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Abstract. We study a measure entropy for finitely generated free group actions called
f-invariant entropy. The f-invariant entropy was developed by L. Bowen and is essentially
a special case of his measure entropy theory for actions of sofic groups. In this
paper we relate the f-invariant entropy of a finitely generated free group action to the
f-invariant entropy of the restricted action of a subgroup. We show that the ratio of these
entropies equals the index of the subgroup. This generalizes a well-known formula for the
Kolmogorov–Sinai entropy of amenable group actions. We then extend the definition of
f-invariant entropy to actions of finitely generated virtually free groups. We also obtain
a numerical virtual measure conjugacy invariant for actions of finitely generated virtually
free groups.

1. Introduction
Recently Bowen [2] defined a numerical measure conjugacy invariant for actions of finitely
generated free groups, called f-invariant entropy. The f-invariant entropy is relatively easy
to calculate, has strong similarities with the classical Kolmogorov–Sinai entropy of actions
of amenable groups, and in fact agrees with the classical Kolmogorov–Sinai entropy when
the finitely generated free group is just Z. Moreover, f-invariant entropy is essentially a
special, simpler case of the recently emerging entropy theory of sofic group actions being
developed by Bowen [3, 4, 7], Kerr and Li [16–18], Kerr [15], and others [9, 25, 26]. The
classical Kolmogorov–Sinai entropy has unquestionably been a fundamental and powerful
tool in the study of actions of amenable groups, and f-invariant entropy seems posed to
take a similar role in the study of actions of finitely generated free groups. Bowen has
already used f-invariant entropy to classify most Bernoulli shifts over finitely generated
free groups up to measure conjugacy [2], and the classical Abramov–Rohlin and (under a
few assumptions) Juzvinskii’s addition formulas have been extended to actions of finitely
generated free groups by Bowen [5] and Bowen and Gutman [8], respectively. However,
the theory surrounding f-invariant entropy is still quite young. The f-invariant entropy has
been computed for a few specific examples and for a few special types of actions, but a
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thorough understanding of the behavior of f-invariant entropy in general has yet to emerge.
Furthermore, there is a significant lack of intuition relating to f-invariant entropy. In some
cases f-invariant entropy behaves just like Kolmogorov–Sinai entropy, but in other cases it
behaves in ways that are completely unprecedented. There is therefore a significant need
to develop and understand the theory of f-invariant entropy. This paper serves as a piece of
this large programme. We focus here on the specific question as to what relationship there
is, if any, between the f-invariant entropy of a group action and the f-invariant entropy of
the restricted action of a subgroup.

Before stating the main theorem, we give a brief definition of f-invariant entropy. A
more detailed treatment of the definition will be given in §3. Let G be a finitely generated
free group, let S be a free generating set for G, and let G act on a standard probability
space (X, µ) by measure-preserving bijections. If α is a measurable partition of X and
F ⊆ G is finite, then we define

F · α =
∨
f ∈F

f · α.

Recall that the Shannon entropy of a countable measurable partition α of X is

H(α)=
∑
A∈α

−µ(A) · log(µ(A)).

Also recall that α is generating if the smallest G-invariant σ -algebra containing α contains
all measurable sets up to sets of measure zero. If there exists a generating partition α
having finite Shannon entropy, then the f-invariant entropy of this action is defined to be

fG(X, µ)= lim
n→∞

(1− 2r) · H(B(n) · α)+
∑
s∈S

H(s B(n) · α ∨ B(n) · α),

where r = |S| is the rank of G and B(n) is the ball of radius n centered on 1G with respect
to the generating set S. Surprisingly, Bowen proved in [2, 4] that the value fG(X, µ)
depends neither on the choice of free generating set S nor on the choice of finite Shannon
entropy generating partition α. If there is no finite Shannon entropy generating partition
for this action, then the f-invariant entropy is undefined.

Our main theorem is the following.

THEOREM 1.1. Let G be a finitely generated free group, and let H ≤ G be a subgroup of
finite index. Let G act on a standard probability space (X, µ) by measure-preserving
bijections, and let H act on (X, µ) by restricting the action of G. Assume that the
f-invariant entropy is defined for either the G action or the H action. Then the f-invariant
entropy is defined for both actions and

fH (X, µ)= |G : H | · fG(X, µ).

We mention that the above theorem is a generalization of a well-known property of
Kolmogorov–Sinai entropy. Specifically, if G is a countable amenable group, H ≤ G is a
subgroup of finite index, and G acts measure-preservingly on a standard probability space
(X, µ) then hH (X, µ)= |G : H | · hG(X, µ), where hH and hG denote the Kolmogorov–
Sinai entropies of the H and G actions, respectively (see [10, Theorem 2.16] for a stronger
result).
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We give an example to show that fH (X, µ) may not equal |G : H | · fG(X, µ) if H is
not of finite index, even if both fH (X, µ) and fG(X, µ) are defined. This is in contrast
to Kolmogorov–Sinai entropy where hH (X, µ)= |G : H | · hG(X, µ), regardless if H has
finite index or infinite index. If H has infinite index in G then we take this equation to mean
that hG(X, µ)= 0 if hH (X, µ) is finite, and hH (X, µ)=∞ if hG(X, µ) is non-zero. We
apply a similar logic to the equation fH (X, µ)= |G : H | · fG(X, µ) when |G : H | =∞.
We do, however, obtain the following relationship.

COROLLARY 1.2. Let G be a finitely generated free group, let H ≤ G be a non-trivial
finitely generated subgroup of infinite index, let G act on a standard probability space
(X, µ) by measure-preserving bijections, and let H act on (X, µ) by restricting the action
of G. If fH (X, µ) is defined, then fG(X, µ) is defined and fG(X, µ)≤ 0.

The proof of the main theorem relies primarily on a study of Markov processes over free
groups. In fact we first obtain Theorem 1.1 for Markov processes and normal subgroups.
We then use various arguments to extend the result to general subgroups and general
actions. The definition of Markov processes is somewhat technical, so we postpone it
until §4.

The following result on Markov processes is a key ingredient for our arguments and
also seems to be of general interest.

THEOREM 1.3. Let G be a free group, and let H ≤ G be a subgroup of finite index. Let
G act on a standard probability space (X, µ) by measure-preserving bijections, and let H
act on (X, µ) by restricting the action of G. If G y (X, µ) is measurably conjugate to a
Markov process then H y (X, µ) is measurably conjugate to a Markov process as well.

We show that in many circumstances the property of being a Markov process is
independent of the choice of a free generating set for G.

COROLLARY 1.4. Let G be a finitely generated free group acting measure-preservingly
on a standard probability space (X, µ). Let S1 and S2 be two free generating sets for G.
Suppose that G y (X, µ) is measurably conjugate to an S1-Markov process with finite
Shannon entropy Markov partition. Then G y (X, µ) is measurably conjugate to an S2-
Markov process as well.

Our main theorem also leads to the following interesting inequality involving f-invariant
entropy. Relevant definitions can be found in the next section.

COROLLARY 1.5. Let G be a finitely generated free group acting on a standard
probability space (X, µ) by measure-preserving bijections. Suppose that this action admits
a generating partition α having finite Shannon entropy. Then for any free generating set S
for G and any finite right S-connected set 1⊆ G,

fG(X, µ)≤
H(1 · α)
|1|

≤ H(α).

The rest of our corollaries deal with virtually free groups and the virtual measure
conjugacy relation. Recall that a group 0 is virtually free if it contains a free subgroup
of finite index. Similarly, a group is virtually Z if it contains Z as a finite index subgroup.
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COROLLARY 1.6. Let 0 be a finitely generated virtually free group acting measure-
preservingly on a standard probability space (X, µ). Let G, H ≤ 0 be finite index free
subgroups, and let them act on (X, µ) by restricting the 0 action. Assume that there
is a finite Shannon entropy generating partition for 0 y (X, µ). Then fG(X, µ) and
fH (X, µ) are defined and

1
|0 : G|

· fG(X, µ)=
1

|0 : H |
· fH (X, µ).

Furthermore, if 0 is itself free then the above common value is f0(X, µ).

This corollary allows us to extend the definition of f-invariant entropy to actions of
finitely generated virtually free groups.

Definition 1.7. Let 0 be a finitely generated virtually free group acting measure-
preservingly on a standard probability space (X, µ). If there is a generating partition
for this action having finite Shannon entropy, then we define the f-invariant entropy of
0 y (X, µ) to be

f0(X, µ)=
1

|0 : G|
· fG(X, µ),

where G ≤ 0 is any free subgroup of finite index, and G acts on X by restricting the action
of 0. If there is no generating partition for 0 y (X, µ) having finite Shannon entropy, then
the f-invariant entropy of this action is undefined.

The quantity f0(X, µ) is a measure conjugacy invariant, and by the previous corollary
this value does not depend on the choice of free subgroup of finite index G.

Next we consider virtual measure conjugacy among actions of finitely generated
virtually free groups. Recall that two measure-preserving actions G y (X, µ) and H y
(Y, ν) on standard probability spaces are virtually measurably conjugate if there are
subgroups of finite index G ′ ≤ G and H ′ ≤ H such that the restricted actions G ′y (X, µ)
and H ′y (Y, ν) are measurably conjugate, meaning that there is a group isomorphism ψ :

G ′→ H ′ and a measure space isomorphism φ : X→ Y such that φ(g′ · x)= ψ(g′) · φ(x)
for every g′ ∈ G ′ and µ-almost every x ∈ X .

COROLLARY 1.8. For i = 1, 2, let 0i be a finitely generated virtually free group which
is not virtually Z, and let 0i act measure-preservingly on a standard probability
space (X i , µi ). Let Gi ≤ 0i be a free subgroup of finite index, and let Gi act on
(X i , µi ) by restricting the 0i action. Assume that for each i there is a finite Shannon
entropy generating partition for 0i y (X i , µi ). If 01 y (X1, µ1) is virtually measurably
conjugate to 02 y (X2, µ2) then

1
r(G1)− 1

· fG1(X1, µ1)=
1

r(G2)− 1
· fG2(X2, µ2),

where r(Gi ) is the rank of Gi .

This corollary allows us to define a numerical invariant for virtual measure conjugacy
among actions of finitely generated virtually free groups which are not virtually Z.
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Definition 1.9. Let 0 be a finitely generated virtually free group which is not virtually Z,
and let 0 act measure-preservingly on a standard probability space (X, µ). If there is a
generating partition having finite Shannon entropy, then the virtual f-invariant entropy of
0 y (X, µ) is defined as

f̂0(X, µ)=
1

r(G)− 1
· fG(X, µ),

where G is any free subgroup of finite index, r(G) is the rank of G, and G acts on (X, µ)
by restricting the 0 action. If there is no generating partition with finite Shannon entropy,
then the virtual f-invariant entropy of this action is undefined.

The previous corollary shows that the quantity f̂0(X, µ) is a virtual measure conjugacy
invariant and does not depend on the choice of free subgroup of finite index G.

Furthermore, we show that virtual f-invariant entropy is a complete virtual measure
conjugacy invariant for those Bernoulli shifts on which it is defined.

PROPOSITION 1.10. For i = 1, 2, let (K0i
i , µ

0i
i ) be a Bernoulli shift over a finitely

generated virtually free group 0i with 0i not virtually Z. If the virtual f-invariant entropy
f̂0i (K

0i
i , µ

0i
i ) is defined for each i , then (K01

1 , µ
01
1 ) is virtually measurably conjugate to

(K02
2 , µ

02
2 ) if and only if f̂01(K

01
1 , µ

01
1 )= f̂02(K

02
2 , µ

02
2 ).

Organization. In §2 we cover basic definitions and notation. Then in §3 we define and
discuss f-invariant entropy in detail. We discuss Markov processes in §4 and establish
some of their basic properties. In §5 we prove the main theorem and deduce some of
its corollaries. Finally in §6 we discuss applications to virtually free groups and virtual
measure conjugacy.

2. Definitions and notation
In this paper all groups are assumed to be countable. We will work almost entirely with
free groups, and thus there is an important distinction between multiplication on the left
and multiplication on the right. We will have to work with both left-sided and right-sided
notions simultaneously, and as we will point out later on, this seems to be absolutely
necessary. We therefore will always use very careful notation and will always explicitly
state whether we are working with multiplication on the right or with multiplication on the
left.

