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Abstract. We continue the study of Rokhlin entropy, an isomorphism invari-

ant for p.m.p. actions of countable groups introduced in Part I. In this paper
we prove a non-ergodic finite generator theorem and use it to establish sub-

additivity and semi-continuity properties of Rokhlin entropy. We also obtain

formulas for Rokhlin entropy in terms of ergodic decompositions and inverse
limits. Finally, we clarify the relationship between Rokhlin entropy, sofic en-

tropy, and classical Kolmogorov–Sinai entropy. In particular, using Rokhlin

entropy we give a new proof of the fact that ergodic actions with positive sofic
entropy have finite stabilizers.

1. Introduction

Let (X,µ) be a standard probability space, meaning X is a standard Borel
space with Borel σ-algebra B(X) and µ is a Borel probability measure. Let G
be a countable group and let G y (X,µ) be a probability-measure-preserving
(p.m.p.) action. For ξ ⊆ B(X) let σ-alg(ξ) be the σ-algebra generated by ξ and let
σ-algG(ξ) denote the smallest G-invariant σ-algebra containing ξ. A Borel partition
α is generating, or a generator, if σ-algG(α) = B(X) (equality is understood to be
modulo µ-null sets).

In Part I of this series, Seward defined the Rokhlin entropy of a p.m.p. action
Gy (X,µ), denoted hRok

G (X,µ), to be

inf
{

H(α |IG) : α a countable partition with σ-algG(α) ∨IG = B(X)
}
,

where IG is the σ-algebra of G-invariant Borel sets and H(· | ·) is conditional
Shannon entropy (for the definition of conditional Shannon entropy see [7, Def.
1.4.2]). More generally, for a G-invariant sub-σ-algebra F , the Rokhlin entropy of
Gy (X,µ) relative to F , denoted hRok

G (X,µ | F), is

inf
{

H(α | F ∨IG) : α a countable partition with σ-algG(α) ∨ F ∨IG = B(X)
}
.

In the special case of an ergodic action and trivial F = {∅, X}, Rokhlin entropy
simplifies to the more natural form

hRok
G (X,µ) = inf

{
H(α) : α is a countable generating partition

}
.

The purpose of this three-part series has been to introduce, motivate, and lay
some basic foundations for Rokhlin entropy theory. Part I focused on ergodic
actions and developed a generalization of Krieger’s finite generator theorem for
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actions of arbitrary countable groups. We recall this theorem below as we will need
to use it here.

Theorem 1.1 ([28]). Let G be a countably infinite group acting ergodically, but
not necessarily freely, by measure-preserving bijections on a non-atomic standard
probability space (X,µ). Let F be a G-invariant sub-σ-algebra of X. If p̄ = (pi)
is any finite or countable probability vector with hRok

G (X,µ | F) < H(p̄), then there
is a partition α = {Ai : 0 ≤ i < |p̄|} with µ(Ai) = pi for every 0 ≤ i < |p̄| and
σ-algG(α) ∨ F = B(X).

The abstract nature of the definition of Rokhlin entropy, specifically an infimum
over an extremely large set of partitions, initially seems to prevent any viable means
of study. A hidden significance of the above theorem is that it changes this situation.
Specifically, it leads to a sub-additive identity which unlocks a path to studying
Rokhlin entropy.

Part II of this series motivated Rokhlin entropy theory through applications
to Bernoulli shifts. The main theorem of Part II showed that a simple conjec-
tured property of Rokhlin entropy would imply that the Bernoulli 2-shift and the
Bernoulli 3-shift are non-isomorphic for all countably infinite groups, would posi-
tively solve the Gottschalk surjunctivity conjecture for all countable groups, and
would positively solve the Kaplansky direct finiteness conjecture for all groups (all
three of these are currently open problems). It’s also worth noting that Rokhlin
entropy theory has successfully been used to generalize the well known Sinai factor
theorem to all countably infinite groups [31]. Specifically, any free ergodic action of
positive Rokhlin entropy factors onto all Bernoulli shifts of lesser or equal entropy.
Rokhlin entropy has also been studied in [1, 4, 9, 30].

Here in Part III, the final part of the series, we consider non-ergodic actions
for the first time. Having introduced and motivated Rokhlin entropy in the prior
parts, our goal here is to lay some basic foundations for the theory. A critical tool
to doing this, the main theorem of this paper, is a generalization of Theorem 1.1
to non-ergodic actions. Recall that an action G y (X,µ) is aperiodic if µ-almost-
every G-orbit is infinite. Below, for a Borel action Gy X, we write EG(X) for the
set of G-invariant ergodic Borel probability measures on X.

Theorem 1.2. Let Gy (X,µ) be an aperiodic p.m.p. action and let F be a count-
ably generated G-invariant sub-σ-algebra. Let µ =

∫
EG(X)

ν dτ(ν) be the ergodic

decomposition of µ. If ν 7→ p̄ν is a Borel map associating to each ν ∈ EG(X) a
finite or countable probability vector p̄ν = (pνi ) satisfying hRok

G (X, ν | F) < H(p̄ν),
then there is a partition α = {Ai} of X such that σ-algG(α) ∨F = B(X) and such
that ν(Ai) = pνi for every i and τ -almost-every ν ∈ EG(X).

This theorem is optimal in the sense that if σ-algG(α) ∨ F = B(X) (or if
σ-algG(α) ∨ F ∨ IG = B(X)) then hRok

G (X, ν | F) ≤ Hν(α) for τ -almost-every
ν ∈ EG(X) and in general there does not exist an α for which equality hRok

G (X, ν |
F) = Hν(α) holds.

A nearly immediate consequence of this theorem is that Rokhlin entropy satisfies
an ergodic decomposition formula.

Corollary 1.3. Let Gy (X,µ) be a p.m.p. action, let F be a countably generated
G-invariant sub-σ-algebra, and let µ =

∫
EG(X)

ν dτ(ν) be the ergodic decomposition
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of µ. Then

hRok
G (X,µ | F) =

∫
EG(X)

hRok
G (X, ν | F) dτ(ν).

Additionally, it follows that the formula for Rokhlin entropy simplifies in the
setting of aperiodic actions.

Corollary 1.4. Let G y (X,µ) be an aperiodic p.m.p. action and let F be a
G-invariant sub-σ-algebra. Then

hRok
G (X,µ|F) = inf

{
H(α) : α is a countable partition with σ-algG(α)∨F = B(X)

}
.

As we mentioned before, currently the study of Rokhlin entropy is made possible
by a sub-additive identity. This identity has played a crucial role in nearly all
of the results on Rokhlin entropy appearing in the literature so far. This sub-
additive identity was first proved for ergodic actions in Part I [28], and generalized
to countable sub-additivity in Part II [29]. To state this property properly we need
a definition. For a p.m.p. action G y (X,µ), a collection ξ ⊆ B(X), and a G-
invariant sub-σ-algebra F , the outer Rokhlin entropy of ξ relative to F , denoted
hRok
G,µ(ξ | F), is defined to be

inf
{

H(α | F ∨IG) : α a countable partition of X with ξ ⊆ σ-algG(α) ∨ F ∨IG

}
.

If G y (Y, ν) is a factor of G y (X,µ) and Σ is the G-invariant sub-σ-algebra of
X associated to Y , then we define the outer Rokhlin entropy of (Y, ν) within (X,µ)
to be hRok

G,µ(Y, ν) = hRok
G,µ(Σ).

Using Theorem 1.2 we prove countable sub-additivity for non-ergodic actions.

Corollary 1.5 (Countable sub-additivity of Rokhlin entropy). Let Gy (X,µ) be
a p.m.p. action, let F be a G-invariant sub-σ-algebra, and let ξ ⊆ B(X). If (Σn)n∈N
is an increasing sequence of G-invariant sub-σ-algebras with ξ ⊆

∨
n∈N Σn∨F then

hRok
G,µ(ξ | F) ≤ hRok

G,µ(Σ1 | F) +

∞∑
n=2

hRok
G,µ(Σn | Σn−1 ∨ F).

In particular, if G y (Y, ν) is a factor of (X,µ) and Σ is the sub-σ-algebra of X
associated to Y then

hRok
G (X,µ) ≤ hRok

G,µ(Y, ν) + hRok
G (X,µ | Σ) ≤ hRok

G (Y, ν) + hRok
G (X,µ | Σ).

Using sub-additivity, we show that Rokhlin entropy is a continuous function or an
upper-semicontinuous function on a few natural spaces. Our work extends upon a
few limited cases of upper-semicontinuity which were critical to the main theorems
in [29] and [30]. Recall that a function f : X → R on a topological space X is
upper-semicontinuous if for every r ∈ R the set f−1((−∞, r)) is open. Below, for a
Borel action G y X we write MG(X) for the set of G-invariant Borel probability
measures, and we write M aper

G (X) for the set of those measures µ ∈ MG(X) for
which Gy (X,µ) is aperiodic (and as before, EG(X) is the set of ergodic measures).

Corollary 1.6. Let G be a countable group, let L be a finite set, and let LG have
the product topology. Let F be a G-invariant sub-σ-algebra which is generated by
a countable collection of clopen sets. Then the map µ ∈ M aper

G (LG) ∪ EG(LG) 7→
hRok
G (LG, µ | F) is upper-semicontinuous in the weak∗-topology. Furthermore, if G

is finitely generated then this map is upper-semicontinuous on all of MG(LG).
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We also establish upper-semicontinuity results on the space of actions (Corollary
5.8), and we establish upper-semicontinuity and continuity results on the space of
partitions (Corollary 5.7 and Lemma 5.2).

Again relying upon sub-additivity, we develop a formula for the Rokhlin entropy
of an inverse limit of actions. In the case of ergodic actions, this formula appeared
in Part II and was a key ingredient to the proof of the main theorem there. See
also Corollary 6.4 for an alternate version of this theorem.

Theorem 1.7. Let Gy (X,µ) be a p.m.p. action and let F be a G-invariant sub-
σ-algebra. Suppose that G y (X,µ) is the inverse limit of actions G y (Xn, µn).
Identify each B(Xn) as a sub-σ-algebra of X in the natural way. Then

hRok
G (X,µ | F) <∞⇐⇒

{
inf
n∈N

sup
m≥n

hRok
G,µ(B(Xm) | B(Xn) ∨ F) = 0

and ∀m hRok
G,µ(B(Xm) | F) <∞.

}
Furthermore, when hRok

G (X,µ | F) <∞ we have

hRok
G (X,µ | F) = sup

m∈N
hRok
G,µ(B(Xm) | F) = lim inf

m→∞
hRok
G,µ(B(Xm) | F).

It is unknown if hRok
G (X,µ | F) = supm h

Rok
G,µ(B(Xm) | F) in all cases.

By using the inverse limit formula, we show that Rokhlin entropy is a Borel
function on the space of G-invariant probability measures (Corollary 6.5) and a
Borel function on the space of p.m.p. G-actions (Corollary 6.6).

We briefly observe that relative Rokhlin entropy is an invariant for certain re-
stricted orbit equivalences. This generalizes a similar property of Kolmogorov–
Sinai entropy discovered by Rudolph and Weiss [27]. Unlike the original result by
Rudolph and Weiss, for Rokhlin entropy this property follows quite easily from the
definitions. Nevertheless, it feels worth explicitly mentioning.

Proposition 1.8. Let G y (X,µ) and Γ y (X,µ) be p.m.p. actions having the
same orbits µ-almost-everywhere. Let F be a G-invariant and Γ-invariant sub-σ-
algebra. Assume that there exist F-measurable maps cΓ : X × G → Γ and cG :
X×Γ→ G such that g ·x = cΓ(x, g) ·x and γ ·x = cG(x, γ) ·x for all g ∈ G, γ ∈ Γ,
and µ-almost-every x ∈ X. Then hRok

G (X,µ | F) = hRok
Γ (X,µ | F).

The final topic we consider is the relations between Rokhlin entropy, Kolmogorov–
Sinai entropy, sofic entropy, and stabilizers.

In the case of standard (non-relative) entropies, it was Rokhlin who first showed
that for free actions of Z Kolmogorov–Sinai entropy and Rokhlin entropy coincide
[26] (the name ‘Rokhlin entropy’ was chosen for this reason). Later this was ex-
tended to free ergodic actions of amenable groups by Seward and Tucker-Drob [32].
Then in Part I [28] it was shown that relative Kolmogorov–Sinai entropy and rel-
ative Rokhlin entropy coincide for free ergodic actions of amenable groups. Here
we completely settle the relationship by handling the non-ergodic case. This is an
immediate consequence of the ergodic decomposition formula, Corollary 1.3. Below
we write hKS for Kolmogorov–Sinai entropy. See Corollary 7.2 for a more refined
version of this result involving outer Rokhlin entropy.

Corollary 1.9. If G y (X,µ) is a free p.m.p. action of a countably infinite
amenable group and F is a G-invariant sub-σ-algebra, then hRok

G (X,µ | F) =
hKS
G (X,µ | F).
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For sofic entropy, its precise relationship with Rokhlin entropy is still unclear.
Specifically, it remains an important open problem to determine if Rokhlin entropy
and sofic entropy coincide for free actions when the sofic entropy is not minus
infinity. In any case, it is a fairly quick consequence of the definitions that sofic
entropy is bounded above by Rokhlin entropy for ergodic actions (this follows from
[2, Prop. 5.3] by letting β be trivial). Combined with our Corollary 1.4, [2, Prop.
5.3] in fact shows that sofic entropy is bounded above by Rokhlin entropy for
aperiodic (not necessarily ergodic) actions. More generally, in [12, Prop. 2.12]
Hayes obtained a similar inequality, showing that for aperiodic actions the quantity
he calls “relative sofic entropy in the presence” is bounded above by outer Rokhlin
entropy. Formally, Hayes did not assume aperiodicity but he took the formula in
our Corollary 1.4 as the definition of Rokhlin entropy, thus leaving open a technical
gap in the case of actions that are not aperiodic. For the sake of having sound
and complete literature, we close this gap. Below, for a sofic group G, a sofic
approximation Σ to G, a p.m.p. action Gy (X,µ), and G-invariant sub-σ-algebras
F1,F2, we write hΣ,µ(F1 | F2 :X,G) for the Σ-sofic entropy of F1 relative to F2 in
the presence of X, as defined by Hayes in [12].

Proposition 1.10. Let G be a sofic group with sofic approximation Σ, let G y
(X,µ) be a p.m.p. action, and let F1,F2 be G-invariant sub-σ-algebras. Then

hΣ,µ(F1 | F2 :X,G) ≤ hRok
G,µ(F1 | F2).

In particular, the sofic entropy of Gy (X,µ) is at most hRok
G (X,µ).

Finally, we consider the effect of non-trivial stabilizers on entropy. It is a theo-
rem of Meyerovitch that ergodic actions of positive sofic entropy must have finite
stabilizers [21]. For Rokhlin entropy this is certainly not the case. If G y (X,µ)
is a p.m.p. action and G is a quotient of Γ, then Γ acts on (X,µ) by factoring
through G, and it is easily checked that hRok

Γ (X,µ) = hRok
G (X,µ). Nevertheless,

outer Rokhlin entropy can detect when new stabilizers appear in a factor action.

Theorem 1.11. Let Gy (X,µ) be an aperiodic p.m.p. action. Consider a factor
f : Gy (X,µ)→ Gy (Y, ν).

(i) If |StabG(f(x)) : StabG(x)| ≥ k for µ-almost-every x ∈ X then

hRok
G,µ(Y, ν) ≤ 1

k
· hRok

G (Y, ν).

