ∨ Σ)− ε

8|T |3
+

ε

16 · |T |3

≤ H(α | F)− ε

16|T |3
.

Thus we are done by sub-additivity of Rokhlin entropy. �

We will also need the following variant of Theorem 3.3 where we replace both
instances of H(α | F) with H(α).

Corollary 3.4. Let G be a countably infinite group, let G y (X,µ) be a free
p.m.p. ergodic action, and let F be a G-invariant sub-σ-algebra. If α is a countable
partition, T ⊆ G is finite, ε > 0, and 1

|T | ·H(αT |F) < H(α)− ε, then hRok
G,µ(α |F) <

H(α)− ε/(32|T |3).

Proof. If H(α | F) < H(α)− ε/2 then clearly

hRok
G,µ(α | F) ≤ H(α | F) < H(α)− ε

32|T |3
.

So suppose that H(α | F) ≥ H(α)− ε/2. Then

H(αT | F) < |T | ·H(α)− |T | · ε ≤ |T | ·H(α | F)− |T | · ε/2.

In this case we can apply Theorem 3.3. �
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We recall the simple fact that a free ergodic p.m.p. action G y (X,µ) is iso-
morphic to a Bernoulli shift if and only if there is a generating partition whose
G-translates are mutually independent.

Corollary 3.5. Let G be a countably infinite group and let G y (X,µ) be a free
p.m.p. ergodic action. If α is a generating partition with H(α) = hRok

G (X,µ) < ∞
then Gy (X,µ) is isomorphic to a Bernoulli shift and α is a Bernoulli generating
partition.

Proof. Since hRok
G (X,µ) = H(α), Theorem 3.3 implies that H(αT ) = |T | · H(α) for

every finite T ⊆ G. Since H(α) < ∞, this implies that the G-translates of α are
mutually independent. As α is a generating partition, it follows that G y (X,µ)
is isomorphic to a Bernoulli shift. �

With the above corollary we answer a question of N.-P. Chung in [9, Question
5.4] regarding equilibrium states for sofic pressure. We refer the reader to [9] for
the relevant definitions.

Corollary 3.6. Let G be a sofic group, let L be a finite set, and let f0 : L → R
be a function. Consider the Bernoulli shift LG and define f : LG → R by f(x) =
f0(x(1G)). Define a probability measure λ on L by

λ(`) =
exp(f0(`))∑

`′∈L exp(f0(`′))
.

Then λG is the unique equilibrium state for f for every sofic approximation Σ to
G.

Proof. Chung proved that λG is an equilibrium state, and he proved that it is the
unique equilibrium state among Bernoulli measures. So we only need to show that
every equilibrium state is a Bernoulli measure. Denote by PΣ(f, LG, G) the sofic
pressure of f with respect to a sofic approximation Σ to G. Let µ be a G-invariant
probability measure on LG which is an equilibrium state for f and Σ, meaning

(3.1) PΣ(f, LG, G) = hΣ
G(LG, µ) +

∫
f dµ,

where hΣ
G(LG, µ) denotes the sofic entropy with respect to Σ. Define a measure

ν on L by ν(`) = µ({x ∈ LG : x(1G) = `}). Let L = {R` : ` ∈ L} be the
canonical generating partition of LG, where R` = {x ∈ LG : x(1G) = `}. Then∫
f dνG =

∫
f dµ and

(3.2) hΣ
G(LG, νG) = H(L, ν) = Hν(L ) = Hµ(L ) ≥ hRok

G (LG, µ) ≥ hΣ
G(LG, µ).

However, by the variational principle [9] we have

PΣ(f, LG, G) ≥ hΣ
G(LG, νG) +

∫
f dνG.

Combining this with (3.1) and (3.2), we conclude that hRok
G (LG, µ) = Hµ(L ).

By Corollary 3.5, L is a Bernoulli generating partition for (LG, µ) and thus µ =
νG. �
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4. Gottschalk’s surjunctivity conjecture and CPE

In this section we relate the Rokhlin entropy values of Bernoulli shifts with
Gottschalk’s surjunctivity conjecture and the property of completely positive en-
tropy.

Corollary 4.1. Let G be a countably infinite group. Assume that hRok
G (kG, uGk ) =

log(k) for every k ∈ N. Then G satisfies Gottschalk’s surjunctivity conjecture and
Kaplansky’s direct finiteness conjecture.

Proof. We verify Gottschalk’s surjunctivity conjecture as Kaplansky’s direct finite-
ness conjecture will then hold automatically [8, Section I.5]. Let k ≥ 2 and let
φ : kG → kG be a continuous G-equivariant injection. Set (Y, ν) = (φ(kG), φ∗(u

G
k ))

where ν = φ∗(u
G
k ) is the push-forward measure. Let L = {Ri : 0 ≤ i < k} denote

the canonical generating partition for kG, where

Ri = {x ∈ kG : x(1G) = i}.

Note that L � Y is generating for Y . Since φ is injective, it is an isomorphism
between (kG, uGk ) and (Y, ν). Therefore

log(k) = hRok
G (kG, uGk ) = hRok

G (Y, ν) ≤ Hν(L ) ≤ log |L | = log(k).

So hRok
G (Y, ν) = Hν(L ) = log(k). In particular, Hν(L T ) = |T | · Hν(L ) for all

finite T ⊆ G by Theorem 3.3.
Towards a contradiction, suppose that φ is not surjective. Then its image is a

proper closed subset of kG and hence there is some finite T ⊆ G and w ∈ kT−1

such
that y � T−1 6= w for all y ∈ Y . This implies that |L T � Y | ≤ k|T | − 1. So

Hν(L T ) ≤ log |L T � Y | ≤ log(k|T | − 1) < |T | · log(k) = |T | ·Hν(L ),

a contradiction. �

Next we consider the property of completely positive outer Rokhlin entropy. We
say that an ergodic action Gy (X,µ) has completely positive outer Rokhlin entropy
if every factor Gy (Y, ν) which is non-trivial (i.e. Y is not a single point) satisfies
hRok
G,µ(Y, ν) > 0.

Corollary 4.2. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for every probability space (L, λ). Then every Bernoulli shift over G has
completely positive outer Rokhlin entropy.

Proof. Let (L, λ) be a probability space, and let Gy (Y, ν) be a non-trivial factor
of (LG, λG). Let F be the G-invariant sub-σ-algebra of LG associated to (Y, ν).

First we mention a short proof in the case that H(L, λ) < ∞. Let L be the
canonical partition of LG. If T ⊆ G is finite and H(L T |F) = H(L T ) = |T | ·H(L ),
then L T must be independent of F by Lemma 2.1. Since L is a generating
partition, this cannot occur for every finite T ⊆ G. So by Theorem 3.3 we get
hRok
G (LG, λG | F) < H(L ) = hRok

G (LG, λG). Therefore by sub-additivity

hRok
G,λG(Y, ν) ≥ hRok

G (LG, λG)− hRok
G (LG, λG | F) > 0.

Here we only needed to assume hRok
G (LG, λG) = H(L, λ) < ∞ for this fixed choice

of (L, λ). In the general case below, we must assume that hRok
G (LG, λG) = H(L, λ)

for all probability spaces (L, λ).
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Fix an increasing sequence of finite partitions Lk of L with
∨
k∈N σ-alg(Lk) =

B(L), and let (Lk, λk) denote the factor of (L, λ) associated to Lk. Let L = {R` :
` ∈ L} be the canonical partition of LG, where R` = {x ∈ LG : x(1G) = `}.
We identify each of the partitions Lk as coarsenings of L ⊆ B(LG). Note that
(LGk , λ

G
k ) is the factor of (LG, λG) associated to σ-algG(Lk). When working with

LGk , for m ≤ k we view Lm as a partition of LGk in the natural way. Note that by
our assumption and by sub-additivity

H(Lk, λk) = hRok
G (LGk , λ

G
k ) ≤ hRok

G,λGk
(Lm) + hRok

G (LGk , λ
G
k | σ-algG(Lm))

≤ H(Lm) + H(Lk |Lm) = H(Lk) = H(Lk, λk).

So equality holds throughout and

(4.1) hRok
G (LGk , λ

G
k ) = H(Lm) + hRok

G (LGk , λ
G
k | σ-algG(Lm)).

Fix a non-trivial finite partition P ⊆ F and fix 0 < ε < H(P)/9. By Corollary
A.5 there is m ∈ N, finite T ⊆ G, and β ≤ L T

m with dRok
λG (β,P) < ε. Note that

hRok
G,λG(P) ≤ H(P) <∞. Fix a partition Q with

H(Q) < hRok
G,λG(P) +

ε

32|T |3
≤ hRok

G,λG(Y, ν) +
ε

32|T |3

and with P ⊆ σ-algG(Q). By Corollary A.4 there is a finite W ⊆ G and P ′ ≤ QW
with dRok

λG (P ′,P) < ε. Since H(Q) < ∞, we can apply Corollary A.5 and Lemma

A.2 to get k ≥ m, γ ≤ σ-algG(Lk) with dRok
λG (γ,Q) < ε/(32|T |3), and β′ ≤ γW

with dRok
λG (β′,P ′) < ε. Note that

(4.2) hRok
G,λGk

(γ) ≤ H(γ) < H(Q) + dRok
λG (γ,Q) ≤ hRok

G,λG(Y, ν) +
2ε

32|T |3
.