Let G be a finitely generated free group, and let S be a free generating set for G. The
rank of G is the minimum size of a generating set for G, which in this case would be
|S|. We denote the identity group element of G by 1G . For 1G 6= g ∈ G, the reduced
S-word representation of g is the unique tuple (s1, s2, . . . , sk) with the properties that
si ∈ S ∪ S−1, si+1 6= s−1

i , and g = s1s2 · · · sk . The S-word length of g ∈ G is the length
of the reduced S-word representation of g. The identity 1G has S-word length 0. The
S-ball of radius n in G centered on 1G , denoted BS(n), is the set of group elements
whose S-word length is less than or equal to n. If H ≤ G is a subgroup, then the left H-
cosets are the sets gH for g ∈ G. Similarly, the right H-cosets are the sets Hg for g ∈ G.
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A set 1 is a transversal of the left (right) H -cosets if each left (right) H -coset meets 1 at
precisely one point.

The right S-Cayley graph of G is the graph with vertex set G and edge set {(g, gs) :
g ∈ G, s ∈ S ∪ S−1

}. Since G is a free group and S is a free generating set for G, the right
S-Cayley graph of G is a tree. When working with a graph 0, we let V(0) and E(0) denote
the vertex set and the edge set of 0, respectively. A right S-path is a non-self-intersecting
path in the right S-Cayley graph of G. A set F ⊆ G is right S-connected if for every two
elements f1, f2 ∈ F the unique right S-path from f1 to f2 traverses only vertices in F .
The right S-connected components of F ⊆ G are the maximal subsets of F which are right
S-connected. For three subsets U, V, W ⊆ G, we say that V right S-separates (U, W )

if for every u ∈U and w ∈W the unique right S-path from u to w traverses some vertex
in V . The right S-distance between two elements g, h ∈ G is defined to be the number
of edges traversed by the unique right S-path from g to h. We will also use the right S-
distance implicitly when we refer to points which are right S-furthest from one another
or right S-closest to one another. We say that g, h ∈ G are right S-adjacent if there is
s ∈ S ∪ S−1 with gs = h. For u, v ∈ G, we define the right S-past of u through v, denoted
RPastS(v, u), to be the set of g ∈ G for which the unique right S-path from g to u traverses
v. If U, V ⊆ G, then we define

RPastS(V,U )=
⋂
u∈U

⋃
v∈V

RPastS(v, u).

The reader is encouraged to think carefully about the definition of RPastS(v, u). The
truth is that the word ‘past’ is somewhat misleading. As an example to consider, the
right S-past of 1G through s ∈ S, RPastS(s, 1G), is the set of all group elements whose
reduced S-word representations begin on the left with s. This can be misleading as some
may be inclined to think of this set as the future. The generating set S provides us with
2|S| directions of movement, and we can consider any such direction as the past. Also
notice that V right S-separates (U, W ) if and only if W ⊆ RPastS(V,U ) if and only if
U ⊆ RPastS(V, W ).

The left S-Cayley graph of G, the left S-paths, the left S-connected sets, the left S-
distance between a pair of group elements, and so on are defined in a fashion similar to
their right counterparts. We call a set F ⊆ G bi-S-connected if it is both right S-connected
and left S-connected.

Unless stated otherwise, we will use the term group action and the notation G y (X, µ)
to mean a countable group G acting on a standard probability space (X, µ) by measure-
preserving bijections. Our probability spaces will always be assumed to be standard
probability spaces. Also, if G acts on (X, µ) and H ≤ G is a subgroup, then we will always
implicitly let H act on (X, µ) by restricting the G action. We will never consider any other
types of actions of subgroups. Two actions G y (X, µ) and G y (Y, ν) are measurably
conjugate if there exists an isomorphism of measure spaces φ : (X, µ)→ (Y, ν) such
that φ(g · x)= g · φ(x) for every g ∈ G and µ-almost every x ∈ X . Similarly, if G acts
continuously on two topological spaces X and Y , then X and Y are topologically conjugate
if there is a homeomorphism φ : X→ Y such that φ(g · x)= g · φ(x) for every g ∈ G and
every x ∈ X .
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Let G act on (X, µ). If α and β are measurable partitions of X , then β is coarser than α,
or α is a refinement of β, if every member of β is a union of members of α. If β is coarser
than α then we write β ≤ α. For two partitions α = {Ai : i ∈ I } and β = {B j : j ∈ J } of X
we define their join to be the partition

α ∨ β = {Ai ∩ B j : i ∈ I, j ∈ J }.

We similarly define the join
∨n

i=1 αi of a finite number of partitions {αi : 1≤ i ≤ n}. For
a countably infinite collection of partitions {αi : i ∈ I } of X , we let∨

i∈I

αi

denote the smallest σ -algebra containing all of the members of all of the αi . If {Fi : i ∈ I }
is a collection of σ -algebras on X , then we let

∨
i∈I Fi denote the smallest σ -algebra

containing all of the sets of each of the Fi . If α = {Ai : i ∈ I } is a partition of X then for
g ∈ G we define

g · α = {g · Ai : i ∈ I }.

Similarly, for F ⊆ G we define

F · α =
∨
f ∈F

f · α.

Notice that F · α is a σ -algebra if F is infinite and that g · α = {g} · α for every g ∈ G.
A measurable countable partition α is generating if for every measurable set B ⊆ X there
is a set B ′ ∈ G · α with µ(B4B ′)= 0. The Shannon entropy of a countable measurable
partition α is

H(α)=
∑
A∈α

−µ(A) · log(µ(A)).

If β is another countable measurable partition of X , then the conditional Shannon entropy
of α relative to β is

H(α/β)=
∑
B∈β

µ(B) ·

(∑
A∈α

−
µ(A ∩ B)

µ(B)
· log

(
µ(A ∩ B)

µ(B)

))
.

If F is a σ -algebra on X consisting of measurable sets and f : X→ R is a measurable
function, then we denote the conditional expectation of f relative to F by E( f/F). Recall
that E( f/F) is the unique F -measurable function, up to agreement µ-almost everywhere,
with the property that for every F -measurable function h : X→ R,∫

X
h · f dµ=

∫
X

h · E( f/F) dµ.

If α is a countable measurable partition, then we define E( f/α)= E( f/F) where F is
the σ -algebra generated by α. We define the conditional Shannon entropy of a countable
measurable partition α relative to a sub-σ -algebra F by

H(α/F)=
∫

X

∑
A∈α

−E(χA/F) · log(E(χA/F)),
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where χA is the characteristic function of A. It is well known that if β is a countable
measurable partition of X and F is the σ -algebra generated by β, then H(α/β)= H(α/F).

The following lemma lists some well-known properties of Shannon entropy which we
will need (see [11] for a proof).

LEMMA 2.1. Let (X, µ) be a standard probability space, let α and β be countable
measurable partitions of X, and let F , F ′, and (Fi )i∈N be σ -algebras on X consisting
of measurable sets. Assume that F ⊆ F ′. Then:
(i) H(α ∨ β)= H(α/β)+ H(β);
(ii) H(α/β ∨ F)+ H(β/F)= H(α ∨ β/F)= H(β/α ∨ F)+ H(α/F);
(iii) H(α/F ′)≤ H(α/F);
(iv) H(α/

∨
i∈N Fi )= limn→∞ H(α/

∨n
i=1 Fi ).

Furthermore, if E(χA/F ′)(x)= E(χA/F)(x) for every A ∈ α and µ-almost every x ∈ X
then equality holds in (iii). Conversely, if H(α) <∞ and equality holds in (iii), then
E(χA/F ′)(x)= E(χA/F)(x) for every A ∈ α and µ-almost every x ∈ X.

3. f-invariant entropy
Let G be a finitely generated free group, let S be a free generating set for G, and let G act
on (X, µ). For a countable measurable partition α with H(α) <∞ we define

FG(X, µ, S, α)= (1− 2r) · H(α)+
∑
s∈S

H(s · α ∨ α),

where r = |S| is the rank of G. Notice that by Lemma 2.1(i) we can rewrite this expression
in two ways:

FG(X, µ, S, α)= (1− r) · H(α)+
∑
s∈S

H(s · α/α);

FG(X, µ, S, α)= H(α)+
∑
s∈S

(H(s · α/α)− H(α)).

All three ways of expressing FG(X, µ, S, α) will be useful to us. We define the f-invariant
entropy rate of (S, α) to be

fG(X, µ, S, α)= lim
n→∞

FG(X, µ, S, BS(n) · α),

where BS(n) is the ball of radius n in G, with respect to the generating set S, centered on
the identity. Regarding the existence of this limit, Bowen proved the following.

LEMMA 3.1. (Bowen [2]) Let G be a finitely generated free group, let S be a free
generating set for G, and let G act on (X, µ). If U ⊆ V ⊆ G are finite and every left
S-connected component of V meets U, then for every countable measurable partition α
with H(α) <∞,

FG(X, µ, S, V · α)≤ FG(X, µ, S,U · α).

In particular, the terms appearing in the limit defining fG(X, µ, S, α) are non-
increasing and thus the limit exists, although it may be negative infinity. If there exists
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a generating partition α having finite Shannon entropy, then the f-invariant entropy of
G y (X, µ) is defined to be

fG(X, µ)= fG(X, µ, S, α).

If there is no generating partition having finite Shannon entropy, then the f-invariant
entropy of the action is not defined. Amazingly, the value of the f-invariant entropy does
not depend on the choice of generating partition or on the choice of free generating set for
G, as the following theorem of Bowen states.

THEOREM 3.2. (Bowen [2, 4]) Let G be a finitely generated free group acting on a
probability space (X, µ). If S and T are free generating sets for G and α and β are
generating partitions with finite Shannon entropy, then

fG(X, µ, S, α)= fG(X, µ, T, β).

A simple computation shows that when G = Z the f-invariant entropy is identical to the
classical Kolmogorov–Sinai entropy. Furthermore, in [2] Bowen calculated the f-invariant
entropy of a Bernoulli shift (K G , µG) to be the same as in the setting of amenable groups:

fG(K
G , µG)=

∑
k∈K

−µ(k) · log(µ(k))

under the assumption that the support of µ is countable and this sum is finite. If the
support of µ is not countable or the sum above is not finite, then the f-invariant entropy is
undefined (as Kerr and Li [18] proved there can be no finite Shannon entropy generating
partition). Bowen further proved that f-invariant entropy is a complete invariant for
measure conjugacy among the Bernoulli shifts on which it is defined. This generalizes
the famous theorems of Ornstein [23, 24] and Kolmogorov [19, 20].

We remark that f-invariant entropy involves taking some sort of ‘average’ over the balls
BS(n), just as Kolmogorov–Sinai entropy involves averaging over Følner sets. Since balls
in free groups have relatively large boundary, the ‘averaging’ happens by letting the interior
of the ball and the boundary of the ball nearly completely cancel one another, leaving an
‘average’ value behind. This intuitive viewpoint is based on the fact that if K ⊆ G is finite
and left S-connected then

1= (1− 2r)|K | +
∑
s∈S

|sK ∪ K |,

as the reader is invited to verify by induction (compare this with FG(X, µ, S, K · α)).
While f-invariant entropy does share some strong similarities with Kolmogorov–Sinai

entropy, it also possesses some properties which are somewhat baffling from the classical
entropy theory perspective. For example, a short computation shows that if G acts on a set
of n points equipped with the uniform probability measure then the f-invariant entropy of
this action is (1− r) · log(n), where r is the rank of G. If n > 1 and G 6= Z then this value
is finite and negative! Another strange property is that the f-invariant entropy of a factor
can be larger than the f-invariant entropy of the original action [6].
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4. Markov processes
Markov processes are somewhat similar to Bernoulli shifts as they are characterized by the
existence of a generating partition with strong independence properties. We point out that
when f-invariant entropy is not involved, we discuss Markov processes in the context of
free groups without any finite generation assumption. However, we do assume that all of
our free groups are countable.

Definition 4.1. (Bowen [5]) Let G be a free group, let S be a free generating set for G,
let G act on (X, µ), and let α be a countable measurable partition of X . We call X an
(S, α)-Markov process if α is a generating partition and for every A ∈ α, s ∈ S ∪ S−1, and
µ-almost every x ∈ X ,

E(χs·A/RPastS(1G , s) · α)(x)= E(χs·A/α)(x),

where χs·A is the characteristic function of the set s · A. We say that X is an α-Markov
process if it is an (S, α)-Markov process for some S, and we similarly say that X is an S-
Markov process if it is an (S, α)-Markov process for some α. If X is an α-Markov process,
then we call α a Markov partition. Finally, we say that X is a Markov process if it is an
(S, α)-Markov process for some S and some α.

In the next section we will show that under a mild assumption the property of being a
Markov process does not depend on the free generating set S chosen for G (the Markov
partition, however, will depend on the free generating set chosen).