(ii) If |StabG(f(x)) : StabG(x)| =∞ for µ-almost-every x ∈ X then

hRok
G,µ(Y, ν) = 0.

As a consequence of this theorem, we obtain a new relationship between Rokhlin
entropy and sofic entropy for non-free actions. This also provides a new proof
of Meyerovitch’s theorem [21] which stated that ergodic actions of positive sofic
entropy must have finite stabilizers.

Corollary 1.12. Let G be a sofic group with sofic approximation Σ and let G y
(X,µ) be a p.m.p. action.

(i) If µ-almost-every stabilizer has cardinality at least k ∈ N, then

hΣ
G(X,µ) ≤ 1

k
· hRok

G (X,µ).
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(ii) If µ-almost-every stabilizer is infinite then

hΣ
G(X,µ) = 0.
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2. Measurable selection

Our first goal is to prove the main theorem, Theorem 1.2. This task will occupy
the next three sections. Let us briefly outline the proof. Fix an action Gy (X,µ),
a G-invariant sub-σ-algebra F , and a Borel map ν 7→ p̄ν for ν ∈ EG(X) as described
by the theorem. By the ergodic decomposition theorem (recorded below in Lemma
3.2) there is a G-invariant Borel partition {Xν : ν ∈ EG(X)} of X satisfying
ν(Xν) = 1 for all ν ∈ EG(X). By Theorem 1.1 from Part I, for every ν there is a
partition αν = {Aνi : i ∈ N} of Xν satisfying distν(αν) = p̄ν and σ-algG(αν) ∨ F =
B(Xν) (modulo ν-null sets). If we define α = {Ai : i ∈ N} where Ai =

⋃
ν A

ν
i , then

at first it may seem that α has the desired properties. However, a problem is that
α may not be Borel. In order to fix this and complete the proof, we need to ensure
that the map ν 7→ αν is (in some sense) Borel.

In this section we digress into pure descriptive set theory. We consider the
problem of choosing Borel maps satisfying certain restrictions. Later this will be
applied for choosing the map ν 7→ αν .

Recall that a subset B of a standard Borel space X is analytic if it is the image
of a Borel set under a Borel map. Below, for a set A ⊆ X × Y we denote the
cross-section of A above x ∈ X by Ax = {y ∈ Y : (x, y) ∈ A}.

Lemma 2.1. Let (X,µ) be a standard probability space, let Y be a standard Borel
space, and let A ⊆ X × Y be an analytic set such that Ax is uncountable for every
x ∈ X. Then there is a Borel set Ā ⊆ A such that Āx is uncountable for µ-almost-
every x ∈ X.

Proof. This is trivial if X is countable, so we may assume X is uncountable. By
our assumptions Y is also uncountable, so without loss of generality we may assume
X = NN and Y = NN are the Baire space. Also let Z = NN be another copy of
the Baire space. For m ≥ 1 let Nm be the set of sequences of natural numbers
of length m, and for m = 0 write N0 for set consisting of the empty sequence ∅.
When m < n and y ∈ Nn or y ∈ NN, we let y � m ∈ Nm denote the length m
prefix of y (i.e. the first m terms of y). For each Nm and for NN we write < for
the lexicographic order. For s ∈ Nm, let Ys be the set of y ∈ Y = NN having s as a
prefix. Define Zs ⊆ Z similarly.

Since A ⊆ X × Y is analytic, it is equal to the projection πX×Y (B) of a closed
set B ⊆ X×Y ×Z [14, Prop. 25.2]. For s, t ∈ Nm let Xs,t be the set of x ∈ X such
that πY (({x} × Ys × Zt) ∩ B) is uncountable. Then Xs,t is analytic [14, Theorem
29.19] and so we may fix Borel sets X ′s,t ⊆ Xs,t ⊆ X ′′s,t such that µ(X ′′s,t \X ′s,t) = 0
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[14, Theorem 21.10]. Set

X̄ = X \
⋃
m∈N

⋃
s,t∈Nm

(X ′′s,t \X ′s,t)

and set X̄s,t = X ′s,t ∩ X̄. Note that X̄s,t and X̄ are Borel and that X̄ is conull.

Also note that for x ∈ X̄ we have that πY (({x} × Ys × Zt) ∩ B) is uncountable if
and only if x ∈ X̄s,t.

In the remainder of the proof we will build a Borel set B̄ ⊆ B with the property
that πX×Y is injective on B̄ and B̄x is uncountable for every x ∈ X̄. We remark to
the familiar reader that our argument is essentially an explicit description, fibered
over X̄, of a winning strategy for Player I in the usual unfolded cut-and-choose
game (see [14, Sec. 21.B]).

For m ∈ N let Pm be the set of triples (x, s, t) ∈ X×Nm×Nm such that x ∈ X̄s,t

but x 6∈ X̄s,t′ whenever t′ ∈ Nm with t′ < t. We claim that if (x, s, t) ∈ Pm then
there is n > m, s1 6= s2 ∈ Nn extending s, and t1, t2 ∈ Nn extending t such that
(x, si, ti) ∈ Pn. By definition x ∈ X̄s,t implies that πY (({x} × Ys × Zt) ∩ B) is
uncountable. So there is n > m and s1 6= s2 ∈ Nn extending s such that each
set πY (({x} × Ysi × Zt) ∩ B) is uncountable. Now for i = 1, 2 let ti ∈ Nn be the
least extension of t with πY (({x} × Ysi × Zti) ∩ B) uncountable. If t′ ∈ Nn and
t′ < ti, then either (t′ � m) < t or t′ extends t. In either case we will have that
πY (({x}×Ysi×Zt′)∩B) is at most countable and thus x 6∈ X̄si,t′ . So (x, si, ti) ∈ Pn,
completing the claim.

Now define

B̄ = {(x, y, z) : ∀k ∃m ≥ k (x, y � m, z � m) ∈ Pm}.
If (x, y, z) ∈ B̄ then x ∈ X̄y�m,z�m for infinitely many m. Since B is closed, it
follows that (x, y, z) ∈ B. So B̄ is a Borel subset of B. If (x, y, z) ∈ B̄ and z′ < z,
then there is m with (x, y � m, z � m) ∈ Pm and z′ � m < z � m and therefore
the definition of Pm gives x 6∈ X̄y�m,z′�m. This implies that (x, y, z′) 6∈ B̄. So the
restriction of πX×Y to B̄ is injective and hence Ā = πX×Y (B̄) is a Borel subset
of A [14, Cor. 15.2]. To complete the proof, we claim that for every x ∈ X̄ the
set Āx is uncountable. As πX×Y : B̄ → Ā is injective, it suffices to show that
B̄x is uncountable for x ∈ X̄. Indeed, fixing x ∈ X̄, we can construct a collection
of pairs (sv, tv)v∈{0,1}<N indexed by the rooted binary tree {0, 1}<N in such a way
that (∅,∅) is assigned to the root, and the children of each vertex are assigned
according to the claim from the previous paragraph. It is not hard to see that for
any infinite path p in the tree, the intersection

⋂
v∈p(Ysv × Zsv ) is one-point and

belongs to B̄x. So to each infinite path a point from B̄x is assigned. We also note
that this path-point assignment is one-to-one since if u and v are two children of
the same vertex, then by the construction and the claim, we have su 6= sv, so the
sets Ysu × Ztu and Ysv × Ztv are disjoint. This means that B̄x contains a copy of
the Cantor space, thus finishing the proof. �

The previous lemma gives an improved version of an injective selection theorem
due to Graf and Mauldin [11].

Corollary 2.2. Let (X,µ) be a standard probability space, let Y be a standard Borel
space, and let A ⊆ X × Y be an analytic set such that Ax is uncountable for every
x ∈ X. Then there is a conull Borel set X ′ ⊆ X and a Borel injection f : X ′ → Y
whose graph is contained in A.
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Proof. If A is in fact Borel then this is a special case of a theorem of Graf and
Mauldin [11]. By applying Lemma 2.1 we obtain a conull Borel set X ′′ ⊆ X
and a Borel set Ā ⊆ A with Āx uncountable for every x ∈ X ′′. Now apply the
Graf–Mauldin theorem to obtain a conull Borel set X ′ ⊆ X ′′ and a Borel injection
f : X ′ → Y whose graph is contained in Ā ⊆ A. �

Finally, we state the descriptive set theory result which we will need for proving
Theorem 1.2.

Proposition 2.3. Let (X,µ) be a standard probability space, let Y and Z be stan-
dard Borel spaces, let f : X × Y → Z be Borel, and let A ⊆ X × Y be Borel with
f({x} × Ax) uncountable for every x ∈ X. Then there is a conull Borel set X ′

and a Borel function φ : X ′ → Y whose graph is contained in A such that the map
x ∈ X ′ 7→ f(x, φ(x)) is injective.

Proof. Set B = {(x, f(x, y)) : (x, y) ∈ A} ⊆ X × Z. Then B is analytic and Bx
is uncountable for every x ∈ X. Apply Corollary 2.2 to obtain a conull Borel set
X ′′ ⊆ X and a Borel injection ψ : X ′′ → Z whose graph is contained in B.

Let A′ ⊆ A be the set of (x, y) ∈ A with x ∈ X ′′ and f(x, y) = ψ(x). Then A′

is Borel and A′x 6= ∅ for all x ∈ X ′′. By the Jankov–von Neumann uniformiza-
tion theorem [14, Theorems 29.9], there is a µ-measurable (but possibly not Borel
measurable) function φ0 : X ′′ → Y whose graph is contained in A′. Since φ0 is
µ-measurable and Y is standard Borel, there exists a conull Borel set X ′ ⊆ X ′′ such
that the restriction φ = φ0 � X ′ is Borel measurable (take a countable collection
of sets generating the Borel σ-algebra of Y , and for each such set we can make its
preimage be Borel by removing a Borel null set from X ′′). The graph of φ is still
contained in A′ ⊆ A and the map x ∈ X ′ 7→ f(x, φ(x)) = ψ(x) is injective. �

3. Ergodic components and Bochner measurability

For a Borel action G y X on a standard Borel space X, we write MG(X) for
the set of G-invariant Borel probability measures and EG(X) ⊆ MG(X) for the
ergodic measures. Recall that both MG(X) and EG(X) are standard Borel spaces.
Their Borel σ-algebras are defined by requiring the map µ 7→ µ(A) to be Borel
measurable for every Borel set A ⊆ X.

For a standard probability space (X,µ) we write Nµ for the σ-ideal of µ-null Borel
sets. For Borel sets A,B ⊆ X we write A = B mod Nµ if A4B ∈ Nµ. Similarly
for σ-algebras F ,Σ ⊆ B(X) we write F ⊆ Σ mod Nµ if for every A ∈ F there is
B ∈ Σ with A = B mod Nµ. When F ⊆ Σ mod Nµ and Σ ⊆ F mod Nµ we
write F = Σ mod Nµ. We will only write “ mod Nµ” to add clarity and emphasis,
but frequently we will omit this notation when it is clear from context.

We say that a sub-σ-algebra F is countably generated if there is a countable col-
lection ξ ⊆ B(X) with F = σ-alg(ξ) (a literal equality without discarding any null
sets). It is well known that B(X) is countably generated when X is standard Borel.
Moreover, if µ is a Borel probability measure on X and F ⊆ B(X) is a σ-algebra,
then there is a countably generated σ-algebra F ′ with F = F ′ mod Nµ. Thus
being countably generated is vacuously true modulo null sets. However, working
with countably generated σ-algebras is vital when we consider ergodic decompo-
sitions, for otherwise strange things can happen. For example if µ ∈ MG(X) has
continuum-many ergodic components and F = σ-alg(Nµ), then for almost-every
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ergodic component ν of µ we will have F = B(X) mod Nν . We will also need to
use the following lemma.

Lemma 3.1. Let G y (X,µ) be a p.m.p. action, let F be a countably generated
sub-σ-algebra, and let µ =

∫
EG(X)

ν dτ(ν) be the ergodic decomposition of µ. Then

for every countable Borel partition ξ of X we have

Hµ(ξ | F ∨IG) =

∫
EG(X)

Hν(ξ | F) dτ(ν).

Proof. This is likely well known. See [30, Lem. 2.2] for a short proof of a slightly
more general fact. �

We also need the following uniform ergodic decomposition theorem.

Lemma 3.2 (Farrell [8], Varadarajan [34]). Let X be a standard Borel space, let G
be a countable group, and let Gy X be a Borel action. Assume that MG(X) 6= ∅.
Then there is a Borel surjection x 7→ νx from X onto EG(X) such that

(1) if x and y are in the same orbit then νx = νy,
(2) for each ν ∈ EG(X) we have ν({x ∈ X : νx = ν}) = 1, and
(3) for each µ ∈ MG(X) we have µ =

∫
x∈X νx dµ(x) =

∫
ν∈EG(X)

ν dτ(ν),

where τ is the push-forward of µ under the map x 7→ νx.

In the proof outline discussed at the beginning of the previous section, we men-
tioned that we wanted a “Borel” map associating to each ergodic measure ν a
partition αν . A priori it is not clear how to represent this as a map from EG(X)
to some standard Borel space. In this section we lay down the technical frame-
work which will allow us to do so. We will also use an auxiliary notion of Bochner
measurability and record some useful applications.

Definition 3.3. Let X and Y be standard Borel spaces, let G y X be a Borel
action, and let E ⊆ EG(X) be Borel. We say that a function f : E × Y →
B(X) is Bochner measurable if there exists a sequence of countably-valued Borel
functions (i.e. the pre-image of every point is a Borel set) fn : E×Y → B(X) such
that limn→∞ ν(f(ν, y)4fn(ν, y)) = 0 for all (ν, y) ∈ E × Y . If τ is a probability
measure on EG(X), we say f : EG(X)×Y → B(X) is Bochner measurable τ -almost-
everywhere if there is a τ -conull set E ⊆ EG(X) such that the restriction of f to
E × Y is Bochner measurable.

Lemma 3.4. Let X and Y be standard Borel spaces and let G y X be a Borel
action. Then the set of Bochner measurable functions f : EG(X)×Y → B(X) form
a coordinate-wise G-invariant algebra. More specifically, if f, k : EG(X) × Y →
B(X) are Bochner measurable, then so are the functions sending (ν, y) to X\f(ν, y),
f(ν, y)∪ k(ν, y), f(ν, y)∩ k(ν, y), or g · f(ν, y) (for any fixed g ∈ G). Furthermore,
every constant function from EG(X)× Y to B(X) is Bochner measurable.

Proof. Let fn, kn : EG(X)×Y → B(X) be the sequence of functions as described in
the definition of Bochner measurability. Apply the same operations to fn, kn, and
recall that each ν is G-invariant. The final claim is immediate from the definition.

�

Lemma 3.5. Let X and Y be standard Borel spaces and let G y X be a Borel
action. If f : EG(X) × Y → B(X) is Bochner measurable, then the map (ν, y) 7→
ν(f(ν, y)) is Borel.



10 ANDREI ALPEEV AND BRANDON SEWARD

Proof. Let fn : EG(X)×Y → B(X) be as in the definition of Bochner measurability.
For each n the function fn is countably-valued and Borel. Since for fixed A ∈ B(X)
the map ν 7→ ν(A) is Borel, it follows that (ν, y) 7→ ν(fn(ν, y)) is Borel. Therefore
ν(f(ν, y)) = limn→∞ ν(fn(ν, y)) is Borel. �

Our interest in Bochner measurable functions comes from the following lemma.