Also note that H(L T
m | β) = H(L T

m)−H(β) since β ≤ L T
m .

We have

1

|T |
·H(L T

m | β′) <
1

|T |
·H(L T

m | β) +
1

|T |
· 2dRok

λG (β′, β)

< H(Lm)− 1

|T |
·H(β) +

6ε

|T |
.

So by Corollary 3.4

(4.3) hRok
G,λGk

(Lm | σ-algG(γ)) < H(Lm)− 1

32|T |3
·H(β) +

6ε

32|T |3
.

By sub-additivity we have

hRok
G (LGk , λ

G
k ) ≤ hRok

G,λGk
(γ) + hRok

G,λGk
(Lm | σ-algG(γ)) + hRok

G (LGk , λ
G
k | σ-algG(Lm)).

Combining this inequality with (4.1) and then (4.3) gives

hRok
G,λGk

(γ) ≥ H(Lm)− hRok
G,λGk

(Lm | σ-algG(γ)) ≥ 1

32|T |3
·H(β)− 6ε

32|T |3
.

Finally, using (4.2) we conclude

hRok
G,λG(Y, ν) >

1

32|T |3
·H(β)− 8ε

32|T |3
>

1

32|T |3
·H(P)− 9ε

32|T |3
> 0. �
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5. Approximately Bernoulli partitions

For a p.m.p. action Gy (X,µ) we let EXG denote the induced orbit equivalence
relation:

EXG = {(x, y) : ∃g ∈ G, g · x = y}.
The pseudo-group of EXG , denoted [[EXG ]], is the set of all Borel bijections θ :
dom(θ) → rng(θ) where dom(θ), rng(θ) ⊆ X are Borel and θ(x) ∈ G · x for every
x ∈ dom(θ). Note that since G acts measure preservingly and θ(x) ∈ G · x for all
x ∈ dom(θ), θ is measure-preserving as well.

Definition 5.1. Let G y (X,µ) be a p.m.p. action, let θ ∈ [[EXG ]], and let F be
a G-invariant sub-σ-algebra. We say that θ is F-expressible if dom(θ), rng(θ) ∈ F
and there is a F-measurable partition {Zθg : g ∈ G} of dom(θ) such that θ(x) = g ·x
for every x ∈ Zθg and all g ∈ G.

We will need the following two simple lemmas from Part I [31].

Lemma 5.2 ([31, Lem 3.2]). Let G y (X,µ) be a p.m.p. action and let F be
a G-invariant sub-σ-algebra. If θ ∈ [[EXG ]] is F-expressible and A ⊆ X, then
θ(A) = θ(A∩dom(θ)) is σ-algG({A})∨F-measurable. In particular, if A ∈ F then
θ(A) ∈ F .

Lemma 5.3 ([31, Lem 3.3]). Let G y (X,µ) be a p.m.p. action and let F be a
G-invariant sub-σ-algebra. If θ, φ ∈ [[EXG ]] are F-expressible then so are θ−1 and
θ ◦ φ.

In this section we will show how to construct generating partitions which are
approximately Bernoulli. The result of this section will be key in order to study
the Rokhlin entropy values of Bernoulli shifts. We begin with a few lemmas.

Lemma 5.4. Let G y (X,µ) be a p.m.p. ergodic action, let F be a G-invariant
sub-σ-algebra, and let B ∈ F with µ(B) > 0. Then there is a finite collection
Φ ⊆ [[EXG ]] of F-expressible functions such that {dom(φ) : φ ∈ Φ} partitions X and
rng(φ) ⊆ B for every φ ∈ Φ.

Proof. We claim that there is a finite partition γ ⊆ F with µ(C) ≤ µ(B) for every
C ∈ γ. If the factor Gy (Y, ν) of (X,µ) associated to F is purely atomic then we
can simply let γ be the pre-image of the partition of Y into points. On the other
hand, if (Y, ν) is non-atomic then we can find such a partition in Y and let γ be
its pre-image. Now by [31, Lemma 3.5], for every C ∈ γ there is an F-expressible
φC ∈ [[EXG ]] with dom(φC) = C and rng(φC) ⊆ B. Then Φ = {φC : C ∈ γ} has
the desired properties. �

Lemma 5.5. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,
let F be a G-invariant sub-σ-algebra, and let B ∈ F . If ξ is a countable partition
of X and p̄ = (pi) is a probability vector with

H(ξ | F) < µ(B) ·H(p̄),

then there is a partition α = {Ai : 0 ≤ i < |p̄|} of B with µ(Ai) = pi · µ(B) for
every 0 ≤ i < |p̄| and with ξ ⊆ σ-algG(α′)∨F for every partition α′ of X extending
α.
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Proof. Let Φ ⊆ [[EXG ]] be as given by Lemma 5.4. For φ ∈ Φ, define a partition ξφ
of X by

ξφ =
{
X \ rng(φ)

}
∪ φ
(
ξ � dom(φ)

)
,

and set ζ =
∨
φ∈Φ ξφ. Note that ζ is countable since Φ is finite. Also observe that

(5.1) µ(rng(φ)) ·Hrng(φ)(ξφ | F) = µ(dom(φ)) ·Hdom(φ)(ξ | F)

since φ is measure-preserving and φ(F � dom(φ)) = F � rng(φ) by Lemmas 5.2 and
5.3.

We claim that ξ ⊆ σ-algG(ζ) ∨ F . Consider C ∈ ξ and φ ∈ Φ. Since φ is
F-expressible, we have rng(φ) ∈ F . Thus ξφ � rng(φ) ⊆ σ-algG(ζ) ∨ F . It follows
from Lemmas 5.2 and 5.3 that

φ−1(ξφ � rng(φ)) ⊆ σ-algG(ζ) ∨ F .
Since C ∩ dom(φ) is an element of the set on the left, and since C is the union of
C ∩ dom(φ) for φ ∈ Φ, we conclude that ξ ⊆ σ-algG(ζ) ∨ F .

For g ∈ G define γg ∈ [[EXG ]] with dom(γg) = rng(γg) = B by the rule

γg(x) = y ⇐⇒ y = gi · x where i > 0 is least with gi · x ∈ B.
By the Poincaré recurrence theorem, the domain and range of γg are indeed conull in
B. Note that γg is F-expressible since B ∈ F . Let Γ be the group of transformations
of B generated by {γg : g ∈ G}. Then every γ ∈ Γ is F expressible by Lemma 5.3.
Let µB denote the normalized restriction of µ to B, so that µB(A) = µ(A∩B)/µ(B).
Since µ is ergodic, it is not difficult to check that the action of Γ on (B,µB) is
ergodic. Similarly, since µ is non-atomic µB is non-atomic as well. Using (5.1) and
the fact that dom(φ), rng(φ) ∈ F , we have

µ(B) ·HµB (ζ | F) = µ(B) ·HB(ζ | F)

≤
∑
φ∈Φ

µ(B) ·HB(ξφ | F)

=
∑
φ∈Φ

µ(B) ·HB(ξφ | {rng(φ), X \ rng(φ)} ∨ F)

=
∑
φ∈Φ

µ(rng(φ)) ·Hrng(φ)(ξφ | F)

=
∑
φ∈Φ

µ(dom(φ)) ·Hdom(φ)(ξ | F)

= H(ξ | F)

< µ(B) ·H(p̄).

So by Theorem 2.4 there is a partition α = {Ai : 0 ≤ i < |p̄|} of B with µB(Ai) = pi
for every 0 ≤ i < |p̄| and with ζ � B ⊆ σ-algΓ(α) ∨ F . Since ζ � (X \ B) is trivial
and X \B ∈ F , it follows that ζ ⊆ σ-algΓ(α) ∨ F .

Since Ai ⊆ B and µB(Ai) = pi, it follows that µ(Ai) = pi · µ(B). Now let α′

be a partition of X extending α. Since Γ is F-expressible, it follows from Lemma
5.2 that σ-algG(α′) ∨ F is Γ-invariant. Since also B ∈ F and α = α′ � B, we have
σ-algΓ(α) ∨ F ⊆ σ-algG(α′) ∨ F . Therefore ζ ⊆ σ-algG(α′) ∨ F and hence

ξ ⊆ σ-algG(ζ) ∨ F ⊆ σ-algG(α′) ∨ F . �

The following lemma is, in some ways, a strengthening of Theorem 2.4.
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Lemma 5.6. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,
let F be a G-invariant sub-σ-algebra, and let ξ be a countable Borel partition of
X. If β ⊆ F is a collection of pairwise disjoint Borel sets and {p̄B : B ∈ β} is a
collection of probability vectors with

H(ξ | F) <
∑
B∈β

µ(B) ·H(p̄B),

then there is a partition α = {Ai : 0 ≤ i < |α|} of ∪β with µ(Ai ∩ B) = pBi · µ(B)
for every B ∈ β and 0 ≤ i < |α| and with ξ ⊆ σ-algG(α′)∨F for every partition α′

of X extending α.

Proof. Without loss of generality, we may assume that β consists of non-null sets
and that each probability vector p̄B is non-trivial. Fix ε > 0 with

H(ξ | F) <
∑
B∈β

µ(B) ·H(p̄B)− ε · µ(∪β).