Our interest in Markov processes comes from the fact that the formulas for both
Shannon entropy and f-invariant entropy simplify. The occurrence of this simplification
is due to Lemma 2.1. That lemma immediately leads to an alternative characterization of
Markov processes which is substantially easier to work with.

LEMMA 4.2. (Bowen [5]) Let G be a free group, let S be a free generating set for G, let
G act on (X, µ), and let α be a countable measurable partition of X with H(α) <∞. Then
X is an (S, α)-Markov process if and only if α is generating and

H(s · α/RPastS(1G , s) · α)= H(s · α/α)

for every s ∈ S ∪ S−1.

As a convenience to the reader, we include the proof below.

Proof. First suppose that X is an (S, α)-Markov process. Then α is a generating partition
and it immediately follows from the definition of conditional Shannon entropy that

H(s · α/RPastS(1G , s) · α)= H(s · α/α).

Now suppose that α is a generating partition and

H(s · α/RPastS(1G , s) · α)= H(s · α/α)

for every s ∈ S ∪ S−1. As H(α) <∞, it immediately follows from Lemma 2.1 that X is
an (S, α)-Markov process. 2
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Thus various conditional Shannon entropies can simplify substantially when working
with Markov processes. This fact is also evident in the next lemma.

Definition 4.3. Let G be a free group, and let S be a free generating set for G. If F ⊆ G
is finite and right S-connected, then we define an element RS(F) in the additive abelian
group

⊕
s∈S Z · s by setting

RS(F)=
∑
s∈S

as · s,

where as is the number of pairs (g, gs) with g, gs ∈ F .

LEMMA 4.4. Let G be a free group acting on a probability space (X, µ). Suppose that
X is an (S, α)-Markov process with H(α) <∞. If F ⊆ G is finite and right S-connected
then

H(F · α)= H(α)+ ζ(RS(F)),

where ζ : (
⊕

s∈S Z · s)→ R is the linear extension of the map s 7→ H(s · α/α).

Proof. We first point out that by Lemma 2.1(i),

H(s−1
· α/α)= H(s−1

· α ∨ α)− H(α)= H(α ∨ s · α)− H(α)= H(s · α/α),

where the second equality is due to the action of G being measure-preserving.
Now we proceed to prove the lemma. We use induction on the cardinality of F . If

|F | = 1 and F = { f }, then RS(F)= 0 and since G y (X, µ) is measure-preserving,

H(F · α)= H( f · α)= H(α)= H(α)+ ζ(RS(F)).

Now suppose that this property holds whenever |F | ≤ q . Let F be a finite right S-
connected set with |F | = q + 1. Let f ∈ F be an element with maximum S-word length,
and set F ′ = F\{ f }. Then F ′ is right S-connected. Let t ∈ S ∪ S−1 be such that
f ∈ F ′t . Set f0 = f t−1. Then by our choice of f we have that F ′ ⊆ RPastS( f0, f ) and
hence f −1

0 F ′ ⊆ RPastS(1G , f −1
0 f )= RPastS(1G , t). So it follows from Lemma 4.2 and

Lemma 2.1(iii) that

H(t · α/α) = H(t · α/RPastS(1G , t) · α)

≤ H(t · α/ f −1
0 F ′ · α)≤ H(t · α/α).

Thus equality holds throughout. It follows that

H( f · α/F ′ · α)= H( f0t · α/F ′ · α)= H(t · α/ f −1
0 F ′ · α)= H(t · α/α).

Let i ∈ {−1, 1} be such that t i
∈ S. So RS(F)= RS(F ′)+ t i . By Lemma 2.1(i) and the

inductive hypothesis,

H(F · α) = H(F ′ · α ∨ f · α)= H(F ′ · α)+ H( f · α/F ′ · α)

= H(α)+ ζ(RS(F
′))+ H(t · α/α)= H(α)+ ζ(RS(F

′))+ H(t i
· α/α)

= H(α)+ ζ(RS(F
′))+ ζ(t i )= H(α)+ ζ(RS(F)).

Induction now completes the proof. 2
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Just as Shannon entropies simplify for Markov processes, so does the formula for
f-invariant entropy. In fact within the context of finitely generated free groups and
generating partitions with finite Shannon entropy, this provides yet another characterization
of Markov processes.

THEOREM 4.5. (Bowen [5]) Let G be a finitely generated free group, let S be a free
generating set for G, let G act on (X, µ), and let α be a countable measurable partition
of X. Assume that α is generating and has finite Shannon entropy. Then X is an (S, α)-
Markov process if and only if

fG(X, µ)= FG(X, µ, S, α)= (1− 2r)H(α)+
∑
s∈S

H(s · α ∨ α),

where r is the rank of G.

We now prove an important lemma which will significantly simplify some of our later
proofs. The lemma below is also quite pleasing as it affirms the truth of something which
one would intuitively expect. The usefulness of this lemma should extend beyond our work
here.

LEMMA 4.6. Let G be a free group acting on a probability space (X, µ). Assume that X
is an (S, α)-Markov process where H(α) <∞. Let U, V, W ⊆ G with U finite. If V right
S-separates (U, W ) then

H(U · α/(W ∪ V ) · α)= H(U · α/V · α).

Proof. First suppose that U = {u} is a singleton and that V is finite. Partially order
V so that v1 � v2 if and only if the unique right S-path from v1 to u traverses v2, or
equivalently v1 � v2 if and only if RPastS(v1, u)⊆ RPastS(v2, u). Since V is finite, there
are a finite number of �-maximal elements of V . Suppose that the �-maximal elements
are v1, v2, . . . , vn . Set V0 = {v1, v2, . . . , vn}. Then

V ⊆ RPastS(V, u)= RPastS(V0, u).

We claim that if W ⊆ RPastS(V0, u) is finite and for each 1≤ i ≤ n the set W ∩
RPastS(vi , u) is right S-connected and contains vi then

H(u · α/(W ∪ V0) · α)= H(u · α/V0 · α).

We prove this claim by induction on the cardinality of W . Notice that these conditions
imply that V0 ⊆W . If |W | = |V0| then W = V0 and the claim is clear. Now suppose that the
claim holds whenever |V0| ≤ |W | ≤ q . Let V0 ⊆W ⊆ RPastS(V0, u) be such that |W | =
q + 1 and and such that for each 1≤ i ≤ n the set W ∩ RPastS(vi , u) is right S-connected
and contains vi . Pick 1≤ i ≤ n with |W ∩ RPastS(vi , u)| ≥ 2. Letw ∈W ∩ RPastS(vi , u)
be right S-furthest from vi . Set W ′ =W\{w}. Since w, vi ∈W ∩ RPastS(vi , u) and
W ∩ RPastS(vi , u) is right S-connected, there must be z ∈W ′ which is right S-adjacent
to w. Since we chose w to be right S-furthest from vi ,

z ∈W ′ ∪ V0 ⊆ {u} ∪W ′ ∪ V0 ⊆ RPastS(z, w).
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Therefore

α ≤ z−1(W ′ ∪ V0) · α ≤ z−1u · α ∨ z−1(W ′ ∪ V0) · α ≤ RPastS(1G , z−1w) · α.

As z−1w ∈ S ∪ S−1 and X is an (S, α)-Markov process, we have by Lemma 2.1(iii) that

H(z−1w · α/α) = H(z−1w · α/RPastS(1G , z−1w) · α)

≤ H(z−1w · α/z−1u · α ∨ z−1(W ′ ∪ V0) · α)

≤ H(z−1w · α/z−1(W ′ ∪ V0) · α)

≤ H(z−1w · α/α).

So equality holds throughout. It follows that

H(w · α/(W ′ ∪ V0) · α) = H(z−1w · α/z−1(W ′ ∪ V0) · α)

= H(z−1w · α/z−1u · α ∨ z−1(W ′ ∪ V0) · α)

= H(w · α/u · α ∨ (W ′ ∪ V0) · α).

By Lemma 2.1(ii) and the inductive hypothesis,

H(u · α/(W ∪ V0) · α) = H(u · α/w · α ∨ (W ′ ∪ V0) · α)

= H(w · α/u · α ∨ (W ′ ∪ V0) · α)+ H(u · α/(W ′ ∪ V0) · α)

− H(w · α/(W ′ ∪ V0) · α)

= H(u · α/(W ′ ∪ V0) · α)= H(u · α/V0 · α).

So by induction,
H(u · α/(W ∪ V0) · α)= H(u · α/V0 · α)

whenever W is finite, V0 right S-separates (u, W ), and for each 1≤ i ≤ n the set
W ∩ RPastS(vi , u) is right S-connected and contains vi .

Now suppose that W is finite and that V right S-separates (u, W ), where V and u are
the same as in the previous paragraph. Then there is a finite set W ′ such that W ∪ V ⊆W ′,
V0 right S-separates (u, W ′), and for each 1≤ i ≤ n the set W ′ ∩ RPastS(vi , u) is right
S-connected and contains vi . It follows from the previous paragraph that

H(u · α/V0 · α) = H(u · α/(W ′ ∪ V0) · α)≤ H(u · α/(W ∪ V ) · α)

≤ H(u · α/V · α)≤ H(u · α/V0 · α).

So equality holds throughout and

H(u · α/(W ∪ V ) · α)= H(u · α/V · α).

We conclude that for any u ∈ G and any two finite sets V, W ⊆ G with V right S-
separating (u, W ),

H(u · α/(W ∪ V ) · α)= H(u · α/V · α).

Now let u ∈ G and V, W ⊆ G be such that V right S-separates (u, W ). We allow
V and W to be infinite. Let (Wn)n∈N be an increasing sequence of finite subsets of W
with

⋃
n∈N Wn =W . For each n let Vn ⊆ V be a finite set such that Vn right S-separates

(u, Wn). By enlarging the Vn if necessary, we may suppose that they are increasing and
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union to V . So by Lemma 2.1(iv),

H(u · α/(W ∪ V ) · α) = lim
n→∞

H(u · α/(Wn ∪ Vn) · α)= lim
n→∞

H(u · α/Vn · α)

= H(u · α/V · α).

Now let U, V, W ⊆ G be such that U is finite and V right S-separates (U, W ).
Enumerate U as U = {u1, u2, . . . , un}. Notice that Vi = V ∪ {u1, u2, . . . , ui−1} right S-
separates (ui , W ) for each 1≤ i ≤ n. Lemma 2.1(ii), together with the previous paragraph,
gives

H(U · α/(W ∪ V ) · α) =
n∑

i=1

H(ui · α/(W ∪ Vi ) · α)=

n∑
i=1

H(ui · α/Vi · α)

= H(U · α/V · α).

This completes the proof. 2

In order to prove that fH (X, µ)= |G : H | · fG(X, µ) for Markov processes G y
(X, µ), we will find it convenient to work with a single partition β which is generating
for both G y (X, µ) and H y (X, µ). We will also want β to be a Markov partition for
G y (X, µ). We therefore need to know how much flexibility there is in choosing Markov
partitions. This is addressed by the following lemma due to Bowen.

LEMMA 4.7. (Bowen [5]) Let G be a free group acting on a probability space (X, µ).
Suppose that X is an (S, α)-Markov process with H(α) <∞. Then X is an (S, 1 · α)-
Markov process for every finite left S-connected set 1⊆ G containing the identity.

The lemma states that it is sufficient for 1 to be left S-connected. We remark that in
general it is necessary that1 be left S-connected. Consider a Bernoulli shift (K G , µG) and
let α be the canonical partition. Then K G is an (S, α)-Markov process. If1⊆ G is not left
S-connected, then one can use Theorem 4.5 to show that K G is not an (S, 1 · α)-Markov
process.

This lemma plays a crucial role in our main theorem, and so as a convenience to the
reader we include a proof below. We remark that this proof is simpler and more intuitive
than the proof in [5] as here we rely on Lemma 4.6.

Proof. Set β =1 · α. By Lemma 4.2 it suffices to show that

H(s · β/RPastS(1G , s) · β)= H(s · β/β)

for every s ∈ S ∪ S−1.
Fix s ∈ S ∪ S−1. Let g ∈ RPastS(1G , s) and let δ ∈1. Notice that for f ∈ G, f ∈

RPastS(1G , s) if and only if the reduced S-word representation of f does not begin on
the left with s. So if gδ 6∈ RPastS(1G , s), then the reduced S-word representation of
δ must begin with the reduced S-word representation of g−1. So the reduced S-word
representation of gδ is obtained from the reduced S-word representation of δ by removing
an initial segment. Since 1G ∈1 and 1 is left S-connected, it follows that gδ ∈1.
Therefore

RPastS(1G , s) ·1⊆ RPastS(1G , s) ∪1.
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A similar argument shows that

s1⊆ RPastS(s, 1G) ∪1.