Lemma 3.6. Let X be a standard Borel space, let G y X be a Borel action,
let f : EG(X) → B(X) be Bochner measurable, and let Σ ⊆ B(X) be a countably
generated sub-σ-algebra. If f(ν) ∈ Σ mod Nν for every ν ∈ EG(X), then there is
a Borel set B ∈ IG ∨ Σ which satisfies ν(B4f(ν)) = 0 for every ν ∈ EG(X). In
particular, if A ∈ Σ mod Nν for every ν ∈ EG(X) then A ∈ IG ∨ Σ mod Nµ for
every µ ∈MG(X).

Proof. Fix a countable algebra {C0, C1, . . .} which generates Σ. Fix ε > 0 and
for n ∈ N let Dn,ε be the set of ν such that n is least with ν(Cn4f(ν)) < ε.
Then {Dn,ε : n ∈ N} is a Borel partition of EG(X) by Lemmas 3.4 and 3.5
since ν 7→ Cn4f(ν) is Bochner measurable. Let {D′n,ε : n ∈ N} be the IG-
measurable partition of X associated to {Dn,ε : n ∈ N} by the ergodic decom-
position. Define Bε =

⋃
n∈N(D′n,ε ∩ Cn). The Borel–Cantelli lemma implies

that B =
⋃
k∈N

⋂
m≥k B2−m satisfies ν(B4f(ν)) = 0 for all ν ∈ EG(X). Also,

B ∈ IG ∨Σ as claimed. The final claim also follows by using the Bochner measur-
able (constant) function f(ν) = A. �

The next lemma introduces a useful σ-algebra M⊆ B(X).

Lemma 3.7. Let Gy (X,µ) be an aperiodic p.m.p. action. Let µ =
∫

EG(X)
ν dτ(ν)

be the ergodic decomposition of µ. Then there is a countably generated sub-σ-algebra
M⊆ B(X) such that

(i) for τ -almost-every ν ∈ EG(X) we have M = B(X) mod Nν ;
(ii) for τ -almost-every ν ∈ EG(X) and for every B ∈M we have ν(B) = µ(B);
(iii) IG ∨M = B(X) mod Nµ.

Proof. Let φ : (X,µ) → (EG(X), τ) be the ergodic decomposition map given by
Lemma 3.2. Aperiodicity implies that the fiber measures ν ∈ EG(X) are non-
atomic. So the Rokhlin skew-product theorem [10, Theorem 3.18]1 implies that
there is a measure space isomorphism ψ : (X,µ) → (EG(X) × [0, 1], τ × λ), where
λ is Lebesgue measure, such that φ equals ψ composed with the projection map.
View B([0, 1]) ⊆ B(EG(X)× [0, 1]) in the natural way and set M = ψ−1(B([0, 1])).
Clauses (i) and (ii) are satisfied since ψ∗(ν) = δν ×λ for τ -almost-every ν, and (iii)
is satisfied since ψ−1(B(EG(X))) = IG mod Nµ. �

The σ-algebra M allows us to return to discussing Borel measurable functions,
while still being able to use Bochner measurability. Below we write µ �M for the
restriction of µ to the σ-algebraM, and we let MALGµ�M denote the corresponding
measure-algebra. Specifically, MALGµ�M consists of the classes [A]µ, where A ∈M
and [A]µ = {B ∈M : µ(A4B) = 0}, equipped with the Polish topology induced by
the complete separable metric d([A]µ, [B]µ) = µ(A4B). In particular, MALGµ�M
is a standard Borel space. The operations of union, intersection, complement and

1The proof of [10, Theorem 3.18] assumes ergodicity, however that assumption is only used
to conclude that all fiber measures have the same number of atoms. Since all fiber measures are

non-atomic in our case, we can apply this result without requiring ergodicity. See also [25].
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the function µ clearly descend to MALGµ�M. Furthermore, by Lemma 3.7.(ii) τ -
almost-every ν ∈ EG(X) descends to MALGµ�M and in fact coincides with µ on
this space.

Lemma 3.8. Let G y (X,µ), τ , and M be as in Lemma 3.7, and let Y be a
standard Borel space. If f : EG(X)× Y → MALGµ�M is Borel, then any function
f̄ : EG(X)×Y →M satisfying [f̄(ν, y)]µ = f(ν, y) is Bochner measurable τ -almost-
everywhere.

Proof. Let {[M0]µ, [M1]µ, . . .} be a countable dense subset of MALGµ�M. Define
qn : MALGµ�M → {M0,M1, . . .} by setting qn([B]µ) = Mk if k is least with
µ(B4Mk) < 1/n. Then qn ◦ f : EG(X)× Y → {M0,M1, . . .} is a countable-valued
Borel function. Finally, for τ -almost-every ν ∈ EG(X) and every y ∈ Y , Lemma
3.7.(ii) gives

lim
n→∞

ν(f̄(ν, y)4qn ◦ f(ν, y)) = lim
n→∞

µ(f̄(ν, y)4qn ◦ f(ν, y))

= lim
n→∞

µ(f(ν, y)4qn ◦ f(ν, y)) = 0. �

Lastly, we consider sufficient conditions for a partition α to satisfy σ-algG(α) ⊇
IG. For a partition α = {Ai : i ∈ N}, define θα : X → NG by the rule θα(x)(g) =
i ⇔ g−1 · x ∈ Ai. Note that θα is G-equivariant, where the action of G on NG is
given by (g · y)(t) = y(g−1 · t) for y ∈ NG and g, t ∈ G.

Lemma 3.9. Let G y (X,µ) be a p.m.p. action and let µ =
∫

EG(X)
ν dτ(ν) be

the ergodic decomposition of µ. If α = {Ai : i ∈ N} is a partition and the map
ν ∈ EG(X) 7→ θα∗ (ν) is injective on a τ -conull set then IG ⊆ σ-algG(α) mod Nµ.

Proof. Fix a symmetric probability measure λ on G whose support generates G, and
let λ∗n denote the nth convolution power of λ. Let π : (X,µ)→ (EG(X), τ) be the
ergodic decomposition map given by Lemma 3.2. For any finite T ⊆ G and function
f : T → N set Af =

⋂
t∈T t · Af(t) and set Bf = {y ∈ NG : ∀t ∈ T y(t) = f(t)}.

By the Kakutani ergodic theorem [13] (see also the work of Oseledets [24]) we have
that for µ-almost-every x ∈ X

θα∗ (π(x))(Bf ) = lim
n→∞

∑
g∈G

λ∗n(g) · χAf (g · x),

where χC is the indicator function for C ⊆ X. It follows that the map x 7→
θα∗ (π(x)) is σ-algG(α) ∨Nµ-measurable. By assumption, there is a τ -conull Borel
set E ⊆ EG(X) so that θα∗ is injective on E. It follows that there exists a Borel
function ψ : EG(NG) → EG(X) such that ψ ◦ θα∗ is the identity map on E. So
π(x) = ψ ◦ θα∗ (π(x)) for µ-almost-every x ∈ X, and thus π is σ-algG(α) ∨ Nµ-
measurable. We conclude that IG ⊆ σ-algG(α) mod Nµ. �

Corollary 3.10. Let G y (X,µ) be an aperiodic p.m.p. action. Then for every
ε > 0 there is a two-piece partition α of X with H(α) < ε and with IG ⊆ σ-algG(α).

We mention that in the purely Borel context, a result quite similar to the above
corollary was obtained by Tserunyan [33, Thm. 8.12].

Proof. Fix ε > 0 and let 0 < δ < 1/2 be small enough that −δ · log(δ) − (1 − δ) ·
log(1− δ) < ε. LetM be as in Lemma 3.7 and note that clauses (i) and (ii) of that
lemma together with aperiodicity of the action imply that µ �M is non-atomic. Fix
a Borel injection ι : EG(X) → (0, δ) and fix a Borel map ψ : (0, δ) → MALGµ�M
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satisfying µ(ψ(t)) = t for all 0 < t < δ (it is easily seen from the construction
of M in Lemma 3.7 that such a Borel map exists). Set f = ψ ◦ ι. By Lemmas
3.6 and 3.8 there is a Borel set A with ν(A4f(ν)) = 0 for all ν ∈ EG(X). Set
α = {A,X \ A}. Note that ν(A) = ν(f(ν)) = µ(f(ν)). Therefore µ(A) < δ and
H(α) < ε. Furthermore ν 7→ ν(A) is injective, so the map ν 7→ θα∗ (ν) is injective as
well. Thus IG ⊆ σ-algG(α) mod Nµ by Lemma 3.9. �

4. Generating partitions for non-ergodic actions

In this section we prove the main theorem, Theorem 1.2. We will need to rely
on the following strong form of the main theorem from Part I.

Theorem 4.1 ([28]). Let G y (X,µ) be an aperiodic ergodic p.m.p. action, let
ξ ⊆ B(X), and let F be a G-invariant sub-σ-algebra. If 0 < r ≤ 1 and p̄ = (pi)
is a probability vector satisfying hRok

G,µ(ξ | F) < r · H(p̄), then there is a collection

α∗ = {A∗i : 0 ≤ i < |p̄|} of pairwise disjoint Borel sets such that µ(A∗i ) = r · pi and
such that ξ ⊆ σ-algG(α) ∨ F whenever α = {Ai : 0 ≤ i < |p̄|} is a partition with
Ai ⊇ A∗i for every i.

Proof. Combine [28, Theorem 8.1] with [28, Lemma 2.2]. �

Let M be as in Lemma 3.7. Denote by PM the set of sequences α = {[Ai]µ :
i ∈ N} ∈ (MALGµ�M)N where α = {Ai : i ∈ N} is a M-measurable partition of
X (some Ai may be empty). Note that PM is a Borel subset of (MALGµ�M)N

and is thus a standard Borel space. For notational convenience we will treat each
α ∈PM as a M-measurable partition α = {Ai : i ∈ N} of X. This will not cause
problems since any two choices for expressing α in this way will only differ on a
µ-null set. Moreover, by Lemma 3.7.(ii) they will only differ on a ν-null set for
τ -almost-every ν.

For a partition α = {Ai : i ∈ N}, define θα : X → NG as in the previous section:
θα(x)(g) = i ⇔ g−1 · x ∈ Ai. Also write distµ(α) for the probability vector whose
(i+ 1)st entry is µ(Ai).

Lemma 4.2. Let G y (X,µ) and M be as in Lemma 3.7. Let ξ ⊆ B(X) be
countable, let F be a countably generated G-invariant sub-σ-algebra, and let ν 7→ p̄ν

be a Borel map associating to each ν ∈ EG(X) a probability vector p̄ν satisfying
hRok
G,ν (ξ | F) < H(p̄ν).

(i) The set Z of pairs (ν, α) ∈ EG(X) ×PM satisfying distµ(α) = p̄ν and
ξ ⊆ σ-algG(α) ∨ F mod Nν is Borel.

(ii) The map (ν, α) ∈ EG(X)×PM 7→ θα∗ (ν) is Borel.
(iii) For τ -almost-every ν ∈ EG(X) the set {θα∗ (ν) : (ν, α) ∈ Z} is uncountable.

Proof. (i). The set of (ν, α) with distµ(α) = p̄ν is clearly Borel, so it suffices to show
that {(ν, α) : ξ ⊆ σ-algG(α)∨F mod Nν} is Borel. Let {Fi : i ∈ N} be a countable
G-invariant algebra which generates F . Write [G ⇀ N]<∞ for the set of functions
f : T → N with T ⊆ G finite. For i ∈ N, f : T → N, and α = {Aj : j ∈ N} ∈
PM, define S(i,f)(α) = Fi ∩

⋂
t∈T t · Af(t). For finite sets P ⊆ N × [G ⇀ N]<∞

define SP (α) =
⋃

(i,f)∈P S(i,f)(α). Then {SP (α) : P ⊆ N × [G ⇀ N]<∞ finite}
is a countable G-invariant algebra which generates σ-algG(α) ∨ F . So we have
ξ = {Dk : k ∈ N} is contained in σ-algG(α) ∨ F mod Nν if and only if

∀k ∈ N ∀n ∈ N ∃ finite P ⊆ N× [G ⇀ N]<∞ ν(Dk4SP (α)) < 1/n.
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For fixed k ∈ N and finite P ⊆ N × [G ⇀ N]<∞, the map (ν, α) 7→ ν(Dk4SP (α))
is Borel by Lemmas 3.4, 3.5, and 3.8. This establishes (ii).

(ii). The map (ν, α) 7→ θα∗ (ν) is Borel if and only if (ν, α) 7→ θα∗ (ν)(B) is Borel
for every Borel set B ⊆ NG. The collection of such sets B clearly forms a σ-algebra,
so it suffices to check the case where B is clopen. This case is immediately implied
by our argument for (ii).

(iii). Fix ν ∈ EG(X) with M = B(X) mod Nν and with ν non-atomic. By
assumption hRok

G,ν (ξ | F) < H(p̄ν). So we can find 0 < r < 1 with hRok
G,ν (ξ | F) <

r · H(p̄ν). By Theorem 4.1, there is a collection α∗ = {A∗i : i ∈ N} of pairwise
disjoint Borel sets with µ(A∗i ) = r · pνi for every i and with ξ ⊆ σ-algG(α) ∨ F
mod Nν whenever α = {Ai : i ∈ N} is a partition with Ai ⊇ A∗i . Since M = B(X)
mod Nν , we may assume that α∗ ⊆ M. Since ν is ergodic and non-atomic, there
are a non-identity g ∈ G and non-null disjointM-measurable sets Y0, Y1 ⊆ X \∪α∗
with g · Y0 = Y1. By replacing Y0, Y1 with translates g−k · Y0, g

−k · Y1, k ∈ N, and
by shrinking Y0 if necessary, we may assume that there is N ∈ N with g−1 · Y0 ⊆
A∗N . Fix this N ∈ N. Now fix M-measurable partitions β = {Bi : i ∈ N} of
X \ (Y0 ∪ Y1 ∪ (∪α∗)) and γ = {Ci : i ∈ N} of Y0 with ν(Bi) = ν(∪β) · pνi and
ν(Ci) = ν(Y0) · pνi . Fix a continuous path χt = {Kt

i : i ∈ N}, 0 ≤ t ≤ 1, of M-
measurable partitions of Y0 such that χ0 = γ, χ1 is independent with γ on Y0 (i.e.
ν(K1

i ∩Cj)/ν(Y0) = ν(K1
i ) ·ν(Cj)/ν(Y0)2 for every i, j ∈ N), and ν(Kt

i ) = ν(Y0) ·pνi
for all i ∈ N and 0 ≤ t ≤ 1. Set αt = {Ati : i ∈ N} where

Ati = A∗i ∪Bi ∪Kt
i ∪ g · Ci.

Then ν(Ati) = pνi and ξ ⊆ σ-algG(αt) ∨ F mod Nν since Ati ⊇ A∗i . So (ν, αt) ∈ Z.
It suffices to show that ν(AtN ∩g−1 ·AtN ) takes uncountably many values as t varies.
Notice that the measure of the sets (AtN \ Y0) ∩ g−1 · (AtN \ Y0) and

(AtN \ Y0) ∩ g−1(AtN ∩ Y0) = (AtN \ Y0) ∩ g−1 ·Kt
N = A∗N ∩ g−1 ·Kt

N = g−1 ·Kt
N

do not depend on t and that these sets partition (AtN \Y0)∩g−1 ·AtN . The remaining
portion of AtN ∩ g−1 ·AtN has measure ν(AtN ∩Y0 ∩ g−1 ·AtN ) = ν(Kt

N ∩CN ) which
varies continuously from pνN to (pνN )2. We cannot have pνN = (pνN )2 as otherwise
pνN = 0 and Y0 ⊆ g · A∗N is ν-null or pνN = 1 and H(p̄ν) = 0, both of which are
contradictions. �

Now we are ready for the main theorem. Note we obtain the weaker Theorem
1.2 by choosing a countable collection ξ ⊆ B(X) with σ-alg(ξ) = B(X).