For each B ∈ β, fix any probability vector q̄B satisfying

µ(B) ·H(p̄B)− ε · µ(B) < H(q̄B) < µ(B) ·H(p̄B).

Let r̄ be the probability vector which represents the independent join of the q̄B ’s.
Specifically, r̄ = (rπ)π∈Nβ where

rπ =
∏
B∈β

qBπ(B).

Then

H(r̄) =
∑
B∈β

H(q̄B) >
∑
B∈β

µ(B) ·H(p̄B)− ε · µ(∪β) > H(ξ | F).

So by Theorem 2.4 there is a partition γ = {Cπ : π ∈ Nβ} with ξ ⊆ σ-algG(γ) ∨ F
and with µ(Cπ) = rπ for every π ∈ Nβ .

For each B ∈ β, let γB be the coarsening of γ associated to q̄B . Specifically,
γB = {CBi : 0 ≤ i < |q̄B |} where

CBi =
⋃
π∈Nβ
π(B)=i

Cπ.

Note that γ =
∨
B∈β γ

B . Also note that µ(CBi ) = qBi and H(γB) = H(q̄B) < µ(B) ·
H(p̄B). For each B ∈ β we apply Lemma 5.5 to γB in order to obtain a partition
αB = {ABi : 0 ≤ i < |p̄B |} of B with µ(ABi ) = µ(B) · pBi and γB ⊆ σ-algG(ζ) ∨ F
for every partition ζ of X extending αB . Now define α = {Ai : 0 ≤ i < |α|} where
Ai =

⋃
B∈β A

B
i . Then for B ∈ β and 0 ≤ i < |α| we have µ(Ai ∩ B) = µ(ABi ) =

pBi · µ(B). Furthermore, if α′ is a partition of X which extends α, then α′ extends
every αB and hence γB ⊆ σ-algG(α′) ∨ F . It follows that

ξ ⊆ σ-algG(γ) ∨ F ⊆ σ-algG(α′) ∨ F . �

We will need the result of Abért and Weiss that all free actions weakly contain
Bernoulli shifts [1]. The following is a slightly modified statement of their result,
obtained by invoking [1, Lemma 5] and performing a perturbation.



KRIEGER’S FINITE GENERATOR THEOREM FOR COUNTABLE GROUPS II 19

Theorem 5.7 (Abért–Weiss [1]). Let G y (X,µ) be a p.m.p. free action, and let
p̄ = (pi) be a finite probability vector. If T ⊆ G is finite and ε > 0, then there is a
partition γ = {Ci : 0 ≤ i < |p̄|} of X such that µ(Ci) = pi for every 0 ≤ i < |p̄| and
H(γT )/|T | > H(γ)− ε.

We are almost ready to construct approximately Bernoulli generating partitions.
For this construction we will find it more convenient to use Borel partitions of
([0, 1], λ), where λ is Lebesgue measure, in place of probability vectors. We first
make a simple observation.

Lemma 5.8. If Q ≤ P are finite partitions of ([0, 1], λ) and 0 < r < H(P | Q),
then there is a finite partition R such that Q ≤ R and H(P | R) = r.

Proof. Fix a dRok
λ -continuous 1-parameter family of finite partitions Qt, 0 ≤ t ≤ 1,

such that Q0 = Q, Q1 = P, and Q ≤ Qt for all t. The function t 7→ H(P | Qt) is
continuous, H(P | Q0) = H(P | Q) > r, and H(P | Q1) = H(P | P) = 0. Therefore
there is t ∈ (0, 1) with H(P | Qt) = r. Set R = Qt. �

For countable partitions α and β of (X,µ) we define

dµ(α, β) = inf
{
µ(Y ) : Y ⊆ X and α � (X \ Y ) = β � (X \ Y )

}
.

The function dµ defines a metric on the space of countable partitions, and in fact
for every n ∈ N the restrictions of dµ and dRok

µ to the space of n-piece partitions are
uniformly equivalent [10, Fact 1.7.7]. We will temporarily need to use this metric
in the proof of the next theorem.

Recall that for a countable ordered partition α = {Ai : 0 ≤ i < |α|} we let
dist(α) denote the probability vector having ith term µ(Ai). For B ⊆ X we also
write distB(α) for the probability vector having ith term µ(Ai ∩B)/µ(B).

Theorem 5.9. Let G be a countably infinite group and let G y (X,µ) be a free
p.m.p. ergodic action. Let P and Q be ordered countable partitions of ([0, 1], λ) with
Q ≤ P and H(P) <∞. If hRok

G (X,µ) < H(P | Q), then for every finite T ⊆ G and
ε > 0 there is an ordered generating partition α with dist(α) = dist(P),

1

|T |
·H(αT ) > H(α)− ε,

and hRok
G,µ(β) < ε, where β is the coarsening of α corresponding to Q ≤ P.

Proof. First assume that P is finite. Apply Lemma 5.8 to obtain a finite partition
R of [0, 1] which is finer than Q and satisfies

hRok
G (X,µ) < H(P | R) < hRok

G (X,µ) +
ε

256 · |T |3
.

Without loss of generality, we may assume that λ(R) > 0 for every R ∈ R. Set
s = minR∈R λ(R). Since dµ and dRok

µ are uniformly equivalent on the space of
partitions of X having at most |P| pieces, there is

0 < κ <
ε

256 · |T |3 ·H(P)

satisfying
hRok
G (X,µ) < (1− κ) ·H(P | R)

such that dRok
µ (ξ, ξ′) < ε/8 whenever ξ and ξ′ are partitions of X with at most |P|

pieces and with dµ(ξ, ξ′) ≤ κ.
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By Theorem 2.6, there is a factor Gy (Y, ν) of (X,µ) such that

hRok
G (Y, ν) < sκ ·H(P) <

ε

256 · |T |3

and G acts freely on (Y, ν). Let F be the sub-σ-algebra of X associated to (Y, ν).
Note that by sub-additivity

hRok
G (X,µ) ≤ hRok

G (X,µ | F) + hRok
G (Y, ν) < hRok

G (X,µ | F) +
ε

256 · |T |3
.

Therefore

(5.2) H(P | R) < hRok
G (X,µ) +

ε

256 · |T |3
< hRok

G (X,µ | F) +
ε

128 · |T |3
.

Since G acts freely on (Y, ν), the Abért–Weiss theorem implies that there is an
ordered partition γ = {Ck : 0 ≤ k < |R|} ⊆ F with dist(γ) = dist(R) and

(5.3)
1

|T |
·H(γT ) > H(γ)− ε

2
.

By construction hRok
G (Y, ν) < sκ · H(P). So by applying Theorem 2.4 to (Y, ν)

(and invoking Lemma 2.3) we obtain a set Z0 ∈ F with µ(Z0) = sκ and a partition

α0 = {A0
i : 0 ≤ i < |P|} ⊆ F of Z0 with F ⊆ σ-algred

G (α0) and

(5.4) µ(A0
i ) = sκ · λ(Pi) = µ(Z0) · λ(Pi)

for every 0 ≤ i < |P|. Note that

µ(Z0 ∩ Ck) ≤ µ(Z0) = sκ ≤ κ · λ(Rk) = κ · µ(Ck)

for all 0 ≤ k < |R| since dist(γ) = dist(R). Since (Y, ν) is non-atomic and {Z0} ∪
γ ⊆ F , it follows from the above inequality that there exists Z1 ∈ F such that
Z1 ∩ Z0 = ∅, µ(Z1) = 1− κ, and µ(Z1 ∩ C) = (1− κ) · µ(C) for every C ∈ γ.

Consider the collection γ � Z1 of pairwise disjoint sets. For each Ck∩Z1 ∈ γ � Z1

define the probability vector p̄Ck∩Z1 = distRk(P). We have

hRok
G (X,µ | F) ≤ hRok

G (X,µ)

< (1− κ) ·H(P | R)

=
∑

0≤k<|R|

(1− κ)λ(Rk) ·HRk(P)

=
∑

0≤k<|R|

µ(Ck ∩ Z1) ·H(p̄Ck∩Z1).

So by Lemma 5.6, there is a partition α1 = {A1
i : 0 ≤ i < |P|} of Z1 with

(5.5) µ(A1
i ∩ Ck ∩ Z1) =

λ(Rk ∩ Pi)
λ(Rk)

· µ(Ck ∩ Z1) = (1− κ) · λ(Rk ∩ Pi)

for every i and k and with σ-algG(α′) ∨ F = B(X) for all partitions α′ extending
α1. Note that

(5.6) µ(A1
i ) = (1− κ) · λ(Pi) = µ(Z1) · λ(Pi)

for every i.
Set Z2 = X \ (Z0 ∪ Z1). Pick any partition α2 = {A2

i : 0 ≤ i < |P|} of Z2 with

(5.7) µ(A2
i ) = λ(Pi) · µ(Z2)
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for every i. Set α = {Ai : 0 ≤ i < |P|} where Ai = A0
i ∪ A1

i ∪ A2
i . Then

µ(Ai) = λ(Pi) for every i by (5.4), (5.6), and (5.7). Additionally, α extends α0 and
thus F ⊆ σ-algG(α) by Lemma 2.2. Similarly, α extends α1 so

B(X) = σ-algG(α) ∨ F = σ-algG(α).