Therefore 1 right S-separates (s1, RPastS(1G , s)1). Since 1⊆ RPastS(1G , s) ·1, we
have by Lemma 4.6 that

H(s · β/RPastS(1G , s) · β) = H(s1 · α/RPastS(1G , s)1 · α)

= H(s1 · α/1 · α)= H(s · β/β). 2

In the next section, after we prove that fH (X, µ)= |G : H | · fG(X, µ) for Markov
processes G y (X, µ), we will extend this relation to general actions by approximating by
Markov processes. The precise tool we will need is described in the following definition.

Definition 4.8. Let G be a finitely generated free group acting on a probability space
(X, µ), let S be a free generating set for G, and let α be a generating partition. A Borel
probability measure µ′ on X is called an (S, α)-Markov approximation to µ if µ′ is G-
invariant, (X, µ′) is an (S, α)-Markov process, and

for all s ∈ S ∪ S−1, for all A1, A2 ∈ α, µ
′(A1 ∩ s · A2)= µ(A1 ∩ s · A2).

Markov approximations can be used to approximate f-invariant entropy, as the following
simple lemma shows.

LEMMA 4.9. Let G be a finitely generated free group acting on a probability space
(X, µ). Let S be a free generating set for G and let α be a countable measurable partition
of X with H(α) <∞. If µ′ is an (S, α)-Markov approximation to µ then

FG(X, µ
′, S, α)= FG(X, µ, S, α).

Proof. Since µ′(A1 ∩ s · A2)= µ(A1 ∩ s · A2) for every A1, A2 ∈ α and s ∈ S ∪ S−1,

Hµ′(α)= Hµ(α) and for all s ∈ S ∪ S−1, Hµ′(s · α ∨ α)= Hµ(s · α ∨ α).

So the lemma now immediately follows from the definition of FG(X, ·, S, α). 2

In general Markov approximations do not always exist. However, if one is willing
to replace G y (X, µ) with a measurably conjugate action G y (Y, ν), then one can
arrange for Markov approximations to exist. When a Markov approximation does exist,
it is unique [5]. In order for Markov approximations to exist, it is sufficient to work within
the setting of symbolic actions and canonical partitions.

Definition 4.10. Let G be a countable group, and let K be a countable set with the discrete
topology. Let K G denote the set of all functions from G to K endowed with the product
topology, and let G act on K G by permuting coordinates:

for all x ∈ K G , for all g, h ∈ G, (g · x)(h)= x(g−1h).

We call the action of G on K G a symbolic action. The canonical partition of K G is
α = {Ak : k ∈ K }, where Ak = {x ∈ K G

: x(1G)= k}.
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There is no loss in generality in working with symbolic actions, as the following lemma
shows.

LEMMA 4.11. Let G be a countable group acting on a probability space (X, µ), and
let α be a generating partition. Then there exists a measurable map φ : X→ αG such
that φ : (X, µ)→ (αG , φ∗(µ)) is a measure conjugacy and α = φ−1(β), where β is the
canonical partition of αG .

Proof. Since α is generating, by definition we have that α is countable. Thus G y αG is
a symbolic action. Define ζ : X→ α by letting ζ(x) be the unique A ∈ α with x ∈ A. We
define a map φ : X→ αG by

φ(x)(g)= ζ(g−1
· x).

The function φ is G-equivariant since

φ(h · x)(g)= ζ(g−1
· h · x)= φ(x)(h−1g)= [h · φ(x)](g).

Let ν be the pushforward measure, ν = φ∗(µ). Then φ is an isomorphism between (X, µ)
and (αG , ν) since α is generating and both of these probability spaces are standard Borel
probability spaces. Let β be the canonical partition of αG . Write β = {BA : A ∈ α}
where BA = {y ∈ αG

: y(1G)= A}. Clearly φ(A)⊆ BA for every A ∈ α. Therefore
A ⊆ φ−1(BA) for each A ∈ α. Since both α and φ−1(β) are partitions of X , it follows
that φ−1(β)= α. 2

THEOREM 4.12. (Bowen [5]) Let G be a finitely generated free group, and let S be a free
generating set for G. If G y K G is a symbolic action, µ is a G-invariant Borel probability
measure, and α is the canonical partition of K G , then there exists a unique G-invariant
Borel probability measure µ′ on K G which is an (S, α)-Markov approximation to µ.

In [8, Appendix A], Bowen and Gutman show that a stronger property holds. With
the same notation and assumptions as in the previous theorem, they showed that if
BS(n) denotes the S-ball of radius n centered on the identity, then there exists a unique
G-invariant Borel probability measure µ′ on K G which is an (S, BS(n) · α)-Markov
approximation to µ. Their result is sufficient for our needs in the next section; however,
we will obtain tighter bounds in our corollaries by proving the following.

LEMMA 4.13. Let G be a finitely generated free group, and let S be a free generating
set for G. Let G y K G be a symbolic action, let µ be a G-invariant Borel probability
measure, and let α be the canonical partition of K G . If U ⊆ G is finite, left S-connected,
and contains the identity, then there exists a unique G-invariant Borel probability measure
µ′ on K G which is an (S,U · α)-Markov approximation to µ.

Proof. Write α = {Ak : k ∈ K } where

Ak = {x ∈ K G
: x(1G)= k}.

Set β =U · α and write β = {Bz : z ∈ K U
}, where for z ∈ K U ,

Bz =
⋂
u∈U

u · Az(u).
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Consider the set Y ⊆ (K U )G defined by

y ∈ Y ⇐⇒ for all s ∈ S ∪ S−1, for all g ∈ G, By(g) ∩ s · By(gs) 6=∅.

Notice that Y is G-invariant and closed. We claim that G y K G is topologically conjugate
to G y Y , where Y ⊆ (K U )G has the subspace topology. Define φ : K G

→ (K U )G by

φ(x)(g)(u)= x(gu).

Since U is finite and the map x 7→ x(gu) is continuous, φ is also continuous. If x1 6= x2 ∈

K G , then there is g ∈ G with x1(g) 6= x2(g). Hence φ(x1)(g)(1G) 6= φ(x2)(g)(1G), so
φ(x1) 6= φ(x2), and therefore φ is injective. We have that φ is G-equivariant since

φ(h · x)(g)(u)= [h · x](gu)= x(h−1gu)= φ(x)(h−1g)(u)= [h · φ(x)](g)(u).

Also, if g ∈ G and s ∈ S ∪ S−1 then for every u ∈U ,

g−1
· x ∈ u · Ax(gu) and g−1

· x ∈ su · Ax(gsu).

Therefore

g−1
· x ∈

⋂
u∈U

u · Ax(gu) = Bφ(x)(g) and g−1
· x ∈

⋂
u∈U

su · Ax(gsu) = s · Bφ(x)(gs).

So
Bφ(x)(g) ∩ s · Bφ(x)(gs) ⊇ {g

−1
· x} 6=∅

and thus φ maps K G into Y .
It remains to show that φ maps K G onto Y and φ−1 is continuous. Fix y ∈ Y . Define

x ∈ K G by x(g)= y(g)(1G). We claim that φ(x)= y. If so then φ will map onto Y
and φ−1 will be continuous, completing the proof that φ is a topological conjugacy. By
the definition of φ and of x we have φ(x)(g)(u)= x(gu)= y(gu)(1G). So y(g)(u)=
φ(x)(g)(u) if and only if y(g)(u)= y(gu)(1G). Thus it suffices to show that y(gu)(1G)=

y(g)(u) for every g ∈ G and u ∈U . First, we claim that if u ∈U , s ∈ S ∪ S−1, and
s · u ∈U , then y(g)(su)= y(gs)(u). By the definition of Y ,

∅ 6= By(g) ∩ s · By(gs) ⊆ su · Ay(g)(su) ∩ su · Ay(gs)(u).

Since α = {Ak : k ∈ K } is a partition, it immediately follows that Ay(g)(su) = Ay(gs)(u) and
hence y(g)(su)= y(gs)(u). Now fix u ∈U and let u = s1s2 · · · sn be the reduced S-word
representation of u, where each si ∈ S ∪ S−1. Since U is left S-connected and contains
the identity, we have that si si+1 · · · sn ∈U for every 1≤ i ≤ n. Furthermore, 1G ∈U by
assumption. By the previous claim,

y(g)(u) = y(g)(s1s2 · · · sn)= y(gs1)(s2 · · · sn)

= · · · = y(gs1 · · · sn)(1G)= y(gu)(1G).

Thus φ(x)= y, so φ maps K G onto Y and φ−1 is continuous. We conclude that K G and
Y are topologically conjugate via φ.

Now we prove the lemma. Since φ : K G
→ Y ⊆ (K U )G is a topological

conjugacy, it induces a measure conjugacy between G y (K G , µ) and G y ((K U )G , ν),
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where ν = φ∗(µ) is the pushforward measure (so ν is supported on Y ). Let ξ = {Cz :

z ∈ K U
} be the canonical partition of (K U )G , where Cz = {y ∈ (K U )G : y(1G)= z}. If

z ∈ K U and
x ∈ Bz =

⋂
u∈U

u · Az(u)

then φ(x)(1G)(u)= x(u)= z(u) for every u ∈U . Thus φ(Bz)⊆ Cz . Since φ is injective
it follows that β = φ−1(ξ). By Theorem 4.12, there is a G-invariant Borel probability
measure λ on (K U )G which is an (S, ξ)-Markov approximation to ν.

We claim that the support of λ is contained within Y . Fix w ∈ (K U )G\Y . By the
definition of Y , there are g ∈ G and s ∈ S ∪ S−1 with

Bw(g) ∩ s · Bw(gs) =∅.

Consider the open set

V = {z ∈ (K U )G : z(g)= w(g), z(gs)= w(gs)}.

Then w ∈ V and V ∩ Y =∅. It suffices to show that λ(V )= 0. We have that g−1
· V ∈

ξ ∨ s · ξ , so

λ(V )= λ(g−1
· V )= ν(g−1

· V )= φ∗(µ)(g
−1
· V )= µ(φ−1(g−1

· V )).

However, since φ maps K G into Y , we have φ−1(g−1
· V )=∅. Thus λ(V )= 0 as

claimed.
Since the support of λ is contained within the image of the topological conjugacy φ,

we have that φ induces a measure conjugacy between ((K U )G , λ) and (K G , φ−1
∗ (λ)). Set

µ′ = φ−1
∗ (λ). Then µ′ is a G-invariant Borel probability measure on K G . Since λ is an

(S, ξ)-Markov approximation to ν, by applying φ−1 we get that µ′ is an (S, β)-Markov
approximation to µ. The measure µ′ is unique by [5, Theorem 7.1]. This completes the
proof as β =U · α. 2

5. Subgroups and f-invariant entropy
In this section we prove the main theorem and deduce some of its corollaries. Our goal
is to first establish the main theorem in the context of Markov processes and then use
Markov approximations to extend the result to general actions. Our first step is to show
that if G y (X, µ) is a Markov process and H ≤ G is a subgroup of finite index, then
H y (X, µ) is a Markov process as well. The difficulty in showing this is that the
characterization of Markov processes delicately depends on both the choice of a free
generating set for the group and on the choice of a generating partition for the action.

THEOREM 5.1. Let G be a free group, let G act on (X, µ), and let H ≤ G be a subgroup
of finite index. If G y (X, µ) is a Markov process with a Markov partition having finite
Shannon entropy, then H y (X, µ) is also a Markov process. In fact, if G y (X, µ) is an
(S, α)-Markov process with H(α) <∞ and 1⊆ G is any right S-connected transversal
of the right H-cosets {Hg : g ∈ G} with 1G ∈1, then there exists a free generating set T
for H such that H y (X, µ) is a (T, 1 · α)-Markov process.
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Proof. Assume that G y (X, µ) is an (S, α)-Markov process. Following a construction
of Schreier [22, Theorem 2.9], we will pick a free generating set for H . Let 1 be a right
S-connected transversal of the right H -cosets in G with 1G ∈1. Define r : G→1 by
letting r(g)= δ if and only if Hg = Hδ. Define the cocycle c :1× G→ H by

c(δ, g)= δg · r(δg)−1.

Set T = c(1× S)\{1G}. We claim that T is a free generating set for H .
Consider the directed and S-edge-labeled Schreier graph, 0, of the right H -cosets in G.