Theorem 4.3. Let G y (X,µ) be an aperiodic p.m.p. action, let ξ ⊆ B(X) be
countable, let F be a countably generated G-invariant sub-σ-algebra, and let µ =∫

EG(X)
ν dτ(ν) be the ergodic decomposition of µ. If ν 7→ p̄ν = {pνi : i ∈ N}

is a Borel map associating to each ν ∈ EG(X) a probability vector p̄ν satisfying
hRok
G,ν (ξ | F) < H(p̄ν), then there is a Borel partition α = {Ai : i ∈ N} of X such

that ξ ⊆ σ-algG(α) ∨ F mod Nµ and such that ν(Ai) = pνi for every i ∈ N and
τ -almost-every ν.

Proof. Let M be as given by Lemma 3.7. Let Z ⊆ EG(X) ×PM be the set of
pairs (ν, α) such that ξ ⊆ σ-algG(α) ∨ F mod Nν and distµ(α) = p̄ν . Note that
for τ -almost-every ν ∈ EG(X) and every α ∈PM we have distν(α) = distµ(α) by
Lemma 3.7.(ii). Lemma 4.2 shows that Z and the function (ν, α) 7→ θα∗ (ν) satisfy
the assumption of Proposition 2.3. So that proposition gives a τ -conull Borel set
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E ⊆ EG(X) and a Borel function φ : E →PM whose graph is contained in Z and

with the map ν ∈ E 7→ θ
φ(ν)
∗ (ν) injective.

By Lemmas 3.6 and 3.8 there is a Borel partition α of X such that φ(ν) = α
mod Nν for every ν ∈ E. Then distν(α) = p̄ν for τ -almost-every ν ∈ E. Also
ξ ⊆ σ-algG(α) ∨ F mod Nν for every ν ∈ E, so Lemma 3.6 implies that ξ ⊆
IG ∨ σ-algG(α) ∨ F mod Nµ. On the other hand, ν ∈ E 7→ θα∗ (ν) is injective
by construction and thus IG ⊆ σ-algG(α) mod Nµ by Lemma 3.9. Therefore
ξ ⊆ σ-algG(α) ∨ F mod Nµ. �

As a consequence we obtain an ergodic decomposition formula for Rokhlin en-
tropy. First we must note a simple but technical fact.

Lemma 4.4. Let G y (X,µ) be a p.m.p. aperiodic action, let ξ ⊆ B(X) be
countable, and let F be a countably generated G-invariant sub-σ-algebra. Let µ =∫

EG(X)
ν dτ(ν) be the ergodic decomposition of µ. Then there is a Borel τ -conull

set E ⊆ EG(X) such that the map ν ∈ E 7→ hRok
G,ν (ξ | F) is Borel.

Proof. Let M be as in Lemma 3.7. By the proof of Lemma 4.2.(i) the set W of
(ν, α) ∈ EG(X)×PM satisfying ξ ⊆ σ-algG(α)∨F mod Nν is Borel. So for every
r ≥ 0 the set

{ν ∈ EG(X) : hRok
G,ν (ξ | F) ≤ r} = {ν ∈ EG(X) : ∃α ∈PM (ν, α) ∈W ∧Hν(α) ≤ r}

is analytic. Thus the map ν 7→ hRok
G,ν (ξ | F) is τ -measurable [14, Thm. 21.10]. It

follows that there is a Borel conull set E ⊆ EG(X) on which this map is Borel (for
details see the proof of Proposition 2.3). �

Corollary 4.5. Let Gy (X,µ) be a p.m.p. action, let ξ ⊆ B(X) be countable, and
let F be a countably generated G-invariant sub-σ-algebra. If µ =

∫
EG(X)

ν dτ(ν) is

the ergodic decomposition of µ then

hRok
G,µ(ξ | F) =

∫
EG(X)

hRok
G,ν (ξ | F) dτ(ν).

Proof. Let X∞ ⊆ X be the set of points having an infinite G-orbit. Also let
E∞ ⊆ EG(X) be the set of ν for which G y (X, ν) is aperiodic. Note that the
probability measure µ∞ = 1

τ(E∞) ·
∫
E∞

ν dτ(ν) is G-invariant and supported on

X∞. Fix ε > 0. By Lemma 4.4 we may fix a Borel map ν ∈ E∞ 7→ p̄ν satisfying
H(p̄ν) = hRok

G,ν (ξ | F) + ε for τ -almost-every ν. By Theorem 4.3 there is a partition

α0 of X∞ satisfying Hν(α0) = hRok
G,ν (ξ | F) + ε for almost-every ν ∈ E∞ and ξ ⊆

σ-algG(α0) ∨ F mod Nµ∞ . Let X∗ be the set of points x ∈ X \ X∞ such that
the restriction ξ � G · x is not a subset of F � G · x. Since all orbits in X∗ are
finite, there is a Borel set B ⊆ X∗ which meets every orbit in X∗ precisely once.
Set α = α0 ∪ {B,X \ (X∞ ∪ B)}. Note that α is a partition of X and that
Hν(α | F) = hRok

G,ν (ξ | F) for all ν ∈ EG(X) \ E∞. By our choice of B and α0, we

have that ξ ⊆ σ-algG(α) ∨IG ∨ F mod Nµ. So by definition of Rokhlin entropy
and Lemma 3.1 we have

hRok
G,µ(ξ | F) ≤ Hµ(α |IG ∨ F) =

∫
ν∈EG(X)

Hν(α | F) dτ(ν)

≤ ε+

∫
ν∈EG(X)

hRok
G,ν (ξ | F) dτ(ν).
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By letting ε tend to 0 we obtain one inequality.
For the reverse inequality, suppose that α is a countable partition satisfying ξ ⊆

σ-algG(α) ∨IG ∨ F mod Nµ. Since ξ is countable, for τ -almost-every ν ∈ EG(X)
we have ξ ⊆ σ-algG(α) ∨ F mod Nν . It follows that τ -almost-always Hν(α | F) ≥
hRok
G,ν (ξ | F). Therefore applying Lemma 3.1 we get

Hµ(α |IG ∨ F) =

∫
ν∈EG(X)

Hν(α | F) dτ(ν) ≥
∫
ν∈EG(X)

hRok
G,ν (ξ | F) dτ(ν).

Now take the infimum over all such α to obtain hRok
G,µ(ξ |F) on the left-hand side. �

Now we can verify the countable sub-additivity property of Rokhlin entropy for
non-ergodic actions. At the moment, countable sub-additivity is arguably the most
useful property for studying Rokhlin entropy. At first glance, this property may
seem like an immediate consequence of the definitions, but this is not so. For
example, this sub-additive property implies that if σ-algG(α ∨ β) = B(X) then
hRok
G (X,µ) ≤ H(α) + H(β | σ-algG(α)). Its proof relies critically upon Theorem 4.3

(or Theorem 1.1 in the ergodic case).

Corollary 4.6. Let G y (X,µ) be a p.m.p. action, let F be a G-invariant sub-
σ-algebra, and let ξ ⊆ B(X). If (Σn)n∈N is an increasing sequence of G-invariant
sub-σ-algebras with ξ ⊆

∨
n∈N Σn ∨ F then

hRok
G,µ(ξ | F) ≤ hRok

G,µ(Σ1 | F) +

∞∑
n=2

hRok
G,µ(Σn | Σn−1 ∨ F).

Proof. Let ξ′ ⊆ B(X) be countable with σ-alg(ξ) = σ-alg(ξ′) mod Nµ. Also fix
countably generated σ-algebras F ′ and Σ′n with F ′ = F mod Nµ and Σ′n = Σn
mod Nµ. Clearly hRok

G,µ(ξ′ | F ′) = hRok
G,µ(ξ | F) and hRok

G,µ(Σ′n |Σ′n−1 ∨F ′) = hRok
G,µ(Σn |

Σn−1 ∨ F). It was recorded in [29, Cor. 2.5] that for ergodic ν ∈ EG(X) we have

hRok
G,ν (ξ′ | F ′) ≤ hRok

G,ν (Σ′1 | F ′) +

∞∑
n=2

hRok
G,ν (Σ′n | Σ′n−1 ∨ F ′).

Now integrate over ν ∈ EG(X) and apply Corollary 4.5. �

Corollary 4.7. Let Gy (X,µ) be a p.m.p. action, and let F be a G-invariant sub-
σ-algebra. If G y (Y, ν) is a factor of (X,µ) and Σ is the associated G-invariant
sub-σ-algebra, then

hRok
G (X,µ | F) ≤ hRok

G (Y, ν) + hRok
G (X,µ | F ∨ Σ).

Proof. Apply Corollary 4.6 using ξ = B(X) and note that hRok
G,µ(Σ |F) ≤ hRok

G (Y, ν).
�

Using Theorem 4.3 and the ergodic decomposition formula, we obtain a simplified
expression for Rokhlin entropy in the case of aperiodic actions. From the original
definition, the expressions H(α | F ∨IG) and ξ ⊆ σ-algG(α)∨F ∨IG are replaced
with H(α) and ξ ⊆ σ-algG(α) ∨ F below.

Corollary 4.8. Let G y (X,µ) be a p.m.p. action, let ξ ⊆ B(X), and let F be a
G-invariant sub-σ-algebra. If Gy (X,µ) is aperiodic then

hRok
G,µ(ξ | F) = inf

{
H(α) : α a countable partition with ξ ⊆ σ-algG(α) ∨ F

}
.
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Proof. It is immediate from the definitions that the infimum on the right is greater
than or equal to hRok

G,µ(ξ | F), so it suffices to check the reverse inequality. The

argument we present essentially comes from [26]. Fix ε > 0 and pick n ∈ N
with 1/n < ε/2. Let µ =

∫
EG(X)

ν dτ(ν) be the ergodic decomposition of µ. For

ν ∈ EG(X) define t(ν) = j
n where j ∈ N is least with hRok

G,ν (ξ | F) < j
n . By Lemma

4.4 there is a Borel τ -conull set E ⊆ EG(X) on which the function t is Borel. Set
T =

∫
t(ν) dτ(ν) and note that T < hRok

G,µ(ξ | F) + ε/2 by Corollary 4.5. Now fix
k ∈ N large enough that

H

(
1− T

log(k)
,

T

log(k)

)
<
ε

2
,

and for ν ∈ EG(X) set

p̄ν =

(
1− t(ν)

log(k)
,

t(ν)

k log(k)
,

t(ν)

k log(k)
, · · · , t(ν)

k log(k)

)
.

Then

H(p̄ν) = H

(
1− t(ν)

log(k)
,
t(ν)

log(k)

)
+

t(ν)

log(k)
·H
(

1

k
,

1

k
, · · · , 1

k

)
≥ 0 + t(ν) > hRok

G,ν (ξ | F).

We apply Theorem 4.3 to get a Borel partition α = {Ai : i ∈ N} satisfying ξ ⊆
σ-algG(α) ∨ F and ν(Ai) = pνi for every i ∈ N and τ -almost-every ν. Finally,
observe that H(α) is equal to

H

(
1− T

log(k)
,

T

log(k)

)
+

T

log(k)
·H
(

1

k
,

1

k
, . . . ,

1

k

)
<
ε

2
+ T < hRok

G,µ(ξ | F) + ε.

Letting ε tend to 0 shows that the infimum is at most hRok
G,µ(ξ | F). �

5. Semi-continuity properties

In this section we establish some continuity and upper-semicontinuity results for
Rokhlin entropy. Recall that a real-valued function f on a topological space X
is called upper-semicontinuous if for every x ∈ X and ε > 0 there is an open set
U containing x with f(y) < f(x) + ε for all y ∈ U . When X is first countable,
this is equivalent to saying that f(x) ≥ lim sup f(xn) whenever (xn) is a sequence
converging to x.

For a probability space (X,µ), we will work with the space P(µ) of countable
Borel partitions having finite Shannon entropy. If F ⊆ B(X) is a sub-σ-algebra,
we write P(F , µ) for the set of F-measurable partitions in P(µ). The set P(µ)
becomes a complete separable metric space when equipped with the Rokhlin metric
dRok
µ defined by dRok

µ (α, β) = Hµ(α | β) + Hµ(β | α) [7, Fact 1.7.15]. We record
some useful inequalities for the Rokhlin metric. Below, if G acts on (X,µ), α is a
partition of X, and T ⊆ G is finite, then we let αT denote the join

∨
t∈T t · α.

Lemma 5.1. Let G y (X,µ) be a p.m.p. action, let F be a G-invariant sub-σ-
algebra, and let α, β, ξ ∈P(µ). Then:

(i) dRok
µ (βT , ξT ) ≤ |T | · dRok

µ (β, ξ) for every finite T ⊆ G;

(ii) |H(β | F)−H(ξ | F)| ≤ dRok
µ (β, ξ);

(iii) |H(α | β ∨ F)−H(α | ξ ∨ F)| ≤ 2 · dRok
µ (β, ξ).
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Proof. This is a simple exercise. Alternatively, see the appendix to [29]. �

We begin with a few simple cases in which Rokhlin entropy is actually continuous,
not just semicontinuous. Below for a sub-σ-algebra F of (X,µ) and partitions α
and β with H(α | F),H(β | F) <∞, we define

dRok
µ (α, β | F) = H(α | β ∨ F) + H(β | α ∨ F).

Note this quantity is bounded above by dRok
µ (α, β) when α, β ∈P(µ).

Lemma 5.2. Let Gy (X,µ) be a p.m.p. action, and let F be a G-invariant sub-σ-
algebra. Let γ, ζ, P, and Q be partitions such that H(γ |F),H(ζ |F),H(P |F),H(Q|
F) <∞.

(i) |hRok
G,µ(ξ |σ-algG(γ)∨F)−hRok

G,µ(ξ |σ-algG(ζ)∨F)| ≤ dRok
µ (γ, ζ |F) for every

collection ξ ⊆ B(X).
(ii) |hRok

G (X,µ | σ-algG(γ) ∨ F)− hRok
G (X,µ | σ-algG(ζ) ∨ F)| ≤ dRok

µ (γ, ζ | F).

(iii) |hRok
G,µ(P | F)− hRok

G,µ(Q | F)| ≤ dRok
µ (P,Q | F).

Proof. (i). By sub-additivity (Corollary 4.6)

hRok
G,µ(ξ | σ-algG(γ) ∨ F) ≤ hRok

G,µ(ζ | σ-algG(γ) ∨ F) + hRok
G,µ(ξ | σ-algG(ζ) ∨ F)

≤ H(ζ | γ ∨ F) + hRok
G,µ(ξ | σ-algG(ζ) ∨ F).

By symmetry a similar inequality holds with γ and ζ reversed.
(ii). Use ξ = B(X) and apply (i).
(iii). By sub-additivity we have

hRok
G,µ(P | F) ≤ hRok

G,µ(Q | F) + hRok
G,µ(P | σ-algG(Q) ∨ F)

≤ hRok
G,µ(Q | F) + H(P | Q ∨ F).