Thus α is generating.
In order to check that hRok

G,µ(β) < ε, where β is the coarsening of α corresponding

to Q ≤ P, we will temporarily work with a perturbation α∗ of α. By (5.5), the
partition α ∨ γ almost has the same distribution as P ∨ R. We perturb α so that
the joint distribution with γ will be precisely the distribution of P ∨ R. Using
(5.5), we may pick a partition α∗ = {A∗i : 0 ≤ i < |P|} extending α1 and satisfying
µ(A∗i ∩ Ck) = λ(Pi ∩ Rk) for all 0 ≤ i < |P| and 0 ≤ k < |R|. Then dist(α) =
dist(α∗) = dist(P) and dµ(α, α∗) ≤ µ(Z0 ∪ Z2) = κ. It follows from the definition
of κ that dRok

µ (α, α∗) < ε/8 and thus by (5.2)

H(α | γ) < H(α∗ | γ) + ε/8

= H(P | R) + ε/8

< hRok
G (X,µ | F) + ε/4

≤ H(α | F) + ε/4.(5.8)

Let β and β∗ be the coarsenings of α and α∗, respectively, corresponding to the
coarsening Q of P. Since µ(A∗i ∩ Ck) = λ(Pi ∩ Rk) for all i and k, there is an
isomorphism (X,µ) → ([0, 1], λ) of measure spaces which identifies α∗ with P and
γ with R. Since Q is coarser than R, it follows that β∗ is coarser than γ. So
β∗ ⊆ F and hence hRok

G,µ(β∗) ≤ hRok
G (Y, ν) < ε/8. Additionally, dµ(α, α∗) ≤ κ

implies dµ(β, β∗) ≤ κ and thus dRok
µ (β, β∗) < ε/8. It follows that H(β | β∗) < ε/8

and hence hRok
G,µ(β) < ε/4 < ε as required.

Finally, we check that H(αT )/|T | > H(α) − ε. Using (5.2) and the fact that
Z0, Z1, Z2 ∈ F , we have

H(α | F) = µ(Z0 ∪ Z2) ·HZ0∪Z2
(α | F) + µ(Z1) ·HZ1

(α | F)

≤ µ(Z0 ∪ Z2) ·HZ0∪Z2
(α) + HZ1

(α | γ)

= κ ·H(P) + H(P | R)

<
ε

256 · |T |3
+ hRok

G (X,µ | F) +
ε

128 · |T |3

< hRok
G (X,µ | F) +

ε

64 · |T |3

Applying Theorem 3.3, we conclude that

1

|T |
·H(αT | γT ) ≥ 1

|T |
·H(αT | F) ≥ H(α | F)− ε

4
.

From the above inequality and (5.8) we obtain

(5.9)
1

|T |
·H(αT | γT ) > H(α | γ)− ε

2
.

Also, we observe that

(5.10) H(γT | αT ) ≤
∑
t∈T

H(t · γ | αT ) ≤
∑
t∈T

H(t · γ | t · α) = |T | ·H(γ | α).
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Therefore, using (5.3), (5.9), and (5.10), we have

1

|T |
·H(αT ) =

1

|T |
·H(αT ∨ γT )− 1

|T |
·H(γT | αT )

=
1

|T |
·H(γT ) +

1

|T |
·H(αT | γT )− 1

|T |
·H(γT | αT )

> H(γ)− ε/2 + H(α | γ)− ε/2−H(γ | α)

= H(α ∨ γ)− ε−H(γ | α)

= H(α)− ε.
To complete the proof, we consider the case where P is countably infinite.

By Lemma 2.1, there is a finite Q0 ≤ Q so that H(Q | Q0) < ε/2. Note that
hRok
G (X,µ) < H(P |Q) ≤ H(P |Q0). Now choose a finite P0 ≤ P such that Q0 ≤ P0,

H(P | P0) < ε/2, and hRok
G (X,µ) < H(P0 | Q0). Apply the above argument to get

a generating partition α0 with dist(α0) = dist(P0), H(αT0 )/|T | > H(α0) − ε/2,
and hRok

G,µ(β0) < ε/2, where β0 is the coarsening of α0 corresponding to Q0. Since

(X,µ) is non-atomic, we may choose α ≥ α0 with dist(α) = P. Clearly α is still
generating. Since H(α | α0) = H(P | P0) < ε/2, we have

1

|T |
·H(αT ) ≥ 1

|T |
·H(αT0 ) > H(α0)− ε/2 > H(α)− ε.

Finally, if β is the coarsening of α corresponding to Q then H(β |β0) = H(Q|Q0) <
ε/2 and hence hRok

G,µ(β) < hRok
G,µ(β0) + ε/2 < ε. �

6. Rokhlin entropy of Bernoulli shifts: Finite case

In this section we study the Rokhlin entropy of (LG, λG) when H(L, λ) < ∞.
We first restate Theorem 5.9 in terms of isomorphisms.

Corollary 6.1. Let G be a countably infinite group and let G y (X,µ) be a
free p.m.p. ergodic action. Let (L, λ) be a probability space with L finite. Let
L be the canonical partition of LG, and let K be a partition coarser than L . If
hRok
G (X,µ) < H(L |K ), then for every open neighborhood U ⊆ EG(LG) of λG and

every ε > 0, there is a G-equivariant isomorphism φ : (X,µ)→ (LG, ν) with ν ∈ U
and hRok

G,ν (K ) < ε.

Proof. By definition, L = {R` : ` ∈ L} where

R` = {y ∈ LG : y(1G) = `}.
Since U is open, there are continuous functions f1, . . . , fn on LG and κ1 > 0 such
that for all ν ∈ EG(LG)∣∣∣∫ fi dλG − ∫ fi dν∣∣∣ < κ1 for all 1 ≤ i ≤ n =⇒ ν ∈ U.

Since LG is compact, each fi is uniformly continuous and therefore there is a finite
T ⊆ G and continuous L T -measurable functions f ′i such that ‖fi − f ′i‖ < κ1/2 for
each 1 ≤ i ≤ n, where ‖ · ‖ denotes the sup-norm. Therefore there is κ2 > 0 such
that for all ν ∈ EG(LG)∣∣∣λG(D)− ν(D)

∣∣∣ < κ2 for all D ∈ L T =⇒ ν ∈ U.

By viewing the restriction ν � L T as a |L T |-tuple of real numbers from [0, 1], we
see that the quantity |T | ·Hν(L )−Hν(L T ) is a continuous non-negative function
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of ν � L T , and it is equal to 0 if and only if the partitions t ·L , t ∈ T , are mutually

ν-independent. By compactness of [0, 1]|L
T | and by G-invariance of ν, it follows

that there is κ3 > 0 such that

ν(R`) = λG(R`) for all ` ∈ L and |T | ·Hν(L )−Hν(L T ) < κ3 =⇒ ν ∈ U.
Now apply Theorem 5.9 to obtain a generating partition α = {A` : ` ∈ L}

of X satisfying µ(A`) = λG(R`) for every ` ∈ L, H(αT ) > |T | · H(α) − κ3, and
hRok
G,µ(β) < ε, where β is the coarsening of α corresponding to K . Since α is

generating and its classes are indexed by L, it induces a G-equivariant isomorphism
φ : (X,µ) → (LG, ν) which identifies α with L and β with K . We immediately
have ν(R`) = µ(A`) = λG(R`) for every ` ∈ L and

|T | ·Hν(L )−Hν(L T ) = |T | ·Hµ(α)−Hµ(αT ) < κ3.

So ν ∈ U . Additionally, hRok
G,ν (K ) = hRok

G,µ(β) < ε. �

The key idea to understanding the Rokhlin entropy of (LG, λG) is to combine
the approximations provided by the previous corollary with continuity properties
of Rokhlin entropy. Here we develop only those continuity properties which are es-
sential to studying hRok

G (LG, λG). A comprehensive study of the various continuity
properties of Rokhlin entropy will be presented in Part III [2]. The results in Part
III will in particular cover the case of actions which are not necessarily ergodic.

Recall that a real-valued function f on a topological space X is called upper-
semicontinuous if for every x ∈ X and ε > 0 there is an open set U containing x
with f(y) < f(x) + ε for all y ∈ U . When X is first countable, this is equivalent to
saying that f(x) ≥ lim sup f(xn) whenever (xn) is a sequence converging to x.

Lemma 6.2. Let G be a countable group, let L be a finite set, and let LG have
the product topology. Let C be a countable collection of clopen sets, and let F be
the smallest G-invariant σ-algebra containing C. Then the map µ ∈ EG(LG) 7→
hRok
G (LG, µ | F) is upper-semicontinuous in the weak∗-topology.

Proof. Let L = {R` : ` ∈ L} be the canonical generating partition for LG, where
R` = {x ∈ LG : x(1G) = `}. Fix a G-invariant probability measure µ on LG and
fix ε > 0. Pick a partition α satisfying Hµ(α | F) < hRok

G (LG, µ | F) + ε/4 and
σ-algG(α) ∨ F = B(LG) (equality up to µ-null sets). Let γ be a finite partition
which is measurable with respect to the G-invariant algebra generated by C and let
T ⊆ G be a finite set satisfying

Hµ(L | αT ∨ γ) < ε/4 and Hµ(α | γ) < hRok
G (LG, µ | F) + ε/4.