Specifically, the vertex set of 0 is {Hg : g ∈ G}, and for every g ∈ G and s ∈ S there is an
edge directed from Hg to Hgs labeled s. The right S-connected transversal 1 naturally
gives rise to a spanning tree 3 of 0. Specifically, 3 contains all of the vertices of 0 and
has an edge directed from Hδ to Hδs labeled s whenever δ, δs ∈1 and s ∈ S. Clearly the
fundamental group of 0, π1(0), is naturally group isomorphic to H . Let φ : π1(0)→ H be
this group isomorphism. For each edge e ∈ E(0)\E(3), let `e be the simple loop in3 ∪ {e}
which begins and ends at the vertex H and which traverses e with positive orientation. By
the van Kampen theorem, π1(0) is freely generated by the set {`e : e ∈ E(0)\E(3)}. If
e ∈ E(0)\E(3) is labeled by s ∈ S and directed from Hδ1 to Hδ2, with δ1, δ2 ∈1, then

φ(`e)= δ1sδ−1
2 = δ1s · r(δ1s)−1

= c(δ1, s) ∈ T .

So φ({`e : e ∈ E(0)\E(3)})⊆ T . Now fix t = δs · r(δs)−1
∈ T . Since t 6= 1G , we have

that δs 6∈1. Therefore the edge e directed from Hδ to Hδs and labeled s is in E(0) but
not in E(3). Thus `e is defined and clearly φ(`e)= t . Thus φ({`e : e ∈ E(0)\E(3)})= T .
We conclude that T freely generates H .

We claim that for a 6= b ∈ H , a and b are right T -adjacent if and only if a1 ∪ b1 is
right S-connected. First suppose that a and b are right T -adjacent. Then we can swap
a and b if necessary to find t ∈ T with b = at . Since 1 is right S-connected, so are
both a1 and b1. So we only need to find a point in a1 which is right S-adjacent to a
point in b1. Let s ∈ S and δ1, δ2 ∈1 be such that t = δ1sδ−1

2 . Then aδ1 ∈ a1 is right S-
adjacent to aδ1s = atδ2 = bδ2 ∈ b1. Thus a1 ∪ b1 is right S-connected as claimed. Now
suppose that a1 ∪ b1 is right S-connected. Then by swapping a and b if necessary we
can find s ∈ S and δ1, δ2 ∈1 with aδ1s = bδ2. Notice that Hδ1s = Hδ2 since a, b ∈ H ,
and therefore r(δ1s)= δ2. We have

1G 6= a−1b = δ1sδ−1
2 = δ1s · r(δ1s)−1

= c(δ1, s) ∈ T .

So for t = δ1sδ−1
2 we have at = b. Thus a and b are right T -adjacent as claimed.

It immediately follows from the previous paragraph that for F ⊆ H , F is right T -
connected if and only if F1 is right S-connected. We claim that for U, V, W ⊆ H , V
right T -separates (U, W ) if and only if V1 right S-separates (U1, W1). First suppose
that V1 right S-separates (U1, W1). Let F ⊆ H be a right T -connected set with
U ∩ F 6=∅ and W ∩ F 6=∅. Then F1 is right S-connected and U1 ∩ F1 6=∅ and
W1 ∩ F1 6=∅. So we must have that V1 ∩ F1 6=∅. However, V, F ⊆ H and since 1
is a transversal of the right H -cosets we have that h11 ∩ h21 6=∅ if and only if h1 = h2.
So we must have F ∩ V 6=∅. Therefore V right T -separates (U, W ). Now suppose that V
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right T -separates (U, W ). Let F ⊆ G be a right S-connected set with U1 ∩ F 6=∅ and
W1 ∩ F 6=∅. We must show that V1 ∩ F 6=∅. Define F ′ ⊆ H by the rule

f ∈ F ′⇐⇒ f1 ∩ F 6=∅.

We have F ⊆ F ′1, so U1 ∩ F ′1 6=∅ and W1 ∩ F ′1 6=∅. Again, since U, W, F ′ ⊆ H
we have that U ∩ F ′ 6=∅ and W ∩ F ′ 6=∅. Furthermore, F ′1 is right S-connected since
F ⊆ F ′1 is right S-connected and for every f ∈ F ′ the set f1 is right S-connected and
meets F . This implies that F ′ is right T -connected. Therefore V ∩ F ′ 6=∅. By the
definition of F ′, there is v ∈ V with v ∈ F ′ and hence v1 ∩ F 6=∅. So V1 ∩ F 6=∅
and we conclude that V1 right S-separates (U1, W1).

Now we show that H y (X, µ) is a (T, 1 · α)-Markov process. We point out that
1 · α is a generating partition for H y (X, µ) since G = H1 and α is generating for
G y (X, µ). Set β =1 · α. Fix t ∈ T ∪ T−1. By Lemma 4.2 it suffices to show that

H(t · β/RPastT (1H , t) · β)= H(t · β/β).

We clearly have that 1H right T -separates (RPastT (1H , t), t), and so by the previous
paragraph 1 right S-separates (RPastT (1H , t)1, t1). Therefore by Lemma 4.6,

H(t · β/RPastT (1H , t) · β) = H(t1 · α/RPastT (1H , t)1 · α)

= H(t1 · α/1 · α)= H(t · β/β).

This completes the proof. 2

The following lemma is well known, but it also follows directly from the construction
in the proof of the previous theorem.

LEMMA 5.2. [21, Proposition I.3.9] Let G be a finitely generated free group and let rG

be the rank of G. If H ≤ G is of finite index, then the rank, rH , of H and index of H are
related by

rH = |G : H |(rG − 1)+ 1.

The following lemma deals with the function RS introduced in Definition 4.3.

LEMMA 5.3. Let G be a finitely generated free group, let S be a free generating set for G,
let H ≤ G be a subgroup of finite index, and let 1 be a right S-connected transversal of
the right H-cosets {Hg : g ∈ G} with 1G ∈1. If T is the generating set for H constructed
in the proof of Theorem 5.1, then∑

t∈T

(RS(t1 ∪1)− RS(1))= |T | · RS(1)+
∑
s∈S

(RS(1s ∪1)− RS(1)).

Proof. Let the functions r : G→1 and c :1× G→ H be as defined in the proof of
Theorem 5.1. Consider the set1× S. We associate (δ, s) ∈1× S with the edge (δ, δ · s)
in the right S-Cayley graph of G. Call (δ, s) ∈1× S internal if δs ∈1, and call it external
otherwise. Let Int(1× S) and Ext(1× S) denote the internal and external elements of
1× S, respectively. The set Int(1× S) naturally produces a graph structure on 1. Since
1 is right S-connected, this graph is connected, and it is a tree since it is a subgraph of
the right S-Cayley graph of G. It is well known that in any finite tree the number of edges
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is one less than the number of vertices [1, I.2 Corollary 8]. So |Int(1× S)| = |1| − 1
and |Ext(1× S)| = |1| · |S| − |1| + 1. From the definition of c it is readily observed that
c(δ, s)= 1G if and only if (δ, s) ∈ Int(1× S). So by definition T = c(Ext(1× S)). By
the previous lemma,

|T | = |1|(|S| − 1)+ 1= |1||S| − |1| + 1= |Ext(1× S)|.

Therefore c is a bijection between Ext(1× S) and T .
For t ∈ T , let (δt , st ) ∈ Ext(1× S) be such that c(δt , st )= t . Recall from the proof of

Theorem 5.1 that t1 ∪1 is right S-connected, but t1 and1 are disjoint. The unique right
S-edge joining 1 to t1 is (δt , δt st ). Therefore

RS(t1 ∪1)= 2RS(1)+ st .

We have∑
t∈T

(RS(t1 ∪1)− RS(1))=
∑
t∈T

(RS(1)+ st )= |T | · RS(1)+
∑
t∈T

st .

Fix s ∈ S. Since c : Ext(1× S)→ T is a bijection,

|{t ∈ T : st = s}| · s = |{(δ, s′) ∈ Ext(1× S) : s′ = s}| · s

= |{δ ∈1 : δs 6∈1}| · s = RS(1s ∪1)− RS(1).

Therefore ∑
t∈T

st =
∑
s∈S

|{t ∈ T : st = s}| · s =
∑
s∈S

(RS(1s ∪1)− RS(1)),

completing the proof. 2

It is somewhat surprising that left S-connected sets appear in Lemmas 3.1, 4.7, and 4.13,
while right S-connected sets appear in Lemma 4.4 and Theorem 5.1. In order to make
use of these results simultaneously, we will need to work with bi-S-connected sets. The
next lemma is tailored to this case. Later, in Lemma 5.5, we will see that bi-S-connected
transversals to cosets of normal finite index subgroups always exist.

The following lemma is unique in that it requires bi-S-connected sets. This lemma
appears to be false if bi-S-connected is replaced by left S-connected or right S-connected.
This lemma is somewhat technical, but it is key to the proof of the main theorem. For
notational simplicity, in the proof and statement of the lemma below we write RS(F)
simply as R(F), where RS(F) is as in Definition 4.3.

LEMMA 5.4. Let G be a finitely generated free group, let S be a free generating set for
G, and let r = |S| be the rank of G. If 1⊆ G is finite, bi-S-connected, and contains the
identity then

|1| ·
∑
s∈S

(R(s1 ∪1)− R(1))=
∑
s∈S

(R(1s ∪1)− R(1))+ (|1|(r − 1)+ 1) · R(1).
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Proof. We first claim that every finite bi-S-connected 1⊆ G containing the identity
satisfies the two equations

|1| ·

(∑
s∈S

s

)
=

∑
s∈S

(R(1s ∪1)− R(1))+ R(1), (5.1)

∑
s∈S

(R(s1 ∪1)− R(1))=

(∑
s∈S

s

)
+ (r − 1)R(1). (5.2)

Before proving this claim, we show how it implies the statement of the lemma. By using
first equation (5.2) and then equation (5.1) we have

|1| ·
∑
s∈S

(R(s1 ∪1)− R(1)) = |1| ·

(∑
s∈S

s

)
+ |1|(r − 1)R(1)

=

∑
s∈S

(R(1s ∪1)− R(1))+ (|1|(r − 1)+ 1)R(1),

as in the statement of the lemma. Thus it suffices to prove that equations (5.1) and (5.2)
hold.

Consider the set
⋃

s∈S(1s ∪1). Since the right S-Cayley graph of G is a tree and 1
is right S-connected, the collection of right S-edges of this set is precisely {(δ, δs) : δ ∈
1, s ∈ S} (in other words, every edge must have an endpoint in 1). Therefore

R

(⋃
s∈S

(1s ∪1)

)
= |1|

(∑
s∈S

s

)
.

Since S is a free generating set and 1 is right S-connected, we have that for any s 6= t ∈ S
the sets 1s\1 and 1t\1 are disjoint. Therefore

R

(⋃
s∈S

(1s ∪1)

)
= R(1)+

∑
s∈S

(R(1s ∪1)− R(1)).

So equation (5.1) follows.
To establish equation (5.2), we use induction on the number of elements of 1.

Equation (5.2) holds if 1 is a singleton since then R(s1 ∪1)= s and R(1)= 0. Now
suppose that equation (5.2) holds whenever |1| ≤ k. Consider a bi-S-connected set 1
with 1G ∈1 and |1| = k + 1. Pick δ ∈1 of maximal S-word length. Since 1 is bi-S-
connected, there must be g, h ∈1 and u, v ∈ S ∪ S−1 with δ = uh = gv. Since δ is of
maximal S-word length, h and g must be of smaller S-word length. So the set K =1\{δ}
is bi-S-connected, contains the identity, and has k elements. If s ∈ S and s 6= u, u−1, then
s1 ∪1 is the disjoint union of sK ∪ K with {uh, suh}. Since s 6= u, u−1, uh and suh
cannot be right S-adjacent (we cannot have uht = suh for t ∈ S ∪ S−1 since suh has longer
S-word length than uh and s 6= u). However, there are right edges (g, gv)= (g, uh) and
(sg, sgv)= (sg, suh). Therefore for s ∈ S with s 6= u, u−1,

R(s1 ∪1)= R(sK ∪ K )+ 2v.

If u ∈ S then u1 ∪1 is the disjoint union of uK ∪ K with {u2h}. If u−1
∈ S then

u−11 ∪1 is the disjoint union of u−1 K ∪ K with {uh}. In either case,

R(u±11 ∪1)= R(u±1 K ∪ K )+ v,
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where u±1 is chosen to be in S. Clearly R(1)= R(K )+ v. So by the inductive hypothesis,∑
s∈S

(R(s1 ∪1)− R(1))=
∑
s∈S

(R(sK ∪ K )− R(K ))+ (r − 1) · v

=

(∑
s∈S

s

)
+ (r − 1)R(K )+ (r − 1) · v =

(∑
s∈S

s

)
+ (r − 1)R(1).