By symmetry a similar inequality holds with P and Q reversed. �

Now we present a general but rather technical formula for Rokhlin entropy.
This lemma will be used both in this section and the next in order to study the
nature of Rokhlin entropy. First we need some additional notation. We write
β ≤ α if the partition β is coarser than the partition α. Also, we say a collection
of partitions C is c-dense (coarsely-dense) in P(F , µ) if for every ψ ∈ P(F , µ)
and ε > 0 there is γ ∈ C and a coarsening ψ′ ≤ γ with dRok

µ (ψ′, ψ) < ε. For

an action G y (X,µ) we write I fin
G for the σ-algebra generated by the Borel

G-invariant sets consisting only of points having finite G-orbits. In other words,
writing X<∞ = {x ∈ X : |G · x| < ∞}, the σ-algebra I fin

G consists precisely of
those Borel sets A ⊆ X such that A is G-invariant and either A or X \A is a subset
X<∞.

Lemma 5.3. Let G y (X,µ) be a p.m.p. action. Let F be a G-invariant sub-
σ-algebra, and let P be a countable partition. Let A ⊆ P(µ) be a collection of

partitions which is c-dense in P(µ), and let C ⊆P(F ∨I fin
G , µ) be a collection of

partitions which is c-dense in P(F ∨ I fin
G , µ). If H(P) < ∞ then hRok

G,µ(P | F) is
equal to

lim
ε→0

inf
α∈A
γ∈C

inf
T⊆G
Tfinite

inf
{

H(β | χT ∨ γ) : β, χ ≤ α, H(χ) + H(P | βT ∨ χT ∨ γ) < ε
}
.
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In fact, for every ε > 0 the triple infimum above is bounded between hRok
G,µ(P |F)− ε

and hRok
G,µ(P | F).

Proof. It suffices to prove the second claim. Fix ε > 0. Consider α ∈ A, γ ∈ C ⊆
P(F ∨I fin

G , µ), finite T ⊆ G, and β, χ ≤ α with H(χ) + H(P | βT ∨ χT ∨ γ) < ε.
By sub-additivity of Rokhlin entropy we have

hRok
G,µ(P | F)

≤ hRok
G,µ(χ | F) + hRok

G,µ(β | σ-algG(χ) ∨ F) + hRok
G,µ(P | σ-algG(β ∨ χ) ∨ F)

≤ H(χ) + H(β | χT ∨ γ) + H(P | βT ∨ χT ∨ γ)

< H(β | χT ∨ γ) + ε.

This establishes the first inequality.
Now we consider the second inequality. Fix ε > 0. Note that hRok

G,µ(P | F) ≤
H(P) < ∞. Fix δ > 0. By the definition of Rokhlin entropy, there is a countable
partition ξ satisfying

(5.1) P ⊆ σ-algG(ξ) ∨ F ∨IG and H(ξ | F ∨IG) < hRok
G,µ(P | F) + δ/3.

We claim we can further assume that H(ξ) < ∞, since hRok
G,µ(P | F) < ∞. Indeed,

on the subset of X consisting of points having finite G-orbit we can choose ξ to
consist of two sets, one of which meets every finite G-orbit in precisely one point,
and on the subset of X consisting of points with infinite G-orbit we can appeal to
Corollary 4.8. By similar reasoning, Corollary 3.10 implies there is a partition ω
with H(ω) < ε/4 and IG ⊆ I fin

G ∨ σ-algG(ω). Note that our assumptions then
imply {ωT ∨ γ : T ⊆ G finite, γ ∈ C} is c-dense in P(F ∨IG, µ). By (5.1) we can
find finite T ⊆ G and γ ∈ C with

H(P | ξT ∨ ωT ∨ γ) < ε/6 and H(ξ | ωT ∨ γ) < hRok
G,µ(P | F) + δ/3.

Next, since A is c-dense in P(µ), we can find α ∈ A and partitions β, χ ≤ α with

dRok
µ (β, ξ) < min

(
ε

12|T |
,
δ

3

)
and dRok

µ (χ, ω) < min

(
ε

12|T |
,
δ

6|T |

)
.

Then

H(χ) + H(P | βT ∨ χT ∨ γ)

≤ H(ω) + dRok
µ (χ, ω) + H(P | ξT ∨ ωT ∨ γ) + 2|T | · dRok

µ (β, ξ) + 2|T | · dRok
µ (χ, ω)

< ε.

Furthermore,

H(β | χT ∨ γ) ≤ H(ξ | ωT ∨ γ) + dRok
µ (β, ξ) + 2|T |dRok

µ (χ, ω)

< hRok
G,µ(P | F) + δ.

Therefore

inf
α∈A
γ∈C

inf
T⊆G
T finite

inf
{

H(β | χT ∨ γ) : β, χ ≤ α, H(χ) + H(P | βT ∨ χT ∨ γ) < ε
}

is less than hRok
G,µ(P | F) + δ. Now let δ tend to 0. �
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For the remainder of this section we will study upper-semicontinuity of Rokhlin
entropy in three settings: as a function of the invariant measure, as a function of
the partition, and as a function of the action. We will obtain our strongest upper-
semicontinuity results when G is finitely generated. Unfortunately, when G is not
finitely generated Rokhlin entropy is not upper-semicontinuous in general, as the
following example illustrates.

Example 5.4. Consider a non-finitely generated abelian group G. Let (Γk)k∈N be
an increasing sequence of finitely generated subgroups which union to G. Write
2 for the set {0, 1} and let u2 be the uniform probability measure on 2. We will
consider hRok

G (2G, µ) as µ ∈ MG(2G) varies. For a subgroup Γ ≤ G we naturally

identify 2G/Γ with the set of x ∈ 2G which are constant on each Γ-coset. Through

this identification, we view the product measure u
G/Γ
2 ∈ MG(2G/Γ) as a measure

on 2G. It is not difficult to see that u
G/Γk
2 converges as k → ∞ to u

G/G
2 (which is

supported on the two constant functions). Clearly hRok
G (2G, u

G/G
2 ) = 0. However,

for k ∈ N we can view the action G y (2G, u
G/Γk
2 ) as a free action of G/Γk, and

since this action is isomorphic to the Bernoulli action G/Γk y (2G/Γk , u
G/Γk
2 ) of

the infinite abelian group G/Γk, we obtain hRok
G (2G, u

G/Γk
2 ) = log(2). Thus Rokhlin

entropy is not an upper-semicontinuous function on MG(2G).

With a bit more effort, one can use the above construction to obtain the same
conclusion whenever G is non-finitely generated and amenable. We believe this
failure of upper-semicontinuity occurs precisely when G is not finitely generated,
but we cannot yet prove this since computable lower bounds to Rokhlin entropy
for non-sofic actions do not currently exist.

Our stronger upper-semicontinuity results for finitely generated groups will de-
pend upon the following lemma. Throughout this section and the next, for any
set L we let G act on LG by left-shifts: for x ∈ LG and g, h ∈ G we have
(g · x)(h) = x(g−1h).

Lemma 5.5. Let G be a finitely generated infinite group, let L be finite, and let
P ⊆ LG be a finite G-invariant set. For every ε > 0 and open set U ⊇ P , there is
a clopen set V such that U ⊇ V ⊇ P and hRok

G,µ(V ) < ε for all µ ∈MG(LG).

Proof. Fix r ∈ N with H(r−1, 1 − r−1) < ε. Fix a finite generating set S for G,
and for each n let Bn ⊆ G be the corresponding ball of radius n. Since the set
{x ∈ LG : |G ·x| < r} is finite and P is G-invariant, we can find a clopen set W ⊇ P
such that B−1

r Br ·W ⊆ U and W ∩ {x ∈ LG : |G · x| < r} ⊆ P .
If some x ∈ LG satisfies |Bn+1 · x| = |Bn · x|, then |G · x| = |Bn · x|. So we

must have |Br · x| ≥ r for all x ∈ W \ P . In other words, given x ∈ W \ P there
are sx(0), sx(1), . . . , sx(r − 1) ∈ Br with sx(k) · x 6= sx(m) · x for all k 6= m. It
follows that there is countable cover {Ui : i ≥ 1} of W \ P , with each Ui a clopen
subset of W \ P , and a collection of functions si : {0, . . . , r − 1} → Br such that
si(k) · Ui ∩ si(m) · Ui = ∅ for all i and all 0 ≤ k 6= m < r.

Now inductively define clopen sets Yi by setting Y0 = ∅ and for i ≥ 1

Yi = Yi−1 ∪ (Ui \B−1
r Br · Yi−1).

Set Y∞ =
⋃
i Yi. Note that each Yi is clopen and hence Y∞ is open. Also note that

Y∞ ⊆W since each Ui ⊆W .
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We claim that Y∞ ∪ P is closed. Fix a point x ∈ LG \ (Y∞ ∪ P ). We will find
an open neighborhood of x which is disjoint from Y∞ ∪ P . If x 6∈ W then LG \W
is the desired open neighborhood. Now suppose x ∈ W . Then x ∈ W \ P so there
is an i ≥ 1 with x ∈ Ui. We must have x 6∈ Yi ⊆ Y∞, and thus the construction
implies that x ∈ B−1

r Br · Yi−1 \ Yi−1. This is an open set which is disjoint from
Y∞ ∪ P (recall P is G-invariant and each Ui is disjoint from P ). This proves the
claim.

We set V = (B−1
r Br · Y∞) ∪ P and claim that it has the desired properties. Its

immediate that P ⊆ V and V ⊆ B−1
r Br ·W ⊆ U . Also, since P is G-invariant,

V = B−1
r Br · (Y∞ ∪ P ) is closed by the previous paragraph. We claim that V is

open (hence clopen). As a first step, we argue that W ⊆ V . Fix w ∈ W . If w ∈ P
then we are done. Otherwise there is i ≥ 1 with w ∈ Ui. From the construction,
we see that either w ∈ B−1

r Br · Yi−1 ⊆ V or else w ∈ Yi ⊆ V . Thus W ⊆ V . As
P ⊆ W ⊆ V , we can write V as V = (B−1

r Br · Y∞) ∪W , which shows that V is
open.

Finally, since V = B−1
r Br · Y∞ ∪ P and P ∈ IG is G-invariant, we have

∀µ ∈MG(LG) hRok
G,µ(V ) = hRok

G,µ(B−1
r Br · Y∞) = hRok

G,µ(Y∞) ≤ Hµ(Y∞).

By our choice of r it suffices to show that µ(Y∞) < r−1 for all µ ∈MG(LG). For
0 ≤ k < r define θ(k) : Y∞ → LG as follows: for y ∈ Y∞ choose i least with y ∈ Yi
and set θ(k)(y) = si(k) · y. For fixed i, the sets θ(k)(Yi) ⊆ si(k) · Ui, 0 ≤ k < r,

are pairwise disjoint. Also,
⋃r−1
k=0 θ(k)(Yi) ⊆ Br · Yi and Br · Yi ∩ Br · Yj = ∅ for

i 6= j. Thus the maps θ(k) : Y∞ → LG are injective, measure-preserving, and have
pairwise-disjoint images. Hence µ(Y∞) ≤ 1/r as required. �

Now we establish upper-semicontinuity on certain spaces of G-invariant mea-
sures. Recall that M aper

G (X) denotes the set of µ ∈MG(X) such that Gy (X,µ)
is aperiodic.

Corollary 5.6. Let G be a countable group, let L be a totally disconnected Polish
space, let LG have the product topology, and equip MG(LG) with the weak∗-topology.
Assume that F is a G-invariant sub-σ-algebra which is generated by a collection of
clopen sets.

(i) If ξ is a finite clopen partition then the map µ ∈M aper
G (LG) ∪ EG(LG) 7→

hRok
G,µ(ξ |F) is upper-semicontinuous. If G is finitely generated then this map

is upper-semicontinuous on all of MG(LG).
(ii) If L is finite then the map µ ∈ M aper

G (LG) ∪ EG(LG) 7→ hRok
G (LG, µ | F)

is upper-semicontinuous. If G is finitely generated then this map is upper-
semicontinuous on all of MG(LG).

Proof. Let L = {R` : ` ∈ L} be the canonical generating partition for LG, where
R` = {x ∈ LG : x(1G) = `}. Clearly L is generating and thus hRok

G (LG, µ | F) =
hRok
G,µ(L | F) for all µ ∈MG(LG). Since in case (ii) L is finite and clopen, (ii) is a

consequence of (i). So we prove (i). Fix a finite clopen partition ξ, fix a measure
µ ∈ MG(LG), and fix ε > 0. If G is not finitely generated, we require µ to be in
M aper

G (LG) ∪ EG(LG).
Since L is totally disconnected and Polish, L embeds into an inverse limit, L ⊂

lim←−Ln, of finite spaces Ln, n ∈ N. Let πn : L→ Ln be the corresponding quotient
map. By applying πn coordinate-wise, we also view πn as a G-equivariant map from
LG to LGn , and we set µn = (πn)∗(µ). Notice that πn : LG → LGn is continuous.
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Let αn = {R` : ` ∈ Ln} be the clopen partition of LG where R` = {x ∈ LG :
πn(x(1G)) = `}, and set A = {αTn : n ∈ N, T ⊆ G finite}. Notice that A is c-dense
in P(µ). By our assumption on F we can choose a collection C0 of finite clopen
partitions which are c-dense in P(F , µ).

We next construct, for each n ∈ N, partitions ωn and χn such that χn is clopen,
dRok
µ (ωn, χn) < ε/2, hRok

G,ν (χn) < ε for all ν ∈ MG(LG), and with {ωn : n ∈ N}
c-dense in P(I fin

G , µ). When G is not finitely generated we simply let χn = ωn
be the trivial partition for every n. So now suppose that G is finitely generated.
Let X∞n denote the set of points in LGn having infinite G-orbit. Notice that since
Ln is finite and G is finitely generated, LGn \ X∞n is countable. We wish to build
a collection of finite partitions {ζkn : n, k ∈ N} such that ζkn is a partition of LGn
into G-invariant sets and precisely one set in ζkn is infinite. We further want ζk+1

n

to be finer than ζkn, ζkn+1 to be finer than πn+1 ◦ π−1
n (ζkn), and we want {ζkn : k ∈

N} to be c-dense in P(I fin
G (LGn ), µn). It is clear that such a collection can be

constructed inductively. Now define ωn = π−1
n (ζnn ). This diagonalization ensures

that ωn is finer than π−1
m (ζkm) whenever max(m, k) ≤ n, and from this it easily

follows that {ωn : n ∈ N} is c-dense in P(I fin
G , µ). Now fix n. We will construct

χn. Each finite set P ∈ ζnn can be approximated arbitrarily well in µn-measure by a
clopen set U ⊇ P . By considering clopen approximations of each finite set P ∈ ζnn
and applying Lemma 5.5 to each, we can obtain a clopen partition χ′ satisfying
dRok
µn (ζnn , χ

′) < ε/2 and with hRok
G,ν (χ′) < ε for all ν ∈MG(LGn ). Set χn = π−1

n (χ′).

Then dRok
µ (ωn, χn) < ε/2. This completes the construction of the ωn’s and χn’s.

Define C = {ωn ∨ γ : n ∈ N, γ ∈ C0} and note that C is c-dense in P(I fin
G ∨ F , µ).

By Lemma 5.3 there are α ∈ A, ωn ∨ γ ∈ C, finite T ⊆ G, and β, χ ≤ α with

Hµ(β |χT ∨ωn ∨ γ) < hRok
G,µ(ξ | F) + ε and Hµ(χ) + Hµ(ξ | βT ∨χT ∨ωn ∨ γ) < ε.

Since dRok
µ (ωn, χn) < ε/2, we have

Hµ(β |χT ∨χn∨γ) < hRok
G,µ(ξ |F)+2ε and Hµ(χ)+Hµ(ξ |βT ∨χT ∨χn∨γ) < 2ε.