Since L is a generating partition, there is a finite W ⊆ G and a finite coarsening
β ≤ LW with dRok

µ (β, α) < ε/(8|T |). Then

Hµ(L | βT ∨ γ) < Hµ(L | αT ∨ γ) + 2|T | · dRok
µ (α, β) < ε/2

and
Hµ(β | γ) < Hµ(α | γ) + dRok

µ (α, β) < hRok
G (LG, µ | F) + ε/2.

Let U be the set of G-invariant probability measures ν satisfying Hν(L |βT ∨ γ) <
ε/2 and Hν(β | γ) < hRok

G (LG, µ | F) + ε/2. Since L , β, and γ are finite clopen
partitions, the set U is open and contains µ. If ν ∈ U then by sub-additivity

hRok
G (LG, ν | F) ≤ Hν(β | γ) + Hν(L | βT ∨ γ) < hRok

G (LG, µ | F) + ε. �

We need one more continuity property of Rokhlin entropy.
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Lemma 6.3. Let G y (X,µ) be a p.m.p. ergodic action, let F be a G-invariant
sub-σ-algebra, and let α be a countable partition. Fix an increasing sequence of
partitions αn ≤ α with α =

∨
n∈N αn. For each n let G y (Yn, νn) be the factor

of (X,µ) associated to σ-algG(αn) ∨ F . Also let Fn be the image of F in Yn. If
H(α) <∞ and σ-algG(α) ∨ F = B(X) then

hRok
G (X,µ | F) = lim

n→∞
hRok
G (Yn, νn | Fn).

Proof. By sub-additivity, for every n ∈ N we have

hRok
G (X,µ | F) ≤ hRok

G (Yn, νn | Fn) + H(α | αn).

Since H(α|αn) converges to 0, we conclude hRok
G (X,µ|F) ≤ lim infn→∞ hRok

G (Yn, νn|
Fn). Now fix ε > 0 and let P be a partition of X satisfying H(P | F) < hRok

G (X,µ |
F) + ε/6 and σ-algG(P)∨F = B(X). Pick a finite set T ⊆ G with H(α | PT ∨F) <
ε/6. Let γ′ ⊆ F be a finite partition with H(P | γ′) < hRok

G (X,µ | F) + ε/6 and
H(α | PT ∨ γ′) < ε/6. Since σ-algG(α) ∨ F = B(X), we can find a finite partition
γ′′ ⊆ F , a finite W ⊆ G, and a coarsening Q ≤ αW ∨ γ′′ such that dRok

µ (Q,P) <
ε/(24|T |). Set γ = γ′ ∨ γ′′. Let n ∈ N be sufficiently large so that H(α | αn) < ε/6
and so that there is a partition Qn ≤ αWn ∨ γ with dRok

µ (Qn,Q) < ε/(24|T |). Then

dRok
µ (αn, α) < ε/6 and dRok

µ (Qn,P) < ε/(12|T |). Therefore

H(αn | QTn ∨ γ) < H(α | PT ∨ γ) + dRok
µ (α, αn) + 2|T | · dRok

µ (Qn,P) < ε/2

and

H(Qn | γ) < H(P | γ) + dRok
µ (Qn,P) < hRok

G (X,µ | F) + ε/2.

So by sub-additivity

hRok
G (Yn, νn | Fn) ≤ H(Qn | γ) + H(αn | QTn ∨ γ) < hRok

G (X,µ | F) + ε.

This holds for all sufficiently large n and all ε > 0, completing the proof. �

Fix a countably infinite group G. Recall from the introduction the quantity

hRok
sup (G) = sup

Gy(X,µ)

hRok
G (X,µ),

where the supremum is taken over all free ergodic p.m.p. actions G y (X,µ)
with hRok

G (X,µ) < ∞. If there is a free ergodic p.m.p. action G y (X,µ) with
hRok
G (X,µ) = ∞, we do not know if it necessarily follows that hRok

sup (G) = ∞. In
particular, we do not know if Gy (X,µ) must factor onto free actions having large
but finite Rokhlin entropy values. However, we have the following.

Lemma 6.4. Let G be a countably infinite group and let G y (X,µ) be a free
p.m.p. ergodic action. If hRok

G (X,µ) < ∞ then for every 0 ≤ t ≤ hRok
G (X,µ) and

δ > 0 there is a factor G y (Y, ν) of (X,µ) such that G acts freely on Y and
hRok
G (Y, ν) ∈ (t− δ, t+ δ).

Proof. Let p̄ be a probability vector with H(p̄) = t, and let q̄ be a probability
vector with hRok

G (X,µ) − t < H(q̄) < hRok
G (X,µ) − t + δ. Let r̄ be the probability

vector which represents the independent join of p̄ and q̄. Specifically, r̄ = (ri,j)
where ri,j = pi · qj . We have H(r̄) = H(p̄) + H(q̄) so hRok

G (X,µ) < H(r̄). By
Theorem 1.1 there is a generating partition γ = {Ci,j} with µ(Ci,j) = ri,j . Let
α = {Ai : 0 ≤ i < |p̄|} be the coarsening of γ associated to p̄, meaning

Ai = ∪{Ci,j : 0 ≤ j < |q̄|}.
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Similarly define β = {Bj : 0 ≤ j < |q̄|} by

Bj = ∪{Ci,j : 0 ≤ i < |p̄|}.

Then dist(α) = p̄, dist(β) = q̄, and α ∨ β = γ.
By Theorem 2.6, there is a free factor Gy (Z, η) of (X,µ) with hRok

G (Z, η) < δ.
Let ζ ′ be a generating partition for Z with H(ζ ′) < δ, and let ζ be the pre-image of
ζ ′ in X. Let Gy (Y, ν) be the factor of (X,µ) associated to σ-algG(α∨ ζ). Clearly
α∨ ζ pushes forward to a generating partition α′ ∨ ζ ′′ of Y with H(α′) = H(p̄) and
H(ζ ′′) < δ. So hRok

G (Y, ν) ≤ H(α′ ∨ ζ ′′) < t+ δ. By sub-additivity we also have

hRok
G (Y, ν) ≥ hRok

G (X,µ)− hRok
G (X,µ | σ-algG(α ∨ ζ)) ≥ hRok

G (X,µ)−H(β) > t− δ.

Finally, Gy (Y, ν) must be a free action since it factors onto (Z, η). �

We will now consider the Rokhlin entropy of Bernoulli shifts (LG, λG) where
H(L, λ) <∞. Let L be the canonical partition of LG. If K is a partition coarser
than L , then the translates of K are mutually independent and the factor associ-
ated to σ-algG(K ) is a Bernoulli shift G y (KG, κG). In order to emphasize the
fact that σ-algG(K ) corresponds to a Bernoulli factor of (LG, λG), we will write
K G for σ-algG(K ).

Proposition 6.5. Let G be a countably infinite group and let (L, λ) be a probability
space with L finite. Let L be the canonical partition of LG and let K be a partition
coarser than L . Then

hRok
G

(
LG, λG |K G

)
= min

(
H(L |K ), hRok

sup (G)
)
.

Proof. We immediately have hRok
G (LG, λG |K G) ≤ H(L |K ) since L is a gen-

erating partition. We will show that there does not exist any free p.m.p. ergodic
action Gy (X,µ) with

hRok
G (LG, λG |K G) < hRok

G (X,µ) < H(L |K ).

From Lemma 6.4 it will follow that either hRok
G (LG, λG |K G) = H(L |K ) or else

hRok
G (LG, λG |K G) ≥ hRok

G (X,µ) for every free p.m.p. ergodic action G y (X,µ)
with hRok

G (X,µ) <∞.
Towards a contradiction, suppose that Gy (X,µ) is a free p.m.p. ergodic action

with hRok
G (LG, λG |K G) < hRok

G (X,µ) < H(L |K ). Fix ε > 0 with

hRok
G (LG, λG |K G) + ε < hRok

G (X,µ).

By Lemma 6.2, there is an open neighborhood U ⊆ EG(LG) of λG such that
hRok
G (LG, ν |K G) < hRok

G (LG, λG|K G)+ε/2 for all ν ∈ U . By Corollary 6.1, there is
a G-equivariant isomorphism φ : (X,µ)→ (LG, ν) with ν ∈ U and hRok

G,ν (K ) < ε/2.
Then by sub-additivity

hRok
G (X,µ) = hRok

G (LG, ν)

≤ hRok
G,ν (K ) + hRok

G (LG, ν |K G)

< hRok
G (LG, λG |K G) + ε

< hRok
G (X,µ),

a contradiction. �
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Theorem 6.6. Let G be a countably infinite group and let (L, λ) be a probability
space with H(L, λ) <∞. Then

hRok
G (LG, λG) = min

(
H(L, λ), hRok

sup (G)
)
.

Proof. Let L = {R` : ` ∈ L} be the canonical partition of LG where

R` = {y ∈ LG : y(1G) = `}.
Let Ln be an increasing sequence of finite partitions which are coarser than L
and satisfy L =

∨
n∈N Ln. The algebra generated by Ln corresponds to a factor

(Ln, λn) of (L, λ), and the factor of (LG, λG) corresponding to L G
n is (LGn , λ

G
n ).