By induction we conclude that equation (5.2) holds for every finite bi-S-connected set
1⊆ G containing the identity. This completes the proof. 2

If G y (X, µ) is a Markov process and H ≤ G is of finite index, then we would like to
find a single partition which is a Markov partition for both G y (X, µ) and H y (X, µ).
To apply Lemma 4.7 and Theorem 5.1, we need to find a bi-S-connected transversal of
the right H -cosets in G. Such a transversal exists at least when H is normal in G, as the
following lemma shows.

LEMMA 5.5. Let G be a finitely generated free group and let S be a free generating set
for G. If K � G is a normal subgroup then there exists a bi-S-connected transversal 1 of
the cosets of K in G with 1G ∈1.

Proof. Fix a total ordering � on S ∪ S−1. We extend � lexicographically to an ordering
�lex on (S ∪ S−1)-words of the same length. Specifically, if x = x1x2 · · · xn and y =
y1 y2 · · · yn are two (S ∪ S−1)-words of common length n, then x �lex y if and only if
x = y or xi ≺ yi for the first i where xi 6= yi . For g ∈ G, let WS(g) denote the reduced
S-word representation of g. We define a well ordering, ≤, on G as follows. For g, h ∈ G
we define g ≤ h if and only if the following two conditions hold:
(1) the S-word length of g is less than or equal to the S-word length of h;
(2) if g and h have the same S-word-length, then WS(g)�lex WS(h).
The ordering ≤ of G has the following properties:
(i) ≤ is a well ordering, that is, every non-empty subset of G has a ≤-least element;
(ii) if WS(g) ends with s then g ≤ h H⇒ gs−1

≤ hs−1;
(iii) if WS(h) does not begin with s−1 then g ≤ h H⇒ sg ≤ sh.
We leave verification of these three properties to the reader. Next we define 1.

For a K -coset gK , define r(gK ) to be the ≤-least element of gK . Such an element
exists by (i). Set1= {r(gK ) : g ∈ G}. Clearly1 is a transversal of the K -cosets in G and
1G ∈1. We claim that 1 is bi-S-connected.

Right S-connected. Fix s ∈ S ∪ S−1 and g ∈ G which does not end with s−1. Assume
that gs = δ ∈1. We must show that g ∈1. Set ψ = r(K g). Note that ψ ≤ g. We have
Kψs = K gs = K δ, so by definition of 1 we have δ ≤ ψs. Since δ ends with s we have

g = δs−1
≤ (ψs)s−1

= ψ ≤ g

by property (ii). Therefore g = ψ ∈1.
Left S-connected. Fix s ∈ S ∪ S−1 and g ∈ G which does not begin with s−1. Assume

that sg = δ ∈1. We must show that g ∈1. Set ψ = r(gK ) and notice that ψ ≤ g. We
have sψK = sgK = δK , so by definition of 1 we have δ ≤ sψ . Since g does not begin
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with s−1 we have
δ ≤ sψ ≤ sg = δ

by property (iii). Therefore g = ψ ∈1. 2

We are now ready to fit the individual pieces together and prove the main theorem within
the context of Markov processes and normal subgroups.

PROPOSITION 5.6. Let G be a finitely generated free group acting on a probability space
(X, µ). Assume that (X, µ) is an (S, α)-Markov process where H(α) <∞. If K � G is
of finite index then fK (X, µ) is defined and

fK (X, µ)= |G : K | · fG(X, µ).

Proof. Apply Lemma 5.5 to get a bi-S-connected set 1 which contains the identity and is
a transversal of the K -cosets in G. Set β =1 · α. Since1 is left S-connected and contains
the identity, G y (X, µ) is an (S, β)-Markov process. Since 1 is right S-connected and
contains the identity, K y (X, µ) is a (T, β)-Markov process, where T is as constructed
in the proof of Theorem 5.1. Notice that H(β)≤ |1| · H(α) <∞ and therefore fK (X, µ)
is defined.

From Lemmas 5.2–5.4 we obtain∑
t∈T

(RS(t1 ∪1)− RS(1))= |T | · RS(1)+
∑
s∈S

(RS(1s ∪1)− RS(1))

= (|G : K |(rG − 1)+ 1) · RS(1)+
∑
s∈S

(RS(1s ∪1)− RS(1))

= (|1| · (rG − 1)+ 1) · RS(1)+
∑
s∈S

(RS(1s ∪1)− RS(1))

= |1| ·
∑
s∈S

(RS(s1 ∪1)− RS(1))

= |G : K | ·
∑
s∈S

(RS(s1 ∪1)− RS(1)),

where rG is the rank of G. From Lemma 4.4 it follows that∑
t∈T

(H(t · β ∨ β)− H(β))= |G : K | ·
∑
s∈S

(H(s · β ∨ β)− H(β)).

So applying Theorem 4.5 to both G y (X, µ) and K y (X, µ) gives

|G : K | · fG(X, µ) = |G : K |(1− 2rG)H(β)+ |G : K | ·
∑
s∈S

H(s · β ∨ β)

= |G : K |(1− rG)H(β)+ |G : K | ·
∑
s∈S

(H(s · β ∨ β)− H(β))

= (1− rK )H(β)+ |G : K | ·
∑
s∈S

(H(s · β ∨ β)− H(β))

= (1− rK )H(β)+
∑
t∈T

(H(t · β ∨ β)− H(β))

= (1− 2rK )H(β)+
∑
t∈T

H(t · β ∨ β)

= fK (X, µ),

where rK is the rank of K . This completes the proof. 2
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COROLLARY 5.7. Let G be a finitely generated free group acting on a probability space
(X, µ). Assume that (X, µ) is an (S, α)-Markov process where H(α) <∞. If H ≤ G is
of finite index then fH (X, µ) is defined and

fH (X, µ)= |G : H | · fG(X, µ).

Proof. We claim that H contains a subgroup of finite index which is normal in G. To see
this, consider the left H -cosets {gH : g ∈ G}. Clearly G acts on these cosets on the left,
and this induces a homomorphism from G into the finite symmetric group Sym(|G : H |).
Let K be the kernel of this homomorphism. Then K is normal in G and is of finite
index. Furthermore, K H = H and thus K ≤ H . Since G y (X, µ) is a Markov process,
by Theorem 5.1 we have that H y (X, µ) is a Markov process as well. Furthermore,
the Markov partition for H y (X, µ) is of the form 1 · α where 1 is finite and hence
H(1 · α) <∞. So now the assumptions of the previous proposition are satisfied for both
K � G and K � H , so

fH (X, µ)=
1

|H : K |
· fK (X, µ)=

|G : K |

|H : K |
· fG(X, µ)= |G : H | · fG(X, µ). 2

We now use Markov approximations to obtain the main theorem. We remark that the
use of Markov approximations is not as direct as one might expect. We can approximate
the action of G by Markov processes to obtain an inequality. However, we cannot
approximate the action of H by Markov processes in order to obtain the reverse inequality
because in general G does not act measure-preservingly on Markov approximations to the
H action.

THEOREM 5.8. Let G be a finitely generated free group acting on a probability space
(X, µ). Let H ≤ G be a subgroup of finite index, and let H act on X by restricting the
action of G. If the f-invariant entropy is defined for either the G action or the H action,
then it is defined for both actions and

fH (X, µ)= |G : H | · fG(X, µ).

Proof. If α is a finite Shannon entropy generating partition for G y (X, µ), then1 · α is a
finite Shannon entropy generating partition for H y (X, µ), where1 is any transversal of
the right H -cosets in G. Conversely, if α is a finite Shannon entropy generating partition for
H y (X, µ), then it is also a finite Shannon entropy generating partition for G y (X, µ).
Thus fG(X, µ) is defined if and only if fH (X, µ) is defined.

Assume that both fG(X, µ) and fH (X, µ) are defined. So there is a generating partition
α for G y (X, µ) with H(α) <∞. Fix a free generating set S for G.

We first show that |G : H | · fG(X, µ)≤ fH (X, µ). Let T be any free generating set
for H , let V ⊆ G be any finite set satisfying H V = G, and let W be any finite left
S-connected set containing T V ∪ {1G}. Using Lemma 4.11, fix a measure conjugacy
φ : (X, µ)→ (αG , ν). Let ξ be the canonical partition of αG and recall that φ−1(ξ)=

α. By Lemma 4.13, there is a G-invariant probability measure ν′ on αG which is
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an (S, W · ξ)-Markov approximation to ν. Then

|G : H | · FG(X, µ, S, W · α)
= |G : H | · FG(α

G , ν, S, W · ξ) since φ is a measure conjugacy
= |G : H | · FG(α

G , ν′, S, W · ξ) by Lemma 4.9
= |G : H | · fG(α

G , ν′) by Theorem 4.5
= fH (α

G , ν′) by Corollary 5.7
≤ FH (α

G , ν′, T, V · ξ) since V · ξ is a generating partition
= FH (α

G , ν, T, V · ξ) since T V ⊆W and ν′ and ν agree on W · ξ
= FH (X, µ, T, V · α) since φ is a measure conjugacy.

So |G : H | · FG(X, µ, S, W · α)≤ FH (X, µ, T, V · α)whenever T is any free generating
set for H , V is any finite set satisfying H V = G, and W is any left S-connected set
containing T V ∪ {1G}. Now for each n ∈ N, let Wn be a left S-connected finite set
containing T BT (n)1 ∪ {1G}, where T is a free generating set for H , BT (n) is the T -
ball of radius n in H centered on the identity, and 1 is a transversal of the right H -cosets.
Then

fH (X, µ) = lim
n→∞

FH (X, µ, T, BT (n)1 · α)

≥ lim
n→∞

|G : H | · FG(X, µ, S, Wn · α)≥ |G : H | · fG(X, µ).

This gives us one inequality. The reverse inequality will require more effort.
Let β be any generating partition for G y (X, µ) with H(β) <∞. Apply Lemma 4.11

to get a measure conjugacy φ : (X, µ)→ (βG , ν). Let ξ be the canonical partition of
βG and recall that φ−1(ξ)= β. By Theorem 4.12, we can let ν∗ be the (S, ξ)-Markov
approximation to ν. Let 1 be a right S-connected transversal of the right H -cosets in
G with 1G ∈1, and let T be the free generating set for H constructed in the proof of
Theorem 5.1. We claim that

FH (β
G , ν∗, T, 1 · ξ)≥ FH (β

G , ν, T, 1 · ξ). (5.3)

We have

FH (β
G , ν∗, T, 1 · ξ)− FH (β

G , ν, T, 1 · ξ)

= Hν∗(1 · ξ)+
∑
t∈T

(Hν∗(t1 · ξ/1 · ξ)− Hν∗(1 · ξ))

− Hν(1 · ξ)−
∑
t∈T

(Hν(t1 · ξ/1 · ξ)− Hν(1 · ξ))

= (Hν∗(1 · ξ)− Hν(1 · ξ))

+

∑
t∈T

(Hν∗(t1 · ξ/1 · ξ)− Hν∗(1 · ξ)− Hν(t1 · ξ/1 · ξ)+ Hν(1 · ξ)).

It will suffice to show that Hν∗(1 · ξ)− Hν(1 · ξ)≥ 0 and that for every t ∈ T ,

X t = Hν∗(t1 · ξ/1 · ξ)− Hν∗(1 · ξ)− Hν(t1 · ξ/1 · ξ)+ Hν(1 · ξ)≥ 0.

We prove these two inequalities in the following two paragraphs.
We will argue that Hν∗(1 · ξ)≥ Hν(1 · ξ). Enumerate 1 as 1= {a1, a2, . . . , an} so

that a1 = 1G and for each 1≤ i ≤ n the set Ki = {a1, a2, . . . , ai } is right S-connected.
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For each 2≤ i ≤ n, let bi ∈ Ki−1 and si ∈ S ∪ S−1 be such that ai = bi si . By
Lemma 2.1(i)–(ii),

Hν∗(1 · ξ)− Hν(1 · ξ)

= Hν∗(ξ)− Hν(ξ)+
n∑

i=2

(Hν∗(ai · ξ/Ki−1 · ξ)− Hν(ai · ξ/Ki−1 · ξ))

= 0+
n∑

i=2

(Hν∗(bi si · ξ/Ki−1 · ξ)− Hν(bi si · ξ/Ki−1 · ξ))

=

n∑
i=2

(Hν∗(si · ξ/b
−1
i Ki−1 · ξ)− Hν(si · ξ/b

−1
i Ki−1 · ξ))

=

n∑
i=2

(Hν∗(si · ξ/ξ)− Hν(si · ξ/b
−1
i Ki−1 · ξ))

=

n∑
i=2

(Hν(si · ξ/ξ)− Hν(si · ξ/b
−1
i Ki−1 · ξ))≥ 0,

where for the penultimate equality we use Lemma 4.6 and the fact that bi right S-separates
(ai , Ki−1) and hence 1G right S-separates (si , b−1

i Ki−1), and for the final inequality we
use Lemma 2.1(iii).