Since the conditional Shannon entropy of clopen partitions is a continuous function
of the measure, there is an open neighborhood U of µ with

Hν(β |χT ∨χn ∨γ) < hRok
G,µ(ξ | F) + 2ε and Hν(χ) + Hν(ξ |βT ∨χT ∨χn ∨γ) < 2ε

for all ν ∈ U . Now recall that hRok
G,ν (χn) < ε for all ν ∈ MG(LG). Using sub-

additivity, we deduce that for ν ∈ U the entropy hRok
G,ν (ξ | F) is bounded by

hRok
G,ν (χ ∨ χn) + hRok

G,ν (β | σ-algG(χ ∨ χn) ∨ F) + hRok
G,ν (ξ | σ-algG(β ∨ χ ∨ χn) ∨ F)

≤ hRok
G,ν (χn) + Hν(χ) + Hν(β | χT ∨ χn ∨ γ) + Hν(ξ | βT ∨ χT ∨ χn ∨ γ)

< hRok
G,µ(ξ | F) + 5ε.

This completes the proof. �

Next we consider the space P(µ) of countable Borel partitions of (X,µ) having
finite Shannon entropy.

Corollary 5.7. Let G y (X,µ) be a p.m.p. action and let F be a G-invariant
sub-σ-algebra. For α ∈ P(µ), let G y (Yα, να) be the factor of (X,µ) associated
to σ-algG(α) ∨ F , and let Fα be the image of F in Yα. Let Paper(µ) and Perg(µ)
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be the set of α ∈ P(µ) for which the action G y (Yα, να) is aperiodic or ergodic,
respectively. Then the map

α ∈Paper(µ) ∪Perg(µ) 7→ hRok
G (Yα, να | Fα)

is upper-semicontinuous in the metric dRok
µ . If G is finitely generated then this map

is upper-semicontinuous on all of P(µ).

Proof. Let’s assume G is finitely generated; the proof for the other case will be es-
sentially identical. Fix a countable collection of Borel sets (Dn)n∈N with σ-alg({Dn :
n ∈ N}) = F . Define θ : X → (2N)G by the rule θ(x)(g)(n) = 1 if and only if g−1 ·
x ∈ Dn. Notice that θ−1(B((2N)G)) = F mod Nµ and thus G y ((2N)G, θ∗(µ))
is the (unique up to isomorphism) factor associated with F . We will work with
the larger space NG × (2N)G = (N × 2N)G. We let F ′ denote the sub-σ-algebra
of (N × 2N)G consisting of sets which are measurable with respect to the second
component, (2N)G. Notice that F ′ is generated by a collection of clopen sets.

For any countable partition α of X and any injection f : α → N, define φα,f :
X → NG by the rule φα,f (x)(g) = k if and only if g−1 · x ∈ A ∈ α and f(A) = k.
Combining with θ, we obtain the map φα,f × θ : X → (N × 2N)G. Set µα,f =
(φα,f×θ)∗(µ) and observe that Gy ((N×2N)G, µα,f ) is isomorphic to Gy (Yα, να)
and that this isomorphism identifies F ′ with Fα. Therefore

hRok
G ((N× 2N)G, µα,f | F ′) = hRok

G (Yα, να | Fα).

Now fix α ∈ P(µ) and fix ε > 0. Choose an injection f : α → N whose image
has infinite complement. Let L = {Rk : k ∈ N} be the partition of (N × 2N)G

where Rk = {y : y(1G) ∈ {k} × 2N}. Notice that L is a clopen partition and
that α = (φα,f × θ)−1(L ). Next, choose a finite partition β coarser than α with
Hµ(α | β) < ε. Let ξ be the corresponding coarsening of L , specifically ξ = {CB :
B ∈ β} ∪ {C∅} where CB = ∪{Rk : f−1(k) ⊆ B} and C∅ = ∪{Rk : k 6∈ f(α)}.
Then ξ is a finite clopen partition, β = (φα,f × θ)−1(ξ), and

Hµα,f (L | ξ) = Hµ(α | β) < ε.

By Corollary 5.6, there is a weak∗ open neighborhood U of µα,f such that for
all ν ∈ U

hRok
G,ν (ξ | F ′) < hRok

G,µα,f
(ξ | F ′) + ε.

Since (N× 2N)G is compact and totally disconnected, there are a finite number of
clopen sets W1, . . . ,Wm and δ > 0 such that for all ν ∈MG(LG)(

∀1 ≤ i ≤ m |ν(Wi)− µα,f (Wi)| < δ
)

=⇒ ν ∈ U.

For any countable partition α′ of X and injection f ′ : α′ → N, the pre-images of
the sets Wi under φα′,f ′ × θ will be finite intersections of G-translates of sets from
α′ ∪ {Dn : n ∈ N}. Thus there is κ > 0 such that if α′ and f ′ satisfy∑

k∈N
µ(f−1(k)4f ′−1(k)) < κ

then µα′,f ′ ∈ U . Finally, by [7, Fact 1.7.7] there is η > 0 such that if α′ is a
countable partition of X with dRok

µ (α, α′) < η then there is an injection f ′ : α′ → N
such that

∑
k∈N µ(f−1(k)4f ′−1(k)) < κ (here we use the fact that we chose an

f whose image has infinite complement, allowing f ′ to possibly use new integers).
Furthermore, we may shrink η if necessary so that if (α′, f ′) are as before and β′ is
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defined as β′ = (φα′,f ′ × θ)−1(ξ), then Hµ(α′ | β′) < 2ε. Then, for such an α′ and
f ′, we have

hRok
G (Yα′ , να′ | Fα′) = hRok

G ((N× 2N)G, µα′,f ′ | F ′)

≤ hRok
G,µα′,f′

(ξ | F ′) + hRok
G ((N× 2N)G, µα′,f ′ | σ-algG(ξ) ∨ F ′)

< hRok
G,µα,f

(ξ | F ′) + ε+ Hµα′,f′ (L | ξ)

≤ hRok
G ((N× 2N)G, µα,f | F ′) + ε+ Hµ(α′ | β′)

< hRok
G ((N× 2N)G, µα,f | F ′) + 3ε

= hRok
G (Yα, να | Fα) + 3ε.

This completes the proof in the case G is finitely generated, and the proof for the
non-finitely generated case is essentially identical. �

For our final upper-semicontinuity result we consider the space of p.m.p. G-
actions. Specifically, let (X,µ) be a standard probability space with µ non-atomic,
let Aut(X,µ) denote the group of µ-preserving Borel bijections of X modulo agree-
ment µ-almost-everywhere, and let A(G,X, µ) be the set of group homomorphisms
a : G → Aut(X,µ). The set A(G,X, µ) is called the space of p.m.p. G-actions.
It is a Polish space under the weak topology [15]. This topology is generated by
the sub-basic open sets of the form {a ∈ A(G,X, µ) : µ(a(g)(A)4B) ∈ U} for
A,B ⊆ X Borel and open U ⊆ R.

Below we write Aaper(G,X, µ) for the set of a ∈ A(G,X, µ) for which the action
G ya (X,µ) is aperiodic. Similarly we let Aerg(G,X, µ) be the set of µ-ergodic
actions.

Corollary 5.8. Let (X,µ) be a standard probability space with µ non-atomic, let
P be a partition with H(P) <∞, and let Σ be a sub-σ-algebra. Then the map a ∈
Aaper(G,X, µ)∪Aerg(G,X, µ) 7→ hRok

a(G),µ(P |σ-alga(G)(Σ)) is upper-semicontinuous.

If G is finitely generated then this map is upper-semicontinuous on all of A(G,X, µ).

Proof. Since all standard non-atomic probability spaces are isomorphic, we can
assume without loss of generality that X = 2N. Fix a countable collection of Borel
sets {Dn : n ∈ N} with Σ = σ-alg({Dn : n ∈ N}). Also fix an enumeration
P = {Pn : n ∈ N}. Set Y = N × 2N × 2N and define θ : X → Y by setting
θ(x) = (k, x, z) if x ∈ Pk and for all n ∈ N z(n) = 1 precisely when x ∈ Dn. Clearly
θ is a Borel injection, the pre-image of the Borel σ-algebra coming from the third
component, 2N, coincides with Σ, and the pre-image of the countable partition given
by the first component, N, coincides with P.

Consider the totally disconnected space Y G = NG× (2N)G× (2N)G together with
the natural left-shift action of G. Let F denote the G-invariant σ-algebra coming
from the third component, (2N)G, and define the partition L = {Rk : k ∈ N} by
Rk = {y ∈ Y G : y(1G) ∈ {k} × (2N)G × (2N)G}. Note that L is a clopen partition
and that F is generated by a collection of clopen sets.

For an action a ∈ A(G,X, µ), define φa : X → Y G by the rule φa(x)(g) =
θ(a(g)−1(x)). Clearly φa is injective (in fact φa(x)(1G) = θ(x)), and φa is G-
equivariant with respect to the a-action of G on X. Therefore, setting µa =
(φa)∗(µ), we have that G ya (X,µ) is isomorphic to G y (Y G, µa). Further-
more, this isomorphism identifies L with P and F with σ-alga(G)(Σ).
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Now fix ε > 0. Choose a finite partition Q coarser than P with Hµ(P | Q) < ε.
Let ξ be the corresponding coarsening of L , specifically ξ = {CQ : Q ∈ Q} where
CQ = ∪{Rk : Pk ⊆ Q}. Now fix an action a ∈ A(G,X, µ). By Corollary 5.6 there
is a weak∗ open neighborhood U of µa such that for all ν ∈ U

hRok
G,ν (ξ | F) < hRok

G,µa(ξ | F) + ε.

It is not difficult to check that the map b ∈ A(G,X, µ) → µb is continuous. Thus
there is an open neighborhood V of a with µb ∈ U for all b ∈ V . Then we have

hRok
b(G),µ(P | σ-algb(G)(Σ)) = hRok

G,µb
(L | F)

≤ hRok
G,µb

(ξ | F) + hRok
G,µb

(L | σ-algG(ξ) ∨ F)

< hRok
G,µa(ξ | F) + ε+ Hµb(L | ξ)

≤ hRok
G,µa(L | F) + ε+ Hµ(P | Q)

< hRok
G,µa(L | F) + 2ε

= hRok
a(G),µ(P | σ-alga(G)(Σ)) + 2ε.

This completes the proof when G is finitely generated. The proof for the non-finitely
generated case is essentially identical. �

6. Inverse limits

In this section we obtain a formula for the Rokhlin entropy of an inverse limit
of actions. This formula was developed for ergodic actions in Part II [29] and
was a critical ingredient for the proof of the main theorem there. We believe the
formula is of independent interest and will be useful for other purposes. Here we
will also apply it to establish Borel measurability of Rokhlin entropy on the space
of invariant measures and on the space of actions.

Lemma 6.1. Let G y (X,µ) be a p.m.p. action. Suppose that G y (X,µ) is
the inverse limit of actions Gy (Xn, µn). Identify each B(Xn) as a sub-σ-algebra
of X in the natural way. Let (Fn)n∈N be an increasing sequence of sub-σ-algebras
with Fn ⊆ B(Xn) for every n, and set F =

∨
n∈N Fn. If P is a partition with

P ⊆ B(Xn) for all n and infn∈N H(P | Fn ∨IG) <∞ then

hRok
G,µ(P | F) = inf

n∈N
hRok
G,µn(P | Fn).

Proof. Without loss of generality, we can assume that each Fn is countably gen-
erated. Let µ =

∫
EG(X)

ν dτ(ν) be the ergodic decomposition of µ. Then every

ergodic measure ν pushes forward to an ergodic measure νn for G y Xn, and we
have µn =

∫
νn dτ(ν). Pick k ∈ N with H(P | Fk ∨IG) < ∞. Lemma 3.1 implies

that

H(P | Fk ∨IG) =

∫
EG(X)

Hν(P | Fk) dτ(ν).

So for τ -almost-every ν ∈ EG(X) the infimum infn Hν(P | Fn) ≤ Hν(P | Fk) is
finite. In [29, Lem. 7.1] this lemma is proven for ergodic actions. So hRok

G,ν (P |F) =

infn h
Rok
G,νn

(P | Fn) for τ -almost-every ν ∈ EG(X). The claim now follows from

the ergodic decomposition formula (Corollary 4.5) and the monotone convergence
theorem for integrals. �
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Corollary 6.2. Let Gy (X,µ) be a p.m.p. action, and let (Fn)n∈N be an increas-
ing sequence of sub-σ-algebras. Set F =

∨
n∈N Fn.

(i) hRok
G,µ(P | F) = infn∈N h

Rok
G,µ(P | Fn) if P is a partition with infn H(P | Fn ∨

IG) <∞.
(ii) hRok

G (X,µ | F) = infn∈N h
Rok
G (X,µ | Fn) if the right-hand side is finite.

Proof. Clause (i) follows from Lemma 6.1 by using Xn = X for all n. For (ii),
assume the right-hand side is finite and pick k ∈ N with hRok

G (X,µ |Fk) <∞. Then
there is a partition P with H(P |Fk ∨IG) <∞ and σ-algG(P)∨Fk ∨IG = B(X).
So hRok

G (X,µ | F) = hRok
G,µ(P | F) and hRok

G (X,µ | Fn) = hRok
G,µ(P | Fn) for all n ≥ k.

By applying (i) we obtain

hRok
G (X,µ | F) = hRok

G,µ(P | F) = inf
n≥k

hRok
G,µ(P | Fn) = inf

n≥k
hRok
G (X,µ | Fn). �

Now we present a general formula for the Rokhlin entropy of an inverse limit.

Theorem 6.3. Let Gy (X,µ) be a p.m.p. action and let F be a G-invariant sub-
σ-algebra. Suppose that G y (X,µ) is the inverse limit of actions G y (Xn, µn).
Identify each B(Xn) as a sub-σ-algebra of X in the natural way. Then

(6.1) hRok
G (X,µ | F) <∞⇐⇒

{
inf
n∈N

sup
m≥n

hRok
G,µ(B(Xm) | B(Xn) ∨ F) = 0

and ∀m hRok
G,µ(B(Xm) | F) <∞.

}
Furthermore, when hRok

G (X,µ | F) <∞ we have

(6.2) hRok
G (X,µ | F) = sup

m∈N
hRok
G,µ(B(Xm) | F).

Proof. First suppose that hRok
G (X,µ | F) <∞. Then

hRok
G,µ(B(Xm) | F) ≤ hRok

G (X,µ | F) <∞
for all m ∈ N and by applying Corollary 6.2.(ii) we get

0 = hRok
G (X,µ | B(X)) = inf

n∈N
hRok
G (X,µ | B(Xn) ∨ F)

≥ inf
n∈N

sup
m≥n

hRok
G,µ(B(Xm) | B(Xn) ∨ F) ≥ 0.

This proves one implication in the first claim.
Now suppose that the right-side of (6.1) is true. Fix δ > 0 and for each i ≥ 1 fix

n(i) with

sup
m∈N

hRok
G,µ(B(Xm) | B(Xn(i)) ∨ F) <

δ

2i
.

Then by using m = n(i+ 1) we have

hRok
G,µ(B(Xn(i+1)) | B(Xn(i)) ∨ F) <

δ

2i
.

Now by sub-additivity (Corollary 4.6) we have

hRok
G (X,µ | F) ≤ hRok

G,µ(B(Xn(1)) | F) +

∞∑
i=1

hRok
G,µ(B(Xn(i+1)) | B(Xn(i)) ∨ F)

< hRok
G,µ(B(Xn(1)) | F) + δ.

