MATH 109 UCSD Fall 2003

This is not a complete list of the solutions. Problems with sufficient solutions in the back of the text were not included.

Problem 1.41:

- a) There is a cow that does not eat grass.
- **b**) All horses eat grass.
- c) All blue cars weigh at least 4000 pounds.
- d) There is a math book that is not blue and is easy to read.
- e) No cows are spotted.
- f) There is a car with 15 cylinders.
- g) Each car is not old or is not in good running condition.

Problem 1.48: Write the negation and the contrapositive of the following statement without using any negative words: "If x is a positive number, then there is an $\epsilon > 0$ such that $x < \epsilon$ and $x > 1/\epsilon$.

Let P be the statement "x is a positive number" and let Q be the statement "there is an $\epsilon > 0$ such that $x < \epsilon$ and $1/\epsilon < x$." Then P can be written as x > 0 and Q can be written as $(\exists \epsilon > 0)(x < \epsilon \land 1/\epsilon < x)$. So the given statement is $P \to Q$.

The contrapositive of this statement is $\neg Q \rightarrow \neg P$. The negation of Q is the statement $(\forall \epsilon > 0)(x \ge \epsilon \lor 1/\epsilon \ge x)$. The negation of P is the statement $x \le 0$. Thus, the contrapositive can be written as "If every for every positive $\epsilon, x \ge \epsilon$ or $1/\epsilon \ge x$, then x is less than or equal to zero."

The given statement $P \to Q$ is logically equivalent to $\neg P \lor Q$, and the negation of this statement is $P \land \neg Q$. Therefore the negation of the given statement is "x is a positive number and $(\forall \epsilon > 0)(x \ge \epsilon \lor 1/\epsilon \ge x)$ ".

Problem 1.50: Find the truth set of the propositional function

 $(x^{2}+1)(x-3)(x^{2}-2)(2x-3) = 0,$

when it is given that the set of meanings of this propositional function is each of the following:

a) $\mathbb{Z}, \{3\}$ b) Q, $\{3, \frac{3}{2}\}$ c) $\mathbb{R}, \{3, \frac{3}{2}, \sqrt{2}, -\sqrt{2}\}$ d) $\mathbb{C}, \{3, \frac{3}{2}, \sqrt{2}, -\sqrt{2}, i, -i\}$

Problem 1.54: Both of the following statements have the set of the positive real numbers as their set of meanings. Which statement is true?

- $(a) \ (\forall x)(\exists y)(x < y^2).$
- $(b) \ (\exists y) (\forall x) (x < y^2).$

The first statement is true and the second statement is false – neither is hard to prove.

Problem 1.58: Let A, B, and C be integers. Prove that if A divides B and B divides C, then A divides C.

Proof. Let A, B, and C be integers, and suppose A|B and B|C. Since A|B, then there exists an integer m such that B = Am. Since B|C, then there exists an integer n such that C = Bn. Thus C = Amn, and since mn is an integer, A|C.

Problem 1.61: Prove that no integer is both even and odd.

Proof. (by contradiction) Suppose n is an integer that is both even and odd. Then there exist integers p and q such that n = 2p and n = 2q + 1. Thus,

$$2p = 2q + 1$$

and so

$$1 = 2(p - q)$$

is even. This is a contradiction, and so no such integer n exists.

Problem 1.65: Prove that if x and y are real numbers such that x < -2 and y < -3, then the distance between (x, y) and (1, 4) is greater than 7.

Proof. The distance between (x, y) and (1, 4) is

$$d = \sqrt{(x-1)^2 + (y-4)^2}$$

Since x < -2, then x - 1 < 3 and so $(x - 1)^2 > 9$. Similarly, y < -3 implies that $(y - 4)^2 > 49$. Thus,

$$d > \sqrt{9+49} > 7.$$

Problem 1.69: Let A and B be integers with $B \neq 0$. Prove that if A divides B, then $|A| \leq |B|$. **Proof.** If A divides B, then there exists some integer P so that B = PA. Thus,

$$|B| = |PA| = |P||A|.$$

We know $|P| \ge 1$, and so

$$|B| = |P||A| \ge 1 \cdot |A| = |A|.$$

Problem 1.71: Prove that for any natural number n, n is either prime or a perfect square, or n divides (n-1)!.

Proof. Suppose *n* is neither prime nor a perfect square. Then we wish to show that *n* divides (n-1)!. Since *n* is not prime, there exist two natural numbers p, q > 1 so that n = pq. Since *n* is not a perfect square, $p \neq q$, and thus *p* and *q* are distinct divisors of (n-1)!. Hence, their product *n* divides (n-1)!.