Fix t ∈ T . We must show that X t ≥ 0. Let δ1, δ2 ∈1 and s ∈ S be such that t = δ1sδ−1
2 .

Recall that t1 and1 are disjoint but t1 ∪1 is right S-connected. The unique right S-edge
joining 1 to t1 is (δ1, δ1s)= (δ1, tδ2). Let ζ : (

⊕
s∈S Z · s)→ R be the linear extension

of the map s 7→ Hν∗(s · ξ/ξ). By Lemmas 2.1 and 4.4,

Hν∗(t1 · ξ/1 · ξ)− Hν∗(1 · ξ)

= Hν∗(t1 · ξ ∨1 · ξ)− 2 · Hν∗(1 · ξ)

= Hν∗(ξ)+ ζ(RS(t1 ∪1))− 2 · Hν∗(ξ)− 2 · ζ(RS(1))

= ζ(s)− Hν∗(ξ)= Hν∗(s · ξ/ξ)− Hν∗(ξ)= Hν(s · ξ/ξ)− Hν(ξ).

Also, by Lemma 2.1,

−Hν(t1 · ξ/1 · ξ)+ Hν(1 · ξ)

=−Hν(tδ2 · ξ/1 · ξ)− Hν(t1 · ξ/tδ2 · ξ ∨1 · ξ)+ Hν(δ2 · ξ)+ Hν(1 · ξ/δ2 · ξ).

Therefore

X t = Hν∗(t1 · ξ/1 · ξ)− Hν∗(1 · ξ)− Hν(t1 · ξ/1 · ξ)+ Hν(1 · ξ)

= Hν(s · ξ/ξ)− Hν(ξ)− Hν(tδ2 · ξ/1 · ξ)

− Hν(t1 · ξ/tδ2 · ξ ∨1 · ξ)+ Hν(δ2 · ξ)+ Hν(1 · ξ/δ2 · ξ)

= Hν(s · ξ/ξ)− Hν(tδ2 · ξ/1 · ξ)+ Hν(1 · ξ/δ2 · ξ)− Hν(t1 · ξ/tδ2 · ξ ∨1 · ξ)

= Hν(s · ξ/ξ)− Hν(δ1s · ξ/1 · ξ)+ Hν(1 · ξ/δ2 · ξ)− Hν(t1 · ξ/tδ2 · ξ ∨1 · ξ)

= Hν(s · ξ/ξ)− Hν(s · ξ/δ
−1
1 1 · ξ)+ Hν(1 · ξ/δ2 · ξ)

− Hν(1 · ξ/δ2 · ξ ∨ t−11 · ξ).

This is non-negative by Lemma 2.1(iii), justifying the claim. Thus we conclude that
inequality (5.3) holds.
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From the claim above it follows that

|G : H | · FG(X, µ, S, β)
= |G : H | · FG(β

G , ν, S, ξ) since φ is a measure conjugacy
= |G : H | · FG(β

G , ν∗, S, ξ) by Lemma 4.9
= |G : H | · fG(β

G , ν∗) by Theorem 4.5
= fH (β

G , ν∗) by Corollary 5.7
= FH (β

G , ν∗, T, 1 · ξ) by Theorems 5.1 and 4.5
≥ FH (β

G , ν, T, 1 · ξ) by inequality (5.3) above
= FH (X, µ, T, 1 · β) since φ is a measure conjugacy.

Thus, if U ⊆ G is finite and non-empty, then by setting β =U · α we obtain

|G : H | · FG(X, µ, S,U · α)≥ FH (X, µ, T, 1U · α).

Therefore

|G : H | · fG(X, µ) = lim
n→∞

|G : H | · FG(X, µ, S, BS(n) · α)

≥ lim
n→∞

FH (X, µ, T, 1BS(n) · α)≥ fH (X, µ).

Thus fH (X, µ)= |G : H | · fG(X, µ). 2

We now give an example to show that Theorem 5.8 is no longer true if one allows
H to have infinite index in G. When |G : H | =∞, we take the equation fH (X, µ)=
|G : H | · fG(X, µ) to mean that fG(X, µ)= 0 if fH (X, µ) is finite, fH (X, µ)=−∞
if fG(X, µ) < 0, and fH (X, µ) is undefined if fG(X, µ) > 0 (since f-invariant entropy
cannot attain the value +∞). The counter-example provided by the proposition below
marks a difference between f-invariant entropy and Kolmogorov–Sinai entropy. For
Kolmogorov–Sinai entropy, hH (X, µ)= |G : H | · hG(X, µ) whenever H ≤ G, regardless
if the index of H in G is finite or infinite.

PROPOSITION 5.9. There exist a finitely generated free group G, a subgroup of infinite
index H ≤ G, and an action of G on a probability space (X, µ) such that both fG(X, µ)
and fH (X, µ) are defined but fH (X, µ) 6= |G : H | · fG(X, µ).

Proof. Let (X, µ) be a standard probability space with µ supported on a countable
set. Let α be a countable measurable partition of X such that each atom of µ is a
member of α. Assume that 0< H(α) <∞. This can easily be arranged by having
µ be the uniform probability measure on n points, in which case H(α)= log(n). We
claim that for any finitely generated free group G acting trivially on X (fixing every
point) we have fG(X, µ)= (1− r(G)) · H(α), where r(G) is the rank of G. In fact,
this follows immediately from the definition of f-invariant entropy. The partition α is
trivially generating and F · α = α for every non-empty F ⊆ G. So FG(X, µ, S, F · α)=
(1− r(G)) · H(α) for every non-empty F ⊆ G.

Now to prove the proposition, simply pick any non-cyclic finitely generated free group
G and any finitely generated free subgroup H ≤ G of infinite index. Then −∞<

fG(X, µ)= (1− r(G)) · H(α) < 0 and−∞< fH (X, µ)= (1− r(H)) · H(α)≤ 0. Thus
fH (X, µ) 6= |G : H | · fG(X, µ). 2
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It is unknown to the author if a less trivial counter-example exists. However, we observe
the following constraint.

COROLLARY 5.10. Let G be a finitely generated free group, let H ≤ G be a non-trivial
finitely generated subgroup of infinite index, and let G act on a probability space (X, µ).
If fH (X, µ) is defined, then fG(X, µ) is defined and fG(X, µ)≤ 0.

Proof. Assume that fH (X, µ) is defined. This assumption is equivalent to the existence
of a countable partition α which is generating for H y (X, µ) and satisfies H(α) <∞.
Clearly α is generating for G y (X, µ) and thus fG(X, µ) is defined. Fix ε > 0. Let
N ∈ N be such that (1/N ) · H(α) < ε. By a theorem of Hall [12], finitely generated
subgroups of free groups are separable, meaning that they can be expressed as an
intersection of a decreasing sequence of finite index subgroups. So in our case we have
H =

⋂
n∈N 0n for some decreasing sequence (0n) of finite index subgroups of G. H has

infinite index in G, so |G : 0n|must tend to infinity. Thus there is n ∈ N with |G : 0n|> N .
Clearly α is a generating partition for 0n y (X, µ) since H ≤ 0n . Therefore f0n (X, µ) is
defined and satisfies f0n (X, µ)≤ H(α). By Theorem 5.8,

fG(X, µ)=
1

|G : 0n|
· f0n (X, µ)≤

1
N
· H(α) < ε.

Letting ε tend to 0, we obtain fG(X, µ)≤ 0. 2

In the corollary below we clarify and isolate the two inequalities obtained within the
proof of Theorem 5.8. This corollary can be thought of as a finitary version of the main
theorem.

COROLLARY 5.11. Let G be a finitely generated free group acting on a probability space
(X, µ). Let H ≤ G be a subgroup of finite index, let S be a free generating set for G, and
let α be a generating partition for G y (X, µ) with H(α) <∞.
(i) If T is any free generating set for H, V ⊆ G is any finite, non-empty set satisfying

H V = G, and W is any finite left S-connected set containing T V ∪ {1G}, then

FH (X, µ, T, V · α)≥ |G : H | · FG(X, µ, S, W · α).

(ii) If 1 is a right S-connected transversal of the right H-cosets in G and contains the
identity, T is the free generating set for H constructed in the proof of Theorem 5.1,
and U ⊆ G is finite and non-empty, then

FH (X, µ, T, 1U · α)≤ |G : H | · FG(X, µ, S,U · α).

This finitary version of the main theorem provides us with new insight into Markov
processes. It implies that in many circumstances the property of being a Markov process
is independent of the choice of a free generating set for G.

COROLLARY 5.12. Let G be a finitely generated free group acting on a probability space
(X, µ). Let S1 and S2 be two free generating sets for G. If (X, µ) is an (S1, α1)-Markov
process with H(α1) <∞, then there exists a partition α2 with H(α2) <∞ such that (X, µ)
is an (S2, α2)-Markov process.
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Proof. The key observation for this proof is that Corollary 5.11 does not require H to be
a proper subgroup of G. Let W be any finite left S2-connected set containing S1 ∪ {1G}.
Then

fG(X, µ)
= FG(X, µ, S1, α1) by Theorem 4.5
≥ FG(X, µ, S2, W · α1) by Corollary 5.11(i)
≥ fG(X, µ) since W · α1 is generating.

Therefore equality holds throughout. So it then follows from Theorem 4.5 that G y
(X, µ) is an (S2, W · α1)-Markov process. Setting α2 =W · α1 completes the proof since
H(α2)≤ |W | · H(α1). 2

The following corollary exhibits an interesting inequality involving f-invariant entropy.
The author does not know how to obtain this inequality without applying Theorem 5.8.

COROLLARY 5.13. Let G be a finitely generated free group acting on a probability space
(X, µ), and let α be a generating partition having finite Shannon entropy. Then for any
free generating set S for G and any finite right S-connected set 1⊆ G,

fG(X, µ)≤
H(1 · α)
|1|

≤ H(α).

Proof. Fix a finite right S-connected1⊆ G. Since the action of G is measure-preserving,
we can replace 1 with δ−11 if necessary in order to have 1G ∈1. We will define a right
action, ∗, of G on 1 as follows. Since G is freely generated by S, it suffices to define how
each s ∈ S acts on 1. So fix s ∈ S and δ ∈1. If δs ∈1, then define δ ∗ s = δs. If δs 6∈1,
then let k ≥ 0 be maximal with δs−k

∈1 and then define δ ∗ s = δs−k . This defines the
right action of G on 1. Since 1 is right S-connected and we defined δ ∗ s = δs whenever
δs ∈1, it follows that the action of G on 1 is transitive. Let H = {g ∈ G : 1G ∗ g = 1G}

be the stabilizer of 1G ∈1. Then H is a finite index subgroup of G since 1 is finite.
Furthermore, if h ∈ H and g ∈ G then

1G ∗ hg = (1G ∗ h) ∗ g = 1G ∗ g.

Thus each point of 1 corresponds to a right H -coset. If δ ∈1 then 1G ∗ δ = δ since 1
is right S-connected. Hence 1 is a right S-connected transversal of the right H -cosets in
G. If α is a finite Shannon entropy generating partition for G y (X, µ) then 1 · α is a
generating partition for H y (X, µ). So for any free generating set T for H ,

|1| · fG(X, µ) = |G : H | · fG(X, µ)= fH (X, µ)≤ FH (X, µ, T, 1 · α)

= H(1 · α)+
∑
t∈T

(H(t1 · α/1 · α)− H(1 · α))≤ H(1 · α).

This establishes the first inequality. For the second inequality, it is easy to see that
H(1 · α)≤ |1| · H(α). 2

6. Virtually free groups and virtual measure conjugacy
Our main theorem allows us to define f-invariant entropy for actions of finitely generated
virtually free groups and also allows us to define a numerical invariant for virtual measure
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conjugacy. Recall that a group is virtually free if it contains a free subgroup of finite index.
Similarly, a group is virtually Z if it contains Z as a subgroup of finite index. To simplify
discussion within this section, we will use the term ‘virtually free’ to always mean virtually
free but not virtually Z.