So hRok
G (X,µ | F) < ∞, completing the proof of the first claim. The second claim

also follows, since above we only assumed that the right-side of (6.1) was true
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(equivalently hRok
G (X,µ | F) <∞ by the first claim). By letting δ tend to 0 above,

we get that hRok
G (X,µ | F) ≤ supm h

Rok
G,µ(B(Xm) | F). The reverse inequality is

immediate from the definitions. �

It is an interesting open problem to determine if, under the assumptions of the
previous theorem, one always has hRok

G (X,µ | F) = supm∈N h
Rok
G,µ(B(Xm) | F).

The formula in the previous theorem relies upon computing outer Rokhlin en-
tropies within the largest space X. However, it may be more natural to use a
formula which only relies upon computations occurring within the actions which
build the inverse limit. With an additional assumption we can obtain such a for-
mula.

Corollary 6.4. Let G y (X,µ) be a p.m.p. action. Suppose that G y (X,µ)
is the inverse limit of actions G y (Xn, µn). Identify each B(Xn) as a sub-σ-
algebra of X in the natural way. Let (Fn)n∈N be an increasing sequence of sub-
σ-algebras with Fn ⊆ B(Xn) for every n, and set F =

∨
n∈N Fn. Assume that

hRok
G (Xn, µn | Fn) <∞ for all n. Then

hRok
G (X,µ | F) <∞⇐⇒ inf

n∈N
sup
m≥n

inf
k≥m

hRok
G,µk

(B(Xm) | B(Xn) ∨ Fk) = 0.

Furthermore, when hRok
G (X,µ | F) <∞ we have

hRok
G (X,µ | F) = sup

m∈N
inf
k≥m

hRok
G,µk

(B(Xm) | Fk).

Proof. For each m pick a partition αm ⊆ B(Xm) with H(αm |IG(Xm)∨Fm) <∞
and B(Xm) = σ-algG(αm) ∨IG(Xm) ∨ Fm. Then by Lemma 6.1 we have

hRok
G,µ(B(Xm) | F) = hRok

G,µ(αm | F) = inf
k≥m

hRok
G,µk

(αm | Fk) = inf
k≥m

hRok
G,µk

(B(Xm) | Fk)

and similarly by the same reasoning for every n ≤ m
hRok
G,µ(B(Xm) | B(Xn) ∨ F) = inf

k≥m
hRok
G,µk

(B(Xm) | B(Xn) ∨ Fk).

So the corollary follows from the two identities above and Theorem 6.3. �

In the next two corollaries we apply the formula in Theorem 6.3 in order to
establish the Borel measurability of Rokhlin entropy. We first consider the space
of G-invariant probability measures.

Corollary 6.5. Let G be a countable group, let X be a standard Borel space, let
G y X be a Borel action, and let F be a countably generated G-invariant sub-σ-
algebra.

(i) The map µ ∈MG(X) 7→ hRok
G (X,µ | F) is Borel.

(ii) If P is a countable Borel partition then the map µ ∈ {ν ∈ MG(X) :
Hν(P) <∞} → hRok

G,µ(P | F) is Borel.

Proof. We first claim that I fin
G is countably generated. Let B be a Borel set which

meets every finite G-orbit precisely once and does not meet any infinite G-orbit. If
Z ⊆ B is Borel then G · Z = {x ∈ X : ∃g ∈ G g · x ∈ Z} is Borel as well. Thus
B(X) � B = I fin

G � B. Since I fin
G � B is isomorphic as a σ-algebra to I fin

G , and
since B(X) is countably generated, it follows that I fin

G is countably generated as
claimed.

By the above claim and our assumption on F , F ∨I fin
G is countably generated.

Hence there is a countable collection C of finite F ∨ I fin
G -measurable partitions
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which is c-dense in H(F ∨I fin
G , µ) for all µ ∈MG(X). We can also fix a countable

collection A of finite Borel partitions which is c-dense in P(µ) for all µ ∈MG(X).
(ii). For Borel sets D the map µ 7→ µ(D) is Borel, and similarly µ 7→ Hµ(ξ | ζ)

is Borel for any countable Borel partitions ξ and ζ. So Lemma 5.3 immediately
implies that the map µ ∈ {ν ∈MG(X) : Hν(P) <∞} → hRok

G,µ(P | F) is Borel.

(i). Fix an increasing sequence of finite partitions αn with
∨
n∈N σ-alg(αn) =

B(X). For each n ∈ N let G y (Xn, µn) be the factor of (X,µ) associated to
σ-algG(αn) ∨ F . Since each αn is finite, it follows from (ii) that for all n ≤ m the
functions

µ 7→ hRok
G,µ(αm | B(Xn) ∨ F) = hRok

G,µ(B(Xm) | B(Xn) ∨ F)

and µ 7→ hRok
G,µ(αm | F) = hRok

G,µ(B(Xm) | F)

are Borel. Now by applying Theorem 6.3 we conclude that µ 7→ hRok
G (X,µ | F) is

Borel. �

Finally, we show that Rokhlin entropy is a Borel function on the space of actions.

Corollary 6.6. Let (X,µ) be a standard probability space with µ non-atomic, and
let Σ be a sub-σ-algebra.

(i) The map a ∈ A(G,X, µ)→ hRok
a(G)(X,µ | σ-alga(G)(Σ)) is Borel.

(ii) If P is a countable partition with H(P) <∞ then the map a ∈ A(G,X, µ)→
hRok
a(G),µ(P | σ-alga(G)(Σ)) is Borel.

Proof. Set Y = XG and let G act on Y by left-shifts: (g · y)(t) = y(g−1t) for y ∈ Y
and g, t ∈ G. Let π : Y → X be the map y 7→ y(1G). Set P̄ = π−1(P). Let Σ′ be a
countably generated σ-algebra with Σ′ = Σ mod Nµ, and set Σ̄ = π−1(Σ′).

For a ∈ A(G,X, µ) define θa : X → Y = XG by θa(x)(g) = a(g−1)(x). Then θa

is a G-equivariant Borel injection. Set µa = θa∗(µ). Since B(Y ) is generated by sets
of the form {y ∈ Y : ∀t ∈ T y(t) ∈ Bt} for finite T ⊆ G and Borel sets Bt ⊆ X,
and since

µa({y ∈ Y : ∀t ∈ T y(t) ∈ Bt}) = µ

(⋂
t∈T

a(t)(Bt)

)
,

we see that the map a ∈ A(G,X, µ)→ µa ∈MG(Y ) is Borel.
Each map θa : (X,µ)→ (Y, µa) is a G-equivariant isomorphism with P̄ = θa(P)

mod Nµa and Σ̄ = θa(Σ) mod Nµa . So

hRok
a(G)(X,µ | σ-alga(G)(Σ)) = hRok

G (Y, µa | σ-algG(Σ̄))

hRok
a(G),µ(P | σ-alga(G)(Σ)) = hRok

G,µa(P̄ | σ-algG(Σ̄)).

Using the fact that a 7→ µa is Borel, and noting that Hµa(P̄) = Hµ(P) < ∞,
applying Corollary 6.5 completes the proof. �

7. Comparison with Kolmogorov–Sinai and sofic entropies

In this section we relate Rokhlin entropy to classical Kolmogorov–Sinai entropy
and sofic entropy.

As expected, we find that Rokhlin entropy and Kolmogorov–Sinai entropy coin-
cide for free actions of amenable groups. When µ is ergodic and F = {∅, X}, this
was proven for G = Z by Rokhlin [26] and proven for general amenable groups by
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Seward and Tucker-Drob in [32]. When µ is ergodic but F is possibly non-trivial,
this was proven by Seward in [28].

Corollary 7.1. Let G be a countably infinite amenable group, let G y (X,µ) be
a free p.m.p. action, and let F be a G-invariant sub-σ-algebra. Then the relative
Rokhlin and relative Kolmogorov–Sinai entropies coincide:

hRok
G (X,µ | F) = hKS

G (X,µ | F).

In particular, hRok
G (X,µ) = hKS

G (X,µ).

Proof. This is immediate from equality in the ergodic case [28] and the ergodic
decomposition formula (Corollary 4.5). �

We also present a refined version of the previous corollary. For this we remind the
reader the definition of Kolmogorov–Sinai entropy. Let G be a countably infinite
amenable group, and let Gy (X,µ) be a free p.m.p. action. For a partition α and
a finite set T ⊆ G, we write αT for the join

∨
t∈T t ·α, where t ·α = {t ·A : A ∈ α}.

Given a G-invariant sub-σ-algebra F , the relative Kolmogorov–Sinai entropy is
defined as

hKS
G (X,µ | F) = sup

α
inf
T⊆G

1

|T |
·H(αT | F),

where α ranges over all finite Borel partitions and T ranges over finite subsets of G
[6]. Equivalently, one can replace the infimum with a limit over a Følner sequence
(Tn) [23]. For ξ ⊆ B(X) we also define

hKS
G (ξ | F) = sup

α
inf
T⊆G

1

|T |
·H(αT | F),

where α ranges over all finite partitions which are measurable with respect to the
algebra generated by ξ, and T ranges over all finite subsets of G. The proof of [6,
Theorem 2.7.(i)] can be modified to show that if Gy (Y, ν) is the factor of (X,µ)
associated to σ-algG(ξ)∨F , then hKS

G (ξ | F) = hKS
G (Y, ν | F), where we view F as a

sub-σ-algebra of Y in the natural way. In particular hKS
G (ξ |F) = hKS

G (σ-algG(ξ)|F).

Corollary 7.2. Let G be a countably infinite amenable group, let Gy (X,µ) be a
free p.m.p. action, let ξ ⊆ B(X), and let F be a G-invariant sub-σ-algebra. Then

hRok
G,µ(ξ | F) = hKS

G (ξ | F).

Proof. Since both quantities satisfy an ergodic decomposition formula, it suffices to
prove this with the assumption that µ is ergodic, in which case IG is trivial. Fix
ε > 0. By [32] there is a partition γ with H(γ) < ε and with the property that G
acts freely on the factor of G y (X,µ) associated to σ-algG(γ). It is not difficult
to deduce from the definitions that

(7.1) hKS
G (ξ | F) ≤ hKS

G (γ ∪ ξ | F) ≤ H(γ) + hKS
G (ξ | F) ≤ ε+ hKS

G (ξ | F).

Similarly, by sub-additivity of Rokhlin entropy

(7.2) hRok
G,µ(ξ | F) ≤ hRok

G,µ(γ ∪ ξ | F) ≤ H(γ) + hRok
G,µ(ξ | F) ≤ ε+ hRok

G,µ(ξ | F).

Letting Gy (Y, ν) be the factor of (X,µ) associated to σ-algG(γ ∪ ξ)∨F , we have
that G acts freely on Y by construction of γ and thus Corollary 7.1 gives

(7.3) hRok
G,µ(γ ∪ ξ | F) ≤ hRok

G (Y, ν | F) = hKS
G (Y, ν | F) = hKS

G (γ ∪ ξ | F).
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If hRok
G,µ(γ ∪ ξ | F) = ∞ then we are done by (7.1), (7.2), and (7.3). So suppose

hRok
G,µ(γ ∪ ξ | F) < ∞. Fix a partition β with H(β | F) < hRok

G,µ(γ ∪ ξ | F) + ε and

γ ∪ ξ ⊆ σ-algG(β) ∨ F . By (7.3) we have

hRok
G,µ(γ ∪ ξ | F) ≤ hKS

G (γ ∪ ξ | F) ≤ hKS
G (β | F) ≤ H(β | F) < hRok

G,µ(γ ∪ ξ | F) + ε.

Therefore |hRok
G,µ(ξ |F)−hKS

G (ξ |F)| < 3ε by (7.1) and (7.2). Now let ε tend to 0. �

Next we compare Rokhlin entropy with sofic entropy. As a convenience to the
reader, we recall the definition of sofic groups.

Definition 7.3. A countable group G is sofic if there exists a sequence of maps
σn : G→ Sym(dn) (not necessarily homomorphisms) such that

(i) 1
dn
· |{1 ≤ i ≤ dn : σn(g) ◦ σn(h)(i) = σn(gh)(i)}| → 1 for all g, h ∈ G,

(ii) 1
dn
· |{1 ≤ i ≤ dn : σn(g)(i) 6= i}| → 1 for all 1G 6= g ∈ G, and

(iii) dn →∞.

Such a sequence of maps Σ = (σn : G→ Sym(dn))n∈N is called a sofic approxima-
tion to G.

Let G be a sofic group with sofic approximation Σ. For a p.m.p. action G y
(X,µ) and G-invariant sub-σ-algebras F1,F2 we let hΣ,µ(F1 | F2 :X,G) denote the
sofic entropy of F1 relative to F2 in the presence of X as defined in [12, Section 2].
The following is a slight and technical improvement upon [12, Prop. 2.12] that, by
virtue of how Rokhlin entropy was defined in that paper, only applied to aperiodic
actions.

Proposition 7.4. Let G be a sofic group with sofic approximation Σ, let G y
(X,µ) be a p.m.p. action, and let F1,F2 be G-invariant sub-σ-algebras of X. Then

hΣ,µ(F1 | F2 :X,G) ≤ hRok
G,µ(F1 | F2).

In particular, the sofic entropy of Gy (X,µ) is at most hRok
G (X,µ).

Proof. The final claim follows by setting F1 = B(X) and F2 = {X,∅}. When
Gy (X,µ) is aperiodic this is [12, Prop. 2.12] (that paper defines Rokhlin entropy
via the formula in our Corollary 4.8). Fix a probability space (L, λ) with 0 <
H(L, λ) < ∞. Consider the free action G y (X × LG, µ × λG). We view F1 and
F2 as G-invariant sub-σ-algebras of both B(X) and B(X ×LG) in the natural way.
It was shown by Bowen in [2] that hΣ

G(X ×LG, µ× λG) = hΣ
G(X,µ) + H(L, λ), and

his proof also easily implies

hΣ,µ×λG(F1 | F2 :X × LG, G) = hΣ,µ(F1 | F2 :X,G).

The action of G on X × LG is aperiodic, so [12, Prop. 2.12] implies that

hΣ,µ×λG(F1 | F2 :X × LG, G) ≤ hRok
G,µ×λG(F1 | F2).

Finally, it follows immediately from the definitions that

hRok
G,µ×λG(F1 | F2) ≤ hRok

G,µ(F1 | F2). �



30 ANDREI ALPEEV AND BRANDON SEWARD

8. Restricted orbit equivalence

Recall that two p.m.p. actions Gy (X,µ) and Γ y (Y, ν) are orbit equivalent if
there is a measure space isomorphism φ : (X,µ)→ (Y, ν) which sends almost-every
G-orbit to a Γ-orbit. In other words, up to an isomorphism G and Γ both act on
(X,µ) and they have the same orbits µ-almost-everywhere.

It is a theorem of Ornstein and Weiss that any two free actions of countably
infinite amenable groups are orbit equivalent [22]. Thus orbit equivalences do not
respect entropy. However, in 2000 Rudolph and Weiss made the surprising discovery
that Kolmogorov–Sinai entropy is preserved under a certain restricted class of orbit
equivalences [27]. In this section we will show that Rokhlin entropy is preserved
under this same restricted class of orbit equivalences. We remark that due to
the definition of Rokhlin entropy this is a rather simple fact, but working from the
definition of Kolmogorov–Sinai entropy, as Rudolph–Weiss did, requires more work.

Recall that for a p.m.p. action Gy (X,µ) the induced orbit equivalence relation
is

EXG = {(x, y) : ∃g ∈ G, g · x = y}.
Also, the full group of EXG , denoted [EXG ], is the set of all Borel bijections θ : X → X
with θ(x) ∈ G · x for all x ∈ X.