By Lemma 6.3 hRok
G (LG, λG) = limn→∞ hRok

G (LGn , λ
G
n ). The claim now follows by

applying Proposition 6.5 to each (LGn , λ
G
n ) and using the fact that H(Ln, λn) =

H(Ln) converges to H(L ) = H(L, λ). �

Theorem 6.7. Let P be a countable group containing arbitrarily large finite sub-
groups. If G is any countably infinite group with hRok

sup (G) <∞ then hRok
sup (P ×G) =

0.

Proof. Set Γ = P×G. Let (L, λ) be a probability space with L finite and H(L, λ) >
0, and consider the Bernoulli shift (LΓ, λΓ). By Theorem 6.6 it suffices to show that
hRok

Γ (LΓ, λΓ) = 0.
Fix ε > 0, fix k ∈ N with hRok

sup (G) < log(k), and fix a finite subgroup T ≤ P

with log(k)/|T | < ε. Let L = {R` : ` ∈ L} be the canonical partition of LΓ, where

R` = {x ∈ LΓ : x(1Γ) = `}.
Consider the partition L T . We may write L T = {Dπ : π ∈ LT } where

Dπ =
⋂
t∈T

t ·Rπ(t).

Since T is a group, it naturally acts on LT by shifts: (t ·π)(s) = π(t−1s). For u ∈ T
we have u ·Dπ = Du·π since

u ·Dπ =
⋂
t∈T

ut ·Rπ(t) =
⋂
t∈T

t ·Rπ(u−1t) = Du·π.

Let Q = {Q[π] : π ∈ LT } be the partition of LΓ where [π] denotes the T -orbit of π
and

Q[π] =
⋃
t∈T

Dt·π.

Consider the restricted action G y (LΓ, λΓ) and let G y (Z, η) be the factor
associated to σ-algG(Q). Since T ∩G = {1Γ}, the G-translates of Q are mutually
independent. As LT has at least two distinct T -orbits, the action G y (Z, η) is
isomorphic to a G-Bernoulli shift and is in particular a free action.

By Theorem 2.6, there is a factor Γ y (Y, ν) of (LΓ, λΓ) such that hRok
Γ (Y, ν) < ε

and the action of Γ on Y is free. The T -orbits of Y are finite and partition Y , so
there is a Borel set M ′ ⊆ Y which meets every T -orbit precisely once. Let F be the
Γ-invariant sub-σ-algebra of LΓ associated to Y , and let M ∈ F be the pre-image
of M ′.

Define ξ = {Cπ : π ∈ LT } to be the partition of LΓ defined by

Cπ =
⋃
s∈T

s · (Dπ ∩M).
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This is indeed a partition of LΓ since the T -translates of M partition LΓ and the
sets Dπ ∩M partition M . To add clarification to this definition, we remark that
x1, x2 ∈ LΓ lie in the same class of ξ if and only if s−1

1 ·x1 and s−1
2 ·x2 lie in the same

class of L T , where s1, s2 ∈ T are defined by the condition s−1
1 · x1, s

−1
2 · x2 ∈ M .

We observe that σ-algΓ(ξ) ∨ F = B(LΓ) since for ` ∈ L

R` =
⋃
π∈LT
π(1Γ)=`

Dπ =
⋃
s∈T

⋃
π∈LT
π(1Γ)=`

(
Dπ ∩ s ·M

)
=
⋃
s∈T

⋃
π∈LT
π(1Γ)=`

s · (Ds−1·π ∩M)

=
⋃
s∈T

⋃
π∈LT

π(s−1)=`

s · (Dπ ∩M) =
⋃
s∈T

⋃
π∈LT

π(s−1)=`

(
Cπ ∩ s ·M

)
.

Each Cπ ∈ ξ is T -invariant since for u ∈ T and π ∈ LT we have

u · Cπ =
⋃
s∈T

(us) · (Dπ ∩M) = Cπ.

Furthermore, ξ is finer than Q as

Q[π] =
⋃
t∈T

Dt·π =
⋃
s,t∈T

(
Dt·π ∩ s ·M

)
=
⋃
s,t∈T

(
Dst·π ∩ s ·M

)
=
⋃
s,t∈T

s · (Dt·π ∩M) =
⋃
s,t∈T

(
Ct·π ∩ s ·M

)
=
⋃
t∈T

Ct·π.

Let G y (W,ω) be the factor of (LΓ, λΓ) associated to σ-algG(ξ). Since ξ is
finer than Q, (W,ω) factors onto (Z, η). Thus G acts freely on (W,ω). We have
hRok
G (W,ω) ≤ H(ξ) < ∞ and thus by assumption hRok

G (W,ω) ≤ hRok
sup (G) < log(k).

Apply Theorem 1.1 to get a k-piece generating partition β′ for W , and let β ⊆
σ-algG(ξ) be the pre-image of β′. Then ξ ⊆ σ-algG(β) and hence

B(LΓ) = σ-algΓ(ξ) ∨ F ⊆ σ-algΓ(β) ∨ F .

We observed that every Cπ ∈ ξ is T -invariant. Since G and T commute, it follows
that every set in σ-algG(ξ) is T -invariant. In particular, each B ∈ β is T -invariant.
Therefore, setting

α = {LΓ \M} ∪ (β �M),

we have β ⊆ σ-algT (α) ∨ F . Thus B(LΓ) = σ-algΓ(α) ∨ F . Therefore by sub-
additivity

hRok
Γ (LΓ, λΓ) ≤ hRok

Γ (Y, ν) + hRok
Γ (LΓ, λΓ | F)

< ε+ H(α | F)

≤ ε+ λΓ(M) ·HM (α)

= ε+
1

|T |
·HM (β)

≤ ε+
1

|T |
· log(k)

< 2ε.

Since ε > 0 was arbitrary, we conclude that hRok
Γ (LΓ, λΓ) = 0. �
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7. Rokhlin entropy of Bernoulli shifts: Infinite case

In this section we study the Rokhlin entropy of (LG, λG) when H(L, λ) = ∞.
The key idea will be to combine the results of the previous section together with
a formula for the Rokhlin entropy of an inverse limit of actions. We remark that
there is a strong similarity between the formula we obtain, specifically Corollary
7.4, and the formula for sofic entropy via finite partitions developed by Kerr [19].

Just as with the continuity properties of the previous section, we mention that
the formula for the Rokhlin entropy of inverse limits and its consequences are
developed and studied in greater detail in Part III [2]. The results in Part III will
in particular cover actions which are not necessarily ergodic.

Lemma 7.1. Let Gy (X,µ) be a p.m.p. ergodic action. Suppose that Gy (X,µ)
is the inverse limit of actions Gy (Xn, µn). Identify each B(Xn) as a sub-σ-algebra
of X in the natural way. Let (Fn)n∈N be an increasing sequence of sub-σ-algebras
with Fn ⊆ B(Xn) for every n, and set F =

∨
n∈N Fn. If P is a partition with

P ⊆ B(Xn) for all n and infn∈N H(P | Fn) <∞ then

hRok
G,µ(P | F) = inf

n∈N
hRok
G,µn(P | Fn).

Note that µn appears on the right-hand side of the above expression.

Proof. If (X,µ) has an atom then Xn = X and Fn = F for all sufficiently large
n. So assume that (X,µ) is non-atomic. It is immediate from the definitions that
hRok
G,µ(P |F) ≤ infn h

Rok
G,µn

(P |Fn). So we only need to consider the reverse inequality.

Note that hRok
G,µ(P |F) ≤ Hµ(P |F) <∞. Fix δ > 0 and fix a countable partition

ξ′ with Hµ(ξ′ | F) < hRok
G,µ(P | F) + δ and P ⊆ σ-algG(ξ′) ∨ F . By Theorem 2.4

there is a partition ξ with Hµ(ξ) < hRok
G,µ(P | F) + δ and P ⊆ σ-algG(ξ) ∨ F . Since

infk Hµ(P | Fk) <∞, by Lemma 2.1 there are finite T ⊆ G and k ∈ N such that

Hµ(P | ξT ∨ Fk) < δ.

Using the dense algebra
⋃
n B(Xn), apply Lemma A.3 to obtain n ≥ k and β ⊆

B(Xn) with dRok
µ (β, ξ) < δ/(2|T |). Then we have

Hµ(P | σ-algG(β) ∨ Fn) ≤ Hµ(P | βT ∨ Fk)

≤ Hµ(P | ξT ∨ Fk) + 2|T | · dRok
µ (β, ξ) < 2δ.

Since P, β ⊆ B(Xn), the partition β naturally corresponds to a partition of Xn and
the above inequality becomes

Hµn(P | σ-algG(β) ∨ Fn) < 2δ.

Therefore by sub-additivity

hRok
G,µn(P | Fn) ≤ hRok

G,µn(β | Fn) + hRok
G,µn(P | σ-algG(β) ∨ Fn)

≤ Hµn(β) + Hµn(P | σ-algG(β) ∨ Fn)

< Hµn(β) + 2δ

< Hµ(ξ) + 3δ

< hRok
G,µ(P | F) + 4δ.

Now take the infimum over n ∈ N and let δ tend to 0. �
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Corollary 7.2. Let Gy (X,µ) be a p.m.p. ergodic action, and let (Fn)n∈N be an
increasing sequence of sub-σ-algebras. Set F =

∨
n∈N Fn.

(i) hRok
G,µ(P|F) = infn∈N h

Rok
G,µ(P|Fn) if P is a partition with infn H(P|Fn) <∞.