COROLLARY 6.1. Let 0 be a finitely generated virtually free group acting on a probability
space (X, µ). Assume that there is a generating partition for this action having finite
Shannon entropy. If G, H ≤ 0 are finite index free subgroups, then fG(X, µ) and
fH (X, µ) are defined and

1
|0 : G|

· fG(X, µ)=
1

|0 : H |
· fH (X, µ).

Furthermore, if 0 is itself free then the above common value is f0(X, µ).

Proof. Since 0 is finitely generated and G and H are of finite index in 0, we have that G
and H are also finitely generated [13, Corollary IV.B.24]. Also, since they have finite index
in 0 and 0 y (X, µ) admits a finite Shannon entropy generating partition, the actions
G y (X, µ) and H y (X, µ) also admit finite Shannon entropy generating partitions (by
the same argument appearing in the first paragraph of the proof of Theorem 5.8). Thus
fG(X, µ) and fH (X, µ) are defined.

Consider the subgroup K = G ∩ H . Clearly K is a finite index subgroup of both G and
H . It follows from Theorem 5.8 that

1
|0 : G|

· fG(X, µ) =
1

|0 : G| · |G : K |
· fK (X, µ)=

1
|0 : K |

· fK (X, µ)

=
1

|0 : H | · |H : K |
· fK (X, µ)=

1
|0 : H |

· fH (X, µ).

If 0 is itself free then one can take H = 0 to obtain

1
|0 : G|

· fG(X, µ)=
1

|0 : H |
· fH (X, µ)= f0(X, µ).

This completes the proof. 2

The previous corollary now allows us to extend the definition of f-invariant entropy to
actions of finitely generated virtually free groups.

Definition 6.2. Let 0 be a finitely generated virtually free group, and let 0 act on a
probability space (X, µ). If there is a generating partition for this action with finite
Shannon entropy, then we define the f-invariant entropy of 0 y (X, µ) to be

f0(X, µ)=
1

|0 : G|
· fG(X, µ),

where G is any free subgroup of 0 of finite index, and the action of G on X is the restriction
of the 0 action. If there is no generating partition for this action with finite Shannon
entropy, then the f-invariant entropy of 0 y (X, µ) is undefined.

We point out that since f-invariant entropy is a measure conjugacy invariant for actions
of finitely generated free groups, it is also a measure conjugacy invariant for actions
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of finitely generated virtually free groups. Also notice that by the previous corollary,
f0(X, µ) does not depend on the free subgroup of finite index chosen.

If (K0, µ0) is a Bernoulli shift over a finitely generated virtually free group 0, then the
f-invariant entropy of 0 y (K0, µ0) is∑

k∈K

−µ(k) · log(µ(k)),

provided that the support of µ is countable and the above sum is finite (this follows easily
from the validity of this formula when 0 is in fact free, as discussed by Bowen in [2]). If
the support of µ is not countable or the sum above is not finite, then the f-invariant entropy
of this action is undefined (since in this case there is no generating partition having finite
Shannon entropy, as proved by Kerr and Li in [18]). Moreover, it follows from [3, 18] that
if (K0, µ0) and (M0, λ0) are two Bernoulli shifts over a finitely generated virtually free
group 0, then they are measurably conjugate if and only if

H(µ)= H(λ),

where H(µ) is defined to be
∑

k∈K −µ(k) · log(µ(k)) if the support of µ is countable, and
is defined to be ∞ otherwise, and H(λ) is defined similarly. So it immediately follows
that for Bernoulli shifts over finitely generated virtually free groups for which f-invariant
entropy is defined, the f-invariant entropy is a complete invariant for measure conjugacy.
We also mention that many properties of the original f-invariant entropy immediately carry
over to this new f-invariant entropy, such as the Abramov–Rohlin formula and (under a few
assumptions) Juzvinskii’s addition formula (see [5, 8]).

Problem 6.3. Let G be a locally compact group and let m be a Haar measure on G.
Suppose that 01 and 02 are finitely generated free groups and are lattices in G. Let G act
measure-preservingly on a standard probability space (X, µ). Is f01(X, µ) defined if and
only if f02(X, µ) is defined? Are these f-invariant entropies related by their covolumes:

1
m(01\G)

· f01(X, µ)=
1

m(02\G)
· f02(X, µ)?

The above questions may only have positive answers under additional assumptions on
G, such as G being unimodular or a Lie group. An affirmative answer to these questions
would allow f-invariant entropy to be extended to actions of locally compact groups which
contain a free group lattice.

Now we turn to defining a numerical invariant for virtual measure conjugacy of
actions of finitely generated virtually free groups. Recall that two actions G y (X, µ)
and H y (Y, ν) preserving probability measure are virtually measurably conjugate if
there are subgroups of finite index G ′ ≤ G and H ′ ≤ H such that the restricted actions
G ′y (X, µ) and H ′y (Y, ν) are measurably conjugate, meaning that there exist a
group isomorphism ψ : G ′→ H ′ and a measure space isomorphism φ : X→ Y such that
φ(g′ · x)= ψ(g′) · φ(x) for every g′ ∈ G ′ and µ-almost every x ∈ X .

COROLLARY 6.4. For i = 1, 2, let 0i be a finitely generated virtually free group acting
on a probability space (X i , µi ). Assume that for each i there is a finite Shannon
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entropy generating partition for 0i y (X i , µi ). If 01 y (X1, µ1) is virtually measurably
conjugate to 02 y (X2, µ2), then for any free subgroups of finite index G1 ≤ 01 and
G2 ≤ 02,

1
r(G1)− 1

· fG1(X1, µ1)=
1

r(G2)− 1
· fG2(X2, µ2),

where r(Gi ) is the rank of Gi .

Proof. Since the actions are virtually measurably conjugate, there exist subgroups of finite
index H1 ≤ 01 and H2 ≤ 02, a group isomorphism ψ : H1→ H2, and a measure space
isomorphism φ : (X1, µ1)→ (X2, µ2) with φ(h · x)= ψ(h) · φ(x) for every h ∈ H1 and
µ1-almost every x ∈ X1. Since Hi is a finite index subgroup of 0i , Hi is finitely generated
and virtually free [13, Corollary IV.B.24]. Let K1 be a free subgroup of H1 of finite index,
and set K2 = ψ(K1). Then K2 is a free subgroup of H2 of finite index and K1 y (X1, µ1)

is measurably conjugate to K2 y (X2, µ2). Now Ki , Gi ≤ 0i each have finite index, so
Ni = Gi ∩ Ki is of finite index in 0i as well. By Theorem 5.8 and Lemma 5.2,

1
r(G1)− 1

· fG1(X1, µ1) =
1

(r(G1)− 1)|G1 : N1|
· fN1(X1, µ1)

=
1

r(N1)− 1
· fN1(X1, µ1)=

|K1 : N1|

r(N1)− 1
· fK1(X1, µ1)

=
1

r(K1)− 1
· fK1(X1, µ1)=

1
r(K2)− 1

· fK2(X2, µ2)

=
|K2 : N2|

r(N2)− 1
· fK2(X2, µ2)=

1
r(N2)− 1

· fN2(X2, µ2)

=
1

(r(G2)− 1)|G2 : N2|
· fN2(X2, µ2)

=
1

r(G2)− 1
· fG2(X2, µ2). 2

The previous corollary allows us to define a numerical invariant for virtual measure
conjugacy among actions of finitely generated virtually free groups.

Definition 6.5. Let 0 be a finitely generated virtually free group acting measure-
preservingly on a standard probability space (X, µ). If there is a generating partition
having finite Shannon entropy, then the virtual f-invariant entropy of 0 y (X, µ) is defined
as

f̂0(X, µ)=
1

r(G)− 1
· fG(X, µ),

where G is any free subgroup of finite index, r(G) is the rank of G, and G acts on (X, µ)
by restricting the 0 action. If there is no generating partition with finite Shannon entropy,
then the virtual f-invariant entropy of this action is undefined.

The corollary above shows that f̂0(X, µ) does not depend on the free subgroup of
finite index chosen (use 01 = 02 in that corollary) and is an invariant for virtual measure
conjugacy.

We remark that f̂0(X, µ) can be computed from f0(X, µ) without choosing a free
subgroup of finite index. In [14], Karrass, Pietrowski, and Solitar prove that any finitely
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generated virtually free group 0 can be represented as the fundamental group of a finite
graph of groups in which all vertex groups are finite. Furthermore, they showed that if
G ≤ 0 is a free subgroup of finite index then the rank of G, r(G), is given by

r(G)= 1+ |0 : G| ·
(

1
e1
+

1
e2
+ · · · +

1
ek
−

1
v1
−

1
v2
− · · · −

1
vn

)
,

where e1, . . . , ek , and v1, . . . , vn are the orders of the edge groups and vertex groups,
respectively, corresponding to the representation of 0 as the fundamental group of a finite
graph of finite groups. Therefore

f̂0(X, µ) =
1

r(G)− 1
· fG(X, µ)=

|0 : G|

r(G)− 1
· f0(X, µ)

=

(
1
e1
+ · · · +

1
ek
−

1
v1
− · · · −

1
vn

)−1

· f0(X, µ).

However, it is unclear if there is a formula for f0(X, µ) which avoids choosing a free
subgroup of finite index.

Problem 6.6. For finitely generated virtually free groups 0, find a formula for f0(X, µ)
which avoids choosing a free subgroup of finite index.

We point out that for amenable groups H ≤ G and Kolmogorov–Sinai entropy, it is
true that hH (X, µ)= |G : H | · hG(X, µ) (here hH and hG are the Kolmogorov–Sinai
entropies of the H and G actions); however, this fact does not allow one to define a
numerical invariant for virtual measure conjugacy among actions of amenable groups.
In proving Corollary 6.4 we relied on a property which is possibly unique to finitely
generated virtually free groups. The property we used is that if 0 is finitely generated and
virtually free, and G and H are free subgroups of 0 of finite index, then |0 : G|/|0 : H | =
(r(G)− 1)/(r(H)− 1). So the ratio of the indices of G and H in 0 can be determined
from the internal structure of G and H alone; no knowledge of 0 is required.

We now show that f̂0(X, µ) is a complete invariant for virtual measure conjugacy
among the Bernoulli shifts on which it is defined.

PROPOSITION 6.7. For i = 1, 2, let (K0i
i , µ

0i
i ) be a Bernoulli shift over a finitely

generated virtually free group 0i . If the virtual f-invariant entropy f̂0i (K
0i
i , µ

0i
i ) is defined

for each i , then (K01
1 , µ

01
1 ) is virtually measurably conjugate to (K02

2 , µ
02
2 ) if and only if

f̂01(K
01
1 , µ

01
1 )= f̂02(K

02
2 , µ

02
2 ).

Proof. By Corollary 6.4, it is necessary that the virtual f-invariant entropies of these actions
agree. So suppose that they have the same virtual f-invariant entropy. We must show that
the actions are virtually measurably conjugate.

For each i , pick a free subgroup Gi ≤ 0i of finite index. Let H1 be a subgroup of G1

with |G1 : H1| = r(G2)− 1, and let H2 be a subgroup of G2 with |G2 : H2| = r(G1)− 1.
Such subgroups exist since G1 and G2 are finitely generated free groups. Then by
Lemma 5.2,

r(H1)− 1 = |G1 : H1|(r(G1)− 1)= (r(G2)− 1)(r(G1)− 1)

= (r(G2)− 1)|G2 : H2| = r(H2)− 1.
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Thus H1 is group isomorphic to H2.
If 1i is a transversal of the right Hi -cosets in 0i , then Hi y (K0i

i , µ
0i
i ) is measurably

conjugate to the Bernoulli shift Hi y ((K1i
i )Hi , (µ

1i
i )Hi ). So

fH1((K
11
1 )H1 , (µ

11
1 )H1) = fH1(K

01
1 , µ

01
1 )= (r(H1)− 1) · f̂01(K

01
1 , µ

01
1 )

= (r(H2)− 1) · f̂02(K
02
2 , µ

02
2 )= fH2(K

02
2 , µ

02
2 )

= fH2((K
12
2 )H2 , (µ

12
2 )H2).

Since H1 is group isomorphic to H2 and f-invariant entropy is a complete invariant for
measure conjugacy among the Bernoulli shifts on which it is defined,

H1 y (K01
1 , µ

01
1 )
∼= H1 y ((K11

1 )H1 , (µ
11
1 )H1)

∼= H2 y ((K12
2 )H2 , (µ

12
2 )H2)∼= H2 y (K02

2 , µ
02
2 ),

where ∼= denotes the measure conjugacy equivalence relation. Thus the actions of 01 and
02 are virtually measurably conjugate as claimed. 2
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