Definition 8.1. Let Gy (X,µ) be a p.m.p. action, let θ ∈ [EXG ], and let F be a G-
invariant sub-σ-algebra. We say that θ is F-expressible if there is an F-measurable
partition {Zθg : g ∈ G} of X such that θ(x) = g · x for almost-every x ∈ Zθg and all
g ∈ G.

Notice that the partition {Zθg : g ∈ G} is not unique if G does not act freely. The

notion of expressibility can also be stated in terms of cocycles. Specifically, θ ∈ [EXG ]
is F-expressible if and only if there is an F-measurable cocycle c : Z × X → G
satisfying c(n, x) · x = θn(x) for all n ∈ Z and x ∈ X.

We recall two elementary lemmas from Part I [28].

Lemma 8.2. [28, Lem. 3.2] Let G y (X,µ) be a p.m.p. action and let F be a
G-invariant sub-σ-algebra. If θ ∈ [EXG ] is F-expressible and A ⊆ X, then θ(A) is
σ-algG({A}) ∨ F-measurable. In particular, if A ∈ F then θ(A) ∈ F .

Lemma 8.3. [28, Lem. 3.3] Let G y (X,µ) be a p.m.p. action and let F be a
G-invariant sub-σ-algebra. If θ, φ ∈ [EXG ] are F-expressible then so are θ−1 and
θ ◦ φ.

The following proposition was stated for ergodic actions in Part I [28]. In the
case of free actions of amenable groups it recovers the entropy preservation result
of Rudolph–Weiss [27] (by Corollary 7.2).

Note that if G and Γ act on (X,µ) with the same orbits then EXG = EXΓ and
[EXG ] = [EXΓ ]. In this situation, we say that θ ∈ [EXG ] is (G,F)-expressible if it is
F-expressible with respect to the G-action Gy (X,µ).

Proposition 8.4. Let G y (X,µ) and Γ y (X,µ) be aperiodic p.m.p. actions
having the same orbits, and let F be a G and Γ invariant sub-σ-algebra. If Γ is
(G,F)-expressible and G is (Γ,F)-expressible, then for every ξ ⊆ B(X)

hRok
G,µ(ξ | F) = hRok

Γ,µ (ξ | F).

In particular, hRok
G (X,µ | F) = hRok

Γ (X,µ | F).
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Proof. Note that IG = IΓ. Denote this common σ-algebra by I . Since Γ is
(G,F)-expressible, for every partition α Lemma 8.2 implies σ-algΓ(α) ∨I ∨ F ⊆
σ-algG(α)∨I ∨F . Similarly, since G is (Γ,F)-expressible we get σ-algG(α)∨I ∨
F ⊆ σ-algΓ(α) ∨ I ∨ F . So for every partition α we have σ-algG(α) ∨ I ∨ F =
σ-algΓ(α) ∨ I ∨ F . The claim now follows immediately from the definition of
Rokhlin entropy. �

Before ending this section, we briefly mention one additional observation which
seems worth recording. The following lemma is a generalization of the following
simple fact: if G y (X,µ) is a p.m.p. action, Γ is a subgroup of G, and the
restricted action Γ y (X,µ) is aperiodic, then hRok

G (X,µ) ≤ hRok
Γ (X,µ). In the

lemma below, we consider not only the case where Γ is a subgroup of G but more
generally the case where Γ is an F-expressible subgroup of the full group [EXG ].
This is indeed more general, as each g ∈ G, when viewed as an element of [EXG ], is
{X,∅}-expressible.

Lemma 8.5. Let G y (X,µ) be a p.m.p. action, let ξ ⊆ B(X), and let F be a
G-invariant sub-σ-algebra. If Γ ≤ [EXG ] is an F-expressible subgroup which acts
aperiodically then

hRok
G,µ(ξ | F) ≤ hRok

Γ,µ (ξ | F).

In particular, if σ-algG(ξ) ∨ F ∨IG = B(X), then hRok
G (X,µ | F) ≤ hRok

Γ,µ (ξ | F).

Proof. Fix ε > 0. Since the action of Γ is aperiodic, by Corollary 3.10 there is a
two-piece partition χ such that H(χ) < ε and IΓ ⊆ σ-algΓ(χ). Let α be a countable
partition satisfying H(α | F ∨IΓ) ≤ hRok

Γ,µ (ξ | F) + ε and ξ ⊆ σ-algΓ(α) ∨ F ∨IΓ.

Using Lemma 8.2 we obtain IΓ ⊆ σ-algΓ(χ) ⊆ σ-algG(χ) ∨ F and

ξ ⊆ σ-algΓ(α) ∨IΓ ∨ F ⊆ σ-algΓ(α ∨ χ) ∨ F ⊆ σ-algG(α ∨ χ) ∨ F .

By sub-additivity we obtain

hRok
G,µ(ξ | F) ≤ H(χ) + H(α | σ-algG(χ) ∨F) ≤ ε+ H(α |IΓ ∨F) ≤ hRok

Γ,µ (ξ | F) + 2ε.

Now let ε tend to 0. �

9. Stabilizers

In this section we look at how stabilizers relate to entropy. Before the main
theorem, we need a simple lemma. Below, for an equivalence relation R and B ⊆ X
we write [B]R = {x ∈ X : ∃b ∈ B with x R b} for the R-saturation of B.

Lemma 9.1. Let G y (X,µ) be a p.m.p. action, let F be a G-invariant sub-σ-
algebra, let Θ ⊆ [EXG ] be a countable collection of F-expressible functions, and let
R be the equivalence relation generated by Θ (meaning R is the smallest equivalence
relation satisfying x R θ(x) for all x ∈ X and θ ∈ Θ). Then for B ⊆ X we have
[B]R ∈ σ-algG(B) ∨ F .

Proof. By Lemma 8.3, all combinations of elements of Θ and their inverses are F-
expressible. Denote by 〈Θ〉 the countable group generated by Θ. The claim follows
from Lemma 8.2 since [B]R =

⋃
θ∈〈Θ〉 θ(B) ∈ σ-algG(B) ∨ F . �

We also need the following fairly well known fact.
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Lemma 9.2. Let G y (X,µ) be a p.m.p. action, let Z ⊆ X be a non-null Borel
set, and let T ⊆ G be finite. Then there is a non-null Z ′ ⊆ Z with T ·z1∩T ·z2 = ∅
for all z1 6= z2 ∈ Z ′.

Proof. Let Γ be the Borel graph on Z with edge set {(z, z′) ∈ Z×Z : z 6= z′ and T ·
z∩T ·z′ 6= ∅}. The degree of Γ is at most |T |2, so by [16, Prop. 4.6] there is a Borel
function f : Z → {0, 1, . . . , |T |2} with f(z) 6= f(z′) for all z, z′ ∈ Z joined by an
edge. Now pick any i ∈ {0, 1, . . . , |T |2} with µ(f−1(i)) > 0 and set Z ′ = f−1(i). �

Theorem 9.3. Let G y (X,µ) and G y (Y, ν) be p.m.p. actions with the action
on X aperiodic, and let F be a G-invariant sub-σ-algebra of Y .Consider a factor
map f : G y (X,µ) → G y (Y, ν). Identify B(Y ) as a sub-σ-algebra of X in the
natural way via f .

(i) Assume |StabG(f(x)) : StabG(x)| ≥ k for µ-almost-every x ∈ X. Then
hRok
G,µ(ξ | F) ≤ 1

k · h
Rok
G,ν (ξ | F) for every collection ξ ⊆ B(Y ). In particular,

hRok
G,µ(Y, ν) ≤ 1

k
· hRok

G (Y, ν).

(ii) If |StabG(f(x)) : StabG(x)| =∞ for µ-almost-every x ∈ X then

hRok
G,µ(Y, ν) = 0.

Proof. Our proof uses some ideas of Meyerovitch [21]. We will prove this in the case
that µ is ergodic, as then the general case is obtained by Corollary 4.5. Let R be the
equivalence relation where x, x′ ∈ X are R-equivalent if and only if they lie in the
same G-orbit and have the same image under f . Note that [x]R = StabG(f(x)) · x
has cardinality |StabG(f(x)) : StabG(x)|. Since f is G-equivariant, we have that
g · [x]R = [g · x]R for all g ∈ G and x ∈ X. Thus, a single R-class determines all
other R-classes in the same G-orbit.

(i). Fix ξ ⊆ B(Y ) and fix ε > 0. By ergodicity and by picking a larger k if
necessary, we may assume that |[x]R| = k for almost-every x ∈ X (the case k =∞
is handled by case (ii)). Since there are only countably many subsets of G of
cardinality k, there is T ⊆ G such that |T | = k, 1G ∈ T , and with the property
that Z = {x ∈ X : [x]R = T · x} has positive measure. Set ζ = {Z,X \ Z}.
Using Lemma 9.2, we can replace Z with a non-null subset so that H(ζ) < ε/2 and
T ·z∩T ·z′ = ∅ for all z 6= z′ ∈ Z. For t ∈ T define θt ∈ [EXG ] by setting θt(x) = t ·x
for x ∈ Z, θt(x) = t−1 · x for x ∈ t · Z, and θt(x) = x in all other cases. Then by
ergodicity and up to discarding a null set, R coincides with the equivalence relation
generated by the σ-algG(ζ)-expressible maps {g−1θtg : g ∈ G, t ∈ T} ⊆ [EXG ].

Fix an enumeration 1G = g0, g1, . . . for G, and define ψ : X → T · Z = [Z]R by
setting ψ(x) = gi · x, where i is least with gi · x ∈ T · Z = [Z]R, or equivalently gi ·
[x]R ⊆ [Z]R. Set M = ψ−1(Z). Since Z meets every R-class in [Z]R precisely once,
we have that M meets every R-class precisely once and hence µ(M) = 1/k. Let
µM be the normalized restriction of µ to M defined by µM (B) = µ(M ∩B)/µ(M).
Note that M ∈ σ-algG(ζ) and that µM (B) = µ(B) for every R-invariant Borel set
B.

Let α be a partition of Y with ξ ⊆ σ-algG(α)∨F and H(α|F) ≤ hRok
G,ν (ξ |F)+ε/2.

We also view α ⊆ B(Y ) ⊆ B(X) as a partition of X. Each A ∈ α is R-invariant
and thus A = [A∩M ]R. Moreover, since every set in α ∪F is R-invariant we have
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that µ and µM agree on α ∪ F and thus

µ(M) ·HµM (α | F) =
1

k
·Hµ(α | F) ≤ 1

k
· hRok

G,ν (ξ | F) + ε/2.

Let β be the join of {X \M}∪ (α �M) with ζ. For each A ∈ α Lemma 9.1 implies
that

A = [A ∩M ]R ∈ σ-algG(A ∩M) ∨ σ-algG(ζ) ⊆ σ-algG(β),

and thus ξ ⊆ σ-algG(α) ∨ F ⊆ σ-algG(β) ∨ F . So by sub-additivity

hRok
G,µ(ξ|F) ≤ H(ζ)+H(β|σ-algG(ζ)∨F) ≤ ε/2+µ(M)·HµM (α|F) ≤ ε+ 1

k
·hRok
G,ν (ξ|F).

Since ε > 0 was arbitrary, this complete the proof of (i).
(ii). Fix an increasing sequence of finite partitions (αn)n∈N of Y satisfying∨
n∈N σ-algG(αn) = B(Y ). If hRok

G,µ(αn) = 0 for each n, then by sub-additivity

we have hRok
G,µ(Y, ν) ≤

∑
n∈N h

Rok
G,µ(αn) = 0. So it suffices to fix a finite partition α

of Y and show that hRok
G,µ(α) = 0.

Fix ε > 0. By assumption |[x]R| = ∞ for almost-every x ∈ X. For each n ≥ 1,
as in the proof of (i) we can pick a finite Tn ⊆ G and a non-null Borel set Zn ⊆ X
such that |Tn| = n, |Tn · z| = n, and Tn · z ⊆ [z]R for all z ∈ Zn. By replacing
Zn with a non-null subset if necessary and applying Lemma 9.2, we may assume
that Tn · z ∩ Tn · z′ = ∅ for all z 6= z′ ∈ Zn and that H(ζn) < ε/2n+1, where
ζn = {Zn, X \ Zn}. As before, for t ∈ Tn define θnt ∈ [EXG ] by θnt (x) = t · x for
x ∈ Zn, θnt (x) = t−1 · x for x ∈ t · Zn, and θnt (x) = x in all other cases. Each θnt is
σ-algG(ζn)-expressible. Set Σ =

∨
n∈N σ-algG(ζn) and note that by sub-additivity

hRok
G,µ(Σ) ≤

∑
n∈N H(ζn) < ε/2.

Let S be the equivalence relation generated by the Σ-expressible maps {g−1θnt g :
g ∈ G, n ∈ N, t ∈ Tn}. Then S is a sub-relation of R and by ergodicity almost-
every S-class is infinite. Pick a Borel set M ⊆ X which meets every S-class but
has small enough measure that H({M,X \M}) + µ(M) · log |α| < ε/2. Again let
µM denote the normalized restriction of µ to M . Set β = {X \M} ∪ (α � M)
and observe H(β) = H({M,X \M}) + µ(M) · HµM (α) < ε/2. Since each A ∈ α is
S-invariant and M meets every S-class, we have

A = [A ∩M ]S ∈ σ-algG(A ∩M) ∨ Σ ⊆ σ-algG(β) ∨ Σ

by Lemma 9.1 and thus α ⊆ σ-algG(β) ∨ Σ. It follows from sub-additivity that

hRok
G,µ(α) ≤ hRok

G,µ(Σ) + H(β) < ε.

Letting ε tend to 0, we obtain hRok
G,µ(α) = 0. �

The previous theorem leads to an alternate proof of Meyerovitch’s theorem which
states that ergodic actions of positive sofic entropy must have finite stabilizers. For
a sofic group G with sofic approximation Σ and a p.m.p. action G y (X,µ), we
let hΣ

G(X,µ) denote the corresponding sofic entropy (see for instance [17] for the
definition).

Corollary 9.4. Let G be a sofic group with sofic approximation Σ and let G y
(Y, ν) be a p.m.p. action.

(i) hΣ
G(Y, ν) ≤ 1

k · h
Rok
G (Y, ν) if all stabilizers have cardinality at least k.

(ii) hΣ
G(Y, ν) = 0 if all stabilizers are infinite.
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Proof. (i). Consider the Bernoulli shift (2G, uG2 ) and set (X,µ) = (2G × Y, uG2 ×
ν). Then G y (X,µ) is essentially free and this action factors onto G y (Y, ν).
Therefore by the previous theorem hRok

G,µ(Y, ν) ≤ 1
k · h

Rok
G (Y, ν). So we have

(9.1) hRok
G (X,µ) ≤ log(2) + hRok

G,µ(Y, ν) ≤ log(2) +
1

k
· hRok

G (Y, ν).

On the other hand, Bowen proved that sofic entropy is additive under direct prod-
ucts with Bernoulli shifts [2]. As sofic entropy is a lower bound to Rokhlin entropy
[12, Prop. 2.12], we obtain

(9.2) log(2) + hΣ
G(Y, ν) = hΣ

G(X,µ) ≤ hRok
G (X,µ).

Combining (9.1) and (9.2) completes the proof of (i).
For (ii) the argument is mostly the same, except that in place of (9.1) we have

the inequality hRok
G (X,µ) ≤ log(2) + hRok

G,µ(Y, ν) = log(2). �
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