(ii) hRok
G (X,µ | F) = infn∈N h

Rok
G (X,µ | Fn) if the right-hand side is finite.

Proof. (i). This is immediate from Lemma 7.1 by taking each (Xn, µn) = (X,µ).
(ii). Assume that the right-hand side is finite. Fix k ∈ N with hRok

G (X,µ | Fk) <
∞. Fix a partition P satisfying H(P |Fk) <∞ and σ-algG(P)∨Fk = B(X). Then
σ-algG(P) ∨ Fn = B(X) for all n ≥ k, hence

hRok
G (X,µ | F) = hRok

G,µ(P | F) and hRok
G (X,µ | Fn) = hRok

G,µ(P | Fn) for n ≥ k.

Since infn H(P | Fn) <∞, we can apply (i) to obtain

hRok
G (X,µ | F) = hRok

G,µ(P | F) = inf
n≥k

hRok
G,µ(P | Fn) = inf

n≥k
hRok
G (X,µ | Fn). �

Now we state the formula for the Rokhlin entropy of inverse limits.

Theorem 7.3. Let G y (X,µ) be a p.m.p. ergodic action and let F be a G-
invariant sub-σ-algebra. Suppose that G y (X,µ) is the inverse limit of actions
G y (Xn, µn). Identify each B(Xn) as a sub-σ-algebra of X in the natural way.
Then

(7.1) hRok
G (X,µ | F) <∞⇐⇒

{
inf
n∈N

sup
m≥n

hRok
G,µ(B(Xm) | B(Xn) ∨ F) = 0

and ∀m hRok
G,µ(B(Xm) | F) <∞.

}

Furthermore, when hRok
G (X,µ | F) <∞ we have

(7.2) hRok
G (X,µ | F) = sup

m∈N
hRok
G,µ(B(Xm) | F).

We remark that we do not know if (7.2) is true in general without assuming
hRok
G (X,µ | F) <∞.

Proof. First suppose that hRok
G (X,µ | F) <∞. Then

hRok
G,µ(B(Xm) | F) ≤ hRok

G (X,µ | F) <∞

for all m ∈ N and by applying Corollary 7.2.(ii) we get

0 = hRok
G (X,µ | B(X)) = inf

n∈N
hRok
G (X,µ | B(Xn) ∨ F)

≥ inf
n∈N

sup
m≥n

hRok
G,µ(B(Xm) | B(Xn) ∨ F) ≥ 0.

This proves one implication in the first claim.
Now suppose that the right-side of (7.1) is true. For each i ≥ 1 fix n(i) with

sup
m∈N

hRok
G,µ(B(Xm) | B(Xn(i)) ∨ F) <

δ

2i
.

Then by using m = n(i+ 1) we have

hRok
G,µ(B(Xn(i+1)) | B(Xn(i)) ∨ F) <

δ

2i
.
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Now by sub-additivity we have

hRok
G (X,µ | F) ≤ hRok

G,µ(B(Xn(1)) | F) +

∞∑
i=1

hRok
G,µ(B(Xn(i+1)) | B(Xn(i)) ∨ F)

< hRok
G,µ(B(Xn(1)) | F) + δ.

So hRok
G (X,µ | F) < ∞, completing the proof of the first claim. The second claim

also follows, since above we only assumed that the right-side of (7.1) was true
(equivalently hRok

G (X,µ | F) <∞ by the first claim). By letting δ tend to 0 above,
we get that hRok

G (X,µ | F) ≤ supm h
Rok
G,µ(B(Xm) | F). The reverse inequality is

immediate from the definitions. �

Notice the the formula in the previous theorem relies upon outer Rokhlin en-
tropies computed within the largest space X. When expressing G y (X,µ) as
an inverse limit, it may be more natural to express the Rokhlin entropy of (X,µ)
purely in terms of the actions which build the inverse limit. In order to express
Rokhlin entropy in this way, we must assume that each hRok

G (Xn, µn | Fn) is finite.

Corollary 7.4. Let G y (X,µ) be a p.m.p. ergodic action. Suppose that G y
(X,µ) is the inverse limit of actions G y (Xn, µn). Identify each B(Xn) as a
sub-σ-algebra of X in the natural way. Let (Fn)n∈N be an increasing sequence of
sub-σ-algebras with Fn ⊆ B(Xn) for every n, and set F =

∨
n∈N Fn. Assume that

hRok
G (Xn, µn | Fn) <∞ for all n. Then

hRok
G (X,µ | F) <∞⇐⇒ inf

n∈N
sup
m≥n

inf
k≥m

hRok
G,µk

(B(Xm) | B(Xn) ∨ Fk) = 0.

Furthermore, when hRok
G (X,µ | F) <∞ we have

hRok
G (X,µ | F) = sup

m∈N
inf
k≥m

hRok
G,µk

(B(Xm) | Fk).

Proof. For each m pick a partition αm ⊆ B(Xm) with H(αm | Fm) < ∞ and
B(Xm) = σ-algG(αm) ∨ Fm. Then by Lemma 7.1 we have

hRok
G,µ(B(Xm) | F) = hRok

G,µ(αm | F) = inf
k≥m

hRok
G,µk

(αm | Fk) = inf
k≥m

hRok
G,µk

(B(Xm) | Fk)

and by the same reasoning for every n ≤ m

hRok
G,µ(B(Xm) | B(Xn) ∨ F) = inf

k≥m
hRok
G,µk

(B(Xm) | B(Xn) ∨ Fk).

So the corollary follows from the two identities above and Theorem 7.3. �

Now we proceed to consider Bernoulli shifts (LG, λG) with H(L, λ) = ∞. First
we need a lemma.

Lemma 7.5. Let (L, λ) be a probability space with H(L, λ) = ∞, and let c > 0.
Then there exists a sequence of finite partitions (Ln)n∈N with

∨
n∈N σ-alg(Ln) =

B(L) and

H
(
Lm

∣∣∣∨n 6=m Ln

)
> c

for all m ∈ N.
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Proof. First suppose that L is essentially countable. For ` ∈ L we will write λ(`)
for λ({`}). Since ∑

`∈L

−λ(`) · log λ(`) = H(L, λ) =∞,

we can partition L into finite sets In with∑
`∈In

−λ(`) · log λ(`) > c+ log(2)

for all n. Define

Ln = {L \ In} ∪
{
{`} : ` ∈ In

}
.

Note that H(Ln) > c + log(2). Clearly Ln is finite and
∨
n∈N σ-alg(Ln) = B(L).

Additionally, we have In ∈
∨
k 6=n Lk since L \ In is the union of all singleton sets

contained in
∨
k 6=n Lk. Therefore

H
(
Ln |

∨
k 6=n Lk

)
= H(Ln | {In, L \ In})

= H(Ln)−H({In, L \ In})
≥ H(Ln)− log(2)

> c.

Now suppose that (L, λ) is not essentially countable. Then L decomposes into
a non-atomic part B ⊆ L and a purely atomic part A ⊆ L with {B,A} a partition
of L and λ(B) > 0. Fix any increasing sequence αn of finite partitions of A with
B(L) � A =

∨
n∈N σ-alg(αn) � A. Choose a probability vector p̄ with µ(B)·H(p̄) > c,

and let λB be the normalized restriction of λ to B. Since B has no atoms, we can
find a sequence of λB-independent ordered partitions βn of B with distλB (βn) = p̄
for every n and with B(L) � B =

∨
n∈N σ-alg(βn) � B. Now set Ln = βn ∪ αn.

Then Ln is finite and B(L) =
∨
n∈N σ-alg(Ln). Finally, since {B,A} is coarser

than every Ln we have

H
(
Lm |

∨
n 6=m Ln

)
≥ λ(B) ·HB

(
Lm |

∨
n 6=m Ln

)
= λ(B) ·HB

(
βm |

∨
n 6=m βn

)
= λ(B) ·H(p̄)

> c. �

Theorem 7.6. Let G be a countably infinite group, and let (L, λ) be a probability
space with H(L, λ) = ∞. Then hRok

G (LG, λG) = ∞ if and only if there is a free
ergodic p.m.p. action Gy (X,µ) with hRok

G (X,µ) > 0.

Proof. One implication is immediate: if hRok
G (LG, λG) = ∞ then in particular

hRok
G (LG, λG) > 0. So suppose that Gy (X,µ) is a free p.m.p. ergodic action with
hRok
G (X,µ) > 0. Let (αn) be an increasing sequence of finite partitions of X with
B(X) =

∨
n∈N σ-algG(αn). For each n let Gy (Xn, µn) be the factor of (X,µ) as-

sociated to σ-algG(αn). Using Theorem 2.6, we may choose α1 so that G acts freely
on every (Xn, µn). By Theorem 7.3, there must be n ∈ N with hRok

G (Xn, µn) > 0.
Since also hRok

G (Xn, µn) ≤ H(αn) < ∞, we conclude that hRok
sup (G) > 0. Fix c ∈ R

with 0 < c ≤ hRok
sup (G).
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Apply Lemma 7.5 to get a sequence Ln of finite non-trivial partitions of L with
B(L) =

∨
n∈N σ-alg(Ln) and H(Lm |

∨
n 6=m Ln) ≥ c for all m. For m ≤ k set

L[0,k] =
∨

0≤i≤k

Li and L[0,k],m =
∨

0≤i 6=m≤k

Li.