Problem 1.75: *Prove, by contradiction, that the sum of two even integers is even.*

Proof. Suppose m and n are two even integers such that m+n is odd. Then there are integers p,q, and r such that m = 2p, n = 2q, and m + n = 2r + 1. But this implies that

$$2r + 1 = m + n = 2p + 2q = 2(p + q)$$

and thus m + n is both even and odd. However, this contradicts Problem 1.61, which states that no such integer exists.

Problem 1.76: Either prove or give a counterexample to the converse of "If x and y are even, then xy is even".

Converse: If xy is even, then x and y are even.

If xy is even, this only implies that x or y is even. So there are many counterexamples. Take x = 2, y = 3.

Problem 1.84: Let A, B, and C be integers such that $A^2 + B^2 = C^2$. Prove that at least one of A and B is even.

Proof. Let A, B, and C be integers, and assume that $A^2 + B^2 = C^2$. Assume for the sake of contradiction that both A and B are odd. Since A and B are odd, there exist integers m and n such that A = 2m + 1 and B = 2n+1. Thus $(2m+1)^2 + (2n+1)^2 = C^2$, or $2(2m^2+2m+2n^2+2n+1) =$ C^2 . Thus C^2 is even, and by a theorem proved in lecture (I think. If it wasn't let me know, and I'll include it to complete the solution), C is even. Since C is even, then there exists an integer k such that C = 2k. Thus $2(2m^2 + 2m + 2n^2 + 2n + 1) = (2k)^2 = 4k^2$. Dividing both sides of this equation by 2 yields $2m^2 + 2m + 2n^2 + 2n + 1 = 2k^2$. The left hand side of this equation is odd, whereas the right hand side is even, which is a contradiction. Therefore at least one of A and B must be even.

Problem 1.86: Everyone knows that $3^2 + 4^2 = 5^2$. Prove that there do not exist three consecutive natural numbers such that the cube of the largest is equal to the sum of the cubes of the other two.

Proof. Assume for the sake of contradiction that there is a natural number n for which $n^3 + (n+1)^3 = (n+2)^3$. Then $2n^3 + 3n^2 + 3n + 1 = n^3 + 6n^2 + 12n + 8$. Simplifying this gives us that $n^3 = 3n^2 + 9n + 7$, or $n(n^2 - 3n - 9) = 7$. Thus n divides 7. Since 7 is prime, it must be the case that n = 1 or n = 7. If n = 1, then $(1)(1 - 3 - 9) = -11 \neq 7$, and if n = 7 then $7(49 - 21 - 9) = 133 \neq 7$. This is a contradiction, so it must be the case that no such natural number n exists.

Problem 1.90:

Definition 0.1. A prime is *average* provided it is the average of two different prime numbers.

Consider the following propositions:

P: Every prime greater than 3 is average.

Q: Every even number other than 2 can be written as x + y, where x and y are prime, and possibly x = y.

R: Every even number greater than 6 can be written as the sum of two different prime numbers.

a) Prove that $R \to P \land Q$.

Proof. Assume for the sake of contradiction that R is true and that $P \wedge Q$ is false, that is, that $\neg P \lor \neg Q$ is true.

Case I: Assume $\neg P$ is true. Then there exists a prime number greater than 3 that is not average. Let p be such a number, that is, p is prime, greater than 3, but not average. Then 2p is even, and since R is true, there exist two different prime numbers x and y for which 2p = x + y. But then $p = \frac{x+y}{2}$, which means that p is average. This contradicts the fact that p is not average.

Case II: Assume $\neg Q$ is true. Then there exists an even number other than 2 which cannot be written as the sum of two primes. Let n be such a number, that is, n is even, greater than 2, and cannot be written as the sum of two primes. Note that $n \neq 4$, because 4 = 2 + 2, and $n \neq 6$, because 6 = 3 + 3. Thus n > 6. Since R is true, there exist two different prime numbers x and y such that n = x + y. This now contradicts the fact that ncannot be written as the sum of two primes.

In either case, we reached a contradiction. Therefore $R \to (P \land Q)$.

Remark 0.2. Given a choice, I would have proved the above statements directly, as opposed to using the method of contradiction, which seems unnecessary here.

b)*Prove that* $P \land Q \rightarrow R$.

Proof. Suppose $P \wedge Q$ holds. Let *n* be an even number greater than 6. *Q* implies that we may write *n* as the sum of two primes, that is, n = p + q. If $p \neq q$, then we're done. Otherwise, p = q and so n = 2p, where *p* is a prime greater than 3. Then by *P*, *p* is average and so $p = \frac{p_1 + p_2}{2}$ for two distinct primes p_1 and p_2 . Thus,

$$n = 2p = 2\left(\frac{p_1 + p_2}{2}\right) = p_1 + p_2$$

as desired.

4