Note that for k ≥ m we have H(L[0,k] | L[0,k],m) ≥ c by construction. We let
(L[0,k], λ[0,k]) denote the factor of (L, λ) associated to L[0,k]. Let L = {R` : ` ∈ L}
be the canonical (possibly uncountable) partition of LG defined by

R` = {w ∈ LG : w(1G) = `}.

Note that B(LG) = L G. We identify each of the partitions Lm, L[0,k], and L[0,k],m

as coarsenings of L ⊆ B(LG). Note that (LG[0,k], λ
G
[0,k]) is the factor of (LG, λG)

associated to L G
[0,k]. For all n < m ≤ k we have

hRok
G,λG

[0,k]
(L[0,m] |L G

[0,n]) ≥ h
Rok
G,λG

[0,k]
(Lm |L G

[0,k],m) = hRok
G (LG[0,k], λ

G
[0,k] |L

G
[0,k],m).

So by Proposition 6.5 we have

inf
n∈N

sup
m≥n

inf
k≥m

hRok
G,λG

[0,k]
(L G

[0,m] |L
G
[0,n]) ≥ sup

m∈N
inf
k≥m

hRok
G (LG[0,k], λ

G
[0,k] |L

G
[0,k],m)

= sup
m∈N

inf
k≥m

min
(

H(L[0,k] |L[0,k],m), hRok
sup (G)

)
≥ c > 0.

Therefore hRok
G (LG, λG) =∞ by Corollary 7.4. �

Corollary 7.7. Let G be a countably infinite group. The following are equivalent:

(i) hRok
sup (G) > 0;

(ii) there is a free ergodic p.m.p. action with 0 < hRok
G (X,µ) <∞;

(iii) there is a free ergodic p.m.p. action with hRok
G (X,µ) =∞.

Proof. The equivalence of (i) and (ii) is by definition. Theorem 7.6 shows that (ii)
implies (iii), and the implication (iii) implies (ii) was deduced in the first paragraph
of the proof of Theorem 7.6. �

We mention that if in Theorem 7.3 the equation (7.2) holds without assuming
hRok
G (X,µ | F) <∞, then from a free ergodic action Gy (Y, ν) with hRok

G (Y, ν) =
∞ one could use the argument in the first paragraph of the proof of Theorem
7.6 to show that (Y, ν) has free factors with arbitrarily large but finite Rokhlin
entropy values. From Corollary 7.7 it would then follow that hRok

sup (G) > 0 implies

hRok
sup (G) =∞.

Corollary 7.8. Assume that every countably infinite group G admits a free ergodic
p.m.p. action with hRok

G (X,µ) > 0. Then:

(i) hRok
G (LG, λG) = H(L, λ) for all countably infinite groups G and all proba-

bility spaces (L, λ).
(ii) All Bernoulli shifts over countably infinite groups have completely positive

outer Rokhlin entropy.
(iii) Gottschalk’s surjunctivity conjecture and Kaplansky’s direct finiteness con-

jecture are true.
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Proof. It follows from Corollary 7.7 and Theorem 6.7 that hRok
sup (G) = ∞ for all

countably infinite groups G. By applying Theorems 6.6 and 7.6 we obtain (i).
From Corollaries 4.1 and 4.2 we obtain (ii) and (iii). �

Appendix A. Metrics on the space of partitions

Let (X,µ) be a probability space. Recall that the measure algebra of (X,µ)
is the algebra of equivalence classes of Borel sets mod null sets together with the
metric dµ(A,B) = µ(A4B). There is a closely related metric dµ on the space of
all countable Borel partitions P defined by

dµ(α, β) = inf
{
µ(Y ) : Y ⊆ X and α � (X \ Y ) = β � (X \ Y )

}
.

We will tend to work more frequently with the space PH of countable Borel parti-
tions α satisfying H(α) <∞. In addition to the metric dµ, this space also has the
Rokhlin metric dRok

µ defined by

dRok
µ (α, β) = H(α | β) + H(β | α).

Lemma A.1. Let G be a countable group, let G y (X,µ) be a p.m.p. action, let
F be a G-invariant sub-σ-algebra, and let α, β, ξ ∈PH. Then:

(i) dRok
µ (βT , ξT ) ≤ |T | · dRok

µ (β, ξ) for every finite T ⊆ G;

(ii) dRok
µ (α ∨ β, α ∨ ξ) ≤ dRok

µ (β, ξ);

(iii) |H(β | F)−H(ξ | F)| ≤ dRok
µ (β, ξ);

(iv) |H(α | β ∨ F)−H(α | ξ ∨ F)| ≤ 2 · dRok
µ (β, ξ).

Proof. We have

H(βT | ξT ) ≤
∑
t∈T

H(t · β | ξT ) ≤
∑
t∈T

H(t · β | t · ξ) = |T | ·H(β | ξ),

where the final equality holds since G acts measure-preservingly. This establishes
(i). Item (ii) is immediate since H(α∨ β |α∨ ξ) = H(β |α∨ ξ) ≤ H(β | ξ). For (iii),
we may assume that H(β | F) ≥ H(ξ | F). Then we have

H(β | F)−H(ξ | F) ≤ H(β ∨ ξ | F)−H(ξ | F) = H(β | ξ ∨F) ≤ H(β | ξ) ≤ dRok
µ (β, ξ).

Item (iv) follows from (ii) and (iii) by using the identity H(α | β ∨ F) = H(α ∨ β |
F)−H(β | F). �

In the next lemma we will use the well-known property [10, Fact 1.7.7] that
for every n ∈ N, the restrictions of dµ and dRok

µ to the space of n-piece partitions

are uniformly equivalent. Moreover, dµ is always uniformly dominated by dRok
µ ,

meaning that for every ε > 0 there is δ > 0 such that if α, β ∈PH and dRok
µ (α, β) <

δ then dµ(α, β) < ε.

Lemma A.2. Let Gy (X,µ) be a p.m.p. action. Let T ⊆ G be finite, let α ∈PH,
and let β be a coarsening of αT . For every ε > 0 there is δ > 0 so that if α′ ∈PH

and dRok
µ (α′, α) < δ, then there is a coarsening β′ of α′T with dRok

µ (β′, β) < ε.

Proof. By Lemma 2.1, there is a finite partition β0 coarser than β with dRok
µ (β0, β) <

ε/2. Set n = |β0| and let κ > 0 be such that dRok
µ (ζ, ζ ′) < ε/2 whenever ζ and ζ ′

are n-piece partitions with dµ(ζ, ζ ′) < κ. Let δ > 0 be such that dµ(ξ, ξ′) < κ/|T |
whenever ξ, ξ′ ∈PH satisfy dRok

µ (ξ, ξ′) < δ. Now let α′ ∈PH with dRok
µ (α′, α) < δ.

Then dµ(α′, α) < κ/|T | and hence dµ(α′T , αT ) < κ. This means there is a set
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Y ⊆ X with µ(Y ) < κ and α′T � (X \ Y ) = αT � (X \ Y ). Thus there is a n-piece
coarsening β′ of α′T with β′ � (X \ Y ) = β0 � (X \ Y ). So dµ(β′, β0) < κ and hence
dRok
µ (β′, β0) < ε/2. We conclude that dRok

µ (β′, β) < ε. �

Lemma A.3. Let (X,µ) be a probability space, and let (An)n∈N be an increasing
sequence of algebras of Borel sets whose union is dµ-dense in a sub-σ-algebra F .
If β ∈ PH, β ⊆ F , and ε > 0 then there is k ∈ N and a partition β′ ⊆ Ak with
dRok
µ (β′, β) < ε.

Proof. By Lemma 2.1 there is a finite partition β0 coarser than β with dRok
µ (β0, β) <

ε/2. Set n = |β0| and let δ > 0 be such that dRok
µ (ζ, ζ ′) < ε/2 whenever ζ and ζ ′ are

n-piece partitions with dµ(ζ, ζ ′) < δ. Since the Ak’s are increasing and have dense
union in F and since β0 is finite, there is k ∈ N and a n-piece partition β′ ⊆ Ak
with dµ(β′, β0) < δ. Then dRok

µ (β′, β0) < ε/2 and dRok
µ (β′, β) < ε. �

Corollary A.4. Let Gy (X,µ) be a p.m.p. action, let F be a sub-σ-algebra, and
let α be a partition with F ⊆ σ-algG(α). If β ∈PH, β ⊆ F , and ε > 0, then there
exists a finite T ⊆ G and a coarsening β′ of αT with dRok

µ (β′, β) < ε.

Proof. Pick an increasing sequence of finite sets (Tn)n∈N with
⋃
n Tn = G. Let An

be the algebra generated by αTn . Then
⋃
nAn is dense in F since F ⊆ σ-algG(α).

Now apply Lemma A.3. �

The same proof also provides the following.

Corollary A.5. Let G y (X,µ) be a p.m.p. action, let F be a sub-σ-algebra,
and let (αn) be an increasing sequence of partitions with F ⊆

∨
n∈N σ-algG(αn).

If β ∈ PH, β ⊆ F , and ε > 0, then there exist k ∈ N, a finite T ⊆ G, and a
coarsening β′ of αTk with dRok

µ (β′, β) < ε.
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